Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
[linux-2.6-microblaze.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/slab.h>
29 #include <linux/migrate.h>
30 #include <linux/ratelimit.h>
31 #include <linux/uuid.h>
32 #include <linux/semaphore.h>
33 #include <linux/bpf.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "free-space-tree.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51 #include "sysfs.h"
52 #include "qgroup.h"
53 #include "compression.h"
54 #include "tree-checker.h"
55 #include "ref-verify.h"
56
57 #ifdef CONFIG_X86
58 #include <asm/cpufeature.h>
59 #endif
60
61 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
62                                  BTRFS_HEADER_FLAG_RELOC |\
63                                  BTRFS_SUPER_FLAG_ERROR |\
64                                  BTRFS_SUPER_FLAG_SEEDING |\
65                                  BTRFS_SUPER_FLAG_METADUMP)
66
67 static const struct extent_io_ops btree_extent_io_ops;
68 static void end_workqueue_fn(struct btrfs_work *work);
69 static void free_fs_root(struct btrfs_root *root);
70 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
71 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
72 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
73                                       struct btrfs_fs_info *fs_info);
74 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
75 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
76                                         struct extent_io_tree *dirty_pages,
77                                         int mark);
78 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
79                                        struct extent_io_tree *pinned_extents);
80 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
81 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
82
83 /*
84  * btrfs_end_io_wq structs are used to do processing in task context when an IO
85  * is complete.  This is used during reads to verify checksums, and it is used
86  * by writes to insert metadata for new file extents after IO is complete.
87  */
88 struct btrfs_end_io_wq {
89         struct bio *bio;
90         bio_end_io_t *end_io;
91         void *private;
92         struct btrfs_fs_info *info;
93         blk_status_t status;
94         enum btrfs_wq_endio_type metadata;
95         struct btrfs_work work;
96 };
97
98 static struct kmem_cache *btrfs_end_io_wq_cache;
99
100 int __init btrfs_end_io_wq_init(void)
101 {
102         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
103                                         sizeof(struct btrfs_end_io_wq),
104                                         0,
105                                         SLAB_MEM_SPREAD,
106                                         NULL);
107         if (!btrfs_end_io_wq_cache)
108                 return -ENOMEM;
109         return 0;
110 }
111
112 void btrfs_end_io_wq_exit(void)
113 {
114         kmem_cache_destroy(btrfs_end_io_wq_cache);
115 }
116
117 /*
118  * async submit bios are used to offload expensive checksumming
119  * onto the worker threads.  They checksum file and metadata bios
120  * just before they are sent down the IO stack.
121  */
122 struct async_submit_bio {
123         void *private_data;
124         struct btrfs_fs_info *fs_info;
125         struct bio *bio;
126         extent_submit_bio_hook_t *submit_bio_start;
127         extent_submit_bio_hook_t *submit_bio_done;
128         int mirror_num;
129         unsigned long bio_flags;
130         /*
131          * bio_offset is optional, can be used if the pages in the bio
132          * can't tell us where in the file the bio should go
133          */
134         u64 bio_offset;
135         struct btrfs_work work;
136         blk_status_t status;
137 };
138
139 /*
140  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
141  * eb, the lockdep key is determined by the btrfs_root it belongs to and
142  * the level the eb occupies in the tree.
143  *
144  * Different roots are used for different purposes and may nest inside each
145  * other and they require separate keysets.  As lockdep keys should be
146  * static, assign keysets according to the purpose of the root as indicated
147  * by btrfs_root->objectid.  This ensures that all special purpose roots
148  * have separate keysets.
149  *
150  * Lock-nesting across peer nodes is always done with the immediate parent
151  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
152  * subclass to avoid triggering lockdep warning in such cases.
153  *
154  * The key is set by the readpage_end_io_hook after the buffer has passed
155  * csum validation but before the pages are unlocked.  It is also set by
156  * btrfs_init_new_buffer on freshly allocated blocks.
157  *
158  * We also add a check to make sure the highest level of the tree is the
159  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
160  * needs update as well.
161  */
162 #ifdef CONFIG_DEBUG_LOCK_ALLOC
163 # if BTRFS_MAX_LEVEL != 8
164 #  error
165 # endif
166
167 static struct btrfs_lockdep_keyset {
168         u64                     id;             /* root objectid */
169         const char              *name_stem;     /* lock name stem */
170         char                    names[BTRFS_MAX_LEVEL + 1][20];
171         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
172 } btrfs_lockdep_keysets[] = {
173         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
174         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
175         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
176         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
177         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
178         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
179         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
180         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
181         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
182         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
183         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
184         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
185         { .id = 0,                              .name_stem = "tree"     },
186 };
187
188 void __init btrfs_init_lockdep(void)
189 {
190         int i, j;
191
192         /* initialize lockdep class names */
193         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
194                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
195
196                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
197                         snprintf(ks->names[j], sizeof(ks->names[j]),
198                                  "btrfs-%s-%02d", ks->name_stem, j);
199         }
200 }
201
202 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
203                                     int level)
204 {
205         struct btrfs_lockdep_keyset *ks;
206
207         BUG_ON(level >= ARRAY_SIZE(ks->keys));
208
209         /* find the matching keyset, id 0 is the default entry */
210         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
211                 if (ks->id == objectid)
212                         break;
213
214         lockdep_set_class_and_name(&eb->lock,
215                                    &ks->keys[level], ks->names[level]);
216 }
217
218 #endif
219
220 /*
221  * extents on the btree inode are pretty simple, there's one extent
222  * that covers the entire device
223  */
224 static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
225                 struct page *page, size_t pg_offset, u64 start, u64 len,
226                 int create)
227 {
228         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
229         struct extent_map_tree *em_tree = &inode->extent_tree;
230         struct extent_map *em;
231         int ret;
232
233         read_lock(&em_tree->lock);
234         em = lookup_extent_mapping(em_tree, start, len);
235         if (em) {
236                 em->bdev = fs_info->fs_devices->latest_bdev;
237                 read_unlock(&em_tree->lock);
238                 goto out;
239         }
240         read_unlock(&em_tree->lock);
241
242         em = alloc_extent_map();
243         if (!em) {
244                 em = ERR_PTR(-ENOMEM);
245                 goto out;
246         }
247         em->start = 0;
248         em->len = (u64)-1;
249         em->block_len = (u64)-1;
250         em->block_start = 0;
251         em->bdev = fs_info->fs_devices->latest_bdev;
252
253         write_lock(&em_tree->lock);
254         ret = add_extent_mapping(em_tree, em, 0);
255         if (ret == -EEXIST) {
256                 free_extent_map(em);
257                 em = lookup_extent_mapping(em_tree, start, len);
258                 if (!em)
259                         em = ERR_PTR(-EIO);
260         } else if (ret) {
261                 free_extent_map(em);
262                 em = ERR_PTR(ret);
263         }
264         write_unlock(&em_tree->lock);
265
266 out:
267         return em;
268 }
269
270 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
271 {
272         return btrfs_crc32c(seed, data, len);
273 }
274
275 void btrfs_csum_final(u32 crc, u8 *result)
276 {
277         put_unaligned_le32(~crc, result);
278 }
279
280 /*
281  * compute the csum for a btree block, and either verify it or write it
282  * into the csum field of the block.
283  */
284 static int csum_tree_block(struct btrfs_fs_info *fs_info,
285                            struct extent_buffer *buf,
286                            int verify)
287 {
288         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
289         char *result = NULL;
290         unsigned long len;
291         unsigned long cur_len;
292         unsigned long offset = BTRFS_CSUM_SIZE;
293         char *kaddr;
294         unsigned long map_start;
295         unsigned long map_len;
296         int err;
297         u32 crc = ~(u32)0;
298         unsigned long inline_result;
299
300         len = buf->len - offset;
301         while (len > 0) {
302                 err = map_private_extent_buffer(buf, offset, 32,
303                                         &kaddr, &map_start, &map_len);
304                 if (err)
305                         return err;
306                 cur_len = min(len, map_len - (offset - map_start));
307                 crc = btrfs_csum_data(kaddr + offset - map_start,
308                                       crc, cur_len);
309                 len -= cur_len;
310                 offset += cur_len;
311         }
312         if (csum_size > sizeof(inline_result)) {
313                 result = kzalloc(csum_size, GFP_NOFS);
314                 if (!result)
315                         return -ENOMEM;
316         } else {
317                 result = (char *)&inline_result;
318         }
319
320         btrfs_csum_final(crc, result);
321
322         if (verify) {
323                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
324                         u32 val;
325                         u32 found = 0;
326                         memcpy(&found, result, csum_size);
327
328                         read_extent_buffer(buf, &val, 0, csum_size);
329                         btrfs_warn_rl(fs_info,
330                                 "%s checksum verify failed on %llu wanted %X found %X level %d",
331                                 fs_info->sb->s_id, buf->start,
332                                 val, found, btrfs_header_level(buf));
333                         if (result != (char *)&inline_result)
334                                 kfree(result);
335                         return -EUCLEAN;
336                 }
337         } else {
338                 write_extent_buffer(buf, result, 0, csum_size);
339         }
340         if (result != (char *)&inline_result)
341                 kfree(result);
342         return 0;
343 }
344
345 /*
346  * we can't consider a given block up to date unless the transid of the
347  * block matches the transid in the parent node's pointer.  This is how we
348  * detect blocks that either didn't get written at all or got written
349  * in the wrong place.
350  */
351 static int verify_parent_transid(struct extent_io_tree *io_tree,
352                                  struct extent_buffer *eb, u64 parent_transid,
353                                  int atomic)
354 {
355         struct extent_state *cached_state = NULL;
356         int ret;
357         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
358
359         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
360                 return 0;
361
362         if (atomic)
363                 return -EAGAIN;
364
365         if (need_lock) {
366                 btrfs_tree_read_lock(eb);
367                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
368         }
369
370         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
371                          &cached_state);
372         if (extent_buffer_uptodate(eb) &&
373             btrfs_header_generation(eb) == parent_transid) {
374                 ret = 0;
375                 goto out;
376         }
377         btrfs_err_rl(eb->fs_info,
378                 "parent transid verify failed on %llu wanted %llu found %llu",
379                         eb->start,
380                         parent_transid, btrfs_header_generation(eb));
381         ret = 1;
382
383         /*
384          * Things reading via commit roots that don't have normal protection,
385          * like send, can have a really old block in cache that may point at a
386          * block that has been freed and re-allocated.  So don't clear uptodate
387          * if we find an eb that is under IO (dirty/writeback) because we could
388          * end up reading in the stale data and then writing it back out and
389          * making everybody very sad.
390          */
391         if (!extent_buffer_under_io(eb))
392                 clear_extent_buffer_uptodate(eb);
393 out:
394         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
395                              &cached_state, GFP_NOFS);
396         if (need_lock)
397                 btrfs_tree_read_unlock_blocking(eb);
398         return ret;
399 }
400
401 /*
402  * Return 0 if the superblock checksum type matches the checksum value of that
403  * algorithm. Pass the raw disk superblock data.
404  */
405 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
406                                   char *raw_disk_sb)
407 {
408         struct btrfs_super_block *disk_sb =
409                 (struct btrfs_super_block *)raw_disk_sb;
410         u16 csum_type = btrfs_super_csum_type(disk_sb);
411         int ret = 0;
412
413         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
414                 u32 crc = ~(u32)0;
415                 const int csum_size = sizeof(crc);
416                 char result[csum_size];
417
418                 /*
419                  * The super_block structure does not span the whole
420                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
421                  * is filled with zeros and is included in the checksum.
422                  */
423                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
424                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
425                 btrfs_csum_final(crc, result);
426
427                 if (memcmp(raw_disk_sb, result, csum_size))
428                         ret = 1;
429         }
430
431         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
432                 btrfs_err(fs_info, "unsupported checksum algorithm %u",
433                                 csum_type);
434                 ret = 1;
435         }
436
437         return ret;
438 }
439
440 /*
441  * helper to read a given tree block, doing retries as required when
442  * the checksums don't match and we have alternate mirrors to try.
443  */
444 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
445                                           struct extent_buffer *eb,
446                                           u64 parent_transid)
447 {
448         struct extent_io_tree *io_tree;
449         int failed = 0;
450         int ret;
451         int num_copies = 0;
452         int mirror_num = 0;
453         int failed_mirror = 0;
454
455         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
456         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
457         while (1) {
458                 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
459                                                btree_get_extent, mirror_num);
460                 if (!ret) {
461                         if (!verify_parent_transid(io_tree, eb,
462                                                    parent_transid, 0))
463                                 break;
464                         else
465                                 ret = -EIO;
466                 }
467
468                 /*
469                  * This buffer's crc is fine, but its contents are corrupted, so
470                  * there is no reason to read the other copies, they won't be
471                  * any less wrong.
472                  */
473                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
474                         break;
475
476                 num_copies = btrfs_num_copies(fs_info,
477                                               eb->start, eb->len);
478                 if (num_copies == 1)
479                         break;
480
481                 if (!failed_mirror) {
482                         failed = 1;
483                         failed_mirror = eb->read_mirror;
484                 }
485
486                 mirror_num++;
487                 if (mirror_num == failed_mirror)
488                         mirror_num++;
489
490                 if (mirror_num > num_copies)
491                         break;
492         }
493
494         if (failed && !ret && failed_mirror)
495                 repair_eb_io_failure(fs_info, eb, failed_mirror);
496
497         return ret;
498 }
499
500 /*
501  * checksum a dirty tree block before IO.  This has extra checks to make sure
502  * we only fill in the checksum field in the first page of a multi-page block
503  */
504
505 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
506 {
507         u64 start = page_offset(page);
508         u64 found_start;
509         struct extent_buffer *eb;
510
511         eb = (struct extent_buffer *)page->private;
512         if (page != eb->pages[0])
513                 return 0;
514
515         found_start = btrfs_header_bytenr(eb);
516         /*
517          * Please do not consolidate these warnings into a single if.
518          * It is useful to know what went wrong.
519          */
520         if (WARN_ON(found_start != start))
521                 return -EUCLEAN;
522         if (WARN_ON(!PageUptodate(page)))
523                 return -EUCLEAN;
524
525         ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
526                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
527
528         return csum_tree_block(fs_info, eb, 0);
529 }
530
531 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
532                                  struct extent_buffer *eb)
533 {
534         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
535         u8 fsid[BTRFS_FSID_SIZE];
536         int ret = 1;
537
538         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
539         while (fs_devices) {
540                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
541                         ret = 0;
542                         break;
543                 }
544                 fs_devices = fs_devices->seed;
545         }
546         return ret;
547 }
548
549 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
550                                       u64 phy_offset, struct page *page,
551                                       u64 start, u64 end, int mirror)
552 {
553         u64 found_start;
554         int found_level;
555         struct extent_buffer *eb;
556         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
557         struct btrfs_fs_info *fs_info = root->fs_info;
558         int ret = 0;
559         int reads_done;
560
561         if (!page->private)
562                 goto out;
563
564         eb = (struct extent_buffer *)page->private;
565
566         /* the pending IO might have been the only thing that kept this buffer
567          * in memory.  Make sure we have a ref for all this other checks
568          */
569         extent_buffer_get(eb);
570
571         reads_done = atomic_dec_and_test(&eb->io_pages);
572         if (!reads_done)
573                 goto err;
574
575         eb->read_mirror = mirror;
576         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
577                 ret = -EIO;
578                 goto err;
579         }
580
581         found_start = btrfs_header_bytenr(eb);
582         if (found_start != eb->start) {
583                 btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
584                              found_start, eb->start);
585                 ret = -EIO;
586                 goto err;
587         }
588         if (check_tree_block_fsid(fs_info, eb)) {
589                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
590                              eb->start);
591                 ret = -EIO;
592                 goto err;
593         }
594         found_level = btrfs_header_level(eb);
595         if (found_level >= BTRFS_MAX_LEVEL) {
596                 btrfs_err(fs_info, "bad tree block level %d",
597                           (int)btrfs_header_level(eb));
598                 ret = -EIO;
599                 goto err;
600         }
601
602         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
603                                        eb, found_level);
604
605         ret = csum_tree_block(fs_info, eb, 1);
606         if (ret)
607                 goto err;
608
609         /*
610          * If this is a leaf block and it is corrupt, set the corrupt bit so
611          * that we don't try and read the other copies of this block, just
612          * return -EIO.
613          */
614         if (found_level == 0 && btrfs_check_leaf_full(root, eb)) {
615                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
616                 ret = -EIO;
617         }
618
619         if (found_level > 0 && btrfs_check_node(root, eb))
620                 ret = -EIO;
621
622         if (!ret)
623                 set_extent_buffer_uptodate(eb);
624 err:
625         if (reads_done &&
626             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
627                 btree_readahead_hook(eb, ret);
628
629         if (ret) {
630                 /*
631                  * our io error hook is going to dec the io pages
632                  * again, we have to make sure it has something
633                  * to decrement
634                  */
635                 atomic_inc(&eb->io_pages);
636                 clear_extent_buffer_uptodate(eb);
637         }
638         free_extent_buffer(eb);
639 out:
640         return ret;
641 }
642
643 static int btree_io_failed_hook(struct page *page, int failed_mirror)
644 {
645         struct extent_buffer *eb;
646
647         eb = (struct extent_buffer *)page->private;
648         set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
649         eb->read_mirror = failed_mirror;
650         atomic_dec(&eb->io_pages);
651         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
652                 btree_readahead_hook(eb, -EIO);
653         return -EIO;    /* we fixed nothing */
654 }
655
656 static void end_workqueue_bio(struct bio *bio)
657 {
658         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
659         struct btrfs_fs_info *fs_info;
660         struct btrfs_workqueue *wq;
661         btrfs_work_func_t func;
662
663         fs_info = end_io_wq->info;
664         end_io_wq->status = bio->bi_status;
665
666         if (bio_op(bio) == REQ_OP_WRITE) {
667                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
668                         wq = fs_info->endio_meta_write_workers;
669                         func = btrfs_endio_meta_write_helper;
670                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
671                         wq = fs_info->endio_freespace_worker;
672                         func = btrfs_freespace_write_helper;
673                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
674                         wq = fs_info->endio_raid56_workers;
675                         func = btrfs_endio_raid56_helper;
676                 } else {
677                         wq = fs_info->endio_write_workers;
678                         func = btrfs_endio_write_helper;
679                 }
680         } else {
681                 if (unlikely(end_io_wq->metadata ==
682                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
683                         wq = fs_info->endio_repair_workers;
684                         func = btrfs_endio_repair_helper;
685                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
686                         wq = fs_info->endio_raid56_workers;
687                         func = btrfs_endio_raid56_helper;
688                 } else if (end_io_wq->metadata) {
689                         wq = fs_info->endio_meta_workers;
690                         func = btrfs_endio_meta_helper;
691                 } else {
692                         wq = fs_info->endio_workers;
693                         func = btrfs_endio_helper;
694                 }
695         }
696
697         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
698         btrfs_queue_work(wq, &end_io_wq->work);
699 }
700
701 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
702                         enum btrfs_wq_endio_type metadata)
703 {
704         struct btrfs_end_io_wq *end_io_wq;
705
706         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
707         if (!end_io_wq)
708                 return BLK_STS_RESOURCE;
709
710         end_io_wq->private = bio->bi_private;
711         end_io_wq->end_io = bio->bi_end_io;
712         end_io_wq->info = info;
713         end_io_wq->status = 0;
714         end_io_wq->bio = bio;
715         end_io_wq->metadata = metadata;
716
717         bio->bi_private = end_io_wq;
718         bio->bi_end_io = end_workqueue_bio;
719         return 0;
720 }
721
722 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
723 {
724         unsigned long limit = min_t(unsigned long,
725                                     info->thread_pool_size,
726                                     info->fs_devices->open_devices);
727         return 256 * limit;
728 }
729
730 static void run_one_async_start(struct btrfs_work *work)
731 {
732         struct async_submit_bio *async;
733         blk_status_t ret;
734
735         async = container_of(work, struct  async_submit_bio, work);
736         ret = async->submit_bio_start(async->private_data, async->bio,
737                                       async->mirror_num, async->bio_flags,
738                                       async->bio_offset);
739         if (ret)
740                 async->status = ret;
741 }
742
743 static void run_one_async_done(struct btrfs_work *work)
744 {
745         struct async_submit_bio *async;
746
747         async = container_of(work, struct  async_submit_bio, work);
748
749         /* If an error occurred we just want to clean up the bio and move on */
750         if (async->status) {
751                 async->bio->bi_status = async->status;
752                 bio_endio(async->bio);
753                 return;
754         }
755
756         async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
757                                async->bio_flags, async->bio_offset);
758 }
759
760 static void run_one_async_free(struct btrfs_work *work)
761 {
762         struct async_submit_bio *async;
763
764         async = container_of(work, struct  async_submit_bio, work);
765         kfree(async);
766 }
767
768 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
769                                  int mirror_num, unsigned long bio_flags,
770                                  u64 bio_offset, void *private_data,
771                                  extent_submit_bio_hook_t *submit_bio_start,
772                                  extent_submit_bio_hook_t *submit_bio_done)
773 {
774         struct async_submit_bio *async;
775
776         async = kmalloc(sizeof(*async), GFP_NOFS);
777         if (!async)
778                 return BLK_STS_RESOURCE;
779
780         async->private_data = private_data;
781         async->fs_info = fs_info;
782         async->bio = bio;
783         async->mirror_num = mirror_num;
784         async->submit_bio_start = submit_bio_start;
785         async->submit_bio_done = submit_bio_done;
786
787         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
788                         run_one_async_done, run_one_async_free);
789
790         async->bio_flags = bio_flags;
791         async->bio_offset = bio_offset;
792
793         async->status = 0;
794
795         if (op_is_sync(bio->bi_opf))
796                 btrfs_set_work_high_priority(&async->work);
797
798         btrfs_queue_work(fs_info->workers, &async->work);
799         return 0;
800 }
801
802 static blk_status_t btree_csum_one_bio(struct bio *bio)
803 {
804         struct bio_vec *bvec;
805         struct btrfs_root *root;
806         int i, ret = 0;
807
808         ASSERT(!bio_flagged(bio, BIO_CLONED));
809         bio_for_each_segment_all(bvec, bio, i) {
810                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
811                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
812                 if (ret)
813                         break;
814         }
815
816         return errno_to_blk_status(ret);
817 }
818
819 static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
820                                              int mirror_num, unsigned long bio_flags,
821                                              u64 bio_offset)
822 {
823         /*
824          * when we're called for a write, we're already in the async
825          * submission context.  Just jump into btrfs_map_bio
826          */
827         return btree_csum_one_bio(bio);
828 }
829
830 static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
831                                             int mirror_num, unsigned long bio_flags,
832                                             u64 bio_offset)
833 {
834         struct inode *inode = private_data;
835         blk_status_t ret;
836
837         /*
838          * when we're called for a write, we're already in the async
839          * submission context.  Just jump into btrfs_map_bio
840          */
841         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
842         if (ret) {
843                 bio->bi_status = ret;
844                 bio_endio(bio);
845         }
846         return ret;
847 }
848
849 static int check_async_write(struct btrfs_inode *bi)
850 {
851         if (atomic_read(&bi->sync_writers))
852                 return 0;
853 #ifdef CONFIG_X86
854         if (static_cpu_has(X86_FEATURE_XMM4_2))
855                 return 0;
856 #endif
857         return 1;
858 }
859
860 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
861                                           int mirror_num, unsigned long bio_flags,
862                                           u64 bio_offset)
863 {
864         struct inode *inode = private_data;
865         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
866         int async = check_async_write(BTRFS_I(inode));
867         blk_status_t ret;
868
869         if (bio_op(bio) != REQ_OP_WRITE) {
870                 /*
871                  * called for a read, do the setup so that checksum validation
872                  * can happen in the async kernel threads
873                  */
874                 ret = btrfs_bio_wq_end_io(fs_info, bio,
875                                           BTRFS_WQ_ENDIO_METADATA);
876                 if (ret)
877                         goto out_w_error;
878                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
879         } else if (!async) {
880                 ret = btree_csum_one_bio(bio);
881                 if (ret)
882                         goto out_w_error;
883                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
884         } else {
885                 /*
886                  * kthread helpers are used to submit writes so that
887                  * checksumming can happen in parallel across all CPUs
888                  */
889                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
890                                           bio_offset, private_data,
891                                           __btree_submit_bio_start,
892                                           __btree_submit_bio_done);
893         }
894
895         if (ret)
896                 goto out_w_error;
897         return 0;
898
899 out_w_error:
900         bio->bi_status = ret;
901         bio_endio(bio);
902         return ret;
903 }
904
905 #ifdef CONFIG_MIGRATION
906 static int btree_migratepage(struct address_space *mapping,
907                         struct page *newpage, struct page *page,
908                         enum migrate_mode mode)
909 {
910         /*
911          * we can't safely write a btree page from here,
912          * we haven't done the locking hook
913          */
914         if (PageDirty(page))
915                 return -EAGAIN;
916         /*
917          * Buffers may be managed in a filesystem specific way.
918          * We must have no buffers or drop them.
919          */
920         if (page_has_private(page) &&
921             !try_to_release_page(page, GFP_KERNEL))
922                 return -EAGAIN;
923         return migrate_page(mapping, newpage, page, mode);
924 }
925 #endif
926
927
928 static int btree_writepages(struct address_space *mapping,
929                             struct writeback_control *wbc)
930 {
931         struct btrfs_fs_info *fs_info;
932         int ret;
933
934         if (wbc->sync_mode == WB_SYNC_NONE) {
935
936                 if (wbc->for_kupdate)
937                         return 0;
938
939                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
940                 /* this is a bit racy, but that's ok */
941                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
942                                              BTRFS_DIRTY_METADATA_THRESH);
943                 if (ret < 0)
944                         return 0;
945         }
946         return btree_write_cache_pages(mapping, wbc);
947 }
948
949 static int btree_readpage(struct file *file, struct page *page)
950 {
951         struct extent_io_tree *tree;
952         tree = &BTRFS_I(page->mapping->host)->io_tree;
953         return extent_read_full_page(tree, page, btree_get_extent, 0);
954 }
955
956 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
957 {
958         if (PageWriteback(page) || PageDirty(page))
959                 return 0;
960
961         return try_release_extent_buffer(page);
962 }
963
964 static void btree_invalidatepage(struct page *page, unsigned int offset,
965                                  unsigned int length)
966 {
967         struct extent_io_tree *tree;
968         tree = &BTRFS_I(page->mapping->host)->io_tree;
969         extent_invalidatepage(tree, page, offset);
970         btree_releasepage(page, GFP_NOFS);
971         if (PagePrivate(page)) {
972                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
973                            "page private not zero on page %llu",
974                            (unsigned long long)page_offset(page));
975                 ClearPagePrivate(page);
976                 set_page_private(page, 0);
977                 put_page(page);
978         }
979 }
980
981 static int btree_set_page_dirty(struct page *page)
982 {
983 #ifdef DEBUG
984         struct extent_buffer *eb;
985
986         BUG_ON(!PagePrivate(page));
987         eb = (struct extent_buffer *)page->private;
988         BUG_ON(!eb);
989         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
990         BUG_ON(!atomic_read(&eb->refs));
991         btrfs_assert_tree_locked(eb);
992 #endif
993         return __set_page_dirty_nobuffers(page);
994 }
995
996 static const struct address_space_operations btree_aops = {
997         .readpage       = btree_readpage,
998         .writepages     = btree_writepages,
999         .releasepage    = btree_releasepage,
1000         .invalidatepage = btree_invalidatepage,
1001 #ifdef CONFIG_MIGRATION
1002         .migratepage    = btree_migratepage,
1003 #endif
1004         .set_page_dirty = btree_set_page_dirty,
1005 };
1006
1007 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1008 {
1009         struct extent_buffer *buf = NULL;
1010         struct inode *btree_inode = fs_info->btree_inode;
1011
1012         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1013         if (IS_ERR(buf))
1014                 return;
1015         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016                                  buf, WAIT_NONE, btree_get_extent, 0);
1017         free_extent_buffer(buf);
1018 }
1019
1020 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1021                          int mirror_num, struct extent_buffer **eb)
1022 {
1023         struct extent_buffer *buf = NULL;
1024         struct inode *btree_inode = fs_info->btree_inode;
1025         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1026         int ret;
1027
1028         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1029         if (IS_ERR(buf))
1030                 return 0;
1031
1032         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1033
1034         ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1035                                        btree_get_extent, mirror_num);
1036         if (ret) {
1037                 free_extent_buffer(buf);
1038                 return ret;
1039         }
1040
1041         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1042                 free_extent_buffer(buf);
1043                 return -EIO;
1044         } else if (extent_buffer_uptodate(buf)) {
1045                 *eb = buf;
1046         } else {
1047                 free_extent_buffer(buf);
1048         }
1049         return 0;
1050 }
1051
1052 struct extent_buffer *btrfs_find_create_tree_block(
1053                                                 struct btrfs_fs_info *fs_info,
1054                                                 u64 bytenr)
1055 {
1056         if (btrfs_is_testing(fs_info))
1057                 return alloc_test_extent_buffer(fs_info, bytenr);
1058         return alloc_extent_buffer(fs_info, bytenr);
1059 }
1060
1061
1062 int btrfs_write_tree_block(struct extent_buffer *buf)
1063 {
1064         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1065                                         buf->start + buf->len - 1);
1066 }
1067
1068 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1069 {
1070         filemap_fdatawait_range(buf->pages[0]->mapping,
1071                                 buf->start, buf->start + buf->len - 1);
1072 }
1073
1074 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1075                                       u64 parent_transid)
1076 {
1077         struct extent_buffer *buf = NULL;
1078         int ret;
1079
1080         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1081         if (IS_ERR(buf))
1082                 return buf;
1083
1084         ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1085         if (ret) {
1086                 free_extent_buffer(buf);
1087                 return ERR_PTR(ret);
1088         }
1089         return buf;
1090
1091 }
1092
1093 void clean_tree_block(struct btrfs_fs_info *fs_info,
1094                       struct extent_buffer *buf)
1095 {
1096         if (btrfs_header_generation(buf) ==
1097             fs_info->running_transaction->transid) {
1098                 btrfs_assert_tree_locked(buf);
1099
1100                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1101                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1102                                                  -buf->len,
1103                                                  fs_info->dirty_metadata_batch);
1104                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1105                         btrfs_set_lock_blocking(buf);
1106                         clear_extent_buffer_dirty(buf);
1107                 }
1108         }
1109 }
1110
1111 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1112 {
1113         struct btrfs_subvolume_writers *writers;
1114         int ret;
1115
1116         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1117         if (!writers)
1118                 return ERR_PTR(-ENOMEM);
1119
1120         ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1121         if (ret < 0) {
1122                 kfree(writers);
1123                 return ERR_PTR(ret);
1124         }
1125
1126         init_waitqueue_head(&writers->wait);
1127         return writers;
1128 }
1129
1130 static void
1131 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1132 {
1133         percpu_counter_destroy(&writers->counter);
1134         kfree(writers);
1135 }
1136
1137 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1138                          u64 objectid)
1139 {
1140         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1141         root->node = NULL;
1142         root->commit_root = NULL;
1143         root->state = 0;
1144         root->orphan_cleanup_state = 0;
1145
1146         root->objectid = objectid;
1147         root->last_trans = 0;
1148         root->highest_objectid = 0;
1149         root->nr_delalloc_inodes = 0;
1150         root->nr_ordered_extents = 0;
1151         root->name = NULL;
1152         root->inode_tree = RB_ROOT;
1153         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1154         root->block_rsv = NULL;
1155         root->orphan_block_rsv = NULL;
1156
1157         INIT_LIST_HEAD(&root->dirty_list);
1158         INIT_LIST_HEAD(&root->root_list);
1159         INIT_LIST_HEAD(&root->delalloc_inodes);
1160         INIT_LIST_HEAD(&root->delalloc_root);
1161         INIT_LIST_HEAD(&root->ordered_extents);
1162         INIT_LIST_HEAD(&root->ordered_root);
1163         INIT_LIST_HEAD(&root->logged_list[0]);
1164         INIT_LIST_HEAD(&root->logged_list[1]);
1165         spin_lock_init(&root->orphan_lock);
1166         spin_lock_init(&root->inode_lock);
1167         spin_lock_init(&root->delalloc_lock);
1168         spin_lock_init(&root->ordered_extent_lock);
1169         spin_lock_init(&root->accounting_lock);
1170         spin_lock_init(&root->log_extents_lock[0]);
1171         spin_lock_init(&root->log_extents_lock[1]);
1172         mutex_init(&root->objectid_mutex);
1173         mutex_init(&root->log_mutex);
1174         mutex_init(&root->ordered_extent_mutex);
1175         mutex_init(&root->delalloc_mutex);
1176         init_waitqueue_head(&root->log_writer_wait);
1177         init_waitqueue_head(&root->log_commit_wait[0]);
1178         init_waitqueue_head(&root->log_commit_wait[1]);
1179         INIT_LIST_HEAD(&root->log_ctxs[0]);
1180         INIT_LIST_HEAD(&root->log_ctxs[1]);
1181         atomic_set(&root->log_commit[0], 0);
1182         atomic_set(&root->log_commit[1], 0);
1183         atomic_set(&root->log_writers, 0);
1184         atomic_set(&root->log_batch, 0);
1185         atomic_set(&root->orphan_inodes, 0);
1186         refcount_set(&root->refs, 1);
1187         atomic_set(&root->will_be_snapshotted, 0);
1188         atomic64_set(&root->qgroup_meta_rsv, 0);
1189         root->log_transid = 0;
1190         root->log_transid_committed = -1;
1191         root->last_log_commit = 0;
1192         if (!dummy)
1193                 extent_io_tree_init(&root->dirty_log_pages, NULL);
1194
1195         memset(&root->root_key, 0, sizeof(root->root_key));
1196         memset(&root->root_item, 0, sizeof(root->root_item));
1197         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1198         if (!dummy)
1199                 root->defrag_trans_start = fs_info->generation;
1200         else
1201                 root->defrag_trans_start = 0;
1202         root->root_key.objectid = objectid;
1203         root->anon_dev = 0;
1204
1205         spin_lock_init(&root->root_item_lock);
1206 }
1207
1208 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1209                 gfp_t flags)
1210 {
1211         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1212         if (root)
1213                 root->fs_info = fs_info;
1214         return root;
1215 }
1216
1217 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1218 /* Should only be used by the testing infrastructure */
1219 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1220 {
1221         struct btrfs_root *root;
1222
1223         if (!fs_info)
1224                 return ERR_PTR(-EINVAL);
1225
1226         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1227         if (!root)
1228                 return ERR_PTR(-ENOMEM);
1229
1230         /* We don't use the stripesize in selftest, set it as sectorsize */
1231         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1232         root->alloc_bytenr = 0;
1233
1234         return root;
1235 }
1236 #endif
1237
1238 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1239                                      struct btrfs_fs_info *fs_info,
1240                                      u64 objectid)
1241 {
1242         struct extent_buffer *leaf;
1243         struct btrfs_root *tree_root = fs_info->tree_root;
1244         struct btrfs_root *root;
1245         struct btrfs_key key;
1246         int ret = 0;
1247         uuid_le uuid;
1248
1249         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1250         if (!root)
1251                 return ERR_PTR(-ENOMEM);
1252
1253         __setup_root(root, fs_info, objectid);
1254         root->root_key.objectid = objectid;
1255         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1256         root->root_key.offset = 0;
1257
1258         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1259         if (IS_ERR(leaf)) {
1260                 ret = PTR_ERR(leaf);
1261                 leaf = NULL;
1262                 goto fail;
1263         }
1264
1265         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1266         btrfs_set_header_bytenr(leaf, leaf->start);
1267         btrfs_set_header_generation(leaf, trans->transid);
1268         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1269         btrfs_set_header_owner(leaf, objectid);
1270         root->node = leaf;
1271
1272         write_extent_buffer_fsid(leaf, fs_info->fsid);
1273         write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1274         btrfs_mark_buffer_dirty(leaf);
1275
1276         root->commit_root = btrfs_root_node(root);
1277         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1278
1279         root->root_item.flags = 0;
1280         root->root_item.byte_limit = 0;
1281         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1282         btrfs_set_root_generation(&root->root_item, trans->transid);
1283         btrfs_set_root_level(&root->root_item, 0);
1284         btrfs_set_root_refs(&root->root_item, 1);
1285         btrfs_set_root_used(&root->root_item, leaf->len);
1286         btrfs_set_root_last_snapshot(&root->root_item, 0);
1287         btrfs_set_root_dirid(&root->root_item, 0);
1288         uuid_le_gen(&uuid);
1289         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1290         root->root_item.drop_level = 0;
1291
1292         key.objectid = objectid;
1293         key.type = BTRFS_ROOT_ITEM_KEY;
1294         key.offset = 0;
1295         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1296         if (ret)
1297                 goto fail;
1298
1299         btrfs_tree_unlock(leaf);
1300
1301         return root;
1302
1303 fail:
1304         if (leaf) {
1305                 btrfs_tree_unlock(leaf);
1306                 free_extent_buffer(root->commit_root);
1307                 free_extent_buffer(leaf);
1308         }
1309         kfree(root);
1310
1311         return ERR_PTR(ret);
1312 }
1313
1314 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1315                                          struct btrfs_fs_info *fs_info)
1316 {
1317         struct btrfs_root *root;
1318         struct extent_buffer *leaf;
1319
1320         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1321         if (!root)
1322                 return ERR_PTR(-ENOMEM);
1323
1324         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1325
1326         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1327         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1328         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1329
1330         /*
1331          * DON'T set REF_COWS for log trees
1332          *
1333          * log trees do not get reference counted because they go away
1334          * before a real commit is actually done.  They do store pointers
1335          * to file data extents, and those reference counts still get
1336          * updated (along with back refs to the log tree).
1337          */
1338
1339         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1340                         NULL, 0, 0, 0);
1341         if (IS_ERR(leaf)) {
1342                 kfree(root);
1343                 return ERR_CAST(leaf);
1344         }
1345
1346         memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1347         btrfs_set_header_bytenr(leaf, leaf->start);
1348         btrfs_set_header_generation(leaf, trans->transid);
1349         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1350         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1351         root->node = leaf;
1352
1353         write_extent_buffer_fsid(root->node, fs_info->fsid);
1354         btrfs_mark_buffer_dirty(root->node);
1355         btrfs_tree_unlock(root->node);
1356         return root;
1357 }
1358
1359 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1360                              struct btrfs_fs_info *fs_info)
1361 {
1362         struct btrfs_root *log_root;
1363
1364         log_root = alloc_log_tree(trans, fs_info);
1365         if (IS_ERR(log_root))
1366                 return PTR_ERR(log_root);
1367         WARN_ON(fs_info->log_root_tree);
1368         fs_info->log_root_tree = log_root;
1369         return 0;
1370 }
1371
1372 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1373                        struct btrfs_root *root)
1374 {
1375         struct btrfs_fs_info *fs_info = root->fs_info;
1376         struct btrfs_root *log_root;
1377         struct btrfs_inode_item *inode_item;
1378
1379         log_root = alloc_log_tree(trans, fs_info);
1380         if (IS_ERR(log_root))
1381                 return PTR_ERR(log_root);
1382
1383         log_root->last_trans = trans->transid;
1384         log_root->root_key.offset = root->root_key.objectid;
1385
1386         inode_item = &log_root->root_item.inode;
1387         btrfs_set_stack_inode_generation(inode_item, 1);
1388         btrfs_set_stack_inode_size(inode_item, 3);
1389         btrfs_set_stack_inode_nlink(inode_item, 1);
1390         btrfs_set_stack_inode_nbytes(inode_item,
1391                                      fs_info->nodesize);
1392         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1393
1394         btrfs_set_root_node(&log_root->root_item, log_root->node);
1395
1396         WARN_ON(root->log_root);
1397         root->log_root = log_root;
1398         root->log_transid = 0;
1399         root->log_transid_committed = -1;
1400         root->last_log_commit = 0;
1401         return 0;
1402 }
1403
1404 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1405                                                struct btrfs_key *key)
1406 {
1407         struct btrfs_root *root;
1408         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1409         struct btrfs_path *path;
1410         u64 generation;
1411         int ret;
1412
1413         path = btrfs_alloc_path();
1414         if (!path)
1415                 return ERR_PTR(-ENOMEM);
1416
1417         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1418         if (!root) {
1419                 ret = -ENOMEM;
1420                 goto alloc_fail;
1421         }
1422
1423         __setup_root(root, fs_info, key->objectid);
1424
1425         ret = btrfs_find_root(tree_root, key, path,
1426                               &root->root_item, &root->root_key);
1427         if (ret) {
1428                 if (ret > 0)
1429                         ret = -ENOENT;
1430                 goto find_fail;
1431         }
1432
1433         generation = btrfs_root_generation(&root->root_item);
1434         root->node = read_tree_block(fs_info,
1435                                      btrfs_root_bytenr(&root->root_item),
1436                                      generation);
1437         if (IS_ERR(root->node)) {
1438                 ret = PTR_ERR(root->node);
1439                 goto find_fail;
1440         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1441                 ret = -EIO;
1442                 free_extent_buffer(root->node);
1443                 goto find_fail;
1444         }
1445         root->commit_root = btrfs_root_node(root);
1446 out:
1447         btrfs_free_path(path);
1448         return root;
1449
1450 find_fail:
1451         kfree(root);
1452 alloc_fail:
1453         root = ERR_PTR(ret);
1454         goto out;
1455 }
1456
1457 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1458                                       struct btrfs_key *location)
1459 {
1460         struct btrfs_root *root;
1461
1462         root = btrfs_read_tree_root(tree_root, location);
1463         if (IS_ERR(root))
1464                 return root;
1465
1466         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1467                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1468                 btrfs_check_and_init_root_item(&root->root_item);
1469         }
1470
1471         return root;
1472 }
1473
1474 int btrfs_init_fs_root(struct btrfs_root *root)
1475 {
1476         int ret;
1477         struct btrfs_subvolume_writers *writers;
1478
1479         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1480         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1481                                         GFP_NOFS);
1482         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1483                 ret = -ENOMEM;
1484                 goto fail;
1485         }
1486
1487         writers = btrfs_alloc_subvolume_writers();
1488         if (IS_ERR(writers)) {
1489                 ret = PTR_ERR(writers);
1490                 goto fail;
1491         }
1492         root->subv_writers = writers;
1493
1494         btrfs_init_free_ino_ctl(root);
1495         spin_lock_init(&root->ino_cache_lock);
1496         init_waitqueue_head(&root->ino_cache_wait);
1497
1498         ret = get_anon_bdev(&root->anon_dev);
1499         if (ret)
1500                 goto fail;
1501
1502         mutex_lock(&root->objectid_mutex);
1503         ret = btrfs_find_highest_objectid(root,
1504                                         &root->highest_objectid);
1505         if (ret) {
1506                 mutex_unlock(&root->objectid_mutex);
1507                 goto fail;
1508         }
1509
1510         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1511
1512         mutex_unlock(&root->objectid_mutex);
1513
1514         return 0;
1515 fail:
1516         /* the caller is responsible to call free_fs_root */
1517         return ret;
1518 }
1519
1520 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1521                                         u64 root_id)
1522 {
1523         struct btrfs_root *root;
1524
1525         spin_lock(&fs_info->fs_roots_radix_lock);
1526         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1527                                  (unsigned long)root_id);
1528         spin_unlock(&fs_info->fs_roots_radix_lock);
1529         return root;
1530 }
1531
1532 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1533                          struct btrfs_root *root)
1534 {
1535         int ret;
1536
1537         ret = radix_tree_preload(GFP_NOFS);
1538         if (ret)
1539                 return ret;
1540
1541         spin_lock(&fs_info->fs_roots_radix_lock);
1542         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1543                                 (unsigned long)root->root_key.objectid,
1544                                 root);
1545         if (ret == 0)
1546                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1547         spin_unlock(&fs_info->fs_roots_radix_lock);
1548         radix_tree_preload_end();
1549
1550         return ret;
1551 }
1552
1553 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1554                                      struct btrfs_key *location,
1555                                      bool check_ref)
1556 {
1557         struct btrfs_root *root;
1558         struct btrfs_path *path;
1559         struct btrfs_key key;
1560         int ret;
1561
1562         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1563                 return fs_info->tree_root;
1564         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1565                 return fs_info->extent_root;
1566         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1567                 return fs_info->chunk_root;
1568         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1569                 return fs_info->dev_root;
1570         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1571                 return fs_info->csum_root;
1572         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1573                 return fs_info->quota_root ? fs_info->quota_root :
1574                                              ERR_PTR(-ENOENT);
1575         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1576                 return fs_info->uuid_root ? fs_info->uuid_root :
1577                                             ERR_PTR(-ENOENT);
1578         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1579                 return fs_info->free_space_root ? fs_info->free_space_root :
1580                                                   ERR_PTR(-ENOENT);
1581 again:
1582         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1583         if (root) {
1584                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1585                         return ERR_PTR(-ENOENT);
1586                 return root;
1587         }
1588
1589         root = btrfs_read_fs_root(fs_info->tree_root, location);
1590         if (IS_ERR(root))
1591                 return root;
1592
1593         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1594                 ret = -ENOENT;
1595                 goto fail;
1596         }
1597
1598         ret = btrfs_init_fs_root(root);
1599         if (ret)
1600                 goto fail;
1601
1602         path = btrfs_alloc_path();
1603         if (!path) {
1604                 ret = -ENOMEM;
1605                 goto fail;
1606         }
1607         key.objectid = BTRFS_ORPHAN_OBJECTID;
1608         key.type = BTRFS_ORPHAN_ITEM_KEY;
1609         key.offset = location->objectid;
1610
1611         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1612         btrfs_free_path(path);
1613         if (ret < 0)
1614                 goto fail;
1615         if (ret == 0)
1616                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1617
1618         ret = btrfs_insert_fs_root(fs_info, root);
1619         if (ret) {
1620                 if (ret == -EEXIST) {
1621                         free_fs_root(root);
1622                         goto again;
1623                 }
1624                 goto fail;
1625         }
1626         return root;
1627 fail:
1628         free_fs_root(root);
1629         return ERR_PTR(ret);
1630 }
1631
1632 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1633 {
1634         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1635         int ret = 0;
1636         struct btrfs_device *device;
1637         struct backing_dev_info *bdi;
1638
1639         rcu_read_lock();
1640         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1641                 if (!device->bdev)
1642                         continue;
1643                 bdi = device->bdev->bd_bdi;
1644                 if (bdi_congested(bdi, bdi_bits)) {
1645                         ret = 1;
1646                         break;
1647                 }
1648         }
1649         rcu_read_unlock();
1650         return ret;
1651 }
1652
1653 /*
1654  * called by the kthread helper functions to finally call the bio end_io
1655  * functions.  This is where read checksum verification actually happens
1656  */
1657 static void end_workqueue_fn(struct btrfs_work *work)
1658 {
1659         struct bio *bio;
1660         struct btrfs_end_io_wq *end_io_wq;
1661
1662         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1663         bio = end_io_wq->bio;
1664
1665         bio->bi_status = end_io_wq->status;
1666         bio->bi_private = end_io_wq->private;
1667         bio->bi_end_io = end_io_wq->end_io;
1668         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1669         bio_endio(bio);
1670 }
1671
1672 static int cleaner_kthread(void *arg)
1673 {
1674         struct btrfs_root *root = arg;
1675         struct btrfs_fs_info *fs_info = root->fs_info;
1676         int again;
1677         struct btrfs_trans_handle *trans;
1678
1679         do {
1680                 again = 0;
1681
1682                 /* Make the cleaner go to sleep early. */
1683                 if (btrfs_need_cleaner_sleep(fs_info))
1684                         goto sleep;
1685
1686                 /*
1687                  * Do not do anything if we might cause open_ctree() to block
1688                  * before we have finished mounting the filesystem.
1689                  */
1690                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1691                         goto sleep;
1692
1693                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1694                         goto sleep;
1695
1696                 /*
1697                  * Avoid the problem that we change the status of the fs
1698                  * during the above check and trylock.
1699                  */
1700                 if (btrfs_need_cleaner_sleep(fs_info)) {
1701                         mutex_unlock(&fs_info->cleaner_mutex);
1702                         goto sleep;
1703                 }
1704
1705                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1706                 btrfs_run_delayed_iputs(fs_info);
1707                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1708
1709                 again = btrfs_clean_one_deleted_snapshot(root);
1710                 mutex_unlock(&fs_info->cleaner_mutex);
1711
1712                 /*
1713                  * The defragger has dealt with the R/O remount and umount,
1714                  * needn't do anything special here.
1715                  */
1716                 btrfs_run_defrag_inodes(fs_info);
1717
1718                 /*
1719                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1720                  * with relocation (btrfs_relocate_chunk) and relocation
1721                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1722                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1723                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1724                  * unused block groups.
1725                  */
1726                 btrfs_delete_unused_bgs(fs_info);
1727 sleep:
1728                 if (!again) {
1729                         set_current_state(TASK_INTERRUPTIBLE);
1730                         if (!kthread_should_stop())
1731                                 schedule();
1732                         __set_current_state(TASK_RUNNING);
1733                 }
1734         } while (!kthread_should_stop());
1735
1736         /*
1737          * Transaction kthread is stopped before us and wakes us up.
1738          * However we might have started a new transaction and COWed some
1739          * tree blocks when deleting unused block groups for example. So
1740          * make sure we commit the transaction we started to have a clean
1741          * shutdown when evicting the btree inode - if it has dirty pages
1742          * when we do the final iput() on it, eviction will trigger a
1743          * writeback for it which will fail with null pointer dereferences
1744          * since work queues and other resources were already released and
1745          * destroyed by the time the iput/eviction/writeback is made.
1746          */
1747         trans = btrfs_attach_transaction(root);
1748         if (IS_ERR(trans)) {
1749                 if (PTR_ERR(trans) != -ENOENT)
1750                         btrfs_err(fs_info,
1751                                   "cleaner transaction attach returned %ld",
1752                                   PTR_ERR(trans));
1753         } else {
1754                 int ret;
1755
1756                 ret = btrfs_commit_transaction(trans);
1757                 if (ret)
1758                         btrfs_err(fs_info,
1759                                   "cleaner open transaction commit returned %d",
1760                                   ret);
1761         }
1762
1763         return 0;
1764 }
1765
1766 static int transaction_kthread(void *arg)
1767 {
1768         struct btrfs_root *root = arg;
1769         struct btrfs_fs_info *fs_info = root->fs_info;
1770         struct btrfs_trans_handle *trans;
1771         struct btrfs_transaction *cur;
1772         u64 transid;
1773         unsigned long now;
1774         unsigned long delay;
1775         bool cannot_commit;
1776
1777         do {
1778                 cannot_commit = false;
1779                 delay = HZ * fs_info->commit_interval;
1780                 mutex_lock(&fs_info->transaction_kthread_mutex);
1781
1782                 spin_lock(&fs_info->trans_lock);
1783                 cur = fs_info->running_transaction;
1784                 if (!cur) {
1785                         spin_unlock(&fs_info->trans_lock);
1786                         goto sleep;
1787                 }
1788
1789                 now = get_seconds();
1790                 if (cur->state < TRANS_STATE_BLOCKED &&
1791                     (now < cur->start_time ||
1792                      now - cur->start_time < fs_info->commit_interval)) {
1793                         spin_unlock(&fs_info->trans_lock);
1794                         delay = HZ * 5;
1795                         goto sleep;
1796                 }
1797                 transid = cur->transid;
1798                 spin_unlock(&fs_info->trans_lock);
1799
1800                 /* If the file system is aborted, this will always fail. */
1801                 trans = btrfs_attach_transaction(root);
1802                 if (IS_ERR(trans)) {
1803                         if (PTR_ERR(trans) != -ENOENT)
1804                                 cannot_commit = true;
1805                         goto sleep;
1806                 }
1807                 if (transid == trans->transid) {
1808                         btrfs_commit_transaction(trans);
1809                 } else {
1810                         btrfs_end_transaction(trans);
1811                 }
1812 sleep:
1813                 wake_up_process(fs_info->cleaner_kthread);
1814                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1815
1816                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1817                                       &fs_info->fs_state)))
1818                         btrfs_cleanup_transaction(fs_info);
1819                 set_current_state(TASK_INTERRUPTIBLE);
1820                 if (!kthread_should_stop() &&
1821                                 (!btrfs_transaction_blocked(fs_info) ||
1822                                  cannot_commit))
1823                         schedule_timeout(delay);
1824                 __set_current_state(TASK_RUNNING);
1825         } while (!kthread_should_stop());
1826         return 0;
1827 }
1828
1829 /*
1830  * this will find the highest generation in the array of
1831  * root backups.  The index of the highest array is returned,
1832  * or -1 if we can't find anything.
1833  *
1834  * We check to make sure the array is valid by comparing the
1835  * generation of the latest  root in the array with the generation
1836  * in the super block.  If they don't match we pitch it.
1837  */
1838 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1839 {
1840         u64 cur;
1841         int newest_index = -1;
1842         struct btrfs_root_backup *root_backup;
1843         int i;
1844
1845         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1846                 root_backup = info->super_copy->super_roots + i;
1847                 cur = btrfs_backup_tree_root_gen(root_backup);
1848                 if (cur == newest_gen)
1849                         newest_index = i;
1850         }
1851
1852         /* check to see if we actually wrapped around */
1853         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1854                 root_backup = info->super_copy->super_roots;
1855                 cur = btrfs_backup_tree_root_gen(root_backup);
1856                 if (cur == newest_gen)
1857                         newest_index = 0;
1858         }
1859         return newest_index;
1860 }
1861
1862
1863 /*
1864  * find the oldest backup so we know where to store new entries
1865  * in the backup array.  This will set the backup_root_index
1866  * field in the fs_info struct
1867  */
1868 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1869                                      u64 newest_gen)
1870 {
1871         int newest_index = -1;
1872
1873         newest_index = find_newest_super_backup(info, newest_gen);
1874         /* if there was garbage in there, just move along */
1875         if (newest_index == -1) {
1876                 info->backup_root_index = 0;
1877         } else {
1878                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1879         }
1880 }
1881
1882 /*
1883  * copy all the root pointers into the super backup array.
1884  * this will bump the backup pointer by one when it is
1885  * done
1886  */
1887 static void backup_super_roots(struct btrfs_fs_info *info)
1888 {
1889         int next_backup;
1890         struct btrfs_root_backup *root_backup;
1891         int last_backup;
1892
1893         next_backup = info->backup_root_index;
1894         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1895                 BTRFS_NUM_BACKUP_ROOTS;
1896
1897         /*
1898          * just overwrite the last backup if we're at the same generation
1899          * this happens only at umount
1900          */
1901         root_backup = info->super_for_commit->super_roots + last_backup;
1902         if (btrfs_backup_tree_root_gen(root_backup) ==
1903             btrfs_header_generation(info->tree_root->node))
1904                 next_backup = last_backup;
1905
1906         root_backup = info->super_for_commit->super_roots + next_backup;
1907
1908         /*
1909          * make sure all of our padding and empty slots get zero filled
1910          * regardless of which ones we use today
1911          */
1912         memset(root_backup, 0, sizeof(*root_backup));
1913
1914         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1915
1916         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1917         btrfs_set_backup_tree_root_gen(root_backup,
1918                                btrfs_header_generation(info->tree_root->node));
1919
1920         btrfs_set_backup_tree_root_level(root_backup,
1921                                btrfs_header_level(info->tree_root->node));
1922
1923         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1924         btrfs_set_backup_chunk_root_gen(root_backup,
1925                                btrfs_header_generation(info->chunk_root->node));
1926         btrfs_set_backup_chunk_root_level(root_backup,
1927                                btrfs_header_level(info->chunk_root->node));
1928
1929         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1930         btrfs_set_backup_extent_root_gen(root_backup,
1931                                btrfs_header_generation(info->extent_root->node));
1932         btrfs_set_backup_extent_root_level(root_backup,
1933                                btrfs_header_level(info->extent_root->node));
1934
1935         /*
1936          * we might commit during log recovery, which happens before we set
1937          * the fs_root.  Make sure it is valid before we fill it in.
1938          */
1939         if (info->fs_root && info->fs_root->node) {
1940                 btrfs_set_backup_fs_root(root_backup,
1941                                          info->fs_root->node->start);
1942                 btrfs_set_backup_fs_root_gen(root_backup,
1943                                btrfs_header_generation(info->fs_root->node));
1944                 btrfs_set_backup_fs_root_level(root_backup,
1945                                btrfs_header_level(info->fs_root->node));
1946         }
1947
1948         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1949         btrfs_set_backup_dev_root_gen(root_backup,
1950                                btrfs_header_generation(info->dev_root->node));
1951         btrfs_set_backup_dev_root_level(root_backup,
1952                                        btrfs_header_level(info->dev_root->node));
1953
1954         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1955         btrfs_set_backup_csum_root_gen(root_backup,
1956                                btrfs_header_generation(info->csum_root->node));
1957         btrfs_set_backup_csum_root_level(root_backup,
1958                                btrfs_header_level(info->csum_root->node));
1959
1960         btrfs_set_backup_total_bytes(root_backup,
1961                              btrfs_super_total_bytes(info->super_copy));
1962         btrfs_set_backup_bytes_used(root_backup,
1963                              btrfs_super_bytes_used(info->super_copy));
1964         btrfs_set_backup_num_devices(root_backup,
1965                              btrfs_super_num_devices(info->super_copy));
1966
1967         /*
1968          * if we don't copy this out to the super_copy, it won't get remembered
1969          * for the next commit
1970          */
1971         memcpy(&info->super_copy->super_roots,
1972                &info->super_for_commit->super_roots,
1973                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1974 }
1975
1976 /*
1977  * this copies info out of the root backup array and back into
1978  * the in-memory super block.  It is meant to help iterate through
1979  * the array, so you send it the number of backups you've already
1980  * tried and the last backup index you used.
1981  *
1982  * this returns -1 when it has tried all the backups
1983  */
1984 static noinline int next_root_backup(struct btrfs_fs_info *info,
1985                                      struct btrfs_super_block *super,
1986                                      int *num_backups_tried, int *backup_index)
1987 {
1988         struct btrfs_root_backup *root_backup;
1989         int newest = *backup_index;
1990
1991         if (*num_backups_tried == 0) {
1992                 u64 gen = btrfs_super_generation(super);
1993
1994                 newest = find_newest_super_backup(info, gen);
1995                 if (newest == -1)
1996                         return -1;
1997
1998                 *backup_index = newest;
1999                 *num_backups_tried = 1;
2000         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2001                 /* we've tried all the backups, all done */
2002                 return -1;
2003         } else {
2004                 /* jump to the next oldest backup */
2005                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2006                         BTRFS_NUM_BACKUP_ROOTS;
2007                 *backup_index = newest;
2008                 *num_backups_tried += 1;
2009         }
2010         root_backup = super->super_roots + newest;
2011
2012         btrfs_set_super_generation(super,
2013                                    btrfs_backup_tree_root_gen(root_backup));
2014         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2015         btrfs_set_super_root_level(super,
2016                                    btrfs_backup_tree_root_level(root_backup));
2017         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2018
2019         /*
2020          * fixme: the total bytes and num_devices need to match or we should
2021          * need a fsck
2022          */
2023         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2024         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2025         return 0;
2026 }
2027
2028 /* helper to cleanup workers */
2029 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2030 {
2031         btrfs_destroy_workqueue(fs_info->fixup_workers);
2032         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2033         btrfs_destroy_workqueue(fs_info->workers);
2034         btrfs_destroy_workqueue(fs_info->endio_workers);
2035         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2036         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2037         btrfs_destroy_workqueue(fs_info->rmw_workers);
2038         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2039         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2040         btrfs_destroy_workqueue(fs_info->submit_workers);
2041         btrfs_destroy_workqueue(fs_info->delayed_workers);
2042         btrfs_destroy_workqueue(fs_info->caching_workers);
2043         btrfs_destroy_workqueue(fs_info->readahead_workers);
2044         btrfs_destroy_workqueue(fs_info->flush_workers);
2045         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2046         btrfs_destroy_workqueue(fs_info->extent_workers);
2047         /*
2048          * Now that all other work queues are destroyed, we can safely destroy
2049          * the queues used for metadata I/O, since tasks from those other work
2050          * queues can do metadata I/O operations.
2051          */
2052         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2053         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2054 }
2055
2056 static void free_root_extent_buffers(struct btrfs_root *root)
2057 {
2058         if (root) {
2059                 free_extent_buffer(root->node);
2060                 free_extent_buffer(root->commit_root);
2061                 root->node = NULL;
2062                 root->commit_root = NULL;
2063         }
2064 }
2065
2066 /* helper to cleanup tree roots */
2067 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2068 {
2069         free_root_extent_buffers(info->tree_root);
2070
2071         free_root_extent_buffers(info->dev_root);
2072         free_root_extent_buffers(info->extent_root);
2073         free_root_extent_buffers(info->csum_root);
2074         free_root_extent_buffers(info->quota_root);
2075         free_root_extent_buffers(info->uuid_root);
2076         if (chunk_root)
2077                 free_root_extent_buffers(info->chunk_root);
2078         free_root_extent_buffers(info->free_space_root);
2079 }
2080
2081 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2082 {
2083         int ret;
2084         struct btrfs_root *gang[8];
2085         int i;
2086
2087         while (!list_empty(&fs_info->dead_roots)) {
2088                 gang[0] = list_entry(fs_info->dead_roots.next,
2089                                      struct btrfs_root, root_list);
2090                 list_del(&gang[0]->root_list);
2091
2092                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2093                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2094                 } else {
2095                         free_extent_buffer(gang[0]->node);
2096                         free_extent_buffer(gang[0]->commit_root);
2097                         btrfs_put_fs_root(gang[0]);
2098                 }
2099         }
2100
2101         while (1) {
2102                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2103                                              (void **)gang, 0,
2104                                              ARRAY_SIZE(gang));
2105                 if (!ret)
2106                         break;
2107                 for (i = 0; i < ret; i++)
2108                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2109         }
2110
2111         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2112                 btrfs_free_log_root_tree(NULL, fs_info);
2113                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2114         }
2115 }
2116
2117 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2118 {
2119         mutex_init(&fs_info->scrub_lock);
2120         atomic_set(&fs_info->scrubs_running, 0);
2121         atomic_set(&fs_info->scrub_pause_req, 0);
2122         atomic_set(&fs_info->scrubs_paused, 0);
2123         atomic_set(&fs_info->scrub_cancel_req, 0);
2124         init_waitqueue_head(&fs_info->scrub_pause_wait);
2125         fs_info->scrub_workers_refcnt = 0;
2126 }
2127
2128 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2129 {
2130         spin_lock_init(&fs_info->balance_lock);
2131         mutex_init(&fs_info->balance_mutex);
2132         atomic_set(&fs_info->balance_running, 0);
2133         atomic_set(&fs_info->balance_pause_req, 0);
2134         atomic_set(&fs_info->balance_cancel_req, 0);
2135         fs_info->balance_ctl = NULL;
2136         init_waitqueue_head(&fs_info->balance_wait_q);
2137 }
2138
2139 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2140 {
2141         struct inode *inode = fs_info->btree_inode;
2142
2143         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2144         set_nlink(inode, 1);
2145         /*
2146          * we set the i_size on the btree inode to the max possible int.
2147          * the real end of the address space is determined by all of
2148          * the devices in the system
2149          */
2150         inode->i_size = OFFSET_MAX;
2151         inode->i_mapping->a_ops = &btree_aops;
2152
2153         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2154         extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2155         BTRFS_I(inode)->io_tree.track_uptodate = 0;
2156         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2157
2158         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2159
2160         BTRFS_I(inode)->root = fs_info->tree_root;
2161         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2162         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2163         btrfs_insert_inode_hash(inode);
2164 }
2165
2166 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2167 {
2168         fs_info->dev_replace.lock_owner = 0;
2169         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2170         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2171         rwlock_init(&fs_info->dev_replace.lock);
2172         atomic_set(&fs_info->dev_replace.read_locks, 0);
2173         atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2174         init_waitqueue_head(&fs_info->replace_wait);
2175         init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2176 }
2177
2178 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2179 {
2180         spin_lock_init(&fs_info->qgroup_lock);
2181         mutex_init(&fs_info->qgroup_ioctl_lock);
2182         fs_info->qgroup_tree = RB_ROOT;
2183         fs_info->qgroup_op_tree = RB_ROOT;
2184         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2185         fs_info->qgroup_seq = 1;
2186         fs_info->qgroup_ulist = NULL;
2187         fs_info->qgroup_rescan_running = false;
2188         mutex_init(&fs_info->qgroup_rescan_lock);
2189 }
2190
2191 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2192                 struct btrfs_fs_devices *fs_devices)
2193 {
2194         int max_active = fs_info->thread_pool_size;
2195         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2196
2197         fs_info->workers =
2198                 btrfs_alloc_workqueue(fs_info, "worker",
2199                                       flags | WQ_HIGHPRI, max_active, 16);
2200
2201         fs_info->delalloc_workers =
2202                 btrfs_alloc_workqueue(fs_info, "delalloc",
2203                                       flags, max_active, 2);
2204
2205         fs_info->flush_workers =
2206                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2207                                       flags, max_active, 0);
2208
2209         fs_info->caching_workers =
2210                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2211
2212         /*
2213          * a higher idle thresh on the submit workers makes it much more
2214          * likely that bios will be send down in a sane order to the
2215          * devices
2216          */
2217         fs_info->submit_workers =
2218                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2219                                       min_t(u64, fs_devices->num_devices,
2220                                             max_active), 64);
2221
2222         fs_info->fixup_workers =
2223                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2224
2225         /*
2226          * endios are largely parallel and should have a very
2227          * low idle thresh
2228          */
2229         fs_info->endio_workers =
2230                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2231         fs_info->endio_meta_workers =
2232                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2233                                       max_active, 4);
2234         fs_info->endio_meta_write_workers =
2235                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2236                                       max_active, 2);
2237         fs_info->endio_raid56_workers =
2238                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2239                                       max_active, 4);
2240         fs_info->endio_repair_workers =
2241                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2242         fs_info->rmw_workers =
2243                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2244         fs_info->endio_write_workers =
2245                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2246                                       max_active, 2);
2247         fs_info->endio_freespace_worker =
2248                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2249                                       max_active, 0);
2250         fs_info->delayed_workers =
2251                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2252                                       max_active, 0);
2253         fs_info->readahead_workers =
2254                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2255                                       max_active, 2);
2256         fs_info->qgroup_rescan_workers =
2257                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2258         fs_info->extent_workers =
2259                 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2260                                       min_t(u64, fs_devices->num_devices,
2261                                             max_active), 8);
2262
2263         if (!(fs_info->workers && fs_info->delalloc_workers &&
2264               fs_info->submit_workers && fs_info->flush_workers &&
2265               fs_info->endio_workers && fs_info->endio_meta_workers &&
2266               fs_info->endio_meta_write_workers &&
2267               fs_info->endio_repair_workers &&
2268               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2269               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2270               fs_info->caching_workers && fs_info->readahead_workers &&
2271               fs_info->fixup_workers && fs_info->delayed_workers &&
2272               fs_info->extent_workers &&
2273               fs_info->qgroup_rescan_workers)) {
2274                 return -ENOMEM;
2275         }
2276
2277         return 0;
2278 }
2279
2280 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2281                             struct btrfs_fs_devices *fs_devices)
2282 {
2283         int ret;
2284         struct btrfs_root *log_tree_root;
2285         struct btrfs_super_block *disk_super = fs_info->super_copy;
2286         u64 bytenr = btrfs_super_log_root(disk_super);
2287
2288         if (fs_devices->rw_devices == 0) {
2289                 btrfs_warn(fs_info, "log replay required on RO media");
2290                 return -EIO;
2291         }
2292
2293         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2294         if (!log_tree_root)
2295                 return -ENOMEM;
2296
2297         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2298
2299         log_tree_root->node = read_tree_block(fs_info, bytenr,
2300                                               fs_info->generation + 1);
2301         if (IS_ERR(log_tree_root->node)) {
2302                 btrfs_warn(fs_info, "failed to read log tree");
2303                 ret = PTR_ERR(log_tree_root->node);
2304                 kfree(log_tree_root);
2305                 return ret;
2306         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2307                 btrfs_err(fs_info, "failed to read log tree");
2308                 free_extent_buffer(log_tree_root->node);
2309                 kfree(log_tree_root);
2310                 return -EIO;
2311         }
2312         /* returns with log_tree_root freed on success */
2313         ret = btrfs_recover_log_trees(log_tree_root);
2314         if (ret) {
2315                 btrfs_handle_fs_error(fs_info, ret,
2316                                       "Failed to recover log tree");
2317                 free_extent_buffer(log_tree_root->node);
2318                 kfree(log_tree_root);
2319                 return ret;
2320         }
2321
2322         if (sb_rdonly(fs_info->sb)) {
2323                 ret = btrfs_commit_super(fs_info);
2324                 if (ret)
2325                         return ret;
2326         }
2327
2328         return 0;
2329 }
2330
2331 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2332 {
2333         struct btrfs_root *tree_root = fs_info->tree_root;
2334         struct btrfs_root *root;
2335         struct btrfs_key location;
2336         int ret;
2337
2338         BUG_ON(!fs_info->tree_root);
2339
2340         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2341         location.type = BTRFS_ROOT_ITEM_KEY;
2342         location.offset = 0;
2343
2344         root = btrfs_read_tree_root(tree_root, &location);
2345         if (IS_ERR(root))
2346                 return PTR_ERR(root);
2347         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2348         fs_info->extent_root = root;
2349
2350         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2351         root = btrfs_read_tree_root(tree_root, &location);
2352         if (IS_ERR(root))
2353                 return PTR_ERR(root);
2354         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2355         fs_info->dev_root = root;
2356         btrfs_init_devices_late(fs_info);
2357
2358         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2359         root = btrfs_read_tree_root(tree_root, &location);
2360         if (IS_ERR(root))
2361                 return PTR_ERR(root);
2362         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2363         fs_info->csum_root = root;
2364
2365         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2366         root = btrfs_read_tree_root(tree_root, &location);
2367         if (!IS_ERR(root)) {
2368                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2369                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2370                 fs_info->quota_root = root;
2371         }
2372
2373         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2374         root = btrfs_read_tree_root(tree_root, &location);
2375         if (IS_ERR(root)) {
2376                 ret = PTR_ERR(root);
2377                 if (ret != -ENOENT)
2378                         return ret;
2379         } else {
2380                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2381                 fs_info->uuid_root = root;
2382         }
2383
2384         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2385                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2386                 root = btrfs_read_tree_root(tree_root, &location);
2387                 if (IS_ERR(root))
2388                         return PTR_ERR(root);
2389                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2390                 fs_info->free_space_root = root;
2391         }
2392
2393         return 0;
2394 }
2395
2396 int open_ctree(struct super_block *sb,
2397                struct btrfs_fs_devices *fs_devices,
2398                char *options)
2399 {
2400         u32 sectorsize;
2401         u32 nodesize;
2402         u32 stripesize;
2403         u64 generation;
2404         u64 features;
2405         struct btrfs_key location;
2406         struct buffer_head *bh;
2407         struct btrfs_super_block *disk_super;
2408         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2409         struct btrfs_root *tree_root;
2410         struct btrfs_root *chunk_root;
2411         int ret;
2412         int err = -EINVAL;
2413         int num_backups_tried = 0;
2414         int backup_index = 0;
2415         int max_active;
2416         int clear_free_space_tree = 0;
2417
2418         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2419         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2420         if (!tree_root || !chunk_root) {
2421                 err = -ENOMEM;
2422                 goto fail;
2423         }
2424
2425         ret = init_srcu_struct(&fs_info->subvol_srcu);
2426         if (ret) {
2427                 err = ret;
2428                 goto fail;
2429         }
2430
2431         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2432         if (ret) {
2433                 err = ret;
2434                 goto fail_srcu;
2435         }
2436         fs_info->dirty_metadata_batch = PAGE_SIZE *
2437                                         (1 + ilog2(nr_cpu_ids));
2438
2439         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2440         if (ret) {
2441                 err = ret;
2442                 goto fail_dirty_metadata_bytes;
2443         }
2444
2445         ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2446         if (ret) {
2447                 err = ret;
2448                 goto fail_delalloc_bytes;
2449         }
2450
2451         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2452         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2453         INIT_LIST_HEAD(&fs_info->trans_list);
2454         INIT_LIST_HEAD(&fs_info->dead_roots);
2455         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2456         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2457         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2458         spin_lock_init(&fs_info->delalloc_root_lock);
2459         spin_lock_init(&fs_info->trans_lock);
2460         spin_lock_init(&fs_info->fs_roots_radix_lock);
2461         spin_lock_init(&fs_info->delayed_iput_lock);
2462         spin_lock_init(&fs_info->defrag_inodes_lock);
2463         spin_lock_init(&fs_info->tree_mod_seq_lock);
2464         spin_lock_init(&fs_info->super_lock);
2465         spin_lock_init(&fs_info->qgroup_op_lock);
2466         spin_lock_init(&fs_info->buffer_lock);
2467         spin_lock_init(&fs_info->unused_bgs_lock);
2468         rwlock_init(&fs_info->tree_mod_log_lock);
2469         mutex_init(&fs_info->unused_bg_unpin_mutex);
2470         mutex_init(&fs_info->delete_unused_bgs_mutex);
2471         mutex_init(&fs_info->reloc_mutex);
2472         mutex_init(&fs_info->delalloc_root_mutex);
2473         mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2474         seqlock_init(&fs_info->profiles_lock);
2475
2476         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2477         INIT_LIST_HEAD(&fs_info->space_info);
2478         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2479         INIT_LIST_HEAD(&fs_info->unused_bgs);
2480         btrfs_mapping_init(&fs_info->mapping_tree);
2481         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2482                              BTRFS_BLOCK_RSV_GLOBAL);
2483         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2484         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2485         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2486         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2487                              BTRFS_BLOCK_RSV_DELOPS);
2488         atomic_set(&fs_info->async_delalloc_pages, 0);
2489         atomic_set(&fs_info->defrag_running, 0);
2490         atomic_set(&fs_info->qgroup_op_seq, 0);
2491         atomic_set(&fs_info->reada_works_cnt, 0);
2492         atomic64_set(&fs_info->tree_mod_seq, 0);
2493         fs_info->sb = sb;
2494         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2495         fs_info->metadata_ratio = 0;
2496         fs_info->defrag_inodes = RB_ROOT;
2497         atomic64_set(&fs_info->free_chunk_space, 0);
2498         fs_info->tree_mod_log = RB_ROOT;
2499         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2500         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2501         /* readahead state */
2502         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2503         spin_lock_init(&fs_info->reada_lock);
2504         btrfs_init_ref_verify(fs_info);
2505
2506         fs_info->thread_pool_size = min_t(unsigned long,
2507                                           num_online_cpus() + 2, 8);
2508
2509         INIT_LIST_HEAD(&fs_info->ordered_roots);
2510         spin_lock_init(&fs_info->ordered_root_lock);
2511
2512         fs_info->btree_inode = new_inode(sb);
2513         if (!fs_info->btree_inode) {
2514                 err = -ENOMEM;
2515                 goto fail_bio_counter;
2516         }
2517         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2518
2519         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2520                                         GFP_KERNEL);
2521         if (!fs_info->delayed_root) {
2522                 err = -ENOMEM;
2523                 goto fail_iput;
2524         }
2525         btrfs_init_delayed_root(fs_info->delayed_root);
2526
2527         btrfs_init_scrub(fs_info);
2528 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2529         fs_info->check_integrity_print_mask = 0;
2530 #endif
2531         btrfs_init_balance(fs_info);
2532         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2533
2534         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2535         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2536
2537         btrfs_init_btree_inode(fs_info);
2538
2539         spin_lock_init(&fs_info->block_group_cache_lock);
2540         fs_info->block_group_cache_tree = RB_ROOT;
2541         fs_info->first_logical_byte = (u64)-1;
2542
2543         extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2544         extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2545         fs_info->pinned_extents = &fs_info->freed_extents[0];
2546         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2547
2548         mutex_init(&fs_info->ordered_operations_mutex);
2549         mutex_init(&fs_info->tree_log_mutex);
2550         mutex_init(&fs_info->chunk_mutex);
2551         mutex_init(&fs_info->transaction_kthread_mutex);
2552         mutex_init(&fs_info->cleaner_mutex);
2553         mutex_init(&fs_info->volume_mutex);
2554         mutex_init(&fs_info->ro_block_group_mutex);
2555         init_rwsem(&fs_info->commit_root_sem);
2556         init_rwsem(&fs_info->cleanup_work_sem);
2557         init_rwsem(&fs_info->subvol_sem);
2558         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2559
2560         btrfs_init_dev_replace_locks(fs_info);
2561         btrfs_init_qgroup(fs_info);
2562
2563         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2564         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2565
2566         init_waitqueue_head(&fs_info->transaction_throttle);
2567         init_waitqueue_head(&fs_info->transaction_wait);
2568         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2569         init_waitqueue_head(&fs_info->async_submit_wait);
2570
2571         INIT_LIST_HEAD(&fs_info->pinned_chunks);
2572
2573         /* Usable values until the real ones are cached from the superblock */
2574         fs_info->nodesize = 4096;
2575         fs_info->sectorsize = 4096;
2576         fs_info->stripesize = 4096;
2577
2578         ret = btrfs_alloc_stripe_hash_table(fs_info);
2579         if (ret) {
2580                 err = ret;
2581                 goto fail_alloc;
2582         }
2583
2584         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2585
2586         invalidate_bdev(fs_devices->latest_bdev);
2587
2588         /*
2589          * Read super block and check the signature bytes only
2590          */
2591         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2592         if (IS_ERR(bh)) {
2593                 err = PTR_ERR(bh);
2594                 goto fail_alloc;
2595         }
2596
2597         /*
2598          * We want to check superblock checksum, the type is stored inside.
2599          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2600          */
2601         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2602                 btrfs_err(fs_info, "superblock checksum mismatch");
2603                 err = -EINVAL;
2604                 brelse(bh);
2605                 goto fail_alloc;
2606         }
2607
2608         /*
2609          * super_copy is zeroed at allocation time and we never touch the
2610          * following bytes up to INFO_SIZE, the checksum is calculated from
2611          * the whole block of INFO_SIZE
2612          */
2613         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2614         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2615                sizeof(*fs_info->super_for_commit));
2616         brelse(bh);
2617
2618         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2619
2620         ret = btrfs_check_super_valid(fs_info);
2621         if (ret) {
2622                 btrfs_err(fs_info, "superblock contains fatal errors");
2623                 err = -EINVAL;
2624                 goto fail_alloc;
2625         }
2626
2627         disk_super = fs_info->super_copy;
2628         if (!btrfs_super_root(disk_super))
2629                 goto fail_alloc;
2630
2631         /* check FS state, whether FS is broken. */
2632         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2633                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2634
2635         /*
2636          * run through our array of backup supers and setup
2637          * our ring pointer to the oldest one
2638          */
2639         generation = btrfs_super_generation(disk_super);
2640         find_oldest_super_backup(fs_info, generation);
2641
2642         /*
2643          * In the long term, we'll store the compression type in the super
2644          * block, and it'll be used for per file compression control.
2645          */
2646         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2647
2648         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2649         if (ret) {
2650                 err = ret;
2651                 goto fail_alloc;
2652         }
2653
2654         features = btrfs_super_incompat_flags(disk_super) &
2655                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2656         if (features) {
2657                 btrfs_err(fs_info,
2658                     "cannot mount because of unsupported optional features (%llx)",
2659                     features);
2660                 err = -EINVAL;
2661                 goto fail_alloc;
2662         }
2663
2664         features = btrfs_super_incompat_flags(disk_super);
2665         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2666         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2667                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2668         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2669                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2670
2671         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2672                 btrfs_info(fs_info, "has skinny extents");
2673
2674         /*
2675          * flag our filesystem as having big metadata blocks if
2676          * they are bigger than the page size
2677          */
2678         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2679                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2680                         btrfs_info(fs_info,
2681                                 "flagging fs with big metadata feature");
2682                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2683         }
2684
2685         nodesize = btrfs_super_nodesize(disk_super);
2686         sectorsize = btrfs_super_sectorsize(disk_super);
2687         stripesize = sectorsize;
2688         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2689         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2690
2691         /* Cache block sizes */
2692         fs_info->nodesize = nodesize;
2693         fs_info->sectorsize = sectorsize;
2694         fs_info->stripesize = stripesize;
2695
2696         /*
2697          * mixed block groups end up with duplicate but slightly offset
2698          * extent buffers for the same range.  It leads to corruptions
2699          */
2700         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2701             (sectorsize != nodesize)) {
2702                 btrfs_err(fs_info,
2703 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2704                         nodesize, sectorsize);
2705                 goto fail_alloc;
2706         }
2707
2708         /*
2709          * Needn't use the lock because there is no other task which will
2710          * update the flag.
2711          */
2712         btrfs_set_super_incompat_flags(disk_super, features);
2713
2714         features = btrfs_super_compat_ro_flags(disk_super) &
2715                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2716         if (!sb_rdonly(sb) && features) {
2717                 btrfs_err(fs_info,
2718         "cannot mount read-write because of unsupported optional features (%llx)",
2719                        features);
2720                 err = -EINVAL;
2721                 goto fail_alloc;
2722         }
2723
2724         max_active = fs_info->thread_pool_size;
2725
2726         ret = btrfs_init_workqueues(fs_info, fs_devices);
2727         if (ret) {
2728                 err = ret;
2729                 goto fail_sb_buffer;
2730         }
2731
2732         sb->s_bdi->congested_fn = btrfs_congested_fn;
2733         sb->s_bdi->congested_data = fs_info;
2734         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2735         sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2736         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2737         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2738
2739         sb->s_blocksize = sectorsize;
2740         sb->s_blocksize_bits = blksize_bits(sectorsize);
2741         memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2742
2743         mutex_lock(&fs_info->chunk_mutex);
2744         ret = btrfs_read_sys_array(fs_info);
2745         mutex_unlock(&fs_info->chunk_mutex);
2746         if (ret) {
2747                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2748                 goto fail_sb_buffer;
2749         }
2750
2751         generation = btrfs_super_chunk_root_generation(disk_super);
2752
2753         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2754
2755         chunk_root->node = read_tree_block(fs_info,
2756                                            btrfs_super_chunk_root(disk_super),
2757                                            generation);
2758         if (IS_ERR(chunk_root->node) ||
2759             !extent_buffer_uptodate(chunk_root->node)) {
2760                 btrfs_err(fs_info, "failed to read chunk root");
2761                 if (!IS_ERR(chunk_root->node))
2762                         free_extent_buffer(chunk_root->node);
2763                 chunk_root->node = NULL;
2764                 goto fail_tree_roots;
2765         }
2766         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2767         chunk_root->commit_root = btrfs_root_node(chunk_root);
2768
2769         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2770            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2771
2772         ret = btrfs_read_chunk_tree(fs_info);
2773         if (ret) {
2774                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2775                 goto fail_tree_roots;
2776         }
2777
2778         /*
2779          * keep the device that is marked to be the target device for the
2780          * dev_replace procedure
2781          */
2782         btrfs_close_extra_devices(fs_devices, 0);
2783
2784         if (!fs_devices->latest_bdev) {
2785                 btrfs_err(fs_info, "failed to read devices");
2786                 goto fail_tree_roots;
2787         }
2788
2789 retry_root_backup:
2790         generation = btrfs_super_generation(disk_super);
2791
2792         tree_root->node = read_tree_block(fs_info,
2793                                           btrfs_super_root(disk_super),
2794                                           generation);
2795         if (IS_ERR(tree_root->node) ||
2796             !extent_buffer_uptodate(tree_root->node)) {
2797                 btrfs_warn(fs_info, "failed to read tree root");
2798                 if (!IS_ERR(tree_root->node))
2799                         free_extent_buffer(tree_root->node);
2800                 tree_root->node = NULL;
2801                 goto recovery_tree_root;
2802         }
2803
2804         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2805         tree_root->commit_root = btrfs_root_node(tree_root);
2806         btrfs_set_root_refs(&tree_root->root_item, 1);
2807
2808         mutex_lock(&tree_root->objectid_mutex);
2809         ret = btrfs_find_highest_objectid(tree_root,
2810                                         &tree_root->highest_objectid);
2811         if (ret) {
2812                 mutex_unlock(&tree_root->objectid_mutex);
2813                 goto recovery_tree_root;
2814         }
2815
2816         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2817
2818         mutex_unlock(&tree_root->objectid_mutex);
2819
2820         ret = btrfs_read_roots(fs_info);
2821         if (ret)
2822                 goto recovery_tree_root;
2823
2824         fs_info->generation = generation;
2825         fs_info->last_trans_committed = generation;
2826
2827         ret = btrfs_recover_balance(fs_info);
2828         if (ret) {
2829                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
2830                 goto fail_block_groups;
2831         }
2832
2833         ret = btrfs_init_dev_stats(fs_info);
2834         if (ret) {
2835                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
2836                 goto fail_block_groups;
2837         }
2838
2839         ret = btrfs_init_dev_replace(fs_info);
2840         if (ret) {
2841                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
2842                 goto fail_block_groups;
2843         }
2844
2845         btrfs_close_extra_devices(fs_devices, 1);
2846
2847         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2848         if (ret) {
2849                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
2850                                 ret);
2851                 goto fail_block_groups;
2852         }
2853
2854         ret = btrfs_sysfs_add_device(fs_devices);
2855         if (ret) {
2856                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
2857                                 ret);
2858                 goto fail_fsdev_sysfs;
2859         }
2860
2861         ret = btrfs_sysfs_add_mounted(fs_info);
2862         if (ret) {
2863                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
2864                 goto fail_fsdev_sysfs;
2865         }
2866
2867         ret = btrfs_init_space_info(fs_info);
2868         if (ret) {
2869                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2870                 goto fail_sysfs;
2871         }
2872
2873         ret = btrfs_read_block_groups(fs_info);
2874         if (ret) {
2875                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2876                 goto fail_sysfs;
2877         }
2878
2879         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) {
2880                 btrfs_warn(fs_info,
2881                 "writeable mount is not allowed due to too many missing devices");
2882                 goto fail_sysfs;
2883         }
2884
2885         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2886                                                "btrfs-cleaner");
2887         if (IS_ERR(fs_info->cleaner_kthread))
2888                 goto fail_sysfs;
2889
2890         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2891                                                    tree_root,
2892                                                    "btrfs-transaction");
2893         if (IS_ERR(fs_info->transaction_kthread))
2894                 goto fail_cleaner;
2895
2896         if (!btrfs_test_opt(fs_info, NOSSD) &&
2897             !fs_info->fs_devices->rotating) {
2898                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
2899         }
2900
2901         /*
2902          * Mount does not set all options immediately, we can do it now and do
2903          * not have to wait for transaction commit
2904          */
2905         btrfs_apply_pending_changes(fs_info);
2906
2907 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2908         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
2909                 ret = btrfsic_mount(fs_info, fs_devices,
2910                                     btrfs_test_opt(fs_info,
2911                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2912                                     1 : 0,
2913                                     fs_info->check_integrity_print_mask);
2914                 if (ret)
2915                         btrfs_warn(fs_info,
2916                                 "failed to initialize integrity check module: %d",
2917                                 ret);
2918         }
2919 #endif
2920         ret = btrfs_read_qgroup_config(fs_info);
2921         if (ret)
2922                 goto fail_trans_kthread;
2923
2924         if (btrfs_build_ref_tree(fs_info))
2925                 btrfs_err(fs_info, "couldn't build ref tree");
2926
2927         /* do not make disk changes in broken FS or nologreplay is given */
2928         if (btrfs_super_log_root(disk_super) != 0 &&
2929             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
2930                 ret = btrfs_replay_log(fs_info, fs_devices);
2931                 if (ret) {
2932                         err = ret;
2933                         goto fail_qgroup;
2934                 }
2935         }
2936
2937         ret = btrfs_find_orphan_roots(fs_info);
2938         if (ret)
2939                 goto fail_qgroup;
2940
2941         if (!sb_rdonly(sb)) {
2942                 ret = btrfs_cleanup_fs_roots(fs_info);
2943                 if (ret)
2944                         goto fail_qgroup;
2945
2946                 mutex_lock(&fs_info->cleaner_mutex);
2947                 ret = btrfs_recover_relocation(tree_root);
2948                 mutex_unlock(&fs_info->cleaner_mutex);
2949                 if (ret < 0) {
2950                         btrfs_warn(fs_info, "failed to recover relocation: %d",
2951                                         ret);
2952                         err = -EINVAL;
2953                         goto fail_qgroup;
2954                 }
2955         }
2956
2957         location.objectid = BTRFS_FS_TREE_OBJECTID;
2958         location.type = BTRFS_ROOT_ITEM_KEY;
2959         location.offset = 0;
2960
2961         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2962         if (IS_ERR(fs_info->fs_root)) {
2963                 err = PTR_ERR(fs_info->fs_root);
2964                 goto fail_qgroup;
2965         }
2966
2967         if (sb_rdonly(sb))
2968                 return 0;
2969
2970         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2971             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2972                 clear_free_space_tree = 1;
2973         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2974                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2975                 btrfs_warn(fs_info, "free space tree is invalid");
2976                 clear_free_space_tree = 1;
2977         }
2978
2979         if (clear_free_space_tree) {
2980                 btrfs_info(fs_info, "clearing free space tree");
2981                 ret = btrfs_clear_free_space_tree(fs_info);
2982                 if (ret) {
2983                         btrfs_warn(fs_info,
2984                                    "failed to clear free space tree: %d", ret);
2985                         close_ctree(fs_info);
2986                         return ret;
2987                 }
2988         }
2989
2990         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
2991             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2992                 btrfs_info(fs_info, "creating free space tree");
2993                 ret = btrfs_create_free_space_tree(fs_info);
2994                 if (ret) {
2995                         btrfs_warn(fs_info,
2996                                 "failed to create free space tree: %d", ret);
2997                         close_ctree(fs_info);
2998                         return ret;
2999                 }
3000         }
3001
3002         down_read(&fs_info->cleanup_work_sem);
3003         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3004             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3005                 up_read(&fs_info->cleanup_work_sem);
3006                 close_ctree(fs_info);
3007                 return ret;
3008         }
3009         up_read(&fs_info->cleanup_work_sem);
3010
3011         ret = btrfs_resume_balance_async(fs_info);
3012         if (ret) {
3013                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3014                 close_ctree(fs_info);
3015                 return ret;
3016         }
3017
3018         ret = btrfs_resume_dev_replace_async(fs_info);
3019         if (ret) {
3020                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3021                 close_ctree(fs_info);
3022                 return ret;
3023         }
3024
3025         btrfs_qgroup_rescan_resume(fs_info);
3026
3027         if (!fs_info->uuid_root) {
3028                 btrfs_info(fs_info, "creating UUID tree");
3029                 ret = btrfs_create_uuid_tree(fs_info);
3030                 if (ret) {
3031                         btrfs_warn(fs_info,
3032                                 "failed to create the UUID tree: %d", ret);
3033                         close_ctree(fs_info);
3034                         return ret;
3035                 }
3036         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3037                    fs_info->generation !=
3038                                 btrfs_super_uuid_tree_generation(disk_super)) {
3039                 btrfs_info(fs_info, "checking UUID tree");
3040                 ret = btrfs_check_uuid_tree(fs_info);
3041                 if (ret) {
3042                         btrfs_warn(fs_info,
3043                                 "failed to check the UUID tree: %d", ret);
3044                         close_ctree(fs_info);
3045                         return ret;
3046                 }
3047         } else {
3048                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3049         }
3050         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3051
3052         /*
3053          * backuproot only affect mount behavior, and if open_ctree succeeded,
3054          * no need to keep the flag
3055          */
3056         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3057
3058         return 0;
3059
3060 fail_qgroup:
3061         btrfs_free_qgroup_config(fs_info);
3062 fail_trans_kthread:
3063         kthread_stop(fs_info->transaction_kthread);
3064         btrfs_cleanup_transaction(fs_info);
3065         btrfs_free_fs_roots(fs_info);
3066 fail_cleaner:
3067         kthread_stop(fs_info->cleaner_kthread);
3068
3069         /*
3070          * make sure we're done with the btree inode before we stop our
3071          * kthreads
3072          */
3073         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3074
3075 fail_sysfs:
3076         btrfs_sysfs_remove_mounted(fs_info);
3077
3078 fail_fsdev_sysfs:
3079         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3080
3081 fail_block_groups:
3082         btrfs_put_block_group_cache(fs_info);
3083
3084 fail_tree_roots:
3085         free_root_pointers(fs_info, 1);
3086         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3087
3088 fail_sb_buffer:
3089         btrfs_stop_all_workers(fs_info);
3090         btrfs_free_block_groups(fs_info);
3091 fail_alloc:
3092 fail_iput:
3093         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3094
3095         iput(fs_info->btree_inode);
3096 fail_bio_counter:
3097         percpu_counter_destroy(&fs_info->bio_counter);
3098 fail_delalloc_bytes:
3099         percpu_counter_destroy(&fs_info->delalloc_bytes);
3100 fail_dirty_metadata_bytes:
3101         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3102 fail_srcu:
3103         cleanup_srcu_struct(&fs_info->subvol_srcu);
3104 fail:
3105         btrfs_free_stripe_hash_table(fs_info);
3106         btrfs_close_devices(fs_info->fs_devices);
3107         return err;
3108
3109 recovery_tree_root:
3110         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3111                 goto fail_tree_roots;
3112
3113         free_root_pointers(fs_info, 0);
3114
3115         /* don't use the log in recovery mode, it won't be valid */
3116         btrfs_set_super_log_root(disk_super, 0);
3117
3118         /* we can't trust the free space cache either */
3119         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3120
3121         ret = next_root_backup(fs_info, fs_info->super_copy,
3122                                &num_backups_tried, &backup_index);
3123         if (ret == -1)
3124                 goto fail_block_groups;
3125         goto retry_root_backup;
3126 }
3127 BPF_ALLOW_ERROR_INJECTION(open_ctree);
3128
3129 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3130 {
3131         if (uptodate) {
3132                 set_buffer_uptodate(bh);
3133         } else {
3134                 struct btrfs_device *device = (struct btrfs_device *)
3135                         bh->b_private;
3136
3137                 btrfs_warn_rl_in_rcu(device->fs_info,
3138                                 "lost page write due to IO error on %s",
3139                                           rcu_str_deref(device->name));
3140                 /* note, we don't set_buffer_write_io_error because we have
3141                  * our own ways of dealing with the IO errors
3142                  */
3143                 clear_buffer_uptodate(bh);
3144                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3145         }
3146         unlock_buffer(bh);
3147         put_bh(bh);
3148 }
3149
3150 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3151                         struct buffer_head **bh_ret)
3152 {
3153         struct buffer_head *bh;
3154         struct btrfs_super_block *super;
3155         u64 bytenr;
3156
3157         bytenr = btrfs_sb_offset(copy_num);
3158         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3159                 return -EINVAL;
3160
3161         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3162         /*
3163          * If we fail to read from the underlying devices, as of now
3164          * the best option we have is to mark it EIO.
3165          */
3166         if (!bh)
3167                 return -EIO;
3168
3169         super = (struct btrfs_super_block *)bh->b_data;
3170         if (btrfs_super_bytenr(super) != bytenr ||
3171                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3172                 brelse(bh);
3173                 return -EINVAL;
3174         }
3175
3176         *bh_ret = bh;
3177         return 0;
3178 }
3179
3180
3181 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3182 {
3183         struct buffer_head *bh;
3184         struct buffer_head *latest = NULL;
3185         struct btrfs_super_block *super;
3186         int i;
3187         u64 transid = 0;
3188         int ret = -EINVAL;
3189
3190         /* we would like to check all the supers, but that would make
3191          * a btrfs mount succeed after a mkfs from a different FS.
3192          * So, we need to add a special mount option to scan for
3193          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3194          */
3195         for (i = 0; i < 1; i++) {
3196                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3197                 if (ret)
3198                         continue;
3199
3200                 super = (struct btrfs_super_block *)bh->b_data;
3201
3202                 if (!latest || btrfs_super_generation(super) > transid) {
3203                         brelse(latest);
3204                         latest = bh;
3205                         transid = btrfs_super_generation(super);
3206                 } else {
3207                         brelse(bh);
3208                 }
3209         }
3210
3211         if (!latest)
3212                 return ERR_PTR(ret);
3213
3214         return latest;
3215 }
3216
3217 /*
3218  * Write superblock @sb to the @device. Do not wait for completion, all the
3219  * buffer heads we write are pinned.
3220  *
3221  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3222  * the expected device size at commit time. Note that max_mirrors must be
3223  * same for write and wait phases.
3224  *
3225  * Return number of errors when buffer head is not found or submission fails.
3226  */
3227 static int write_dev_supers(struct btrfs_device *device,
3228                             struct btrfs_super_block *sb, int max_mirrors)
3229 {
3230         struct buffer_head *bh;
3231         int i;
3232         int ret;
3233         int errors = 0;
3234         u32 crc;
3235         u64 bytenr;
3236         int op_flags;
3237
3238         if (max_mirrors == 0)
3239                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3240
3241         for (i = 0; i < max_mirrors; i++) {
3242                 bytenr = btrfs_sb_offset(i);
3243                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3244                     device->commit_total_bytes)
3245                         break;
3246
3247                 btrfs_set_super_bytenr(sb, bytenr);
3248
3249                 crc = ~(u32)0;
3250                 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3251                                       BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3252                 btrfs_csum_final(crc, sb->csum);
3253
3254                 /* One reference for us, and we leave it for the caller */
3255                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3256                               BTRFS_SUPER_INFO_SIZE);
3257                 if (!bh) {
3258                         btrfs_err(device->fs_info,
3259                             "couldn't get super buffer head for bytenr %llu",
3260                             bytenr);
3261                         errors++;
3262                         continue;
3263                 }
3264
3265                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3266
3267                 /* one reference for submit_bh */
3268                 get_bh(bh);
3269
3270                 set_buffer_uptodate(bh);
3271                 lock_buffer(bh);
3272                 bh->b_end_io = btrfs_end_buffer_write_sync;
3273                 bh->b_private = device;
3274
3275                 /*
3276                  * we fua the first super.  The others we allow
3277                  * to go down lazy.
3278                  */
3279                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3280                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3281                         op_flags |= REQ_FUA;
3282                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3283                 if (ret)
3284                         errors++;
3285         }
3286         return errors < i ? 0 : -1;
3287 }
3288
3289 /*
3290  * Wait for write completion of superblocks done by write_dev_supers,
3291  * @max_mirrors same for write and wait phases.
3292  *
3293  * Return number of errors when buffer head is not found or not marked up to
3294  * date.
3295  */
3296 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3297 {
3298         struct buffer_head *bh;
3299         int i;
3300         int errors = 0;
3301         u64 bytenr;
3302
3303         if (max_mirrors == 0)
3304                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3305
3306         for (i = 0; i < max_mirrors; i++) {
3307                 bytenr = btrfs_sb_offset(i);
3308                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3309                     device->commit_total_bytes)
3310                         break;
3311
3312                 bh = __find_get_block(device->bdev,
3313                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3314                                       BTRFS_SUPER_INFO_SIZE);
3315                 if (!bh) {
3316                         errors++;
3317                         continue;
3318                 }
3319                 wait_on_buffer(bh);
3320                 if (!buffer_uptodate(bh))
3321                         errors++;
3322
3323                 /* drop our reference */
3324                 brelse(bh);
3325
3326                 /* drop the reference from the writing run */
3327                 brelse(bh);
3328         }
3329
3330         return errors < i ? 0 : -1;
3331 }
3332
3333 /*
3334  * endio for the write_dev_flush, this will wake anyone waiting
3335  * for the barrier when it is done
3336  */
3337 static void btrfs_end_empty_barrier(struct bio *bio)
3338 {
3339         complete(bio->bi_private);
3340 }
3341
3342 /*
3343  * Submit a flush request to the device if it supports it. Error handling is
3344  * done in the waiting counterpart.
3345  */
3346 static void write_dev_flush(struct btrfs_device *device)
3347 {
3348         struct request_queue *q = bdev_get_queue(device->bdev);
3349         struct bio *bio = device->flush_bio;
3350
3351         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3352                 return;
3353
3354         bio_reset(bio);
3355         bio->bi_end_io = btrfs_end_empty_barrier;
3356         bio_set_dev(bio, device->bdev);
3357         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3358         init_completion(&device->flush_wait);
3359         bio->bi_private = &device->flush_wait;
3360
3361         btrfsic_submit_bio(bio);
3362         device->flush_bio_sent = 1;
3363 }
3364
3365 /*
3366  * If the flush bio has been submitted by write_dev_flush, wait for it.
3367  */
3368 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3369 {
3370         struct bio *bio = device->flush_bio;
3371
3372         if (!device->flush_bio_sent)
3373                 return BLK_STS_OK;
3374
3375         device->flush_bio_sent = 0;
3376         wait_for_completion_io(&device->flush_wait);
3377
3378         return bio->bi_status;
3379 }
3380
3381 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3382 {
3383         if (!btrfs_check_rw_degradable(fs_info))
3384                 return -EIO;
3385         return 0;
3386 }
3387
3388 /*
3389  * send an empty flush down to each device in parallel,
3390  * then wait for them
3391  */
3392 static int barrier_all_devices(struct btrfs_fs_info *info)
3393 {
3394         struct list_head *head;
3395         struct btrfs_device *dev;
3396         int errors_wait = 0;
3397         blk_status_t ret;
3398
3399         /* send down all the barriers */
3400         head = &info->fs_devices->devices;
3401         list_for_each_entry_rcu(dev, head, dev_list) {
3402                 if (dev->missing)
3403                         continue;
3404                 if (!dev->bdev)
3405                         continue;
3406                 if (!dev->in_fs_metadata || !dev->writeable)
3407                         continue;
3408
3409                 write_dev_flush(dev);
3410                 dev->last_flush_error = BLK_STS_OK;
3411         }
3412
3413         /* wait for all the barriers */
3414         list_for_each_entry_rcu(dev, head, dev_list) {
3415                 if (dev->missing)
3416                         continue;
3417                 if (!dev->bdev) {
3418                         errors_wait++;
3419                         continue;
3420                 }
3421                 if (!dev->in_fs_metadata || !dev->writeable)
3422                         continue;
3423
3424                 ret = wait_dev_flush(dev);
3425                 if (ret) {
3426                         dev->last_flush_error = ret;
3427                         btrfs_dev_stat_inc_and_print(dev,
3428                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3429                         errors_wait++;
3430                 }
3431         }
3432
3433         if (errors_wait) {
3434                 /*
3435                  * At some point we need the status of all disks
3436                  * to arrive at the volume status. So error checking
3437                  * is being pushed to a separate loop.
3438                  */
3439                 return check_barrier_error(info);
3440         }
3441         return 0;
3442 }
3443
3444 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3445 {
3446         int raid_type;
3447         int min_tolerated = INT_MAX;
3448
3449         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3450             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3451                 min_tolerated = min(min_tolerated,
3452                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3453                                     tolerated_failures);
3454
3455         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3456                 if (raid_type == BTRFS_RAID_SINGLE)
3457                         continue;
3458                 if (!(flags & btrfs_raid_group[raid_type]))
3459                         continue;
3460                 min_tolerated = min(min_tolerated,
3461                                     btrfs_raid_array[raid_type].
3462                                     tolerated_failures);
3463         }
3464
3465         if (min_tolerated == INT_MAX) {
3466                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3467                 min_tolerated = 0;
3468         }
3469
3470         return min_tolerated;
3471 }
3472
3473 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3474 {
3475         struct list_head *head;
3476         struct btrfs_device *dev;
3477         struct btrfs_super_block *sb;
3478         struct btrfs_dev_item *dev_item;
3479         int ret;
3480         int do_barriers;
3481         int max_errors;
3482         int total_errors = 0;
3483         u64 flags;
3484
3485         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3486
3487         /*
3488          * max_mirrors == 0 indicates we're from commit_transaction,
3489          * not from fsync where the tree roots in fs_info have not
3490          * been consistent on disk.
3491          */
3492         if (max_mirrors == 0)
3493                 backup_super_roots(fs_info);
3494
3495         sb = fs_info->super_for_commit;
3496         dev_item = &sb->dev_item;
3497
3498         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3499         head = &fs_info->fs_devices->devices;
3500         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3501
3502         if (do_barriers) {
3503                 ret = barrier_all_devices(fs_info);
3504                 if (ret) {
3505                         mutex_unlock(
3506                                 &fs_info->fs_devices->device_list_mutex);
3507                         btrfs_handle_fs_error(fs_info, ret,
3508                                               "errors while submitting device barriers.");
3509                         return ret;
3510                 }
3511         }
3512
3513         list_for_each_entry_rcu(dev, head, dev_list) {
3514                 if (!dev->bdev) {
3515                         total_errors++;
3516                         continue;
3517                 }
3518                 if (!dev->in_fs_metadata || !dev->writeable)
3519                         continue;
3520
3521                 btrfs_set_stack_device_generation(dev_item, 0);
3522                 btrfs_set_stack_device_type(dev_item, dev->type);
3523                 btrfs_set_stack_device_id(dev_item, dev->devid);
3524                 btrfs_set_stack_device_total_bytes(dev_item,
3525                                                    dev->commit_total_bytes);
3526                 btrfs_set_stack_device_bytes_used(dev_item,
3527                                                   dev->commit_bytes_used);
3528                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3529                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3530                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3531                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3532                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3533
3534                 flags = btrfs_super_flags(sb);
3535                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3536
3537                 ret = write_dev_supers(dev, sb, max_mirrors);
3538                 if (ret)
3539                         total_errors++;
3540         }
3541         if (total_errors > max_errors) {
3542                 btrfs_err(fs_info, "%d errors while writing supers",
3543                           total_errors);
3544                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3545
3546                 /* FUA is masked off if unsupported and can't be the reason */
3547                 btrfs_handle_fs_error(fs_info, -EIO,
3548                                       "%d errors while writing supers",
3549                                       total_errors);
3550                 return -EIO;
3551         }
3552
3553         total_errors = 0;
3554         list_for_each_entry_rcu(dev, head, dev_list) {
3555                 if (!dev->bdev)
3556                         continue;
3557                 if (!dev->in_fs_metadata || !dev->writeable)
3558                         continue;
3559
3560                 ret = wait_dev_supers(dev, max_mirrors);
3561                 if (ret)
3562                         total_errors++;
3563         }
3564         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3565         if (total_errors > max_errors) {
3566                 btrfs_handle_fs_error(fs_info, -EIO,
3567                                       "%d errors while writing supers",
3568                                       total_errors);
3569                 return -EIO;
3570         }
3571         return 0;
3572 }
3573
3574 /* Drop a fs root from the radix tree and free it. */
3575 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3576                                   struct btrfs_root *root)
3577 {
3578         spin_lock(&fs_info->fs_roots_radix_lock);
3579         radix_tree_delete(&fs_info->fs_roots_radix,
3580                           (unsigned long)root->root_key.objectid);
3581         spin_unlock(&fs_info->fs_roots_radix_lock);
3582
3583         if (btrfs_root_refs(&root->root_item) == 0)
3584                 synchronize_srcu(&fs_info->subvol_srcu);
3585
3586         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3587                 btrfs_free_log(NULL, root);
3588                 if (root->reloc_root) {
3589                         free_extent_buffer(root->reloc_root->node);
3590                         free_extent_buffer(root->reloc_root->commit_root);
3591                         btrfs_put_fs_root(root->reloc_root);
3592                         root->reloc_root = NULL;
3593                 }
3594         }
3595
3596         if (root->free_ino_pinned)
3597                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3598         if (root->free_ino_ctl)
3599                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3600         free_fs_root(root);
3601 }
3602
3603 static void free_fs_root(struct btrfs_root *root)
3604 {
3605         iput(root->ino_cache_inode);
3606         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3607         btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3608         root->orphan_block_rsv = NULL;
3609         if (root->anon_dev)
3610                 free_anon_bdev(root->anon_dev);
3611         if (root->subv_writers)
3612                 btrfs_free_subvolume_writers(root->subv_writers);
3613         free_extent_buffer(root->node);
3614         free_extent_buffer(root->commit_root);
3615         kfree(root->free_ino_ctl);
3616         kfree(root->free_ino_pinned);
3617         kfree(root->name);
3618         btrfs_put_fs_root(root);
3619 }
3620
3621 void btrfs_free_fs_root(struct btrfs_root *root)
3622 {
3623         free_fs_root(root);
3624 }
3625
3626 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3627 {
3628         u64 root_objectid = 0;
3629         struct btrfs_root *gang[8];
3630         int i = 0;
3631         int err = 0;
3632         unsigned int ret = 0;
3633         int index;
3634
3635         while (1) {
3636                 index = srcu_read_lock(&fs_info->subvol_srcu);
3637                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3638                                              (void **)gang, root_objectid,
3639                                              ARRAY_SIZE(gang));
3640                 if (!ret) {
3641                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3642                         break;
3643                 }
3644                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3645
3646                 for (i = 0; i < ret; i++) {
3647                         /* Avoid to grab roots in dead_roots */
3648                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3649                                 gang[i] = NULL;
3650                                 continue;
3651                         }
3652                         /* grab all the search result for later use */
3653                         gang[i] = btrfs_grab_fs_root(gang[i]);
3654                 }
3655                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3656
3657                 for (i = 0; i < ret; i++) {
3658                         if (!gang[i])
3659                                 continue;
3660                         root_objectid = gang[i]->root_key.objectid;
3661                         err = btrfs_orphan_cleanup(gang[i]);
3662                         if (err)
3663                                 break;
3664                         btrfs_put_fs_root(gang[i]);
3665                 }
3666                 root_objectid++;
3667         }
3668
3669         /* release the uncleaned roots due to error */
3670         for (; i < ret; i++) {
3671                 if (gang[i])
3672                         btrfs_put_fs_root(gang[i]);
3673         }
3674         return err;
3675 }
3676
3677 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3678 {
3679         struct btrfs_root *root = fs_info->tree_root;
3680         struct btrfs_trans_handle *trans;
3681
3682         mutex_lock(&fs_info->cleaner_mutex);
3683         btrfs_run_delayed_iputs(fs_info);
3684         mutex_unlock(&fs_info->cleaner_mutex);
3685         wake_up_process(fs_info->cleaner_kthread);
3686
3687         /* wait until ongoing cleanup work done */
3688         down_write(&fs_info->cleanup_work_sem);
3689         up_write(&fs_info->cleanup_work_sem);
3690
3691         trans = btrfs_join_transaction(root);
3692         if (IS_ERR(trans))
3693                 return PTR_ERR(trans);
3694         return btrfs_commit_transaction(trans);
3695 }
3696
3697 void close_ctree(struct btrfs_fs_info *fs_info)
3698 {
3699         struct btrfs_root *root = fs_info->tree_root;
3700         int ret;
3701
3702         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3703
3704         /* wait for the qgroup rescan worker to stop */
3705         btrfs_qgroup_wait_for_completion(fs_info, false);
3706
3707         /* wait for the uuid_scan task to finish */
3708         down(&fs_info->uuid_tree_rescan_sem);
3709         /* avoid complains from lockdep et al., set sem back to initial state */
3710         up(&fs_info->uuid_tree_rescan_sem);
3711
3712         /* pause restriper - we want to resume on mount */
3713         btrfs_pause_balance(fs_info);
3714
3715         btrfs_dev_replace_suspend_for_unmount(fs_info);
3716
3717         btrfs_scrub_cancel(fs_info);
3718
3719         /* wait for any defraggers to finish */
3720         wait_event(fs_info->transaction_wait,
3721                    (atomic_read(&fs_info->defrag_running) == 0));
3722
3723         /* clear out the rbtree of defraggable inodes */
3724         btrfs_cleanup_defrag_inodes(fs_info);
3725
3726         cancel_work_sync(&fs_info->async_reclaim_work);
3727
3728         if (!sb_rdonly(fs_info->sb)) {
3729                 /*
3730                  * If the cleaner thread is stopped and there are
3731                  * block groups queued for removal, the deletion will be
3732                  * skipped when we quit the cleaner thread.
3733                  */
3734                 btrfs_delete_unused_bgs(fs_info);
3735
3736                 ret = btrfs_commit_super(fs_info);
3737                 if (ret)
3738                         btrfs_err(fs_info, "commit super ret %d", ret);
3739         }
3740
3741         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3742                 btrfs_error_commit_super(fs_info);
3743
3744         kthread_stop(fs_info->transaction_kthread);
3745         kthread_stop(fs_info->cleaner_kthread);
3746
3747         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3748
3749         btrfs_free_qgroup_config(fs_info);
3750
3751         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3752                 btrfs_info(fs_info, "at unmount delalloc count %lld",
3753                        percpu_counter_sum(&fs_info->delalloc_bytes));
3754         }
3755
3756         btrfs_sysfs_remove_mounted(fs_info);
3757         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3758
3759         btrfs_free_fs_roots(fs_info);
3760
3761         btrfs_put_block_group_cache(fs_info);
3762
3763         /*
3764          * we must make sure there is not any read request to
3765          * submit after we stopping all workers.
3766          */
3767         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3768         btrfs_stop_all_workers(fs_info);
3769
3770         btrfs_free_block_groups(fs_info);
3771
3772         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3773         free_root_pointers(fs_info, 1);
3774
3775         iput(fs_info->btree_inode);
3776
3777 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3778         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
3779                 btrfsic_unmount(fs_info->fs_devices);
3780 #endif
3781
3782         btrfs_close_devices(fs_info->fs_devices);
3783         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3784
3785         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3786         percpu_counter_destroy(&fs_info->delalloc_bytes);
3787         percpu_counter_destroy(&fs_info->bio_counter);
3788         cleanup_srcu_struct(&fs_info->subvol_srcu);
3789
3790         btrfs_free_stripe_hash_table(fs_info);
3791         btrfs_free_ref_cache(fs_info);
3792
3793         __btrfs_free_block_rsv(root->orphan_block_rsv);
3794         root->orphan_block_rsv = NULL;
3795
3796         while (!list_empty(&fs_info->pinned_chunks)) {
3797                 struct extent_map *em;
3798
3799                 em = list_first_entry(&fs_info->pinned_chunks,
3800                                       struct extent_map, list);
3801                 list_del_init(&em->list);
3802                 free_extent_map(em);
3803         }
3804 }
3805
3806 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3807                           int atomic)
3808 {
3809         int ret;
3810         struct inode *btree_inode = buf->pages[0]->mapping->host;
3811
3812         ret = extent_buffer_uptodate(buf);
3813         if (!ret)
3814                 return ret;
3815
3816         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3817                                     parent_transid, atomic);
3818         if (ret == -EAGAIN)
3819                 return ret;
3820         return !ret;
3821 }
3822
3823 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3824 {
3825         struct btrfs_fs_info *fs_info;
3826         struct btrfs_root *root;
3827         u64 transid = btrfs_header_generation(buf);
3828         int was_dirty;
3829
3830 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3831         /*
3832          * This is a fast path so only do this check if we have sanity tests
3833          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3834          * outside of the sanity tests.
3835          */
3836         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3837                 return;
3838 #endif
3839         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3840         fs_info = root->fs_info;
3841         btrfs_assert_tree_locked(buf);
3842         if (transid != fs_info->generation)
3843                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
3844                         buf->start, transid, fs_info->generation);
3845         was_dirty = set_extent_buffer_dirty(buf);
3846         if (!was_dirty)
3847                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3848                                          buf->len,
3849                                          fs_info->dirty_metadata_batch);
3850 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3851         /*
3852          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3853          * but item data not updated.
3854          * So here we should only check item pointers, not item data.
3855          */
3856         if (btrfs_header_level(buf) == 0 &&
3857             btrfs_check_leaf_relaxed(root, buf)) {
3858                 btrfs_print_leaf(buf);
3859                 ASSERT(0);
3860         }
3861 #endif
3862 }
3863
3864 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
3865                                         int flush_delayed)
3866 {
3867         /*
3868          * looks as though older kernels can get into trouble with
3869          * this code, they end up stuck in balance_dirty_pages forever
3870          */
3871         int ret;
3872
3873         if (current->flags & PF_MEMALLOC)
3874                 return;
3875
3876         if (flush_delayed)
3877                 btrfs_balance_delayed_items(fs_info);
3878
3879         ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
3880                                      BTRFS_DIRTY_METADATA_THRESH);
3881         if (ret > 0) {
3882                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
3883         }
3884 }
3885
3886 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
3887 {
3888         __btrfs_btree_balance_dirty(fs_info, 1);
3889 }
3890
3891 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
3892 {
3893         __btrfs_btree_balance_dirty(fs_info, 0);
3894 }
3895
3896 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3897 {
3898         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3899         struct btrfs_fs_info *fs_info = root->fs_info;
3900
3901         return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
3902 }
3903
3904 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
3905 {
3906         struct btrfs_super_block *sb = fs_info->super_copy;
3907         u64 nodesize = btrfs_super_nodesize(sb);
3908         u64 sectorsize = btrfs_super_sectorsize(sb);
3909         int ret = 0;
3910
3911         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
3912                 btrfs_err(fs_info, "no valid FS found");
3913                 ret = -EINVAL;
3914         }
3915         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
3916                 btrfs_warn(fs_info, "unrecognized super flag: %llu",
3917                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
3918         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3919                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
3920                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3921                 ret = -EINVAL;
3922         }
3923         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3924                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
3925                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3926                 ret = -EINVAL;
3927         }
3928         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3929                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
3930                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3931                 ret = -EINVAL;
3932         }
3933
3934         /*
3935          * Check sectorsize and nodesize first, other check will need it.
3936          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
3937          */
3938         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
3939             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3940                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
3941                 ret = -EINVAL;
3942         }
3943         /* Only PAGE SIZE is supported yet */
3944         if (sectorsize != PAGE_SIZE) {
3945                 btrfs_err(fs_info,
3946                         "sectorsize %llu not supported yet, only support %lu",
3947                         sectorsize, PAGE_SIZE);
3948                 ret = -EINVAL;
3949         }
3950         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
3951             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
3952                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
3953                 ret = -EINVAL;
3954         }
3955         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
3956                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
3957                           le32_to_cpu(sb->__unused_leafsize), nodesize);
3958                 ret = -EINVAL;
3959         }
3960
3961         /* Root alignment check */
3962         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
3963                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
3964                            btrfs_super_root(sb));
3965                 ret = -EINVAL;
3966         }
3967         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
3968                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
3969                            btrfs_super_chunk_root(sb));
3970                 ret = -EINVAL;
3971         }
3972         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
3973                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
3974                            btrfs_super_log_root(sb));
3975                 ret = -EINVAL;
3976         }
3977
3978         if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
3979                 btrfs_err(fs_info,
3980                            "dev_item UUID does not match fsid: %pU != %pU",
3981                            fs_info->fsid, sb->dev_item.fsid);
3982                 ret = -EINVAL;
3983         }
3984
3985         /*
3986          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3987          * done later
3988          */
3989         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
3990                 btrfs_err(fs_info, "bytes_used is too small %llu",
3991                           btrfs_super_bytes_used(sb));
3992                 ret = -EINVAL;
3993         }
3994         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
3995                 btrfs_err(fs_info, "invalid stripesize %u",
3996                           btrfs_super_stripesize(sb));
3997                 ret = -EINVAL;
3998         }
3999         if (btrfs_super_num_devices(sb) > (1UL << 31))
4000                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
4001                            btrfs_super_num_devices(sb));
4002         if (btrfs_super_num_devices(sb) == 0) {
4003                 btrfs_err(fs_info, "number of devices is 0");
4004                 ret = -EINVAL;
4005         }
4006
4007         if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4008                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
4009                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4010                 ret = -EINVAL;
4011         }
4012
4013         /*
4014          * Obvious sys_chunk_array corruptions, it must hold at least one key
4015          * and one chunk
4016          */
4017         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4018                 btrfs_err(fs_info, "system chunk array too big %u > %u",
4019                           btrfs_super_sys_array_size(sb),
4020                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4021                 ret = -EINVAL;
4022         }
4023         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4024                         + sizeof(struct btrfs_chunk)) {
4025                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
4026                           btrfs_super_sys_array_size(sb),
4027                           sizeof(struct btrfs_disk_key)
4028                           + sizeof(struct btrfs_chunk));
4029                 ret = -EINVAL;
4030         }
4031
4032         /*
4033          * The generation is a global counter, we'll trust it more than the others
4034          * but it's still possible that it's the one that's wrong.
4035          */
4036         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4037                 btrfs_warn(fs_info,
4038                         "suspicious: generation < chunk_root_generation: %llu < %llu",
4039                         btrfs_super_generation(sb),
4040                         btrfs_super_chunk_root_generation(sb));
4041         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4042             && btrfs_super_cache_generation(sb) != (u64)-1)
4043                 btrfs_warn(fs_info,
4044                         "suspicious: generation < cache_generation: %llu < %llu",
4045                         btrfs_super_generation(sb),
4046                         btrfs_super_cache_generation(sb));
4047
4048         return ret;
4049 }
4050
4051 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4052 {
4053         mutex_lock(&fs_info->cleaner_mutex);
4054         btrfs_run_delayed_iputs(fs_info);
4055         mutex_unlock(&fs_info->cleaner_mutex);
4056
4057         down_write(&fs_info->cleanup_work_sem);
4058         up_write(&fs_info->cleanup_work_sem);
4059
4060         /* cleanup FS via transaction */
4061         btrfs_cleanup_transaction(fs_info);
4062 }
4063
4064 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4065 {
4066         struct btrfs_ordered_extent *ordered;
4067
4068         spin_lock(&root->ordered_extent_lock);
4069         /*
4070          * This will just short circuit the ordered completion stuff which will
4071          * make sure the ordered extent gets properly cleaned up.
4072          */
4073         list_for_each_entry(ordered, &root->ordered_extents,
4074                             root_extent_list)
4075                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4076         spin_unlock(&root->ordered_extent_lock);
4077 }
4078
4079 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4080 {
4081         struct btrfs_root *root;
4082         struct list_head splice;
4083
4084         INIT_LIST_HEAD(&splice);
4085
4086         spin_lock(&fs_info->ordered_root_lock);
4087         list_splice_init(&fs_info->ordered_roots, &splice);
4088         while (!list_empty(&splice)) {
4089                 root = list_first_entry(&splice, struct btrfs_root,
4090                                         ordered_root);
4091                 list_move_tail(&root->ordered_root,
4092                                &fs_info->ordered_roots);
4093
4094                 spin_unlock(&fs_info->ordered_root_lock);
4095                 btrfs_destroy_ordered_extents(root);
4096
4097                 cond_resched();
4098                 spin_lock(&fs_info->ordered_root_lock);
4099         }
4100         spin_unlock(&fs_info->ordered_root_lock);
4101 }
4102
4103 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4104                                       struct btrfs_fs_info *fs_info)
4105 {
4106         struct rb_node *node;
4107         struct btrfs_delayed_ref_root *delayed_refs;
4108         struct btrfs_delayed_ref_node *ref;
4109         int ret = 0;
4110
4111         delayed_refs = &trans->delayed_refs;
4112
4113         spin_lock(&delayed_refs->lock);
4114         if (atomic_read(&delayed_refs->num_entries) == 0) {
4115                 spin_unlock(&delayed_refs->lock);
4116                 btrfs_info(fs_info, "delayed_refs has NO entry");
4117                 return ret;
4118         }
4119
4120         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4121                 struct btrfs_delayed_ref_head *head;
4122                 struct rb_node *n;
4123                 bool pin_bytes = false;
4124
4125                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4126                                 href_node);
4127                 if (!mutex_trylock(&head->mutex)) {
4128                         refcount_inc(&head->refs);
4129                         spin_unlock(&delayed_refs->lock);
4130
4131                         mutex_lock(&head->mutex);
4132                         mutex_unlock(&head->mutex);
4133                         btrfs_put_delayed_ref_head(head);
4134                         spin_lock(&delayed_refs->lock);
4135                         continue;
4136                 }
4137                 spin_lock(&head->lock);
4138                 while ((n = rb_first(&head->ref_tree)) != NULL) {
4139                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4140                                        ref_node);
4141                         ref->in_tree = 0;
4142                         rb_erase(&ref->ref_node, &head->ref_tree);
4143                         RB_CLEAR_NODE(&ref->ref_node);
4144                         if (!list_empty(&ref->add_list))
4145                                 list_del(&ref->add_list);
4146                         atomic_dec(&delayed_refs->num_entries);
4147                         btrfs_put_delayed_ref(ref);
4148                 }
4149                 if (head->must_insert_reserved)
4150                         pin_bytes = true;
4151                 btrfs_free_delayed_extent_op(head->extent_op);
4152                 delayed_refs->num_heads--;
4153                 if (head->processing == 0)
4154                         delayed_refs->num_heads_ready--;
4155                 atomic_dec(&delayed_refs->num_entries);
4156                 rb_erase(&head->href_node, &delayed_refs->href_root);
4157                 RB_CLEAR_NODE(&head->href_node);
4158                 spin_unlock(&head->lock);
4159                 spin_unlock(&delayed_refs->lock);
4160                 mutex_unlock(&head->mutex);
4161
4162                 if (pin_bytes)
4163                         btrfs_pin_extent(fs_info, head->bytenr,
4164                                          head->num_bytes, 1);
4165                 btrfs_put_delayed_ref_head(head);
4166                 cond_resched();
4167                 spin_lock(&delayed_refs->lock);
4168         }
4169
4170         spin_unlock(&delayed_refs->lock);
4171
4172         return ret;
4173 }
4174
4175 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4176 {
4177         struct btrfs_inode *btrfs_inode;
4178         struct list_head splice;
4179
4180         INIT_LIST_HEAD(&splice);
4181
4182         spin_lock(&root->delalloc_lock);
4183         list_splice_init(&root->delalloc_inodes, &splice);
4184
4185         while (!list_empty(&splice)) {
4186                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4187                                                delalloc_inodes);
4188
4189                 list_del_init(&btrfs_inode->delalloc_inodes);
4190                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4191                           &btrfs_inode->runtime_flags);
4192                 spin_unlock(&root->delalloc_lock);
4193
4194                 btrfs_invalidate_inodes(btrfs_inode->root);
4195
4196                 spin_lock(&root->delalloc_lock);
4197         }
4198
4199         spin_unlock(&root->delalloc_lock);
4200 }
4201
4202 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4203 {
4204         struct btrfs_root *root;
4205         struct list_head splice;
4206
4207         INIT_LIST_HEAD(&splice);
4208
4209         spin_lock(&fs_info->delalloc_root_lock);
4210         list_splice_init(&fs_info->delalloc_roots, &splice);
4211         while (!list_empty(&splice)) {
4212                 root = list_first_entry(&splice, struct btrfs_root,
4213                                          delalloc_root);
4214                 list_del_init(&root->delalloc_root);
4215                 root = btrfs_grab_fs_root(root);
4216                 BUG_ON(!root);
4217                 spin_unlock(&fs_info->delalloc_root_lock);
4218
4219                 btrfs_destroy_delalloc_inodes(root);
4220                 btrfs_put_fs_root(root);
4221
4222                 spin_lock(&fs_info->delalloc_root_lock);
4223         }
4224         spin_unlock(&fs_info->delalloc_root_lock);
4225 }
4226
4227 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4228                                         struct extent_io_tree *dirty_pages,
4229                                         int mark)
4230 {
4231         int ret;
4232         struct extent_buffer *eb;
4233         u64 start = 0;
4234         u64 end;
4235
4236         while (1) {
4237                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4238                                             mark, NULL);
4239                 if (ret)
4240                         break;
4241
4242                 clear_extent_bits(dirty_pages, start, end, mark);
4243                 while (start <= end) {
4244                         eb = find_extent_buffer(fs_info, start);
4245                         start += fs_info->nodesize;
4246                         if (!eb)
4247                                 continue;
4248                         wait_on_extent_buffer_writeback(eb);
4249
4250                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4251                                                &eb->bflags))
4252                                 clear_extent_buffer_dirty(eb);
4253                         free_extent_buffer_stale(eb);
4254                 }
4255         }
4256
4257         return ret;
4258 }
4259
4260 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4261                                        struct extent_io_tree *pinned_extents)
4262 {
4263         struct extent_io_tree *unpin;
4264         u64 start;
4265         u64 end;
4266         int ret;
4267         bool loop = true;
4268
4269         unpin = pinned_extents;
4270 again:
4271         while (1) {
4272                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4273                                             EXTENT_DIRTY, NULL);
4274                 if (ret)
4275                         break;
4276
4277                 clear_extent_dirty(unpin, start, end);
4278                 btrfs_error_unpin_extent_range(fs_info, start, end);
4279                 cond_resched();
4280         }
4281
4282         if (loop) {
4283                 if (unpin == &fs_info->freed_extents[0])
4284                         unpin = &fs_info->freed_extents[1];
4285                 else
4286                         unpin = &fs_info->freed_extents[0];
4287                 loop = false;
4288                 goto again;
4289         }
4290
4291         return 0;
4292 }
4293
4294 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4295 {
4296         struct inode *inode;
4297
4298         inode = cache->io_ctl.inode;
4299         if (inode) {
4300                 invalidate_inode_pages2(inode->i_mapping);
4301                 BTRFS_I(inode)->generation = 0;
4302                 cache->io_ctl.inode = NULL;
4303                 iput(inode);
4304         }
4305         btrfs_put_block_group(cache);
4306 }
4307
4308 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4309                              struct btrfs_fs_info *fs_info)
4310 {
4311         struct btrfs_block_group_cache *cache;
4312
4313         spin_lock(&cur_trans->dirty_bgs_lock);
4314         while (!list_empty(&cur_trans->dirty_bgs)) {
4315                 cache = list_first_entry(&cur_trans->dirty_bgs,
4316                                          struct btrfs_block_group_cache,
4317                                          dirty_list);
4318                 if (!cache) {
4319                         btrfs_err(fs_info, "orphan block group dirty_bgs list");
4320                         spin_unlock(&cur_trans->dirty_bgs_lock);
4321                         return;
4322                 }
4323
4324                 if (!list_empty(&cache->io_list)) {
4325                         spin_unlock(&cur_trans->dirty_bgs_lock);
4326                         list_del_init(&cache->io_list);
4327                         btrfs_cleanup_bg_io(cache);
4328                         spin_lock(&cur_trans->dirty_bgs_lock);
4329                 }
4330
4331                 list_del_init(&cache->dirty_list);
4332                 spin_lock(&cache->lock);
4333                 cache->disk_cache_state = BTRFS_DC_ERROR;
4334                 spin_unlock(&cache->lock);
4335
4336                 spin_unlock(&cur_trans->dirty_bgs_lock);
4337                 btrfs_put_block_group(cache);
4338                 spin_lock(&cur_trans->dirty_bgs_lock);
4339         }
4340         spin_unlock(&cur_trans->dirty_bgs_lock);
4341
4342         while (!list_empty(&cur_trans->io_bgs)) {
4343                 cache = list_first_entry(&cur_trans->io_bgs,
4344                                          struct btrfs_block_group_cache,
4345                                          io_list);
4346                 if (!cache) {
4347                         btrfs_err(fs_info, "orphan block group on io_bgs list");
4348                         return;
4349                 }
4350
4351                 list_del_init(&cache->io_list);
4352                 spin_lock(&cache->lock);
4353                 cache->disk_cache_state = BTRFS_DC_ERROR;
4354                 spin_unlock(&cache->lock);
4355                 btrfs_cleanup_bg_io(cache);
4356         }
4357 }
4358
4359 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4360                                    struct btrfs_fs_info *fs_info)
4361 {
4362         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4363         ASSERT(list_empty(&cur_trans->dirty_bgs));
4364         ASSERT(list_empty(&cur_trans->io_bgs));
4365
4366         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4367
4368         cur_trans->state = TRANS_STATE_COMMIT_START;
4369         wake_up(&fs_info->transaction_blocked_wait);
4370
4371         cur_trans->state = TRANS_STATE_UNBLOCKED;
4372         wake_up(&fs_info->transaction_wait);
4373
4374         btrfs_destroy_delayed_inodes(fs_info);
4375         btrfs_assert_delayed_root_empty(fs_info);
4376
4377         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4378                                      EXTENT_DIRTY);
4379         btrfs_destroy_pinned_extent(fs_info,
4380                                     fs_info->pinned_extents);
4381
4382         cur_trans->state =TRANS_STATE_COMPLETED;
4383         wake_up(&cur_trans->commit_wait);
4384 }
4385
4386 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4387 {
4388         struct btrfs_transaction *t;
4389
4390         mutex_lock(&fs_info->transaction_kthread_mutex);
4391
4392         spin_lock(&fs_info->trans_lock);
4393         while (!list_empty(&fs_info->trans_list)) {
4394                 t = list_first_entry(&fs_info->trans_list,
4395                                      struct btrfs_transaction, list);
4396                 if (t->state >= TRANS_STATE_COMMIT_START) {
4397                         refcount_inc(&t->use_count);
4398                         spin_unlock(&fs_info->trans_lock);
4399                         btrfs_wait_for_commit(fs_info, t->transid);
4400                         btrfs_put_transaction(t);
4401                         spin_lock(&fs_info->trans_lock);
4402                         continue;
4403                 }
4404                 if (t == fs_info->running_transaction) {
4405                         t->state = TRANS_STATE_COMMIT_DOING;
4406                         spin_unlock(&fs_info->trans_lock);
4407                         /*
4408                          * We wait for 0 num_writers since we don't hold a trans
4409                          * handle open currently for this transaction.
4410                          */
4411                         wait_event(t->writer_wait,
4412                                    atomic_read(&t->num_writers) == 0);
4413                 } else {
4414                         spin_unlock(&fs_info->trans_lock);
4415                 }
4416                 btrfs_cleanup_one_transaction(t, fs_info);
4417
4418                 spin_lock(&fs_info->trans_lock);
4419                 if (t == fs_info->running_transaction)
4420                         fs_info->running_transaction = NULL;
4421                 list_del_init(&t->list);
4422                 spin_unlock(&fs_info->trans_lock);
4423
4424                 btrfs_put_transaction(t);
4425                 trace_btrfs_transaction_commit(fs_info->tree_root);
4426                 spin_lock(&fs_info->trans_lock);
4427         }
4428         spin_unlock(&fs_info->trans_lock);
4429         btrfs_destroy_all_ordered_extents(fs_info);
4430         btrfs_destroy_delayed_inodes(fs_info);
4431         btrfs_assert_delayed_root_empty(fs_info);
4432         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4433         btrfs_destroy_all_delalloc_inodes(fs_info);
4434         mutex_unlock(&fs_info->transaction_kthread_mutex);
4435
4436         return 0;
4437 }
4438
4439 static struct btrfs_fs_info *btree_fs_info(void *private_data)
4440 {
4441         struct inode *inode = private_data;
4442         return btrfs_sb(inode->i_sb);
4443 }
4444
4445 static const struct extent_io_ops btree_extent_io_ops = {
4446         /* mandatory callbacks */
4447         .submit_bio_hook = btree_submit_bio_hook,
4448         .readpage_end_io_hook = btree_readpage_end_io_hook,
4449         /* note we're sharing with inode.c for the merge bio hook */
4450         .merge_bio_hook = btrfs_merge_bio_hook,
4451         .readpage_io_failed_hook = btree_io_failed_hook,
4452         .set_range_writeback = btrfs_set_range_writeback,
4453         .tree_fs_info = btree_fs_info,
4454
4455         /* optional callbacks */
4456 };