Merge tag 'modules-for-v5.4-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include <crypto/hash.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "btrfs_inode.h"
27 #include "volumes.h"
28 #include "print-tree.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "free-space-cache.h"
32 #include "free-space-tree.h"
33 #include "inode-map.h"
34 #include "check-integrity.h"
35 #include "rcu-string.h"
36 #include "dev-replace.h"
37 #include "raid56.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 #include "compression.h"
41 #include "tree-checker.h"
42 #include "ref-verify.h"
43 #include "block-group.h"
44
45 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
46                                  BTRFS_HEADER_FLAG_RELOC |\
47                                  BTRFS_SUPER_FLAG_ERROR |\
48                                  BTRFS_SUPER_FLAG_SEEDING |\
49                                  BTRFS_SUPER_FLAG_METADUMP |\
50                                  BTRFS_SUPER_FLAG_METADUMP_V2)
51
52 static const struct extent_io_ops btree_extent_io_ops;
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         blk_status_t status;
77         enum btrfs_wq_endio_type metadata;
78         struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
83 int __init btrfs_end_io_wq_init(void)
84 {
85         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86                                         sizeof(struct btrfs_end_io_wq),
87                                         0,
88                                         SLAB_MEM_SPREAD,
89                                         NULL);
90         if (!btrfs_end_io_wq_cache)
91                 return -ENOMEM;
92         return 0;
93 }
94
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97         kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 /*
101  * async submit bios are used to offload expensive checksumming
102  * onto the worker threads.  They checksum file and metadata bios
103  * just before they are sent down the IO stack.
104  */
105 struct async_submit_bio {
106         void *private_data;
107         struct bio *bio;
108         extent_submit_bio_start_t *submit_bio_start;
109         int mirror_num;
110         /*
111          * bio_offset is optional, can be used if the pages in the bio
112          * can't tell us where in the file the bio should go
113          */
114         u64 bio_offset;
115         struct btrfs_work work;
116         blk_status_t status;
117 };
118
119 /*
120  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
121  * eb, the lockdep key is determined by the btrfs_root it belongs to and
122  * the level the eb occupies in the tree.
123  *
124  * Different roots are used for different purposes and may nest inside each
125  * other and they require separate keysets.  As lockdep keys should be
126  * static, assign keysets according to the purpose of the root as indicated
127  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
128  * roots have separate keysets.
129  *
130  * Lock-nesting across peer nodes is always done with the immediate parent
131  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
132  * subclass to avoid triggering lockdep warning in such cases.
133  *
134  * The key is set by the readpage_end_io_hook after the buffer has passed
135  * csum validation but before the pages are unlocked.  It is also set by
136  * btrfs_init_new_buffer on freshly allocated blocks.
137  *
138  * We also add a check to make sure the highest level of the tree is the
139  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
140  * needs update as well.
141  */
142 #ifdef CONFIG_DEBUG_LOCK_ALLOC
143 # if BTRFS_MAX_LEVEL != 8
144 #  error
145 # endif
146
147 static struct btrfs_lockdep_keyset {
148         u64                     id;             /* root objectid */
149         const char              *name_stem;     /* lock name stem */
150         char                    names[BTRFS_MAX_LEVEL + 1][20];
151         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
152 } btrfs_lockdep_keysets[] = {
153         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
154         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
155         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
156         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
157         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
158         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
159         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
160         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
161         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
162         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
163         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
164         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
165         { .id = 0,                              .name_stem = "tree"     },
166 };
167
168 void __init btrfs_init_lockdep(void)
169 {
170         int i, j;
171
172         /* initialize lockdep class names */
173         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
174                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
175
176                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
177                         snprintf(ks->names[j], sizeof(ks->names[j]),
178                                  "btrfs-%s-%02d", ks->name_stem, j);
179         }
180 }
181
182 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
183                                     int level)
184 {
185         struct btrfs_lockdep_keyset *ks;
186
187         BUG_ON(level >= ARRAY_SIZE(ks->keys));
188
189         /* find the matching keyset, id 0 is the default entry */
190         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
191                 if (ks->id == objectid)
192                         break;
193
194         lockdep_set_class_and_name(&eb->lock,
195                                    &ks->keys[level], ks->names[level]);
196 }
197
198 #endif
199
200 /*
201  * extents on the btree inode are pretty simple, there's one extent
202  * that covers the entire device
203  */
204 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
205                 struct page *page, size_t pg_offset, u64 start, u64 len,
206                 int create)
207 {
208         struct btrfs_fs_info *fs_info = inode->root->fs_info;
209         struct extent_map_tree *em_tree = &inode->extent_tree;
210         struct extent_map *em;
211         int ret;
212
213         read_lock(&em_tree->lock);
214         em = lookup_extent_mapping(em_tree, start, len);
215         if (em) {
216                 em->bdev = fs_info->fs_devices->latest_bdev;
217                 read_unlock(&em_tree->lock);
218                 goto out;
219         }
220         read_unlock(&em_tree->lock);
221
222         em = alloc_extent_map();
223         if (!em) {
224                 em = ERR_PTR(-ENOMEM);
225                 goto out;
226         }
227         em->start = 0;
228         em->len = (u64)-1;
229         em->block_len = (u64)-1;
230         em->block_start = 0;
231         em->bdev = fs_info->fs_devices->latest_bdev;
232
233         write_lock(&em_tree->lock);
234         ret = add_extent_mapping(em_tree, em, 0);
235         if (ret == -EEXIST) {
236                 free_extent_map(em);
237                 em = lookup_extent_mapping(em_tree, start, len);
238                 if (!em)
239                         em = ERR_PTR(-EIO);
240         } else if (ret) {
241                 free_extent_map(em);
242                 em = ERR_PTR(ret);
243         }
244         write_unlock(&em_tree->lock);
245
246 out:
247         return em;
248 }
249
250 /*
251  * Compute the csum of a btree block and store the result to provided buffer.
252  *
253  * Returns error if the extent buffer cannot be mapped.
254  */
255 static int csum_tree_block(struct extent_buffer *buf, u8 *result)
256 {
257         struct btrfs_fs_info *fs_info = buf->fs_info;
258         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
259         unsigned long len;
260         unsigned long cur_len;
261         unsigned long offset = BTRFS_CSUM_SIZE;
262         char *kaddr;
263         unsigned long map_start;
264         unsigned long map_len;
265         int err;
266
267         shash->tfm = fs_info->csum_shash;
268         crypto_shash_init(shash);
269
270         len = buf->len - offset;
271
272         while (len > 0) {
273                 /*
274                  * Note: we don't need to check for the err == 1 case here, as
275                  * with the given combination of 'start = BTRFS_CSUM_SIZE (32)'
276                  * and 'min_len = 32' and the currently implemented mapping
277                  * algorithm we cannot cross a page boundary.
278                  */
279                 err = map_private_extent_buffer(buf, offset, 32,
280                                         &kaddr, &map_start, &map_len);
281                 if (WARN_ON(err))
282                         return err;
283                 cur_len = min(len, map_len - (offset - map_start));
284                 crypto_shash_update(shash, kaddr + offset - map_start, cur_len);
285                 len -= cur_len;
286                 offset += cur_len;
287         }
288         memset(result, 0, BTRFS_CSUM_SIZE);
289
290         crypto_shash_final(shash, result);
291
292         return 0;
293 }
294
295 /*
296  * we can't consider a given block up to date unless the transid of the
297  * block matches the transid in the parent node's pointer.  This is how we
298  * detect blocks that either didn't get written at all or got written
299  * in the wrong place.
300  */
301 static int verify_parent_transid(struct extent_io_tree *io_tree,
302                                  struct extent_buffer *eb, u64 parent_transid,
303                                  int atomic)
304 {
305         struct extent_state *cached_state = NULL;
306         int ret;
307         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
308
309         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
310                 return 0;
311
312         if (atomic)
313                 return -EAGAIN;
314
315         if (need_lock) {
316                 btrfs_tree_read_lock(eb);
317                 btrfs_set_lock_blocking_read(eb);
318         }
319
320         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
321                          &cached_state);
322         if (extent_buffer_uptodate(eb) &&
323             btrfs_header_generation(eb) == parent_transid) {
324                 ret = 0;
325                 goto out;
326         }
327         btrfs_err_rl(eb->fs_info,
328                 "parent transid verify failed on %llu wanted %llu found %llu",
329                         eb->start,
330                         parent_transid, btrfs_header_generation(eb));
331         ret = 1;
332
333         /*
334          * Things reading via commit roots that don't have normal protection,
335          * like send, can have a really old block in cache that may point at a
336          * block that has been freed and re-allocated.  So don't clear uptodate
337          * if we find an eb that is under IO (dirty/writeback) because we could
338          * end up reading in the stale data and then writing it back out and
339          * making everybody very sad.
340          */
341         if (!extent_buffer_under_io(eb))
342                 clear_extent_buffer_uptodate(eb);
343 out:
344         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
345                              &cached_state);
346         if (need_lock)
347                 btrfs_tree_read_unlock_blocking(eb);
348         return ret;
349 }
350
351 static bool btrfs_supported_super_csum(u16 csum_type)
352 {
353         switch (csum_type) {
354         case BTRFS_CSUM_TYPE_CRC32:
355                 return true;
356         default:
357                 return false;
358         }
359 }
360
361 /*
362  * Return 0 if the superblock checksum type matches the checksum value of that
363  * algorithm. Pass the raw disk superblock data.
364  */
365 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
366                                   char *raw_disk_sb)
367 {
368         struct btrfs_super_block *disk_sb =
369                 (struct btrfs_super_block *)raw_disk_sb;
370         char result[BTRFS_CSUM_SIZE];
371         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
372
373         shash->tfm = fs_info->csum_shash;
374         crypto_shash_init(shash);
375
376         /*
377          * The super_block structure does not span the whole
378          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
379          * filled with zeros and is included in the checksum.
380          */
381         crypto_shash_update(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
382                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
383         crypto_shash_final(shash, result);
384
385         if (memcmp(disk_sb->csum, result, btrfs_super_csum_size(disk_sb)))
386                 return 1;
387
388         return 0;
389 }
390
391 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
392                            struct btrfs_key *first_key, u64 parent_transid)
393 {
394         struct btrfs_fs_info *fs_info = eb->fs_info;
395         int found_level;
396         struct btrfs_key found_key;
397         int ret;
398
399         found_level = btrfs_header_level(eb);
400         if (found_level != level) {
401                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
402                      KERN_ERR "BTRFS: tree level check failed\n");
403                 btrfs_err(fs_info,
404 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
405                           eb->start, level, found_level);
406                 return -EIO;
407         }
408
409         if (!first_key)
410                 return 0;
411
412         /*
413          * For live tree block (new tree blocks in current transaction),
414          * we need proper lock context to avoid race, which is impossible here.
415          * So we only checks tree blocks which is read from disk, whose
416          * generation <= fs_info->last_trans_committed.
417          */
418         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
419                 return 0;
420
421         /* We have @first_key, so this @eb must have at least one item */
422         if (btrfs_header_nritems(eb) == 0) {
423                 btrfs_err(fs_info,
424                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
425                           eb->start);
426                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
427                 return -EUCLEAN;
428         }
429
430         if (found_level)
431                 btrfs_node_key_to_cpu(eb, &found_key, 0);
432         else
433                 btrfs_item_key_to_cpu(eb, &found_key, 0);
434         ret = btrfs_comp_cpu_keys(first_key, &found_key);
435
436         if (ret) {
437                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
438                      KERN_ERR "BTRFS: tree first key check failed\n");
439                 btrfs_err(fs_info,
440 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
441                           eb->start, parent_transid, first_key->objectid,
442                           first_key->type, first_key->offset,
443                           found_key.objectid, found_key.type,
444                           found_key.offset);
445         }
446         return ret;
447 }
448
449 /*
450  * helper to read a given tree block, doing retries as required when
451  * the checksums don't match and we have alternate mirrors to try.
452  *
453  * @parent_transid:     expected transid, skip check if 0
454  * @level:              expected level, mandatory check
455  * @first_key:          expected key of first slot, skip check if NULL
456  */
457 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
458                                           u64 parent_transid, int level,
459                                           struct btrfs_key *first_key)
460 {
461         struct btrfs_fs_info *fs_info = eb->fs_info;
462         struct extent_io_tree *io_tree;
463         int failed = 0;
464         int ret;
465         int num_copies = 0;
466         int mirror_num = 0;
467         int failed_mirror = 0;
468
469         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
470         while (1) {
471                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
472                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
473                 if (!ret) {
474                         if (verify_parent_transid(io_tree, eb,
475                                                    parent_transid, 0))
476                                 ret = -EIO;
477                         else if (btrfs_verify_level_key(eb, level,
478                                                 first_key, parent_transid))
479                                 ret = -EUCLEAN;
480                         else
481                                 break;
482                 }
483
484                 num_copies = btrfs_num_copies(fs_info,
485                                               eb->start, eb->len);
486                 if (num_copies == 1)
487                         break;
488
489                 if (!failed_mirror) {
490                         failed = 1;
491                         failed_mirror = eb->read_mirror;
492                 }
493
494                 mirror_num++;
495                 if (mirror_num == failed_mirror)
496                         mirror_num++;
497
498                 if (mirror_num > num_copies)
499                         break;
500         }
501
502         if (failed && !ret && failed_mirror)
503                 btrfs_repair_eb_io_failure(eb, failed_mirror);
504
505         return ret;
506 }
507
508 /*
509  * checksum a dirty tree block before IO.  This has extra checks to make sure
510  * we only fill in the checksum field in the first page of a multi-page block
511  */
512
513 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
514 {
515         u64 start = page_offset(page);
516         u64 found_start;
517         u8 result[BTRFS_CSUM_SIZE];
518         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
519         struct extent_buffer *eb;
520         int ret;
521
522         eb = (struct extent_buffer *)page->private;
523         if (page != eb->pages[0])
524                 return 0;
525
526         found_start = btrfs_header_bytenr(eb);
527         /*
528          * Please do not consolidate these warnings into a single if.
529          * It is useful to know what went wrong.
530          */
531         if (WARN_ON(found_start != start))
532                 return -EUCLEAN;
533         if (WARN_ON(!PageUptodate(page)))
534                 return -EUCLEAN;
535
536         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
537                         btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
538
539         if (csum_tree_block(eb, result))
540                 return -EINVAL;
541
542         if (btrfs_header_level(eb))
543                 ret = btrfs_check_node(eb);
544         else
545                 ret = btrfs_check_leaf_full(eb);
546
547         if (ret < 0) {
548                 btrfs_err(fs_info,
549                 "block=%llu write time tree block corruption detected",
550                           eb->start);
551                 return ret;
552         }
553         write_extent_buffer(eb, result, 0, csum_size);
554
555         return 0;
556 }
557
558 static int check_tree_block_fsid(struct extent_buffer *eb)
559 {
560         struct btrfs_fs_info *fs_info = eb->fs_info;
561         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
562         u8 fsid[BTRFS_FSID_SIZE];
563         int ret = 1;
564
565         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
566         while (fs_devices) {
567                 u8 *metadata_uuid;
568
569                 /*
570                  * Checking the incompat flag is only valid for the current
571                  * fs. For seed devices it's forbidden to have their uuid
572                  * changed so reading ->fsid in this case is fine
573                  */
574                 if (fs_devices == fs_info->fs_devices &&
575                     btrfs_fs_incompat(fs_info, METADATA_UUID))
576                         metadata_uuid = fs_devices->metadata_uuid;
577                 else
578                         metadata_uuid = fs_devices->fsid;
579
580                 if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE)) {
581                         ret = 0;
582                         break;
583                 }
584                 fs_devices = fs_devices->seed;
585         }
586         return ret;
587 }
588
589 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
590                                       u64 phy_offset, struct page *page,
591                                       u64 start, u64 end, int mirror)
592 {
593         u64 found_start;
594         int found_level;
595         struct extent_buffer *eb;
596         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
597         struct btrfs_fs_info *fs_info = root->fs_info;
598         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
599         int ret = 0;
600         u8 result[BTRFS_CSUM_SIZE];
601         int reads_done;
602
603         if (!page->private)
604                 goto out;
605
606         eb = (struct extent_buffer *)page->private;
607
608         /* the pending IO might have been the only thing that kept this buffer
609          * in memory.  Make sure we have a ref for all this other checks
610          */
611         extent_buffer_get(eb);
612
613         reads_done = atomic_dec_and_test(&eb->io_pages);
614         if (!reads_done)
615                 goto err;
616
617         eb->read_mirror = mirror;
618         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
619                 ret = -EIO;
620                 goto err;
621         }
622
623         found_start = btrfs_header_bytenr(eb);
624         if (found_start != eb->start) {
625                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
626                              eb->start, found_start);
627                 ret = -EIO;
628                 goto err;
629         }
630         if (check_tree_block_fsid(eb)) {
631                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
632                              eb->start);
633                 ret = -EIO;
634                 goto err;
635         }
636         found_level = btrfs_header_level(eb);
637         if (found_level >= BTRFS_MAX_LEVEL) {
638                 btrfs_err(fs_info, "bad tree block level %d on %llu",
639                           (int)btrfs_header_level(eb), eb->start);
640                 ret = -EIO;
641                 goto err;
642         }
643
644         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
645                                        eb, found_level);
646
647         ret = csum_tree_block(eb, result);
648         if (ret)
649                 goto err;
650
651         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
652                 u32 val;
653                 u32 found = 0;
654
655                 memcpy(&found, result, csum_size);
656
657                 read_extent_buffer(eb, &val, 0, csum_size);
658                 btrfs_warn_rl(fs_info,
659                 "%s checksum verify failed on %llu wanted %x found %x level %d",
660                               fs_info->sb->s_id, eb->start,
661                               val, found, btrfs_header_level(eb));
662                 ret = -EUCLEAN;
663                 goto err;
664         }
665
666         /*
667          * If this is a leaf block and it is corrupt, set the corrupt bit so
668          * that we don't try and read the other copies of this block, just
669          * return -EIO.
670          */
671         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
672                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
673                 ret = -EIO;
674         }
675
676         if (found_level > 0 && btrfs_check_node(eb))
677                 ret = -EIO;
678
679         if (!ret)
680                 set_extent_buffer_uptodate(eb);
681         else
682                 btrfs_err(fs_info,
683                           "block=%llu read time tree block corruption detected",
684                           eb->start);
685 err:
686         if (reads_done &&
687             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
688                 btree_readahead_hook(eb, ret);
689
690         if (ret) {
691                 /*
692                  * our io error hook is going to dec the io pages
693                  * again, we have to make sure it has something
694                  * to decrement
695                  */
696                 atomic_inc(&eb->io_pages);
697                 clear_extent_buffer_uptodate(eb);
698         }
699         free_extent_buffer(eb);
700 out:
701         return ret;
702 }
703
704 static void end_workqueue_bio(struct bio *bio)
705 {
706         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
707         struct btrfs_fs_info *fs_info;
708         struct btrfs_workqueue *wq;
709         btrfs_work_func_t func;
710
711         fs_info = end_io_wq->info;
712         end_io_wq->status = bio->bi_status;
713
714         if (bio_op(bio) == REQ_OP_WRITE) {
715                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
716                         wq = fs_info->endio_meta_write_workers;
717                         func = btrfs_endio_meta_write_helper;
718                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
719                         wq = fs_info->endio_freespace_worker;
720                         func = btrfs_freespace_write_helper;
721                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
722                         wq = fs_info->endio_raid56_workers;
723                         func = btrfs_endio_raid56_helper;
724                 } else {
725                         wq = fs_info->endio_write_workers;
726                         func = btrfs_endio_write_helper;
727                 }
728         } else {
729                 if (unlikely(end_io_wq->metadata ==
730                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
731                         wq = fs_info->endio_repair_workers;
732                         func = btrfs_endio_repair_helper;
733                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
734                         wq = fs_info->endio_raid56_workers;
735                         func = btrfs_endio_raid56_helper;
736                 } else if (end_io_wq->metadata) {
737                         wq = fs_info->endio_meta_workers;
738                         func = btrfs_endio_meta_helper;
739                 } else {
740                         wq = fs_info->endio_workers;
741                         func = btrfs_endio_helper;
742                 }
743         }
744
745         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
746         btrfs_queue_work(wq, &end_io_wq->work);
747 }
748
749 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
750                         enum btrfs_wq_endio_type metadata)
751 {
752         struct btrfs_end_io_wq *end_io_wq;
753
754         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
755         if (!end_io_wq)
756                 return BLK_STS_RESOURCE;
757
758         end_io_wq->private = bio->bi_private;
759         end_io_wq->end_io = bio->bi_end_io;
760         end_io_wq->info = info;
761         end_io_wq->status = 0;
762         end_io_wq->bio = bio;
763         end_io_wq->metadata = metadata;
764
765         bio->bi_private = end_io_wq;
766         bio->bi_end_io = end_workqueue_bio;
767         return 0;
768 }
769
770 static void run_one_async_start(struct btrfs_work *work)
771 {
772         struct async_submit_bio *async;
773         blk_status_t ret;
774
775         async = container_of(work, struct  async_submit_bio, work);
776         ret = async->submit_bio_start(async->private_data, async->bio,
777                                       async->bio_offset);
778         if (ret)
779                 async->status = ret;
780 }
781
782 /*
783  * In order to insert checksums into the metadata in large chunks, we wait
784  * until bio submission time.   All the pages in the bio are checksummed and
785  * sums are attached onto the ordered extent record.
786  *
787  * At IO completion time the csums attached on the ordered extent record are
788  * inserted into the tree.
789  */
790 static void run_one_async_done(struct btrfs_work *work)
791 {
792         struct async_submit_bio *async;
793         struct inode *inode;
794         blk_status_t ret;
795
796         async = container_of(work, struct  async_submit_bio, work);
797         inode = async->private_data;
798
799         /* If an error occurred we just want to clean up the bio and move on */
800         if (async->status) {
801                 async->bio->bi_status = async->status;
802                 bio_endio(async->bio);
803                 return;
804         }
805
806         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio,
807                         async->mirror_num, 1);
808         if (ret) {
809                 async->bio->bi_status = ret;
810                 bio_endio(async->bio);
811         }
812 }
813
814 static void run_one_async_free(struct btrfs_work *work)
815 {
816         struct async_submit_bio *async;
817
818         async = container_of(work, struct  async_submit_bio, work);
819         kfree(async);
820 }
821
822 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
823                                  int mirror_num, unsigned long bio_flags,
824                                  u64 bio_offset, void *private_data,
825                                  extent_submit_bio_start_t *submit_bio_start)
826 {
827         struct async_submit_bio *async;
828
829         async = kmalloc(sizeof(*async), GFP_NOFS);
830         if (!async)
831                 return BLK_STS_RESOURCE;
832
833         async->private_data = private_data;
834         async->bio = bio;
835         async->mirror_num = mirror_num;
836         async->submit_bio_start = submit_bio_start;
837
838         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
839                         run_one_async_done, run_one_async_free);
840
841         async->bio_offset = bio_offset;
842
843         async->status = 0;
844
845         if (op_is_sync(bio->bi_opf))
846                 btrfs_set_work_high_priority(&async->work);
847
848         btrfs_queue_work(fs_info->workers, &async->work);
849         return 0;
850 }
851
852 static blk_status_t btree_csum_one_bio(struct bio *bio)
853 {
854         struct bio_vec *bvec;
855         struct btrfs_root *root;
856         int ret = 0;
857         struct bvec_iter_all iter_all;
858
859         ASSERT(!bio_flagged(bio, BIO_CLONED));
860         bio_for_each_segment_all(bvec, bio, iter_all) {
861                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
862                 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
863                 if (ret)
864                         break;
865         }
866
867         return errno_to_blk_status(ret);
868 }
869
870 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
871                                              u64 bio_offset)
872 {
873         /*
874          * when we're called for a write, we're already in the async
875          * submission context.  Just jump into btrfs_map_bio
876          */
877         return btree_csum_one_bio(bio);
878 }
879
880 static int check_async_write(struct btrfs_fs_info *fs_info,
881                              struct btrfs_inode *bi)
882 {
883         if (atomic_read(&bi->sync_writers))
884                 return 0;
885         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
886                 return 0;
887         return 1;
888 }
889
890 static blk_status_t btree_submit_bio_hook(struct inode *inode, struct bio *bio,
891                                           int mirror_num,
892                                           unsigned long bio_flags)
893 {
894         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
895         int async = check_async_write(fs_info, BTRFS_I(inode));
896         blk_status_t ret;
897
898         if (bio_op(bio) != REQ_OP_WRITE) {
899                 /*
900                  * called for a read, do the setup so that checksum validation
901                  * can happen in the async kernel threads
902                  */
903                 ret = btrfs_bio_wq_end_io(fs_info, bio,
904                                           BTRFS_WQ_ENDIO_METADATA);
905                 if (ret)
906                         goto out_w_error;
907                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
908         } else if (!async) {
909                 ret = btree_csum_one_bio(bio);
910                 if (ret)
911                         goto out_w_error;
912                 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
913         } else {
914                 /*
915                  * kthread helpers are used to submit writes so that
916                  * checksumming can happen in parallel across all CPUs
917                  */
918                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
919                                           0, inode, btree_submit_bio_start);
920         }
921
922         if (ret)
923                 goto out_w_error;
924         return 0;
925
926 out_w_error:
927         bio->bi_status = ret;
928         bio_endio(bio);
929         return ret;
930 }
931
932 #ifdef CONFIG_MIGRATION
933 static int btree_migratepage(struct address_space *mapping,
934                         struct page *newpage, struct page *page,
935                         enum migrate_mode mode)
936 {
937         /*
938          * we can't safely write a btree page from here,
939          * we haven't done the locking hook
940          */
941         if (PageDirty(page))
942                 return -EAGAIN;
943         /*
944          * Buffers may be managed in a filesystem specific way.
945          * We must have no buffers or drop them.
946          */
947         if (page_has_private(page) &&
948             !try_to_release_page(page, GFP_KERNEL))
949                 return -EAGAIN;
950         return migrate_page(mapping, newpage, page, mode);
951 }
952 #endif
953
954
955 static int btree_writepages(struct address_space *mapping,
956                             struct writeback_control *wbc)
957 {
958         struct btrfs_fs_info *fs_info;
959         int ret;
960
961         if (wbc->sync_mode == WB_SYNC_NONE) {
962
963                 if (wbc->for_kupdate)
964                         return 0;
965
966                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
967                 /* this is a bit racy, but that's ok */
968                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
969                                              BTRFS_DIRTY_METADATA_THRESH,
970                                              fs_info->dirty_metadata_batch);
971                 if (ret < 0)
972                         return 0;
973         }
974         return btree_write_cache_pages(mapping, wbc);
975 }
976
977 static int btree_readpage(struct file *file, struct page *page)
978 {
979         struct extent_io_tree *tree;
980         tree = &BTRFS_I(page->mapping->host)->io_tree;
981         return extent_read_full_page(tree, page, btree_get_extent, 0);
982 }
983
984 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
985 {
986         if (PageWriteback(page) || PageDirty(page))
987                 return 0;
988
989         return try_release_extent_buffer(page);
990 }
991
992 static void btree_invalidatepage(struct page *page, unsigned int offset,
993                                  unsigned int length)
994 {
995         struct extent_io_tree *tree;
996         tree = &BTRFS_I(page->mapping->host)->io_tree;
997         extent_invalidatepage(tree, page, offset);
998         btree_releasepage(page, GFP_NOFS);
999         if (PagePrivate(page)) {
1000                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1001                            "page private not zero on page %llu",
1002                            (unsigned long long)page_offset(page));
1003                 ClearPagePrivate(page);
1004                 set_page_private(page, 0);
1005                 put_page(page);
1006         }
1007 }
1008
1009 static int btree_set_page_dirty(struct page *page)
1010 {
1011 #ifdef DEBUG
1012         struct extent_buffer *eb;
1013
1014         BUG_ON(!PagePrivate(page));
1015         eb = (struct extent_buffer *)page->private;
1016         BUG_ON(!eb);
1017         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1018         BUG_ON(!atomic_read(&eb->refs));
1019         btrfs_assert_tree_locked(eb);
1020 #endif
1021         return __set_page_dirty_nobuffers(page);
1022 }
1023
1024 static const struct address_space_operations btree_aops = {
1025         .readpage       = btree_readpage,
1026         .writepages     = btree_writepages,
1027         .releasepage    = btree_releasepage,
1028         .invalidatepage = btree_invalidatepage,
1029 #ifdef CONFIG_MIGRATION
1030         .migratepage    = btree_migratepage,
1031 #endif
1032         .set_page_dirty = btree_set_page_dirty,
1033 };
1034
1035 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1036 {
1037         struct extent_buffer *buf = NULL;
1038         int ret;
1039
1040         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1041         if (IS_ERR(buf))
1042                 return;
1043
1044         ret = read_extent_buffer_pages(buf, WAIT_NONE, 0);
1045         if (ret < 0)
1046                 free_extent_buffer_stale(buf);
1047         else
1048                 free_extent_buffer(buf);
1049 }
1050
1051 struct extent_buffer *btrfs_find_create_tree_block(
1052                                                 struct btrfs_fs_info *fs_info,
1053                                                 u64 bytenr)
1054 {
1055         if (btrfs_is_testing(fs_info))
1056                 return alloc_test_extent_buffer(fs_info, bytenr);
1057         return alloc_extent_buffer(fs_info, bytenr);
1058 }
1059
1060 /*
1061  * Read tree block at logical address @bytenr and do variant basic but critical
1062  * verification.
1063  *
1064  * @parent_transid:     expected transid of this tree block, skip check if 0
1065  * @level:              expected level, mandatory check
1066  * @first_key:          expected key in slot 0, skip check if NULL
1067  */
1068 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1069                                       u64 parent_transid, int level,
1070                                       struct btrfs_key *first_key)
1071 {
1072         struct extent_buffer *buf = NULL;
1073         int ret;
1074
1075         buf = btrfs_find_create_tree_block(fs_info, bytenr);
1076         if (IS_ERR(buf))
1077                 return buf;
1078
1079         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1080                                              level, first_key);
1081         if (ret) {
1082                 free_extent_buffer_stale(buf);
1083                 return ERR_PTR(ret);
1084         }
1085         return buf;
1086
1087 }
1088
1089 void btrfs_clean_tree_block(struct extent_buffer *buf)
1090 {
1091         struct btrfs_fs_info *fs_info = buf->fs_info;
1092         if (btrfs_header_generation(buf) ==
1093             fs_info->running_transaction->transid) {
1094                 btrfs_assert_tree_locked(buf);
1095
1096                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1097                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1098                                                  -buf->len,
1099                                                  fs_info->dirty_metadata_batch);
1100                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1101                         btrfs_set_lock_blocking_write(buf);
1102                         clear_extent_buffer_dirty(buf);
1103                 }
1104         }
1105 }
1106
1107 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1108 {
1109         struct btrfs_subvolume_writers *writers;
1110         int ret;
1111
1112         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1113         if (!writers)
1114                 return ERR_PTR(-ENOMEM);
1115
1116         ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1117         if (ret < 0) {
1118                 kfree(writers);
1119                 return ERR_PTR(ret);
1120         }
1121
1122         init_waitqueue_head(&writers->wait);
1123         return writers;
1124 }
1125
1126 static void
1127 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1128 {
1129         percpu_counter_destroy(&writers->counter);
1130         kfree(writers);
1131 }
1132
1133 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1134                          u64 objectid)
1135 {
1136         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1137         root->node = NULL;
1138         root->commit_root = NULL;
1139         root->state = 0;
1140         root->orphan_cleanup_state = 0;
1141
1142         root->last_trans = 0;
1143         root->highest_objectid = 0;
1144         root->nr_delalloc_inodes = 0;
1145         root->nr_ordered_extents = 0;
1146         root->inode_tree = RB_ROOT;
1147         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1148         root->block_rsv = NULL;
1149
1150         INIT_LIST_HEAD(&root->dirty_list);
1151         INIT_LIST_HEAD(&root->root_list);
1152         INIT_LIST_HEAD(&root->delalloc_inodes);
1153         INIT_LIST_HEAD(&root->delalloc_root);
1154         INIT_LIST_HEAD(&root->ordered_extents);
1155         INIT_LIST_HEAD(&root->ordered_root);
1156         INIT_LIST_HEAD(&root->reloc_dirty_list);
1157         INIT_LIST_HEAD(&root->logged_list[0]);
1158         INIT_LIST_HEAD(&root->logged_list[1]);
1159         spin_lock_init(&root->inode_lock);
1160         spin_lock_init(&root->delalloc_lock);
1161         spin_lock_init(&root->ordered_extent_lock);
1162         spin_lock_init(&root->accounting_lock);
1163         spin_lock_init(&root->log_extents_lock[0]);
1164         spin_lock_init(&root->log_extents_lock[1]);
1165         spin_lock_init(&root->qgroup_meta_rsv_lock);
1166         mutex_init(&root->objectid_mutex);
1167         mutex_init(&root->log_mutex);
1168         mutex_init(&root->ordered_extent_mutex);
1169         mutex_init(&root->delalloc_mutex);
1170         init_waitqueue_head(&root->log_writer_wait);
1171         init_waitqueue_head(&root->log_commit_wait[0]);
1172         init_waitqueue_head(&root->log_commit_wait[1]);
1173         INIT_LIST_HEAD(&root->log_ctxs[0]);
1174         INIT_LIST_HEAD(&root->log_ctxs[1]);
1175         atomic_set(&root->log_commit[0], 0);
1176         atomic_set(&root->log_commit[1], 0);
1177         atomic_set(&root->log_writers, 0);
1178         atomic_set(&root->log_batch, 0);
1179         refcount_set(&root->refs, 1);
1180         atomic_set(&root->will_be_snapshotted, 0);
1181         atomic_set(&root->snapshot_force_cow, 0);
1182         atomic_set(&root->nr_swapfiles, 0);
1183         root->log_transid = 0;
1184         root->log_transid_committed = -1;
1185         root->last_log_commit = 0;
1186         if (!dummy)
1187                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1188                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1189
1190         memset(&root->root_key, 0, sizeof(root->root_key));
1191         memset(&root->root_item, 0, sizeof(root->root_item));
1192         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1193         if (!dummy)
1194                 root->defrag_trans_start = fs_info->generation;
1195         else
1196                 root->defrag_trans_start = 0;
1197         root->root_key.objectid = objectid;
1198         root->anon_dev = 0;
1199
1200         spin_lock_init(&root->root_item_lock);
1201         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1202 }
1203
1204 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1205                 gfp_t flags)
1206 {
1207         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1208         if (root)
1209                 root->fs_info = fs_info;
1210         return root;
1211 }
1212
1213 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1214 /* Should only be used by the testing infrastructure */
1215 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1216 {
1217         struct btrfs_root *root;
1218
1219         if (!fs_info)
1220                 return ERR_PTR(-EINVAL);
1221
1222         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1223         if (!root)
1224                 return ERR_PTR(-ENOMEM);
1225
1226         /* We don't use the stripesize in selftest, set it as sectorsize */
1227         __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1228         root->alloc_bytenr = 0;
1229
1230         return root;
1231 }
1232 #endif
1233
1234 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1235                                      u64 objectid)
1236 {
1237         struct btrfs_fs_info *fs_info = trans->fs_info;
1238         struct extent_buffer *leaf;
1239         struct btrfs_root *tree_root = fs_info->tree_root;
1240         struct btrfs_root *root;
1241         struct btrfs_key key;
1242         unsigned int nofs_flag;
1243         int ret = 0;
1244         uuid_le uuid = NULL_UUID_LE;
1245
1246         /*
1247          * We're holding a transaction handle, so use a NOFS memory allocation
1248          * context to avoid deadlock if reclaim happens.
1249          */
1250         nofs_flag = memalloc_nofs_save();
1251         root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1252         memalloc_nofs_restore(nofs_flag);
1253         if (!root)
1254                 return ERR_PTR(-ENOMEM);
1255
1256         __setup_root(root, fs_info, objectid);
1257         root->root_key.objectid = objectid;
1258         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1259         root->root_key.offset = 0;
1260
1261         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1262         if (IS_ERR(leaf)) {
1263                 ret = PTR_ERR(leaf);
1264                 leaf = NULL;
1265                 goto fail;
1266         }
1267
1268         root->node = leaf;
1269         btrfs_mark_buffer_dirty(leaf);
1270
1271         root->commit_root = btrfs_root_node(root);
1272         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1273
1274         root->root_item.flags = 0;
1275         root->root_item.byte_limit = 0;
1276         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1277         btrfs_set_root_generation(&root->root_item, trans->transid);
1278         btrfs_set_root_level(&root->root_item, 0);
1279         btrfs_set_root_refs(&root->root_item, 1);
1280         btrfs_set_root_used(&root->root_item, leaf->len);
1281         btrfs_set_root_last_snapshot(&root->root_item, 0);
1282         btrfs_set_root_dirid(&root->root_item, 0);
1283         if (is_fstree(objectid))
1284                 uuid_le_gen(&uuid);
1285         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1286         root->root_item.drop_level = 0;
1287
1288         key.objectid = objectid;
1289         key.type = BTRFS_ROOT_ITEM_KEY;
1290         key.offset = 0;
1291         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1292         if (ret)
1293                 goto fail;
1294
1295         btrfs_tree_unlock(leaf);
1296
1297         return root;
1298
1299 fail:
1300         if (leaf) {
1301                 btrfs_tree_unlock(leaf);
1302                 free_extent_buffer(root->commit_root);
1303                 free_extent_buffer(leaf);
1304         }
1305         kfree(root);
1306
1307         return ERR_PTR(ret);
1308 }
1309
1310 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1311                                          struct btrfs_fs_info *fs_info)
1312 {
1313         struct btrfs_root *root;
1314         struct extent_buffer *leaf;
1315
1316         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1317         if (!root)
1318                 return ERR_PTR(-ENOMEM);
1319
1320         __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1321
1322         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1323         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1324         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1325
1326         /*
1327          * DON'T set REF_COWS for log trees
1328          *
1329          * log trees do not get reference counted because they go away
1330          * before a real commit is actually done.  They do store pointers
1331          * to file data extents, and those reference counts still get
1332          * updated (along with back refs to the log tree).
1333          */
1334
1335         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1336                         NULL, 0, 0, 0);
1337         if (IS_ERR(leaf)) {
1338                 kfree(root);
1339                 return ERR_CAST(leaf);
1340         }
1341
1342         root->node = leaf;
1343
1344         btrfs_mark_buffer_dirty(root->node);
1345         btrfs_tree_unlock(root->node);
1346         return root;
1347 }
1348
1349 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1350                              struct btrfs_fs_info *fs_info)
1351 {
1352         struct btrfs_root *log_root;
1353
1354         log_root = alloc_log_tree(trans, fs_info);
1355         if (IS_ERR(log_root))
1356                 return PTR_ERR(log_root);
1357         WARN_ON(fs_info->log_root_tree);
1358         fs_info->log_root_tree = log_root;
1359         return 0;
1360 }
1361
1362 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1363                        struct btrfs_root *root)
1364 {
1365         struct btrfs_fs_info *fs_info = root->fs_info;
1366         struct btrfs_root *log_root;
1367         struct btrfs_inode_item *inode_item;
1368
1369         log_root = alloc_log_tree(trans, fs_info);
1370         if (IS_ERR(log_root))
1371                 return PTR_ERR(log_root);
1372
1373         log_root->last_trans = trans->transid;
1374         log_root->root_key.offset = root->root_key.objectid;
1375
1376         inode_item = &log_root->root_item.inode;
1377         btrfs_set_stack_inode_generation(inode_item, 1);
1378         btrfs_set_stack_inode_size(inode_item, 3);
1379         btrfs_set_stack_inode_nlink(inode_item, 1);
1380         btrfs_set_stack_inode_nbytes(inode_item,
1381                                      fs_info->nodesize);
1382         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1383
1384         btrfs_set_root_node(&log_root->root_item, log_root->node);
1385
1386         WARN_ON(root->log_root);
1387         root->log_root = log_root;
1388         root->log_transid = 0;
1389         root->log_transid_committed = -1;
1390         root->last_log_commit = 0;
1391         return 0;
1392 }
1393
1394 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1395                                                struct btrfs_key *key)
1396 {
1397         struct btrfs_root *root;
1398         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1399         struct btrfs_path *path;
1400         u64 generation;
1401         int ret;
1402         int level;
1403
1404         path = btrfs_alloc_path();
1405         if (!path)
1406                 return ERR_PTR(-ENOMEM);
1407
1408         root = btrfs_alloc_root(fs_info, GFP_NOFS);
1409         if (!root) {
1410                 ret = -ENOMEM;
1411                 goto alloc_fail;
1412         }
1413
1414         __setup_root(root, fs_info, key->objectid);
1415
1416         ret = btrfs_find_root(tree_root, key, path,
1417                               &root->root_item, &root->root_key);
1418         if (ret) {
1419                 if (ret > 0)
1420                         ret = -ENOENT;
1421                 goto find_fail;
1422         }
1423
1424         generation = btrfs_root_generation(&root->root_item);
1425         level = btrfs_root_level(&root->root_item);
1426         root->node = read_tree_block(fs_info,
1427                                      btrfs_root_bytenr(&root->root_item),
1428                                      generation, level, NULL);
1429         if (IS_ERR(root->node)) {
1430                 ret = PTR_ERR(root->node);
1431                 goto find_fail;
1432         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1433                 ret = -EIO;
1434                 free_extent_buffer(root->node);
1435                 goto find_fail;
1436         }
1437         root->commit_root = btrfs_root_node(root);
1438 out:
1439         btrfs_free_path(path);
1440         return root;
1441
1442 find_fail:
1443         kfree(root);
1444 alloc_fail:
1445         root = ERR_PTR(ret);
1446         goto out;
1447 }
1448
1449 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1450                                       struct btrfs_key *location)
1451 {
1452         struct btrfs_root *root;
1453
1454         root = btrfs_read_tree_root(tree_root, location);
1455         if (IS_ERR(root))
1456                 return root;
1457
1458         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1459                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1460                 btrfs_check_and_init_root_item(&root->root_item);
1461         }
1462
1463         return root;
1464 }
1465
1466 int btrfs_init_fs_root(struct btrfs_root *root)
1467 {
1468         int ret;
1469         struct btrfs_subvolume_writers *writers;
1470
1471         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1472         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1473                                         GFP_NOFS);
1474         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1475                 ret = -ENOMEM;
1476                 goto fail;
1477         }
1478
1479         writers = btrfs_alloc_subvolume_writers();
1480         if (IS_ERR(writers)) {
1481                 ret = PTR_ERR(writers);
1482                 goto fail;
1483         }
1484         root->subv_writers = writers;
1485
1486         btrfs_init_free_ino_ctl(root);
1487         spin_lock_init(&root->ino_cache_lock);
1488         init_waitqueue_head(&root->ino_cache_wait);
1489
1490         ret = get_anon_bdev(&root->anon_dev);
1491         if (ret)
1492                 goto fail;
1493
1494         mutex_lock(&root->objectid_mutex);
1495         ret = btrfs_find_highest_objectid(root,
1496                                         &root->highest_objectid);
1497         if (ret) {
1498                 mutex_unlock(&root->objectid_mutex);
1499                 goto fail;
1500         }
1501
1502         ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1503
1504         mutex_unlock(&root->objectid_mutex);
1505
1506         return 0;
1507 fail:
1508         /* The caller is responsible to call btrfs_free_fs_root */
1509         return ret;
1510 }
1511
1512 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1513                                         u64 root_id)
1514 {
1515         struct btrfs_root *root;
1516
1517         spin_lock(&fs_info->fs_roots_radix_lock);
1518         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1519                                  (unsigned long)root_id);
1520         spin_unlock(&fs_info->fs_roots_radix_lock);
1521         return root;
1522 }
1523
1524 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1525                          struct btrfs_root *root)
1526 {
1527         int ret;
1528
1529         ret = radix_tree_preload(GFP_NOFS);
1530         if (ret)
1531                 return ret;
1532
1533         spin_lock(&fs_info->fs_roots_radix_lock);
1534         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1535                                 (unsigned long)root->root_key.objectid,
1536                                 root);
1537         if (ret == 0)
1538                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1539         spin_unlock(&fs_info->fs_roots_radix_lock);
1540         radix_tree_preload_end();
1541
1542         return ret;
1543 }
1544
1545 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1546                                      struct btrfs_key *location,
1547                                      bool check_ref)
1548 {
1549         struct btrfs_root *root;
1550         struct btrfs_path *path;
1551         struct btrfs_key key;
1552         int ret;
1553
1554         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1555                 return fs_info->tree_root;
1556         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1557                 return fs_info->extent_root;
1558         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1559                 return fs_info->chunk_root;
1560         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1561                 return fs_info->dev_root;
1562         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1563                 return fs_info->csum_root;
1564         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1565                 return fs_info->quota_root ? fs_info->quota_root :
1566                                              ERR_PTR(-ENOENT);
1567         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1568                 return fs_info->uuid_root ? fs_info->uuid_root :
1569                                             ERR_PTR(-ENOENT);
1570         if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1571                 return fs_info->free_space_root ? fs_info->free_space_root :
1572                                                   ERR_PTR(-ENOENT);
1573 again:
1574         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1575         if (root) {
1576                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1577                         return ERR_PTR(-ENOENT);
1578                 return root;
1579         }
1580
1581         root = btrfs_read_fs_root(fs_info->tree_root, location);
1582         if (IS_ERR(root))
1583                 return root;
1584
1585         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1586                 ret = -ENOENT;
1587                 goto fail;
1588         }
1589
1590         ret = btrfs_init_fs_root(root);
1591         if (ret)
1592                 goto fail;
1593
1594         path = btrfs_alloc_path();
1595         if (!path) {
1596                 ret = -ENOMEM;
1597                 goto fail;
1598         }
1599         key.objectid = BTRFS_ORPHAN_OBJECTID;
1600         key.type = BTRFS_ORPHAN_ITEM_KEY;
1601         key.offset = location->objectid;
1602
1603         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1604         btrfs_free_path(path);
1605         if (ret < 0)
1606                 goto fail;
1607         if (ret == 0)
1608                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1609
1610         ret = btrfs_insert_fs_root(fs_info, root);
1611         if (ret) {
1612                 if (ret == -EEXIST) {
1613                         btrfs_free_fs_root(root);
1614                         goto again;
1615                 }
1616                 goto fail;
1617         }
1618         return root;
1619 fail:
1620         btrfs_free_fs_root(root);
1621         return ERR_PTR(ret);
1622 }
1623
1624 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1625 {
1626         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1627         int ret = 0;
1628         struct btrfs_device *device;
1629         struct backing_dev_info *bdi;
1630
1631         rcu_read_lock();
1632         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1633                 if (!device->bdev)
1634                         continue;
1635                 bdi = device->bdev->bd_bdi;
1636                 if (bdi_congested(bdi, bdi_bits)) {
1637                         ret = 1;
1638                         break;
1639                 }
1640         }
1641         rcu_read_unlock();
1642         return ret;
1643 }
1644
1645 /*
1646  * called by the kthread helper functions to finally call the bio end_io
1647  * functions.  This is where read checksum verification actually happens
1648  */
1649 static void end_workqueue_fn(struct btrfs_work *work)
1650 {
1651         struct bio *bio;
1652         struct btrfs_end_io_wq *end_io_wq;
1653
1654         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1655         bio = end_io_wq->bio;
1656
1657         bio->bi_status = end_io_wq->status;
1658         bio->bi_private = end_io_wq->private;
1659         bio->bi_end_io = end_io_wq->end_io;
1660         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1661         bio_endio(bio);
1662 }
1663
1664 static int cleaner_kthread(void *arg)
1665 {
1666         struct btrfs_root *root = arg;
1667         struct btrfs_fs_info *fs_info = root->fs_info;
1668         int again;
1669
1670         while (1) {
1671                 again = 0;
1672
1673                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1674
1675                 /* Make the cleaner go to sleep early. */
1676                 if (btrfs_need_cleaner_sleep(fs_info))
1677                         goto sleep;
1678
1679                 /*
1680                  * Do not do anything if we might cause open_ctree() to block
1681                  * before we have finished mounting the filesystem.
1682                  */
1683                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1684                         goto sleep;
1685
1686                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1687                         goto sleep;
1688
1689                 /*
1690                  * Avoid the problem that we change the status of the fs
1691                  * during the above check and trylock.
1692                  */
1693                 if (btrfs_need_cleaner_sleep(fs_info)) {
1694                         mutex_unlock(&fs_info->cleaner_mutex);
1695                         goto sleep;
1696                 }
1697
1698                 btrfs_run_delayed_iputs(fs_info);
1699
1700                 again = btrfs_clean_one_deleted_snapshot(root);
1701                 mutex_unlock(&fs_info->cleaner_mutex);
1702
1703                 /*
1704                  * The defragger has dealt with the R/O remount and umount,
1705                  * needn't do anything special here.
1706                  */
1707                 btrfs_run_defrag_inodes(fs_info);
1708
1709                 /*
1710                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1711                  * with relocation (btrfs_relocate_chunk) and relocation
1712                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1713                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1714                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1715                  * unused block groups.
1716                  */
1717                 btrfs_delete_unused_bgs(fs_info);
1718 sleep:
1719                 clear_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1720                 if (kthread_should_park())
1721                         kthread_parkme();
1722                 if (kthread_should_stop())
1723                         return 0;
1724                 if (!again) {
1725                         set_current_state(TASK_INTERRUPTIBLE);
1726                         schedule();
1727                         __set_current_state(TASK_RUNNING);
1728                 }
1729         }
1730 }
1731
1732 static int transaction_kthread(void *arg)
1733 {
1734         struct btrfs_root *root = arg;
1735         struct btrfs_fs_info *fs_info = root->fs_info;
1736         struct btrfs_trans_handle *trans;
1737         struct btrfs_transaction *cur;
1738         u64 transid;
1739         time64_t now;
1740         unsigned long delay;
1741         bool cannot_commit;
1742
1743         do {
1744                 cannot_commit = false;
1745                 delay = HZ * fs_info->commit_interval;
1746                 mutex_lock(&fs_info->transaction_kthread_mutex);
1747
1748                 spin_lock(&fs_info->trans_lock);
1749                 cur = fs_info->running_transaction;
1750                 if (!cur) {
1751                         spin_unlock(&fs_info->trans_lock);
1752                         goto sleep;
1753                 }
1754
1755                 now = ktime_get_seconds();
1756                 if (cur->state < TRANS_STATE_BLOCKED &&
1757                     !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1758                     (now < cur->start_time ||
1759                      now - cur->start_time < fs_info->commit_interval)) {
1760                         spin_unlock(&fs_info->trans_lock);
1761                         delay = HZ * 5;
1762                         goto sleep;
1763                 }
1764                 transid = cur->transid;
1765                 spin_unlock(&fs_info->trans_lock);
1766
1767                 /* If the file system is aborted, this will always fail. */
1768                 trans = btrfs_attach_transaction(root);
1769                 if (IS_ERR(trans)) {
1770                         if (PTR_ERR(trans) != -ENOENT)
1771                                 cannot_commit = true;
1772                         goto sleep;
1773                 }
1774                 if (transid == trans->transid) {
1775                         btrfs_commit_transaction(trans);
1776                 } else {
1777                         btrfs_end_transaction(trans);
1778                 }
1779 sleep:
1780                 wake_up_process(fs_info->cleaner_kthread);
1781                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1782
1783                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1784                                       &fs_info->fs_state)))
1785                         btrfs_cleanup_transaction(fs_info);
1786                 if (!kthread_should_stop() &&
1787                                 (!btrfs_transaction_blocked(fs_info) ||
1788                                  cannot_commit))
1789                         schedule_timeout_interruptible(delay);
1790         } while (!kthread_should_stop());
1791         return 0;
1792 }
1793
1794 /*
1795  * this will find the highest generation in the array of
1796  * root backups.  The index of the highest array is returned,
1797  * or -1 if we can't find anything.
1798  *
1799  * We check to make sure the array is valid by comparing the
1800  * generation of the latest  root in the array with the generation
1801  * in the super block.  If they don't match we pitch it.
1802  */
1803 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1804 {
1805         u64 cur;
1806         int newest_index = -1;
1807         struct btrfs_root_backup *root_backup;
1808         int i;
1809
1810         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1811                 root_backup = info->super_copy->super_roots + i;
1812                 cur = btrfs_backup_tree_root_gen(root_backup);
1813                 if (cur == newest_gen)
1814                         newest_index = i;
1815         }
1816
1817         /* check to see if we actually wrapped around */
1818         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1819                 root_backup = info->super_copy->super_roots;
1820                 cur = btrfs_backup_tree_root_gen(root_backup);
1821                 if (cur == newest_gen)
1822                         newest_index = 0;
1823         }
1824         return newest_index;
1825 }
1826
1827
1828 /*
1829  * find the oldest backup so we know where to store new entries
1830  * in the backup array.  This will set the backup_root_index
1831  * field in the fs_info struct
1832  */
1833 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1834                                      u64 newest_gen)
1835 {
1836         int newest_index = -1;
1837
1838         newest_index = find_newest_super_backup(info, newest_gen);
1839         /* if there was garbage in there, just move along */
1840         if (newest_index == -1) {
1841                 info->backup_root_index = 0;
1842         } else {
1843                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1844         }
1845 }
1846
1847 /*
1848  * copy all the root pointers into the super backup array.
1849  * this will bump the backup pointer by one when it is
1850  * done
1851  */
1852 static void backup_super_roots(struct btrfs_fs_info *info)
1853 {
1854         int next_backup;
1855         struct btrfs_root_backup *root_backup;
1856         int last_backup;
1857
1858         next_backup = info->backup_root_index;
1859         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1860                 BTRFS_NUM_BACKUP_ROOTS;
1861
1862         /*
1863          * just overwrite the last backup if we're at the same generation
1864          * this happens only at umount
1865          */
1866         root_backup = info->super_for_commit->super_roots + last_backup;
1867         if (btrfs_backup_tree_root_gen(root_backup) ==
1868             btrfs_header_generation(info->tree_root->node))
1869                 next_backup = last_backup;
1870
1871         root_backup = info->super_for_commit->super_roots + next_backup;
1872
1873         /*
1874          * make sure all of our padding and empty slots get zero filled
1875          * regardless of which ones we use today
1876          */
1877         memset(root_backup, 0, sizeof(*root_backup));
1878
1879         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1880
1881         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1882         btrfs_set_backup_tree_root_gen(root_backup,
1883                                btrfs_header_generation(info->tree_root->node));
1884
1885         btrfs_set_backup_tree_root_level(root_backup,
1886                                btrfs_header_level(info->tree_root->node));
1887
1888         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1889         btrfs_set_backup_chunk_root_gen(root_backup,
1890                                btrfs_header_generation(info->chunk_root->node));
1891         btrfs_set_backup_chunk_root_level(root_backup,
1892                                btrfs_header_level(info->chunk_root->node));
1893
1894         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1895         btrfs_set_backup_extent_root_gen(root_backup,
1896                                btrfs_header_generation(info->extent_root->node));
1897         btrfs_set_backup_extent_root_level(root_backup,
1898                                btrfs_header_level(info->extent_root->node));
1899
1900         /*
1901          * we might commit during log recovery, which happens before we set
1902          * the fs_root.  Make sure it is valid before we fill it in.
1903          */
1904         if (info->fs_root && info->fs_root->node) {
1905                 btrfs_set_backup_fs_root(root_backup,
1906                                          info->fs_root->node->start);
1907                 btrfs_set_backup_fs_root_gen(root_backup,
1908                                btrfs_header_generation(info->fs_root->node));
1909                 btrfs_set_backup_fs_root_level(root_backup,
1910                                btrfs_header_level(info->fs_root->node));
1911         }
1912
1913         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1914         btrfs_set_backup_dev_root_gen(root_backup,
1915                                btrfs_header_generation(info->dev_root->node));
1916         btrfs_set_backup_dev_root_level(root_backup,
1917                                        btrfs_header_level(info->dev_root->node));
1918
1919         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1920         btrfs_set_backup_csum_root_gen(root_backup,
1921                                btrfs_header_generation(info->csum_root->node));
1922         btrfs_set_backup_csum_root_level(root_backup,
1923                                btrfs_header_level(info->csum_root->node));
1924
1925         btrfs_set_backup_total_bytes(root_backup,
1926                              btrfs_super_total_bytes(info->super_copy));
1927         btrfs_set_backup_bytes_used(root_backup,
1928                              btrfs_super_bytes_used(info->super_copy));
1929         btrfs_set_backup_num_devices(root_backup,
1930                              btrfs_super_num_devices(info->super_copy));
1931
1932         /*
1933          * if we don't copy this out to the super_copy, it won't get remembered
1934          * for the next commit
1935          */
1936         memcpy(&info->super_copy->super_roots,
1937                &info->super_for_commit->super_roots,
1938                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1939 }
1940
1941 /*
1942  * this copies info out of the root backup array and back into
1943  * the in-memory super block.  It is meant to help iterate through
1944  * the array, so you send it the number of backups you've already
1945  * tried and the last backup index you used.
1946  *
1947  * this returns -1 when it has tried all the backups
1948  */
1949 static noinline int next_root_backup(struct btrfs_fs_info *info,
1950                                      struct btrfs_super_block *super,
1951                                      int *num_backups_tried, int *backup_index)
1952 {
1953         struct btrfs_root_backup *root_backup;
1954         int newest = *backup_index;
1955
1956         if (*num_backups_tried == 0) {
1957                 u64 gen = btrfs_super_generation(super);
1958
1959                 newest = find_newest_super_backup(info, gen);
1960                 if (newest == -1)
1961                         return -1;
1962
1963                 *backup_index = newest;
1964                 *num_backups_tried = 1;
1965         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1966                 /* we've tried all the backups, all done */
1967                 return -1;
1968         } else {
1969                 /* jump to the next oldest backup */
1970                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1971                         BTRFS_NUM_BACKUP_ROOTS;
1972                 *backup_index = newest;
1973                 *num_backups_tried += 1;
1974         }
1975         root_backup = super->super_roots + newest;
1976
1977         btrfs_set_super_generation(super,
1978                                    btrfs_backup_tree_root_gen(root_backup));
1979         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1980         btrfs_set_super_root_level(super,
1981                                    btrfs_backup_tree_root_level(root_backup));
1982         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1983
1984         /*
1985          * fixme: the total bytes and num_devices need to match or we should
1986          * need a fsck
1987          */
1988         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1989         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1990         return 0;
1991 }
1992
1993 /* helper to cleanup workers */
1994 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1995 {
1996         btrfs_destroy_workqueue(fs_info->fixup_workers);
1997         btrfs_destroy_workqueue(fs_info->delalloc_workers);
1998         btrfs_destroy_workqueue(fs_info->workers);
1999         btrfs_destroy_workqueue(fs_info->endio_workers);
2000         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2001         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2002         btrfs_destroy_workqueue(fs_info->rmw_workers);
2003         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2004         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2005         btrfs_destroy_workqueue(fs_info->submit_workers);
2006         btrfs_destroy_workqueue(fs_info->delayed_workers);
2007         btrfs_destroy_workqueue(fs_info->caching_workers);
2008         btrfs_destroy_workqueue(fs_info->readahead_workers);
2009         btrfs_destroy_workqueue(fs_info->flush_workers);
2010         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2011         /*
2012          * Now that all other work queues are destroyed, we can safely destroy
2013          * the queues used for metadata I/O, since tasks from those other work
2014          * queues can do metadata I/O operations.
2015          */
2016         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2017         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2018 }
2019
2020 static void free_root_extent_buffers(struct btrfs_root *root)
2021 {
2022         if (root) {
2023                 free_extent_buffer(root->node);
2024                 free_extent_buffer(root->commit_root);
2025                 root->node = NULL;
2026                 root->commit_root = NULL;
2027         }
2028 }
2029
2030 /* helper to cleanup tree roots */
2031 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2032 {
2033         free_root_extent_buffers(info->tree_root);
2034
2035         free_root_extent_buffers(info->dev_root);
2036         free_root_extent_buffers(info->extent_root);
2037         free_root_extent_buffers(info->csum_root);
2038         free_root_extent_buffers(info->quota_root);
2039         free_root_extent_buffers(info->uuid_root);
2040         if (chunk_root)
2041                 free_root_extent_buffers(info->chunk_root);
2042         free_root_extent_buffers(info->free_space_root);
2043 }
2044
2045 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2046 {
2047         int ret;
2048         struct btrfs_root *gang[8];
2049         int i;
2050
2051         while (!list_empty(&fs_info->dead_roots)) {
2052                 gang[0] = list_entry(fs_info->dead_roots.next,
2053                                      struct btrfs_root, root_list);
2054                 list_del(&gang[0]->root_list);
2055
2056                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2057                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2058                 } else {
2059                         free_extent_buffer(gang[0]->node);
2060                         free_extent_buffer(gang[0]->commit_root);
2061                         btrfs_put_fs_root(gang[0]);
2062                 }
2063         }
2064
2065         while (1) {
2066                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2067                                              (void **)gang, 0,
2068                                              ARRAY_SIZE(gang));
2069                 if (!ret)
2070                         break;
2071                 for (i = 0; i < ret; i++)
2072                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2073         }
2074
2075         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2076                 btrfs_free_log_root_tree(NULL, fs_info);
2077                 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2078         }
2079 }
2080
2081 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2082 {
2083         mutex_init(&fs_info->scrub_lock);
2084         atomic_set(&fs_info->scrubs_running, 0);
2085         atomic_set(&fs_info->scrub_pause_req, 0);
2086         atomic_set(&fs_info->scrubs_paused, 0);
2087         atomic_set(&fs_info->scrub_cancel_req, 0);
2088         init_waitqueue_head(&fs_info->scrub_pause_wait);
2089         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2090 }
2091
2092 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2093 {
2094         spin_lock_init(&fs_info->balance_lock);
2095         mutex_init(&fs_info->balance_mutex);
2096         atomic_set(&fs_info->balance_pause_req, 0);
2097         atomic_set(&fs_info->balance_cancel_req, 0);
2098         fs_info->balance_ctl = NULL;
2099         init_waitqueue_head(&fs_info->balance_wait_q);
2100 }
2101
2102 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2103 {
2104         struct inode *inode = fs_info->btree_inode;
2105
2106         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2107         set_nlink(inode, 1);
2108         /*
2109          * we set the i_size on the btree inode to the max possible int.
2110          * the real end of the address space is determined by all of
2111          * the devices in the system
2112          */
2113         inode->i_size = OFFSET_MAX;
2114         inode->i_mapping->a_ops = &btree_aops;
2115
2116         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2117         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2118                             IO_TREE_INODE_IO, inode);
2119         BTRFS_I(inode)->io_tree.track_uptodate = false;
2120         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2121
2122         BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2123
2124         BTRFS_I(inode)->root = fs_info->tree_root;
2125         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2126         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2127         btrfs_insert_inode_hash(inode);
2128 }
2129
2130 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2131 {
2132         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2133         init_rwsem(&fs_info->dev_replace.rwsem);
2134         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2135 }
2136
2137 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2138 {
2139         spin_lock_init(&fs_info->qgroup_lock);
2140         mutex_init(&fs_info->qgroup_ioctl_lock);
2141         fs_info->qgroup_tree = RB_ROOT;
2142         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2143         fs_info->qgroup_seq = 1;
2144         fs_info->qgroup_ulist = NULL;
2145         fs_info->qgroup_rescan_running = false;
2146         mutex_init(&fs_info->qgroup_rescan_lock);
2147 }
2148
2149 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2150                 struct btrfs_fs_devices *fs_devices)
2151 {
2152         u32 max_active = fs_info->thread_pool_size;
2153         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2154
2155         fs_info->workers =
2156                 btrfs_alloc_workqueue(fs_info, "worker",
2157                                       flags | WQ_HIGHPRI, max_active, 16);
2158
2159         fs_info->delalloc_workers =
2160                 btrfs_alloc_workqueue(fs_info, "delalloc",
2161                                       flags, max_active, 2);
2162
2163         fs_info->flush_workers =
2164                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2165                                       flags, max_active, 0);
2166
2167         fs_info->caching_workers =
2168                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2169
2170         /*
2171          * a higher idle thresh on the submit workers makes it much more
2172          * likely that bios will be send down in a sane order to the
2173          * devices
2174          */
2175         fs_info->submit_workers =
2176                 btrfs_alloc_workqueue(fs_info, "submit", flags,
2177                                       min_t(u64, fs_devices->num_devices,
2178                                             max_active), 64);
2179
2180         fs_info->fixup_workers =
2181                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2182
2183         /*
2184          * endios are largely parallel and should have a very
2185          * low idle thresh
2186          */
2187         fs_info->endio_workers =
2188                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2189         fs_info->endio_meta_workers =
2190                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2191                                       max_active, 4);
2192         fs_info->endio_meta_write_workers =
2193                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2194                                       max_active, 2);
2195         fs_info->endio_raid56_workers =
2196                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2197                                       max_active, 4);
2198         fs_info->endio_repair_workers =
2199                 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2200         fs_info->rmw_workers =
2201                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2202         fs_info->endio_write_workers =
2203                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2204                                       max_active, 2);
2205         fs_info->endio_freespace_worker =
2206                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2207                                       max_active, 0);
2208         fs_info->delayed_workers =
2209                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2210                                       max_active, 0);
2211         fs_info->readahead_workers =
2212                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2213                                       max_active, 2);
2214         fs_info->qgroup_rescan_workers =
2215                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2216
2217         if (!(fs_info->workers && fs_info->delalloc_workers &&
2218               fs_info->submit_workers && fs_info->flush_workers &&
2219               fs_info->endio_workers && fs_info->endio_meta_workers &&
2220               fs_info->endio_meta_write_workers &&
2221               fs_info->endio_repair_workers &&
2222               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2223               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2224               fs_info->caching_workers && fs_info->readahead_workers &&
2225               fs_info->fixup_workers && fs_info->delayed_workers &&
2226               fs_info->qgroup_rescan_workers)) {
2227                 return -ENOMEM;
2228         }
2229
2230         return 0;
2231 }
2232
2233 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2234 {
2235         struct crypto_shash *csum_shash;
2236         const char *csum_name = btrfs_super_csum_name(csum_type);
2237
2238         csum_shash = crypto_alloc_shash(csum_name, 0, 0);
2239
2240         if (IS_ERR(csum_shash)) {
2241                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2242                           csum_name);
2243                 return PTR_ERR(csum_shash);
2244         }
2245
2246         fs_info->csum_shash = csum_shash;
2247
2248         return 0;
2249 }
2250
2251 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
2252 {
2253         crypto_free_shash(fs_info->csum_shash);
2254 }
2255
2256 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2257                             struct btrfs_fs_devices *fs_devices)
2258 {
2259         int ret;
2260         struct btrfs_root *log_tree_root;
2261         struct btrfs_super_block *disk_super = fs_info->super_copy;
2262         u64 bytenr = btrfs_super_log_root(disk_super);
2263         int level = btrfs_super_log_root_level(disk_super);
2264
2265         if (fs_devices->rw_devices == 0) {
2266                 btrfs_warn(fs_info, "log replay required on RO media");
2267                 return -EIO;
2268         }
2269
2270         log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2271         if (!log_tree_root)
2272                 return -ENOMEM;
2273
2274         __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2275
2276         log_tree_root->node = read_tree_block(fs_info, bytenr,
2277                                               fs_info->generation + 1,
2278                                               level, NULL);
2279         if (IS_ERR(log_tree_root->node)) {
2280                 btrfs_warn(fs_info, "failed to read log tree");
2281                 ret = PTR_ERR(log_tree_root->node);
2282                 kfree(log_tree_root);
2283                 return ret;
2284         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2285                 btrfs_err(fs_info, "failed to read log tree");
2286                 free_extent_buffer(log_tree_root->node);
2287                 kfree(log_tree_root);
2288                 return -EIO;
2289         }
2290         /* returns with log_tree_root freed on success */
2291         ret = btrfs_recover_log_trees(log_tree_root);
2292         if (ret) {
2293                 btrfs_handle_fs_error(fs_info, ret,
2294                                       "Failed to recover log tree");
2295                 free_extent_buffer(log_tree_root->node);
2296                 kfree(log_tree_root);
2297                 return ret;
2298         }
2299
2300         if (sb_rdonly(fs_info->sb)) {
2301                 ret = btrfs_commit_super(fs_info);
2302                 if (ret)
2303                         return ret;
2304         }
2305
2306         return 0;
2307 }
2308
2309 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2310 {
2311         struct btrfs_root *tree_root = fs_info->tree_root;
2312         struct btrfs_root *root;
2313         struct btrfs_key location;
2314         int ret;
2315
2316         BUG_ON(!fs_info->tree_root);
2317
2318         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2319         location.type = BTRFS_ROOT_ITEM_KEY;
2320         location.offset = 0;
2321
2322         root = btrfs_read_tree_root(tree_root, &location);
2323         if (IS_ERR(root)) {
2324                 ret = PTR_ERR(root);
2325                 goto out;
2326         }
2327         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2328         fs_info->extent_root = root;
2329
2330         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2331         root = btrfs_read_tree_root(tree_root, &location);
2332         if (IS_ERR(root)) {
2333                 ret = PTR_ERR(root);
2334                 goto out;
2335         }
2336         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2337         fs_info->dev_root = root;
2338         btrfs_init_devices_late(fs_info);
2339
2340         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2341         root = btrfs_read_tree_root(tree_root, &location);
2342         if (IS_ERR(root)) {
2343                 ret = PTR_ERR(root);
2344                 goto out;
2345         }
2346         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2347         fs_info->csum_root = root;
2348
2349         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2350         root = btrfs_read_tree_root(tree_root, &location);
2351         if (!IS_ERR(root)) {
2352                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2353                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2354                 fs_info->quota_root = root;
2355         }
2356
2357         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2358         root = btrfs_read_tree_root(tree_root, &location);
2359         if (IS_ERR(root)) {
2360                 ret = PTR_ERR(root);
2361                 if (ret != -ENOENT)
2362                         goto out;
2363         } else {
2364                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2365                 fs_info->uuid_root = root;
2366         }
2367
2368         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2369                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2370                 root = btrfs_read_tree_root(tree_root, &location);
2371                 if (IS_ERR(root)) {
2372                         ret = PTR_ERR(root);
2373                         goto out;
2374                 }
2375                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2376                 fs_info->free_space_root = root;
2377         }
2378
2379         return 0;
2380 out:
2381         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2382                    location.objectid, ret);
2383         return ret;
2384 }
2385
2386 /*
2387  * Real super block validation
2388  * NOTE: super csum type and incompat features will not be checked here.
2389  *
2390  * @sb:         super block to check
2391  * @mirror_num: the super block number to check its bytenr:
2392  *              0       the primary (1st) sb
2393  *              1, 2    2nd and 3rd backup copy
2394  *             -1       skip bytenr check
2395  */
2396 static int validate_super(struct btrfs_fs_info *fs_info,
2397                             struct btrfs_super_block *sb, int mirror_num)
2398 {
2399         u64 nodesize = btrfs_super_nodesize(sb);
2400         u64 sectorsize = btrfs_super_sectorsize(sb);
2401         int ret = 0;
2402
2403         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2404                 btrfs_err(fs_info, "no valid FS found");
2405                 ret = -EINVAL;
2406         }
2407         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2408                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2409                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2410                 ret = -EINVAL;
2411         }
2412         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2413                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2414                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2415                 ret = -EINVAL;
2416         }
2417         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2418                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2419                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2420                 ret = -EINVAL;
2421         }
2422         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2423                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2424                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2425                 ret = -EINVAL;
2426         }
2427
2428         /*
2429          * Check sectorsize and nodesize first, other check will need it.
2430          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2431          */
2432         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2433             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2434                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2435                 ret = -EINVAL;
2436         }
2437         /* Only PAGE SIZE is supported yet */
2438         if (sectorsize != PAGE_SIZE) {
2439                 btrfs_err(fs_info,
2440                         "sectorsize %llu not supported yet, only support %lu",
2441                         sectorsize, PAGE_SIZE);
2442                 ret = -EINVAL;
2443         }
2444         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2445             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2446                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2447                 ret = -EINVAL;
2448         }
2449         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2450                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2451                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2452                 ret = -EINVAL;
2453         }
2454
2455         /* Root alignment check */
2456         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2457                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2458                            btrfs_super_root(sb));
2459                 ret = -EINVAL;
2460         }
2461         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2462                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2463                            btrfs_super_chunk_root(sb));
2464                 ret = -EINVAL;
2465         }
2466         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2467                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2468                            btrfs_super_log_root(sb));
2469                 ret = -EINVAL;
2470         }
2471
2472         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2473                    BTRFS_FSID_SIZE) != 0) {
2474                 btrfs_err(fs_info,
2475                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2476                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2477                 ret = -EINVAL;
2478         }
2479
2480         /*
2481          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2482          * done later
2483          */
2484         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2485                 btrfs_err(fs_info, "bytes_used is too small %llu",
2486                           btrfs_super_bytes_used(sb));
2487                 ret = -EINVAL;
2488         }
2489         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2490                 btrfs_err(fs_info, "invalid stripesize %u",
2491                           btrfs_super_stripesize(sb));
2492                 ret = -EINVAL;
2493         }
2494         if (btrfs_super_num_devices(sb) > (1UL << 31))
2495                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2496                            btrfs_super_num_devices(sb));
2497         if (btrfs_super_num_devices(sb) == 0) {
2498                 btrfs_err(fs_info, "number of devices is 0");
2499                 ret = -EINVAL;
2500         }
2501
2502         if (mirror_num >= 0 &&
2503             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2504                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2505                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2506                 ret = -EINVAL;
2507         }
2508
2509         /*
2510          * Obvious sys_chunk_array corruptions, it must hold at least one key
2511          * and one chunk
2512          */
2513         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2514                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2515                           btrfs_super_sys_array_size(sb),
2516                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2517                 ret = -EINVAL;
2518         }
2519         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2520                         + sizeof(struct btrfs_chunk)) {
2521                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2522                           btrfs_super_sys_array_size(sb),
2523                           sizeof(struct btrfs_disk_key)
2524                           + sizeof(struct btrfs_chunk));
2525                 ret = -EINVAL;
2526         }
2527
2528         /*
2529          * The generation is a global counter, we'll trust it more than the others
2530          * but it's still possible that it's the one that's wrong.
2531          */
2532         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2533                 btrfs_warn(fs_info,
2534                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2535                         btrfs_super_generation(sb),
2536                         btrfs_super_chunk_root_generation(sb));
2537         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2538             && btrfs_super_cache_generation(sb) != (u64)-1)
2539                 btrfs_warn(fs_info,
2540                         "suspicious: generation < cache_generation: %llu < %llu",
2541                         btrfs_super_generation(sb),
2542                         btrfs_super_cache_generation(sb));
2543
2544         return ret;
2545 }
2546
2547 /*
2548  * Validation of super block at mount time.
2549  * Some checks already done early at mount time, like csum type and incompat
2550  * flags will be skipped.
2551  */
2552 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2553 {
2554         return validate_super(fs_info, fs_info->super_copy, 0);
2555 }
2556
2557 /*
2558  * Validation of super block at write time.
2559  * Some checks like bytenr check will be skipped as their values will be
2560  * overwritten soon.
2561  * Extra checks like csum type and incompat flags will be done here.
2562  */
2563 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2564                                       struct btrfs_super_block *sb)
2565 {
2566         int ret;
2567
2568         ret = validate_super(fs_info, sb, -1);
2569         if (ret < 0)
2570                 goto out;
2571         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2572                 ret = -EUCLEAN;
2573                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2574                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2575                 goto out;
2576         }
2577         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2578                 ret = -EUCLEAN;
2579                 btrfs_err(fs_info,
2580                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2581                           btrfs_super_incompat_flags(sb),
2582                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2583                 goto out;
2584         }
2585 out:
2586         if (ret < 0)
2587                 btrfs_err(fs_info,
2588                 "super block corruption detected before writing it to disk");
2589         return ret;
2590 }
2591
2592 int open_ctree(struct super_block *sb,
2593                struct btrfs_fs_devices *fs_devices,
2594                char *options)
2595 {
2596         u32 sectorsize;
2597         u32 nodesize;
2598         u32 stripesize;
2599         u64 generation;
2600         u64 features;
2601         u16 csum_type;
2602         struct btrfs_key location;
2603         struct buffer_head *bh;
2604         struct btrfs_super_block *disk_super;
2605         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2606         struct btrfs_root *tree_root;
2607         struct btrfs_root *chunk_root;
2608         int ret;
2609         int err = -EINVAL;
2610         int num_backups_tried = 0;
2611         int backup_index = 0;
2612         int clear_free_space_tree = 0;
2613         int level;
2614
2615         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2616         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2617         if (!tree_root || !chunk_root) {
2618                 err = -ENOMEM;
2619                 goto fail;
2620         }
2621
2622         ret = init_srcu_struct(&fs_info->subvol_srcu);
2623         if (ret) {
2624                 err = ret;
2625                 goto fail;
2626         }
2627
2628         ret = percpu_counter_init(&fs_info->dio_bytes, 0, GFP_KERNEL);
2629         if (ret) {
2630                 err = ret;
2631                 goto fail_srcu;
2632         }
2633
2634         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2635         if (ret) {
2636                 err = ret;
2637                 goto fail_dio_bytes;
2638         }
2639         fs_info->dirty_metadata_batch = PAGE_SIZE *
2640                                         (1 + ilog2(nr_cpu_ids));
2641
2642         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2643         if (ret) {
2644                 err = ret;
2645                 goto fail_dirty_metadata_bytes;
2646         }
2647
2648         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2649                         GFP_KERNEL);
2650         if (ret) {
2651                 err = ret;
2652                 goto fail_delalloc_bytes;
2653         }
2654
2655         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2656         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2657         INIT_LIST_HEAD(&fs_info->trans_list);
2658         INIT_LIST_HEAD(&fs_info->dead_roots);
2659         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2660         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2661         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2662         spin_lock_init(&fs_info->delalloc_root_lock);
2663         spin_lock_init(&fs_info->trans_lock);
2664         spin_lock_init(&fs_info->fs_roots_radix_lock);
2665         spin_lock_init(&fs_info->delayed_iput_lock);
2666         spin_lock_init(&fs_info->defrag_inodes_lock);
2667         spin_lock_init(&fs_info->tree_mod_seq_lock);
2668         spin_lock_init(&fs_info->super_lock);
2669         spin_lock_init(&fs_info->buffer_lock);
2670         spin_lock_init(&fs_info->unused_bgs_lock);
2671         rwlock_init(&fs_info->tree_mod_log_lock);
2672         mutex_init(&fs_info->unused_bg_unpin_mutex);
2673         mutex_init(&fs_info->delete_unused_bgs_mutex);
2674         mutex_init(&fs_info->reloc_mutex);
2675         mutex_init(&fs_info->delalloc_root_mutex);
2676         seqlock_init(&fs_info->profiles_lock);
2677
2678         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2679         INIT_LIST_HEAD(&fs_info->space_info);
2680         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2681         INIT_LIST_HEAD(&fs_info->unused_bgs);
2682         extent_map_tree_init(&fs_info->mapping_tree);
2683         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2684                              BTRFS_BLOCK_RSV_GLOBAL);
2685         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2686         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2687         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2688         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2689                              BTRFS_BLOCK_RSV_DELOPS);
2690         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2691                              BTRFS_BLOCK_RSV_DELREFS);
2692
2693         atomic_set(&fs_info->async_delalloc_pages, 0);
2694         atomic_set(&fs_info->defrag_running, 0);
2695         atomic_set(&fs_info->reada_works_cnt, 0);
2696         atomic_set(&fs_info->nr_delayed_iputs, 0);
2697         atomic64_set(&fs_info->tree_mod_seq, 0);
2698         fs_info->sb = sb;
2699         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2700         fs_info->metadata_ratio = 0;
2701         fs_info->defrag_inodes = RB_ROOT;
2702         atomic64_set(&fs_info->free_chunk_space, 0);
2703         fs_info->tree_mod_log = RB_ROOT;
2704         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2705         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2706         /* readahead state */
2707         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2708         spin_lock_init(&fs_info->reada_lock);
2709         btrfs_init_ref_verify(fs_info);
2710
2711         fs_info->thread_pool_size = min_t(unsigned long,
2712                                           num_online_cpus() + 2, 8);
2713
2714         INIT_LIST_HEAD(&fs_info->ordered_roots);
2715         spin_lock_init(&fs_info->ordered_root_lock);
2716
2717         fs_info->btree_inode = new_inode(sb);
2718         if (!fs_info->btree_inode) {
2719                 err = -ENOMEM;
2720                 goto fail_bio_counter;
2721         }
2722         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2723
2724         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2725                                         GFP_KERNEL);
2726         if (!fs_info->delayed_root) {
2727                 err = -ENOMEM;
2728                 goto fail_iput;
2729         }
2730         btrfs_init_delayed_root(fs_info->delayed_root);
2731
2732         btrfs_init_scrub(fs_info);
2733 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2734         fs_info->check_integrity_print_mask = 0;
2735 #endif
2736         btrfs_init_balance(fs_info);
2737         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2738
2739         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2740         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2741
2742         btrfs_init_btree_inode(fs_info);
2743
2744         spin_lock_init(&fs_info->block_group_cache_lock);
2745         fs_info->block_group_cache_tree = RB_ROOT;
2746         fs_info->first_logical_byte = (u64)-1;
2747
2748         extent_io_tree_init(fs_info, &fs_info->freed_extents[0],
2749                             IO_TREE_FS_INFO_FREED_EXTENTS0, NULL);
2750         extent_io_tree_init(fs_info, &fs_info->freed_extents[1],
2751                             IO_TREE_FS_INFO_FREED_EXTENTS1, NULL);
2752         fs_info->pinned_extents = &fs_info->freed_extents[0];
2753         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2754
2755         mutex_init(&fs_info->ordered_operations_mutex);
2756         mutex_init(&fs_info->tree_log_mutex);
2757         mutex_init(&fs_info->chunk_mutex);
2758         mutex_init(&fs_info->transaction_kthread_mutex);
2759         mutex_init(&fs_info->cleaner_mutex);
2760         mutex_init(&fs_info->ro_block_group_mutex);
2761         init_rwsem(&fs_info->commit_root_sem);
2762         init_rwsem(&fs_info->cleanup_work_sem);
2763         init_rwsem(&fs_info->subvol_sem);
2764         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2765
2766         btrfs_init_dev_replace_locks(fs_info);
2767         btrfs_init_qgroup(fs_info);
2768
2769         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2770         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2771
2772         init_waitqueue_head(&fs_info->transaction_throttle);
2773         init_waitqueue_head(&fs_info->transaction_wait);
2774         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2775         init_waitqueue_head(&fs_info->async_submit_wait);
2776         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2777
2778         /* Usable values until the real ones are cached from the superblock */
2779         fs_info->nodesize = 4096;
2780         fs_info->sectorsize = 4096;
2781         fs_info->stripesize = 4096;
2782
2783         spin_lock_init(&fs_info->swapfile_pins_lock);
2784         fs_info->swapfile_pins = RB_ROOT;
2785
2786         fs_info->send_in_progress = 0;
2787
2788         ret = btrfs_alloc_stripe_hash_table(fs_info);
2789         if (ret) {
2790                 err = ret;
2791                 goto fail_alloc;
2792         }
2793
2794         __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2795
2796         invalidate_bdev(fs_devices->latest_bdev);
2797
2798         /*
2799          * Read super block and check the signature bytes only
2800          */
2801         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2802         if (IS_ERR(bh)) {
2803                 err = PTR_ERR(bh);
2804                 goto fail_alloc;
2805         }
2806
2807         /*
2808          * Verify the type first, if that or the the checksum value are
2809          * corrupted, we'll find out
2810          */
2811         csum_type = btrfs_super_csum_type((struct btrfs_super_block *)bh->b_data);
2812         if (!btrfs_supported_super_csum(csum_type)) {
2813                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
2814                           csum_type);
2815                 err = -EINVAL;
2816                 brelse(bh);
2817                 goto fail_alloc;
2818         }
2819
2820         ret = btrfs_init_csum_hash(fs_info, csum_type);
2821         if (ret) {
2822                 err = ret;
2823                 goto fail_alloc;
2824         }
2825
2826         /*
2827          * We want to check superblock checksum, the type is stored inside.
2828          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2829          */
2830         if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2831                 btrfs_err(fs_info, "superblock checksum mismatch");
2832                 err = -EINVAL;
2833                 brelse(bh);
2834                 goto fail_csum;
2835         }
2836
2837         /*
2838          * super_copy is zeroed at allocation time and we never touch the
2839          * following bytes up to INFO_SIZE, the checksum is calculated from
2840          * the whole block of INFO_SIZE
2841          */
2842         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2843         brelse(bh);
2844
2845         disk_super = fs_info->super_copy;
2846
2847         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2848                        BTRFS_FSID_SIZE));
2849
2850         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
2851                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
2852                                 fs_info->super_copy->metadata_uuid,
2853                                 BTRFS_FSID_SIZE));
2854         }
2855
2856         features = btrfs_super_flags(disk_super);
2857         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
2858                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
2859                 btrfs_set_super_flags(disk_super, features);
2860                 btrfs_info(fs_info,
2861                         "found metadata UUID change in progress flag, clearing");
2862         }
2863
2864         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2865                sizeof(*fs_info->super_for_commit));
2866
2867         ret = btrfs_validate_mount_super(fs_info);
2868         if (ret) {
2869                 btrfs_err(fs_info, "superblock contains fatal errors");
2870                 err = -EINVAL;
2871                 goto fail_csum;
2872         }
2873
2874         if (!btrfs_super_root(disk_super))
2875                 goto fail_csum;
2876
2877         /* check FS state, whether FS is broken. */
2878         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2879                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2880
2881         /*
2882          * run through our array of backup supers and setup
2883          * our ring pointer to the oldest one
2884          */
2885         generation = btrfs_super_generation(disk_super);
2886         find_oldest_super_backup(fs_info, generation);
2887
2888         /*
2889          * In the long term, we'll store the compression type in the super
2890          * block, and it'll be used for per file compression control.
2891          */
2892         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2893
2894         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2895         if (ret) {
2896                 err = ret;
2897                 goto fail_csum;
2898         }
2899
2900         features = btrfs_super_incompat_flags(disk_super) &
2901                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2902         if (features) {
2903                 btrfs_err(fs_info,
2904                     "cannot mount because of unsupported optional features (%llx)",
2905                     features);
2906                 err = -EINVAL;
2907                 goto fail_csum;
2908         }
2909
2910         features = btrfs_super_incompat_flags(disk_super);
2911         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2912         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2913                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2914         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2915                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2916
2917         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2918                 btrfs_info(fs_info, "has skinny extents");
2919
2920         /*
2921          * flag our filesystem as having big metadata blocks if
2922          * they are bigger than the page size
2923          */
2924         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2925                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2926                         btrfs_info(fs_info,
2927                                 "flagging fs with big metadata feature");
2928                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2929         }
2930
2931         nodesize = btrfs_super_nodesize(disk_super);
2932         sectorsize = btrfs_super_sectorsize(disk_super);
2933         stripesize = sectorsize;
2934         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2935         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2936
2937         /* Cache block sizes */
2938         fs_info->nodesize = nodesize;
2939         fs_info->sectorsize = sectorsize;
2940         fs_info->stripesize = stripesize;
2941
2942         /*
2943          * mixed block groups end up with duplicate but slightly offset
2944          * extent buffers for the same range.  It leads to corruptions
2945          */
2946         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2947             (sectorsize != nodesize)) {
2948                 btrfs_err(fs_info,
2949 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2950                         nodesize, sectorsize);
2951                 goto fail_csum;
2952         }
2953
2954         /*
2955          * Needn't use the lock because there is no other task which will
2956          * update the flag.
2957          */
2958         btrfs_set_super_incompat_flags(disk_super, features);
2959
2960         features = btrfs_super_compat_ro_flags(disk_super) &
2961                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2962         if (!sb_rdonly(sb) && features) {
2963                 btrfs_err(fs_info,
2964         "cannot mount read-write because of unsupported optional features (%llx)",
2965                        features);
2966                 err = -EINVAL;
2967                 goto fail_csum;
2968         }
2969
2970         ret = btrfs_init_workqueues(fs_info, fs_devices);
2971         if (ret) {
2972                 err = ret;
2973                 goto fail_sb_buffer;
2974         }
2975
2976         sb->s_bdi->congested_fn = btrfs_congested_fn;
2977         sb->s_bdi->congested_data = fs_info;
2978         sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2979         sb->s_bdi->ra_pages = VM_READAHEAD_PAGES;
2980         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2981         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2982
2983         sb->s_blocksize = sectorsize;
2984         sb->s_blocksize_bits = blksize_bits(sectorsize);
2985         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
2986
2987         mutex_lock(&fs_info->chunk_mutex);
2988         ret = btrfs_read_sys_array(fs_info);
2989         mutex_unlock(&fs_info->chunk_mutex);
2990         if (ret) {
2991                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2992                 goto fail_sb_buffer;
2993         }
2994
2995         generation = btrfs_super_chunk_root_generation(disk_super);
2996         level = btrfs_super_chunk_root_level(disk_super);
2997
2998         __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2999
3000         chunk_root->node = read_tree_block(fs_info,
3001                                            btrfs_super_chunk_root(disk_super),
3002                                            generation, level, NULL);
3003         if (IS_ERR(chunk_root->node) ||
3004             !extent_buffer_uptodate(chunk_root->node)) {
3005                 btrfs_err(fs_info, "failed to read chunk root");
3006                 if (!IS_ERR(chunk_root->node))
3007                         free_extent_buffer(chunk_root->node);
3008                 chunk_root->node = NULL;
3009                 goto fail_tree_roots;
3010         }
3011         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3012         chunk_root->commit_root = btrfs_root_node(chunk_root);
3013
3014         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3015            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
3016
3017         ret = btrfs_read_chunk_tree(fs_info);
3018         if (ret) {
3019                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3020                 goto fail_tree_roots;
3021         }
3022
3023         /*
3024          * Keep the devid that is marked to be the target device for the
3025          * device replace procedure
3026          */
3027         btrfs_free_extra_devids(fs_devices, 0);
3028
3029         if (!fs_devices->latest_bdev) {
3030                 btrfs_err(fs_info, "failed to read devices");
3031                 goto fail_tree_roots;
3032         }
3033
3034 retry_root_backup:
3035         generation = btrfs_super_generation(disk_super);
3036         level = btrfs_super_root_level(disk_super);
3037
3038         tree_root->node = read_tree_block(fs_info,
3039                                           btrfs_super_root(disk_super),
3040                                           generation, level, NULL);
3041         if (IS_ERR(tree_root->node) ||
3042             !extent_buffer_uptodate(tree_root->node)) {
3043                 btrfs_warn(fs_info, "failed to read tree root");
3044                 if (!IS_ERR(tree_root->node))
3045                         free_extent_buffer(tree_root->node);
3046                 tree_root->node = NULL;
3047                 goto recovery_tree_root;
3048         }
3049
3050         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3051         tree_root->commit_root = btrfs_root_node(tree_root);
3052         btrfs_set_root_refs(&tree_root->root_item, 1);
3053
3054         mutex_lock(&tree_root->objectid_mutex);
3055         ret = btrfs_find_highest_objectid(tree_root,
3056                                         &tree_root->highest_objectid);
3057         if (ret) {
3058                 mutex_unlock(&tree_root->objectid_mutex);
3059                 goto recovery_tree_root;
3060         }
3061
3062         ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3063
3064         mutex_unlock(&tree_root->objectid_mutex);
3065
3066         ret = btrfs_read_roots(fs_info);
3067         if (ret)
3068                 goto recovery_tree_root;
3069
3070         fs_info->generation = generation;
3071         fs_info->last_trans_committed = generation;
3072
3073         ret = btrfs_verify_dev_extents(fs_info);
3074         if (ret) {
3075                 btrfs_err(fs_info,
3076                           "failed to verify dev extents against chunks: %d",
3077                           ret);
3078                 goto fail_block_groups;
3079         }
3080         ret = btrfs_recover_balance(fs_info);
3081         if (ret) {
3082                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3083                 goto fail_block_groups;
3084         }
3085
3086         ret = btrfs_init_dev_stats(fs_info);
3087         if (ret) {
3088                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3089                 goto fail_block_groups;
3090         }
3091
3092         ret = btrfs_init_dev_replace(fs_info);
3093         if (ret) {
3094                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3095                 goto fail_block_groups;
3096         }
3097
3098         btrfs_free_extra_devids(fs_devices, 1);
3099
3100         ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3101         if (ret) {
3102                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3103                                 ret);
3104                 goto fail_block_groups;
3105         }
3106
3107         ret = btrfs_sysfs_add_device(fs_devices);
3108         if (ret) {
3109                 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3110                                 ret);
3111                 goto fail_fsdev_sysfs;
3112         }
3113
3114         ret = btrfs_sysfs_add_mounted(fs_info);
3115         if (ret) {
3116                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3117                 goto fail_fsdev_sysfs;
3118         }
3119
3120         ret = btrfs_init_space_info(fs_info);
3121         if (ret) {
3122                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3123                 goto fail_sysfs;
3124         }
3125
3126         ret = btrfs_read_block_groups(fs_info);
3127         if (ret) {
3128                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3129                 goto fail_sysfs;
3130         }
3131
3132         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3133                 btrfs_warn(fs_info,
3134                 "writable mount is not allowed due to too many missing devices");
3135                 goto fail_sysfs;
3136         }
3137
3138         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3139                                                "btrfs-cleaner");
3140         if (IS_ERR(fs_info->cleaner_kthread))
3141                 goto fail_sysfs;
3142
3143         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3144                                                    tree_root,
3145                                                    "btrfs-transaction");
3146         if (IS_ERR(fs_info->transaction_kthread))
3147                 goto fail_cleaner;
3148
3149         if (!btrfs_test_opt(fs_info, NOSSD) &&
3150             !fs_info->fs_devices->rotating) {
3151                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3152         }
3153
3154         /*
3155          * Mount does not set all options immediately, we can do it now and do
3156          * not have to wait for transaction commit
3157          */
3158         btrfs_apply_pending_changes(fs_info);
3159
3160 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3161         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3162                 ret = btrfsic_mount(fs_info, fs_devices,
3163                                     btrfs_test_opt(fs_info,
3164                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3165                                     1 : 0,
3166                                     fs_info->check_integrity_print_mask);
3167                 if (ret)
3168                         btrfs_warn(fs_info,
3169                                 "failed to initialize integrity check module: %d",
3170                                 ret);
3171         }
3172 #endif
3173         ret = btrfs_read_qgroup_config(fs_info);
3174         if (ret)
3175                 goto fail_trans_kthread;
3176
3177         if (btrfs_build_ref_tree(fs_info))
3178                 btrfs_err(fs_info, "couldn't build ref tree");
3179
3180         /* do not make disk changes in broken FS or nologreplay is given */
3181         if (btrfs_super_log_root(disk_super) != 0 &&
3182             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3183                 ret = btrfs_replay_log(fs_info, fs_devices);
3184                 if (ret) {
3185                         err = ret;
3186                         goto fail_qgroup;
3187                 }
3188         }
3189
3190         ret = btrfs_find_orphan_roots(fs_info);
3191         if (ret)
3192                 goto fail_qgroup;
3193
3194         if (!sb_rdonly(sb)) {
3195                 ret = btrfs_cleanup_fs_roots(fs_info);
3196                 if (ret)
3197                         goto fail_qgroup;
3198
3199                 mutex_lock(&fs_info->cleaner_mutex);
3200                 ret = btrfs_recover_relocation(tree_root);
3201                 mutex_unlock(&fs_info->cleaner_mutex);
3202                 if (ret < 0) {
3203                         btrfs_warn(fs_info, "failed to recover relocation: %d",
3204                                         ret);
3205                         err = -EINVAL;
3206                         goto fail_qgroup;
3207                 }
3208         }
3209
3210         location.objectid = BTRFS_FS_TREE_OBJECTID;
3211         location.type = BTRFS_ROOT_ITEM_KEY;
3212         location.offset = 0;
3213
3214         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3215         if (IS_ERR(fs_info->fs_root)) {
3216                 err = PTR_ERR(fs_info->fs_root);
3217                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3218                 goto fail_qgroup;
3219         }
3220
3221         if (sb_rdonly(sb))
3222                 return 0;
3223
3224         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3225             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3226                 clear_free_space_tree = 1;
3227         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3228                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3229                 btrfs_warn(fs_info, "free space tree is invalid");
3230                 clear_free_space_tree = 1;
3231         }
3232
3233         if (clear_free_space_tree) {
3234                 btrfs_info(fs_info, "clearing free space tree");
3235                 ret = btrfs_clear_free_space_tree(fs_info);
3236                 if (ret) {
3237                         btrfs_warn(fs_info,
3238                                    "failed to clear free space tree: %d", ret);
3239                         close_ctree(fs_info);
3240                         return ret;
3241                 }
3242         }
3243
3244         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3245             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3246                 btrfs_info(fs_info, "creating free space tree");
3247                 ret = btrfs_create_free_space_tree(fs_info);
3248                 if (ret) {
3249                         btrfs_warn(fs_info,
3250                                 "failed to create free space tree: %d", ret);
3251                         close_ctree(fs_info);
3252                         return ret;
3253                 }
3254         }
3255
3256         down_read(&fs_info->cleanup_work_sem);
3257         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3258             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3259                 up_read(&fs_info->cleanup_work_sem);
3260                 close_ctree(fs_info);
3261                 return ret;
3262         }
3263         up_read(&fs_info->cleanup_work_sem);
3264
3265         ret = btrfs_resume_balance_async(fs_info);
3266         if (ret) {
3267                 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3268                 close_ctree(fs_info);
3269                 return ret;
3270         }
3271
3272         ret = btrfs_resume_dev_replace_async(fs_info);
3273         if (ret) {
3274                 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3275                 close_ctree(fs_info);
3276                 return ret;
3277         }
3278
3279         btrfs_qgroup_rescan_resume(fs_info);
3280
3281         if (!fs_info->uuid_root) {
3282                 btrfs_info(fs_info, "creating UUID tree");
3283                 ret = btrfs_create_uuid_tree(fs_info);
3284                 if (ret) {
3285                         btrfs_warn(fs_info,
3286                                 "failed to create the UUID tree: %d", ret);
3287                         close_ctree(fs_info);
3288                         return ret;
3289                 }
3290         } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3291                    fs_info->generation !=
3292                                 btrfs_super_uuid_tree_generation(disk_super)) {
3293                 btrfs_info(fs_info, "checking UUID tree");
3294                 ret = btrfs_check_uuid_tree(fs_info);
3295                 if (ret) {
3296                         btrfs_warn(fs_info,
3297                                 "failed to check the UUID tree: %d", ret);
3298                         close_ctree(fs_info);
3299                         return ret;
3300                 }
3301         } else {
3302                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3303         }
3304         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3305
3306         /*
3307          * backuproot only affect mount behavior, and if open_ctree succeeded,
3308          * no need to keep the flag
3309          */
3310         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3311
3312         return 0;
3313
3314 fail_qgroup:
3315         btrfs_free_qgroup_config(fs_info);
3316 fail_trans_kthread:
3317         kthread_stop(fs_info->transaction_kthread);
3318         btrfs_cleanup_transaction(fs_info);
3319         btrfs_free_fs_roots(fs_info);
3320 fail_cleaner:
3321         kthread_stop(fs_info->cleaner_kthread);
3322
3323         /*
3324          * make sure we're done with the btree inode before we stop our
3325          * kthreads
3326          */
3327         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3328
3329 fail_sysfs:
3330         btrfs_sysfs_remove_mounted(fs_info);
3331
3332 fail_fsdev_sysfs:
3333         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3334
3335 fail_block_groups:
3336         btrfs_put_block_group_cache(fs_info);
3337
3338 fail_tree_roots:
3339         free_root_pointers(fs_info, 1);
3340         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3341
3342 fail_sb_buffer:
3343         btrfs_stop_all_workers(fs_info);
3344         btrfs_free_block_groups(fs_info);
3345 fail_csum:
3346         btrfs_free_csum_hash(fs_info);
3347 fail_alloc:
3348 fail_iput:
3349         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3350
3351         iput(fs_info->btree_inode);
3352 fail_bio_counter:
3353         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
3354 fail_delalloc_bytes:
3355         percpu_counter_destroy(&fs_info->delalloc_bytes);
3356 fail_dirty_metadata_bytes:
3357         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3358 fail_dio_bytes:
3359         percpu_counter_destroy(&fs_info->dio_bytes);
3360 fail_srcu:
3361         cleanup_srcu_struct(&fs_info->subvol_srcu);
3362 fail:
3363         btrfs_free_stripe_hash_table(fs_info);
3364         btrfs_close_devices(fs_info->fs_devices);
3365         return err;
3366
3367 recovery_tree_root:
3368         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3369                 goto fail_tree_roots;
3370
3371         free_root_pointers(fs_info, 0);
3372
3373         /* don't use the log in recovery mode, it won't be valid */
3374         btrfs_set_super_log_root(disk_super, 0);
3375
3376         /* we can't trust the free space cache either */
3377         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3378
3379         ret = next_root_backup(fs_info, fs_info->super_copy,
3380                                &num_backups_tried, &backup_index);
3381         if (ret == -1)
3382                 goto fail_block_groups;
3383         goto retry_root_backup;
3384 }
3385 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3386
3387 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3388 {
3389         if (uptodate) {
3390                 set_buffer_uptodate(bh);
3391         } else {
3392                 struct btrfs_device *device = (struct btrfs_device *)
3393                         bh->b_private;
3394
3395                 btrfs_warn_rl_in_rcu(device->fs_info,
3396                                 "lost page write due to IO error on %s",
3397                                           rcu_str_deref(device->name));
3398                 /* note, we don't set_buffer_write_io_error because we have
3399                  * our own ways of dealing with the IO errors
3400                  */
3401                 clear_buffer_uptodate(bh);
3402                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3403         }
3404         unlock_buffer(bh);
3405         put_bh(bh);
3406 }
3407
3408 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3409                         struct buffer_head **bh_ret)
3410 {
3411         struct buffer_head *bh;
3412         struct btrfs_super_block *super;
3413         u64 bytenr;
3414
3415         bytenr = btrfs_sb_offset(copy_num);
3416         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3417                 return -EINVAL;
3418
3419         bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3420         /*
3421          * If we fail to read from the underlying devices, as of now
3422          * the best option we have is to mark it EIO.
3423          */
3424         if (!bh)
3425                 return -EIO;
3426
3427         super = (struct btrfs_super_block *)bh->b_data;
3428         if (btrfs_super_bytenr(super) != bytenr ||
3429                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3430                 brelse(bh);
3431                 return -EINVAL;
3432         }
3433
3434         *bh_ret = bh;
3435         return 0;
3436 }
3437
3438
3439 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3440 {
3441         struct buffer_head *bh;
3442         struct buffer_head *latest = NULL;
3443         struct btrfs_super_block *super;
3444         int i;
3445         u64 transid = 0;
3446         int ret = -EINVAL;
3447
3448         /* we would like to check all the supers, but that would make
3449          * a btrfs mount succeed after a mkfs from a different FS.
3450          * So, we need to add a special mount option to scan for
3451          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3452          */
3453         for (i = 0; i < 1; i++) {
3454                 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3455                 if (ret)
3456                         continue;
3457
3458                 super = (struct btrfs_super_block *)bh->b_data;
3459
3460                 if (!latest || btrfs_super_generation(super) > transid) {
3461                         brelse(latest);
3462                         latest = bh;
3463                         transid = btrfs_super_generation(super);
3464                 } else {
3465                         brelse(bh);
3466                 }
3467         }
3468
3469         if (!latest)
3470                 return ERR_PTR(ret);
3471
3472         return latest;
3473 }
3474
3475 /*
3476  * Write superblock @sb to the @device. Do not wait for completion, all the
3477  * buffer heads we write are pinned.
3478  *
3479  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3480  * the expected device size at commit time. Note that max_mirrors must be
3481  * same for write and wait phases.
3482  *
3483  * Return number of errors when buffer head is not found or submission fails.
3484  */
3485 static int write_dev_supers(struct btrfs_device *device,
3486                             struct btrfs_super_block *sb, int max_mirrors)
3487 {
3488         struct btrfs_fs_info *fs_info = device->fs_info;
3489         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3490         struct buffer_head *bh;
3491         int i;
3492         int ret;
3493         int errors = 0;
3494         u64 bytenr;
3495         int op_flags;
3496
3497         if (max_mirrors == 0)
3498                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3499
3500         shash->tfm = fs_info->csum_shash;
3501
3502         for (i = 0; i < max_mirrors; i++) {
3503                 bytenr = btrfs_sb_offset(i);
3504                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3505                     device->commit_total_bytes)
3506                         break;
3507
3508                 btrfs_set_super_bytenr(sb, bytenr);
3509
3510                 crypto_shash_init(shash);
3511                 crypto_shash_update(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3512                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3513                 crypto_shash_final(shash, sb->csum);
3514
3515                 /* One reference for us, and we leave it for the caller */
3516                 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3517                               BTRFS_SUPER_INFO_SIZE);
3518                 if (!bh) {
3519                         btrfs_err(device->fs_info,
3520                             "couldn't get super buffer head for bytenr %llu",
3521                             bytenr);
3522                         errors++;
3523                         continue;
3524                 }
3525
3526                 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3527
3528                 /* one reference for submit_bh */
3529                 get_bh(bh);
3530
3531                 set_buffer_uptodate(bh);
3532                 lock_buffer(bh);
3533                 bh->b_end_io = btrfs_end_buffer_write_sync;
3534                 bh->b_private = device;
3535
3536                 /*
3537                  * we fua the first super.  The others we allow
3538                  * to go down lazy.
3539                  */
3540                 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3541                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3542                         op_flags |= REQ_FUA;
3543                 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3544                 if (ret)
3545                         errors++;
3546         }
3547         return errors < i ? 0 : -1;
3548 }
3549
3550 /*
3551  * Wait for write completion of superblocks done by write_dev_supers,
3552  * @max_mirrors same for write and wait phases.
3553  *
3554  * Return number of errors when buffer head is not found or not marked up to
3555  * date.
3556  */
3557 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3558 {
3559         struct buffer_head *bh;
3560         int i;
3561         int errors = 0;
3562         bool primary_failed = false;
3563         u64 bytenr;
3564
3565         if (max_mirrors == 0)
3566                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3567
3568         for (i = 0; i < max_mirrors; i++) {
3569                 bytenr = btrfs_sb_offset(i);
3570                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3571                     device->commit_total_bytes)
3572                         break;
3573
3574                 bh = __find_get_block(device->bdev,
3575                                       bytenr / BTRFS_BDEV_BLOCKSIZE,
3576                                       BTRFS_SUPER_INFO_SIZE);
3577                 if (!bh) {
3578                         errors++;
3579                         if (i == 0)
3580                                 primary_failed = true;
3581                         continue;
3582                 }
3583                 wait_on_buffer(bh);
3584                 if (!buffer_uptodate(bh)) {
3585                         errors++;
3586                         if (i == 0)
3587                                 primary_failed = true;
3588                 }
3589
3590                 /* drop our reference */
3591                 brelse(bh);
3592
3593                 /* drop the reference from the writing run */
3594                 brelse(bh);
3595         }
3596
3597         /* log error, force error return */
3598         if (primary_failed) {
3599                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3600                           device->devid);
3601                 return -1;
3602         }
3603
3604         return errors < i ? 0 : -1;
3605 }
3606
3607 /*
3608  * endio for the write_dev_flush, this will wake anyone waiting
3609  * for the barrier when it is done
3610  */
3611 static void btrfs_end_empty_barrier(struct bio *bio)
3612 {
3613         complete(bio->bi_private);
3614 }
3615
3616 /*
3617  * Submit a flush request to the device if it supports it. Error handling is
3618  * done in the waiting counterpart.
3619  */
3620 static void write_dev_flush(struct btrfs_device *device)
3621 {
3622         struct request_queue *q = bdev_get_queue(device->bdev);
3623         struct bio *bio = device->flush_bio;
3624
3625         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3626                 return;
3627
3628         bio_reset(bio);
3629         bio->bi_end_io = btrfs_end_empty_barrier;
3630         bio_set_dev(bio, device->bdev);
3631         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3632         init_completion(&device->flush_wait);
3633         bio->bi_private = &device->flush_wait;
3634
3635         btrfsic_submit_bio(bio);
3636         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3637 }
3638
3639 /*
3640  * If the flush bio has been submitted by write_dev_flush, wait for it.
3641  */
3642 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3643 {
3644         struct bio *bio = device->flush_bio;
3645
3646         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3647                 return BLK_STS_OK;
3648
3649         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3650         wait_for_completion_io(&device->flush_wait);
3651
3652         return bio->bi_status;
3653 }
3654
3655 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3656 {
3657         if (!btrfs_check_rw_degradable(fs_info, NULL))
3658                 return -EIO;
3659         return 0;
3660 }
3661
3662 /*
3663  * send an empty flush down to each device in parallel,
3664  * then wait for them
3665  */
3666 static int barrier_all_devices(struct btrfs_fs_info *info)
3667 {
3668         struct list_head *head;
3669         struct btrfs_device *dev;
3670         int errors_wait = 0;
3671         blk_status_t ret;
3672
3673         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3674         /* send down all the barriers */
3675         head = &info->fs_devices->devices;
3676         list_for_each_entry(dev, head, dev_list) {
3677                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3678                         continue;
3679                 if (!dev->bdev)
3680                         continue;
3681                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3682                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3683                         continue;
3684
3685                 write_dev_flush(dev);
3686                 dev->last_flush_error = BLK_STS_OK;
3687         }
3688
3689         /* wait for all the barriers */
3690         list_for_each_entry(dev, head, dev_list) {
3691                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3692                         continue;
3693                 if (!dev->bdev) {
3694                         errors_wait++;
3695                         continue;
3696                 }
3697                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3698                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3699                         continue;
3700
3701                 ret = wait_dev_flush(dev);
3702                 if (ret) {
3703                         dev->last_flush_error = ret;
3704                         btrfs_dev_stat_inc_and_print(dev,
3705                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3706                         errors_wait++;
3707                 }
3708         }
3709
3710         if (errors_wait) {
3711                 /*
3712                  * At some point we need the status of all disks
3713                  * to arrive at the volume status. So error checking
3714                  * is being pushed to a separate loop.
3715                  */
3716                 return check_barrier_error(info);
3717         }
3718         return 0;
3719 }
3720
3721 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3722 {
3723         int raid_type;
3724         int min_tolerated = INT_MAX;
3725
3726         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3727             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3728                 min_tolerated = min_t(int, min_tolerated,
3729                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3730                                     tolerated_failures);
3731
3732         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3733                 if (raid_type == BTRFS_RAID_SINGLE)
3734                         continue;
3735                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3736                         continue;
3737                 min_tolerated = min_t(int, min_tolerated,
3738                                     btrfs_raid_array[raid_type].
3739                                     tolerated_failures);
3740         }
3741
3742         if (min_tolerated == INT_MAX) {
3743                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3744                 min_tolerated = 0;
3745         }
3746
3747         return min_tolerated;
3748 }
3749
3750 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3751 {
3752         struct list_head *head;
3753         struct btrfs_device *dev;
3754         struct btrfs_super_block *sb;
3755         struct btrfs_dev_item *dev_item;
3756         int ret;
3757         int do_barriers;
3758         int max_errors;
3759         int total_errors = 0;
3760         u64 flags;
3761
3762         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3763
3764         /*
3765          * max_mirrors == 0 indicates we're from commit_transaction,
3766          * not from fsync where the tree roots in fs_info have not
3767          * been consistent on disk.
3768          */
3769         if (max_mirrors == 0)
3770                 backup_super_roots(fs_info);
3771
3772         sb = fs_info->super_for_commit;
3773         dev_item = &sb->dev_item;
3774
3775         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3776         head = &fs_info->fs_devices->devices;
3777         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3778
3779         if (do_barriers) {
3780                 ret = barrier_all_devices(fs_info);
3781                 if (ret) {
3782                         mutex_unlock(
3783                                 &fs_info->fs_devices->device_list_mutex);
3784                         btrfs_handle_fs_error(fs_info, ret,
3785                                               "errors while submitting device barriers.");
3786                         return ret;
3787                 }
3788         }
3789
3790         list_for_each_entry(dev, head, dev_list) {
3791                 if (!dev->bdev) {
3792                         total_errors++;
3793                         continue;
3794                 }
3795                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3796                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3797                         continue;
3798
3799                 btrfs_set_stack_device_generation(dev_item, 0);
3800                 btrfs_set_stack_device_type(dev_item, dev->type);
3801                 btrfs_set_stack_device_id(dev_item, dev->devid);
3802                 btrfs_set_stack_device_total_bytes(dev_item,
3803                                                    dev->commit_total_bytes);
3804                 btrfs_set_stack_device_bytes_used(dev_item,
3805                                                   dev->commit_bytes_used);
3806                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3807                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3808                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3809                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3810                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
3811                        BTRFS_FSID_SIZE);
3812
3813                 flags = btrfs_super_flags(sb);
3814                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3815
3816                 ret = btrfs_validate_write_super(fs_info, sb);
3817                 if (ret < 0) {
3818                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3819                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
3820                                 "unexpected superblock corruption detected");
3821                         return -EUCLEAN;
3822                 }
3823
3824                 ret = write_dev_supers(dev, sb, max_mirrors);
3825                 if (ret)
3826                         total_errors++;
3827         }
3828         if (total_errors > max_errors) {
3829                 btrfs_err(fs_info, "%d errors while writing supers",
3830                           total_errors);
3831                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3832
3833                 /* FUA is masked off if unsupported and can't be the reason */
3834                 btrfs_handle_fs_error(fs_info, -EIO,
3835                                       "%d errors while writing supers",
3836                                       total_errors);
3837                 return -EIO;
3838         }
3839
3840         total_errors = 0;
3841         list_for_each_entry(dev, head, dev_list) {
3842                 if (!dev->bdev)
3843                         continue;
3844                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3845                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3846                         continue;
3847
3848                 ret = wait_dev_supers(dev, max_mirrors);
3849                 if (ret)
3850                         total_errors++;
3851         }
3852         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3853         if (total_errors > max_errors) {
3854                 btrfs_handle_fs_error(fs_info, -EIO,
3855                                       "%d errors while writing supers",
3856                                       total_errors);
3857                 return -EIO;
3858         }
3859         return 0;
3860 }
3861
3862 /* Drop a fs root from the radix tree and free it. */
3863 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3864                                   struct btrfs_root *root)
3865 {
3866         spin_lock(&fs_info->fs_roots_radix_lock);
3867         radix_tree_delete(&fs_info->fs_roots_radix,
3868                           (unsigned long)root->root_key.objectid);
3869         spin_unlock(&fs_info->fs_roots_radix_lock);
3870
3871         if (btrfs_root_refs(&root->root_item) == 0)
3872                 synchronize_srcu(&fs_info->subvol_srcu);
3873
3874         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3875                 btrfs_free_log(NULL, root);
3876                 if (root->reloc_root) {
3877                         free_extent_buffer(root->reloc_root->node);
3878                         free_extent_buffer(root->reloc_root->commit_root);
3879                         btrfs_put_fs_root(root->reloc_root);
3880                         root->reloc_root = NULL;
3881                 }
3882         }
3883
3884         if (root->free_ino_pinned)
3885                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3886         if (root->free_ino_ctl)
3887                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3888         btrfs_free_fs_root(root);
3889 }
3890
3891 void btrfs_free_fs_root(struct btrfs_root *root)
3892 {
3893         iput(root->ino_cache_inode);
3894         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3895         if (root->anon_dev)
3896                 free_anon_bdev(root->anon_dev);
3897         if (root->subv_writers)
3898                 btrfs_free_subvolume_writers(root->subv_writers);
3899         free_extent_buffer(root->node);
3900         free_extent_buffer(root->commit_root);
3901         kfree(root->free_ino_ctl);
3902         kfree(root->free_ino_pinned);
3903         btrfs_put_fs_root(root);
3904 }
3905
3906 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3907 {
3908         u64 root_objectid = 0;
3909         struct btrfs_root *gang[8];
3910         int i = 0;
3911         int err = 0;
3912         unsigned int ret = 0;
3913         int index;
3914
3915         while (1) {
3916                 index = srcu_read_lock(&fs_info->subvol_srcu);
3917                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3918                                              (void **)gang, root_objectid,
3919                                              ARRAY_SIZE(gang));
3920                 if (!ret) {
3921                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3922                         break;
3923                 }
3924                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3925
3926                 for (i = 0; i < ret; i++) {
3927                         /* Avoid to grab roots in dead_roots */
3928                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3929                                 gang[i] = NULL;
3930                                 continue;
3931                         }
3932                         /* grab all the search result for later use */
3933                         gang[i] = btrfs_grab_fs_root(gang[i]);
3934                 }
3935                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3936
3937                 for (i = 0; i < ret; i++) {
3938                         if (!gang[i])
3939                                 continue;
3940                         root_objectid = gang[i]->root_key.objectid;
3941                         err = btrfs_orphan_cleanup(gang[i]);
3942                         if (err)
3943                                 break;
3944                         btrfs_put_fs_root(gang[i]);
3945                 }
3946                 root_objectid++;
3947         }
3948
3949         /* release the uncleaned roots due to error */
3950         for (; i < ret; i++) {
3951                 if (gang[i])
3952                         btrfs_put_fs_root(gang[i]);
3953         }
3954         return err;
3955 }
3956
3957 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3958 {
3959         struct btrfs_root *root = fs_info->tree_root;
3960         struct btrfs_trans_handle *trans;
3961
3962         mutex_lock(&fs_info->cleaner_mutex);
3963         btrfs_run_delayed_iputs(fs_info);
3964         mutex_unlock(&fs_info->cleaner_mutex);
3965         wake_up_process(fs_info->cleaner_kthread);
3966
3967         /* wait until ongoing cleanup work done */
3968         down_write(&fs_info->cleanup_work_sem);
3969         up_write(&fs_info->cleanup_work_sem);
3970
3971         trans = btrfs_join_transaction(root);
3972         if (IS_ERR(trans))
3973                 return PTR_ERR(trans);
3974         return btrfs_commit_transaction(trans);
3975 }
3976
3977 void close_ctree(struct btrfs_fs_info *fs_info)
3978 {
3979         int ret;
3980
3981         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3982         /*
3983          * We don't want the cleaner to start new transactions, add more delayed
3984          * iputs, etc. while we're closing. We can't use kthread_stop() yet
3985          * because that frees the task_struct, and the transaction kthread might
3986          * still try to wake up the cleaner.
3987          */
3988         kthread_park(fs_info->cleaner_kthread);
3989
3990         /* wait for the qgroup rescan worker to stop */
3991         btrfs_qgroup_wait_for_completion(fs_info, false);
3992
3993         /* wait for the uuid_scan task to finish */
3994         down(&fs_info->uuid_tree_rescan_sem);
3995         /* avoid complains from lockdep et al., set sem back to initial state */
3996         up(&fs_info->uuid_tree_rescan_sem);
3997
3998         /* pause restriper - we want to resume on mount */
3999         btrfs_pause_balance(fs_info);
4000
4001         btrfs_dev_replace_suspend_for_unmount(fs_info);
4002
4003         btrfs_scrub_cancel(fs_info);
4004
4005         /* wait for any defraggers to finish */
4006         wait_event(fs_info->transaction_wait,
4007                    (atomic_read(&fs_info->defrag_running) == 0));
4008
4009         /* clear out the rbtree of defraggable inodes */
4010         btrfs_cleanup_defrag_inodes(fs_info);
4011
4012         cancel_work_sync(&fs_info->async_reclaim_work);
4013
4014         if (!sb_rdonly(fs_info->sb)) {
4015                 /*
4016                  * The cleaner kthread is stopped, so do one final pass over
4017                  * unused block groups.
4018                  */
4019                 btrfs_delete_unused_bgs(fs_info);
4020
4021                 ret = btrfs_commit_super(fs_info);
4022                 if (ret)
4023                         btrfs_err(fs_info, "commit super ret %d", ret);
4024         }
4025
4026         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4027             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4028                 btrfs_error_commit_super(fs_info);
4029
4030         kthread_stop(fs_info->transaction_kthread);
4031         kthread_stop(fs_info->cleaner_kthread);
4032
4033         ASSERT(list_empty(&fs_info->delayed_iputs));
4034         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4035
4036         btrfs_free_qgroup_config(fs_info);
4037         ASSERT(list_empty(&fs_info->delalloc_roots));
4038
4039         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4040                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4041                        percpu_counter_sum(&fs_info->delalloc_bytes));
4042         }
4043
4044         if (percpu_counter_sum(&fs_info->dio_bytes))
4045                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4046                            percpu_counter_sum(&fs_info->dio_bytes));
4047
4048         btrfs_sysfs_remove_mounted(fs_info);
4049         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4050
4051         btrfs_free_fs_roots(fs_info);
4052
4053         btrfs_put_block_group_cache(fs_info);
4054
4055         /*
4056          * we must make sure there is not any read request to
4057          * submit after we stopping all workers.
4058          */
4059         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4060         btrfs_stop_all_workers(fs_info);
4061
4062         btrfs_free_block_groups(fs_info);
4063
4064         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4065         free_root_pointers(fs_info, 1);
4066
4067         iput(fs_info->btree_inode);
4068
4069 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4070         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4071                 btrfsic_unmount(fs_info->fs_devices);
4072 #endif
4073
4074         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4075         btrfs_close_devices(fs_info->fs_devices);
4076
4077         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4078         percpu_counter_destroy(&fs_info->delalloc_bytes);
4079         percpu_counter_destroy(&fs_info->dio_bytes);
4080         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
4081         cleanup_srcu_struct(&fs_info->subvol_srcu);
4082
4083         btrfs_free_csum_hash(fs_info);
4084         btrfs_free_stripe_hash_table(fs_info);
4085         btrfs_free_ref_cache(fs_info);
4086 }
4087
4088 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4089                           int atomic)
4090 {
4091         int ret;
4092         struct inode *btree_inode = buf->pages[0]->mapping->host;
4093
4094         ret = extent_buffer_uptodate(buf);
4095         if (!ret)
4096                 return ret;
4097
4098         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4099                                     parent_transid, atomic);
4100         if (ret == -EAGAIN)
4101                 return ret;
4102         return !ret;
4103 }
4104
4105 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4106 {
4107         struct btrfs_fs_info *fs_info;
4108         struct btrfs_root *root;
4109         u64 transid = btrfs_header_generation(buf);
4110         int was_dirty;
4111
4112 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4113         /*
4114          * This is a fast path so only do this check if we have sanity tests
4115          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4116          * outside of the sanity tests.
4117          */
4118         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4119                 return;
4120 #endif
4121         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4122         fs_info = root->fs_info;
4123         btrfs_assert_tree_locked(buf);
4124         if (transid != fs_info->generation)
4125                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4126                         buf->start, transid, fs_info->generation);
4127         was_dirty = set_extent_buffer_dirty(buf);
4128         if (!was_dirty)
4129                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4130                                          buf->len,
4131                                          fs_info->dirty_metadata_batch);
4132 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4133         /*
4134          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4135          * but item data not updated.
4136          * So here we should only check item pointers, not item data.
4137          */
4138         if (btrfs_header_level(buf) == 0 &&
4139             btrfs_check_leaf_relaxed(buf)) {
4140                 btrfs_print_leaf(buf);
4141                 ASSERT(0);
4142         }
4143 #endif
4144 }
4145
4146 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4147                                         int flush_delayed)
4148 {
4149         /*
4150          * looks as though older kernels can get into trouble with
4151          * this code, they end up stuck in balance_dirty_pages forever
4152          */
4153         int ret;
4154
4155         if (current->flags & PF_MEMALLOC)
4156                 return;
4157
4158         if (flush_delayed)
4159                 btrfs_balance_delayed_items(fs_info);
4160
4161         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4162                                      BTRFS_DIRTY_METADATA_THRESH,
4163                                      fs_info->dirty_metadata_batch);
4164         if (ret > 0) {
4165                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4166         }
4167 }
4168
4169 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4170 {
4171         __btrfs_btree_balance_dirty(fs_info, 1);
4172 }
4173
4174 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4175 {
4176         __btrfs_btree_balance_dirty(fs_info, 0);
4177 }
4178
4179 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4180                       struct btrfs_key *first_key)
4181 {
4182         return btree_read_extent_buffer_pages(buf, parent_transid,
4183                                               level, first_key);
4184 }
4185
4186 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4187 {
4188         /* cleanup FS via transaction */
4189         btrfs_cleanup_transaction(fs_info);
4190
4191         mutex_lock(&fs_info->cleaner_mutex);
4192         btrfs_run_delayed_iputs(fs_info);
4193         mutex_unlock(&fs_info->cleaner_mutex);
4194
4195         down_write(&fs_info->cleanup_work_sem);
4196         up_write(&fs_info->cleanup_work_sem);
4197 }
4198
4199 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4200 {
4201         struct btrfs_ordered_extent *ordered;
4202
4203         spin_lock(&root->ordered_extent_lock);
4204         /*
4205          * This will just short circuit the ordered completion stuff which will
4206          * make sure the ordered extent gets properly cleaned up.
4207          */
4208         list_for_each_entry(ordered, &root->ordered_extents,
4209                             root_extent_list)
4210                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4211         spin_unlock(&root->ordered_extent_lock);
4212 }
4213
4214 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4215 {
4216         struct btrfs_root *root;
4217         struct list_head splice;
4218
4219         INIT_LIST_HEAD(&splice);
4220
4221         spin_lock(&fs_info->ordered_root_lock);
4222         list_splice_init(&fs_info->ordered_roots, &splice);
4223         while (!list_empty(&splice)) {
4224                 root = list_first_entry(&splice, struct btrfs_root,
4225                                         ordered_root);
4226                 list_move_tail(&root->ordered_root,
4227                                &fs_info->ordered_roots);
4228
4229                 spin_unlock(&fs_info->ordered_root_lock);
4230                 btrfs_destroy_ordered_extents(root);
4231
4232                 cond_resched();
4233                 spin_lock(&fs_info->ordered_root_lock);
4234         }
4235         spin_unlock(&fs_info->ordered_root_lock);
4236
4237         /*
4238          * We need this here because if we've been flipped read-only we won't
4239          * get sync() from the umount, so we need to make sure any ordered
4240          * extents that haven't had their dirty pages IO start writeout yet
4241          * actually get run and error out properly.
4242          */
4243         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4244 }
4245
4246 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4247                                       struct btrfs_fs_info *fs_info)
4248 {
4249         struct rb_node *node;
4250         struct btrfs_delayed_ref_root *delayed_refs;
4251         struct btrfs_delayed_ref_node *ref;
4252         int ret = 0;
4253
4254         delayed_refs = &trans->delayed_refs;
4255
4256         spin_lock(&delayed_refs->lock);
4257         if (atomic_read(&delayed_refs->num_entries) == 0) {
4258                 spin_unlock(&delayed_refs->lock);
4259                 btrfs_info(fs_info, "delayed_refs has NO entry");
4260                 return ret;
4261         }
4262
4263         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4264                 struct btrfs_delayed_ref_head *head;
4265                 struct rb_node *n;
4266                 bool pin_bytes = false;
4267
4268                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4269                                 href_node);
4270                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4271                         continue;
4272
4273                 spin_lock(&head->lock);
4274                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4275                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4276                                        ref_node);
4277                         ref->in_tree = 0;
4278                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4279                         RB_CLEAR_NODE(&ref->ref_node);
4280                         if (!list_empty(&ref->add_list))
4281                                 list_del(&ref->add_list);
4282                         atomic_dec(&delayed_refs->num_entries);
4283                         btrfs_put_delayed_ref(ref);
4284                 }
4285                 if (head->must_insert_reserved)
4286                         pin_bytes = true;
4287                 btrfs_free_delayed_extent_op(head->extent_op);
4288                 btrfs_delete_ref_head(delayed_refs, head);
4289                 spin_unlock(&head->lock);
4290                 spin_unlock(&delayed_refs->lock);
4291                 mutex_unlock(&head->mutex);
4292
4293                 if (pin_bytes)
4294                         btrfs_pin_extent(fs_info, head->bytenr,
4295                                          head->num_bytes, 1);
4296                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4297                 btrfs_put_delayed_ref_head(head);
4298                 cond_resched();
4299                 spin_lock(&delayed_refs->lock);
4300         }
4301
4302         spin_unlock(&delayed_refs->lock);
4303
4304         return ret;
4305 }
4306
4307 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4308 {
4309         struct btrfs_inode *btrfs_inode;
4310         struct list_head splice;
4311
4312         INIT_LIST_HEAD(&splice);
4313
4314         spin_lock(&root->delalloc_lock);
4315         list_splice_init(&root->delalloc_inodes, &splice);
4316
4317         while (!list_empty(&splice)) {
4318                 struct inode *inode = NULL;
4319                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4320                                                delalloc_inodes);
4321                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4322                 spin_unlock(&root->delalloc_lock);
4323
4324                 /*
4325                  * Make sure we get a live inode and that it'll not disappear
4326                  * meanwhile.
4327                  */
4328                 inode = igrab(&btrfs_inode->vfs_inode);
4329                 if (inode) {
4330                         invalidate_inode_pages2(inode->i_mapping);
4331                         iput(inode);
4332                 }
4333                 spin_lock(&root->delalloc_lock);
4334         }
4335         spin_unlock(&root->delalloc_lock);
4336 }
4337
4338 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4339 {
4340         struct btrfs_root *root;
4341         struct list_head splice;
4342
4343         INIT_LIST_HEAD(&splice);
4344
4345         spin_lock(&fs_info->delalloc_root_lock);
4346         list_splice_init(&fs_info->delalloc_roots, &splice);
4347         while (!list_empty(&splice)) {
4348                 root = list_first_entry(&splice, struct btrfs_root,
4349                                          delalloc_root);
4350                 root = btrfs_grab_fs_root(root);
4351                 BUG_ON(!root);
4352                 spin_unlock(&fs_info->delalloc_root_lock);
4353
4354                 btrfs_destroy_delalloc_inodes(root);
4355                 btrfs_put_fs_root(root);
4356
4357                 spin_lock(&fs_info->delalloc_root_lock);
4358         }
4359         spin_unlock(&fs_info->delalloc_root_lock);
4360 }
4361
4362 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4363                                         struct extent_io_tree *dirty_pages,
4364                                         int mark)
4365 {
4366         int ret;
4367         struct extent_buffer *eb;
4368         u64 start = 0;
4369         u64 end;
4370
4371         while (1) {
4372                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4373                                             mark, NULL);
4374                 if (ret)
4375                         break;
4376
4377                 clear_extent_bits(dirty_pages, start, end, mark);
4378                 while (start <= end) {
4379                         eb = find_extent_buffer(fs_info, start);
4380                         start += fs_info->nodesize;
4381                         if (!eb)
4382                                 continue;
4383                         wait_on_extent_buffer_writeback(eb);
4384
4385                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4386                                                &eb->bflags))
4387                                 clear_extent_buffer_dirty(eb);
4388                         free_extent_buffer_stale(eb);
4389                 }
4390         }
4391
4392         return ret;
4393 }
4394
4395 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4396                                        struct extent_io_tree *pinned_extents)
4397 {
4398         struct extent_io_tree *unpin;
4399         u64 start;
4400         u64 end;
4401         int ret;
4402         bool loop = true;
4403
4404         unpin = pinned_extents;
4405 again:
4406         while (1) {
4407                 struct extent_state *cached_state = NULL;
4408
4409                 /*
4410                  * The btrfs_finish_extent_commit() may get the same range as
4411                  * ours between find_first_extent_bit and clear_extent_dirty.
4412                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4413                  * the same extent range.
4414                  */
4415                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4416                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4417                                             EXTENT_DIRTY, &cached_state);
4418                 if (ret) {
4419                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4420                         break;
4421                 }
4422
4423                 clear_extent_dirty(unpin, start, end, &cached_state);
4424                 free_extent_state(cached_state);
4425                 btrfs_error_unpin_extent_range(fs_info, start, end);
4426                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4427                 cond_resched();
4428         }
4429
4430         if (loop) {
4431                 if (unpin == &fs_info->freed_extents[0])
4432                         unpin = &fs_info->freed_extents[1];
4433                 else
4434                         unpin = &fs_info->freed_extents[0];
4435                 loop = false;
4436                 goto again;
4437         }
4438
4439         return 0;
4440 }
4441
4442 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4443 {
4444         struct inode *inode;
4445
4446         inode = cache->io_ctl.inode;
4447         if (inode) {
4448                 invalidate_inode_pages2(inode->i_mapping);
4449                 BTRFS_I(inode)->generation = 0;
4450                 cache->io_ctl.inode = NULL;
4451                 iput(inode);
4452         }
4453         btrfs_put_block_group(cache);
4454 }
4455
4456 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4457                              struct btrfs_fs_info *fs_info)
4458 {
4459         struct btrfs_block_group_cache *cache;
4460
4461         spin_lock(&cur_trans->dirty_bgs_lock);
4462         while (!list_empty(&cur_trans->dirty_bgs)) {
4463                 cache = list_first_entry(&cur_trans->dirty_bgs,
4464                                          struct btrfs_block_group_cache,
4465                                          dirty_list);
4466
4467                 if (!list_empty(&cache->io_list)) {
4468                         spin_unlock(&cur_trans->dirty_bgs_lock);
4469                         list_del_init(&cache->io_list);
4470                         btrfs_cleanup_bg_io(cache);
4471                         spin_lock(&cur_trans->dirty_bgs_lock);
4472                 }
4473
4474                 list_del_init(&cache->dirty_list);
4475                 spin_lock(&cache->lock);
4476                 cache->disk_cache_state = BTRFS_DC_ERROR;
4477                 spin_unlock(&cache->lock);
4478
4479                 spin_unlock(&cur_trans->dirty_bgs_lock);
4480                 btrfs_put_block_group(cache);
4481                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4482                 spin_lock(&cur_trans->dirty_bgs_lock);
4483         }
4484         spin_unlock(&cur_trans->dirty_bgs_lock);
4485
4486         /*
4487          * Refer to the definition of io_bgs member for details why it's safe
4488          * to use it without any locking
4489          */
4490         while (!list_empty(&cur_trans->io_bgs)) {
4491                 cache = list_first_entry(&cur_trans->io_bgs,
4492                                          struct btrfs_block_group_cache,
4493                                          io_list);
4494
4495                 list_del_init(&cache->io_list);
4496                 spin_lock(&cache->lock);
4497                 cache->disk_cache_state = BTRFS_DC_ERROR;
4498                 spin_unlock(&cache->lock);
4499                 btrfs_cleanup_bg_io(cache);
4500         }
4501 }
4502
4503 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4504                                    struct btrfs_fs_info *fs_info)
4505 {
4506         struct btrfs_device *dev, *tmp;
4507
4508         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4509         ASSERT(list_empty(&cur_trans->dirty_bgs));
4510         ASSERT(list_empty(&cur_trans->io_bgs));
4511
4512         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4513                                  post_commit_list) {
4514                 list_del_init(&dev->post_commit_list);
4515         }
4516
4517         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4518
4519         cur_trans->state = TRANS_STATE_COMMIT_START;
4520         wake_up(&fs_info->transaction_blocked_wait);
4521
4522         cur_trans->state = TRANS_STATE_UNBLOCKED;
4523         wake_up(&fs_info->transaction_wait);
4524
4525         btrfs_destroy_delayed_inodes(fs_info);
4526         btrfs_assert_delayed_root_empty(fs_info);
4527
4528         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4529                                      EXTENT_DIRTY);
4530         btrfs_destroy_pinned_extent(fs_info,
4531                                     fs_info->pinned_extents);
4532
4533         cur_trans->state =TRANS_STATE_COMPLETED;
4534         wake_up(&cur_trans->commit_wait);
4535 }
4536
4537 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4538 {
4539         struct btrfs_transaction *t;
4540
4541         mutex_lock(&fs_info->transaction_kthread_mutex);
4542
4543         spin_lock(&fs_info->trans_lock);
4544         while (!list_empty(&fs_info->trans_list)) {
4545                 t = list_first_entry(&fs_info->trans_list,
4546                                      struct btrfs_transaction, list);
4547                 if (t->state >= TRANS_STATE_COMMIT_START) {
4548                         refcount_inc(&t->use_count);
4549                         spin_unlock(&fs_info->trans_lock);
4550                         btrfs_wait_for_commit(fs_info, t->transid);
4551                         btrfs_put_transaction(t);
4552                         spin_lock(&fs_info->trans_lock);
4553                         continue;
4554                 }
4555                 if (t == fs_info->running_transaction) {
4556                         t->state = TRANS_STATE_COMMIT_DOING;
4557                         spin_unlock(&fs_info->trans_lock);
4558                         /*
4559                          * We wait for 0 num_writers since we don't hold a trans
4560                          * handle open currently for this transaction.
4561                          */
4562                         wait_event(t->writer_wait,
4563                                    atomic_read(&t->num_writers) == 0);
4564                 } else {
4565                         spin_unlock(&fs_info->trans_lock);
4566                 }
4567                 btrfs_cleanup_one_transaction(t, fs_info);
4568
4569                 spin_lock(&fs_info->trans_lock);
4570                 if (t == fs_info->running_transaction)
4571                         fs_info->running_transaction = NULL;
4572                 list_del_init(&t->list);
4573                 spin_unlock(&fs_info->trans_lock);
4574
4575                 btrfs_put_transaction(t);
4576                 trace_btrfs_transaction_commit(fs_info->tree_root);
4577                 spin_lock(&fs_info->trans_lock);
4578         }
4579         spin_unlock(&fs_info->trans_lock);
4580         btrfs_destroy_all_ordered_extents(fs_info);
4581         btrfs_destroy_delayed_inodes(fs_info);
4582         btrfs_assert_delayed_root_empty(fs_info);
4583         btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4584         btrfs_destroy_all_delalloc_inodes(fs_info);
4585         mutex_unlock(&fs_info->transaction_kthread_mutex);
4586
4587         return 0;
4588 }
4589
4590 static const struct extent_io_ops btree_extent_io_ops = {
4591         /* mandatory callbacks */
4592         .submit_bio_hook = btree_submit_bio_hook,
4593         .readpage_end_io_hook = btree_readpage_end_io_hook,
4594 };