28449ca66dbd20a17d021115a3f2224d1e2dc09d
[linux-2.6-microblaze.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46
47 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
48                                  BTRFS_HEADER_FLAG_RELOC |\
49                                  BTRFS_SUPER_FLAG_ERROR |\
50                                  BTRFS_SUPER_FLAG_SEEDING |\
51                                  BTRFS_SUPER_FLAG_METADUMP |\
52                                  BTRFS_SUPER_FLAG_METADUMP_V2)
53
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103         if (fs_info->csum_shash)
104                 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113         struct inode *inode;
114         struct bio *bio;
115         extent_submit_bio_start_t *submit_bio_start;
116         int mirror_num;
117
118         /* Optional parameter for submit_bio_start used by direct io */
119         u64 dio_file_offset;
120         struct btrfs_work work;
121         blk_status_t status;
122 };
123
124 /*
125  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
126  * eb, the lockdep key is determined by the btrfs_root it belongs to and
127  * the level the eb occupies in the tree.
128  *
129  * Different roots are used for different purposes and may nest inside each
130  * other and they require separate keysets.  As lockdep keys should be
131  * static, assign keysets according to the purpose of the root as indicated
132  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
133  * roots have separate keysets.
134  *
135  * Lock-nesting across peer nodes is always done with the immediate parent
136  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
137  * subclass to avoid triggering lockdep warning in such cases.
138  *
139  * The key is set by the readpage_end_io_hook after the buffer has passed
140  * csum validation but before the pages are unlocked.  It is also set by
141  * btrfs_init_new_buffer on freshly allocated blocks.
142  *
143  * We also add a check to make sure the highest level of the tree is the
144  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
145  * needs update as well.
146  */
147 #ifdef CONFIG_DEBUG_LOCK_ALLOC
148 # if BTRFS_MAX_LEVEL != 8
149 #  error
150 # endif
151
152 #define DEFINE_LEVEL(stem, level)                                       \
153         .names[level] = "btrfs-" stem "-0" #level,
154
155 #define DEFINE_NAME(stem)                                               \
156         DEFINE_LEVEL(stem, 0)                                           \
157         DEFINE_LEVEL(stem, 1)                                           \
158         DEFINE_LEVEL(stem, 2)                                           \
159         DEFINE_LEVEL(stem, 3)                                           \
160         DEFINE_LEVEL(stem, 4)                                           \
161         DEFINE_LEVEL(stem, 5)                                           \
162         DEFINE_LEVEL(stem, 6)                                           \
163         DEFINE_LEVEL(stem, 7)
164
165 static struct btrfs_lockdep_keyset {
166         u64                     id;             /* root objectid */
167         /* Longest entry: btrfs-free-space-00 */
168         char                    names[BTRFS_MAX_LEVEL][20];
169         struct lock_class_key   keys[BTRFS_MAX_LEVEL];
170 } btrfs_lockdep_keysets[] = {
171         { .id = BTRFS_ROOT_TREE_OBJECTID,       DEFINE_NAME("root")     },
172         { .id = BTRFS_EXTENT_TREE_OBJECTID,     DEFINE_NAME("extent")   },
173         { .id = BTRFS_CHUNK_TREE_OBJECTID,      DEFINE_NAME("chunk")    },
174         { .id = BTRFS_DEV_TREE_OBJECTID,        DEFINE_NAME("dev")      },
175         { .id = BTRFS_CSUM_TREE_OBJECTID,       DEFINE_NAME("csum")     },
176         { .id = BTRFS_QUOTA_TREE_OBJECTID,      DEFINE_NAME("quota")    },
177         { .id = BTRFS_TREE_LOG_OBJECTID,        DEFINE_NAME("log")      },
178         { .id = BTRFS_TREE_RELOC_OBJECTID,      DEFINE_NAME("treloc")   },
179         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc")   },
180         { .id = BTRFS_UUID_TREE_OBJECTID,       DEFINE_NAME("uuid")     },
181         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
182         { .id = 0,                              DEFINE_NAME("tree")     },
183 };
184
185 #undef DEFINE_LEVEL
186 #undef DEFINE_NAME
187
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189                                     int level)
190 {
191         struct btrfs_lockdep_keyset *ks;
192
193         BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195         /* find the matching keyset, id 0 is the default entry */
196         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197                 if (ks->id == objectid)
198                         break;
199
200         lockdep_set_class_and_name(&eb->lock,
201                                    &ks->keys[level], ks->names[level]);
202 }
203
204 #endif
205
206 /*
207  * Compute the csum of a btree block and store the result to provided buffer.
208  */
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211         struct btrfs_fs_info *fs_info = buf->fs_info;
212         const int num_pages = num_extent_pages(buf);
213         const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
214         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
215         char *kaddr;
216         int i;
217
218         shash->tfm = fs_info->csum_shash;
219         crypto_shash_init(shash);
220         kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
221         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
222                             first_page_part - BTRFS_CSUM_SIZE);
223
224         for (i = 1; i < num_pages; i++) {
225                 kaddr = page_address(buf->pages[i]);
226                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
227         }
228         memset(result, 0, BTRFS_CSUM_SIZE);
229         crypto_shash_final(shash, result);
230 }
231
232 /*
233  * we can't consider a given block up to date unless the transid of the
234  * block matches the transid in the parent node's pointer.  This is how we
235  * detect blocks that either didn't get written at all or got written
236  * in the wrong place.
237  */
238 static int verify_parent_transid(struct extent_io_tree *io_tree,
239                                  struct extent_buffer *eb, u64 parent_transid,
240                                  int atomic)
241 {
242         struct extent_state *cached_state = NULL;
243         int ret;
244
245         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246                 return 0;
247
248         if (atomic)
249                 return -EAGAIN;
250
251         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
252                          &cached_state);
253         if (extent_buffer_uptodate(eb) &&
254             btrfs_header_generation(eb) == parent_transid) {
255                 ret = 0;
256                 goto out;
257         }
258         btrfs_err_rl(eb->fs_info,
259                 "parent transid verify failed on %llu wanted %llu found %llu",
260                         eb->start,
261                         parent_transid, btrfs_header_generation(eb));
262         ret = 1;
263         clear_extent_buffer_uptodate(eb);
264 out:
265         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
266                              &cached_state);
267         return ret;
268 }
269
270 static bool btrfs_supported_super_csum(u16 csum_type)
271 {
272         switch (csum_type) {
273         case BTRFS_CSUM_TYPE_CRC32:
274         case BTRFS_CSUM_TYPE_XXHASH:
275         case BTRFS_CSUM_TYPE_SHA256:
276         case BTRFS_CSUM_TYPE_BLAKE2:
277                 return true;
278         default:
279                 return false;
280         }
281 }
282
283 /*
284  * Return 0 if the superblock checksum type matches the checksum value of that
285  * algorithm. Pass the raw disk superblock data.
286  */
287 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
288                                   char *raw_disk_sb)
289 {
290         struct btrfs_super_block *disk_sb =
291                 (struct btrfs_super_block *)raw_disk_sb;
292         char result[BTRFS_CSUM_SIZE];
293         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
294
295         shash->tfm = fs_info->csum_shash;
296
297         /*
298          * The super_block structure does not span the whole
299          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
300          * filled with zeros and is included in the checksum.
301          */
302         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
303                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
304
305         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
306                 return 1;
307
308         return 0;
309 }
310
311 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
312                            struct btrfs_key *first_key, u64 parent_transid)
313 {
314         struct btrfs_fs_info *fs_info = eb->fs_info;
315         int found_level;
316         struct btrfs_key found_key;
317         int ret;
318
319         found_level = btrfs_header_level(eb);
320         if (found_level != level) {
321                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
322                      KERN_ERR "BTRFS: tree level check failed\n");
323                 btrfs_err(fs_info,
324 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
325                           eb->start, level, found_level);
326                 return -EIO;
327         }
328
329         if (!first_key)
330                 return 0;
331
332         /*
333          * For live tree block (new tree blocks in current transaction),
334          * we need proper lock context to avoid race, which is impossible here.
335          * So we only checks tree blocks which is read from disk, whose
336          * generation <= fs_info->last_trans_committed.
337          */
338         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
339                 return 0;
340
341         /* We have @first_key, so this @eb must have at least one item */
342         if (btrfs_header_nritems(eb) == 0) {
343                 btrfs_err(fs_info,
344                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
345                           eb->start);
346                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
347                 return -EUCLEAN;
348         }
349
350         if (found_level)
351                 btrfs_node_key_to_cpu(eb, &found_key, 0);
352         else
353                 btrfs_item_key_to_cpu(eb, &found_key, 0);
354         ret = btrfs_comp_cpu_keys(first_key, &found_key);
355
356         if (ret) {
357                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
358                      KERN_ERR "BTRFS: tree first key check failed\n");
359                 btrfs_err(fs_info,
360 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
361                           eb->start, parent_transid, first_key->objectid,
362                           first_key->type, first_key->offset,
363                           found_key.objectid, found_key.type,
364                           found_key.offset);
365         }
366         return ret;
367 }
368
369 /*
370  * helper to read a given tree block, doing retries as required when
371  * the checksums don't match and we have alternate mirrors to try.
372  *
373  * @parent_transid:     expected transid, skip check if 0
374  * @level:              expected level, mandatory check
375  * @first_key:          expected key of first slot, skip check if NULL
376  */
377 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
378                                           u64 parent_transid, int level,
379                                           struct btrfs_key *first_key)
380 {
381         struct btrfs_fs_info *fs_info = eb->fs_info;
382         struct extent_io_tree *io_tree;
383         int failed = 0;
384         int ret;
385         int num_copies = 0;
386         int mirror_num = 0;
387         int failed_mirror = 0;
388
389         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
390         while (1) {
391                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
392                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
393                 if (!ret) {
394                         if (verify_parent_transid(io_tree, eb,
395                                                    parent_transid, 0))
396                                 ret = -EIO;
397                         else if (btrfs_verify_level_key(eb, level,
398                                                 first_key, parent_transid))
399                                 ret = -EUCLEAN;
400                         else
401                                 break;
402                 }
403
404                 num_copies = btrfs_num_copies(fs_info,
405                                               eb->start, eb->len);
406                 if (num_copies == 1)
407                         break;
408
409                 if (!failed_mirror) {
410                         failed = 1;
411                         failed_mirror = eb->read_mirror;
412                 }
413
414                 mirror_num++;
415                 if (mirror_num == failed_mirror)
416                         mirror_num++;
417
418                 if (mirror_num > num_copies)
419                         break;
420         }
421
422         if (failed && !ret && failed_mirror)
423                 btrfs_repair_eb_io_failure(eb, failed_mirror);
424
425         return ret;
426 }
427
428 static int csum_one_extent_buffer(struct extent_buffer *eb)
429 {
430         struct btrfs_fs_info *fs_info = eb->fs_info;
431         u8 result[BTRFS_CSUM_SIZE];
432         int ret;
433
434         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
435                                     offsetof(struct btrfs_header, fsid),
436                                     BTRFS_FSID_SIZE) == 0);
437         csum_tree_block(eb, result);
438
439         if (btrfs_header_level(eb))
440                 ret = btrfs_check_node(eb);
441         else
442                 ret = btrfs_check_leaf_full(eb);
443
444         if (ret < 0) {
445                 btrfs_print_tree(eb, 0);
446                 btrfs_err(fs_info,
447                         "block=%llu write time tree block corruption detected",
448                         eb->start);
449                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
450                 return ret;
451         }
452         write_extent_buffer(eb, result, 0, fs_info->csum_size);
453
454         return 0;
455 }
456
457 /* Checksum all dirty extent buffers in one bio_vec */
458 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
459                                       struct bio_vec *bvec)
460 {
461         struct page *page = bvec->bv_page;
462         u64 bvec_start = page_offset(page) + bvec->bv_offset;
463         u64 cur;
464         int ret = 0;
465
466         for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
467              cur += fs_info->nodesize) {
468                 struct extent_buffer *eb;
469                 bool uptodate;
470
471                 eb = find_extent_buffer(fs_info, cur);
472                 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
473                                                        fs_info->nodesize);
474
475                 /* A dirty eb shouldn't disappear from buffer_radix */
476                 if (WARN_ON(!eb))
477                         return -EUCLEAN;
478
479                 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
480                         free_extent_buffer(eb);
481                         return -EUCLEAN;
482                 }
483                 if (WARN_ON(!uptodate)) {
484                         free_extent_buffer(eb);
485                         return -EUCLEAN;
486                 }
487
488                 ret = csum_one_extent_buffer(eb);
489                 free_extent_buffer(eb);
490                 if (ret < 0)
491                         return ret;
492         }
493         return ret;
494 }
495
496 /*
497  * Checksum a dirty tree block before IO.  This has extra checks to make sure
498  * we only fill in the checksum field in the first page of a multi-page block.
499  * For subpage extent buffers we need bvec to also read the offset in the page.
500  */
501 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
502 {
503         struct page *page = bvec->bv_page;
504         u64 start = page_offset(page);
505         u64 found_start;
506         struct extent_buffer *eb;
507
508         if (fs_info->sectorsize < PAGE_SIZE)
509                 return csum_dirty_subpage_buffers(fs_info, bvec);
510
511         eb = (struct extent_buffer *)page->private;
512         if (page != eb->pages[0])
513                 return 0;
514
515         found_start = btrfs_header_bytenr(eb);
516
517         if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
518                 WARN_ON(found_start != 0);
519                 return 0;
520         }
521
522         /*
523          * Please do not consolidate these warnings into a single if.
524          * It is useful to know what went wrong.
525          */
526         if (WARN_ON(found_start != start))
527                 return -EUCLEAN;
528         if (WARN_ON(!PageUptodate(page)))
529                 return -EUCLEAN;
530
531         return csum_one_extent_buffer(eb);
532 }
533
534 static int check_tree_block_fsid(struct extent_buffer *eb)
535 {
536         struct btrfs_fs_info *fs_info = eb->fs_info;
537         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
538         u8 fsid[BTRFS_FSID_SIZE];
539         u8 *metadata_uuid;
540
541         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
542                            BTRFS_FSID_SIZE);
543         /*
544          * Checking the incompat flag is only valid for the current fs. For
545          * seed devices it's forbidden to have their uuid changed so reading
546          * ->fsid in this case is fine
547          */
548         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
549                 metadata_uuid = fs_devices->metadata_uuid;
550         else
551                 metadata_uuid = fs_devices->fsid;
552
553         if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
554                 return 0;
555
556         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
557                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
558                         return 0;
559
560         return 1;
561 }
562
563 /* Do basic extent buffer checks at read time */
564 static int validate_extent_buffer(struct extent_buffer *eb)
565 {
566         struct btrfs_fs_info *fs_info = eb->fs_info;
567         u64 found_start;
568         const u32 csum_size = fs_info->csum_size;
569         u8 found_level;
570         u8 result[BTRFS_CSUM_SIZE];
571         const u8 *header_csum;
572         int ret = 0;
573
574         found_start = btrfs_header_bytenr(eb);
575         if (found_start != eb->start) {
576                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
577                              eb->start, found_start);
578                 ret = -EIO;
579                 goto out;
580         }
581         if (check_tree_block_fsid(eb)) {
582                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
583                              eb->start);
584                 ret = -EIO;
585                 goto out;
586         }
587         found_level = btrfs_header_level(eb);
588         if (found_level >= BTRFS_MAX_LEVEL) {
589                 btrfs_err(fs_info, "bad tree block level %d on %llu",
590                           (int)btrfs_header_level(eb), eb->start);
591                 ret = -EIO;
592                 goto out;
593         }
594
595         csum_tree_block(eb, result);
596         header_csum = page_address(eb->pages[0]) +
597                 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
598
599         if (memcmp(result, header_csum, csum_size) != 0) {
600                 btrfs_warn_rl(fs_info,
601         "checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
602                               eb->start,
603                               CSUM_FMT_VALUE(csum_size, header_csum),
604                               CSUM_FMT_VALUE(csum_size, result),
605                               btrfs_header_level(eb));
606                 ret = -EUCLEAN;
607                 goto out;
608         }
609
610         /*
611          * If this is a leaf block and it is corrupt, set the corrupt bit so
612          * that we don't try and read the other copies of this block, just
613          * return -EIO.
614          */
615         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
616                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
617                 ret = -EIO;
618         }
619
620         if (found_level > 0 && btrfs_check_node(eb))
621                 ret = -EIO;
622
623         if (!ret)
624                 set_extent_buffer_uptodate(eb);
625         else
626                 btrfs_err(fs_info,
627                           "block=%llu read time tree block corruption detected",
628                           eb->start);
629 out:
630         return ret;
631 }
632
633 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
634                                    int mirror)
635 {
636         struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
637         struct extent_buffer *eb;
638         bool reads_done;
639         int ret = 0;
640
641         /*
642          * We don't allow bio merge for subpage metadata read, so we should
643          * only get one eb for each endio hook.
644          */
645         ASSERT(end == start + fs_info->nodesize - 1);
646         ASSERT(PagePrivate(page));
647
648         eb = find_extent_buffer(fs_info, start);
649         /*
650          * When we are reading one tree block, eb must have been inserted into
651          * the radix tree. If not, something is wrong.
652          */
653         ASSERT(eb);
654
655         reads_done = atomic_dec_and_test(&eb->io_pages);
656         /* Subpage read must finish in page read */
657         ASSERT(reads_done);
658
659         eb->read_mirror = mirror;
660         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
661                 ret = -EIO;
662                 goto err;
663         }
664         ret = validate_extent_buffer(eb);
665         if (ret < 0)
666                 goto err;
667
668         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
669                 btree_readahead_hook(eb, ret);
670
671         set_extent_buffer_uptodate(eb);
672
673         free_extent_buffer(eb);
674         return ret;
675 err:
676         /*
677          * end_bio_extent_readpage decrements io_pages in case of error,
678          * make sure it has something to decrement.
679          */
680         atomic_inc(&eb->io_pages);
681         clear_extent_buffer_uptodate(eb);
682         free_extent_buffer(eb);
683         return ret;
684 }
685
686 int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
687                                    struct page *page, u64 start, u64 end,
688                                    int mirror)
689 {
690         struct extent_buffer *eb;
691         int ret = 0;
692         int reads_done;
693
694         ASSERT(page->private);
695
696         if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
697                 return validate_subpage_buffer(page, start, end, mirror);
698
699         eb = (struct extent_buffer *)page->private;
700
701         /*
702          * The pending IO might have been the only thing that kept this buffer
703          * in memory.  Make sure we have a ref for all this other checks
704          */
705         atomic_inc(&eb->refs);
706
707         reads_done = atomic_dec_and_test(&eb->io_pages);
708         if (!reads_done)
709                 goto err;
710
711         eb->read_mirror = mirror;
712         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
713                 ret = -EIO;
714                 goto err;
715         }
716         ret = validate_extent_buffer(eb);
717 err:
718         if (reads_done &&
719             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
720                 btree_readahead_hook(eb, ret);
721
722         if (ret) {
723                 /*
724                  * our io error hook is going to dec the io pages
725                  * again, we have to make sure it has something
726                  * to decrement
727                  */
728                 atomic_inc(&eb->io_pages);
729                 clear_extent_buffer_uptodate(eb);
730         }
731         free_extent_buffer(eb);
732
733         return ret;
734 }
735
736 static void end_workqueue_bio(struct bio *bio)
737 {
738         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
739         struct btrfs_fs_info *fs_info;
740         struct btrfs_workqueue *wq;
741
742         fs_info = end_io_wq->info;
743         end_io_wq->status = bio->bi_status;
744
745         if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
746                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
747                         wq = fs_info->endio_meta_write_workers;
748                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
749                         wq = fs_info->endio_freespace_worker;
750                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
751                         wq = fs_info->endio_raid56_workers;
752                 else
753                         wq = fs_info->endio_write_workers;
754         } else {
755                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
756                         wq = fs_info->endio_raid56_workers;
757                 else if (end_io_wq->metadata)
758                         wq = fs_info->endio_meta_workers;
759                 else
760                         wq = fs_info->endio_workers;
761         }
762
763         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
764         btrfs_queue_work(wq, &end_io_wq->work);
765 }
766
767 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
768                         enum btrfs_wq_endio_type metadata)
769 {
770         struct btrfs_end_io_wq *end_io_wq;
771
772         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
773         if (!end_io_wq)
774                 return BLK_STS_RESOURCE;
775
776         end_io_wq->private = bio->bi_private;
777         end_io_wq->end_io = bio->bi_end_io;
778         end_io_wq->info = info;
779         end_io_wq->status = 0;
780         end_io_wq->bio = bio;
781         end_io_wq->metadata = metadata;
782
783         bio->bi_private = end_io_wq;
784         bio->bi_end_io = end_workqueue_bio;
785         return 0;
786 }
787
788 static void run_one_async_start(struct btrfs_work *work)
789 {
790         struct async_submit_bio *async;
791         blk_status_t ret;
792
793         async = container_of(work, struct  async_submit_bio, work);
794         ret = async->submit_bio_start(async->inode, async->bio,
795                                       async->dio_file_offset);
796         if (ret)
797                 async->status = ret;
798 }
799
800 /*
801  * In order to insert checksums into the metadata in large chunks, we wait
802  * until bio submission time.   All the pages in the bio are checksummed and
803  * sums are attached onto the ordered extent record.
804  *
805  * At IO completion time the csums attached on the ordered extent record are
806  * inserted into the tree.
807  */
808 static void run_one_async_done(struct btrfs_work *work)
809 {
810         struct async_submit_bio *async;
811         struct inode *inode;
812         blk_status_t ret;
813
814         async = container_of(work, struct  async_submit_bio, work);
815         inode = async->inode;
816
817         /* If an error occurred we just want to clean up the bio and move on */
818         if (async->status) {
819                 async->bio->bi_status = async->status;
820                 bio_endio(async->bio);
821                 return;
822         }
823
824         /*
825          * All of the bios that pass through here are from async helpers.
826          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
827          * This changes nothing when cgroups aren't in use.
828          */
829         async->bio->bi_opf |= REQ_CGROUP_PUNT;
830         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
831         if (ret) {
832                 async->bio->bi_status = ret;
833                 bio_endio(async->bio);
834         }
835 }
836
837 static void run_one_async_free(struct btrfs_work *work)
838 {
839         struct async_submit_bio *async;
840
841         async = container_of(work, struct  async_submit_bio, work);
842         kfree(async);
843 }
844
845 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
846                                  int mirror_num, unsigned long bio_flags,
847                                  u64 dio_file_offset,
848                                  extent_submit_bio_start_t *submit_bio_start)
849 {
850         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
851         struct async_submit_bio *async;
852
853         async = kmalloc(sizeof(*async), GFP_NOFS);
854         if (!async)
855                 return BLK_STS_RESOURCE;
856
857         async->inode = inode;
858         async->bio = bio;
859         async->mirror_num = mirror_num;
860         async->submit_bio_start = submit_bio_start;
861
862         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
863                         run_one_async_free);
864
865         async->dio_file_offset = dio_file_offset;
866
867         async->status = 0;
868
869         if (op_is_sync(bio->bi_opf))
870                 btrfs_set_work_high_priority(&async->work);
871
872         btrfs_queue_work(fs_info->workers, &async->work);
873         return 0;
874 }
875
876 static blk_status_t btree_csum_one_bio(struct bio *bio)
877 {
878         struct bio_vec *bvec;
879         struct btrfs_root *root;
880         int ret = 0;
881         struct bvec_iter_all iter_all;
882
883         ASSERT(!bio_flagged(bio, BIO_CLONED));
884         bio_for_each_segment_all(bvec, bio, iter_all) {
885                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
886                 ret = csum_dirty_buffer(root->fs_info, bvec);
887                 if (ret)
888                         break;
889         }
890
891         return errno_to_blk_status(ret);
892 }
893
894 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
895                                            u64 dio_file_offset)
896 {
897         /*
898          * when we're called for a write, we're already in the async
899          * submission context.  Just jump into btrfs_map_bio
900          */
901         return btree_csum_one_bio(bio);
902 }
903
904 static bool should_async_write(struct btrfs_fs_info *fs_info,
905                              struct btrfs_inode *bi)
906 {
907         if (btrfs_is_zoned(fs_info))
908                 return false;
909         if (atomic_read(&bi->sync_writers))
910                 return false;
911         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
912                 return false;
913         return true;
914 }
915
916 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
917                                        int mirror_num, unsigned long bio_flags)
918 {
919         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
920         blk_status_t ret;
921
922         if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
923                 /*
924                  * called for a read, do the setup so that checksum validation
925                  * can happen in the async kernel threads
926                  */
927                 ret = btrfs_bio_wq_end_io(fs_info, bio,
928                                           BTRFS_WQ_ENDIO_METADATA);
929                 if (ret)
930                         goto out_w_error;
931                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
932         } else if (!should_async_write(fs_info, BTRFS_I(inode))) {
933                 ret = btree_csum_one_bio(bio);
934                 if (ret)
935                         goto out_w_error;
936                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
937         } else {
938                 /*
939                  * kthread helpers are used to submit writes so that
940                  * checksumming can happen in parallel across all CPUs
941                  */
942                 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
943                                           0, btree_submit_bio_start);
944         }
945
946         if (ret)
947                 goto out_w_error;
948         return 0;
949
950 out_w_error:
951         bio->bi_status = ret;
952         bio_endio(bio);
953         return ret;
954 }
955
956 #ifdef CONFIG_MIGRATION
957 static int btree_migratepage(struct address_space *mapping,
958                         struct page *newpage, struct page *page,
959                         enum migrate_mode mode)
960 {
961         /*
962          * we can't safely write a btree page from here,
963          * we haven't done the locking hook
964          */
965         if (PageDirty(page))
966                 return -EAGAIN;
967         /*
968          * Buffers may be managed in a filesystem specific way.
969          * We must have no buffers or drop them.
970          */
971         if (page_has_private(page) &&
972             !try_to_release_page(page, GFP_KERNEL))
973                 return -EAGAIN;
974         return migrate_page(mapping, newpage, page, mode);
975 }
976 #endif
977
978
979 static int btree_writepages(struct address_space *mapping,
980                             struct writeback_control *wbc)
981 {
982         struct btrfs_fs_info *fs_info;
983         int ret;
984
985         if (wbc->sync_mode == WB_SYNC_NONE) {
986
987                 if (wbc->for_kupdate)
988                         return 0;
989
990                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
991                 /* this is a bit racy, but that's ok */
992                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
993                                              BTRFS_DIRTY_METADATA_THRESH,
994                                              fs_info->dirty_metadata_batch);
995                 if (ret < 0)
996                         return 0;
997         }
998         return btree_write_cache_pages(mapping, wbc);
999 }
1000
1001 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1002 {
1003         if (PageWriteback(page) || PageDirty(page))
1004                 return 0;
1005
1006         return try_release_extent_buffer(page);
1007 }
1008
1009 static void btree_invalidatepage(struct page *page, unsigned int offset,
1010                                  unsigned int length)
1011 {
1012         struct extent_io_tree *tree;
1013         tree = &BTRFS_I(page->mapping->host)->io_tree;
1014         extent_invalidatepage(tree, page, offset);
1015         btree_releasepage(page, GFP_NOFS);
1016         if (PagePrivate(page)) {
1017                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1018                            "page private not zero on page %llu",
1019                            (unsigned long long)page_offset(page));
1020                 detach_page_private(page);
1021         }
1022 }
1023
1024 static int btree_set_page_dirty(struct page *page)
1025 {
1026 #ifdef DEBUG
1027         struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1028         struct btrfs_subpage *subpage;
1029         struct extent_buffer *eb;
1030         int cur_bit = 0;
1031         u64 page_start = page_offset(page);
1032
1033         if (fs_info->sectorsize == PAGE_SIZE) {
1034                 BUG_ON(!PagePrivate(page));
1035                 eb = (struct extent_buffer *)page->private;
1036                 BUG_ON(!eb);
1037                 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038                 BUG_ON(!atomic_read(&eb->refs));
1039                 btrfs_assert_tree_write_locked(eb);
1040                 return __set_page_dirty_nobuffers(page);
1041         }
1042         ASSERT(PagePrivate(page) && page->private);
1043         subpage = (struct btrfs_subpage *)page->private;
1044
1045         ASSERT(subpage->dirty_bitmap);
1046         while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1047                 unsigned long flags;
1048                 u64 cur;
1049                 u16 tmp = (1 << cur_bit);
1050
1051                 spin_lock_irqsave(&subpage->lock, flags);
1052                 if (!(tmp & subpage->dirty_bitmap)) {
1053                         spin_unlock_irqrestore(&subpage->lock, flags);
1054                         cur_bit++;
1055                         continue;
1056                 }
1057                 spin_unlock_irqrestore(&subpage->lock, flags);
1058                 cur = page_start + cur_bit * fs_info->sectorsize;
1059
1060                 eb = find_extent_buffer(fs_info, cur);
1061                 ASSERT(eb);
1062                 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063                 ASSERT(atomic_read(&eb->refs));
1064                 btrfs_assert_tree_write_locked(eb);
1065                 free_extent_buffer(eb);
1066
1067                 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1068         }
1069 #endif
1070         return __set_page_dirty_nobuffers(page);
1071 }
1072
1073 static const struct address_space_operations btree_aops = {
1074         .writepages     = btree_writepages,
1075         .releasepage    = btree_releasepage,
1076         .invalidatepage = btree_invalidatepage,
1077 #ifdef CONFIG_MIGRATION
1078         .migratepage    = btree_migratepage,
1079 #endif
1080         .set_page_dirty = btree_set_page_dirty,
1081 };
1082
1083 struct extent_buffer *btrfs_find_create_tree_block(
1084                                                 struct btrfs_fs_info *fs_info,
1085                                                 u64 bytenr, u64 owner_root,
1086                                                 int level)
1087 {
1088         if (btrfs_is_testing(fs_info))
1089                 return alloc_test_extent_buffer(fs_info, bytenr);
1090         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1091 }
1092
1093 /*
1094  * Read tree block at logical address @bytenr and do variant basic but critical
1095  * verification.
1096  *
1097  * @owner_root:         the objectid of the root owner for this block.
1098  * @parent_transid:     expected transid of this tree block, skip check if 0
1099  * @level:              expected level, mandatory check
1100  * @first_key:          expected key in slot 0, skip check if NULL
1101  */
1102 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1103                                       u64 owner_root, u64 parent_transid,
1104                                       int level, struct btrfs_key *first_key)
1105 {
1106         struct extent_buffer *buf = NULL;
1107         int ret;
1108
1109         buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1110         if (IS_ERR(buf))
1111                 return buf;
1112
1113         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1114                                              level, first_key);
1115         if (ret) {
1116                 free_extent_buffer_stale(buf);
1117                 return ERR_PTR(ret);
1118         }
1119         return buf;
1120
1121 }
1122
1123 void btrfs_clean_tree_block(struct extent_buffer *buf)
1124 {
1125         struct btrfs_fs_info *fs_info = buf->fs_info;
1126         if (btrfs_header_generation(buf) ==
1127             fs_info->running_transaction->transid) {
1128                 btrfs_assert_tree_write_locked(buf);
1129
1130                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1131                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1132                                                  -buf->len,
1133                                                  fs_info->dirty_metadata_batch);
1134                         clear_extent_buffer_dirty(buf);
1135                 }
1136         }
1137 }
1138
1139 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1140                          u64 objectid)
1141 {
1142         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1143         root->fs_info = fs_info;
1144         root->node = NULL;
1145         root->commit_root = NULL;
1146         root->state = 0;
1147         root->orphan_cleanup_state = 0;
1148
1149         root->last_trans = 0;
1150         root->free_objectid = 0;
1151         root->nr_delalloc_inodes = 0;
1152         root->nr_ordered_extents = 0;
1153         root->inode_tree = RB_ROOT;
1154         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1155         root->block_rsv = NULL;
1156
1157         INIT_LIST_HEAD(&root->dirty_list);
1158         INIT_LIST_HEAD(&root->root_list);
1159         INIT_LIST_HEAD(&root->delalloc_inodes);
1160         INIT_LIST_HEAD(&root->delalloc_root);
1161         INIT_LIST_HEAD(&root->ordered_extents);
1162         INIT_LIST_HEAD(&root->ordered_root);
1163         INIT_LIST_HEAD(&root->reloc_dirty_list);
1164         INIT_LIST_HEAD(&root->logged_list[0]);
1165         INIT_LIST_HEAD(&root->logged_list[1]);
1166         spin_lock_init(&root->inode_lock);
1167         spin_lock_init(&root->delalloc_lock);
1168         spin_lock_init(&root->ordered_extent_lock);
1169         spin_lock_init(&root->accounting_lock);
1170         spin_lock_init(&root->log_extents_lock[0]);
1171         spin_lock_init(&root->log_extents_lock[1]);
1172         spin_lock_init(&root->qgroup_meta_rsv_lock);
1173         mutex_init(&root->objectid_mutex);
1174         mutex_init(&root->log_mutex);
1175         mutex_init(&root->ordered_extent_mutex);
1176         mutex_init(&root->delalloc_mutex);
1177         init_waitqueue_head(&root->qgroup_flush_wait);
1178         init_waitqueue_head(&root->log_writer_wait);
1179         init_waitqueue_head(&root->log_commit_wait[0]);
1180         init_waitqueue_head(&root->log_commit_wait[1]);
1181         INIT_LIST_HEAD(&root->log_ctxs[0]);
1182         INIT_LIST_HEAD(&root->log_ctxs[1]);
1183         atomic_set(&root->log_commit[0], 0);
1184         atomic_set(&root->log_commit[1], 0);
1185         atomic_set(&root->log_writers, 0);
1186         atomic_set(&root->log_batch, 0);
1187         refcount_set(&root->refs, 1);
1188         atomic_set(&root->snapshot_force_cow, 0);
1189         atomic_set(&root->nr_swapfiles, 0);
1190         root->log_transid = 0;
1191         root->log_transid_committed = -1;
1192         root->last_log_commit = 0;
1193         if (!dummy) {
1194                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1195                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1196                 extent_io_tree_init(fs_info, &root->log_csum_range,
1197                                     IO_TREE_LOG_CSUM_RANGE, NULL);
1198         }
1199
1200         memset(&root->root_key, 0, sizeof(root->root_key));
1201         memset(&root->root_item, 0, sizeof(root->root_item));
1202         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1203         root->root_key.objectid = objectid;
1204         root->anon_dev = 0;
1205
1206         spin_lock_init(&root->root_item_lock);
1207         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1208 #ifdef CONFIG_BTRFS_DEBUG
1209         INIT_LIST_HEAD(&root->leak_list);
1210         spin_lock(&fs_info->fs_roots_radix_lock);
1211         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1212         spin_unlock(&fs_info->fs_roots_radix_lock);
1213 #endif
1214 }
1215
1216 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1217                                            u64 objectid, gfp_t flags)
1218 {
1219         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1220         if (root)
1221                 __setup_root(root, fs_info, objectid);
1222         return root;
1223 }
1224
1225 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1226 /* Should only be used by the testing infrastructure */
1227 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1228 {
1229         struct btrfs_root *root;
1230
1231         if (!fs_info)
1232                 return ERR_PTR(-EINVAL);
1233
1234         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1235         if (!root)
1236                 return ERR_PTR(-ENOMEM);
1237
1238         /* We don't use the stripesize in selftest, set it as sectorsize */
1239         root->alloc_bytenr = 0;
1240
1241         return root;
1242 }
1243 #endif
1244
1245 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1246                                      u64 objectid)
1247 {
1248         struct btrfs_fs_info *fs_info = trans->fs_info;
1249         struct extent_buffer *leaf;
1250         struct btrfs_root *tree_root = fs_info->tree_root;
1251         struct btrfs_root *root;
1252         struct btrfs_key key;
1253         unsigned int nofs_flag;
1254         int ret = 0;
1255
1256         /*
1257          * We're holding a transaction handle, so use a NOFS memory allocation
1258          * context to avoid deadlock if reclaim happens.
1259          */
1260         nofs_flag = memalloc_nofs_save();
1261         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1262         memalloc_nofs_restore(nofs_flag);
1263         if (!root)
1264                 return ERR_PTR(-ENOMEM);
1265
1266         root->root_key.objectid = objectid;
1267         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1268         root->root_key.offset = 0;
1269
1270         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1271                                       BTRFS_NESTING_NORMAL);
1272         if (IS_ERR(leaf)) {
1273                 ret = PTR_ERR(leaf);
1274                 leaf = NULL;
1275                 goto fail_unlock;
1276         }
1277
1278         root->node = leaf;
1279         btrfs_mark_buffer_dirty(leaf);
1280
1281         root->commit_root = btrfs_root_node(root);
1282         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1283
1284         btrfs_set_root_flags(&root->root_item, 0);
1285         btrfs_set_root_limit(&root->root_item, 0);
1286         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1287         btrfs_set_root_generation(&root->root_item, trans->transid);
1288         btrfs_set_root_level(&root->root_item, 0);
1289         btrfs_set_root_refs(&root->root_item, 1);
1290         btrfs_set_root_used(&root->root_item, leaf->len);
1291         btrfs_set_root_last_snapshot(&root->root_item, 0);
1292         btrfs_set_root_dirid(&root->root_item, 0);
1293         if (is_fstree(objectid))
1294                 generate_random_guid(root->root_item.uuid);
1295         else
1296                 export_guid(root->root_item.uuid, &guid_null);
1297         btrfs_set_root_drop_level(&root->root_item, 0);
1298
1299         btrfs_tree_unlock(leaf);
1300
1301         key.objectid = objectid;
1302         key.type = BTRFS_ROOT_ITEM_KEY;
1303         key.offset = 0;
1304         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1305         if (ret)
1306                 goto fail;
1307
1308         return root;
1309
1310 fail_unlock:
1311         if (leaf)
1312                 btrfs_tree_unlock(leaf);
1313 fail:
1314         btrfs_put_root(root);
1315
1316         return ERR_PTR(ret);
1317 }
1318
1319 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1320                                          struct btrfs_fs_info *fs_info)
1321 {
1322         struct btrfs_root *root;
1323
1324         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1325         if (!root)
1326                 return ERR_PTR(-ENOMEM);
1327
1328         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1329         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1330         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1331
1332         return root;
1333 }
1334
1335 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1336                               struct btrfs_root *root)
1337 {
1338         struct extent_buffer *leaf;
1339
1340         /*
1341          * DON'T set SHAREABLE bit for log trees.
1342          *
1343          * Log trees are not exposed to user space thus can't be snapshotted,
1344          * and they go away before a real commit is actually done.
1345          *
1346          * They do store pointers to file data extents, and those reference
1347          * counts still get updated (along with back refs to the log tree).
1348          */
1349
1350         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1351                         NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1352         if (IS_ERR(leaf))
1353                 return PTR_ERR(leaf);
1354
1355         root->node = leaf;
1356
1357         btrfs_mark_buffer_dirty(root->node);
1358         btrfs_tree_unlock(root->node);
1359
1360         return 0;
1361 }
1362
1363 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1364                              struct btrfs_fs_info *fs_info)
1365 {
1366         struct btrfs_root *log_root;
1367
1368         log_root = alloc_log_tree(trans, fs_info);
1369         if (IS_ERR(log_root))
1370                 return PTR_ERR(log_root);
1371
1372         if (!btrfs_is_zoned(fs_info)) {
1373                 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1374
1375                 if (ret) {
1376                         btrfs_put_root(log_root);
1377                         return ret;
1378                 }
1379         }
1380
1381         WARN_ON(fs_info->log_root_tree);
1382         fs_info->log_root_tree = log_root;
1383         return 0;
1384 }
1385
1386 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1387                        struct btrfs_root *root)
1388 {
1389         struct btrfs_fs_info *fs_info = root->fs_info;
1390         struct btrfs_root *log_root;
1391         struct btrfs_inode_item *inode_item;
1392         int ret;
1393
1394         log_root = alloc_log_tree(trans, fs_info);
1395         if (IS_ERR(log_root))
1396                 return PTR_ERR(log_root);
1397
1398         ret = btrfs_alloc_log_tree_node(trans, log_root);
1399         if (ret) {
1400                 btrfs_put_root(log_root);
1401                 return ret;
1402         }
1403
1404         log_root->last_trans = trans->transid;
1405         log_root->root_key.offset = root->root_key.objectid;
1406
1407         inode_item = &log_root->root_item.inode;
1408         btrfs_set_stack_inode_generation(inode_item, 1);
1409         btrfs_set_stack_inode_size(inode_item, 3);
1410         btrfs_set_stack_inode_nlink(inode_item, 1);
1411         btrfs_set_stack_inode_nbytes(inode_item,
1412                                      fs_info->nodesize);
1413         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1414
1415         btrfs_set_root_node(&log_root->root_item, log_root->node);
1416
1417         WARN_ON(root->log_root);
1418         root->log_root = log_root;
1419         root->log_transid = 0;
1420         root->log_transid_committed = -1;
1421         root->last_log_commit = 0;
1422         return 0;
1423 }
1424
1425 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1426                                               struct btrfs_path *path,
1427                                               struct btrfs_key *key)
1428 {
1429         struct btrfs_root *root;
1430         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1431         u64 generation;
1432         int ret;
1433         int level;
1434
1435         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1436         if (!root)
1437                 return ERR_PTR(-ENOMEM);
1438
1439         ret = btrfs_find_root(tree_root, key, path,
1440                               &root->root_item, &root->root_key);
1441         if (ret) {
1442                 if (ret > 0)
1443                         ret = -ENOENT;
1444                 goto fail;
1445         }
1446
1447         generation = btrfs_root_generation(&root->root_item);
1448         level = btrfs_root_level(&root->root_item);
1449         root->node = read_tree_block(fs_info,
1450                                      btrfs_root_bytenr(&root->root_item),
1451                                      key->objectid, generation, level, NULL);
1452         if (IS_ERR(root->node)) {
1453                 ret = PTR_ERR(root->node);
1454                 root->node = NULL;
1455                 goto fail;
1456         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1457                 ret = -EIO;
1458                 goto fail;
1459         }
1460         root->commit_root = btrfs_root_node(root);
1461         return root;
1462 fail:
1463         btrfs_put_root(root);
1464         return ERR_PTR(ret);
1465 }
1466
1467 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1468                                         struct btrfs_key *key)
1469 {
1470         struct btrfs_root *root;
1471         struct btrfs_path *path;
1472
1473         path = btrfs_alloc_path();
1474         if (!path)
1475                 return ERR_PTR(-ENOMEM);
1476         root = read_tree_root_path(tree_root, path, key);
1477         btrfs_free_path(path);
1478
1479         return root;
1480 }
1481
1482 /*
1483  * Initialize subvolume root in-memory structure
1484  *
1485  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1486  */
1487 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1488 {
1489         int ret;
1490         unsigned int nofs_flag;
1491
1492         /*
1493          * We might be called under a transaction (e.g. indirect backref
1494          * resolution) which could deadlock if it triggers memory reclaim
1495          */
1496         nofs_flag = memalloc_nofs_save();
1497         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1498         memalloc_nofs_restore(nofs_flag);
1499         if (ret)
1500                 goto fail;
1501
1502         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1503             !btrfs_is_data_reloc_root(root)) {
1504                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1505                 btrfs_check_and_init_root_item(&root->root_item);
1506         }
1507
1508         /*
1509          * Don't assign anonymous block device to roots that are not exposed to
1510          * userspace, the id pool is limited to 1M
1511          */
1512         if (is_fstree(root->root_key.objectid) &&
1513             btrfs_root_refs(&root->root_item) > 0) {
1514                 if (!anon_dev) {
1515                         ret = get_anon_bdev(&root->anon_dev);
1516                         if (ret)
1517                                 goto fail;
1518                 } else {
1519                         root->anon_dev = anon_dev;
1520                 }
1521         }
1522
1523         mutex_lock(&root->objectid_mutex);
1524         ret = btrfs_init_root_free_objectid(root);
1525         if (ret) {
1526                 mutex_unlock(&root->objectid_mutex);
1527                 goto fail;
1528         }
1529
1530         ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1531
1532         mutex_unlock(&root->objectid_mutex);
1533
1534         return 0;
1535 fail:
1536         /* The caller is responsible to call btrfs_free_fs_root */
1537         return ret;
1538 }
1539
1540 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1541                                                u64 root_id)
1542 {
1543         struct btrfs_root *root;
1544
1545         spin_lock(&fs_info->fs_roots_radix_lock);
1546         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1547                                  (unsigned long)root_id);
1548         if (root)
1549                 root = btrfs_grab_root(root);
1550         spin_unlock(&fs_info->fs_roots_radix_lock);
1551         return root;
1552 }
1553
1554 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1555                                                 u64 objectid)
1556 {
1557         if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1558                 return btrfs_grab_root(fs_info->tree_root);
1559         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1560                 return btrfs_grab_root(fs_info->extent_root);
1561         if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1562                 return btrfs_grab_root(fs_info->chunk_root);
1563         if (objectid == BTRFS_DEV_TREE_OBJECTID)
1564                 return btrfs_grab_root(fs_info->dev_root);
1565         if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1566                 return btrfs_grab_root(fs_info->csum_root);
1567         if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1568                 return btrfs_grab_root(fs_info->quota_root) ?
1569                         fs_info->quota_root : ERR_PTR(-ENOENT);
1570         if (objectid == BTRFS_UUID_TREE_OBJECTID)
1571                 return btrfs_grab_root(fs_info->uuid_root) ?
1572                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1573         if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1574                 return btrfs_grab_root(fs_info->free_space_root) ?
1575                         fs_info->free_space_root : ERR_PTR(-ENOENT);
1576         return NULL;
1577 }
1578
1579 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1580                          struct btrfs_root *root)
1581 {
1582         int ret;
1583
1584         ret = radix_tree_preload(GFP_NOFS);
1585         if (ret)
1586                 return ret;
1587
1588         spin_lock(&fs_info->fs_roots_radix_lock);
1589         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1590                                 (unsigned long)root->root_key.objectid,
1591                                 root);
1592         if (ret == 0) {
1593                 btrfs_grab_root(root);
1594                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1595         }
1596         spin_unlock(&fs_info->fs_roots_radix_lock);
1597         radix_tree_preload_end();
1598
1599         return ret;
1600 }
1601
1602 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1603 {
1604 #ifdef CONFIG_BTRFS_DEBUG
1605         struct btrfs_root *root;
1606
1607         while (!list_empty(&fs_info->allocated_roots)) {
1608                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1609
1610                 root = list_first_entry(&fs_info->allocated_roots,
1611                                         struct btrfs_root, leak_list);
1612                 btrfs_err(fs_info, "leaked root %s refcount %d",
1613                           btrfs_root_name(&root->root_key, buf),
1614                           refcount_read(&root->refs));
1615                 while (refcount_read(&root->refs) > 1)
1616                         btrfs_put_root(root);
1617                 btrfs_put_root(root);
1618         }
1619 #endif
1620 }
1621
1622 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1623 {
1624         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1625         percpu_counter_destroy(&fs_info->delalloc_bytes);
1626         percpu_counter_destroy(&fs_info->ordered_bytes);
1627         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1628         btrfs_free_csum_hash(fs_info);
1629         btrfs_free_stripe_hash_table(fs_info);
1630         btrfs_free_ref_cache(fs_info);
1631         kfree(fs_info->balance_ctl);
1632         kfree(fs_info->delayed_root);
1633         btrfs_put_root(fs_info->extent_root);
1634         btrfs_put_root(fs_info->tree_root);
1635         btrfs_put_root(fs_info->chunk_root);
1636         btrfs_put_root(fs_info->dev_root);
1637         btrfs_put_root(fs_info->csum_root);
1638         btrfs_put_root(fs_info->quota_root);
1639         btrfs_put_root(fs_info->uuid_root);
1640         btrfs_put_root(fs_info->free_space_root);
1641         btrfs_put_root(fs_info->fs_root);
1642         btrfs_put_root(fs_info->data_reloc_root);
1643         btrfs_check_leaked_roots(fs_info);
1644         btrfs_extent_buffer_leak_debug_check(fs_info);
1645         kfree(fs_info->super_copy);
1646         kfree(fs_info->super_for_commit);
1647         kfree(fs_info->subpage_info);
1648         kvfree(fs_info);
1649 }
1650
1651
1652 /*
1653  * Get an in-memory reference of a root structure.
1654  *
1655  * For essential trees like root/extent tree, we grab it from fs_info directly.
1656  * For subvolume trees, we check the cached filesystem roots first. If not
1657  * found, then read it from disk and add it to cached fs roots.
1658  *
1659  * Caller should release the root by calling btrfs_put_root() after the usage.
1660  *
1661  * NOTE: Reloc and log trees can't be read by this function as they share the
1662  *       same root objectid.
1663  *
1664  * @objectid:   root id
1665  * @anon_dev:   preallocated anonymous block device number for new roots,
1666  *              pass 0 for new allocation.
1667  * @check_ref:  whether to check root item references, If true, return -ENOENT
1668  *              for orphan roots
1669  */
1670 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1671                                              u64 objectid, dev_t anon_dev,
1672                                              bool check_ref)
1673 {
1674         struct btrfs_root *root;
1675         struct btrfs_path *path;
1676         struct btrfs_key key;
1677         int ret;
1678
1679         root = btrfs_get_global_root(fs_info, objectid);
1680         if (root)
1681                 return root;
1682 again:
1683         root = btrfs_lookup_fs_root(fs_info, objectid);
1684         if (root) {
1685                 /* Shouldn't get preallocated anon_dev for cached roots */
1686                 ASSERT(!anon_dev);
1687                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1688                         btrfs_put_root(root);
1689                         return ERR_PTR(-ENOENT);
1690                 }
1691                 return root;
1692         }
1693
1694         key.objectid = objectid;
1695         key.type = BTRFS_ROOT_ITEM_KEY;
1696         key.offset = (u64)-1;
1697         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1698         if (IS_ERR(root))
1699                 return root;
1700
1701         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1702                 ret = -ENOENT;
1703                 goto fail;
1704         }
1705
1706         ret = btrfs_init_fs_root(root, anon_dev);
1707         if (ret)
1708                 goto fail;
1709
1710         path = btrfs_alloc_path();
1711         if (!path) {
1712                 ret = -ENOMEM;
1713                 goto fail;
1714         }
1715         key.objectid = BTRFS_ORPHAN_OBJECTID;
1716         key.type = BTRFS_ORPHAN_ITEM_KEY;
1717         key.offset = objectid;
1718
1719         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1720         btrfs_free_path(path);
1721         if (ret < 0)
1722                 goto fail;
1723         if (ret == 0)
1724                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1725
1726         ret = btrfs_insert_fs_root(fs_info, root);
1727         if (ret) {
1728                 btrfs_put_root(root);
1729                 if (ret == -EEXIST)
1730                         goto again;
1731                 goto fail;
1732         }
1733         return root;
1734 fail:
1735         /*
1736          * If our caller provided us an anonymous device, then it's his
1737          * responsability to free it in case we fail. So we have to set our
1738          * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1739          * and once again by our caller.
1740          */
1741         if (anon_dev)
1742                 root->anon_dev = 0;
1743         btrfs_put_root(root);
1744         return ERR_PTR(ret);
1745 }
1746
1747 /*
1748  * Get in-memory reference of a root structure
1749  *
1750  * @objectid:   tree objectid
1751  * @check_ref:  if set, verify that the tree exists and the item has at least
1752  *              one reference
1753  */
1754 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1755                                      u64 objectid, bool check_ref)
1756 {
1757         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1758 }
1759
1760 /*
1761  * Get in-memory reference of a root structure, created as new, optionally pass
1762  * the anonymous block device id
1763  *
1764  * @objectid:   tree objectid
1765  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1766  *              parameter value
1767  */
1768 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1769                                          u64 objectid, dev_t anon_dev)
1770 {
1771         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1772 }
1773
1774 /*
1775  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1776  * @fs_info:    the fs_info
1777  * @objectid:   the objectid we need to lookup
1778  *
1779  * This is exclusively used for backref walking, and exists specifically because
1780  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1781  * creation time, which means we may have to read the tree_root in order to look
1782  * up a fs root that is not in memory.  If the root is not in memory we will
1783  * read the tree root commit root and look up the fs root from there.  This is a
1784  * temporary root, it will not be inserted into the radix tree as it doesn't
1785  * have the most uptodate information, it'll simply be discarded once the
1786  * backref code is finished using the root.
1787  */
1788 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1789                                                  struct btrfs_path *path,
1790                                                  u64 objectid)
1791 {
1792         struct btrfs_root *root;
1793         struct btrfs_key key;
1794
1795         ASSERT(path->search_commit_root && path->skip_locking);
1796
1797         /*
1798          * This can return -ENOENT if we ask for a root that doesn't exist, but
1799          * since this is called via the backref walking code we won't be looking
1800          * up a root that doesn't exist, unless there's corruption.  So if root
1801          * != NULL just return it.
1802          */
1803         root = btrfs_get_global_root(fs_info, objectid);
1804         if (root)
1805                 return root;
1806
1807         root = btrfs_lookup_fs_root(fs_info, objectid);
1808         if (root)
1809                 return root;
1810
1811         key.objectid = objectid;
1812         key.type = BTRFS_ROOT_ITEM_KEY;
1813         key.offset = (u64)-1;
1814         root = read_tree_root_path(fs_info->tree_root, path, &key);
1815         btrfs_release_path(path);
1816
1817         return root;
1818 }
1819
1820 /*
1821  * called by the kthread helper functions to finally call the bio end_io
1822  * functions.  This is where read checksum verification actually happens
1823  */
1824 static void end_workqueue_fn(struct btrfs_work *work)
1825 {
1826         struct bio *bio;
1827         struct btrfs_end_io_wq *end_io_wq;
1828
1829         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1830         bio = end_io_wq->bio;
1831
1832         bio->bi_status = end_io_wq->status;
1833         bio->bi_private = end_io_wq->private;
1834         bio->bi_end_io = end_io_wq->end_io;
1835         bio_endio(bio);
1836         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1837 }
1838
1839 static int cleaner_kthread(void *arg)
1840 {
1841         struct btrfs_root *root = arg;
1842         struct btrfs_fs_info *fs_info = root->fs_info;
1843         int again;
1844
1845         while (1) {
1846                 again = 0;
1847
1848                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1849
1850                 /* Make the cleaner go to sleep early. */
1851                 if (btrfs_need_cleaner_sleep(fs_info))
1852                         goto sleep;
1853
1854                 /*
1855                  * Do not do anything if we might cause open_ctree() to block
1856                  * before we have finished mounting the filesystem.
1857                  */
1858                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1859                         goto sleep;
1860
1861                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1862                         goto sleep;
1863
1864                 /*
1865                  * Avoid the problem that we change the status of the fs
1866                  * during the above check and trylock.
1867                  */
1868                 if (btrfs_need_cleaner_sleep(fs_info)) {
1869                         mutex_unlock(&fs_info->cleaner_mutex);
1870                         goto sleep;
1871                 }
1872
1873                 btrfs_run_delayed_iputs(fs_info);
1874
1875                 again = btrfs_clean_one_deleted_snapshot(root);
1876                 mutex_unlock(&fs_info->cleaner_mutex);
1877
1878                 /*
1879                  * The defragger has dealt with the R/O remount and umount,
1880                  * needn't do anything special here.
1881                  */
1882                 btrfs_run_defrag_inodes(fs_info);
1883
1884                 /*
1885                  * Acquires fs_info->reclaim_bgs_lock to avoid racing
1886                  * with relocation (btrfs_relocate_chunk) and relocation
1887                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1888                  * after acquiring fs_info->reclaim_bgs_lock. So we
1889                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1890                  * unused block groups.
1891                  */
1892                 btrfs_delete_unused_bgs(fs_info);
1893
1894                 /*
1895                  * Reclaim block groups in the reclaim_bgs list after we deleted
1896                  * all unused block_groups. This possibly gives us some more free
1897                  * space.
1898                  */
1899                 btrfs_reclaim_bgs(fs_info);
1900 sleep:
1901                 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1902                 if (kthread_should_park())
1903                         kthread_parkme();
1904                 if (kthread_should_stop())
1905                         return 0;
1906                 if (!again) {
1907                         set_current_state(TASK_INTERRUPTIBLE);
1908                         schedule();
1909                         __set_current_state(TASK_RUNNING);
1910                 }
1911         }
1912 }
1913
1914 static int transaction_kthread(void *arg)
1915 {
1916         struct btrfs_root *root = arg;
1917         struct btrfs_fs_info *fs_info = root->fs_info;
1918         struct btrfs_trans_handle *trans;
1919         struct btrfs_transaction *cur;
1920         u64 transid;
1921         time64_t delta;
1922         unsigned long delay;
1923         bool cannot_commit;
1924
1925         do {
1926                 cannot_commit = false;
1927                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1928                 mutex_lock(&fs_info->transaction_kthread_mutex);
1929
1930                 spin_lock(&fs_info->trans_lock);
1931                 cur = fs_info->running_transaction;
1932                 if (!cur) {
1933                         spin_unlock(&fs_info->trans_lock);
1934                         goto sleep;
1935                 }
1936
1937                 delta = ktime_get_seconds() - cur->start_time;
1938                 if (cur->state < TRANS_STATE_COMMIT_START &&
1939                     delta < fs_info->commit_interval) {
1940                         spin_unlock(&fs_info->trans_lock);
1941                         delay -= msecs_to_jiffies((delta - 1) * 1000);
1942                         delay = min(delay,
1943                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
1944                         goto sleep;
1945                 }
1946                 transid = cur->transid;
1947                 spin_unlock(&fs_info->trans_lock);
1948
1949                 /* If the file system is aborted, this will always fail. */
1950                 trans = btrfs_attach_transaction(root);
1951                 if (IS_ERR(trans)) {
1952                         if (PTR_ERR(trans) != -ENOENT)
1953                                 cannot_commit = true;
1954                         goto sleep;
1955                 }
1956                 if (transid == trans->transid) {
1957                         btrfs_commit_transaction(trans);
1958                 } else {
1959                         btrfs_end_transaction(trans);
1960                 }
1961 sleep:
1962                 wake_up_process(fs_info->cleaner_kthread);
1963                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1964
1965                 if (BTRFS_FS_ERROR(fs_info))
1966                         btrfs_cleanup_transaction(fs_info);
1967                 if (!kthread_should_stop() &&
1968                                 (!btrfs_transaction_blocked(fs_info) ||
1969                                  cannot_commit))
1970                         schedule_timeout_interruptible(delay);
1971         } while (!kthread_should_stop());
1972         return 0;
1973 }
1974
1975 /*
1976  * This will find the highest generation in the array of root backups.  The
1977  * index of the highest array is returned, or -EINVAL if we can't find
1978  * anything.
1979  *
1980  * We check to make sure the array is valid by comparing the
1981  * generation of the latest  root in the array with the generation
1982  * in the super block.  If they don't match we pitch it.
1983  */
1984 static int find_newest_super_backup(struct btrfs_fs_info *info)
1985 {
1986         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1987         u64 cur;
1988         struct btrfs_root_backup *root_backup;
1989         int i;
1990
1991         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1992                 root_backup = info->super_copy->super_roots + i;
1993                 cur = btrfs_backup_tree_root_gen(root_backup);
1994                 if (cur == newest_gen)
1995                         return i;
1996         }
1997
1998         return -EINVAL;
1999 }
2000
2001 /*
2002  * copy all the root pointers into the super backup array.
2003  * this will bump the backup pointer by one when it is
2004  * done
2005  */
2006 static void backup_super_roots(struct btrfs_fs_info *info)
2007 {
2008         const int next_backup = info->backup_root_index;
2009         struct btrfs_root_backup *root_backup;
2010
2011         root_backup = info->super_for_commit->super_roots + next_backup;
2012
2013         /*
2014          * make sure all of our padding and empty slots get zero filled
2015          * regardless of which ones we use today
2016          */
2017         memset(root_backup, 0, sizeof(*root_backup));
2018
2019         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2020
2021         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2022         btrfs_set_backup_tree_root_gen(root_backup,
2023                                btrfs_header_generation(info->tree_root->node));
2024
2025         btrfs_set_backup_tree_root_level(root_backup,
2026                                btrfs_header_level(info->tree_root->node));
2027
2028         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2029         btrfs_set_backup_chunk_root_gen(root_backup,
2030                                btrfs_header_generation(info->chunk_root->node));
2031         btrfs_set_backup_chunk_root_level(root_backup,
2032                                btrfs_header_level(info->chunk_root->node));
2033
2034         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2035         btrfs_set_backup_extent_root_gen(root_backup,
2036                                btrfs_header_generation(info->extent_root->node));
2037         btrfs_set_backup_extent_root_level(root_backup,
2038                                btrfs_header_level(info->extent_root->node));
2039
2040         /*
2041          * we might commit during log recovery, which happens before we set
2042          * the fs_root.  Make sure it is valid before we fill it in.
2043          */
2044         if (info->fs_root && info->fs_root->node) {
2045                 btrfs_set_backup_fs_root(root_backup,
2046                                          info->fs_root->node->start);
2047                 btrfs_set_backup_fs_root_gen(root_backup,
2048                                btrfs_header_generation(info->fs_root->node));
2049                 btrfs_set_backup_fs_root_level(root_backup,
2050                                btrfs_header_level(info->fs_root->node));
2051         }
2052
2053         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2054         btrfs_set_backup_dev_root_gen(root_backup,
2055                                btrfs_header_generation(info->dev_root->node));
2056         btrfs_set_backup_dev_root_level(root_backup,
2057                                        btrfs_header_level(info->dev_root->node));
2058
2059         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2060         btrfs_set_backup_csum_root_gen(root_backup,
2061                                btrfs_header_generation(info->csum_root->node));
2062         btrfs_set_backup_csum_root_level(root_backup,
2063                                btrfs_header_level(info->csum_root->node));
2064
2065         btrfs_set_backup_total_bytes(root_backup,
2066                              btrfs_super_total_bytes(info->super_copy));
2067         btrfs_set_backup_bytes_used(root_backup,
2068                              btrfs_super_bytes_used(info->super_copy));
2069         btrfs_set_backup_num_devices(root_backup,
2070                              btrfs_super_num_devices(info->super_copy));
2071
2072         /*
2073          * if we don't copy this out to the super_copy, it won't get remembered
2074          * for the next commit
2075          */
2076         memcpy(&info->super_copy->super_roots,
2077                &info->super_for_commit->super_roots,
2078                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2079 }
2080
2081 /*
2082  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2083  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2084  *
2085  * fs_info - filesystem whose backup roots need to be read
2086  * priority - priority of backup root required
2087  *
2088  * Returns backup root index on success and -EINVAL otherwise.
2089  */
2090 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2091 {
2092         int backup_index = find_newest_super_backup(fs_info);
2093         struct btrfs_super_block *super = fs_info->super_copy;
2094         struct btrfs_root_backup *root_backup;
2095
2096         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2097                 if (priority == 0)
2098                         return backup_index;
2099
2100                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2101                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2102         } else {
2103                 return -EINVAL;
2104         }
2105
2106         root_backup = super->super_roots + backup_index;
2107
2108         btrfs_set_super_generation(super,
2109                                    btrfs_backup_tree_root_gen(root_backup));
2110         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2111         btrfs_set_super_root_level(super,
2112                                    btrfs_backup_tree_root_level(root_backup));
2113         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2114
2115         /*
2116          * Fixme: the total bytes and num_devices need to match or we should
2117          * need a fsck
2118          */
2119         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2120         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2121
2122         return backup_index;
2123 }
2124
2125 /* helper to cleanup workers */
2126 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2127 {
2128         btrfs_destroy_workqueue(fs_info->fixup_workers);
2129         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2130         btrfs_destroy_workqueue(fs_info->workers);
2131         btrfs_destroy_workqueue(fs_info->endio_workers);
2132         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2133         btrfs_destroy_workqueue(fs_info->rmw_workers);
2134         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2135         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2136         btrfs_destroy_workqueue(fs_info->delayed_workers);
2137         btrfs_destroy_workqueue(fs_info->caching_workers);
2138         btrfs_destroy_workqueue(fs_info->readahead_workers);
2139         btrfs_destroy_workqueue(fs_info->flush_workers);
2140         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2141         if (fs_info->discard_ctl.discard_workers)
2142                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2143         /*
2144          * Now that all other work queues are destroyed, we can safely destroy
2145          * the queues used for metadata I/O, since tasks from those other work
2146          * queues can do metadata I/O operations.
2147          */
2148         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2149         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2150 }
2151
2152 static void free_root_extent_buffers(struct btrfs_root *root)
2153 {
2154         if (root) {
2155                 free_extent_buffer(root->node);
2156                 free_extent_buffer(root->commit_root);
2157                 root->node = NULL;
2158                 root->commit_root = NULL;
2159         }
2160 }
2161
2162 /* helper to cleanup tree roots */
2163 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2164 {
2165         free_root_extent_buffers(info->tree_root);
2166
2167         free_root_extent_buffers(info->dev_root);
2168         free_root_extent_buffers(info->extent_root);
2169         free_root_extent_buffers(info->csum_root);
2170         free_root_extent_buffers(info->quota_root);
2171         free_root_extent_buffers(info->uuid_root);
2172         free_root_extent_buffers(info->fs_root);
2173         free_root_extent_buffers(info->data_reloc_root);
2174         if (free_chunk_root)
2175                 free_root_extent_buffers(info->chunk_root);
2176         free_root_extent_buffers(info->free_space_root);
2177 }
2178
2179 void btrfs_put_root(struct btrfs_root *root)
2180 {
2181         if (!root)
2182                 return;
2183
2184         if (refcount_dec_and_test(&root->refs)) {
2185                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2186                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2187                 if (root->anon_dev)
2188                         free_anon_bdev(root->anon_dev);
2189                 btrfs_drew_lock_destroy(&root->snapshot_lock);
2190                 free_root_extent_buffers(root);
2191 #ifdef CONFIG_BTRFS_DEBUG
2192                 spin_lock(&root->fs_info->fs_roots_radix_lock);
2193                 list_del_init(&root->leak_list);
2194                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2195 #endif
2196                 kfree(root);
2197         }
2198 }
2199
2200 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2201 {
2202         int ret;
2203         struct btrfs_root *gang[8];
2204         int i;
2205
2206         while (!list_empty(&fs_info->dead_roots)) {
2207                 gang[0] = list_entry(fs_info->dead_roots.next,
2208                                      struct btrfs_root, root_list);
2209                 list_del(&gang[0]->root_list);
2210
2211                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2212                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2213                 btrfs_put_root(gang[0]);
2214         }
2215
2216         while (1) {
2217                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2218                                              (void **)gang, 0,
2219                                              ARRAY_SIZE(gang));
2220                 if (!ret)
2221                         break;
2222                 for (i = 0; i < ret; i++)
2223                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2224         }
2225 }
2226
2227 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2228 {
2229         mutex_init(&fs_info->scrub_lock);
2230         atomic_set(&fs_info->scrubs_running, 0);
2231         atomic_set(&fs_info->scrub_pause_req, 0);
2232         atomic_set(&fs_info->scrubs_paused, 0);
2233         atomic_set(&fs_info->scrub_cancel_req, 0);
2234         init_waitqueue_head(&fs_info->scrub_pause_wait);
2235         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2236 }
2237
2238 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2239 {
2240         spin_lock_init(&fs_info->balance_lock);
2241         mutex_init(&fs_info->balance_mutex);
2242         atomic_set(&fs_info->balance_pause_req, 0);
2243         atomic_set(&fs_info->balance_cancel_req, 0);
2244         fs_info->balance_ctl = NULL;
2245         init_waitqueue_head(&fs_info->balance_wait_q);
2246         atomic_set(&fs_info->reloc_cancel_req, 0);
2247 }
2248
2249 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2250 {
2251         struct inode *inode = fs_info->btree_inode;
2252
2253         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2254         set_nlink(inode, 1);
2255         /*
2256          * we set the i_size on the btree inode to the max possible int.
2257          * the real end of the address space is determined by all of
2258          * the devices in the system
2259          */
2260         inode->i_size = OFFSET_MAX;
2261         inode->i_mapping->a_ops = &btree_aops;
2262
2263         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2264         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2265                             IO_TREE_BTREE_INODE_IO, inode);
2266         BTRFS_I(inode)->io_tree.track_uptodate = false;
2267         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2268
2269         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2270         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2271         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2272         btrfs_insert_inode_hash(inode);
2273 }
2274
2275 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2276 {
2277         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2278         init_rwsem(&fs_info->dev_replace.rwsem);
2279         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2280 }
2281
2282 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2283 {
2284         spin_lock_init(&fs_info->qgroup_lock);
2285         mutex_init(&fs_info->qgroup_ioctl_lock);
2286         fs_info->qgroup_tree = RB_ROOT;
2287         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2288         fs_info->qgroup_seq = 1;
2289         fs_info->qgroup_ulist = NULL;
2290         fs_info->qgroup_rescan_running = false;
2291         mutex_init(&fs_info->qgroup_rescan_lock);
2292 }
2293
2294 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2295                 struct btrfs_fs_devices *fs_devices)
2296 {
2297         u32 max_active = fs_info->thread_pool_size;
2298         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2299
2300         fs_info->workers =
2301                 btrfs_alloc_workqueue(fs_info, "worker",
2302                                       flags | WQ_HIGHPRI, max_active, 16);
2303
2304         fs_info->delalloc_workers =
2305                 btrfs_alloc_workqueue(fs_info, "delalloc",
2306                                       flags, max_active, 2);
2307
2308         fs_info->flush_workers =
2309                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2310                                       flags, max_active, 0);
2311
2312         fs_info->caching_workers =
2313                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2314
2315         fs_info->fixup_workers =
2316                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2317
2318         /*
2319          * endios are largely parallel and should have a very
2320          * low idle thresh
2321          */
2322         fs_info->endio_workers =
2323                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2324         fs_info->endio_meta_workers =
2325                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2326                                       max_active, 4);
2327         fs_info->endio_meta_write_workers =
2328                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2329                                       max_active, 2);
2330         fs_info->endio_raid56_workers =
2331                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2332                                       max_active, 4);
2333         fs_info->rmw_workers =
2334                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2335         fs_info->endio_write_workers =
2336                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2337                                       max_active, 2);
2338         fs_info->endio_freespace_worker =
2339                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2340                                       max_active, 0);
2341         fs_info->delayed_workers =
2342                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2343                                       max_active, 0);
2344         fs_info->readahead_workers =
2345                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2346                                       max_active, 2);
2347         fs_info->qgroup_rescan_workers =
2348                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2349         fs_info->discard_ctl.discard_workers =
2350                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2351
2352         if (!(fs_info->workers && fs_info->delalloc_workers &&
2353               fs_info->flush_workers &&
2354               fs_info->endio_workers && fs_info->endio_meta_workers &&
2355               fs_info->endio_meta_write_workers &&
2356               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2357               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2358               fs_info->caching_workers && fs_info->readahead_workers &&
2359               fs_info->fixup_workers && fs_info->delayed_workers &&
2360               fs_info->qgroup_rescan_workers &&
2361               fs_info->discard_ctl.discard_workers)) {
2362                 return -ENOMEM;
2363         }
2364
2365         return 0;
2366 }
2367
2368 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2369 {
2370         struct crypto_shash *csum_shash;
2371         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2372
2373         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2374
2375         if (IS_ERR(csum_shash)) {
2376                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2377                           csum_driver);
2378                 return PTR_ERR(csum_shash);
2379         }
2380
2381         fs_info->csum_shash = csum_shash;
2382
2383         return 0;
2384 }
2385
2386 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2387                             struct btrfs_fs_devices *fs_devices)
2388 {
2389         int ret;
2390         struct btrfs_root *log_tree_root;
2391         struct btrfs_super_block *disk_super = fs_info->super_copy;
2392         u64 bytenr = btrfs_super_log_root(disk_super);
2393         int level = btrfs_super_log_root_level(disk_super);
2394
2395         if (fs_devices->rw_devices == 0) {
2396                 btrfs_warn(fs_info, "log replay required on RO media");
2397                 return -EIO;
2398         }
2399
2400         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2401                                          GFP_KERNEL);
2402         if (!log_tree_root)
2403                 return -ENOMEM;
2404
2405         log_tree_root->node = read_tree_block(fs_info, bytenr,
2406                                               BTRFS_TREE_LOG_OBJECTID,
2407                                               fs_info->generation + 1, level,
2408                                               NULL);
2409         if (IS_ERR(log_tree_root->node)) {
2410                 btrfs_warn(fs_info, "failed to read log tree");
2411                 ret = PTR_ERR(log_tree_root->node);
2412                 log_tree_root->node = NULL;
2413                 btrfs_put_root(log_tree_root);
2414                 return ret;
2415         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2416                 btrfs_err(fs_info, "failed to read log tree");
2417                 btrfs_put_root(log_tree_root);
2418                 return -EIO;
2419         }
2420         /* returns with log_tree_root freed on success */
2421         ret = btrfs_recover_log_trees(log_tree_root);
2422         if (ret) {
2423                 btrfs_handle_fs_error(fs_info, ret,
2424                                       "Failed to recover log tree");
2425                 btrfs_put_root(log_tree_root);
2426                 return ret;
2427         }
2428
2429         if (sb_rdonly(fs_info->sb)) {
2430                 ret = btrfs_commit_super(fs_info);
2431                 if (ret)
2432                         return ret;
2433         }
2434
2435         return 0;
2436 }
2437
2438 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2439 {
2440         struct btrfs_root *tree_root = fs_info->tree_root;
2441         struct btrfs_root *root;
2442         struct btrfs_key location;
2443         int ret;
2444
2445         BUG_ON(!fs_info->tree_root);
2446
2447         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2448         location.type = BTRFS_ROOT_ITEM_KEY;
2449         location.offset = 0;
2450
2451         root = btrfs_read_tree_root(tree_root, &location);
2452         if (IS_ERR(root)) {
2453                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2454                         ret = PTR_ERR(root);
2455                         goto out;
2456                 }
2457         } else {
2458                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2459                 fs_info->extent_root = root;
2460         }
2461
2462         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2463         root = btrfs_read_tree_root(tree_root, &location);
2464         if (IS_ERR(root)) {
2465                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2466                         ret = PTR_ERR(root);
2467                         goto out;
2468                 }
2469         } else {
2470                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2471                 fs_info->dev_root = root;
2472         }
2473         /* Initialize fs_info for all devices in any case */
2474         btrfs_init_devices_late(fs_info);
2475
2476         /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2477         if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2478                 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2479                 root = btrfs_read_tree_root(tree_root, &location);
2480                 if (IS_ERR(root)) {
2481                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2482                                 ret = PTR_ERR(root);
2483                                 goto out;
2484                         }
2485                 } else {
2486                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2487                         fs_info->csum_root = root;
2488                 }
2489         }
2490
2491         /*
2492          * This tree can share blocks with some other fs tree during relocation
2493          * and we need a proper setup by btrfs_get_fs_root
2494          */
2495         root = btrfs_get_fs_root(tree_root->fs_info,
2496                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2497         if (IS_ERR(root)) {
2498                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2499                         ret = PTR_ERR(root);
2500                         goto out;
2501                 }
2502         } else {
2503                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2504                 fs_info->data_reloc_root = root;
2505         }
2506
2507         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2508         root = btrfs_read_tree_root(tree_root, &location);
2509         if (!IS_ERR(root)) {
2510                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2511                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2512                 fs_info->quota_root = root;
2513         }
2514
2515         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2516         root = btrfs_read_tree_root(tree_root, &location);
2517         if (IS_ERR(root)) {
2518                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2519                         ret = PTR_ERR(root);
2520                         if (ret != -ENOENT)
2521                                 goto out;
2522                 }
2523         } else {
2524                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2525                 fs_info->uuid_root = root;
2526         }
2527
2528         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2529                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2530                 root = btrfs_read_tree_root(tree_root, &location);
2531                 if (IS_ERR(root)) {
2532                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2533                                 ret = PTR_ERR(root);
2534                                 goto out;
2535                         }
2536                 }  else {
2537                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2538                         fs_info->free_space_root = root;
2539                 }
2540         }
2541
2542         return 0;
2543 out:
2544         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2545                    location.objectid, ret);
2546         return ret;
2547 }
2548
2549 /*
2550  * Real super block validation
2551  * NOTE: super csum type and incompat features will not be checked here.
2552  *
2553  * @sb:         super block to check
2554  * @mirror_num: the super block number to check its bytenr:
2555  *              0       the primary (1st) sb
2556  *              1, 2    2nd and 3rd backup copy
2557  *             -1       skip bytenr check
2558  */
2559 static int validate_super(struct btrfs_fs_info *fs_info,
2560                             struct btrfs_super_block *sb, int mirror_num)
2561 {
2562         u64 nodesize = btrfs_super_nodesize(sb);
2563         u64 sectorsize = btrfs_super_sectorsize(sb);
2564         int ret = 0;
2565
2566         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2567                 btrfs_err(fs_info, "no valid FS found");
2568                 ret = -EINVAL;
2569         }
2570         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2571                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2572                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2573                 ret = -EINVAL;
2574         }
2575         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2576                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2577                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2578                 ret = -EINVAL;
2579         }
2580         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2581                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2582                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2583                 ret = -EINVAL;
2584         }
2585         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2586                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2587                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2588                 ret = -EINVAL;
2589         }
2590
2591         /*
2592          * Check sectorsize and nodesize first, other check will need it.
2593          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2594          */
2595         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2596             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2597                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2598                 ret = -EINVAL;
2599         }
2600
2601         /*
2602          * For 4K page size, we only support 4K sector size.
2603          * For 64K page size, we support 64K and 4K sector sizes.
2604          */
2605         if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2606             (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2607                                      sectorsize != SZ_64K))) {
2608                 btrfs_err(fs_info,
2609                         "sectorsize %llu not yet supported for page size %lu",
2610                         sectorsize, PAGE_SIZE);
2611                 ret = -EINVAL;
2612         }
2613
2614         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2615             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2616                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2617                 ret = -EINVAL;
2618         }
2619         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2620                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2621                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2622                 ret = -EINVAL;
2623         }
2624
2625         /* Root alignment check */
2626         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2627                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2628                            btrfs_super_root(sb));
2629                 ret = -EINVAL;
2630         }
2631         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2632                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2633                            btrfs_super_chunk_root(sb));
2634                 ret = -EINVAL;
2635         }
2636         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2637                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2638                            btrfs_super_log_root(sb));
2639                 ret = -EINVAL;
2640         }
2641
2642         if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2643                    BTRFS_FSID_SIZE)) {
2644                 btrfs_err(fs_info,
2645                 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2646                         fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2647                 ret = -EINVAL;
2648         }
2649
2650         if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2651             memcmp(fs_info->fs_devices->metadata_uuid,
2652                    fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2653                 btrfs_err(fs_info,
2654 "superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2655                         fs_info->super_copy->metadata_uuid,
2656                         fs_info->fs_devices->metadata_uuid);
2657                 ret = -EINVAL;
2658         }
2659
2660         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2661                    BTRFS_FSID_SIZE) != 0) {
2662                 btrfs_err(fs_info,
2663                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2664                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2665                 ret = -EINVAL;
2666         }
2667
2668         /*
2669          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2670          * done later
2671          */
2672         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2673                 btrfs_err(fs_info, "bytes_used is too small %llu",
2674                           btrfs_super_bytes_used(sb));
2675                 ret = -EINVAL;
2676         }
2677         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2678                 btrfs_err(fs_info, "invalid stripesize %u",
2679                           btrfs_super_stripesize(sb));
2680                 ret = -EINVAL;
2681         }
2682         if (btrfs_super_num_devices(sb) > (1UL << 31))
2683                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2684                            btrfs_super_num_devices(sb));
2685         if (btrfs_super_num_devices(sb) == 0) {
2686                 btrfs_err(fs_info, "number of devices is 0");
2687                 ret = -EINVAL;
2688         }
2689
2690         if (mirror_num >= 0 &&
2691             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2692                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2693                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2694                 ret = -EINVAL;
2695         }
2696
2697         /*
2698          * Obvious sys_chunk_array corruptions, it must hold at least one key
2699          * and one chunk
2700          */
2701         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2702                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2703                           btrfs_super_sys_array_size(sb),
2704                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2705                 ret = -EINVAL;
2706         }
2707         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2708                         + sizeof(struct btrfs_chunk)) {
2709                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2710                           btrfs_super_sys_array_size(sb),
2711                           sizeof(struct btrfs_disk_key)
2712                           + sizeof(struct btrfs_chunk));
2713                 ret = -EINVAL;
2714         }
2715
2716         /*
2717          * The generation is a global counter, we'll trust it more than the others
2718          * but it's still possible that it's the one that's wrong.
2719          */
2720         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2721                 btrfs_warn(fs_info,
2722                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2723                         btrfs_super_generation(sb),
2724                         btrfs_super_chunk_root_generation(sb));
2725         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2726             && btrfs_super_cache_generation(sb) != (u64)-1)
2727                 btrfs_warn(fs_info,
2728                         "suspicious: generation < cache_generation: %llu < %llu",
2729                         btrfs_super_generation(sb),
2730                         btrfs_super_cache_generation(sb));
2731
2732         return ret;
2733 }
2734
2735 /*
2736  * Validation of super block at mount time.
2737  * Some checks already done early at mount time, like csum type and incompat
2738  * flags will be skipped.
2739  */
2740 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2741 {
2742         return validate_super(fs_info, fs_info->super_copy, 0);
2743 }
2744
2745 /*
2746  * Validation of super block at write time.
2747  * Some checks like bytenr check will be skipped as their values will be
2748  * overwritten soon.
2749  * Extra checks like csum type and incompat flags will be done here.
2750  */
2751 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2752                                       struct btrfs_super_block *sb)
2753 {
2754         int ret;
2755
2756         ret = validate_super(fs_info, sb, -1);
2757         if (ret < 0)
2758                 goto out;
2759         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2760                 ret = -EUCLEAN;
2761                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2762                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2763                 goto out;
2764         }
2765         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2766                 ret = -EUCLEAN;
2767                 btrfs_err(fs_info,
2768                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2769                           btrfs_super_incompat_flags(sb),
2770                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2771                 goto out;
2772         }
2773 out:
2774         if (ret < 0)
2775                 btrfs_err(fs_info,
2776                 "super block corruption detected before writing it to disk");
2777         return ret;
2778 }
2779
2780 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2781 {
2782         int backup_index = find_newest_super_backup(fs_info);
2783         struct btrfs_super_block *sb = fs_info->super_copy;
2784         struct btrfs_root *tree_root = fs_info->tree_root;
2785         bool handle_error = false;
2786         int ret = 0;
2787         int i;
2788
2789         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2790                 u64 generation;
2791                 int level;
2792
2793                 if (handle_error) {
2794                         if (!IS_ERR(tree_root->node))
2795                                 free_extent_buffer(tree_root->node);
2796                         tree_root->node = NULL;
2797
2798                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2799                                 break;
2800
2801                         free_root_pointers(fs_info, 0);
2802
2803                         /*
2804                          * Don't use the log in recovery mode, it won't be
2805                          * valid
2806                          */
2807                         btrfs_set_super_log_root(sb, 0);
2808
2809                         /* We can't trust the free space cache either */
2810                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2811
2812                         ret = read_backup_root(fs_info, i);
2813                         backup_index = ret;
2814                         if (ret < 0)
2815                                 return ret;
2816                 }
2817                 generation = btrfs_super_generation(sb);
2818                 level = btrfs_super_root_level(sb);
2819                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2820                                                   BTRFS_ROOT_TREE_OBJECTID,
2821                                                   generation, level, NULL);
2822                 if (IS_ERR(tree_root->node)) {
2823                         handle_error = true;
2824                         ret = PTR_ERR(tree_root->node);
2825                         tree_root->node = NULL;
2826                         btrfs_warn(fs_info, "couldn't read tree root");
2827                         continue;
2828
2829                 } else if (!extent_buffer_uptodate(tree_root->node)) {
2830                         handle_error = true;
2831                         ret = -EIO;
2832                         btrfs_warn(fs_info, "error while reading tree root");
2833                         continue;
2834                 }
2835
2836                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2837                 tree_root->commit_root = btrfs_root_node(tree_root);
2838                 btrfs_set_root_refs(&tree_root->root_item, 1);
2839
2840                 /*
2841                  * No need to hold btrfs_root::objectid_mutex since the fs
2842                  * hasn't been fully initialised and we are the only user
2843                  */
2844                 ret = btrfs_init_root_free_objectid(tree_root);
2845                 if (ret < 0) {
2846                         handle_error = true;
2847                         continue;
2848                 }
2849
2850                 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2851
2852                 ret = btrfs_read_roots(fs_info);
2853                 if (ret < 0) {
2854                         handle_error = true;
2855                         continue;
2856                 }
2857
2858                 /* All successful */
2859                 fs_info->generation = generation;
2860                 fs_info->last_trans_committed = generation;
2861
2862                 /* Always begin writing backup roots after the one being used */
2863                 if (backup_index < 0) {
2864                         fs_info->backup_root_index = 0;
2865                 } else {
2866                         fs_info->backup_root_index = backup_index + 1;
2867                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2868                 }
2869                 break;
2870         }
2871
2872         return ret;
2873 }
2874
2875 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2876 {
2877         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2878         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2879         INIT_LIST_HEAD(&fs_info->trans_list);
2880         INIT_LIST_HEAD(&fs_info->dead_roots);
2881         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2882         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2883         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2884         spin_lock_init(&fs_info->delalloc_root_lock);
2885         spin_lock_init(&fs_info->trans_lock);
2886         spin_lock_init(&fs_info->fs_roots_radix_lock);
2887         spin_lock_init(&fs_info->delayed_iput_lock);
2888         spin_lock_init(&fs_info->defrag_inodes_lock);
2889         spin_lock_init(&fs_info->super_lock);
2890         spin_lock_init(&fs_info->buffer_lock);
2891         spin_lock_init(&fs_info->unused_bgs_lock);
2892         spin_lock_init(&fs_info->treelog_bg_lock);
2893         spin_lock_init(&fs_info->zone_active_bgs_lock);
2894         spin_lock_init(&fs_info->relocation_bg_lock);
2895         rwlock_init(&fs_info->tree_mod_log_lock);
2896         mutex_init(&fs_info->unused_bg_unpin_mutex);
2897         mutex_init(&fs_info->reclaim_bgs_lock);
2898         mutex_init(&fs_info->reloc_mutex);
2899         mutex_init(&fs_info->delalloc_root_mutex);
2900         mutex_init(&fs_info->zoned_meta_io_lock);
2901         seqlock_init(&fs_info->profiles_lock);
2902
2903         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2904         INIT_LIST_HEAD(&fs_info->space_info);
2905         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2906         INIT_LIST_HEAD(&fs_info->unused_bgs);
2907         INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2908         INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2909 #ifdef CONFIG_BTRFS_DEBUG
2910         INIT_LIST_HEAD(&fs_info->allocated_roots);
2911         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2912         spin_lock_init(&fs_info->eb_leak_lock);
2913 #endif
2914         extent_map_tree_init(&fs_info->mapping_tree);
2915         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2916                              BTRFS_BLOCK_RSV_GLOBAL);
2917         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2918         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2919         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2920         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2921                              BTRFS_BLOCK_RSV_DELOPS);
2922         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2923                              BTRFS_BLOCK_RSV_DELREFS);
2924
2925         atomic_set(&fs_info->async_delalloc_pages, 0);
2926         atomic_set(&fs_info->defrag_running, 0);
2927         atomic_set(&fs_info->reada_works_cnt, 0);
2928         atomic_set(&fs_info->nr_delayed_iputs, 0);
2929         atomic64_set(&fs_info->tree_mod_seq, 0);
2930         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2931         fs_info->metadata_ratio = 0;
2932         fs_info->defrag_inodes = RB_ROOT;
2933         atomic64_set(&fs_info->free_chunk_space, 0);
2934         fs_info->tree_mod_log = RB_ROOT;
2935         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2936         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2937         /* readahead state */
2938         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2939         spin_lock_init(&fs_info->reada_lock);
2940         btrfs_init_ref_verify(fs_info);
2941
2942         fs_info->thread_pool_size = min_t(unsigned long,
2943                                           num_online_cpus() + 2, 8);
2944
2945         INIT_LIST_HEAD(&fs_info->ordered_roots);
2946         spin_lock_init(&fs_info->ordered_root_lock);
2947
2948         btrfs_init_scrub(fs_info);
2949 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2950         fs_info->check_integrity_print_mask = 0;
2951 #endif
2952         btrfs_init_balance(fs_info);
2953         btrfs_init_async_reclaim_work(fs_info);
2954
2955         spin_lock_init(&fs_info->block_group_cache_lock);
2956         fs_info->block_group_cache_tree = RB_ROOT;
2957         fs_info->first_logical_byte = (u64)-1;
2958
2959         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2960                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2961         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2962
2963         mutex_init(&fs_info->ordered_operations_mutex);
2964         mutex_init(&fs_info->tree_log_mutex);
2965         mutex_init(&fs_info->chunk_mutex);
2966         mutex_init(&fs_info->transaction_kthread_mutex);
2967         mutex_init(&fs_info->cleaner_mutex);
2968         mutex_init(&fs_info->ro_block_group_mutex);
2969         init_rwsem(&fs_info->commit_root_sem);
2970         init_rwsem(&fs_info->cleanup_work_sem);
2971         init_rwsem(&fs_info->subvol_sem);
2972         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2973
2974         btrfs_init_dev_replace_locks(fs_info);
2975         btrfs_init_qgroup(fs_info);
2976         btrfs_discard_init(fs_info);
2977
2978         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2979         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2980
2981         init_waitqueue_head(&fs_info->transaction_throttle);
2982         init_waitqueue_head(&fs_info->transaction_wait);
2983         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2984         init_waitqueue_head(&fs_info->async_submit_wait);
2985         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2986
2987         /* Usable values until the real ones are cached from the superblock */
2988         fs_info->nodesize = 4096;
2989         fs_info->sectorsize = 4096;
2990         fs_info->sectorsize_bits = ilog2(4096);
2991         fs_info->stripesize = 4096;
2992
2993         spin_lock_init(&fs_info->swapfile_pins_lock);
2994         fs_info->swapfile_pins = RB_ROOT;
2995
2996         spin_lock_init(&fs_info->send_reloc_lock);
2997         fs_info->send_in_progress = 0;
2998
2999         fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3000         INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3001 }
3002
3003 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3004 {
3005         int ret;
3006
3007         fs_info->sb = sb;
3008         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3009         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3010
3011         ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3012         if (ret)
3013                 return ret;
3014
3015         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3016         if (ret)
3017                 return ret;
3018
3019         fs_info->dirty_metadata_batch = PAGE_SIZE *
3020                                         (1 + ilog2(nr_cpu_ids));
3021
3022         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3023         if (ret)
3024                 return ret;
3025
3026         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3027                         GFP_KERNEL);
3028         if (ret)
3029                 return ret;
3030
3031         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3032                                         GFP_KERNEL);
3033         if (!fs_info->delayed_root)
3034                 return -ENOMEM;
3035         btrfs_init_delayed_root(fs_info->delayed_root);
3036
3037         if (sb_rdonly(sb))
3038                 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3039
3040         return btrfs_alloc_stripe_hash_table(fs_info);
3041 }
3042
3043 static int btrfs_uuid_rescan_kthread(void *data)
3044 {
3045         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3046         int ret;
3047
3048         /*
3049          * 1st step is to iterate through the existing UUID tree and
3050          * to delete all entries that contain outdated data.
3051          * 2nd step is to add all missing entries to the UUID tree.
3052          */
3053         ret = btrfs_uuid_tree_iterate(fs_info);
3054         if (ret < 0) {
3055                 if (ret != -EINTR)
3056                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3057                                    ret);
3058                 up(&fs_info->uuid_tree_rescan_sem);
3059                 return ret;
3060         }
3061         return btrfs_uuid_scan_kthread(data);
3062 }
3063
3064 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3065 {
3066         struct task_struct *task;
3067
3068         down(&fs_info->uuid_tree_rescan_sem);
3069         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3070         if (IS_ERR(task)) {
3071                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3072                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3073                 up(&fs_info->uuid_tree_rescan_sem);
3074                 return PTR_ERR(task);
3075         }
3076
3077         return 0;
3078 }
3079
3080 /*
3081  * Some options only have meaning at mount time and shouldn't persist across
3082  * remounts, or be displayed. Clear these at the end of mount and remount
3083  * code paths.
3084  */
3085 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3086 {
3087         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3088         btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3089 }
3090
3091 /*
3092  * Mounting logic specific to read-write file systems. Shared by open_ctree
3093  * and btrfs_remount when remounting from read-only to read-write.
3094  */
3095 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3096 {
3097         int ret;
3098         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3099         bool clear_free_space_tree = false;
3100
3101         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3102             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3103                 clear_free_space_tree = true;
3104         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3105                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3106                 btrfs_warn(fs_info, "free space tree is invalid");
3107                 clear_free_space_tree = true;
3108         }
3109
3110         if (clear_free_space_tree) {
3111                 btrfs_info(fs_info, "clearing free space tree");
3112                 ret = btrfs_clear_free_space_tree(fs_info);
3113                 if (ret) {
3114                         btrfs_warn(fs_info,
3115                                    "failed to clear free space tree: %d", ret);
3116                         goto out;
3117                 }
3118         }
3119
3120         /*
3121          * btrfs_find_orphan_roots() is responsible for finding all the dead
3122          * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3123          * them into the fs_info->fs_roots_radix tree. This must be done before
3124          * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3125          * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3126          * item before the root's tree is deleted - this means that if we unmount
3127          * or crash before the deletion completes, on the next mount we will not
3128          * delete what remains of the tree because the orphan item does not
3129          * exists anymore, which is what tells us we have a pending deletion.
3130          */
3131         ret = btrfs_find_orphan_roots(fs_info);
3132         if (ret)
3133                 goto out;
3134
3135         ret = btrfs_cleanup_fs_roots(fs_info);
3136         if (ret)
3137                 goto out;
3138
3139         down_read(&fs_info->cleanup_work_sem);
3140         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3141             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3142                 up_read(&fs_info->cleanup_work_sem);
3143                 goto out;
3144         }
3145         up_read(&fs_info->cleanup_work_sem);
3146
3147         mutex_lock(&fs_info->cleaner_mutex);
3148         ret = btrfs_recover_relocation(fs_info->tree_root);
3149         mutex_unlock(&fs_info->cleaner_mutex);
3150         if (ret < 0) {
3151                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3152                 goto out;
3153         }
3154
3155         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3156             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3157                 btrfs_info(fs_info, "creating free space tree");
3158                 ret = btrfs_create_free_space_tree(fs_info);
3159                 if (ret) {
3160                         btrfs_warn(fs_info,
3161                                 "failed to create free space tree: %d", ret);
3162                         goto out;
3163                 }
3164         }
3165
3166         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3167                 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3168                 if (ret)
3169                         goto out;
3170         }
3171
3172         ret = btrfs_resume_balance_async(fs_info);
3173         if (ret)
3174                 goto out;
3175
3176         ret = btrfs_resume_dev_replace_async(fs_info);
3177         if (ret) {
3178                 btrfs_warn(fs_info, "failed to resume dev_replace");
3179                 goto out;
3180         }
3181
3182         btrfs_qgroup_rescan_resume(fs_info);
3183
3184         if (!fs_info->uuid_root) {
3185                 btrfs_info(fs_info, "creating UUID tree");
3186                 ret = btrfs_create_uuid_tree(fs_info);
3187                 if (ret) {
3188                         btrfs_warn(fs_info,
3189                                    "failed to create the UUID tree %d", ret);
3190                         goto out;
3191                 }
3192         }
3193
3194 out:
3195         return ret;
3196 }
3197
3198 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3199                       char *options)
3200 {
3201         u32 sectorsize;
3202         u32 nodesize;
3203         u32 stripesize;
3204         u64 generation;
3205         u64 features;
3206         u16 csum_type;
3207         struct btrfs_super_block *disk_super;
3208         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3209         struct btrfs_root *tree_root;
3210         struct btrfs_root *chunk_root;
3211         int ret;
3212         int err = -EINVAL;
3213         int level;
3214
3215         ret = init_mount_fs_info(fs_info, sb);
3216         if (ret) {
3217                 err = ret;
3218                 goto fail;
3219         }
3220
3221         /* These need to be init'ed before we start creating inodes and such. */
3222         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3223                                      GFP_KERNEL);
3224         fs_info->tree_root = tree_root;
3225         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3226                                       GFP_KERNEL);
3227         fs_info->chunk_root = chunk_root;
3228         if (!tree_root || !chunk_root) {
3229                 err = -ENOMEM;
3230                 goto fail;
3231         }
3232
3233         fs_info->btree_inode = new_inode(sb);
3234         if (!fs_info->btree_inode) {
3235                 err = -ENOMEM;
3236                 goto fail;
3237         }
3238         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3239         btrfs_init_btree_inode(fs_info);
3240
3241         invalidate_bdev(fs_devices->latest_dev->bdev);
3242
3243         /*
3244          * Read super block and check the signature bytes only
3245          */
3246         disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3247         if (IS_ERR(disk_super)) {
3248                 err = PTR_ERR(disk_super);
3249                 goto fail_alloc;
3250         }
3251
3252         /*
3253          * Verify the type first, if that or the checksum value are
3254          * corrupted, we'll find out
3255          */
3256         csum_type = btrfs_super_csum_type(disk_super);
3257         if (!btrfs_supported_super_csum(csum_type)) {
3258                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3259                           csum_type);
3260                 err = -EINVAL;
3261                 btrfs_release_disk_super(disk_super);
3262                 goto fail_alloc;
3263         }
3264
3265         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3266
3267         ret = btrfs_init_csum_hash(fs_info, csum_type);
3268         if (ret) {
3269                 err = ret;
3270                 btrfs_release_disk_super(disk_super);
3271                 goto fail_alloc;
3272         }
3273
3274         /*
3275          * We want to check superblock checksum, the type is stored inside.
3276          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3277          */
3278         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3279                 btrfs_err(fs_info, "superblock checksum mismatch");
3280                 err = -EINVAL;
3281                 btrfs_release_disk_super(disk_super);
3282                 goto fail_alloc;
3283         }
3284
3285         /*
3286          * super_copy is zeroed at allocation time and we never touch the
3287          * following bytes up to INFO_SIZE, the checksum is calculated from
3288          * the whole block of INFO_SIZE
3289          */
3290         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3291         btrfs_release_disk_super(disk_super);
3292
3293         disk_super = fs_info->super_copy;
3294
3295
3296         features = btrfs_super_flags(disk_super);
3297         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3298                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3299                 btrfs_set_super_flags(disk_super, features);
3300                 btrfs_info(fs_info,
3301                         "found metadata UUID change in progress flag, clearing");
3302         }
3303
3304         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3305                sizeof(*fs_info->super_for_commit));
3306
3307         ret = btrfs_validate_mount_super(fs_info);
3308         if (ret) {
3309                 btrfs_err(fs_info, "superblock contains fatal errors");
3310                 err = -EINVAL;
3311                 goto fail_alloc;
3312         }
3313
3314         if (!btrfs_super_root(disk_super))
3315                 goto fail_alloc;
3316
3317         /* check FS state, whether FS is broken. */
3318         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3319                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3320
3321         /*
3322          * In the long term, we'll store the compression type in the super
3323          * block, and it'll be used for per file compression control.
3324          */
3325         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3326
3327         /*
3328          * Flag our filesystem as having big metadata blocks if they are bigger
3329          * than the page size.
3330          */
3331         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3332                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3333                         btrfs_info(fs_info,
3334                                 "flagging fs with big metadata feature");
3335                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3336         }
3337
3338         /* Set up fs_info before parsing mount options */
3339         nodesize = btrfs_super_nodesize(disk_super);
3340         sectorsize = btrfs_super_sectorsize(disk_super);
3341         stripesize = sectorsize;
3342         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3343         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3344
3345         fs_info->nodesize = nodesize;
3346         fs_info->sectorsize = sectorsize;
3347         fs_info->sectorsize_bits = ilog2(sectorsize);
3348         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3349         fs_info->stripesize = stripesize;
3350
3351         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3352         if (ret) {
3353                 err = ret;
3354                 goto fail_alloc;
3355         }
3356
3357         features = btrfs_super_incompat_flags(disk_super) &
3358                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3359         if (features) {
3360                 btrfs_err(fs_info,
3361                     "cannot mount because of unsupported optional features (%llx)",
3362                     features);
3363                 err = -EINVAL;
3364                 goto fail_alloc;
3365         }
3366
3367         features = btrfs_super_incompat_flags(disk_super);
3368         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3369         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3370                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3371         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3372                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3373
3374         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3375                 btrfs_info(fs_info, "has skinny extents");
3376
3377         /*
3378          * mixed block groups end up with duplicate but slightly offset
3379          * extent buffers for the same range.  It leads to corruptions
3380          */
3381         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3382             (sectorsize != nodesize)) {
3383                 btrfs_err(fs_info,
3384 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3385                         nodesize, sectorsize);
3386                 goto fail_alloc;
3387         }
3388
3389         /*
3390          * Needn't use the lock because there is no other task which will
3391          * update the flag.
3392          */
3393         btrfs_set_super_incompat_flags(disk_super, features);
3394
3395         features = btrfs_super_compat_ro_flags(disk_super) &
3396                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3397         if (!sb_rdonly(sb) && features) {
3398                 btrfs_err(fs_info,
3399         "cannot mount read-write because of unsupported optional features (%llx)",
3400                        features);
3401                 err = -EINVAL;
3402                 goto fail_alloc;
3403         }
3404
3405         if (sectorsize < PAGE_SIZE) {
3406                 struct btrfs_subpage_info *subpage_info;
3407
3408                 btrfs_warn(fs_info,
3409                 "read-write for sector size %u with page size %lu is experimental",
3410                            sectorsize, PAGE_SIZE);
3411                 if (btrfs_super_incompat_flags(fs_info->super_copy) &
3412                         BTRFS_FEATURE_INCOMPAT_RAID56) {
3413                         btrfs_err(fs_info,
3414                 "RAID56 is not yet supported for sector size %u with page size %lu",
3415                                 sectorsize, PAGE_SIZE);
3416                         err = -EINVAL;
3417                         goto fail_alloc;
3418                 }
3419                 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3420                 if (!subpage_info)
3421                         goto fail_alloc;
3422                 btrfs_init_subpage_info(subpage_info, sectorsize);
3423                 fs_info->subpage_info = subpage_info;
3424         }
3425
3426         ret = btrfs_init_workqueues(fs_info, fs_devices);
3427         if (ret) {
3428                 err = ret;
3429                 goto fail_sb_buffer;
3430         }
3431
3432         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3433         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3434
3435         sb->s_blocksize = sectorsize;
3436         sb->s_blocksize_bits = blksize_bits(sectorsize);
3437         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3438
3439         mutex_lock(&fs_info->chunk_mutex);
3440         ret = btrfs_read_sys_array(fs_info);
3441         mutex_unlock(&fs_info->chunk_mutex);
3442         if (ret) {
3443                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3444                 goto fail_sb_buffer;
3445         }
3446
3447         generation = btrfs_super_chunk_root_generation(disk_super);
3448         level = btrfs_super_chunk_root_level(disk_super);
3449
3450         chunk_root->node = read_tree_block(fs_info,
3451                                            btrfs_super_chunk_root(disk_super),
3452                                            BTRFS_CHUNK_TREE_OBJECTID,
3453                                            generation, level, NULL);
3454         if (IS_ERR(chunk_root->node) ||
3455             !extent_buffer_uptodate(chunk_root->node)) {
3456                 btrfs_err(fs_info, "failed to read chunk root");
3457                 if (!IS_ERR(chunk_root->node))
3458                         free_extent_buffer(chunk_root->node);
3459                 chunk_root->node = NULL;
3460                 goto fail_tree_roots;
3461         }
3462         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3463         chunk_root->commit_root = btrfs_root_node(chunk_root);
3464
3465         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3466                            offsetof(struct btrfs_header, chunk_tree_uuid),
3467                            BTRFS_UUID_SIZE);
3468
3469         ret = btrfs_read_chunk_tree(fs_info);
3470         if (ret) {
3471                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3472                 goto fail_tree_roots;
3473         }
3474
3475         /*
3476          * At this point we know all the devices that make this filesystem,
3477          * including the seed devices but we don't know yet if the replace
3478          * target is required. So free devices that are not part of this
3479          * filesystem but skip the replace target device which is checked
3480          * below in btrfs_init_dev_replace().
3481          */
3482         btrfs_free_extra_devids(fs_devices);
3483         if (!fs_devices->latest_dev->bdev) {
3484                 btrfs_err(fs_info, "failed to read devices");
3485                 goto fail_tree_roots;
3486         }
3487
3488         ret = init_tree_roots(fs_info);
3489         if (ret)
3490                 goto fail_tree_roots;
3491
3492         /*
3493          * Get zone type information of zoned block devices. This will also
3494          * handle emulation of a zoned filesystem if a regular device has the
3495          * zoned incompat feature flag set.
3496          */
3497         ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3498         if (ret) {
3499                 btrfs_err(fs_info,
3500                           "zoned: failed to read device zone info: %d",
3501                           ret);
3502                 goto fail_block_groups;
3503         }
3504
3505         /*
3506          * If we have a uuid root and we're not being told to rescan we need to
3507          * check the generation here so we can set the
3508          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3509          * transaction during a balance or the log replay without updating the
3510          * uuid generation, and then if we crash we would rescan the uuid tree,
3511          * even though it was perfectly fine.
3512          */
3513         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3514             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3515                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3516
3517         ret = btrfs_verify_dev_extents(fs_info);
3518         if (ret) {
3519                 btrfs_err(fs_info,
3520                           "failed to verify dev extents against chunks: %d",
3521                           ret);
3522                 goto fail_block_groups;
3523         }
3524         ret = btrfs_recover_balance(fs_info);
3525         if (ret) {
3526                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3527                 goto fail_block_groups;
3528         }
3529
3530         ret = btrfs_init_dev_stats(fs_info);
3531         if (ret) {
3532                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3533                 goto fail_block_groups;
3534         }
3535
3536         ret = btrfs_init_dev_replace(fs_info);
3537         if (ret) {
3538                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3539                 goto fail_block_groups;
3540         }
3541
3542         ret = btrfs_check_zoned_mode(fs_info);
3543         if (ret) {
3544                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3545                           ret);
3546                 goto fail_block_groups;
3547         }
3548
3549         ret = btrfs_sysfs_add_fsid(fs_devices);
3550         if (ret) {
3551                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3552                                 ret);
3553                 goto fail_block_groups;
3554         }
3555
3556         ret = btrfs_sysfs_add_mounted(fs_info);
3557         if (ret) {
3558                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3559                 goto fail_fsdev_sysfs;
3560         }
3561
3562         ret = btrfs_init_space_info(fs_info);
3563         if (ret) {
3564                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3565                 goto fail_sysfs;
3566         }
3567
3568         ret = btrfs_read_block_groups(fs_info);
3569         if (ret) {
3570                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3571                 goto fail_sysfs;
3572         }
3573
3574         if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3575             !btrfs_check_rw_degradable(fs_info, NULL)) {
3576                 btrfs_warn(fs_info,
3577                 "writable mount is not allowed due to too many missing devices");
3578                 goto fail_sysfs;
3579         }
3580
3581         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3582                                                "btrfs-cleaner");
3583         if (IS_ERR(fs_info->cleaner_kthread))
3584                 goto fail_sysfs;
3585
3586         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3587                                                    tree_root,
3588                                                    "btrfs-transaction");
3589         if (IS_ERR(fs_info->transaction_kthread))
3590                 goto fail_cleaner;
3591
3592         if (!btrfs_test_opt(fs_info, NOSSD) &&
3593             !fs_info->fs_devices->rotating) {
3594                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3595         }
3596
3597         /*
3598          * Mount does not set all options immediately, we can do it now and do
3599          * not have to wait for transaction commit
3600          */
3601         btrfs_apply_pending_changes(fs_info);
3602
3603 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3604         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3605                 ret = btrfsic_mount(fs_info, fs_devices,
3606                                     btrfs_test_opt(fs_info,
3607                                         CHECK_INTEGRITY_DATA) ? 1 : 0,
3608                                     fs_info->check_integrity_print_mask);
3609                 if (ret)
3610                         btrfs_warn(fs_info,
3611                                 "failed to initialize integrity check module: %d",
3612                                 ret);
3613         }
3614 #endif
3615         ret = btrfs_read_qgroup_config(fs_info);
3616         if (ret)
3617                 goto fail_trans_kthread;
3618
3619         if (btrfs_build_ref_tree(fs_info))
3620                 btrfs_err(fs_info, "couldn't build ref tree");
3621
3622         /* do not make disk changes in broken FS or nologreplay is given */
3623         if (btrfs_super_log_root(disk_super) != 0 &&
3624             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3625                 btrfs_info(fs_info, "start tree-log replay");
3626                 ret = btrfs_replay_log(fs_info, fs_devices);
3627                 if (ret) {
3628                         err = ret;
3629                         goto fail_qgroup;
3630                 }
3631         }
3632
3633         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3634         if (IS_ERR(fs_info->fs_root)) {
3635                 err = PTR_ERR(fs_info->fs_root);
3636                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3637                 fs_info->fs_root = NULL;
3638                 goto fail_qgroup;
3639         }
3640
3641         if (sb_rdonly(sb))
3642                 goto clear_oneshot;
3643
3644         ret = btrfs_start_pre_rw_mount(fs_info);
3645         if (ret) {
3646                 close_ctree(fs_info);
3647                 return ret;
3648         }
3649         btrfs_discard_resume(fs_info);
3650
3651         if (fs_info->uuid_root &&
3652             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3653              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3654                 btrfs_info(fs_info, "checking UUID tree");
3655                 ret = btrfs_check_uuid_tree(fs_info);
3656                 if (ret) {
3657                         btrfs_warn(fs_info,
3658                                 "failed to check the UUID tree: %d", ret);
3659                         close_ctree(fs_info);
3660                         return ret;
3661                 }
3662         }
3663
3664         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3665
3666 clear_oneshot:
3667         btrfs_clear_oneshot_options(fs_info);
3668         return 0;
3669
3670 fail_qgroup:
3671         btrfs_free_qgroup_config(fs_info);
3672 fail_trans_kthread:
3673         kthread_stop(fs_info->transaction_kthread);
3674         btrfs_cleanup_transaction(fs_info);
3675         btrfs_free_fs_roots(fs_info);
3676 fail_cleaner:
3677         kthread_stop(fs_info->cleaner_kthread);
3678
3679         /*
3680          * make sure we're done with the btree inode before we stop our
3681          * kthreads
3682          */
3683         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3684
3685 fail_sysfs:
3686         btrfs_sysfs_remove_mounted(fs_info);
3687
3688 fail_fsdev_sysfs:
3689         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3690
3691 fail_block_groups:
3692         btrfs_put_block_group_cache(fs_info);
3693
3694 fail_tree_roots:
3695         if (fs_info->data_reloc_root)
3696                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3697         free_root_pointers(fs_info, true);
3698         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3699
3700 fail_sb_buffer:
3701         btrfs_stop_all_workers(fs_info);
3702         btrfs_free_block_groups(fs_info);
3703 fail_alloc:
3704         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3705
3706         iput(fs_info->btree_inode);
3707 fail:
3708         btrfs_close_devices(fs_info->fs_devices);
3709         return err;
3710 }
3711 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3712
3713 static void btrfs_end_super_write(struct bio *bio)
3714 {
3715         struct btrfs_device *device = bio->bi_private;
3716         struct bio_vec *bvec;
3717         struct bvec_iter_all iter_all;
3718         struct page *page;
3719
3720         bio_for_each_segment_all(bvec, bio, iter_all) {
3721                 page = bvec->bv_page;
3722
3723                 if (bio->bi_status) {
3724                         btrfs_warn_rl_in_rcu(device->fs_info,
3725                                 "lost page write due to IO error on %s (%d)",
3726                                 rcu_str_deref(device->name),
3727                                 blk_status_to_errno(bio->bi_status));
3728                         ClearPageUptodate(page);
3729                         SetPageError(page);
3730                         btrfs_dev_stat_inc_and_print(device,
3731                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3732                 } else {
3733                         SetPageUptodate(page);
3734                 }
3735
3736                 put_page(page);
3737                 unlock_page(page);
3738         }
3739
3740         bio_put(bio);
3741 }
3742
3743 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3744                                                    int copy_num)
3745 {
3746         struct btrfs_super_block *super;
3747         struct page *page;
3748         u64 bytenr, bytenr_orig;
3749         struct address_space *mapping = bdev->bd_inode->i_mapping;
3750         int ret;
3751
3752         bytenr_orig = btrfs_sb_offset(copy_num);
3753         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3754         if (ret == -ENOENT)
3755                 return ERR_PTR(-EINVAL);
3756         else if (ret)
3757                 return ERR_PTR(ret);
3758
3759         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3760                 return ERR_PTR(-EINVAL);
3761
3762         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3763         if (IS_ERR(page))
3764                 return ERR_CAST(page);
3765
3766         super = page_address(page);
3767         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3768                 btrfs_release_disk_super(super);
3769                 return ERR_PTR(-ENODATA);
3770         }
3771
3772         if (btrfs_super_bytenr(super) != bytenr_orig) {
3773                 btrfs_release_disk_super(super);
3774                 return ERR_PTR(-EINVAL);
3775         }
3776
3777         return super;
3778 }
3779
3780
3781 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3782 {
3783         struct btrfs_super_block *super, *latest = NULL;
3784         int i;
3785         u64 transid = 0;
3786
3787         /* we would like to check all the supers, but that would make
3788          * a btrfs mount succeed after a mkfs from a different FS.
3789          * So, we need to add a special mount option to scan for
3790          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3791          */
3792         for (i = 0; i < 1; i++) {
3793                 super = btrfs_read_dev_one_super(bdev, i);
3794                 if (IS_ERR(super))
3795                         continue;
3796
3797                 if (!latest || btrfs_super_generation(super) > transid) {
3798                         if (latest)
3799                                 btrfs_release_disk_super(super);
3800
3801                         latest = super;
3802                         transid = btrfs_super_generation(super);
3803                 }
3804         }
3805
3806         return super;
3807 }
3808
3809 /*
3810  * Write superblock @sb to the @device. Do not wait for completion, all the
3811  * pages we use for writing are locked.
3812  *
3813  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3814  * the expected device size at commit time. Note that max_mirrors must be
3815  * same for write and wait phases.
3816  *
3817  * Return number of errors when page is not found or submission fails.
3818  */
3819 static int write_dev_supers(struct btrfs_device *device,
3820                             struct btrfs_super_block *sb, int max_mirrors)
3821 {
3822         struct btrfs_fs_info *fs_info = device->fs_info;
3823         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3824         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3825         int i;
3826         int errors = 0;
3827         int ret;
3828         u64 bytenr, bytenr_orig;
3829
3830         if (max_mirrors == 0)
3831                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3832
3833         shash->tfm = fs_info->csum_shash;
3834
3835         for (i = 0; i < max_mirrors; i++) {
3836                 struct page *page;
3837                 struct bio *bio;
3838                 struct btrfs_super_block *disk_super;
3839
3840                 bytenr_orig = btrfs_sb_offset(i);
3841                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3842                 if (ret == -ENOENT) {
3843                         continue;
3844                 } else if (ret < 0) {
3845                         btrfs_err(device->fs_info,
3846                                 "couldn't get super block location for mirror %d",
3847                                 i);
3848                         errors++;
3849                         continue;
3850                 }
3851                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3852                     device->commit_total_bytes)
3853                         break;
3854
3855                 btrfs_set_super_bytenr(sb, bytenr_orig);
3856
3857                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3858                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3859                                     sb->csum);
3860
3861                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3862                                            GFP_NOFS);
3863                 if (!page) {
3864                         btrfs_err(device->fs_info,
3865                             "couldn't get super block page for bytenr %llu",
3866                             bytenr);
3867                         errors++;
3868                         continue;
3869                 }
3870
3871                 /* Bump the refcount for wait_dev_supers() */
3872                 get_page(page);
3873
3874                 disk_super = page_address(page);
3875                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3876
3877                 /*
3878                  * Directly use bios here instead of relying on the page cache
3879                  * to do I/O, so we don't lose the ability to do integrity
3880                  * checking.
3881                  */
3882                 bio = bio_alloc(GFP_NOFS, 1);
3883                 bio_set_dev(bio, device->bdev);
3884                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3885                 bio->bi_private = device;
3886                 bio->bi_end_io = btrfs_end_super_write;
3887                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3888                                offset_in_page(bytenr));
3889
3890                 /*
3891                  * We FUA only the first super block.  The others we allow to
3892                  * go down lazy and there's a short window where the on-disk
3893                  * copies might still contain the older version.
3894                  */
3895                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3896                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3897                         bio->bi_opf |= REQ_FUA;
3898
3899                 btrfsic_submit_bio(bio);
3900
3901                 if (btrfs_advance_sb_log(device, i))
3902                         errors++;
3903         }
3904         return errors < i ? 0 : -1;
3905 }
3906
3907 /*
3908  * Wait for write completion of superblocks done by write_dev_supers,
3909  * @max_mirrors same for write and wait phases.
3910  *
3911  * Return number of errors when page is not found or not marked up to
3912  * date.
3913  */
3914 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3915 {
3916         int i;
3917         int errors = 0;
3918         bool primary_failed = false;
3919         int ret;
3920         u64 bytenr;
3921
3922         if (max_mirrors == 0)
3923                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3924
3925         for (i = 0; i < max_mirrors; i++) {
3926                 struct page *page;
3927
3928                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3929                 if (ret == -ENOENT) {
3930                         break;
3931                 } else if (ret < 0) {
3932                         errors++;
3933                         if (i == 0)
3934                                 primary_failed = true;
3935                         continue;
3936                 }
3937                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3938                     device->commit_total_bytes)
3939                         break;
3940
3941                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3942                                      bytenr >> PAGE_SHIFT);
3943                 if (!page) {
3944                         errors++;
3945                         if (i == 0)
3946                                 primary_failed = true;
3947                         continue;
3948                 }
3949                 /* Page is submitted locked and unlocked once the IO completes */
3950                 wait_on_page_locked(page);
3951                 if (PageError(page)) {
3952                         errors++;
3953                         if (i == 0)
3954                                 primary_failed = true;
3955                 }
3956
3957                 /* Drop our reference */
3958                 put_page(page);
3959
3960                 /* Drop the reference from the writing run */
3961                 put_page(page);
3962         }
3963
3964         /* log error, force error return */
3965         if (primary_failed) {
3966                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3967                           device->devid);
3968                 return -1;
3969         }
3970
3971         return errors < i ? 0 : -1;
3972 }
3973
3974 /*
3975  * endio for the write_dev_flush, this will wake anyone waiting
3976  * for the barrier when it is done
3977  */
3978 static void btrfs_end_empty_barrier(struct bio *bio)
3979 {
3980         complete(bio->bi_private);
3981 }
3982
3983 /*
3984  * Submit a flush request to the device if it supports it. Error handling is
3985  * done in the waiting counterpart.
3986  */
3987 static void write_dev_flush(struct btrfs_device *device)
3988 {
3989         struct bio *bio = device->flush_bio;
3990
3991 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3992         /*
3993          * When a disk has write caching disabled, we skip submission of a bio
3994          * with flush and sync requests before writing the superblock, since
3995          * it's not needed. However when the integrity checker is enabled, this
3996          * results in reports that there are metadata blocks referred by a
3997          * superblock that were not properly flushed. So don't skip the bio
3998          * submission only when the integrity checker is enabled for the sake
3999          * of simplicity, since this is a debug tool and not meant for use in
4000          * non-debug builds.
4001          */
4002         struct request_queue *q = bdev_get_queue(device->bdev);
4003         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
4004                 return;
4005 #endif
4006
4007         bio_reset(bio);
4008         bio->bi_end_io = btrfs_end_empty_barrier;
4009         bio_set_dev(bio, device->bdev);
4010         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
4011         init_completion(&device->flush_wait);
4012         bio->bi_private = &device->flush_wait;
4013
4014         btrfsic_submit_bio(bio);
4015         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4016 }
4017
4018 /*
4019  * If the flush bio has been submitted by write_dev_flush, wait for it.
4020  */
4021 static blk_status_t wait_dev_flush(struct btrfs_device *device)
4022 {
4023         struct bio *bio = device->flush_bio;
4024
4025         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4026                 return BLK_STS_OK;
4027
4028         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4029         wait_for_completion_io(&device->flush_wait);
4030
4031         return bio->bi_status;
4032 }
4033
4034 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4035 {
4036         if (!btrfs_check_rw_degradable(fs_info, NULL))
4037                 return -EIO;
4038         return 0;
4039 }
4040
4041 /*
4042  * send an empty flush down to each device in parallel,
4043  * then wait for them
4044  */
4045 static int barrier_all_devices(struct btrfs_fs_info *info)
4046 {
4047         struct list_head *head;
4048         struct btrfs_device *dev;
4049         int errors_wait = 0;
4050         blk_status_t ret;
4051
4052         lockdep_assert_held(&info->fs_devices->device_list_mutex);
4053         /* send down all the barriers */
4054         head = &info->fs_devices->devices;
4055         list_for_each_entry(dev, head, dev_list) {
4056                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4057                         continue;
4058                 if (!dev->bdev)
4059                         continue;
4060                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4061                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4062                         continue;
4063
4064                 write_dev_flush(dev);
4065                 dev->last_flush_error = BLK_STS_OK;
4066         }
4067
4068         /* wait for all the barriers */
4069         list_for_each_entry(dev, head, dev_list) {
4070                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4071                         continue;
4072                 if (!dev->bdev) {
4073                         errors_wait++;
4074                         continue;
4075                 }
4076                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4077                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4078                         continue;
4079
4080                 ret = wait_dev_flush(dev);
4081                 if (ret) {
4082                         dev->last_flush_error = ret;
4083                         btrfs_dev_stat_inc_and_print(dev,
4084                                         BTRFS_DEV_STAT_FLUSH_ERRS);
4085                         errors_wait++;
4086                 }
4087         }
4088
4089         if (errors_wait) {
4090                 /*
4091                  * At some point we need the status of all disks
4092                  * to arrive at the volume status. So error checking
4093                  * is being pushed to a separate loop.
4094                  */
4095                 return check_barrier_error(info);
4096         }
4097         return 0;
4098 }
4099
4100 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4101 {
4102         int raid_type;
4103         int min_tolerated = INT_MAX;
4104
4105         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4106             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4107                 min_tolerated = min_t(int, min_tolerated,
4108                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
4109                                     tolerated_failures);
4110
4111         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4112                 if (raid_type == BTRFS_RAID_SINGLE)
4113                         continue;
4114                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4115                         continue;
4116                 min_tolerated = min_t(int, min_tolerated,
4117                                     btrfs_raid_array[raid_type].
4118                                     tolerated_failures);
4119         }
4120
4121         if (min_tolerated == INT_MAX) {
4122                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4123                 min_tolerated = 0;
4124         }
4125
4126         return min_tolerated;
4127 }
4128
4129 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4130 {
4131         struct list_head *head;
4132         struct btrfs_device *dev;
4133         struct btrfs_super_block *sb;
4134         struct btrfs_dev_item *dev_item;
4135         int ret;
4136         int do_barriers;
4137         int max_errors;
4138         int total_errors = 0;
4139         u64 flags;
4140
4141         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4142
4143         /*
4144          * max_mirrors == 0 indicates we're from commit_transaction,
4145          * not from fsync where the tree roots in fs_info have not
4146          * been consistent on disk.
4147          */
4148         if (max_mirrors == 0)
4149                 backup_super_roots(fs_info);
4150
4151         sb = fs_info->super_for_commit;
4152         dev_item = &sb->dev_item;
4153
4154         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4155         head = &fs_info->fs_devices->devices;
4156         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4157
4158         if (do_barriers) {
4159                 ret = barrier_all_devices(fs_info);
4160                 if (ret) {
4161                         mutex_unlock(
4162                                 &fs_info->fs_devices->device_list_mutex);
4163                         btrfs_handle_fs_error(fs_info, ret,
4164                                               "errors while submitting device barriers.");
4165                         return ret;
4166                 }
4167         }
4168
4169         list_for_each_entry(dev, head, dev_list) {
4170                 if (!dev->bdev) {
4171                         total_errors++;
4172                         continue;
4173                 }
4174                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4175                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4176                         continue;
4177
4178                 btrfs_set_stack_device_generation(dev_item, 0);
4179                 btrfs_set_stack_device_type(dev_item, dev->type);
4180                 btrfs_set_stack_device_id(dev_item, dev->devid);
4181                 btrfs_set_stack_device_total_bytes(dev_item,
4182                                                    dev->commit_total_bytes);
4183                 btrfs_set_stack_device_bytes_used(dev_item,
4184                                                   dev->commit_bytes_used);
4185                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4186                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4187                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4188                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4189                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4190                        BTRFS_FSID_SIZE);
4191
4192                 flags = btrfs_super_flags(sb);
4193                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4194
4195                 ret = btrfs_validate_write_super(fs_info, sb);
4196                 if (ret < 0) {
4197                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4198                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
4199                                 "unexpected superblock corruption detected");
4200                         return -EUCLEAN;
4201                 }
4202
4203                 ret = write_dev_supers(dev, sb, max_mirrors);
4204                 if (ret)
4205                         total_errors++;
4206         }
4207         if (total_errors > max_errors) {
4208                 btrfs_err(fs_info, "%d errors while writing supers",
4209                           total_errors);
4210                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4211
4212                 /* FUA is masked off if unsupported and can't be the reason */
4213                 btrfs_handle_fs_error(fs_info, -EIO,
4214                                       "%d errors while writing supers",
4215                                       total_errors);
4216                 return -EIO;
4217         }
4218
4219         total_errors = 0;
4220         list_for_each_entry(dev, head, dev_list) {
4221                 if (!dev->bdev)
4222                         continue;
4223                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4224                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4225                         continue;
4226
4227                 ret = wait_dev_supers(dev, max_mirrors);
4228                 if (ret)
4229                         total_errors++;
4230         }
4231         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4232         if (total_errors > max_errors) {
4233                 btrfs_handle_fs_error(fs_info, -EIO,
4234                                       "%d errors while writing supers",
4235                                       total_errors);
4236                 return -EIO;
4237         }
4238         return 0;
4239 }
4240
4241 /* Drop a fs root from the radix tree and free it. */
4242 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4243                                   struct btrfs_root *root)
4244 {
4245         bool drop_ref = false;
4246
4247         spin_lock(&fs_info->fs_roots_radix_lock);
4248         radix_tree_delete(&fs_info->fs_roots_radix,
4249                           (unsigned long)root->root_key.objectid);
4250         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4251                 drop_ref = true;
4252         spin_unlock(&fs_info->fs_roots_radix_lock);
4253
4254         if (BTRFS_FS_ERROR(fs_info)) {
4255                 ASSERT(root->log_root == NULL);
4256                 if (root->reloc_root) {
4257                         btrfs_put_root(root->reloc_root);
4258                         root->reloc_root = NULL;
4259                 }
4260         }
4261
4262         if (drop_ref)
4263                 btrfs_put_root(root);
4264 }
4265
4266 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4267 {
4268         u64 root_objectid = 0;
4269         struct btrfs_root *gang[8];
4270         int i = 0;
4271         int err = 0;
4272         unsigned int ret = 0;
4273
4274         while (1) {
4275                 spin_lock(&fs_info->fs_roots_radix_lock);
4276                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4277                                              (void **)gang, root_objectid,
4278                                              ARRAY_SIZE(gang));
4279                 if (!ret) {
4280                         spin_unlock(&fs_info->fs_roots_radix_lock);
4281                         break;
4282                 }
4283                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4284
4285                 for (i = 0; i < ret; i++) {
4286                         /* Avoid to grab roots in dead_roots */
4287                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4288                                 gang[i] = NULL;
4289                                 continue;
4290                         }
4291                         /* grab all the search result for later use */
4292                         gang[i] = btrfs_grab_root(gang[i]);
4293                 }
4294                 spin_unlock(&fs_info->fs_roots_radix_lock);
4295
4296                 for (i = 0; i < ret; i++) {
4297                         if (!gang[i])
4298                                 continue;
4299                         root_objectid = gang[i]->root_key.objectid;
4300                         err = btrfs_orphan_cleanup(gang[i]);
4301                         if (err)
4302                                 break;
4303                         btrfs_put_root(gang[i]);
4304                 }
4305                 root_objectid++;
4306         }
4307
4308         /* release the uncleaned roots due to error */
4309         for (; i < ret; i++) {
4310                 if (gang[i])
4311                         btrfs_put_root(gang[i]);
4312         }
4313         return err;
4314 }
4315
4316 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4317 {
4318         struct btrfs_root *root = fs_info->tree_root;
4319         struct btrfs_trans_handle *trans;
4320
4321         mutex_lock(&fs_info->cleaner_mutex);
4322         btrfs_run_delayed_iputs(fs_info);
4323         mutex_unlock(&fs_info->cleaner_mutex);
4324         wake_up_process(fs_info->cleaner_kthread);
4325
4326         /* wait until ongoing cleanup work done */
4327         down_write(&fs_info->cleanup_work_sem);
4328         up_write(&fs_info->cleanup_work_sem);
4329
4330         trans = btrfs_join_transaction(root);
4331         if (IS_ERR(trans))
4332                 return PTR_ERR(trans);
4333         return btrfs_commit_transaction(trans);
4334 }
4335
4336 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4337 {
4338         int ret;
4339
4340         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4341         /*
4342          * We don't want the cleaner to start new transactions, add more delayed
4343          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4344          * because that frees the task_struct, and the transaction kthread might
4345          * still try to wake up the cleaner.
4346          */
4347         kthread_park(fs_info->cleaner_kthread);
4348
4349         /* wait for the qgroup rescan worker to stop */
4350         btrfs_qgroup_wait_for_completion(fs_info, false);
4351
4352         /* wait for the uuid_scan task to finish */
4353         down(&fs_info->uuid_tree_rescan_sem);
4354         /* avoid complains from lockdep et al., set sem back to initial state */
4355         up(&fs_info->uuid_tree_rescan_sem);
4356
4357         /* pause restriper - we want to resume on mount */
4358         btrfs_pause_balance(fs_info);
4359
4360         btrfs_dev_replace_suspend_for_unmount(fs_info);
4361
4362         btrfs_scrub_cancel(fs_info);
4363
4364         /* wait for any defraggers to finish */
4365         wait_event(fs_info->transaction_wait,
4366                    (atomic_read(&fs_info->defrag_running) == 0));
4367
4368         /* clear out the rbtree of defraggable inodes */
4369         btrfs_cleanup_defrag_inodes(fs_info);
4370
4371         cancel_work_sync(&fs_info->async_reclaim_work);
4372         cancel_work_sync(&fs_info->async_data_reclaim_work);
4373         cancel_work_sync(&fs_info->preempt_reclaim_work);
4374
4375         cancel_work_sync(&fs_info->reclaim_bgs_work);
4376
4377         /* Cancel or finish ongoing discard work */
4378         btrfs_discard_cleanup(fs_info);
4379
4380         if (!sb_rdonly(fs_info->sb)) {
4381                 /*
4382                  * The cleaner kthread is stopped, so do one final pass over
4383                  * unused block groups.
4384                  */
4385                 btrfs_delete_unused_bgs(fs_info);
4386
4387                 /*
4388                  * There might be existing delayed inode workers still running
4389                  * and holding an empty delayed inode item. We must wait for
4390                  * them to complete first because they can create a transaction.
4391                  * This happens when someone calls btrfs_balance_delayed_items()
4392                  * and then a transaction commit runs the same delayed nodes
4393                  * before any delayed worker has done something with the nodes.
4394                  * We must wait for any worker here and not at transaction
4395                  * commit time since that could cause a deadlock.
4396                  * This is a very rare case.
4397                  */
4398                 btrfs_flush_workqueue(fs_info->delayed_workers);
4399
4400                 ret = btrfs_commit_super(fs_info);
4401                 if (ret)
4402                         btrfs_err(fs_info, "commit super ret %d", ret);
4403         }
4404
4405         if (BTRFS_FS_ERROR(fs_info))
4406                 btrfs_error_commit_super(fs_info);
4407
4408         kthread_stop(fs_info->transaction_kthread);
4409         kthread_stop(fs_info->cleaner_kthread);
4410
4411         ASSERT(list_empty(&fs_info->delayed_iputs));
4412         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4413
4414         if (btrfs_check_quota_leak(fs_info)) {
4415                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4416                 btrfs_err(fs_info, "qgroup reserved space leaked");
4417         }
4418
4419         btrfs_free_qgroup_config(fs_info);
4420         ASSERT(list_empty(&fs_info->delalloc_roots));
4421
4422         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4423                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4424                        percpu_counter_sum(&fs_info->delalloc_bytes));
4425         }
4426
4427         if (percpu_counter_sum(&fs_info->ordered_bytes))
4428                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4429                            percpu_counter_sum(&fs_info->ordered_bytes));
4430
4431         btrfs_sysfs_remove_mounted(fs_info);
4432         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4433
4434         btrfs_put_block_group_cache(fs_info);
4435
4436         /*
4437          * we must make sure there is not any read request to
4438          * submit after we stopping all workers.
4439          */
4440         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4441         btrfs_stop_all_workers(fs_info);
4442
4443         /* We shouldn't have any transaction open at this point */
4444         ASSERT(list_empty(&fs_info->trans_list));
4445
4446         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4447         free_root_pointers(fs_info, true);
4448         btrfs_free_fs_roots(fs_info);
4449
4450         /*
4451          * We must free the block groups after dropping the fs_roots as we could
4452          * have had an IO error and have left over tree log blocks that aren't
4453          * cleaned up until the fs roots are freed.  This makes the block group
4454          * accounting appear to be wrong because there's pending reserved bytes,
4455          * so make sure we do the block group cleanup afterwards.
4456          */
4457         btrfs_free_block_groups(fs_info);
4458
4459         iput(fs_info->btree_inode);
4460
4461 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4462         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4463                 btrfsic_unmount(fs_info->fs_devices);
4464 #endif
4465
4466         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4467         btrfs_close_devices(fs_info->fs_devices);
4468 }
4469
4470 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4471                           int atomic)
4472 {
4473         int ret;
4474         struct inode *btree_inode = buf->pages[0]->mapping->host;
4475
4476         ret = extent_buffer_uptodate(buf);
4477         if (!ret)
4478                 return ret;
4479
4480         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4481                                     parent_transid, atomic);
4482         if (ret == -EAGAIN)
4483                 return ret;
4484         return !ret;
4485 }
4486
4487 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4488 {
4489         struct btrfs_fs_info *fs_info = buf->fs_info;
4490         u64 transid = btrfs_header_generation(buf);
4491         int was_dirty;
4492
4493 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4494         /*
4495          * This is a fast path so only do this check if we have sanity tests
4496          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4497          * outside of the sanity tests.
4498          */
4499         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4500                 return;
4501 #endif
4502         btrfs_assert_tree_write_locked(buf);
4503         if (transid != fs_info->generation)
4504                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4505                         buf->start, transid, fs_info->generation);
4506         was_dirty = set_extent_buffer_dirty(buf);
4507         if (!was_dirty)
4508                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4509                                          buf->len,
4510                                          fs_info->dirty_metadata_batch);
4511 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4512         /*
4513          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4514          * but item data not updated.
4515          * So here we should only check item pointers, not item data.
4516          */
4517         if (btrfs_header_level(buf) == 0 &&
4518             btrfs_check_leaf_relaxed(buf)) {
4519                 btrfs_print_leaf(buf);
4520                 ASSERT(0);
4521         }
4522 #endif
4523 }
4524
4525 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4526                                         int flush_delayed)
4527 {
4528         /*
4529          * looks as though older kernels can get into trouble with
4530          * this code, they end up stuck in balance_dirty_pages forever
4531          */
4532         int ret;
4533
4534         if (current->flags & PF_MEMALLOC)
4535                 return;
4536
4537         if (flush_delayed)
4538                 btrfs_balance_delayed_items(fs_info);
4539
4540         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4541                                      BTRFS_DIRTY_METADATA_THRESH,
4542                                      fs_info->dirty_metadata_batch);
4543         if (ret > 0) {
4544                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4545         }
4546 }
4547
4548 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4549 {
4550         __btrfs_btree_balance_dirty(fs_info, 1);
4551 }
4552
4553 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4554 {
4555         __btrfs_btree_balance_dirty(fs_info, 0);
4556 }
4557
4558 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4559                       struct btrfs_key *first_key)
4560 {
4561         return btree_read_extent_buffer_pages(buf, parent_transid,
4562                                               level, first_key);
4563 }
4564
4565 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4566 {
4567         /* cleanup FS via transaction */
4568         btrfs_cleanup_transaction(fs_info);
4569
4570         mutex_lock(&fs_info->cleaner_mutex);
4571         btrfs_run_delayed_iputs(fs_info);
4572         mutex_unlock(&fs_info->cleaner_mutex);
4573
4574         down_write(&fs_info->cleanup_work_sem);
4575         up_write(&fs_info->cleanup_work_sem);
4576 }
4577
4578 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4579 {
4580         struct btrfs_root *gang[8];
4581         u64 root_objectid = 0;
4582         int ret;
4583
4584         spin_lock(&fs_info->fs_roots_radix_lock);
4585         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4586                                              (void **)gang, root_objectid,
4587                                              ARRAY_SIZE(gang))) != 0) {
4588                 int i;
4589
4590                 for (i = 0; i < ret; i++)
4591                         gang[i] = btrfs_grab_root(gang[i]);
4592                 spin_unlock(&fs_info->fs_roots_radix_lock);
4593
4594                 for (i = 0; i < ret; i++) {
4595                         if (!gang[i])
4596                                 continue;
4597                         root_objectid = gang[i]->root_key.objectid;
4598                         btrfs_free_log(NULL, gang[i]);
4599                         btrfs_put_root(gang[i]);
4600                 }
4601                 root_objectid++;
4602                 spin_lock(&fs_info->fs_roots_radix_lock);
4603         }
4604         spin_unlock(&fs_info->fs_roots_radix_lock);
4605         btrfs_free_log_root_tree(NULL, fs_info);
4606 }
4607
4608 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4609 {
4610         struct btrfs_ordered_extent *ordered;
4611
4612         spin_lock(&root->ordered_extent_lock);
4613         /*
4614          * This will just short circuit the ordered completion stuff which will
4615          * make sure the ordered extent gets properly cleaned up.
4616          */
4617         list_for_each_entry(ordered, &root->ordered_extents,
4618                             root_extent_list)
4619                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4620         spin_unlock(&root->ordered_extent_lock);
4621 }
4622
4623 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4624 {
4625         struct btrfs_root *root;
4626         struct list_head splice;
4627
4628         INIT_LIST_HEAD(&splice);
4629
4630         spin_lock(&fs_info->ordered_root_lock);
4631         list_splice_init(&fs_info->ordered_roots, &splice);
4632         while (!list_empty(&splice)) {
4633                 root = list_first_entry(&splice, struct btrfs_root,
4634                                         ordered_root);
4635                 list_move_tail(&root->ordered_root,
4636                                &fs_info->ordered_roots);
4637
4638                 spin_unlock(&fs_info->ordered_root_lock);
4639                 btrfs_destroy_ordered_extents(root);
4640
4641                 cond_resched();
4642                 spin_lock(&fs_info->ordered_root_lock);
4643         }
4644         spin_unlock(&fs_info->ordered_root_lock);
4645
4646         /*
4647          * We need this here because if we've been flipped read-only we won't
4648          * get sync() from the umount, so we need to make sure any ordered
4649          * extents that haven't had their dirty pages IO start writeout yet
4650          * actually get run and error out properly.
4651          */
4652         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4653 }
4654
4655 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4656                                       struct btrfs_fs_info *fs_info)
4657 {
4658         struct rb_node *node;
4659         struct btrfs_delayed_ref_root *delayed_refs;
4660         struct btrfs_delayed_ref_node *ref;
4661         int ret = 0;
4662
4663         delayed_refs = &trans->delayed_refs;
4664
4665         spin_lock(&delayed_refs->lock);
4666         if (atomic_read(&delayed_refs->num_entries) == 0) {
4667                 spin_unlock(&delayed_refs->lock);
4668                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4669                 return ret;
4670         }
4671
4672         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4673                 struct btrfs_delayed_ref_head *head;
4674                 struct rb_node *n;
4675                 bool pin_bytes = false;
4676
4677                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4678                                 href_node);
4679                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4680                         continue;
4681
4682                 spin_lock(&head->lock);
4683                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4684                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4685                                        ref_node);
4686                         ref->in_tree = 0;
4687                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4688                         RB_CLEAR_NODE(&ref->ref_node);
4689                         if (!list_empty(&ref->add_list))
4690                                 list_del(&ref->add_list);
4691                         atomic_dec(&delayed_refs->num_entries);
4692                         btrfs_put_delayed_ref(ref);
4693                 }
4694                 if (head->must_insert_reserved)
4695                         pin_bytes = true;
4696                 btrfs_free_delayed_extent_op(head->extent_op);
4697                 btrfs_delete_ref_head(delayed_refs, head);
4698                 spin_unlock(&head->lock);
4699                 spin_unlock(&delayed_refs->lock);
4700                 mutex_unlock(&head->mutex);
4701
4702                 if (pin_bytes) {
4703                         struct btrfs_block_group *cache;
4704
4705                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4706                         BUG_ON(!cache);
4707
4708                         spin_lock(&cache->space_info->lock);
4709                         spin_lock(&cache->lock);
4710                         cache->pinned += head->num_bytes;
4711                         btrfs_space_info_update_bytes_pinned(fs_info,
4712                                 cache->space_info, head->num_bytes);
4713                         cache->reserved -= head->num_bytes;
4714                         cache->space_info->bytes_reserved -= head->num_bytes;
4715                         spin_unlock(&cache->lock);
4716                         spin_unlock(&cache->space_info->lock);
4717
4718                         btrfs_put_block_group(cache);
4719
4720                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4721                                 head->bytenr + head->num_bytes - 1);
4722                 }
4723                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4724                 btrfs_put_delayed_ref_head(head);
4725                 cond_resched();
4726                 spin_lock(&delayed_refs->lock);
4727         }
4728         btrfs_qgroup_destroy_extent_records(trans);
4729
4730         spin_unlock(&delayed_refs->lock);
4731
4732         return ret;
4733 }
4734
4735 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4736 {
4737         struct btrfs_inode *btrfs_inode;
4738         struct list_head splice;
4739
4740         INIT_LIST_HEAD(&splice);
4741
4742         spin_lock(&root->delalloc_lock);
4743         list_splice_init(&root->delalloc_inodes, &splice);
4744
4745         while (!list_empty(&splice)) {
4746                 struct inode *inode = NULL;
4747                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4748                                                delalloc_inodes);
4749                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4750                 spin_unlock(&root->delalloc_lock);
4751
4752                 /*
4753                  * Make sure we get a live inode and that it'll not disappear
4754                  * meanwhile.
4755                  */
4756                 inode = igrab(&btrfs_inode->vfs_inode);
4757                 if (inode) {
4758                         invalidate_inode_pages2(inode->i_mapping);
4759                         iput(inode);
4760                 }
4761                 spin_lock(&root->delalloc_lock);
4762         }
4763         spin_unlock(&root->delalloc_lock);
4764 }
4765
4766 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4767 {
4768         struct btrfs_root *root;
4769         struct list_head splice;
4770
4771         INIT_LIST_HEAD(&splice);
4772
4773         spin_lock(&fs_info->delalloc_root_lock);
4774         list_splice_init(&fs_info->delalloc_roots, &splice);
4775         while (!list_empty(&splice)) {
4776                 root = list_first_entry(&splice, struct btrfs_root,
4777                                          delalloc_root);
4778                 root = btrfs_grab_root(root);
4779                 BUG_ON(!root);
4780                 spin_unlock(&fs_info->delalloc_root_lock);
4781
4782                 btrfs_destroy_delalloc_inodes(root);
4783                 btrfs_put_root(root);
4784
4785                 spin_lock(&fs_info->delalloc_root_lock);
4786         }
4787         spin_unlock(&fs_info->delalloc_root_lock);
4788 }
4789
4790 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4791                                         struct extent_io_tree *dirty_pages,
4792                                         int mark)
4793 {
4794         int ret;
4795         struct extent_buffer *eb;
4796         u64 start = 0;
4797         u64 end;
4798
4799         while (1) {
4800                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4801                                             mark, NULL);
4802                 if (ret)
4803                         break;
4804
4805                 clear_extent_bits(dirty_pages, start, end, mark);
4806                 while (start <= end) {
4807                         eb = find_extent_buffer(fs_info, start);
4808                         start += fs_info->nodesize;
4809                         if (!eb)
4810                                 continue;
4811                         wait_on_extent_buffer_writeback(eb);
4812
4813                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4814                                                &eb->bflags))
4815                                 clear_extent_buffer_dirty(eb);
4816                         free_extent_buffer_stale(eb);
4817                 }
4818         }
4819
4820         return ret;
4821 }
4822
4823 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4824                                        struct extent_io_tree *unpin)
4825 {
4826         u64 start;
4827         u64 end;
4828         int ret;
4829
4830         while (1) {
4831                 struct extent_state *cached_state = NULL;
4832
4833                 /*
4834                  * The btrfs_finish_extent_commit() may get the same range as
4835                  * ours between find_first_extent_bit and clear_extent_dirty.
4836                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4837                  * the same extent range.
4838                  */
4839                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4840                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4841                                             EXTENT_DIRTY, &cached_state);
4842                 if (ret) {
4843                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4844                         break;
4845                 }
4846
4847                 clear_extent_dirty(unpin, start, end, &cached_state);
4848                 free_extent_state(cached_state);
4849                 btrfs_error_unpin_extent_range(fs_info, start, end);
4850                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4851                 cond_resched();
4852         }
4853
4854         return 0;
4855 }
4856
4857 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4858 {
4859         struct inode *inode;
4860
4861         inode = cache->io_ctl.inode;
4862         if (inode) {
4863                 invalidate_inode_pages2(inode->i_mapping);
4864                 BTRFS_I(inode)->generation = 0;
4865                 cache->io_ctl.inode = NULL;
4866                 iput(inode);
4867         }
4868         ASSERT(cache->io_ctl.pages == NULL);
4869         btrfs_put_block_group(cache);
4870 }
4871
4872 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4873                              struct btrfs_fs_info *fs_info)
4874 {
4875         struct btrfs_block_group *cache;
4876
4877         spin_lock(&cur_trans->dirty_bgs_lock);
4878         while (!list_empty(&cur_trans->dirty_bgs)) {
4879                 cache = list_first_entry(&cur_trans->dirty_bgs,
4880                                          struct btrfs_block_group,
4881                                          dirty_list);
4882
4883                 if (!list_empty(&cache->io_list)) {
4884                         spin_unlock(&cur_trans->dirty_bgs_lock);
4885                         list_del_init(&cache->io_list);
4886                         btrfs_cleanup_bg_io(cache);
4887                         spin_lock(&cur_trans->dirty_bgs_lock);
4888                 }
4889
4890                 list_del_init(&cache->dirty_list);
4891                 spin_lock(&cache->lock);
4892                 cache->disk_cache_state = BTRFS_DC_ERROR;
4893                 spin_unlock(&cache->lock);
4894
4895                 spin_unlock(&cur_trans->dirty_bgs_lock);
4896                 btrfs_put_block_group(cache);
4897                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4898                 spin_lock(&cur_trans->dirty_bgs_lock);
4899         }
4900         spin_unlock(&cur_trans->dirty_bgs_lock);
4901
4902         /*
4903          * Refer to the definition of io_bgs member for details why it's safe
4904          * to use it without any locking
4905          */
4906         while (!list_empty(&cur_trans->io_bgs)) {
4907                 cache = list_first_entry(&cur_trans->io_bgs,
4908                                          struct btrfs_block_group,
4909                                          io_list);
4910
4911                 list_del_init(&cache->io_list);
4912                 spin_lock(&cache->lock);
4913                 cache->disk_cache_state = BTRFS_DC_ERROR;
4914                 spin_unlock(&cache->lock);
4915                 btrfs_cleanup_bg_io(cache);
4916         }
4917 }
4918
4919 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4920                                    struct btrfs_fs_info *fs_info)
4921 {
4922         struct btrfs_device *dev, *tmp;
4923
4924         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4925         ASSERT(list_empty(&cur_trans->dirty_bgs));
4926         ASSERT(list_empty(&cur_trans->io_bgs));
4927
4928         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4929                                  post_commit_list) {
4930                 list_del_init(&dev->post_commit_list);
4931         }
4932
4933         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4934
4935         cur_trans->state = TRANS_STATE_COMMIT_START;
4936         wake_up(&fs_info->transaction_blocked_wait);
4937
4938         cur_trans->state = TRANS_STATE_UNBLOCKED;
4939         wake_up(&fs_info->transaction_wait);
4940
4941         btrfs_destroy_delayed_inodes(fs_info);
4942
4943         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4944                                      EXTENT_DIRTY);
4945         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4946
4947         btrfs_free_redirty_list(cur_trans);
4948
4949         cur_trans->state =TRANS_STATE_COMPLETED;
4950         wake_up(&cur_trans->commit_wait);
4951 }
4952
4953 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4954 {
4955         struct btrfs_transaction *t;
4956
4957         mutex_lock(&fs_info->transaction_kthread_mutex);
4958
4959         spin_lock(&fs_info->trans_lock);
4960         while (!list_empty(&fs_info->trans_list)) {
4961                 t = list_first_entry(&fs_info->trans_list,
4962                                      struct btrfs_transaction, list);
4963                 if (t->state >= TRANS_STATE_COMMIT_START) {
4964                         refcount_inc(&t->use_count);
4965                         spin_unlock(&fs_info->trans_lock);
4966                         btrfs_wait_for_commit(fs_info, t->transid);
4967                         btrfs_put_transaction(t);
4968                         spin_lock(&fs_info->trans_lock);
4969                         continue;
4970                 }
4971                 if (t == fs_info->running_transaction) {
4972                         t->state = TRANS_STATE_COMMIT_DOING;
4973                         spin_unlock(&fs_info->trans_lock);
4974                         /*
4975                          * We wait for 0 num_writers since we don't hold a trans
4976                          * handle open currently for this transaction.
4977                          */
4978                         wait_event(t->writer_wait,
4979                                    atomic_read(&t->num_writers) == 0);
4980                 } else {
4981                         spin_unlock(&fs_info->trans_lock);
4982                 }
4983                 btrfs_cleanup_one_transaction(t, fs_info);
4984
4985                 spin_lock(&fs_info->trans_lock);
4986                 if (t == fs_info->running_transaction)
4987                         fs_info->running_transaction = NULL;
4988                 list_del_init(&t->list);
4989                 spin_unlock(&fs_info->trans_lock);
4990
4991                 btrfs_put_transaction(t);
4992                 trace_btrfs_transaction_commit(fs_info->tree_root);
4993                 spin_lock(&fs_info->trans_lock);
4994         }
4995         spin_unlock(&fs_info->trans_lock);
4996         btrfs_destroy_all_ordered_extents(fs_info);
4997         btrfs_destroy_delayed_inodes(fs_info);
4998         btrfs_assert_delayed_root_empty(fs_info);
4999         btrfs_destroy_all_delalloc_inodes(fs_info);
5000         btrfs_drop_all_logs(fs_info);
5001         mutex_unlock(&fs_info->transaction_kthread_mutex);
5002
5003         return 0;
5004 }
5005
5006 int btrfs_init_root_free_objectid(struct btrfs_root *root)
5007 {
5008         struct btrfs_path *path;
5009         int ret;
5010         struct extent_buffer *l;
5011         struct btrfs_key search_key;
5012         struct btrfs_key found_key;
5013         int slot;
5014
5015         path = btrfs_alloc_path();
5016         if (!path)
5017                 return -ENOMEM;
5018
5019         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5020         search_key.type = -1;
5021         search_key.offset = (u64)-1;
5022         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5023         if (ret < 0)
5024                 goto error;
5025         BUG_ON(ret == 0); /* Corruption */
5026         if (path->slots[0] > 0) {
5027                 slot = path->slots[0] - 1;
5028                 l = path->nodes[0];
5029                 btrfs_item_key_to_cpu(l, &found_key, slot);
5030                 root->free_objectid = max_t(u64, found_key.objectid + 1,
5031                                             BTRFS_FIRST_FREE_OBJECTID);
5032         } else {
5033                 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5034         }
5035         ret = 0;
5036 error:
5037         btrfs_free_path(path);
5038         return ret;
5039 }
5040
5041 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5042 {
5043         int ret;
5044         mutex_lock(&root->objectid_mutex);
5045
5046         if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5047                 btrfs_warn(root->fs_info,
5048                            "the objectid of root %llu reaches its highest value",
5049                            root->root_key.objectid);
5050                 ret = -ENOSPC;
5051                 goto out;
5052         }
5053
5054         *objectid = root->free_objectid++;
5055         ret = 0;
5056 out:
5057         mutex_unlock(&root->objectid_mutex);
5058         return ret;
5059 }