btrfs: add and use helper to get lowest sequence number for the tree mod log
[linux-2.6-microblaze.git] / fs / btrfs / delayed-ref.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/sort.h>
9 #include "ctree.h"
10 #include "delayed-ref.h"
11 #include "transaction.h"
12 #include "qgroup.h"
13 #include "space-info.h"
14 #include "tree-mod-log.h"
15
16 struct kmem_cache *btrfs_delayed_ref_head_cachep;
17 struct kmem_cache *btrfs_delayed_tree_ref_cachep;
18 struct kmem_cache *btrfs_delayed_data_ref_cachep;
19 struct kmem_cache *btrfs_delayed_extent_op_cachep;
20 /*
21  * delayed back reference update tracking.  For subvolume trees
22  * we queue up extent allocations and backref maintenance for
23  * delayed processing.   This avoids deep call chains where we
24  * add extents in the middle of btrfs_search_slot, and it allows
25  * us to buffer up frequently modified backrefs in an rb tree instead
26  * of hammering updates on the extent allocation tree.
27  */
28
29 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
30 {
31         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
32         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
33         bool ret = false;
34         u64 reserved;
35
36         spin_lock(&global_rsv->lock);
37         reserved = global_rsv->reserved;
38         spin_unlock(&global_rsv->lock);
39
40         /*
41          * Since the global reserve is just kind of magic we don't really want
42          * to rely on it to save our bacon, so if our size is more than the
43          * delayed_refs_rsv and the global rsv then it's time to think about
44          * bailing.
45          */
46         spin_lock(&delayed_refs_rsv->lock);
47         reserved += delayed_refs_rsv->reserved;
48         if (delayed_refs_rsv->size >= reserved)
49                 ret = true;
50         spin_unlock(&delayed_refs_rsv->lock);
51         return ret;
52 }
53
54 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
55 {
56         u64 num_entries =
57                 atomic_read(&trans->transaction->delayed_refs.num_entries);
58         u64 avg_runtime;
59         u64 val;
60
61         smp_mb();
62         avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
63         val = num_entries * avg_runtime;
64         if (val >= NSEC_PER_SEC)
65                 return 1;
66         if (val >= NSEC_PER_SEC / 2)
67                 return 2;
68
69         return btrfs_check_space_for_delayed_refs(trans->fs_info);
70 }
71
72 /**
73  * Release a ref head's reservation
74  *
75  * @fs_info:  the filesystem
76  * @nr:       number of items to drop
77  *
78  * This drops the delayed ref head's count from the delayed refs rsv and frees
79  * any excess reservation we had.
80  */
81 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
82 {
83         struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
84         u64 num_bytes = btrfs_calc_insert_metadata_size(fs_info, nr);
85         u64 released = 0;
86
87         released = btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
88         if (released)
89                 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
90                                               0, released, 0);
91 }
92
93 /*
94  * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
95  * @trans - the trans that may have generated delayed refs
96  *
97  * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
98  * it'll calculate the additional size and add it to the delayed_refs_rsv.
99  */
100 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
101 {
102         struct btrfs_fs_info *fs_info = trans->fs_info;
103         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
104         u64 num_bytes;
105
106         if (!trans->delayed_ref_updates)
107                 return;
108
109         num_bytes = btrfs_calc_insert_metadata_size(fs_info,
110                                                     trans->delayed_ref_updates);
111         spin_lock(&delayed_rsv->lock);
112         delayed_rsv->size += num_bytes;
113         delayed_rsv->full = 0;
114         spin_unlock(&delayed_rsv->lock);
115         trans->delayed_ref_updates = 0;
116 }
117
118 /**
119  * Transfer bytes to our delayed refs rsv
120  *
121  * @fs_info:   the filesystem
122  * @src:       source block rsv to transfer from
123  * @num_bytes: number of bytes to transfer
124  *
125  * This transfers up to the num_bytes amount from the src rsv to the
126  * delayed_refs_rsv.  Any extra bytes are returned to the space info.
127  */
128 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
129                                        struct btrfs_block_rsv *src,
130                                        u64 num_bytes)
131 {
132         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
133         u64 to_free = 0;
134
135         spin_lock(&src->lock);
136         src->reserved -= num_bytes;
137         src->size -= num_bytes;
138         spin_unlock(&src->lock);
139
140         spin_lock(&delayed_refs_rsv->lock);
141         if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
142                 u64 delta = delayed_refs_rsv->size -
143                         delayed_refs_rsv->reserved;
144                 if (num_bytes > delta) {
145                         to_free = num_bytes - delta;
146                         num_bytes = delta;
147                 }
148         } else {
149                 to_free = num_bytes;
150                 num_bytes = 0;
151         }
152
153         if (num_bytes)
154                 delayed_refs_rsv->reserved += num_bytes;
155         if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
156                 delayed_refs_rsv->full = 1;
157         spin_unlock(&delayed_refs_rsv->lock);
158
159         if (num_bytes)
160                 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
161                                               0, num_bytes, 1);
162         if (to_free)
163                 btrfs_space_info_free_bytes_may_use(fs_info,
164                                 delayed_refs_rsv->space_info, to_free);
165 }
166
167 /**
168  * Refill based on our delayed refs usage
169  *
170  * @fs_info: the filesystem
171  * @flush:   control how we can flush for this reservation.
172  *
173  * This will refill the delayed block_rsv up to 1 items size worth of space and
174  * will return -ENOSPC if we can't make the reservation.
175  */
176 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
177                                   enum btrfs_reserve_flush_enum flush)
178 {
179         struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
180         u64 limit = btrfs_calc_insert_metadata_size(fs_info, 1);
181         u64 num_bytes = 0;
182         int ret = -ENOSPC;
183
184         spin_lock(&block_rsv->lock);
185         if (block_rsv->reserved < block_rsv->size) {
186                 num_bytes = block_rsv->size - block_rsv->reserved;
187                 num_bytes = min(num_bytes, limit);
188         }
189         spin_unlock(&block_rsv->lock);
190
191         if (!num_bytes)
192                 return 0;
193
194         ret = btrfs_reserve_metadata_bytes(fs_info->extent_root, block_rsv,
195                                            num_bytes, flush);
196         if (ret)
197                 return ret;
198         btrfs_block_rsv_add_bytes(block_rsv, num_bytes, 0);
199         trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
200                                       0, num_bytes, 1);
201         return 0;
202 }
203
204 /*
205  * compare two delayed tree backrefs with same bytenr and type
206  */
207 static int comp_tree_refs(struct btrfs_delayed_tree_ref *ref1,
208                           struct btrfs_delayed_tree_ref *ref2)
209 {
210         if (ref1->node.type == BTRFS_TREE_BLOCK_REF_KEY) {
211                 if (ref1->root < ref2->root)
212                         return -1;
213                 if (ref1->root > ref2->root)
214                         return 1;
215         } else {
216                 if (ref1->parent < ref2->parent)
217                         return -1;
218                 if (ref1->parent > ref2->parent)
219                         return 1;
220         }
221         return 0;
222 }
223
224 /*
225  * compare two delayed data backrefs with same bytenr and type
226  */
227 static int comp_data_refs(struct btrfs_delayed_data_ref *ref1,
228                           struct btrfs_delayed_data_ref *ref2)
229 {
230         if (ref1->node.type == BTRFS_EXTENT_DATA_REF_KEY) {
231                 if (ref1->root < ref2->root)
232                         return -1;
233                 if (ref1->root > ref2->root)
234                         return 1;
235                 if (ref1->objectid < ref2->objectid)
236                         return -1;
237                 if (ref1->objectid > ref2->objectid)
238                         return 1;
239                 if (ref1->offset < ref2->offset)
240                         return -1;
241                 if (ref1->offset > ref2->offset)
242                         return 1;
243         } else {
244                 if (ref1->parent < ref2->parent)
245                         return -1;
246                 if (ref1->parent > ref2->parent)
247                         return 1;
248         }
249         return 0;
250 }
251
252 static int comp_refs(struct btrfs_delayed_ref_node *ref1,
253                      struct btrfs_delayed_ref_node *ref2,
254                      bool check_seq)
255 {
256         int ret = 0;
257
258         if (ref1->type < ref2->type)
259                 return -1;
260         if (ref1->type > ref2->type)
261                 return 1;
262         if (ref1->type == BTRFS_TREE_BLOCK_REF_KEY ||
263             ref1->type == BTRFS_SHARED_BLOCK_REF_KEY)
264                 ret = comp_tree_refs(btrfs_delayed_node_to_tree_ref(ref1),
265                                      btrfs_delayed_node_to_tree_ref(ref2));
266         else
267                 ret = comp_data_refs(btrfs_delayed_node_to_data_ref(ref1),
268                                      btrfs_delayed_node_to_data_ref(ref2));
269         if (ret)
270                 return ret;
271         if (check_seq) {
272                 if (ref1->seq < ref2->seq)
273                         return -1;
274                 if (ref1->seq > ref2->seq)
275                         return 1;
276         }
277         return 0;
278 }
279
280 /* insert a new ref to head ref rbtree */
281 static struct btrfs_delayed_ref_head *htree_insert(struct rb_root_cached *root,
282                                                    struct rb_node *node)
283 {
284         struct rb_node **p = &root->rb_root.rb_node;
285         struct rb_node *parent_node = NULL;
286         struct btrfs_delayed_ref_head *entry;
287         struct btrfs_delayed_ref_head *ins;
288         u64 bytenr;
289         bool leftmost = true;
290
291         ins = rb_entry(node, struct btrfs_delayed_ref_head, href_node);
292         bytenr = ins->bytenr;
293         while (*p) {
294                 parent_node = *p;
295                 entry = rb_entry(parent_node, struct btrfs_delayed_ref_head,
296                                  href_node);
297
298                 if (bytenr < entry->bytenr) {
299                         p = &(*p)->rb_left;
300                 } else if (bytenr > entry->bytenr) {
301                         p = &(*p)->rb_right;
302                         leftmost = false;
303                 } else {
304                         return entry;
305                 }
306         }
307
308         rb_link_node(node, parent_node, p);
309         rb_insert_color_cached(node, root, leftmost);
310         return NULL;
311 }
312
313 static struct btrfs_delayed_ref_node* tree_insert(struct rb_root_cached *root,
314                 struct btrfs_delayed_ref_node *ins)
315 {
316         struct rb_node **p = &root->rb_root.rb_node;
317         struct rb_node *node = &ins->ref_node;
318         struct rb_node *parent_node = NULL;
319         struct btrfs_delayed_ref_node *entry;
320         bool leftmost = true;
321
322         while (*p) {
323                 int comp;
324
325                 parent_node = *p;
326                 entry = rb_entry(parent_node, struct btrfs_delayed_ref_node,
327                                  ref_node);
328                 comp = comp_refs(ins, entry, true);
329                 if (comp < 0) {
330                         p = &(*p)->rb_left;
331                 } else if (comp > 0) {
332                         p = &(*p)->rb_right;
333                         leftmost = false;
334                 } else {
335                         return entry;
336                 }
337         }
338
339         rb_link_node(node, parent_node, p);
340         rb_insert_color_cached(node, root, leftmost);
341         return NULL;
342 }
343
344 static struct btrfs_delayed_ref_head *find_first_ref_head(
345                 struct btrfs_delayed_ref_root *dr)
346 {
347         struct rb_node *n;
348         struct btrfs_delayed_ref_head *entry;
349
350         n = rb_first_cached(&dr->href_root);
351         if (!n)
352                 return NULL;
353
354         entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
355
356         return entry;
357 }
358
359 /*
360  * Find a head entry based on bytenr. This returns the delayed ref head if it
361  * was able to find one, or NULL if nothing was in that spot.  If return_bigger
362  * is given, the next bigger entry is returned if no exact match is found.
363  */
364 static struct btrfs_delayed_ref_head *find_ref_head(
365                 struct btrfs_delayed_ref_root *dr, u64 bytenr,
366                 bool return_bigger)
367 {
368         struct rb_root *root = &dr->href_root.rb_root;
369         struct rb_node *n;
370         struct btrfs_delayed_ref_head *entry;
371
372         n = root->rb_node;
373         entry = NULL;
374         while (n) {
375                 entry = rb_entry(n, struct btrfs_delayed_ref_head, href_node);
376
377                 if (bytenr < entry->bytenr)
378                         n = n->rb_left;
379                 else if (bytenr > entry->bytenr)
380                         n = n->rb_right;
381                 else
382                         return entry;
383         }
384         if (entry && return_bigger) {
385                 if (bytenr > entry->bytenr) {
386                         n = rb_next(&entry->href_node);
387                         if (!n)
388                                 return NULL;
389                         entry = rb_entry(n, struct btrfs_delayed_ref_head,
390                                          href_node);
391                 }
392                 return entry;
393         }
394         return NULL;
395 }
396
397 int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs,
398                            struct btrfs_delayed_ref_head *head)
399 {
400         lockdep_assert_held(&delayed_refs->lock);
401         if (mutex_trylock(&head->mutex))
402                 return 0;
403
404         refcount_inc(&head->refs);
405         spin_unlock(&delayed_refs->lock);
406
407         mutex_lock(&head->mutex);
408         spin_lock(&delayed_refs->lock);
409         if (RB_EMPTY_NODE(&head->href_node)) {
410                 mutex_unlock(&head->mutex);
411                 btrfs_put_delayed_ref_head(head);
412                 return -EAGAIN;
413         }
414         btrfs_put_delayed_ref_head(head);
415         return 0;
416 }
417
418 static inline void drop_delayed_ref(struct btrfs_trans_handle *trans,
419                                     struct btrfs_delayed_ref_root *delayed_refs,
420                                     struct btrfs_delayed_ref_head *head,
421                                     struct btrfs_delayed_ref_node *ref)
422 {
423         lockdep_assert_held(&head->lock);
424         rb_erase_cached(&ref->ref_node, &head->ref_tree);
425         RB_CLEAR_NODE(&ref->ref_node);
426         if (!list_empty(&ref->add_list))
427                 list_del(&ref->add_list);
428         ref->in_tree = 0;
429         btrfs_put_delayed_ref(ref);
430         atomic_dec(&delayed_refs->num_entries);
431 }
432
433 static bool merge_ref(struct btrfs_trans_handle *trans,
434                       struct btrfs_delayed_ref_root *delayed_refs,
435                       struct btrfs_delayed_ref_head *head,
436                       struct btrfs_delayed_ref_node *ref,
437                       u64 seq)
438 {
439         struct btrfs_delayed_ref_node *next;
440         struct rb_node *node = rb_next(&ref->ref_node);
441         bool done = false;
442
443         while (!done && node) {
444                 int mod;
445
446                 next = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
447                 node = rb_next(node);
448                 if (seq && next->seq >= seq)
449                         break;
450                 if (comp_refs(ref, next, false))
451                         break;
452
453                 if (ref->action == next->action) {
454                         mod = next->ref_mod;
455                 } else {
456                         if (ref->ref_mod < next->ref_mod) {
457                                 swap(ref, next);
458                                 done = true;
459                         }
460                         mod = -next->ref_mod;
461                 }
462
463                 drop_delayed_ref(trans, delayed_refs, head, next);
464                 ref->ref_mod += mod;
465                 if (ref->ref_mod == 0) {
466                         drop_delayed_ref(trans, delayed_refs, head, ref);
467                         done = true;
468                 } else {
469                         /*
470                          * Can't have multiples of the same ref on a tree block.
471                          */
472                         WARN_ON(ref->type == BTRFS_TREE_BLOCK_REF_KEY ||
473                                 ref->type == BTRFS_SHARED_BLOCK_REF_KEY);
474                 }
475         }
476
477         return done;
478 }
479
480 void btrfs_merge_delayed_refs(struct btrfs_trans_handle *trans,
481                               struct btrfs_delayed_ref_root *delayed_refs,
482                               struct btrfs_delayed_ref_head *head)
483 {
484         struct btrfs_fs_info *fs_info = trans->fs_info;
485         struct btrfs_delayed_ref_node *ref;
486         struct rb_node *node;
487         u64 seq = 0;
488
489         lockdep_assert_held(&head->lock);
490
491         if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
492                 return;
493
494         /* We don't have too many refs to merge for data. */
495         if (head->is_data)
496                 return;
497
498         seq = btrfs_tree_mod_log_lowest_seq(fs_info);
499 again:
500         for (node = rb_first_cached(&head->ref_tree); node;
501              node = rb_next(node)) {
502                 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
503                 if (seq && ref->seq >= seq)
504                         continue;
505                 if (merge_ref(trans, delayed_refs, head, ref, seq))
506                         goto again;
507         }
508 }
509
510 int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq)
511 {
512         int ret = 0;
513         u64 min_seq = btrfs_tree_mod_log_lowest_seq(fs_info);
514
515         if (min_seq != 0 && seq >= min_seq) {
516                 btrfs_debug(fs_info,
517                             "holding back delayed_ref %#x.%x, lowest is %#x.%x",
518                             (u32)(seq >> 32), (u32)seq,
519                             (u32)(min_seq >> 32), (u32)min_seq);
520                 ret = 1;
521         }
522
523         return ret;
524 }
525
526 struct btrfs_delayed_ref_head *btrfs_select_ref_head(
527                 struct btrfs_delayed_ref_root *delayed_refs)
528 {
529         struct btrfs_delayed_ref_head *head;
530
531 again:
532         head = find_ref_head(delayed_refs, delayed_refs->run_delayed_start,
533                              true);
534         if (!head && delayed_refs->run_delayed_start != 0) {
535                 delayed_refs->run_delayed_start = 0;
536                 head = find_first_ref_head(delayed_refs);
537         }
538         if (!head)
539                 return NULL;
540
541         while (head->processing) {
542                 struct rb_node *node;
543
544                 node = rb_next(&head->href_node);
545                 if (!node) {
546                         if (delayed_refs->run_delayed_start == 0)
547                                 return NULL;
548                         delayed_refs->run_delayed_start = 0;
549                         goto again;
550                 }
551                 head = rb_entry(node, struct btrfs_delayed_ref_head,
552                                 href_node);
553         }
554
555         head->processing = 1;
556         WARN_ON(delayed_refs->num_heads_ready == 0);
557         delayed_refs->num_heads_ready--;
558         delayed_refs->run_delayed_start = head->bytenr +
559                 head->num_bytes;
560         return head;
561 }
562
563 void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
564                            struct btrfs_delayed_ref_head *head)
565 {
566         lockdep_assert_held(&delayed_refs->lock);
567         lockdep_assert_held(&head->lock);
568
569         rb_erase_cached(&head->href_node, &delayed_refs->href_root);
570         RB_CLEAR_NODE(&head->href_node);
571         atomic_dec(&delayed_refs->num_entries);
572         delayed_refs->num_heads--;
573         if (head->processing == 0)
574                 delayed_refs->num_heads_ready--;
575 }
576
577 /*
578  * Helper to insert the ref_node to the tail or merge with tail.
579  *
580  * Return 0 for insert.
581  * Return >0 for merge.
582  */
583 static int insert_delayed_ref(struct btrfs_trans_handle *trans,
584                               struct btrfs_delayed_ref_root *root,
585                               struct btrfs_delayed_ref_head *href,
586                               struct btrfs_delayed_ref_node *ref)
587 {
588         struct btrfs_delayed_ref_node *exist;
589         int mod;
590         int ret = 0;
591
592         spin_lock(&href->lock);
593         exist = tree_insert(&href->ref_tree, ref);
594         if (!exist)
595                 goto inserted;
596
597         /* Now we are sure we can merge */
598         ret = 1;
599         if (exist->action == ref->action) {
600                 mod = ref->ref_mod;
601         } else {
602                 /* Need to change action */
603                 if (exist->ref_mod < ref->ref_mod) {
604                         exist->action = ref->action;
605                         mod = -exist->ref_mod;
606                         exist->ref_mod = ref->ref_mod;
607                         if (ref->action == BTRFS_ADD_DELAYED_REF)
608                                 list_add_tail(&exist->add_list,
609                                               &href->ref_add_list);
610                         else if (ref->action == BTRFS_DROP_DELAYED_REF) {
611                                 ASSERT(!list_empty(&exist->add_list));
612                                 list_del(&exist->add_list);
613                         } else {
614                                 ASSERT(0);
615                         }
616                 } else
617                         mod = -ref->ref_mod;
618         }
619         exist->ref_mod += mod;
620
621         /* remove existing tail if its ref_mod is zero */
622         if (exist->ref_mod == 0)
623                 drop_delayed_ref(trans, root, href, exist);
624         spin_unlock(&href->lock);
625         return ret;
626 inserted:
627         if (ref->action == BTRFS_ADD_DELAYED_REF)
628                 list_add_tail(&ref->add_list, &href->ref_add_list);
629         atomic_inc(&root->num_entries);
630         spin_unlock(&href->lock);
631         return ret;
632 }
633
634 /*
635  * helper function to update the accounting in the head ref
636  * existing and update must have the same bytenr
637  */
638 static noinline void update_existing_head_ref(struct btrfs_trans_handle *trans,
639                          struct btrfs_delayed_ref_head *existing,
640                          struct btrfs_delayed_ref_head *update)
641 {
642         struct btrfs_delayed_ref_root *delayed_refs =
643                 &trans->transaction->delayed_refs;
644         struct btrfs_fs_info *fs_info = trans->fs_info;
645         u64 flags = btrfs_ref_head_to_space_flags(existing);
646         int old_ref_mod;
647
648         BUG_ON(existing->is_data != update->is_data);
649
650         spin_lock(&existing->lock);
651         if (update->must_insert_reserved) {
652                 /* if the extent was freed and then
653                  * reallocated before the delayed ref
654                  * entries were processed, we can end up
655                  * with an existing head ref without
656                  * the must_insert_reserved flag set.
657                  * Set it again here
658                  */
659                 existing->must_insert_reserved = update->must_insert_reserved;
660
661                 /*
662                  * update the num_bytes so we make sure the accounting
663                  * is done correctly
664                  */
665                 existing->num_bytes = update->num_bytes;
666
667         }
668
669         if (update->extent_op) {
670                 if (!existing->extent_op) {
671                         existing->extent_op = update->extent_op;
672                 } else {
673                         if (update->extent_op->update_key) {
674                                 memcpy(&existing->extent_op->key,
675                                        &update->extent_op->key,
676                                        sizeof(update->extent_op->key));
677                                 existing->extent_op->update_key = true;
678                         }
679                         if (update->extent_op->update_flags) {
680                                 existing->extent_op->flags_to_set |=
681                                         update->extent_op->flags_to_set;
682                                 existing->extent_op->update_flags = true;
683                         }
684                         btrfs_free_delayed_extent_op(update->extent_op);
685                 }
686         }
687         /*
688          * update the reference mod on the head to reflect this new operation,
689          * only need the lock for this case cause we could be processing it
690          * currently, for refs we just added we know we're a-ok.
691          */
692         old_ref_mod = existing->total_ref_mod;
693         existing->ref_mod += update->ref_mod;
694         existing->total_ref_mod += update->ref_mod;
695
696         /*
697          * If we are going to from a positive ref mod to a negative or vice
698          * versa we need to make sure to adjust pending_csums accordingly.
699          */
700         if (existing->is_data) {
701                 u64 csum_leaves =
702                         btrfs_csum_bytes_to_leaves(fs_info,
703                                                    existing->num_bytes);
704
705                 if (existing->total_ref_mod >= 0 && old_ref_mod < 0) {
706                         delayed_refs->pending_csums -= existing->num_bytes;
707                         btrfs_delayed_refs_rsv_release(fs_info, csum_leaves);
708                 }
709                 if (existing->total_ref_mod < 0 && old_ref_mod >= 0) {
710                         delayed_refs->pending_csums += existing->num_bytes;
711                         trans->delayed_ref_updates += csum_leaves;
712                 }
713         }
714
715         /*
716          * This handles the following conditions:
717          *
718          * 1. We had a ref mod of 0 or more and went negative, indicating that
719          *    we may be freeing space, so add our space to the
720          *    total_bytes_pinned counter.
721          * 2. We were negative and went to 0 or positive, so no longer can say
722          *    that the space would be pinned, decrement our counter from the
723          *    total_bytes_pinned counter.
724          * 3. We are now at 0 and have ->must_insert_reserved set, which means
725          *    this was a new allocation and then we dropped it, and thus must
726          *    add our space to the total_bytes_pinned counter.
727          */
728         if (existing->total_ref_mod < 0 && old_ref_mod >= 0)
729                 btrfs_mod_total_bytes_pinned(fs_info, flags, existing->num_bytes);
730         else if (existing->total_ref_mod >= 0 && old_ref_mod < 0)
731                 btrfs_mod_total_bytes_pinned(fs_info, flags, -existing->num_bytes);
732         else if (existing->total_ref_mod == 0 && existing->must_insert_reserved)
733                 btrfs_mod_total_bytes_pinned(fs_info, flags, existing->num_bytes);
734
735         spin_unlock(&existing->lock);
736 }
737
738 static void init_delayed_ref_head(struct btrfs_delayed_ref_head *head_ref,
739                                   struct btrfs_qgroup_extent_record *qrecord,
740                                   u64 bytenr, u64 num_bytes, u64 ref_root,
741                                   u64 reserved, int action, bool is_data,
742                                   bool is_system)
743 {
744         int count_mod = 1;
745         int must_insert_reserved = 0;
746
747         /* If reserved is provided, it must be a data extent. */
748         BUG_ON(!is_data && reserved);
749
750         /*
751          * The head node stores the sum of all the mods, so dropping a ref
752          * should drop the sum in the head node by one.
753          */
754         if (action == BTRFS_UPDATE_DELAYED_HEAD)
755                 count_mod = 0;
756         else if (action == BTRFS_DROP_DELAYED_REF)
757                 count_mod = -1;
758
759         /*
760          * BTRFS_ADD_DELAYED_EXTENT means that we need to update the reserved
761          * accounting when the extent is finally added, or if a later
762          * modification deletes the delayed ref without ever inserting the
763          * extent into the extent allocation tree.  ref->must_insert_reserved
764          * is the flag used to record that accounting mods are required.
765          *
766          * Once we record must_insert_reserved, switch the action to
767          * BTRFS_ADD_DELAYED_REF because other special casing is not required.
768          */
769         if (action == BTRFS_ADD_DELAYED_EXTENT)
770                 must_insert_reserved = 1;
771         else
772                 must_insert_reserved = 0;
773
774         refcount_set(&head_ref->refs, 1);
775         head_ref->bytenr = bytenr;
776         head_ref->num_bytes = num_bytes;
777         head_ref->ref_mod = count_mod;
778         head_ref->must_insert_reserved = must_insert_reserved;
779         head_ref->is_data = is_data;
780         head_ref->is_system = is_system;
781         head_ref->ref_tree = RB_ROOT_CACHED;
782         INIT_LIST_HEAD(&head_ref->ref_add_list);
783         RB_CLEAR_NODE(&head_ref->href_node);
784         head_ref->processing = 0;
785         head_ref->total_ref_mod = count_mod;
786         spin_lock_init(&head_ref->lock);
787         mutex_init(&head_ref->mutex);
788
789         if (qrecord) {
790                 if (ref_root && reserved) {
791                         qrecord->data_rsv = reserved;
792                         qrecord->data_rsv_refroot = ref_root;
793                 }
794                 qrecord->bytenr = bytenr;
795                 qrecord->num_bytes = num_bytes;
796                 qrecord->old_roots = NULL;
797         }
798 }
799
800 /*
801  * helper function to actually insert a head node into the rbtree.
802  * this does all the dirty work in terms of maintaining the correct
803  * overall modification count.
804  */
805 static noinline struct btrfs_delayed_ref_head *
806 add_delayed_ref_head(struct btrfs_trans_handle *trans,
807                      struct btrfs_delayed_ref_head *head_ref,
808                      struct btrfs_qgroup_extent_record *qrecord,
809                      int action, int *qrecord_inserted_ret)
810 {
811         struct btrfs_delayed_ref_head *existing;
812         struct btrfs_delayed_ref_root *delayed_refs;
813         int qrecord_inserted = 0;
814
815         delayed_refs = &trans->transaction->delayed_refs;
816
817         /* Record qgroup extent info if provided */
818         if (qrecord) {
819                 if (btrfs_qgroup_trace_extent_nolock(trans->fs_info,
820                                         delayed_refs, qrecord))
821                         kfree(qrecord);
822                 else
823                         qrecord_inserted = 1;
824         }
825
826         trace_add_delayed_ref_head(trans->fs_info, head_ref, action);
827
828         existing = htree_insert(&delayed_refs->href_root,
829                                 &head_ref->href_node);
830         if (existing) {
831                 update_existing_head_ref(trans, existing, head_ref);
832                 /*
833                  * we've updated the existing ref, free the newly
834                  * allocated ref
835                  */
836                 kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
837                 head_ref = existing;
838         } else {
839                 u64 flags = btrfs_ref_head_to_space_flags(head_ref);
840
841                 if (head_ref->is_data && head_ref->ref_mod < 0) {
842                         delayed_refs->pending_csums += head_ref->num_bytes;
843                         trans->delayed_ref_updates +=
844                                 btrfs_csum_bytes_to_leaves(trans->fs_info,
845                                                            head_ref->num_bytes);
846                 }
847                 if (head_ref->ref_mod < 0)
848                         btrfs_mod_total_bytes_pinned(trans->fs_info, flags,
849                                                      head_ref->num_bytes);
850                 delayed_refs->num_heads++;
851                 delayed_refs->num_heads_ready++;
852                 atomic_inc(&delayed_refs->num_entries);
853                 trans->delayed_ref_updates++;
854         }
855         if (qrecord_inserted_ret)
856                 *qrecord_inserted_ret = qrecord_inserted;
857
858         return head_ref;
859 }
860
861 /*
862  * init_delayed_ref_common - Initialize the structure which represents a
863  *                           modification to a an extent.
864  *
865  * @fs_info:    Internal to the mounted filesystem mount structure.
866  *
867  * @ref:        The structure which is going to be initialized.
868  *
869  * @bytenr:     The logical address of the extent for which a modification is
870  *              going to be recorded.
871  *
872  * @num_bytes:  Size of the extent whose modification is being recorded.
873  *
874  * @ref_root:   The id of the root where this modification has originated, this
875  *              can be either one of the well-known metadata trees or the
876  *              subvolume id which references this extent.
877  *
878  * @action:     Can be one of BTRFS_ADD_DELAYED_REF/BTRFS_DROP_DELAYED_REF or
879  *              BTRFS_ADD_DELAYED_EXTENT
880  *
881  * @ref_type:   Holds the type of the extent which is being recorded, can be
882  *              one of BTRFS_SHARED_BLOCK_REF_KEY/BTRFS_TREE_BLOCK_REF_KEY
883  *              when recording a metadata extent or BTRFS_SHARED_DATA_REF_KEY/
884  *              BTRFS_EXTENT_DATA_REF_KEY when recording data extent
885  */
886 static void init_delayed_ref_common(struct btrfs_fs_info *fs_info,
887                                     struct btrfs_delayed_ref_node *ref,
888                                     u64 bytenr, u64 num_bytes, u64 ref_root,
889                                     int action, u8 ref_type)
890 {
891         u64 seq = 0;
892
893         if (action == BTRFS_ADD_DELAYED_EXTENT)
894                 action = BTRFS_ADD_DELAYED_REF;
895
896         if (is_fstree(ref_root))
897                 seq = atomic64_read(&fs_info->tree_mod_seq);
898
899         refcount_set(&ref->refs, 1);
900         ref->bytenr = bytenr;
901         ref->num_bytes = num_bytes;
902         ref->ref_mod = 1;
903         ref->action = action;
904         ref->is_head = 0;
905         ref->in_tree = 1;
906         ref->seq = seq;
907         ref->type = ref_type;
908         RB_CLEAR_NODE(&ref->ref_node);
909         INIT_LIST_HEAD(&ref->add_list);
910 }
911
912 /*
913  * add a delayed tree ref.  This does all of the accounting required
914  * to make sure the delayed ref is eventually processed before this
915  * transaction commits.
916  */
917 int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans,
918                                struct btrfs_ref *generic_ref,
919                                struct btrfs_delayed_extent_op *extent_op)
920 {
921         struct btrfs_fs_info *fs_info = trans->fs_info;
922         struct btrfs_delayed_tree_ref *ref;
923         struct btrfs_delayed_ref_head *head_ref;
924         struct btrfs_delayed_ref_root *delayed_refs;
925         struct btrfs_qgroup_extent_record *record = NULL;
926         int qrecord_inserted;
927         bool is_system;
928         int action = generic_ref->action;
929         int level = generic_ref->tree_ref.level;
930         int ret;
931         u64 bytenr = generic_ref->bytenr;
932         u64 num_bytes = generic_ref->len;
933         u64 parent = generic_ref->parent;
934         u8 ref_type;
935
936         is_system = (generic_ref->real_root == BTRFS_CHUNK_TREE_OBJECTID);
937
938         ASSERT(generic_ref->type == BTRFS_REF_METADATA && generic_ref->action);
939         BUG_ON(extent_op && extent_op->is_data);
940         ref = kmem_cache_alloc(btrfs_delayed_tree_ref_cachep, GFP_NOFS);
941         if (!ref)
942                 return -ENOMEM;
943
944         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
945         if (!head_ref) {
946                 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
947                 return -ENOMEM;
948         }
949
950         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
951             is_fstree(generic_ref->real_root) &&
952             is_fstree(generic_ref->tree_ref.root) &&
953             !generic_ref->skip_qgroup) {
954                 record = kzalloc(sizeof(*record), GFP_NOFS);
955                 if (!record) {
956                         kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
957                         kmem_cache_free(btrfs_delayed_ref_head_cachep, head_ref);
958                         return -ENOMEM;
959                 }
960         }
961
962         if (parent)
963                 ref_type = BTRFS_SHARED_BLOCK_REF_KEY;
964         else
965                 ref_type = BTRFS_TREE_BLOCK_REF_KEY;
966
967         init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
968                                 generic_ref->tree_ref.root, action, ref_type);
969         ref->root = generic_ref->tree_ref.root;
970         ref->parent = parent;
971         ref->level = level;
972
973         init_delayed_ref_head(head_ref, record, bytenr, num_bytes,
974                               generic_ref->tree_ref.root, 0, action, false,
975                               is_system);
976         head_ref->extent_op = extent_op;
977
978         delayed_refs = &trans->transaction->delayed_refs;
979         spin_lock(&delayed_refs->lock);
980
981         /*
982          * insert both the head node and the new ref without dropping
983          * the spin lock
984          */
985         head_ref = add_delayed_ref_head(trans, head_ref, record,
986                                         action, &qrecord_inserted);
987
988         ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
989         spin_unlock(&delayed_refs->lock);
990
991         /*
992          * Need to update the delayed_refs_rsv with any changes we may have
993          * made.
994          */
995         btrfs_update_delayed_refs_rsv(trans);
996
997         trace_add_delayed_tree_ref(fs_info, &ref->node, ref,
998                                    action == BTRFS_ADD_DELAYED_EXTENT ?
999                                    BTRFS_ADD_DELAYED_REF : action);
1000         if (ret > 0)
1001                 kmem_cache_free(btrfs_delayed_tree_ref_cachep, ref);
1002
1003         if (qrecord_inserted)
1004                 btrfs_qgroup_trace_extent_post(fs_info, record);
1005
1006         return 0;
1007 }
1008
1009 /*
1010  * add a delayed data ref. it's similar to btrfs_add_delayed_tree_ref.
1011  */
1012 int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans,
1013                                struct btrfs_ref *generic_ref,
1014                                u64 reserved)
1015 {
1016         struct btrfs_fs_info *fs_info = trans->fs_info;
1017         struct btrfs_delayed_data_ref *ref;
1018         struct btrfs_delayed_ref_head *head_ref;
1019         struct btrfs_delayed_ref_root *delayed_refs;
1020         struct btrfs_qgroup_extent_record *record = NULL;
1021         int qrecord_inserted;
1022         int action = generic_ref->action;
1023         int ret;
1024         u64 bytenr = generic_ref->bytenr;
1025         u64 num_bytes = generic_ref->len;
1026         u64 parent = generic_ref->parent;
1027         u64 ref_root = generic_ref->data_ref.ref_root;
1028         u64 owner = generic_ref->data_ref.ino;
1029         u64 offset = generic_ref->data_ref.offset;
1030         u8 ref_type;
1031
1032         ASSERT(generic_ref->type == BTRFS_REF_DATA && action);
1033         ref = kmem_cache_alloc(btrfs_delayed_data_ref_cachep, GFP_NOFS);
1034         if (!ref)
1035                 return -ENOMEM;
1036
1037         if (parent)
1038                 ref_type = BTRFS_SHARED_DATA_REF_KEY;
1039         else
1040                 ref_type = BTRFS_EXTENT_DATA_REF_KEY;
1041         init_delayed_ref_common(fs_info, &ref->node, bytenr, num_bytes,
1042                                 ref_root, action, ref_type);
1043         ref->root = ref_root;
1044         ref->parent = parent;
1045         ref->objectid = owner;
1046         ref->offset = offset;
1047
1048
1049         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1050         if (!head_ref) {
1051                 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1052                 return -ENOMEM;
1053         }
1054
1055         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags) &&
1056             is_fstree(ref_root) &&
1057             is_fstree(generic_ref->real_root) &&
1058             !generic_ref->skip_qgroup) {
1059                 record = kzalloc(sizeof(*record), GFP_NOFS);
1060                 if (!record) {
1061                         kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1062                         kmem_cache_free(btrfs_delayed_ref_head_cachep,
1063                                         head_ref);
1064                         return -ENOMEM;
1065                 }
1066         }
1067
1068         init_delayed_ref_head(head_ref, record, bytenr, num_bytes, ref_root,
1069                               reserved, action, true, false);
1070         head_ref->extent_op = NULL;
1071
1072         delayed_refs = &trans->transaction->delayed_refs;
1073         spin_lock(&delayed_refs->lock);
1074
1075         /*
1076          * insert both the head node and the new ref without dropping
1077          * the spin lock
1078          */
1079         head_ref = add_delayed_ref_head(trans, head_ref, record,
1080                                         action, &qrecord_inserted);
1081
1082         ret = insert_delayed_ref(trans, delayed_refs, head_ref, &ref->node);
1083         spin_unlock(&delayed_refs->lock);
1084
1085         /*
1086          * Need to update the delayed_refs_rsv with any changes we may have
1087          * made.
1088          */
1089         btrfs_update_delayed_refs_rsv(trans);
1090
1091         trace_add_delayed_data_ref(trans->fs_info, &ref->node, ref,
1092                                    action == BTRFS_ADD_DELAYED_EXTENT ?
1093                                    BTRFS_ADD_DELAYED_REF : action);
1094         if (ret > 0)
1095                 kmem_cache_free(btrfs_delayed_data_ref_cachep, ref);
1096
1097
1098         if (qrecord_inserted)
1099                 return btrfs_qgroup_trace_extent_post(fs_info, record);
1100         return 0;
1101 }
1102
1103 int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans,
1104                                 u64 bytenr, u64 num_bytes,
1105                                 struct btrfs_delayed_extent_op *extent_op)
1106 {
1107         struct btrfs_delayed_ref_head *head_ref;
1108         struct btrfs_delayed_ref_root *delayed_refs;
1109
1110         head_ref = kmem_cache_alloc(btrfs_delayed_ref_head_cachep, GFP_NOFS);
1111         if (!head_ref)
1112                 return -ENOMEM;
1113
1114         init_delayed_ref_head(head_ref, NULL, bytenr, num_bytes, 0, 0,
1115                               BTRFS_UPDATE_DELAYED_HEAD, extent_op->is_data,
1116                               false);
1117         head_ref->extent_op = extent_op;
1118
1119         delayed_refs = &trans->transaction->delayed_refs;
1120         spin_lock(&delayed_refs->lock);
1121
1122         add_delayed_ref_head(trans, head_ref, NULL, BTRFS_UPDATE_DELAYED_HEAD,
1123                              NULL);
1124
1125         spin_unlock(&delayed_refs->lock);
1126
1127         /*
1128          * Need to update the delayed_refs_rsv with any changes we may have
1129          * made.
1130          */
1131         btrfs_update_delayed_refs_rsv(trans);
1132         return 0;
1133 }
1134
1135 /*
1136  * This does a simple search for the head node for a given extent.  Returns the
1137  * head node if found, or NULL if not.
1138  */
1139 struct btrfs_delayed_ref_head *
1140 btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr)
1141 {
1142         lockdep_assert_held(&delayed_refs->lock);
1143
1144         return find_ref_head(delayed_refs, bytenr, false);
1145 }
1146
1147 void __cold btrfs_delayed_ref_exit(void)
1148 {
1149         kmem_cache_destroy(btrfs_delayed_ref_head_cachep);
1150         kmem_cache_destroy(btrfs_delayed_tree_ref_cachep);
1151         kmem_cache_destroy(btrfs_delayed_data_ref_cachep);
1152         kmem_cache_destroy(btrfs_delayed_extent_op_cachep);
1153 }
1154
1155 int __init btrfs_delayed_ref_init(void)
1156 {
1157         btrfs_delayed_ref_head_cachep = kmem_cache_create(
1158                                 "btrfs_delayed_ref_head",
1159                                 sizeof(struct btrfs_delayed_ref_head), 0,
1160                                 SLAB_MEM_SPREAD, NULL);
1161         if (!btrfs_delayed_ref_head_cachep)
1162                 goto fail;
1163
1164         btrfs_delayed_tree_ref_cachep = kmem_cache_create(
1165                                 "btrfs_delayed_tree_ref",
1166                                 sizeof(struct btrfs_delayed_tree_ref), 0,
1167                                 SLAB_MEM_SPREAD, NULL);
1168         if (!btrfs_delayed_tree_ref_cachep)
1169                 goto fail;
1170
1171         btrfs_delayed_data_ref_cachep = kmem_cache_create(
1172                                 "btrfs_delayed_data_ref",
1173                                 sizeof(struct btrfs_delayed_data_ref), 0,
1174                                 SLAB_MEM_SPREAD, NULL);
1175         if (!btrfs_delayed_data_ref_cachep)
1176                 goto fail;
1177
1178         btrfs_delayed_extent_op_cachep = kmem_cache_create(
1179                                 "btrfs_delayed_extent_op",
1180                                 sizeof(struct btrfs_delayed_extent_op), 0,
1181                                 SLAB_MEM_SPREAD, NULL);
1182         if (!btrfs_delayed_extent_op_cachep)
1183                 goto fail;
1184
1185         return 0;
1186 fail:
1187         btrfs_delayed_ref_exit();
1188         return -ENOMEM;
1189 }