arm64: Delay initialisation of cpuinfo_arm64::reg_{zcr,smcr}
[linux-2.6-microblaze.git] / fs / btrfs / delayed-inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "misc.h"
10 #include "delayed-inode.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "ctree.h"
14 #include "qgroup.h"
15 #include "locking.h"
16 #include "inode-item.h"
17
18 #define BTRFS_DELAYED_WRITEBACK         512
19 #define BTRFS_DELAYED_BACKGROUND        128
20 #define BTRFS_DELAYED_BATCH             16
21
22 static struct kmem_cache *delayed_node_cache;
23
24 int __init btrfs_delayed_inode_init(void)
25 {
26         delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27                                         sizeof(struct btrfs_delayed_node),
28                                         0,
29                                         SLAB_MEM_SPREAD,
30                                         NULL);
31         if (!delayed_node_cache)
32                 return -ENOMEM;
33         return 0;
34 }
35
36 void __cold btrfs_delayed_inode_exit(void)
37 {
38         kmem_cache_destroy(delayed_node_cache);
39 }
40
41 static inline void btrfs_init_delayed_node(
42                                 struct btrfs_delayed_node *delayed_node,
43                                 struct btrfs_root *root, u64 inode_id)
44 {
45         delayed_node->root = root;
46         delayed_node->inode_id = inode_id;
47         refcount_set(&delayed_node->refs, 0);
48         delayed_node->ins_root = RB_ROOT_CACHED;
49         delayed_node->del_root = RB_ROOT_CACHED;
50         mutex_init(&delayed_node->mutex);
51         INIT_LIST_HEAD(&delayed_node->n_list);
52         INIT_LIST_HEAD(&delayed_node->p_list);
53 }
54
55 static inline int btrfs_is_continuous_delayed_item(
56                                         struct btrfs_delayed_item *item1,
57                                         struct btrfs_delayed_item *item2)
58 {
59         if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60             item1->key.objectid == item2->key.objectid &&
61             item1->key.type == item2->key.type &&
62             item1->key.offset + 1 == item2->key.offset)
63                 return 1;
64         return 0;
65 }
66
67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68                 struct btrfs_inode *btrfs_inode)
69 {
70         struct btrfs_root *root = btrfs_inode->root;
71         u64 ino = btrfs_ino(btrfs_inode);
72         struct btrfs_delayed_node *node;
73
74         node = READ_ONCE(btrfs_inode->delayed_node);
75         if (node) {
76                 refcount_inc(&node->refs);
77                 return node;
78         }
79
80         spin_lock(&root->inode_lock);
81         node = xa_load(&root->delayed_nodes, ino);
82
83         if (node) {
84                 if (btrfs_inode->delayed_node) {
85                         refcount_inc(&node->refs);      /* can be accessed */
86                         BUG_ON(btrfs_inode->delayed_node != node);
87                         spin_unlock(&root->inode_lock);
88                         return node;
89                 }
90
91                 /*
92                  * It's possible that we're racing into the middle of removing
93                  * this node from the xarray.  In this case, the refcount
94                  * was zero and it should never go back to one.  Just return
95                  * NULL like it was never in the xarray at all; our release
96                  * function is in the process of removing it.
97                  *
98                  * Some implementations of refcount_inc refuse to bump the
99                  * refcount once it has hit zero.  If we don't do this dance
100                  * here, refcount_inc() may decide to just WARN_ONCE() instead
101                  * of actually bumping the refcount.
102                  *
103                  * If this node is properly in the xarray, we want to bump the
104                  * refcount twice, once for the inode and once for this get
105                  * operation.
106                  */
107                 if (refcount_inc_not_zero(&node->refs)) {
108                         refcount_inc(&node->refs);
109                         btrfs_inode->delayed_node = node;
110                 } else {
111                         node = NULL;
112                 }
113
114                 spin_unlock(&root->inode_lock);
115                 return node;
116         }
117         spin_unlock(&root->inode_lock);
118
119         return NULL;
120 }
121
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124                 struct btrfs_inode *btrfs_inode)
125 {
126         struct btrfs_delayed_node *node;
127         struct btrfs_root *root = btrfs_inode->root;
128         u64 ino = btrfs_ino(btrfs_inode);
129         int ret;
130
131         do {
132                 node = btrfs_get_delayed_node(btrfs_inode);
133                 if (node)
134                         return node;
135
136                 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137                 if (!node)
138                         return ERR_PTR(-ENOMEM);
139                 btrfs_init_delayed_node(node, root, ino);
140
141                 /* Cached in the inode and can be accessed */
142                 refcount_set(&node->refs, 2);
143
144                 spin_lock(&root->inode_lock);
145                 ret = xa_insert(&root->delayed_nodes, ino, node, GFP_NOFS);
146                 if (ret) {
147                         spin_unlock(&root->inode_lock);
148                         kmem_cache_free(delayed_node_cache, node);
149                         if (ret != -EBUSY)
150                                 return ERR_PTR(ret);
151                 }
152         } while (ret);
153         btrfs_inode->delayed_node = node;
154         spin_unlock(&root->inode_lock);
155
156         return node;
157 }
158
159 /*
160  * Call it when holding delayed_node->mutex
161  *
162  * If mod = 1, add this node into the prepared list.
163  */
164 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
165                                      struct btrfs_delayed_node *node,
166                                      int mod)
167 {
168         spin_lock(&root->lock);
169         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
170                 if (!list_empty(&node->p_list))
171                         list_move_tail(&node->p_list, &root->prepare_list);
172                 else if (mod)
173                         list_add_tail(&node->p_list, &root->prepare_list);
174         } else {
175                 list_add_tail(&node->n_list, &root->node_list);
176                 list_add_tail(&node->p_list, &root->prepare_list);
177                 refcount_inc(&node->refs);      /* inserted into list */
178                 root->nodes++;
179                 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
180         }
181         spin_unlock(&root->lock);
182 }
183
184 /* Call it when holding delayed_node->mutex */
185 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
186                                        struct btrfs_delayed_node *node)
187 {
188         spin_lock(&root->lock);
189         if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
190                 root->nodes--;
191                 refcount_dec(&node->refs);      /* not in the list */
192                 list_del_init(&node->n_list);
193                 if (!list_empty(&node->p_list))
194                         list_del_init(&node->p_list);
195                 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
196         }
197         spin_unlock(&root->lock);
198 }
199
200 static struct btrfs_delayed_node *btrfs_first_delayed_node(
201                         struct btrfs_delayed_root *delayed_root)
202 {
203         struct list_head *p;
204         struct btrfs_delayed_node *node = NULL;
205
206         spin_lock(&delayed_root->lock);
207         if (list_empty(&delayed_root->node_list))
208                 goto out;
209
210         p = delayed_root->node_list.next;
211         node = list_entry(p, struct btrfs_delayed_node, n_list);
212         refcount_inc(&node->refs);
213 out:
214         spin_unlock(&delayed_root->lock);
215
216         return node;
217 }
218
219 static struct btrfs_delayed_node *btrfs_next_delayed_node(
220                                                 struct btrfs_delayed_node *node)
221 {
222         struct btrfs_delayed_root *delayed_root;
223         struct list_head *p;
224         struct btrfs_delayed_node *next = NULL;
225
226         delayed_root = node->root->fs_info->delayed_root;
227         spin_lock(&delayed_root->lock);
228         if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
229                 /* not in the list */
230                 if (list_empty(&delayed_root->node_list))
231                         goto out;
232                 p = delayed_root->node_list.next;
233         } else if (list_is_last(&node->n_list, &delayed_root->node_list))
234                 goto out;
235         else
236                 p = node->n_list.next;
237
238         next = list_entry(p, struct btrfs_delayed_node, n_list);
239         refcount_inc(&next->refs);
240 out:
241         spin_unlock(&delayed_root->lock);
242
243         return next;
244 }
245
246 static void __btrfs_release_delayed_node(
247                                 struct btrfs_delayed_node *delayed_node,
248                                 int mod)
249 {
250         struct btrfs_delayed_root *delayed_root;
251
252         if (!delayed_node)
253                 return;
254
255         delayed_root = delayed_node->root->fs_info->delayed_root;
256
257         mutex_lock(&delayed_node->mutex);
258         if (delayed_node->count)
259                 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
260         else
261                 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
262         mutex_unlock(&delayed_node->mutex);
263
264         if (refcount_dec_and_test(&delayed_node->refs)) {
265                 struct btrfs_root *root = delayed_node->root;
266
267                 spin_lock(&root->inode_lock);
268                 /*
269                  * Once our refcount goes to zero, nobody is allowed to bump it
270                  * back up.  We can delete it now.
271                  */
272                 ASSERT(refcount_read(&delayed_node->refs) == 0);
273                 xa_erase(&root->delayed_nodes, delayed_node->inode_id);
274                 spin_unlock(&root->inode_lock);
275                 kmem_cache_free(delayed_node_cache, delayed_node);
276         }
277 }
278
279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 {
281         __btrfs_release_delayed_node(node, 0);
282 }
283
284 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285                                         struct btrfs_delayed_root *delayed_root)
286 {
287         struct list_head *p;
288         struct btrfs_delayed_node *node = NULL;
289
290         spin_lock(&delayed_root->lock);
291         if (list_empty(&delayed_root->prepare_list))
292                 goto out;
293
294         p = delayed_root->prepare_list.next;
295         list_del_init(p);
296         node = list_entry(p, struct btrfs_delayed_node, p_list);
297         refcount_inc(&node->refs);
298 out:
299         spin_unlock(&delayed_root->lock);
300
301         return node;
302 }
303
304 static inline void btrfs_release_prepared_delayed_node(
305                                         struct btrfs_delayed_node *node)
306 {
307         __btrfs_release_delayed_node(node, 1);
308 }
309
310 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
311 {
312         struct btrfs_delayed_item *item;
313         item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
314         if (item) {
315                 item->data_len = data_len;
316                 item->ins_or_del = 0;
317                 item->bytes_reserved = 0;
318                 item->delayed_node = NULL;
319                 refcount_set(&item->refs, 1);
320         }
321         return item;
322 }
323
324 /*
325  * __btrfs_lookup_delayed_item - look up the delayed item by key
326  * @delayed_node: pointer to the delayed node
327  * @key:          the key to look up
328  * @prev:         used to store the prev item if the right item isn't found
329  * @next:         used to store the next item if the right item isn't found
330  *
331  * Note: if we don't find the right item, we will return the prev item and
332  * the next item.
333  */
334 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
335                                 struct rb_root *root,
336                                 struct btrfs_key *key,
337                                 struct btrfs_delayed_item **prev,
338                                 struct btrfs_delayed_item **next)
339 {
340         struct rb_node *node, *prev_node = NULL;
341         struct btrfs_delayed_item *delayed_item = NULL;
342         int ret = 0;
343
344         node = root->rb_node;
345
346         while (node) {
347                 delayed_item = rb_entry(node, struct btrfs_delayed_item,
348                                         rb_node);
349                 prev_node = node;
350                 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
351                 if (ret < 0)
352                         node = node->rb_right;
353                 else if (ret > 0)
354                         node = node->rb_left;
355                 else
356                         return delayed_item;
357         }
358
359         if (prev) {
360                 if (!prev_node)
361                         *prev = NULL;
362                 else if (ret < 0)
363                         *prev = delayed_item;
364                 else if ((node = rb_prev(prev_node)) != NULL) {
365                         *prev = rb_entry(node, struct btrfs_delayed_item,
366                                          rb_node);
367                 } else
368                         *prev = NULL;
369         }
370
371         if (next) {
372                 if (!prev_node)
373                         *next = NULL;
374                 else if (ret > 0)
375                         *next = delayed_item;
376                 else if ((node = rb_next(prev_node)) != NULL) {
377                         *next = rb_entry(node, struct btrfs_delayed_item,
378                                          rb_node);
379                 } else
380                         *next = NULL;
381         }
382         return NULL;
383 }
384
385 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
386                                         struct btrfs_delayed_node *delayed_node,
387                                         struct btrfs_key *key)
388 {
389         return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
390                                            NULL, NULL);
391 }
392
393 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
394                                     struct btrfs_delayed_item *ins,
395                                     int action)
396 {
397         struct rb_node **p, *node;
398         struct rb_node *parent_node = NULL;
399         struct rb_root_cached *root;
400         struct btrfs_delayed_item *item;
401         int cmp;
402         bool leftmost = true;
403
404         if (action == BTRFS_DELAYED_INSERTION_ITEM)
405                 root = &delayed_node->ins_root;
406         else if (action == BTRFS_DELAYED_DELETION_ITEM)
407                 root = &delayed_node->del_root;
408         else
409                 BUG();
410         p = &root->rb_root.rb_node;
411         node = &ins->rb_node;
412
413         while (*p) {
414                 parent_node = *p;
415                 item = rb_entry(parent_node, struct btrfs_delayed_item,
416                                  rb_node);
417
418                 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
419                 if (cmp < 0) {
420                         p = &(*p)->rb_right;
421                         leftmost = false;
422                 } else if (cmp > 0) {
423                         p = &(*p)->rb_left;
424                 } else {
425                         return -EEXIST;
426                 }
427         }
428
429         rb_link_node(node, parent_node, p);
430         rb_insert_color_cached(node, root, leftmost);
431         ins->delayed_node = delayed_node;
432         ins->ins_or_del = action;
433
434         if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
435             action == BTRFS_DELAYED_INSERTION_ITEM &&
436             ins->key.offset >= delayed_node->index_cnt)
437                         delayed_node->index_cnt = ins->key.offset + 1;
438
439         delayed_node->count++;
440         atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
441         return 0;
442 }
443
444 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
445                                               struct btrfs_delayed_item *item)
446 {
447         return __btrfs_add_delayed_item(node, item,
448                                         BTRFS_DELAYED_INSERTION_ITEM);
449 }
450
451 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
452                                              struct btrfs_delayed_item *item)
453 {
454         return __btrfs_add_delayed_item(node, item,
455                                         BTRFS_DELAYED_DELETION_ITEM);
456 }
457
458 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
459 {
460         int seq = atomic_inc_return(&delayed_root->items_seq);
461
462         /* atomic_dec_return implies a barrier */
463         if ((atomic_dec_return(&delayed_root->items) <
464             BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
465                 cond_wake_up_nomb(&delayed_root->wait);
466 }
467
468 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
469 {
470         struct rb_root_cached *root;
471         struct btrfs_delayed_root *delayed_root;
472
473         /* Not associated with any delayed_node */
474         if (!delayed_item->delayed_node)
475                 return;
476         delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
477
478         BUG_ON(!delayed_root);
479         BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
480                delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
481
482         if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
483                 root = &delayed_item->delayed_node->ins_root;
484         else
485                 root = &delayed_item->delayed_node->del_root;
486
487         rb_erase_cached(&delayed_item->rb_node, root);
488         delayed_item->delayed_node->count--;
489
490         finish_one_item(delayed_root);
491 }
492
493 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
494 {
495         if (item) {
496                 __btrfs_remove_delayed_item(item);
497                 if (refcount_dec_and_test(&item->refs))
498                         kfree(item);
499         }
500 }
501
502 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
503                                         struct btrfs_delayed_node *delayed_node)
504 {
505         struct rb_node *p;
506         struct btrfs_delayed_item *item = NULL;
507
508         p = rb_first_cached(&delayed_node->ins_root);
509         if (p)
510                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
511
512         return item;
513 }
514
515 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
516                                         struct btrfs_delayed_node *delayed_node)
517 {
518         struct rb_node *p;
519         struct btrfs_delayed_item *item = NULL;
520
521         p = rb_first_cached(&delayed_node->del_root);
522         if (p)
523                 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
524
525         return item;
526 }
527
528 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
529                                                 struct btrfs_delayed_item *item)
530 {
531         struct rb_node *p;
532         struct btrfs_delayed_item *next = NULL;
533
534         p = rb_next(&item->rb_node);
535         if (p)
536                 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
537
538         return next;
539 }
540
541 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
542                                                struct btrfs_root *root,
543                                                struct btrfs_delayed_item *item)
544 {
545         struct btrfs_block_rsv *src_rsv;
546         struct btrfs_block_rsv *dst_rsv;
547         struct btrfs_fs_info *fs_info = root->fs_info;
548         u64 num_bytes;
549         int ret;
550
551         if (!trans->bytes_reserved)
552                 return 0;
553
554         src_rsv = trans->block_rsv;
555         dst_rsv = &fs_info->delayed_block_rsv;
556
557         num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
558
559         /*
560          * Here we migrate space rsv from transaction rsv, since have already
561          * reserved space when starting a transaction.  So no need to reserve
562          * qgroup space here.
563          */
564         ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
565         if (!ret) {
566                 trace_btrfs_space_reservation(fs_info, "delayed_item",
567                                               item->key.objectid,
568                                               num_bytes, 1);
569                 item->bytes_reserved = num_bytes;
570         }
571
572         return ret;
573 }
574
575 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
576                                                 struct btrfs_delayed_item *item)
577 {
578         struct btrfs_block_rsv *rsv;
579         struct btrfs_fs_info *fs_info = root->fs_info;
580
581         if (!item->bytes_reserved)
582                 return;
583
584         rsv = &fs_info->delayed_block_rsv;
585         /*
586          * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
587          * to release/reserve qgroup space.
588          */
589         trace_btrfs_space_reservation(fs_info, "delayed_item",
590                                       item->key.objectid, item->bytes_reserved,
591                                       0);
592         btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
593 }
594
595 static int btrfs_delayed_inode_reserve_metadata(
596                                         struct btrfs_trans_handle *trans,
597                                         struct btrfs_root *root,
598                                         struct btrfs_delayed_node *node)
599 {
600         struct btrfs_fs_info *fs_info = root->fs_info;
601         struct btrfs_block_rsv *src_rsv;
602         struct btrfs_block_rsv *dst_rsv;
603         u64 num_bytes;
604         int ret;
605
606         src_rsv = trans->block_rsv;
607         dst_rsv = &fs_info->delayed_block_rsv;
608
609         num_bytes = btrfs_calc_metadata_size(fs_info, 1);
610
611         /*
612          * btrfs_dirty_inode will update the inode under btrfs_join_transaction
613          * which doesn't reserve space for speed.  This is a problem since we
614          * still need to reserve space for this update, so try to reserve the
615          * space.
616          *
617          * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
618          * we always reserve enough to update the inode item.
619          */
620         if (!src_rsv || (!trans->bytes_reserved &&
621                          src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
622                 ret = btrfs_qgroup_reserve_meta(root, num_bytes,
623                                           BTRFS_QGROUP_RSV_META_PREALLOC, true);
624                 if (ret < 0)
625                         return ret;
626                 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes,
627                                           BTRFS_RESERVE_NO_FLUSH);
628                 /* NO_FLUSH could only fail with -ENOSPC */
629                 ASSERT(ret == 0 || ret == -ENOSPC);
630                 if (ret)
631                         btrfs_qgroup_free_meta_prealloc(root, num_bytes);
632         } else {
633                 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
634         }
635
636         if (!ret) {
637                 trace_btrfs_space_reservation(fs_info, "delayed_inode",
638                                               node->inode_id, num_bytes, 1);
639                 node->bytes_reserved = num_bytes;
640         }
641
642         return ret;
643 }
644
645 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
646                                                 struct btrfs_delayed_node *node,
647                                                 bool qgroup_free)
648 {
649         struct btrfs_block_rsv *rsv;
650
651         if (!node->bytes_reserved)
652                 return;
653
654         rsv = &fs_info->delayed_block_rsv;
655         trace_btrfs_space_reservation(fs_info, "delayed_inode",
656                                       node->inode_id, node->bytes_reserved, 0);
657         btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
658         if (qgroup_free)
659                 btrfs_qgroup_free_meta_prealloc(node->root,
660                                 node->bytes_reserved);
661         else
662                 btrfs_qgroup_convert_reserved_meta(node->root,
663                                 node->bytes_reserved);
664         node->bytes_reserved = 0;
665 }
666
667 /*
668  * Insert a single delayed item or a batch of delayed items that have consecutive
669  * keys if they exist.
670  */
671 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
672                                      struct btrfs_root *root,
673                                      struct btrfs_path *path,
674                                      struct btrfs_delayed_item *first_item)
675 {
676         LIST_HEAD(item_list);
677         struct btrfs_delayed_item *curr;
678         struct btrfs_delayed_item *next;
679         const int max_size = BTRFS_LEAF_DATA_SIZE(root->fs_info);
680         struct btrfs_item_batch batch;
681         int total_size;
682         char *ins_data = NULL;
683         int ret;
684
685         list_add_tail(&first_item->tree_list, &item_list);
686         batch.total_data_size = first_item->data_len;
687         batch.nr = 1;
688         total_size = first_item->data_len + sizeof(struct btrfs_item);
689         curr = first_item;
690
691         while (true) {
692                 int next_size;
693
694                 next = __btrfs_next_delayed_item(curr);
695                 if (!next || !btrfs_is_continuous_delayed_item(curr, next))
696                         break;
697
698                 next_size = next->data_len + sizeof(struct btrfs_item);
699                 if (total_size + next_size > max_size)
700                         break;
701
702                 list_add_tail(&next->tree_list, &item_list);
703                 batch.nr++;
704                 total_size += next_size;
705                 batch.total_data_size += next->data_len;
706                 curr = next;
707         }
708
709         if (batch.nr == 1) {
710                 batch.keys = &first_item->key;
711                 batch.data_sizes = &first_item->data_len;
712         } else {
713                 struct btrfs_key *ins_keys;
714                 u32 *ins_sizes;
715                 int i = 0;
716
717                 ins_data = kmalloc(batch.nr * sizeof(u32) +
718                                    batch.nr * sizeof(struct btrfs_key), GFP_NOFS);
719                 if (!ins_data) {
720                         ret = -ENOMEM;
721                         goto out;
722                 }
723                 ins_sizes = (u32 *)ins_data;
724                 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32));
725                 batch.keys = ins_keys;
726                 batch.data_sizes = ins_sizes;
727                 list_for_each_entry(curr, &item_list, tree_list) {
728                         ins_keys[i] = curr->key;
729                         ins_sizes[i] = curr->data_len;
730                         i++;
731                 }
732         }
733
734         ret = btrfs_insert_empty_items(trans, root, path, &batch);
735         if (ret)
736                 goto out;
737
738         list_for_each_entry(curr, &item_list, tree_list) {
739                 char *data_ptr;
740
741                 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
742                 write_extent_buffer(path->nodes[0], &curr->data,
743                                     (unsigned long)data_ptr, curr->data_len);
744                 path->slots[0]++;
745         }
746
747         /*
748          * Now release our path before releasing the delayed items and their
749          * metadata reservations, so that we don't block other tasks for more
750          * time than needed.
751          */
752         btrfs_release_path(path);
753
754         list_for_each_entry_safe(curr, next, &item_list, tree_list) {
755                 list_del(&curr->tree_list);
756                 btrfs_delayed_item_release_metadata(root, curr);
757                 btrfs_release_delayed_item(curr);
758         }
759 out:
760         kfree(ins_data);
761         return ret;
762 }
763
764 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
765                                       struct btrfs_path *path,
766                                       struct btrfs_root *root,
767                                       struct btrfs_delayed_node *node)
768 {
769         int ret = 0;
770
771         while (ret == 0) {
772                 struct btrfs_delayed_item *curr;
773
774                 mutex_lock(&node->mutex);
775                 curr = __btrfs_first_delayed_insertion_item(node);
776                 if (!curr) {
777                         mutex_unlock(&node->mutex);
778                         break;
779                 }
780                 ret = btrfs_insert_delayed_item(trans, root, path, curr);
781                 mutex_unlock(&node->mutex);
782         }
783
784         return ret;
785 }
786
787 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
788                                     struct btrfs_root *root,
789                                     struct btrfs_path *path,
790                                     struct btrfs_delayed_item *item)
791 {
792         struct btrfs_delayed_item *curr, *next;
793         struct extent_buffer *leaf;
794         struct btrfs_key key;
795         struct list_head head;
796         int nitems, i, last_item;
797         int ret = 0;
798
799         BUG_ON(!path->nodes[0]);
800
801         leaf = path->nodes[0];
802
803         i = path->slots[0];
804         last_item = btrfs_header_nritems(leaf) - 1;
805         if (i > last_item)
806                 return -ENOENT; /* FIXME: Is errno suitable? */
807
808         next = item;
809         INIT_LIST_HEAD(&head);
810         btrfs_item_key_to_cpu(leaf, &key, i);
811         nitems = 0;
812         /*
813          * count the number of the dir index items that we can delete in batch
814          */
815         while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
816                 list_add_tail(&next->tree_list, &head);
817                 nitems++;
818
819                 curr = next;
820                 next = __btrfs_next_delayed_item(curr);
821                 if (!next)
822                         break;
823
824                 if (!btrfs_is_continuous_delayed_item(curr, next))
825                         break;
826
827                 i++;
828                 if (i > last_item)
829                         break;
830                 btrfs_item_key_to_cpu(leaf, &key, i);
831         }
832
833         if (!nitems)
834                 return 0;
835
836         ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
837         if (ret)
838                 goto out;
839
840         list_for_each_entry_safe(curr, next, &head, tree_list) {
841                 btrfs_delayed_item_release_metadata(root, curr);
842                 list_del(&curr->tree_list);
843                 btrfs_release_delayed_item(curr);
844         }
845
846 out:
847         return ret;
848 }
849
850 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
851                                       struct btrfs_path *path,
852                                       struct btrfs_root *root,
853                                       struct btrfs_delayed_node *node)
854 {
855         struct btrfs_delayed_item *curr, *prev;
856         int ret = 0;
857
858 do_again:
859         mutex_lock(&node->mutex);
860         curr = __btrfs_first_delayed_deletion_item(node);
861         if (!curr)
862                 goto delete_fail;
863
864         ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
865         if (ret < 0)
866                 goto delete_fail;
867         else if (ret > 0) {
868                 /*
869                  * can't find the item which the node points to, so this node
870                  * is invalid, just drop it.
871                  */
872                 prev = curr;
873                 curr = __btrfs_next_delayed_item(prev);
874                 btrfs_release_delayed_item(prev);
875                 ret = 0;
876                 btrfs_release_path(path);
877                 if (curr) {
878                         mutex_unlock(&node->mutex);
879                         goto do_again;
880                 } else
881                         goto delete_fail;
882         }
883
884         btrfs_batch_delete_items(trans, root, path, curr);
885         btrfs_release_path(path);
886         mutex_unlock(&node->mutex);
887         goto do_again;
888
889 delete_fail:
890         btrfs_release_path(path);
891         mutex_unlock(&node->mutex);
892         return ret;
893 }
894
895 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
896 {
897         struct btrfs_delayed_root *delayed_root;
898
899         if (delayed_node &&
900             test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
901                 BUG_ON(!delayed_node->root);
902                 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
903                 delayed_node->count--;
904
905                 delayed_root = delayed_node->root->fs_info->delayed_root;
906                 finish_one_item(delayed_root);
907         }
908 }
909
910 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
911 {
912
913         if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
914                 struct btrfs_delayed_root *delayed_root;
915
916                 ASSERT(delayed_node->root);
917                 delayed_node->count--;
918
919                 delayed_root = delayed_node->root->fs_info->delayed_root;
920                 finish_one_item(delayed_root);
921         }
922 }
923
924 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
925                                         struct btrfs_root *root,
926                                         struct btrfs_path *path,
927                                         struct btrfs_delayed_node *node)
928 {
929         struct btrfs_fs_info *fs_info = root->fs_info;
930         struct btrfs_key key;
931         struct btrfs_inode_item *inode_item;
932         struct extent_buffer *leaf;
933         int mod;
934         int ret;
935
936         key.objectid = node->inode_id;
937         key.type = BTRFS_INODE_ITEM_KEY;
938         key.offset = 0;
939
940         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
941                 mod = -1;
942         else
943                 mod = 1;
944
945         ret = btrfs_lookup_inode(trans, root, path, &key, mod);
946         if (ret > 0)
947                 ret = -ENOENT;
948         if (ret < 0)
949                 goto out;
950
951         leaf = path->nodes[0];
952         inode_item = btrfs_item_ptr(leaf, path->slots[0],
953                                     struct btrfs_inode_item);
954         write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
955                             sizeof(struct btrfs_inode_item));
956         btrfs_mark_buffer_dirty(leaf);
957
958         if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
959                 goto out;
960
961         path->slots[0]++;
962         if (path->slots[0] >= btrfs_header_nritems(leaf))
963                 goto search;
964 again:
965         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
966         if (key.objectid != node->inode_id)
967                 goto out;
968
969         if (key.type != BTRFS_INODE_REF_KEY &&
970             key.type != BTRFS_INODE_EXTREF_KEY)
971                 goto out;
972
973         /*
974          * Delayed iref deletion is for the inode who has only one link,
975          * so there is only one iref. The case that several irefs are
976          * in the same item doesn't exist.
977          */
978         btrfs_del_item(trans, root, path);
979 out:
980         btrfs_release_delayed_iref(node);
981         btrfs_release_path(path);
982 err_out:
983         btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
984         btrfs_release_delayed_inode(node);
985
986         /*
987          * If we fail to update the delayed inode we need to abort the
988          * transaction, because we could leave the inode with the improper
989          * counts behind.
990          */
991         if (ret && ret != -ENOENT)
992                 btrfs_abort_transaction(trans, ret);
993
994         return ret;
995
996 search:
997         btrfs_release_path(path);
998
999         key.type = BTRFS_INODE_EXTREF_KEY;
1000         key.offset = -1;
1001
1002         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1003         if (ret < 0)
1004                 goto err_out;
1005         ASSERT(ret);
1006
1007         ret = 0;
1008         leaf = path->nodes[0];
1009         path->slots[0]--;
1010         goto again;
1011 }
1012
1013 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1014                                              struct btrfs_root *root,
1015                                              struct btrfs_path *path,
1016                                              struct btrfs_delayed_node *node)
1017 {
1018         int ret;
1019
1020         mutex_lock(&node->mutex);
1021         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1022                 mutex_unlock(&node->mutex);
1023                 return 0;
1024         }
1025
1026         ret = __btrfs_update_delayed_inode(trans, root, path, node);
1027         mutex_unlock(&node->mutex);
1028         return ret;
1029 }
1030
1031 static inline int
1032 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1033                                    struct btrfs_path *path,
1034                                    struct btrfs_delayed_node *node)
1035 {
1036         int ret;
1037
1038         ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1039         if (ret)
1040                 return ret;
1041
1042         ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1043         if (ret)
1044                 return ret;
1045
1046         ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1047         return ret;
1048 }
1049
1050 /*
1051  * Called when committing the transaction.
1052  * Returns 0 on success.
1053  * Returns < 0 on error and returns with an aborted transaction with any
1054  * outstanding delayed items cleaned up.
1055  */
1056 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1057 {
1058         struct btrfs_fs_info *fs_info = trans->fs_info;
1059         struct btrfs_delayed_root *delayed_root;
1060         struct btrfs_delayed_node *curr_node, *prev_node;
1061         struct btrfs_path *path;
1062         struct btrfs_block_rsv *block_rsv;
1063         int ret = 0;
1064         bool count = (nr > 0);
1065
1066         if (TRANS_ABORTED(trans))
1067                 return -EIO;
1068
1069         path = btrfs_alloc_path();
1070         if (!path)
1071                 return -ENOMEM;
1072
1073         block_rsv = trans->block_rsv;
1074         trans->block_rsv = &fs_info->delayed_block_rsv;
1075
1076         delayed_root = fs_info->delayed_root;
1077
1078         curr_node = btrfs_first_delayed_node(delayed_root);
1079         while (curr_node && (!count || nr--)) {
1080                 ret = __btrfs_commit_inode_delayed_items(trans, path,
1081                                                          curr_node);
1082                 if (ret) {
1083                         btrfs_release_delayed_node(curr_node);
1084                         curr_node = NULL;
1085                         btrfs_abort_transaction(trans, ret);
1086                         break;
1087                 }
1088
1089                 prev_node = curr_node;
1090                 curr_node = btrfs_next_delayed_node(curr_node);
1091                 btrfs_release_delayed_node(prev_node);
1092         }
1093
1094         if (curr_node)
1095                 btrfs_release_delayed_node(curr_node);
1096         btrfs_free_path(path);
1097         trans->block_rsv = block_rsv;
1098
1099         return ret;
1100 }
1101
1102 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1103 {
1104         return __btrfs_run_delayed_items(trans, -1);
1105 }
1106
1107 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1108 {
1109         return __btrfs_run_delayed_items(trans, nr);
1110 }
1111
1112 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1113                                      struct btrfs_inode *inode)
1114 {
1115         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1116         struct btrfs_path *path;
1117         struct btrfs_block_rsv *block_rsv;
1118         int ret;
1119
1120         if (!delayed_node)
1121                 return 0;
1122
1123         mutex_lock(&delayed_node->mutex);
1124         if (!delayed_node->count) {
1125                 mutex_unlock(&delayed_node->mutex);
1126                 btrfs_release_delayed_node(delayed_node);
1127                 return 0;
1128         }
1129         mutex_unlock(&delayed_node->mutex);
1130
1131         path = btrfs_alloc_path();
1132         if (!path) {
1133                 btrfs_release_delayed_node(delayed_node);
1134                 return -ENOMEM;
1135         }
1136
1137         block_rsv = trans->block_rsv;
1138         trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1139
1140         ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1141
1142         btrfs_release_delayed_node(delayed_node);
1143         btrfs_free_path(path);
1144         trans->block_rsv = block_rsv;
1145
1146         return ret;
1147 }
1148
1149 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1150 {
1151         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1152         struct btrfs_trans_handle *trans;
1153         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1154         struct btrfs_path *path;
1155         struct btrfs_block_rsv *block_rsv;
1156         int ret;
1157
1158         if (!delayed_node)
1159                 return 0;
1160
1161         mutex_lock(&delayed_node->mutex);
1162         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1163                 mutex_unlock(&delayed_node->mutex);
1164                 btrfs_release_delayed_node(delayed_node);
1165                 return 0;
1166         }
1167         mutex_unlock(&delayed_node->mutex);
1168
1169         trans = btrfs_join_transaction(delayed_node->root);
1170         if (IS_ERR(trans)) {
1171                 ret = PTR_ERR(trans);
1172                 goto out;
1173         }
1174
1175         path = btrfs_alloc_path();
1176         if (!path) {
1177                 ret = -ENOMEM;
1178                 goto trans_out;
1179         }
1180
1181         block_rsv = trans->block_rsv;
1182         trans->block_rsv = &fs_info->delayed_block_rsv;
1183
1184         mutex_lock(&delayed_node->mutex);
1185         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1186                 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1187                                                    path, delayed_node);
1188         else
1189                 ret = 0;
1190         mutex_unlock(&delayed_node->mutex);
1191
1192         btrfs_free_path(path);
1193         trans->block_rsv = block_rsv;
1194 trans_out:
1195         btrfs_end_transaction(trans);
1196         btrfs_btree_balance_dirty(fs_info);
1197 out:
1198         btrfs_release_delayed_node(delayed_node);
1199
1200         return ret;
1201 }
1202
1203 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1204 {
1205         struct btrfs_delayed_node *delayed_node;
1206
1207         delayed_node = READ_ONCE(inode->delayed_node);
1208         if (!delayed_node)
1209                 return;
1210
1211         inode->delayed_node = NULL;
1212         btrfs_release_delayed_node(delayed_node);
1213 }
1214
1215 struct btrfs_async_delayed_work {
1216         struct btrfs_delayed_root *delayed_root;
1217         int nr;
1218         struct btrfs_work work;
1219 };
1220
1221 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1222 {
1223         struct btrfs_async_delayed_work *async_work;
1224         struct btrfs_delayed_root *delayed_root;
1225         struct btrfs_trans_handle *trans;
1226         struct btrfs_path *path;
1227         struct btrfs_delayed_node *delayed_node = NULL;
1228         struct btrfs_root *root;
1229         struct btrfs_block_rsv *block_rsv;
1230         int total_done = 0;
1231
1232         async_work = container_of(work, struct btrfs_async_delayed_work, work);
1233         delayed_root = async_work->delayed_root;
1234
1235         path = btrfs_alloc_path();
1236         if (!path)
1237                 goto out;
1238
1239         do {
1240                 if (atomic_read(&delayed_root->items) <
1241                     BTRFS_DELAYED_BACKGROUND / 2)
1242                         break;
1243
1244                 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1245                 if (!delayed_node)
1246                         break;
1247
1248                 root = delayed_node->root;
1249
1250                 trans = btrfs_join_transaction(root);
1251                 if (IS_ERR(trans)) {
1252                         btrfs_release_path(path);
1253                         btrfs_release_prepared_delayed_node(delayed_node);
1254                         total_done++;
1255                         continue;
1256                 }
1257
1258                 block_rsv = trans->block_rsv;
1259                 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1260
1261                 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1262
1263                 trans->block_rsv = block_rsv;
1264                 btrfs_end_transaction(trans);
1265                 btrfs_btree_balance_dirty_nodelay(root->fs_info);
1266
1267                 btrfs_release_path(path);
1268                 btrfs_release_prepared_delayed_node(delayed_node);
1269                 total_done++;
1270
1271         } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1272                  || total_done < async_work->nr);
1273
1274         btrfs_free_path(path);
1275 out:
1276         wake_up(&delayed_root->wait);
1277         kfree(async_work);
1278 }
1279
1280
1281 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1282                                      struct btrfs_fs_info *fs_info, int nr)
1283 {
1284         struct btrfs_async_delayed_work *async_work;
1285
1286         async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1287         if (!async_work)
1288                 return -ENOMEM;
1289
1290         async_work->delayed_root = delayed_root;
1291         btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1292                         NULL);
1293         async_work->nr = nr;
1294
1295         btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1296         return 0;
1297 }
1298
1299 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1300 {
1301         WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1302 }
1303
1304 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1305 {
1306         int val = atomic_read(&delayed_root->items_seq);
1307
1308         if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1309                 return 1;
1310
1311         if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1312                 return 1;
1313
1314         return 0;
1315 }
1316
1317 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1318 {
1319         struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1320
1321         if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1322                 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1323                 return;
1324
1325         if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1326                 int seq;
1327                 int ret;
1328
1329                 seq = atomic_read(&delayed_root->items_seq);
1330
1331                 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1332                 if (ret)
1333                         return;
1334
1335                 wait_event_interruptible(delayed_root->wait,
1336                                          could_end_wait(delayed_root, seq));
1337                 return;
1338         }
1339
1340         btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1341 }
1342
1343 /* Will return 0 or -ENOMEM */
1344 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1345                                    const char *name, int name_len,
1346                                    struct btrfs_inode *dir,
1347                                    struct btrfs_disk_key *disk_key, u8 type,
1348                                    u64 index)
1349 {
1350         struct btrfs_delayed_node *delayed_node;
1351         struct btrfs_delayed_item *delayed_item;
1352         struct btrfs_dir_item *dir_item;
1353         int ret;
1354
1355         delayed_node = btrfs_get_or_create_delayed_node(dir);
1356         if (IS_ERR(delayed_node))
1357                 return PTR_ERR(delayed_node);
1358
1359         delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1360         if (!delayed_item) {
1361                 ret = -ENOMEM;
1362                 goto release_node;
1363         }
1364
1365         delayed_item->key.objectid = btrfs_ino(dir);
1366         delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1367         delayed_item->key.offset = index;
1368
1369         dir_item = (struct btrfs_dir_item *)delayed_item->data;
1370         dir_item->location = *disk_key;
1371         btrfs_set_stack_dir_transid(dir_item, trans->transid);
1372         btrfs_set_stack_dir_data_len(dir_item, 0);
1373         btrfs_set_stack_dir_name_len(dir_item, name_len);
1374         btrfs_set_stack_dir_type(dir_item, type);
1375         memcpy((char *)(dir_item + 1), name, name_len);
1376
1377         ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1378         /*
1379          * we have reserved enough space when we start a new transaction,
1380          * so reserving metadata failure is impossible
1381          */
1382         BUG_ON(ret);
1383
1384         mutex_lock(&delayed_node->mutex);
1385         ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1386         if (unlikely(ret)) {
1387                 btrfs_err(trans->fs_info,
1388                           "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1389                           name_len, name, delayed_node->root->root_key.objectid,
1390                           delayed_node->inode_id, ret);
1391                 BUG();
1392         }
1393         mutex_unlock(&delayed_node->mutex);
1394
1395 release_node:
1396         btrfs_release_delayed_node(delayed_node);
1397         return ret;
1398 }
1399
1400 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1401                                                struct btrfs_delayed_node *node,
1402                                                struct btrfs_key *key)
1403 {
1404         struct btrfs_delayed_item *item;
1405
1406         mutex_lock(&node->mutex);
1407         item = __btrfs_lookup_delayed_insertion_item(node, key);
1408         if (!item) {
1409                 mutex_unlock(&node->mutex);
1410                 return 1;
1411         }
1412
1413         btrfs_delayed_item_release_metadata(node->root, item);
1414         btrfs_release_delayed_item(item);
1415         mutex_unlock(&node->mutex);
1416         return 0;
1417 }
1418
1419 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1420                                    struct btrfs_inode *dir, u64 index)
1421 {
1422         struct btrfs_delayed_node *node;
1423         struct btrfs_delayed_item *item;
1424         struct btrfs_key item_key;
1425         int ret;
1426
1427         node = btrfs_get_or_create_delayed_node(dir);
1428         if (IS_ERR(node))
1429                 return PTR_ERR(node);
1430
1431         item_key.objectid = btrfs_ino(dir);
1432         item_key.type = BTRFS_DIR_INDEX_KEY;
1433         item_key.offset = index;
1434
1435         ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1436                                                   &item_key);
1437         if (!ret)
1438                 goto end;
1439
1440         item = btrfs_alloc_delayed_item(0);
1441         if (!item) {
1442                 ret = -ENOMEM;
1443                 goto end;
1444         }
1445
1446         item->key = item_key;
1447
1448         ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1449         /*
1450          * we have reserved enough space when we start a new transaction,
1451          * so reserving metadata failure is impossible.
1452          */
1453         if (ret < 0) {
1454                 btrfs_err(trans->fs_info,
1455 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1456                 btrfs_release_delayed_item(item);
1457                 goto end;
1458         }
1459
1460         mutex_lock(&node->mutex);
1461         ret = __btrfs_add_delayed_deletion_item(node, item);
1462         if (unlikely(ret)) {
1463                 btrfs_err(trans->fs_info,
1464                           "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1465                           index, node->root->root_key.objectid,
1466                           node->inode_id, ret);
1467                 btrfs_delayed_item_release_metadata(dir->root, item);
1468                 btrfs_release_delayed_item(item);
1469         }
1470         mutex_unlock(&node->mutex);
1471 end:
1472         btrfs_release_delayed_node(node);
1473         return ret;
1474 }
1475
1476 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1477 {
1478         struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1479
1480         if (!delayed_node)
1481                 return -ENOENT;
1482
1483         /*
1484          * Since we have held i_mutex of this directory, it is impossible that
1485          * a new directory index is added into the delayed node and index_cnt
1486          * is updated now. So we needn't lock the delayed node.
1487          */
1488         if (!delayed_node->index_cnt) {
1489                 btrfs_release_delayed_node(delayed_node);
1490                 return -EINVAL;
1491         }
1492
1493         inode->index_cnt = delayed_node->index_cnt;
1494         btrfs_release_delayed_node(delayed_node);
1495         return 0;
1496 }
1497
1498 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1499                                      struct list_head *ins_list,
1500                                      struct list_head *del_list)
1501 {
1502         struct btrfs_delayed_node *delayed_node;
1503         struct btrfs_delayed_item *item;
1504
1505         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1506         if (!delayed_node)
1507                 return false;
1508
1509         /*
1510          * We can only do one readdir with delayed items at a time because of
1511          * item->readdir_list.
1512          */
1513         btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1514         btrfs_inode_lock(inode, 0);
1515
1516         mutex_lock(&delayed_node->mutex);
1517         item = __btrfs_first_delayed_insertion_item(delayed_node);
1518         while (item) {
1519                 refcount_inc(&item->refs);
1520                 list_add_tail(&item->readdir_list, ins_list);
1521                 item = __btrfs_next_delayed_item(item);
1522         }
1523
1524         item = __btrfs_first_delayed_deletion_item(delayed_node);
1525         while (item) {
1526                 refcount_inc(&item->refs);
1527                 list_add_tail(&item->readdir_list, del_list);
1528                 item = __btrfs_next_delayed_item(item);
1529         }
1530         mutex_unlock(&delayed_node->mutex);
1531         /*
1532          * This delayed node is still cached in the btrfs inode, so refs
1533          * must be > 1 now, and we needn't check it is going to be freed
1534          * or not.
1535          *
1536          * Besides that, this function is used to read dir, we do not
1537          * insert/delete delayed items in this period. So we also needn't
1538          * requeue or dequeue this delayed node.
1539          */
1540         refcount_dec(&delayed_node->refs);
1541
1542         return true;
1543 }
1544
1545 void btrfs_readdir_put_delayed_items(struct inode *inode,
1546                                      struct list_head *ins_list,
1547                                      struct list_head *del_list)
1548 {
1549         struct btrfs_delayed_item *curr, *next;
1550
1551         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1552                 list_del(&curr->readdir_list);
1553                 if (refcount_dec_and_test(&curr->refs))
1554                         kfree(curr);
1555         }
1556
1557         list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1558                 list_del(&curr->readdir_list);
1559                 if (refcount_dec_and_test(&curr->refs))
1560                         kfree(curr);
1561         }
1562
1563         /*
1564          * The VFS is going to do up_read(), so we need to downgrade back to a
1565          * read lock.
1566          */
1567         downgrade_write(&inode->i_rwsem);
1568 }
1569
1570 int btrfs_should_delete_dir_index(struct list_head *del_list,
1571                                   u64 index)
1572 {
1573         struct btrfs_delayed_item *curr;
1574         int ret = 0;
1575
1576         list_for_each_entry(curr, del_list, readdir_list) {
1577                 if (curr->key.offset > index)
1578                         break;
1579                 if (curr->key.offset == index) {
1580                         ret = 1;
1581                         break;
1582                 }
1583         }
1584         return ret;
1585 }
1586
1587 /*
1588  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1589  *
1590  */
1591 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1592                                     struct list_head *ins_list)
1593 {
1594         struct btrfs_dir_item *di;
1595         struct btrfs_delayed_item *curr, *next;
1596         struct btrfs_key location;
1597         char *name;
1598         int name_len;
1599         int over = 0;
1600         unsigned char d_type;
1601
1602         if (list_empty(ins_list))
1603                 return 0;
1604
1605         /*
1606          * Changing the data of the delayed item is impossible. So
1607          * we needn't lock them. And we have held i_mutex of the
1608          * directory, nobody can delete any directory indexes now.
1609          */
1610         list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1611                 list_del(&curr->readdir_list);
1612
1613                 if (curr->key.offset < ctx->pos) {
1614                         if (refcount_dec_and_test(&curr->refs))
1615                                 kfree(curr);
1616                         continue;
1617                 }
1618
1619                 ctx->pos = curr->key.offset;
1620
1621                 di = (struct btrfs_dir_item *)curr->data;
1622                 name = (char *)(di + 1);
1623                 name_len = btrfs_stack_dir_name_len(di);
1624
1625                 d_type = fs_ftype_to_dtype(di->type);
1626                 btrfs_disk_key_to_cpu(&location, &di->location);
1627
1628                 over = !dir_emit(ctx, name, name_len,
1629                                location.objectid, d_type);
1630
1631                 if (refcount_dec_and_test(&curr->refs))
1632                         kfree(curr);
1633
1634                 if (over)
1635                         return 1;
1636                 ctx->pos++;
1637         }
1638         return 0;
1639 }
1640
1641 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1642                                   struct btrfs_inode_item *inode_item,
1643                                   struct inode *inode)
1644 {
1645         u64 flags;
1646
1647         btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1648         btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1649         btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1650         btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1651         btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1652         btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1653         btrfs_set_stack_inode_generation(inode_item,
1654                                          BTRFS_I(inode)->generation);
1655         btrfs_set_stack_inode_sequence(inode_item,
1656                                        inode_peek_iversion(inode));
1657         btrfs_set_stack_inode_transid(inode_item, trans->transid);
1658         btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1659         flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
1660                                           BTRFS_I(inode)->ro_flags);
1661         btrfs_set_stack_inode_flags(inode_item, flags);
1662         btrfs_set_stack_inode_block_group(inode_item, 0);
1663
1664         btrfs_set_stack_timespec_sec(&inode_item->atime,
1665                                      inode->i_atime.tv_sec);
1666         btrfs_set_stack_timespec_nsec(&inode_item->atime,
1667                                       inode->i_atime.tv_nsec);
1668
1669         btrfs_set_stack_timespec_sec(&inode_item->mtime,
1670                                      inode->i_mtime.tv_sec);
1671         btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1672                                       inode->i_mtime.tv_nsec);
1673
1674         btrfs_set_stack_timespec_sec(&inode_item->ctime,
1675                                      inode->i_ctime.tv_sec);
1676         btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1677                                       inode->i_ctime.tv_nsec);
1678
1679         btrfs_set_stack_timespec_sec(&inode_item->otime,
1680                                      BTRFS_I(inode)->i_otime.tv_sec);
1681         btrfs_set_stack_timespec_nsec(&inode_item->otime,
1682                                      BTRFS_I(inode)->i_otime.tv_nsec);
1683 }
1684
1685 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1686 {
1687         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1688         struct btrfs_delayed_node *delayed_node;
1689         struct btrfs_inode_item *inode_item;
1690
1691         delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1692         if (!delayed_node)
1693                 return -ENOENT;
1694
1695         mutex_lock(&delayed_node->mutex);
1696         if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1697                 mutex_unlock(&delayed_node->mutex);
1698                 btrfs_release_delayed_node(delayed_node);
1699                 return -ENOENT;
1700         }
1701
1702         inode_item = &delayed_node->inode_item;
1703
1704         i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1705         i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1706         btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1707         btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1708                         round_up(i_size_read(inode), fs_info->sectorsize));
1709         inode->i_mode = btrfs_stack_inode_mode(inode_item);
1710         set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1711         inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1712         BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1713         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1714
1715         inode_set_iversion_queried(inode,
1716                                    btrfs_stack_inode_sequence(inode_item));
1717         inode->i_rdev = 0;
1718         *rdev = btrfs_stack_inode_rdev(inode_item);
1719         btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item),
1720                                 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
1721
1722         inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1723         inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1724
1725         inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1726         inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1727
1728         inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1729         inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1730
1731         BTRFS_I(inode)->i_otime.tv_sec =
1732                 btrfs_stack_timespec_sec(&inode_item->otime);
1733         BTRFS_I(inode)->i_otime.tv_nsec =
1734                 btrfs_stack_timespec_nsec(&inode_item->otime);
1735
1736         inode->i_generation = BTRFS_I(inode)->generation;
1737         BTRFS_I(inode)->index_cnt = (u64)-1;
1738
1739         mutex_unlock(&delayed_node->mutex);
1740         btrfs_release_delayed_node(delayed_node);
1741         return 0;
1742 }
1743
1744 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1745                                struct btrfs_root *root,
1746                                struct btrfs_inode *inode)
1747 {
1748         struct btrfs_delayed_node *delayed_node;
1749         int ret = 0;
1750
1751         delayed_node = btrfs_get_or_create_delayed_node(inode);
1752         if (IS_ERR(delayed_node))
1753                 return PTR_ERR(delayed_node);
1754
1755         mutex_lock(&delayed_node->mutex);
1756         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1757                 fill_stack_inode_item(trans, &delayed_node->inode_item,
1758                                       &inode->vfs_inode);
1759                 goto release_node;
1760         }
1761
1762         ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1763         if (ret)
1764                 goto release_node;
1765
1766         fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1767         set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1768         delayed_node->count++;
1769         atomic_inc(&root->fs_info->delayed_root->items);
1770 release_node:
1771         mutex_unlock(&delayed_node->mutex);
1772         btrfs_release_delayed_node(delayed_node);
1773         return ret;
1774 }
1775
1776 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1777 {
1778         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1779         struct btrfs_delayed_node *delayed_node;
1780
1781         /*
1782          * we don't do delayed inode updates during log recovery because it
1783          * leads to enospc problems.  This means we also can't do
1784          * delayed inode refs
1785          */
1786         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1787                 return -EAGAIN;
1788
1789         delayed_node = btrfs_get_or_create_delayed_node(inode);
1790         if (IS_ERR(delayed_node))
1791                 return PTR_ERR(delayed_node);
1792
1793         /*
1794          * We don't reserve space for inode ref deletion is because:
1795          * - We ONLY do async inode ref deletion for the inode who has only
1796          *   one link(i_nlink == 1), it means there is only one inode ref.
1797          *   And in most case, the inode ref and the inode item are in the
1798          *   same leaf, and we will deal with them at the same time.
1799          *   Since we are sure we will reserve the space for the inode item,
1800          *   it is unnecessary to reserve space for inode ref deletion.
1801          * - If the inode ref and the inode item are not in the same leaf,
1802          *   We also needn't worry about enospc problem, because we reserve
1803          *   much more space for the inode update than it needs.
1804          * - At the worst, we can steal some space from the global reservation.
1805          *   It is very rare.
1806          */
1807         mutex_lock(&delayed_node->mutex);
1808         if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1809                 goto release_node;
1810
1811         set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1812         delayed_node->count++;
1813         atomic_inc(&fs_info->delayed_root->items);
1814 release_node:
1815         mutex_unlock(&delayed_node->mutex);
1816         btrfs_release_delayed_node(delayed_node);
1817         return 0;
1818 }
1819
1820 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1821 {
1822         struct btrfs_root *root = delayed_node->root;
1823         struct btrfs_fs_info *fs_info = root->fs_info;
1824         struct btrfs_delayed_item *curr_item, *prev_item;
1825
1826         mutex_lock(&delayed_node->mutex);
1827         curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1828         while (curr_item) {
1829                 btrfs_delayed_item_release_metadata(root, curr_item);
1830                 prev_item = curr_item;
1831                 curr_item = __btrfs_next_delayed_item(prev_item);
1832                 btrfs_release_delayed_item(prev_item);
1833         }
1834
1835         curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1836         while (curr_item) {
1837                 btrfs_delayed_item_release_metadata(root, curr_item);
1838                 prev_item = curr_item;
1839                 curr_item = __btrfs_next_delayed_item(prev_item);
1840                 btrfs_release_delayed_item(prev_item);
1841         }
1842
1843         btrfs_release_delayed_iref(delayed_node);
1844
1845         if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1846                 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1847                 btrfs_release_delayed_inode(delayed_node);
1848         }
1849         mutex_unlock(&delayed_node->mutex);
1850 }
1851
1852 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1853 {
1854         struct btrfs_delayed_node *delayed_node;
1855
1856         delayed_node = btrfs_get_delayed_node(inode);
1857         if (!delayed_node)
1858                 return;
1859
1860         __btrfs_kill_delayed_node(delayed_node);
1861         btrfs_release_delayed_node(delayed_node);
1862 }
1863
1864 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1865 {
1866         unsigned long index = 0;
1867         struct btrfs_delayed_node *delayed_node;
1868         struct btrfs_delayed_node *delayed_nodes[8];
1869
1870         while (1) {
1871                 int n = 0;
1872
1873                 spin_lock(&root->inode_lock);
1874                 if (xa_empty(&root->delayed_nodes)) {
1875                         spin_unlock(&root->inode_lock);
1876                         return;
1877                 }
1878
1879                 xa_for_each_start(&root->delayed_nodes, index, delayed_node, index) {
1880                         /*
1881                          * Don't increase refs in case the node is dead and
1882                          * about to be removed from the tree in the loop below
1883                          */
1884                         if (refcount_inc_not_zero(&delayed_node->refs)) {
1885                                 delayed_nodes[n] = delayed_node;
1886                                 n++;
1887                         }
1888                         if (n >= ARRAY_SIZE(delayed_nodes))
1889                                 break;
1890                 }
1891                 index++;
1892                 spin_unlock(&root->inode_lock);
1893
1894                 for (int i = 0; i < n; i++) {
1895                         __btrfs_kill_delayed_node(delayed_nodes[i]);
1896                         btrfs_release_delayed_node(delayed_nodes[i]);
1897                 }
1898         }
1899 }
1900
1901 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1902 {
1903         struct btrfs_delayed_node *curr_node, *prev_node;
1904
1905         curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1906         while (curr_node) {
1907                 __btrfs_kill_delayed_node(curr_node);
1908
1909                 prev_node = curr_node;
1910                 curr_node = btrfs_next_delayed_node(curr_node);
1911                 btrfs_release_delayed_node(prev_node);
1912         }
1913 }
1914