Merge tag 'irqchip-fixes-5.10-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19                       *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21                       const struct btrfs_key *ins_key, struct btrfs_path *path,
22                       int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24                           struct extent_buffer *dst,
25                           struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27                               struct extent_buffer *dst_buf,
28                               struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30                     int level, int slot);
31
32 static const struct btrfs_csums {
33         u16             size;
34         const char      name[10];
35         const char      driver[12];
36 } btrfs_csums[] = {
37         [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38         [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39         [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40         [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
41                                      .driver = "blake2b-256" },
42 };
43
44 int btrfs_super_csum_size(const struct btrfs_super_block *s)
45 {
46         u16 t = btrfs_super_csum_type(s);
47         /*
48          * csum type is validated at mount time
49          */
50         return btrfs_csums[t].size;
51 }
52
53 const char *btrfs_super_csum_name(u16 csum_type)
54 {
55         /* csum type is validated at mount time */
56         return btrfs_csums[csum_type].name;
57 }
58
59 /*
60  * Return driver name if defined, otherwise the name that's also a valid driver
61  * name
62  */
63 const char *btrfs_super_csum_driver(u16 csum_type)
64 {
65         /* csum type is validated at mount time */
66         return btrfs_csums[csum_type].driver[0] ?
67                 btrfs_csums[csum_type].driver :
68                 btrfs_csums[csum_type].name;
69 }
70
71 size_t __attribute_const__ btrfs_get_num_csums(void)
72 {
73         return ARRAY_SIZE(btrfs_csums);
74 }
75
76 struct btrfs_path *btrfs_alloc_path(void)
77 {
78         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
79 }
80
81 /* this also releases the path */
82 void btrfs_free_path(struct btrfs_path *p)
83 {
84         if (!p)
85                 return;
86         btrfs_release_path(p);
87         kmem_cache_free(btrfs_path_cachep, p);
88 }
89
90 /*
91  * path release drops references on the extent buffers in the path
92  * and it drops any locks held by this path
93  *
94  * It is safe to call this on paths that no locks or extent buffers held.
95  */
96 noinline void btrfs_release_path(struct btrfs_path *p)
97 {
98         int i;
99
100         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
101                 p->slots[i] = 0;
102                 if (!p->nodes[i])
103                         continue;
104                 if (p->locks[i]) {
105                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
106                         p->locks[i] = 0;
107                 }
108                 free_extent_buffer(p->nodes[i]);
109                 p->nodes[i] = NULL;
110         }
111 }
112
113 /*
114  * safely gets a reference on the root node of a tree.  A lock
115  * is not taken, so a concurrent writer may put a different node
116  * at the root of the tree.  See btrfs_lock_root_node for the
117  * looping required.
118  *
119  * The extent buffer returned by this has a reference taken, so
120  * it won't disappear.  It may stop being the root of the tree
121  * at any time because there are no locks held.
122  */
123 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
124 {
125         struct extent_buffer *eb;
126
127         while (1) {
128                 rcu_read_lock();
129                 eb = rcu_dereference(root->node);
130
131                 /*
132                  * RCU really hurts here, we could free up the root node because
133                  * it was COWed but we may not get the new root node yet so do
134                  * the inc_not_zero dance and if it doesn't work then
135                  * synchronize_rcu and try again.
136                  */
137                 if (atomic_inc_not_zero(&eb->refs)) {
138                         rcu_read_unlock();
139                         break;
140                 }
141                 rcu_read_unlock();
142                 synchronize_rcu();
143         }
144         return eb;
145 }
146
147 /*
148  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
149  * just get put onto a simple dirty list.  Transaction walks this list to make
150  * sure they get properly updated on disk.
151  */
152 static void add_root_to_dirty_list(struct btrfs_root *root)
153 {
154         struct btrfs_fs_info *fs_info = root->fs_info;
155
156         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
157             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
158                 return;
159
160         spin_lock(&fs_info->trans_lock);
161         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
162                 /* Want the extent tree to be the last on the list */
163                 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
164                         list_move_tail(&root->dirty_list,
165                                        &fs_info->dirty_cowonly_roots);
166                 else
167                         list_move(&root->dirty_list,
168                                   &fs_info->dirty_cowonly_roots);
169         }
170         spin_unlock(&fs_info->trans_lock);
171 }
172
173 /*
174  * used by snapshot creation to make a copy of a root for a tree with
175  * a given objectid.  The buffer with the new root node is returned in
176  * cow_ret, and this func returns zero on success or a negative error code.
177  */
178 int btrfs_copy_root(struct btrfs_trans_handle *trans,
179                       struct btrfs_root *root,
180                       struct extent_buffer *buf,
181                       struct extent_buffer **cow_ret, u64 new_root_objectid)
182 {
183         struct btrfs_fs_info *fs_info = root->fs_info;
184         struct extent_buffer *cow;
185         int ret = 0;
186         int level;
187         struct btrfs_disk_key disk_key;
188
189         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
190                 trans->transid != fs_info->running_transaction->transid);
191         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192                 trans->transid != root->last_trans);
193
194         level = btrfs_header_level(buf);
195         if (level == 0)
196                 btrfs_item_key(buf, &disk_key, 0);
197         else
198                 btrfs_node_key(buf, &disk_key, 0);
199
200         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
201                                      &disk_key, level, buf->start, 0,
202                                      BTRFS_NESTING_NEW_ROOT);
203         if (IS_ERR(cow))
204                 return PTR_ERR(cow);
205
206         copy_extent_buffer_full(cow, buf);
207         btrfs_set_header_bytenr(cow, cow->start);
208         btrfs_set_header_generation(cow, trans->transid);
209         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
210         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
211                                      BTRFS_HEADER_FLAG_RELOC);
212         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
213                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
214         else
215                 btrfs_set_header_owner(cow, new_root_objectid);
216
217         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
218
219         WARN_ON(btrfs_header_generation(buf) > trans->transid);
220         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
221                 ret = btrfs_inc_ref(trans, root, cow, 1);
222         else
223                 ret = btrfs_inc_ref(trans, root, cow, 0);
224
225         if (ret)
226                 return ret;
227
228         btrfs_mark_buffer_dirty(cow);
229         *cow_ret = cow;
230         return 0;
231 }
232
233 enum mod_log_op {
234         MOD_LOG_KEY_REPLACE,
235         MOD_LOG_KEY_ADD,
236         MOD_LOG_KEY_REMOVE,
237         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
238         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
239         MOD_LOG_MOVE_KEYS,
240         MOD_LOG_ROOT_REPLACE,
241 };
242
243 struct tree_mod_root {
244         u64 logical;
245         u8 level;
246 };
247
248 struct tree_mod_elem {
249         struct rb_node node;
250         u64 logical;
251         u64 seq;
252         enum mod_log_op op;
253
254         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
255         int slot;
256
257         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
258         u64 generation;
259
260         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
261         struct btrfs_disk_key key;
262         u64 blockptr;
263
264         /* this is used for op == MOD_LOG_MOVE_KEYS */
265         struct {
266                 int dst_slot;
267                 int nr_items;
268         } move;
269
270         /* this is used for op == MOD_LOG_ROOT_REPLACE */
271         struct tree_mod_root old_root;
272 };
273
274 /*
275  * Pull a new tree mod seq number for our operation.
276  */
277 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
278 {
279         return atomic64_inc_return(&fs_info->tree_mod_seq);
280 }
281
282 /*
283  * This adds a new blocker to the tree mod log's blocker list if the @elem
284  * passed does not already have a sequence number set. So when a caller expects
285  * to record tree modifications, it should ensure to set elem->seq to zero
286  * before calling btrfs_get_tree_mod_seq.
287  * Returns a fresh, unused tree log modification sequence number, even if no new
288  * blocker was added.
289  */
290 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
291                            struct seq_list *elem)
292 {
293         write_lock(&fs_info->tree_mod_log_lock);
294         if (!elem->seq) {
295                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
296                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
297         }
298         write_unlock(&fs_info->tree_mod_log_lock);
299
300         return elem->seq;
301 }
302
303 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
304                             struct seq_list *elem)
305 {
306         struct rb_root *tm_root;
307         struct rb_node *node;
308         struct rb_node *next;
309         struct tree_mod_elem *tm;
310         u64 min_seq = (u64)-1;
311         u64 seq_putting = elem->seq;
312
313         if (!seq_putting)
314                 return;
315
316         write_lock(&fs_info->tree_mod_log_lock);
317         list_del(&elem->list);
318         elem->seq = 0;
319
320         if (!list_empty(&fs_info->tree_mod_seq_list)) {
321                 struct seq_list *first;
322
323                 first = list_first_entry(&fs_info->tree_mod_seq_list,
324                                          struct seq_list, list);
325                 if (seq_putting > first->seq) {
326                         /*
327                          * Blocker with lower sequence number exists, we
328                          * cannot remove anything from the log.
329                          */
330                         write_unlock(&fs_info->tree_mod_log_lock);
331                         return;
332                 }
333                 min_seq = first->seq;
334         }
335
336         /*
337          * anything that's lower than the lowest existing (read: blocked)
338          * sequence number can be removed from the tree.
339          */
340         tm_root = &fs_info->tree_mod_log;
341         for (node = rb_first(tm_root); node; node = next) {
342                 next = rb_next(node);
343                 tm = rb_entry(node, struct tree_mod_elem, node);
344                 if (tm->seq >= min_seq)
345                         continue;
346                 rb_erase(node, tm_root);
347                 kfree(tm);
348         }
349         write_unlock(&fs_info->tree_mod_log_lock);
350 }
351
352 /*
353  * key order of the log:
354  *       node/leaf start address -> sequence
355  *
356  * The 'start address' is the logical address of the *new* root node
357  * for root replace operations, or the logical address of the affected
358  * block for all other operations.
359  */
360 static noinline int
361 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
362 {
363         struct rb_root *tm_root;
364         struct rb_node **new;
365         struct rb_node *parent = NULL;
366         struct tree_mod_elem *cur;
367
368         lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
369
370         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
371
372         tm_root = &fs_info->tree_mod_log;
373         new = &tm_root->rb_node;
374         while (*new) {
375                 cur = rb_entry(*new, struct tree_mod_elem, node);
376                 parent = *new;
377                 if (cur->logical < tm->logical)
378                         new = &((*new)->rb_left);
379                 else if (cur->logical > tm->logical)
380                         new = &((*new)->rb_right);
381                 else if (cur->seq < tm->seq)
382                         new = &((*new)->rb_left);
383                 else if (cur->seq > tm->seq)
384                         new = &((*new)->rb_right);
385                 else
386                         return -EEXIST;
387         }
388
389         rb_link_node(&tm->node, parent, new);
390         rb_insert_color(&tm->node, tm_root);
391         return 0;
392 }
393
394 /*
395  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
396  * returns zero with the tree_mod_log_lock acquired. The caller must hold
397  * this until all tree mod log insertions are recorded in the rb tree and then
398  * write unlock fs_info::tree_mod_log_lock.
399  */
400 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
401                                     struct extent_buffer *eb) {
402         smp_mb();
403         if (list_empty(&(fs_info)->tree_mod_seq_list))
404                 return 1;
405         if (eb && btrfs_header_level(eb) == 0)
406                 return 1;
407
408         write_lock(&fs_info->tree_mod_log_lock);
409         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
410                 write_unlock(&fs_info->tree_mod_log_lock);
411                 return 1;
412         }
413
414         return 0;
415 }
416
417 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
418 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
419                                     struct extent_buffer *eb)
420 {
421         smp_mb();
422         if (list_empty(&(fs_info)->tree_mod_seq_list))
423                 return 0;
424         if (eb && btrfs_header_level(eb) == 0)
425                 return 0;
426
427         return 1;
428 }
429
430 static struct tree_mod_elem *
431 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
432                     enum mod_log_op op, gfp_t flags)
433 {
434         struct tree_mod_elem *tm;
435
436         tm = kzalloc(sizeof(*tm), flags);
437         if (!tm)
438                 return NULL;
439
440         tm->logical = eb->start;
441         if (op != MOD_LOG_KEY_ADD) {
442                 btrfs_node_key(eb, &tm->key, slot);
443                 tm->blockptr = btrfs_node_blockptr(eb, slot);
444         }
445         tm->op = op;
446         tm->slot = slot;
447         tm->generation = btrfs_node_ptr_generation(eb, slot);
448         RB_CLEAR_NODE(&tm->node);
449
450         return tm;
451 }
452
453 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
454                 enum mod_log_op op, gfp_t flags)
455 {
456         struct tree_mod_elem *tm;
457         int ret;
458
459         if (!tree_mod_need_log(eb->fs_info, eb))
460                 return 0;
461
462         tm = alloc_tree_mod_elem(eb, slot, op, flags);
463         if (!tm)
464                 return -ENOMEM;
465
466         if (tree_mod_dont_log(eb->fs_info, eb)) {
467                 kfree(tm);
468                 return 0;
469         }
470
471         ret = __tree_mod_log_insert(eb->fs_info, tm);
472         write_unlock(&eb->fs_info->tree_mod_log_lock);
473         if (ret)
474                 kfree(tm);
475
476         return ret;
477 }
478
479 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
480                 int dst_slot, int src_slot, int nr_items)
481 {
482         struct tree_mod_elem *tm = NULL;
483         struct tree_mod_elem **tm_list = NULL;
484         int ret = 0;
485         int i;
486         int locked = 0;
487
488         if (!tree_mod_need_log(eb->fs_info, eb))
489                 return 0;
490
491         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
492         if (!tm_list)
493                 return -ENOMEM;
494
495         tm = kzalloc(sizeof(*tm), GFP_NOFS);
496         if (!tm) {
497                 ret = -ENOMEM;
498                 goto free_tms;
499         }
500
501         tm->logical = eb->start;
502         tm->slot = src_slot;
503         tm->move.dst_slot = dst_slot;
504         tm->move.nr_items = nr_items;
505         tm->op = MOD_LOG_MOVE_KEYS;
506
507         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
508                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
509                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
510                 if (!tm_list[i]) {
511                         ret = -ENOMEM;
512                         goto free_tms;
513                 }
514         }
515
516         if (tree_mod_dont_log(eb->fs_info, eb))
517                 goto free_tms;
518         locked = 1;
519
520         /*
521          * When we override something during the move, we log these removals.
522          * This can only happen when we move towards the beginning of the
523          * buffer, i.e. dst_slot < src_slot.
524          */
525         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
526                 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
527                 if (ret)
528                         goto free_tms;
529         }
530
531         ret = __tree_mod_log_insert(eb->fs_info, tm);
532         if (ret)
533                 goto free_tms;
534         write_unlock(&eb->fs_info->tree_mod_log_lock);
535         kfree(tm_list);
536
537         return 0;
538 free_tms:
539         for (i = 0; i < nr_items; i++) {
540                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
541                         rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
542                 kfree(tm_list[i]);
543         }
544         if (locked)
545                 write_unlock(&eb->fs_info->tree_mod_log_lock);
546         kfree(tm_list);
547         kfree(tm);
548
549         return ret;
550 }
551
552 static inline int
553 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
554                        struct tree_mod_elem **tm_list,
555                        int nritems)
556 {
557         int i, j;
558         int ret;
559
560         for (i = nritems - 1; i >= 0; i--) {
561                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
562                 if (ret) {
563                         for (j = nritems - 1; j > i; j--)
564                                 rb_erase(&tm_list[j]->node,
565                                          &fs_info->tree_mod_log);
566                         return ret;
567                 }
568         }
569
570         return 0;
571 }
572
573 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
574                          struct extent_buffer *new_root, int log_removal)
575 {
576         struct btrfs_fs_info *fs_info = old_root->fs_info;
577         struct tree_mod_elem *tm = NULL;
578         struct tree_mod_elem **tm_list = NULL;
579         int nritems = 0;
580         int ret = 0;
581         int i;
582
583         if (!tree_mod_need_log(fs_info, NULL))
584                 return 0;
585
586         if (log_removal && btrfs_header_level(old_root) > 0) {
587                 nritems = btrfs_header_nritems(old_root);
588                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
589                                   GFP_NOFS);
590                 if (!tm_list) {
591                         ret = -ENOMEM;
592                         goto free_tms;
593                 }
594                 for (i = 0; i < nritems; i++) {
595                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
596                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
597                         if (!tm_list[i]) {
598                                 ret = -ENOMEM;
599                                 goto free_tms;
600                         }
601                 }
602         }
603
604         tm = kzalloc(sizeof(*tm), GFP_NOFS);
605         if (!tm) {
606                 ret = -ENOMEM;
607                 goto free_tms;
608         }
609
610         tm->logical = new_root->start;
611         tm->old_root.logical = old_root->start;
612         tm->old_root.level = btrfs_header_level(old_root);
613         tm->generation = btrfs_header_generation(old_root);
614         tm->op = MOD_LOG_ROOT_REPLACE;
615
616         if (tree_mod_dont_log(fs_info, NULL))
617                 goto free_tms;
618
619         if (tm_list)
620                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
621         if (!ret)
622                 ret = __tree_mod_log_insert(fs_info, tm);
623
624         write_unlock(&fs_info->tree_mod_log_lock);
625         if (ret)
626                 goto free_tms;
627         kfree(tm_list);
628
629         return ret;
630
631 free_tms:
632         if (tm_list) {
633                 for (i = 0; i < nritems; i++)
634                         kfree(tm_list[i]);
635                 kfree(tm_list);
636         }
637         kfree(tm);
638
639         return ret;
640 }
641
642 static struct tree_mod_elem *
643 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
644                       int smallest)
645 {
646         struct rb_root *tm_root;
647         struct rb_node *node;
648         struct tree_mod_elem *cur = NULL;
649         struct tree_mod_elem *found = NULL;
650
651         read_lock(&fs_info->tree_mod_log_lock);
652         tm_root = &fs_info->tree_mod_log;
653         node = tm_root->rb_node;
654         while (node) {
655                 cur = rb_entry(node, struct tree_mod_elem, node);
656                 if (cur->logical < start) {
657                         node = node->rb_left;
658                 } else if (cur->logical > start) {
659                         node = node->rb_right;
660                 } else if (cur->seq < min_seq) {
661                         node = node->rb_left;
662                 } else if (!smallest) {
663                         /* we want the node with the highest seq */
664                         if (found)
665                                 BUG_ON(found->seq > cur->seq);
666                         found = cur;
667                         node = node->rb_left;
668                 } else if (cur->seq > min_seq) {
669                         /* we want the node with the smallest seq */
670                         if (found)
671                                 BUG_ON(found->seq < cur->seq);
672                         found = cur;
673                         node = node->rb_right;
674                 } else {
675                         found = cur;
676                         break;
677                 }
678         }
679         read_unlock(&fs_info->tree_mod_log_lock);
680
681         return found;
682 }
683
684 /*
685  * this returns the element from the log with the smallest time sequence
686  * value that's in the log (the oldest log item). any element with a time
687  * sequence lower than min_seq will be ignored.
688  */
689 static struct tree_mod_elem *
690 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
691                            u64 min_seq)
692 {
693         return __tree_mod_log_search(fs_info, start, min_seq, 1);
694 }
695
696 /*
697  * this returns the element from the log with the largest time sequence
698  * value that's in the log (the most recent log item). any element with
699  * a time sequence lower than min_seq will be ignored.
700  */
701 static struct tree_mod_elem *
702 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
703 {
704         return __tree_mod_log_search(fs_info, start, min_seq, 0);
705 }
706
707 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
708                      struct extent_buffer *src, unsigned long dst_offset,
709                      unsigned long src_offset, int nr_items)
710 {
711         struct btrfs_fs_info *fs_info = dst->fs_info;
712         int ret = 0;
713         struct tree_mod_elem **tm_list = NULL;
714         struct tree_mod_elem **tm_list_add, **tm_list_rem;
715         int i;
716         int locked = 0;
717
718         if (!tree_mod_need_log(fs_info, NULL))
719                 return 0;
720
721         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
722                 return 0;
723
724         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
725                           GFP_NOFS);
726         if (!tm_list)
727                 return -ENOMEM;
728
729         tm_list_add = tm_list;
730         tm_list_rem = tm_list + nr_items;
731         for (i = 0; i < nr_items; i++) {
732                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
733                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
734                 if (!tm_list_rem[i]) {
735                         ret = -ENOMEM;
736                         goto free_tms;
737                 }
738
739                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
740                     MOD_LOG_KEY_ADD, GFP_NOFS);
741                 if (!tm_list_add[i]) {
742                         ret = -ENOMEM;
743                         goto free_tms;
744                 }
745         }
746
747         if (tree_mod_dont_log(fs_info, NULL))
748                 goto free_tms;
749         locked = 1;
750
751         for (i = 0; i < nr_items; i++) {
752                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
753                 if (ret)
754                         goto free_tms;
755                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
756                 if (ret)
757                         goto free_tms;
758         }
759
760         write_unlock(&fs_info->tree_mod_log_lock);
761         kfree(tm_list);
762
763         return 0;
764
765 free_tms:
766         for (i = 0; i < nr_items * 2; i++) {
767                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
768                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
769                 kfree(tm_list[i]);
770         }
771         if (locked)
772                 write_unlock(&fs_info->tree_mod_log_lock);
773         kfree(tm_list);
774
775         return ret;
776 }
777
778 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
779 {
780         struct tree_mod_elem **tm_list = NULL;
781         int nritems = 0;
782         int i;
783         int ret = 0;
784
785         if (btrfs_header_level(eb) == 0)
786                 return 0;
787
788         if (!tree_mod_need_log(eb->fs_info, NULL))
789                 return 0;
790
791         nritems = btrfs_header_nritems(eb);
792         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
793         if (!tm_list)
794                 return -ENOMEM;
795
796         for (i = 0; i < nritems; i++) {
797                 tm_list[i] = alloc_tree_mod_elem(eb, i,
798                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
799                 if (!tm_list[i]) {
800                         ret = -ENOMEM;
801                         goto free_tms;
802                 }
803         }
804
805         if (tree_mod_dont_log(eb->fs_info, eb))
806                 goto free_tms;
807
808         ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
809         write_unlock(&eb->fs_info->tree_mod_log_lock);
810         if (ret)
811                 goto free_tms;
812         kfree(tm_list);
813
814         return 0;
815
816 free_tms:
817         for (i = 0; i < nritems; i++)
818                 kfree(tm_list[i]);
819         kfree(tm_list);
820
821         return ret;
822 }
823
824 /*
825  * check if the tree block can be shared by multiple trees
826  */
827 int btrfs_block_can_be_shared(struct btrfs_root *root,
828                               struct extent_buffer *buf)
829 {
830         /*
831          * Tree blocks not in shareable trees and tree roots are never shared.
832          * If a block was allocated after the last snapshot and the block was
833          * not allocated by tree relocation, we know the block is not shared.
834          */
835         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
836             buf != root->node && buf != root->commit_root &&
837             (btrfs_header_generation(buf) <=
838              btrfs_root_last_snapshot(&root->root_item) ||
839              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
840                 return 1;
841
842         return 0;
843 }
844
845 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
846                                        struct btrfs_root *root,
847                                        struct extent_buffer *buf,
848                                        struct extent_buffer *cow,
849                                        int *last_ref)
850 {
851         struct btrfs_fs_info *fs_info = root->fs_info;
852         u64 refs;
853         u64 owner;
854         u64 flags;
855         u64 new_flags = 0;
856         int ret;
857
858         /*
859          * Backrefs update rules:
860          *
861          * Always use full backrefs for extent pointers in tree block
862          * allocated by tree relocation.
863          *
864          * If a shared tree block is no longer referenced by its owner
865          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
866          * use full backrefs for extent pointers in tree block.
867          *
868          * If a tree block is been relocating
869          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
870          * use full backrefs for extent pointers in tree block.
871          * The reason for this is some operations (such as drop tree)
872          * are only allowed for blocks use full backrefs.
873          */
874
875         if (btrfs_block_can_be_shared(root, buf)) {
876                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
877                                                btrfs_header_level(buf), 1,
878                                                &refs, &flags);
879                 if (ret)
880                         return ret;
881                 if (refs == 0) {
882                         ret = -EROFS;
883                         btrfs_handle_fs_error(fs_info, ret, NULL);
884                         return ret;
885                 }
886         } else {
887                 refs = 1;
888                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
889                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
890                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
891                 else
892                         flags = 0;
893         }
894
895         owner = btrfs_header_owner(buf);
896         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
897                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
898
899         if (refs > 1) {
900                 if ((owner == root->root_key.objectid ||
901                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
902                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
903                         ret = btrfs_inc_ref(trans, root, buf, 1);
904                         if (ret)
905                                 return ret;
906
907                         if (root->root_key.objectid ==
908                             BTRFS_TREE_RELOC_OBJECTID) {
909                                 ret = btrfs_dec_ref(trans, root, buf, 0);
910                                 if (ret)
911                                         return ret;
912                                 ret = btrfs_inc_ref(trans, root, cow, 1);
913                                 if (ret)
914                                         return ret;
915                         }
916                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
917                 } else {
918
919                         if (root->root_key.objectid ==
920                             BTRFS_TREE_RELOC_OBJECTID)
921                                 ret = btrfs_inc_ref(trans, root, cow, 1);
922                         else
923                                 ret = btrfs_inc_ref(trans, root, cow, 0);
924                         if (ret)
925                                 return ret;
926                 }
927                 if (new_flags != 0) {
928                         int level = btrfs_header_level(buf);
929
930                         ret = btrfs_set_disk_extent_flags(trans, buf,
931                                                           new_flags, level, 0);
932                         if (ret)
933                                 return ret;
934                 }
935         } else {
936                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
937                         if (root->root_key.objectid ==
938                             BTRFS_TREE_RELOC_OBJECTID)
939                                 ret = btrfs_inc_ref(trans, root, cow, 1);
940                         else
941                                 ret = btrfs_inc_ref(trans, root, cow, 0);
942                         if (ret)
943                                 return ret;
944                         ret = btrfs_dec_ref(trans, root, buf, 1);
945                         if (ret)
946                                 return ret;
947                 }
948                 btrfs_clean_tree_block(buf);
949                 *last_ref = 1;
950         }
951         return 0;
952 }
953
954 static struct extent_buffer *alloc_tree_block_no_bg_flush(
955                                           struct btrfs_trans_handle *trans,
956                                           struct btrfs_root *root,
957                                           u64 parent_start,
958                                           const struct btrfs_disk_key *disk_key,
959                                           int level,
960                                           u64 hint,
961                                           u64 empty_size,
962                                           enum btrfs_lock_nesting nest)
963 {
964         struct btrfs_fs_info *fs_info = root->fs_info;
965         struct extent_buffer *ret;
966
967         /*
968          * If we are COWing a node/leaf from the extent, chunk, device or free
969          * space trees, make sure that we do not finish block group creation of
970          * pending block groups. We do this to avoid a deadlock.
971          * COWing can result in allocation of a new chunk, and flushing pending
972          * block groups (btrfs_create_pending_block_groups()) can be triggered
973          * when finishing allocation of a new chunk. Creation of a pending block
974          * group modifies the extent, chunk, device and free space trees,
975          * therefore we could deadlock with ourselves since we are holding a
976          * lock on an extent buffer that btrfs_create_pending_block_groups() may
977          * try to COW later.
978          * For similar reasons, we also need to delay flushing pending block
979          * groups when splitting a leaf or node, from one of those trees, since
980          * we are holding a write lock on it and its parent or when inserting a
981          * new root node for one of those trees.
982          */
983         if (root == fs_info->extent_root ||
984             root == fs_info->chunk_root ||
985             root == fs_info->dev_root ||
986             root == fs_info->free_space_root)
987                 trans->can_flush_pending_bgs = false;
988
989         ret = btrfs_alloc_tree_block(trans, root, parent_start,
990                                      root->root_key.objectid, disk_key, level,
991                                      hint, empty_size, nest);
992         trans->can_flush_pending_bgs = true;
993
994         return ret;
995 }
996
997 /*
998  * does the dirty work in cow of a single block.  The parent block (if
999  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1000  * dirty and returned locked.  If you modify the block it needs to be marked
1001  * dirty again.
1002  *
1003  * search_start -- an allocation hint for the new block
1004  *
1005  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1006  * bytes the allocator should try to find free next to the block it returns.
1007  * This is just a hint and may be ignored by the allocator.
1008  */
1009 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1010                              struct btrfs_root *root,
1011                              struct extent_buffer *buf,
1012                              struct extent_buffer *parent, int parent_slot,
1013                              struct extent_buffer **cow_ret,
1014                              u64 search_start, u64 empty_size,
1015                              enum btrfs_lock_nesting nest)
1016 {
1017         struct btrfs_fs_info *fs_info = root->fs_info;
1018         struct btrfs_disk_key disk_key;
1019         struct extent_buffer *cow;
1020         int level, ret;
1021         int last_ref = 0;
1022         int unlock_orig = 0;
1023         u64 parent_start = 0;
1024
1025         if (*cow_ret == buf)
1026                 unlock_orig = 1;
1027
1028         btrfs_assert_tree_locked(buf);
1029
1030         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1031                 trans->transid != fs_info->running_transaction->transid);
1032         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1033                 trans->transid != root->last_trans);
1034
1035         level = btrfs_header_level(buf);
1036
1037         if (level == 0)
1038                 btrfs_item_key(buf, &disk_key, 0);
1039         else
1040                 btrfs_node_key(buf, &disk_key, 0);
1041
1042         if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1043                 parent_start = parent->start;
1044
1045         cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1046                                            level, search_start, empty_size, nest);
1047         if (IS_ERR(cow))
1048                 return PTR_ERR(cow);
1049
1050         /* cow is set to blocking by btrfs_init_new_buffer */
1051
1052         copy_extent_buffer_full(cow, buf);
1053         btrfs_set_header_bytenr(cow, cow->start);
1054         btrfs_set_header_generation(cow, trans->transid);
1055         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1056         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1057                                      BTRFS_HEADER_FLAG_RELOC);
1058         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1059                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1060         else
1061                 btrfs_set_header_owner(cow, root->root_key.objectid);
1062
1063         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1064
1065         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1066         if (ret) {
1067                 btrfs_tree_unlock(cow);
1068                 free_extent_buffer(cow);
1069                 btrfs_abort_transaction(trans, ret);
1070                 return ret;
1071         }
1072
1073         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1074                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1075                 if (ret) {
1076                         btrfs_tree_unlock(cow);
1077                         free_extent_buffer(cow);
1078                         btrfs_abort_transaction(trans, ret);
1079                         return ret;
1080                 }
1081         }
1082
1083         if (buf == root->node) {
1084                 WARN_ON(parent && parent != buf);
1085                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1086                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1087                         parent_start = buf->start;
1088
1089                 atomic_inc(&cow->refs);
1090                 ret = tree_mod_log_insert_root(root->node, cow, 1);
1091                 BUG_ON(ret < 0);
1092                 rcu_assign_pointer(root->node, cow);
1093
1094                 btrfs_free_tree_block(trans, root, buf, parent_start,
1095                                       last_ref);
1096                 free_extent_buffer(buf);
1097                 add_root_to_dirty_list(root);
1098         } else {
1099                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1100                 tree_mod_log_insert_key(parent, parent_slot,
1101                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1102                 btrfs_set_node_blockptr(parent, parent_slot,
1103                                         cow->start);
1104                 btrfs_set_node_ptr_generation(parent, parent_slot,
1105                                               trans->transid);
1106                 btrfs_mark_buffer_dirty(parent);
1107                 if (last_ref) {
1108                         ret = tree_mod_log_free_eb(buf);
1109                         if (ret) {
1110                                 btrfs_tree_unlock(cow);
1111                                 free_extent_buffer(cow);
1112                                 btrfs_abort_transaction(trans, ret);
1113                                 return ret;
1114                         }
1115                 }
1116                 btrfs_free_tree_block(trans, root, buf, parent_start,
1117                                       last_ref);
1118         }
1119         if (unlock_orig)
1120                 btrfs_tree_unlock(buf);
1121         free_extent_buffer_stale(buf);
1122         btrfs_mark_buffer_dirty(cow);
1123         *cow_ret = cow;
1124         return 0;
1125 }
1126
1127 /*
1128  * returns the logical address of the oldest predecessor of the given root.
1129  * entries older than time_seq are ignored.
1130  */
1131 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1132                 struct extent_buffer *eb_root, u64 time_seq)
1133 {
1134         struct tree_mod_elem *tm;
1135         struct tree_mod_elem *found = NULL;
1136         u64 root_logical = eb_root->start;
1137         int looped = 0;
1138
1139         if (!time_seq)
1140                 return NULL;
1141
1142         /*
1143          * the very last operation that's logged for a root is the
1144          * replacement operation (if it is replaced at all). this has
1145          * the logical address of the *new* root, making it the very
1146          * first operation that's logged for this root.
1147          */
1148         while (1) {
1149                 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1150                                                 time_seq);
1151                 if (!looped && !tm)
1152                         return NULL;
1153                 /*
1154                  * if there are no tree operation for the oldest root, we simply
1155                  * return it. this should only happen if that (old) root is at
1156                  * level 0.
1157                  */
1158                 if (!tm)
1159                         break;
1160
1161                 /*
1162                  * if there's an operation that's not a root replacement, we
1163                  * found the oldest version of our root. normally, we'll find a
1164                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1165                  */
1166                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1167                         break;
1168
1169                 found = tm;
1170                 root_logical = tm->old_root.logical;
1171                 looped = 1;
1172         }
1173
1174         /* if there's no old root to return, return what we found instead */
1175         if (!found)
1176                 found = tm;
1177
1178         return found;
1179 }
1180
1181 /*
1182  * tm is a pointer to the first operation to rewind within eb. then, all
1183  * previous operations will be rewound (until we reach something older than
1184  * time_seq).
1185  */
1186 static void
1187 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1188                       u64 time_seq, struct tree_mod_elem *first_tm)
1189 {
1190         u32 n;
1191         struct rb_node *next;
1192         struct tree_mod_elem *tm = first_tm;
1193         unsigned long o_dst;
1194         unsigned long o_src;
1195         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1196
1197         n = btrfs_header_nritems(eb);
1198         read_lock(&fs_info->tree_mod_log_lock);
1199         while (tm && tm->seq >= time_seq) {
1200                 /*
1201                  * all the operations are recorded with the operator used for
1202                  * the modification. as we're going backwards, we do the
1203                  * opposite of each operation here.
1204                  */
1205                 switch (tm->op) {
1206                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1207                         BUG_ON(tm->slot < n);
1208                         fallthrough;
1209                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1210                 case MOD_LOG_KEY_REMOVE:
1211                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1212                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1213                         btrfs_set_node_ptr_generation(eb, tm->slot,
1214                                                       tm->generation);
1215                         n++;
1216                         break;
1217                 case MOD_LOG_KEY_REPLACE:
1218                         BUG_ON(tm->slot >= n);
1219                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1220                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1221                         btrfs_set_node_ptr_generation(eb, tm->slot,
1222                                                       tm->generation);
1223                         break;
1224                 case MOD_LOG_KEY_ADD:
1225                         /* if a move operation is needed it's in the log */
1226                         n--;
1227                         break;
1228                 case MOD_LOG_MOVE_KEYS:
1229                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1230                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1231                         memmove_extent_buffer(eb, o_dst, o_src,
1232                                               tm->move.nr_items * p_size);
1233                         break;
1234                 case MOD_LOG_ROOT_REPLACE:
1235                         /*
1236                          * this operation is special. for roots, this must be
1237                          * handled explicitly before rewinding.
1238                          * for non-roots, this operation may exist if the node
1239                          * was a root: root A -> child B; then A gets empty and
1240                          * B is promoted to the new root. in the mod log, we'll
1241                          * have a root-replace operation for B, a tree block
1242                          * that is no root. we simply ignore that operation.
1243                          */
1244                         break;
1245                 }
1246                 next = rb_next(&tm->node);
1247                 if (!next)
1248                         break;
1249                 tm = rb_entry(next, struct tree_mod_elem, node);
1250                 if (tm->logical != first_tm->logical)
1251                         break;
1252         }
1253         read_unlock(&fs_info->tree_mod_log_lock);
1254         btrfs_set_header_nritems(eb, n);
1255 }
1256
1257 /*
1258  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1259  * is returned. If rewind operations happen, a fresh buffer is returned. The
1260  * returned buffer is always read-locked. If the returned buffer is not the
1261  * input buffer, the lock on the input buffer is released and the input buffer
1262  * is freed (its refcount is decremented).
1263  */
1264 static struct extent_buffer *
1265 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1266                     struct extent_buffer *eb, u64 time_seq)
1267 {
1268         struct extent_buffer *eb_rewin;
1269         struct tree_mod_elem *tm;
1270
1271         if (!time_seq)
1272                 return eb;
1273
1274         if (btrfs_header_level(eb) == 0)
1275                 return eb;
1276
1277         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1278         if (!tm)
1279                 return eb;
1280
1281         btrfs_set_path_blocking(path);
1282         btrfs_set_lock_blocking_read(eb);
1283
1284         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1285                 BUG_ON(tm->slot != 0);
1286                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1287                 if (!eb_rewin) {
1288                         btrfs_tree_read_unlock_blocking(eb);
1289                         free_extent_buffer(eb);
1290                         return NULL;
1291                 }
1292                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1293                 btrfs_set_header_backref_rev(eb_rewin,
1294                                              btrfs_header_backref_rev(eb));
1295                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1296                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1297         } else {
1298                 eb_rewin = btrfs_clone_extent_buffer(eb);
1299                 if (!eb_rewin) {
1300                         btrfs_tree_read_unlock_blocking(eb);
1301                         free_extent_buffer(eb);
1302                         return NULL;
1303                 }
1304         }
1305
1306         btrfs_tree_read_unlock_blocking(eb);
1307         free_extent_buffer(eb);
1308
1309         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
1310                                        eb_rewin, btrfs_header_level(eb_rewin));
1311         btrfs_tree_read_lock(eb_rewin);
1312         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1313         WARN_ON(btrfs_header_nritems(eb_rewin) >
1314                 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1315
1316         return eb_rewin;
1317 }
1318
1319 /*
1320  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1321  * value. If there are no changes, the current root->root_node is returned. If
1322  * anything changed in between, there's a fresh buffer allocated on which the
1323  * rewind operations are done. In any case, the returned buffer is read locked.
1324  * Returns NULL on error (with no locks held).
1325  */
1326 static inline struct extent_buffer *
1327 get_old_root(struct btrfs_root *root, u64 time_seq)
1328 {
1329         struct btrfs_fs_info *fs_info = root->fs_info;
1330         struct tree_mod_elem *tm;
1331         struct extent_buffer *eb = NULL;
1332         struct extent_buffer *eb_root;
1333         u64 eb_root_owner = 0;
1334         struct extent_buffer *old;
1335         struct tree_mod_root *old_root = NULL;
1336         u64 old_generation = 0;
1337         u64 logical;
1338         int level;
1339
1340         eb_root = btrfs_read_lock_root_node(root);
1341         tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1342         if (!tm)
1343                 return eb_root;
1344
1345         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1346                 old_root = &tm->old_root;
1347                 old_generation = tm->generation;
1348                 logical = old_root->logical;
1349                 level = old_root->level;
1350         } else {
1351                 logical = eb_root->start;
1352                 level = btrfs_header_level(eb_root);
1353         }
1354
1355         tm = tree_mod_log_search(fs_info, logical, time_seq);
1356         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1357                 btrfs_tree_read_unlock(eb_root);
1358                 free_extent_buffer(eb_root);
1359                 old = read_tree_block(fs_info, logical, 0, level, NULL);
1360                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1361                         if (!IS_ERR(old))
1362                                 free_extent_buffer(old);
1363                         btrfs_warn(fs_info,
1364                                    "failed to read tree block %llu from get_old_root",
1365                                    logical);
1366                 } else {
1367                         eb = btrfs_clone_extent_buffer(old);
1368                         free_extent_buffer(old);
1369                 }
1370         } else if (old_root) {
1371                 eb_root_owner = btrfs_header_owner(eb_root);
1372                 btrfs_tree_read_unlock(eb_root);
1373                 free_extent_buffer(eb_root);
1374                 eb = alloc_dummy_extent_buffer(fs_info, logical);
1375         } else {
1376                 btrfs_set_lock_blocking_read(eb_root);
1377                 eb = btrfs_clone_extent_buffer(eb_root);
1378                 btrfs_tree_read_unlock_blocking(eb_root);
1379                 free_extent_buffer(eb_root);
1380         }
1381
1382         if (!eb)
1383                 return NULL;
1384         if (old_root) {
1385                 btrfs_set_header_bytenr(eb, eb->start);
1386                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1387                 btrfs_set_header_owner(eb, eb_root_owner);
1388                 btrfs_set_header_level(eb, old_root->level);
1389                 btrfs_set_header_generation(eb, old_generation);
1390         }
1391         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1392                                        btrfs_header_level(eb));
1393         btrfs_tree_read_lock(eb);
1394         if (tm)
1395                 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1396         else
1397                 WARN_ON(btrfs_header_level(eb) != 0);
1398         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1399
1400         return eb;
1401 }
1402
1403 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1404 {
1405         struct tree_mod_elem *tm;
1406         int level;
1407         struct extent_buffer *eb_root = btrfs_root_node(root);
1408
1409         tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1410         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1411                 level = tm->old_root.level;
1412         } else {
1413                 level = btrfs_header_level(eb_root);
1414         }
1415         free_extent_buffer(eb_root);
1416
1417         return level;
1418 }
1419
1420 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1421                                    struct btrfs_root *root,
1422                                    struct extent_buffer *buf)
1423 {
1424         if (btrfs_is_testing(root->fs_info))
1425                 return 0;
1426
1427         /* Ensure we can see the FORCE_COW bit */
1428         smp_mb__before_atomic();
1429
1430         /*
1431          * We do not need to cow a block if
1432          * 1) this block is not created or changed in this transaction;
1433          * 2) this block does not belong to TREE_RELOC tree;
1434          * 3) the root is not forced COW.
1435          *
1436          * What is forced COW:
1437          *    when we create snapshot during committing the transaction,
1438          *    after we've finished copying src root, we must COW the shared
1439          *    block to ensure the metadata consistency.
1440          */
1441         if (btrfs_header_generation(buf) == trans->transid &&
1442             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1443             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1444               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1445             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1446                 return 0;
1447         return 1;
1448 }
1449
1450 /*
1451  * cows a single block, see __btrfs_cow_block for the real work.
1452  * This version of it has extra checks so that a block isn't COWed more than
1453  * once per transaction, as long as it hasn't been written yet
1454  */
1455 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1456                     struct btrfs_root *root, struct extent_buffer *buf,
1457                     struct extent_buffer *parent, int parent_slot,
1458                     struct extent_buffer **cow_ret,
1459                     enum btrfs_lock_nesting nest)
1460 {
1461         struct btrfs_fs_info *fs_info = root->fs_info;
1462         u64 search_start;
1463         int ret;
1464
1465         if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1466                 btrfs_err(fs_info,
1467                         "COW'ing blocks on a fs root that's being dropped");
1468
1469         if (trans->transaction != fs_info->running_transaction)
1470                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1471                        trans->transid,
1472                        fs_info->running_transaction->transid);
1473
1474         if (trans->transid != fs_info->generation)
1475                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1476                        trans->transid, fs_info->generation);
1477
1478         if (!should_cow_block(trans, root, buf)) {
1479                 trans->dirty = true;
1480                 *cow_ret = buf;
1481                 return 0;
1482         }
1483
1484         search_start = buf->start & ~((u64)SZ_1G - 1);
1485
1486         if (parent)
1487                 btrfs_set_lock_blocking_write(parent);
1488         btrfs_set_lock_blocking_write(buf);
1489
1490         /*
1491          * Before CoWing this block for later modification, check if it's
1492          * the subtree root and do the delayed subtree trace if needed.
1493          *
1494          * Also We don't care about the error, as it's handled internally.
1495          */
1496         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1497         ret = __btrfs_cow_block(trans, root, buf, parent,
1498                                  parent_slot, cow_ret, search_start, 0, nest);
1499
1500         trace_btrfs_cow_block(root, buf, *cow_ret);
1501
1502         return ret;
1503 }
1504
1505 /*
1506  * helper function for defrag to decide if two blocks pointed to by a
1507  * node are actually close by
1508  */
1509 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1510 {
1511         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1512                 return 1;
1513         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1514                 return 1;
1515         return 0;
1516 }
1517
1518 #ifdef __LITTLE_ENDIAN
1519
1520 /*
1521  * Compare two keys, on little-endian the disk order is same as CPU order and
1522  * we can avoid the conversion.
1523  */
1524 static int comp_keys(const struct btrfs_disk_key *disk_key,
1525                      const struct btrfs_key *k2)
1526 {
1527         const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
1528
1529         return btrfs_comp_cpu_keys(k1, k2);
1530 }
1531
1532 #else
1533
1534 /*
1535  * compare two keys in a memcmp fashion
1536  */
1537 static int comp_keys(const struct btrfs_disk_key *disk,
1538                      const struct btrfs_key *k2)
1539 {
1540         struct btrfs_key k1;
1541
1542         btrfs_disk_key_to_cpu(&k1, disk);
1543
1544         return btrfs_comp_cpu_keys(&k1, k2);
1545 }
1546 #endif
1547
1548 /*
1549  * same as comp_keys only with two btrfs_key's
1550  */
1551 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1552 {
1553         if (k1->objectid > k2->objectid)
1554                 return 1;
1555         if (k1->objectid < k2->objectid)
1556                 return -1;
1557         if (k1->type > k2->type)
1558                 return 1;
1559         if (k1->type < k2->type)
1560                 return -1;
1561         if (k1->offset > k2->offset)
1562                 return 1;
1563         if (k1->offset < k2->offset)
1564                 return -1;
1565         return 0;
1566 }
1567
1568 /*
1569  * this is used by the defrag code to go through all the
1570  * leaves pointed to by a node and reallocate them so that
1571  * disk order is close to key order
1572  */
1573 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1574                        struct btrfs_root *root, struct extent_buffer *parent,
1575                        int start_slot, u64 *last_ret,
1576                        struct btrfs_key *progress)
1577 {
1578         struct btrfs_fs_info *fs_info = root->fs_info;
1579         struct extent_buffer *cur;
1580         u64 blocknr;
1581         u64 gen;
1582         u64 search_start = *last_ret;
1583         u64 last_block = 0;
1584         u64 other;
1585         u32 parent_nritems;
1586         int end_slot;
1587         int i;
1588         int err = 0;
1589         int parent_level;
1590         int uptodate;
1591         u32 blocksize;
1592         int progress_passed = 0;
1593         struct btrfs_disk_key disk_key;
1594
1595         parent_level = btrfs_header_level(parent);
1596
1597         WARN_ON(trans->transaction != fs_info->running_transaction);
1598         WARN_ON(trans->transid != fs_info->generation);
1599
1600         parent_nritems = btrfs_header_nritems(parent);
1601         blocksize = fs_info->nodesize;
1602         end_slot = parent_nritems - 1;
1603
1604         if (parent_nritems <= 1)
1605                 return 0;
1606
1607         btrfs_set_lock_blocking_write(parent);
1608
1609         for (i = start_slot; i <= end_slot; i++) {
1610                 struct btrfs_key first_key;
1611                 int close = 1;
1612
1613                 btrfs_node_key(parent, &disk_key, i);
1614                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1615                         continue;
1616
1617                 progress_passed = 1;
1618                 blocknr = btrfs_node_blockptr(parent, i);
1619                 gen = btrfs_node_ptr_generation(parent, i);
1620                 btrfs_node_key_to_cpu(parent, &first_key, i);
1621                 if (last_block == 0)
1622                         last_block = blocknr;
1623
1624                 if (i > 0) {
1625                         other = btrfs_node_blockptr(parent, i - 1);
1626                         close = close_blocks(blocknr, other, blocksize);
1627                 }
1628                 if (!close && i < end_slot) {
1629                         other = btrfs_node_blockptr(parent, i + 1);
1630                         close = close_blocks(blocknr, other, blocksize);
1631                 }
1632                 if (close) {
1633                         last_block = blocknr;
1634                         continue;
1635                 }
1636
1637                 cur = find_extent_buffer(fs_info, blocknr);
1638                 if (cur)
1639                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1640                 else
1641                         uptodate = 0;
1642                 if (!cur || !uptodate) {
1643                         if (!cur) {
1644                                 cur = read_tree_block(fs_info, blocknr, gen,
1645                                                       parent_level - 1,
1646                                                       &first_key);
1647                                 if (IS_ERR(cur)) {
1648                                         return PTR_ERR(cur);
1649                                 } else if (!extent_buffer_uptodate(cur)) {
1650                                         free_extent_buffer(cur);
1651                                         return -EIO;
1652                                 }
1653                         } else if (!uptodate) {
1654                                 err = btrfs_read_buffer(cur, gen,
1655                                                 parent_level - 1,&first_key);
1656                                 if (err) {
1657                                         free_extent_buffer(cur);
1658                                         return err;
1659                                 }
1660                         }
1661                 }
1662                 if (search_start == 0)
1663                         search_start = last_block;
1664
1665                 btrfs_tree_lock(cur);
1666                 btrfs_set_lock_blocking_write(cur);
1667                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1668                                         &cur, search_start,
1669                                         min(16 * blocksize,
1670                                             (end_slot - i) * blocksize),
1671                                         BTRFS_NESTING_COW);
1672                 if (err) {
1673                         btrfs_tree_unlock(cur);
1674                         free_extent_buffer(cur);
1675                         break;
1676                 }
1677                 search_start = cur->start;
1678                 last_block = cur->start;
1679                 *last_ret = search_start;
1680                 btrfs_tree_unlock(cur);
1681                 free_extent_buffer(cur);
1682         }
1683         return err;
1684 }
1685
1686 /*
1687  * search for key in the extent_buffer.  The items start at offset p,
1688  * and they are item_size apart.  There are 'max' items in p.
1689  *
1690  * the slot in the array is returned via slot, and it points to
1691  * the place where you would insert key if it is not found in
1692  * the array.
1693  *
1694  * slot may point to max if the key is bigger than all of the keys
1695  */
1696 static noinline int generic_bin_search(struct extent_buffer *eb,
1697                                        unsigned long p, int item_size,
1698                                        const struct btrfs_key *key,
1699                                        int max, int *slot)
1700 {
1701         int low = 0;
1702         int high = max;
1703         int ret;
1704         const int key_size = sizeof(struct btrfs_disk_key);
1705
1706         if (low > high) {
1707                 btrfs_err(eb->fs_info,
1708                  "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1709                           __func__, low, high, eb->start,
1710                           btrfs_header_owner(eb), btrfs_header_level(eb));
1711                 return -EINVAL;
1712         }
1713
1714         while (low < high) {
1715                 unsigned long oip;
1716                 unsigned long offset;
1717                 struct btrfs_disk_key *tmp;
1718                 struct btrfs_disk_key unaligned;
1719                 int mid;
1720
1721                 mid = (low + high) / 2;
1722                 offset = p + mid * item_size;
1723                 oip = offset_in_page(offset);
1724
1725                 if (oip + key_size <= PAGE_SIZE) {
1726                         const unsigned long idx = offset >> PAGE_SHIFT;
1727                         char *kaddr = page_address(eb->pages[idx]);
1728
1729                         tmp = (struct btrfs_disk_key *)(kaddr + oip);
1730                 } else {
1731                         read_extent_buffer(eb, &unaligned, offset, key_size);
1732                         tmp = &unaligned;
1733                 }
1734
1735                 ret = comp_keys(tmp, key);
1736
1737                 if (ret < 0)
1738                         low = mid + 1;
1739                 else if (ret > 0)
1740                         high = mid;
1741                 else {
1742                         *slot = mid;
1743                         return 0;
1744                 }
1745         }
1746         *slot = low;
1747         return 1;
1748 }
1749
1750 /*
1751  * simple bin_search frontend that does the right thing for
1752  * leaves vs nodes
1753  */
1754 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1755                      int *slot)
1756 {
1757         if (btrfs_header_level(eb) == 0)
1758                 return generic_bin_search(eb,
1759                                           offsetof(struct btrfs_leaf, items),
1760                                           sizeof(struct btrfs_item),
1761                                           key, btrfs_header_nritems(eb),
1762                                           slot);
1763         else
1764                 return generic_bin_search(eb,
1765                                           offsetof(struct btrfs_node, ptrs),
1766                                           sizeof(struct btrfs_key_ptr),
1767                                           key, btrfs_header_nritems(eb),
1768                                           slot);
1769 }
1770
1771 static void root_add_used(struct btrfs_root *root, u32 size)
1772 {
1773         spin_lock(&root->accounting_lock);
1774         btrfs_set_root_used(&root->root_item,
1775                             btrfs_root_used(&root->root_item) + size);
1776         spin_unlock(&root->accounting_lock);
1777 }
1778
1779 static void root_sub_used(struct btrfs_root *root, u32 size)
1780 {
1781         spin_lock(&root->accounting_lock);
1782         btrfs_set_root_used(&root->root_item,
1783                             btrfs_root_used(&root->root_item) - size);
1784         spin_unlock(&root->accounting_lock);
1785 }
1786
1787 /* given a node and slot number, this reads the blocks it points to.  The
1788  * extent buffer is returned with a reference taken (but unlocked).
1789  */
1790 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1791                                            int slot)
1792 {
1793         int level = btrfs_header_level(parent);
1794         struct extent_buffer *eb;
1795         struct btrfs_key first_key;
1796
1797         if (slot < 0 || slot >= btrfs_header_nritems(parent))
1798                 return ERR_PTR(-ENOENT);
1799
1800         BUG_ON(level == 0);
1801
1802         btrfs_node_key_to_cpu(parent, &first_key, slot);
1803         eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1804                              btrfs_node_ptr_generation(parent, slot),
1805                              level - 1, &first_key);
1806         if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1807                 free_extent_buffer(eb);
1808                 eb = ERR_PTR(-EIO);
1809         }
1810
1811         return eb;
1812 }
1813
1814 /*
1815  * node level balancing, used to make sure nodes are in proper order for
1816  * item deletion.  We balance from the top down, so we have to make sure
1817  * that a deletion won't leave an node completely empty later on.
1818  */
1819 static noinline int balance_level(struct btrfs_trans_handle *trans,
1820                          struct btrfs_root *root,
1821                          struct btrfs_path *path, int level)
1822 {
1823         struct btrfs_fs_info *fs_info = root->fs_info;
1824         struct extent_buffer *right = NULL;
1825         struct extent_buffer *mid;
1826         struct extent_buffer *left = NULL;
1827         struct extent_buffer *parent = NULL;
1828         int ret = 0;
1829         int wret;
1830         int pslot;
1831         int orig_slot = path->slots[level];
1832         u64 orig_ptr;
1833
1834         ASSERT(level > 0);
1835
1836         mid = path->nodes[level];
1837
1838         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1839                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1840         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1841
1842         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1843
1844         if (level < BTRFS_MAX_LEVEL - 1) {
1845                 parent = path->nodes[level + 1];
1846                 pslot = path->slots[level + 1];
1847         }
1848
1849         /*
1850          * deal with the case where there is only one pointer in the root
1851          * by promoting the node below to a root
1852          */
1853         if (!parent) {
1854                 struct extent_buffer *child;
1855
1856                 if (btrfs_header_nritems(mid) != 1)
1857                         return 0;
1858
1859                 /* promote the child to a root */
1860                 child = btrfs_read_node_slot(mid, 0);
1861                 if (IS_ERR(child)) {
1862                         ret = PTR_ERR(child);
1863                         btrfs_handle_fs_error(fs_info, ret, NULL);
1864                         goto enospc;
1865                 }
1866
1867                 btrfs_tree_lock(child);
1868                 btrfs_set_lock_blocking_write(child);
1869                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1870                                       BTRFS_NESTING_COW);
1871                 if (ret) {
1872                         btrfs_tree_unlock(child);
1873                         free_extent_buffer(child);
1874                         goto enospc;
1875                 }
1876
1877                 ret = tree_mod_log_insert_root(root->node, child, 1);
1878                 BUG_ON(ret < 0);
1879                 rcu_assign_pointer(root->node, child);
1880
1881                 add_root_to_dirty_list(root);
1882                 btrfs_tree_unlock(child);
1883
1884                 path->locks[level] = 0;
1885                 path->nodes[level] = NULL;
1886                 btrfs_clean_tree_block(mid);
1887                 btrfs_tree_unlock(mid);
1888                 /* once for the path */
1889                 free_extent_buffer(mid);
1890
1891                 root_sub_used(root, mid->len);
1892                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1893                 /* once for the root ptr */
1894                 free_extent_buffer_stale(mid);
1895                 return 0;
1896         }
1897         if (btrfs_header_nritems(mid) >
1898             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1899                 return 0;
1900
1901         left = btrfs_read_node_slot(parent, pslot - 1);
1902         if (IS_ERR(left))
1903                 left = NULL;
1904
1905         if (left) {
1906                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1907                 btrfs_set_lock_blocking_write(left);
1908                 wret = btrfs_cow_block(trans, root, left,
1909                                        parent, pslot - 1, &left,
1910                                        BTRFS_NESTING_LEFT_COW);
1911                 if (wret) {
1912                         ret = wret;
1913                         goto enospc;
1914                 }
1915         }
1916
1917         right = btrfs_read_node_slot(parent, pslot + 1);
1918         if (IS_ERR(right))
1919                 right = NULL;
1920
1921         if (right) {
1922                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1923                 btrfs_set_lock_blocking_write(right);
1924                 wret = btrfs_cow_block(trans, root, right,
1925                                        parent, pslot + 1, &right,
1926                                        BTRFS_NESTING_RIGHT_COW);
1927                 if (wret) {
1928                         ret = wret;
1929                         goto enospc;
1930                 }
1931         }
1932
1933         /* first, try to make some room in the middle buffer */
1934         if (left) {
1935                 orig_slot += btrfs_header_nritems(left);
1936                 wret = push_node_left(trans, left, mid, 1);
1937                 if (wret < 0)
1938                         ret = wret;
1939         }
1940
1941         /*
1942          * then try to empty the right most buffer into the middle
1943          */
1944         if (right) {
1945                 wret = push_node_left(trans, mid, right, 1);
1946                 if (wret < 0 && wret != -ENOSPC)
1947                         ret = wret;
1948                 if (btrfs_header_nritems(right) == 0) {
1949                         btrfs_clean_tree_block(right);
1950                         btrfs_tree_unlock(right);
1951                         del_ptr(root, path, level + 1, pslot + 1);
1952                         root_sub_used(root, right->len);
1953                         btrfs_free_tree_block(trans, root, right, 0, 1);
1954                         free_extent_buffer_stale(right);
1955                         right = NULL;
1956                 } else {
1957                         struct btrfs_disk_key right_key;
1958                         btrfs_node_key(right, &right_key, 0);
1959                         ret = tree_mod_log_insert_key(parent, pslot + 1,
1960                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1961                         BUG_ON(ret < 0);
1962                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1963                         btrfs_mark_buffer_dirty(parent);
1964                 }
1965         }
1966         if (btrfs_header_nritems(mid) == 1) {
1967                 /*
1968                  * we're not allowed to leave a node with one item in the
1969                  * tree during a delete.  A deletion from lower in the tree
1970                  * could try to delete the only pointer in this node.
1971                  * So, pull some keys from the left.
1972                  * There has to be a left pointer at this point because
1973                  * otherwise we would have pulled some pointers from the
1974                  * right
1975                  */
1976                 if (!left) {
1977                         ret = -EROFS;
1978                         btrfs_handle_fs_error(fs_info, ret, NULL);
1979                         goto enospc;
1980                 }
1981                 wret = balance_node_right(trans, mid, left);
1982                 if (wret < 0) {
1983                         ret = wret;
1984                         goto enospc;
1985                 }
1986                 if (wret == 1) {
1987                         wret = push_node_left(trans, left, mid, 1);
1988                         if (wret < 0)
1989                                 ret = wret;
1990                 }
1991                 BUG_ON(wret == 1);
1992         }
1993         if (btrfs_header_nritems(mid) == 0) {
1994                 btrfs_clean_tree_block(mid);
1995                 btrfs_tree_unlock(mid);
1996                 del_ptr(root, path, level + 1, pslot);
1997                 root_sub_used(root, mid->len);
1998                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1999                 free_extent_buffer_stale(mid);
2000                 mid = NULL;
2001         } else {
2002                 /* update the parent key to reflect our changes */
2003                 struct btrfs_disk_key mid_key;
2004                 btrfs_node_key(mid, &mid_key, 0);
2005                 ret = tree_mod_log_insert_key(parent, pslot,
2006                                 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2007                 BUG_ON(ret < 0);
2008                 btrfs_set_node_key(parent, &mid_key, pslot);
2009                 btrfs_mark_buffer_dirty(parent);
2010         }
2011
2012         /* update the path */
2013         if (left) {
2014                 if (btrfs_header_nritems(left) > orig_slot) {
2015                         atomic_inc(&left->refs);
2016                         /* left was locked after cow */
2017                         path->nodes[level] = left;
2018                         path->slots[level + 1] -= 1;
2019                         path->slots[level] = orig_slot;
2020                         if (mid) {
2021                                 btrfs_tree_unlock(mid);
2022                                 free_extent_buffer(mid);
2023                         }
2024                 } else {
2025                         orig_slot -= btrfs_header_nritems(left);
2026                         path->slots[level] = orig_slot;
2027                 }
2028         }
2029         /* double check we haven't messed things up */
2030         if (orig_ptr !=
2031             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2032                 BUG();
2033 enospc:
2034         if (right) {
2035                 btrfs_tree_unlock(right);
2036                 free_extent_buffer(right);
2037         }
2038         if (left) {
2039                 if (path->nodes[level] != left)
2040                         btrfs_tree_unlock(left);
2041                 free_extent_buffer(left);
2042         }
2043         return ret;
2044 }
2045
2046 /* Node balancing for insertion.  Here we only split or push nodes around
2047  * when they are completely full.  This is also done top down, so we
2048  * have to be pessimistic.
2049  */
2050 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2051                                           struct btrfs_root *root,
2052                                           struct btrfs_path *path, int level)
2053 {
2054         struct btrfs_fs_info *fs_info = root->fs_info;
2055         struct extent_buffer *right = NULL;
2056         struct extent_buffer *mid;
2057         struct extent_buffer *left = NULL;
2058         struct extent_buffer *parent = NULL;
2059         int ret = 0;
2060         int wret;
2061         int pslot;
2062         int orig_slot = path->slots[level];
2063
2064         if (level == 0)
2065                 return 1;
2066
2067         mid = path->nodes[level];
2068         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2069
2070         if (level < BTRFS_MAX_LEVEL - 1) {
2071                 parent = path->nodes[level + 1];
2072                 pslot = path->slots[level + 1];
2073         }
2074
2075         if (!parent)
2076                 return 1;
2077
2078         left = btrfs_read_node_slot(parent, pslot - 1);
2079         if (IS_ERR(left))
2080                 left = NULL;
2081
2082         /* first, try to make some room in the middle buffer */
2083         if (left) {
2084                 u32 left_nr;
2085
2086                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
2087                 btrfs_set_lock_blocking_write(left);
2088
2089                 left_nr = btrfs_header_nritems(left);
2090                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2091                         wret = 1;
2092                 } else {
2093                         ret = btrfs_cow_block(trans, root, left, parent,
2094                                               pslot - 1, &left,
2095                                               BTRFS_NESTING_LEFT_COW);
2096                         if (ret)
2097                                 wret = 1;
2098                         else {
2099                                 wret = push_node_left(trans, left, mid, 0);
2100                         }
2101                 }
2102                 if (wret < 0)
2103                         ret = wret;
2104                 if (wret == 0) {
2105                         struct btrfs_disk_key disk_key;
2106                         orig_slot += left_nr;
2107                         btrfs_node_key(mid, &disk_key, 0);
2108                         ret = tree_mod_log_insert_key(parent, pslot,
2109                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
2110                         BUG_ON(ret < 0);
2111                         btrfs_set_node_key(parent, &disk_key, pslot);
2112                         btrfs_mark_buffer_dirty(parent);
2113                         if (btrfs_header_nritems(left) > orig_slot) {
2114                                 path->nodes[level] = left;
2115                                 path->slots[level + 1] -= 1;
2116                                 path->slots[level] = orig_slot;
2117                                 btrfs_tree_unlock(mid);
2118                                 free_extent_buffer(mid);
2119                         } else {
2120                                 orig_slot -=
2121                                         btrfs_header_nritems(left);
2122                                 path->slots[level] = orig_slot;
2123                                 btrfs_tree_unlock(left);
2124                                 free_extent_buffer(left);
2125                         }
2126                         return 0;
2127                 }
2128                 btrfs_tree_unlock(left);
2129                 free_extent_buffer(left);
2130         }
2131         right = btrfs_read_node_slot(parent, pslot + 1);
2132         if (IS_ERR(right))
2133                 right = NULL;
2134
2135         /*
2136          * then try to empty the right most buffer into the middle
2137          */
2138         if (right) {
2139                 u32 right_nr;
2140
2141                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2142                 btrfs_set_lock_blocking_write(right);
2143
2144                 right_nr = btrfs_header_nritems(right);
2145                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2146                         wret = 1;
2147                 } else {
2148                         ret = btrfs_cow_block(trans, root, right,
2149                                               parent, pslot + 1,
2150                                               &right, BTRFS_NESTING_RIGHT_COW);
2151                         if (ret)
2152                                 wret = 1;
2153                         else {
2154                                 wret = balance_node_right(trans, right, mid);
2155                         }
2156                 }
2157                 if (wret < 0)
2158                         ret = wret;
2159                 if (wret == 0) {
2160                         struct btrfs_disk_key disk_key;
2161
2162                         btrfs_node_key(right, &disk_key, 0);
2163                         ret = tree_mod_log_insert_key(parent, pslot + 1,
2164                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
2165                         BUG_ON(ret < 0);
2166                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2167                         btrfs_mark_buffer_dirty(parent);
2168
2169                         if (btrfs_header_nritems(mid) <= orig_slot) {
2170                                 path->nodes[level] = right;
2171                                 path->slots[level + 1] += 1;
2172                                 path->slots[level] = orig_slot -
2173                                         btrfs_header_nritems(mid);
2174                                 btrfs_tree_unlock(mid);
2175                                 free_extent_buffer(mid);
2176                         } else {
2177                                 btrfs_tree_unlock(right);
2178                                 free_extent_buffer(right);
2179                         }
2180                         return 0;
2181                 }
2182                 btrfs_tree_unlock(right);
2183                 free_extent_buffer(right);
2184         }
2185         return 1;
2186 }
2187
2188 /*
2189  * readahead one full node of leaves, finding things that are close
2190  * to the block in 'slot', and triggering ra on them.
2191  */
2192 static void reada_for_search(struct btrfs_fs_info *fs_info,
2193                              struct btrfs_path *path,
2194                              int level, int slot, u64 objectid)
2195 {
2196         struct extent_buffer *node;
2197         struct btrfs_disk_key disk_key;
2198         u32 nritems;
2199         u64 search;
2200         u64 target;
2201         u64 nread = 0;
2202         struct extent_buffer *eb;
2203         u32 nr;
2204         u32 blocksize;
2205         u32 nscan = 0;
2206
2207         if (level != 1)
2208                 return;
2209
2210         if (!path->nodes[level])
2211                 return;
2212
2213         node = path->nodes[level];
2214
2215         search = btrfs_node_blockptr(node, slot);
2216         blocksize = fs_info->nodesize;
2217         eb = find_extent_buffer(fs_info, search);
2218         if (eb) {
2219                 free_extent_buffer(eb);
2220                 return;
2221         }
2222
2223         target = search;
2224
2225         nritems = btrfs_header_nritems(node);
2226         nr = slot;
2227
2228         while (1) {
2229                 if (path->reada == READA_BACK) {
2230                         if (nr == 0)
2231                                 break;
2232                         nr--;
2233                 } else if (path->reada == READA_FORWARD) {
2234                         nr++;
2235                         if (nr >= nritems)
2236                                 break;
2237                 }
2238                 if (path->reada == READA_BACK && objectid) {
2239                         btrfs_node_key(node, &disk_key, nr);
2240                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2241                                 break;
2242                 }
2243                 search = btrfs_node_blockptr(node, nr);
2244                 if ((search <= target && target - search <= 65536) ||
2245                     (search > target && search - target <= 65536)) {
2246                         readahead_tree_block(fs_info, search);
2247                         nread += blocksize;
2248                 }
2249                 nscan++;
2250                 if ((nread > 65536 || nscan > 32))
2251                         break;
2252         }
2253 }
2254
2255 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2256                                        struct btrfs_path *path, int level)
2257 {
2258         int slot;
2259         int nritems;
2260         struct extent_buffer *parent;
2261         struct extent_buffer *eb;
2262         u64 gen;
2263         u64 block1 = 0;
2264         u64 block2 = 0;
2265
2266         parent = path->nodes[level + 1];
2267         if (!parent)
2268                 return;
2269
2270         nritems = btrfs_header_nritems(parent);
2271         slot = path->slots[level + 1];
2272
2273         if (slot > 0) {
2274                 block1 = btrfs_node_blockptr(parent, slot - 1);
2275                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2276                 eb = find_extent_buffer(fs_info, block1);
2277                 /*
2278                  * if we get -eagain from btrfs_buffer_uptodate, we
2279                  * don't want to return eagain here.  That will loop
2280                  * forever
2281                  */
2282                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2283                         block1 = 0;
2284                 free_extent_buffer(eb);
2285         }
2286         if (slot + 1 < nritems) {
2287                 block2 = btrfs_node_blockptr(parent, slot + 1);
2288                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2289                 eb = find_extent_buffer(fs_info, block2);
2290                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2291                         block2 = 0;
2292                 free_extent_buffer(eb);
2293         }
2294
2295         if (block1)
2296                 readahead_tree_block(fs_info, block1);
2297         if (block2)
2298                 readahead_tree_block(fs_info, block2);
2299 }
2300
2301
2302 /*
2303  * when we walk down the tree, it is usually safe to unlock the higher layers
2304  * in the tree.  The exceptions are when our path goes through slot 0, because
2305  * operations on the tree might require changing key pointers higher up in the
2306  * tree.
2307  *
2308  * callers might also have set path->keep_locks, which tells this code to keep
2309  * the lock if the path points to the last slot in the block.  This is part of
2310  * walking through the tree, and selecting the next slot in the higher block.
2311  *
2312  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2313  * if lowest_unlock is 1, level 0 won't be unlocked
2314  */
2315 static noinline void unlock_up(struct btrfs_path *path, int level,
2316                                int lowest_unlock, int min_write_lock_level,
2317                                int *write_lock_level)
2318 {
2319         int i;
2320         int skip_level = level;
2321         int no_skips = 0;
2322         struct extent_buffer *t;
2323
2324         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2325                 if (!path->nodes[i])
2326                         break;
2327                 if (!path->locks[i])
2328                         break;
2329                 if (!no_skips && path->slots[i] == 0) {
2330                         skip_level = i + 1;
2331                         continue;
2332                 }
2333                 if (!no_skips && path->keep_locks) {
2334                         u32 nritems;
2335                         t = path->nodes[i];
2336                         nritems = btrfs_header_nritems(t);
2337                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2338                                 skip_level = i + 1;
2339                                 continue;
2340                         }
2341                 }
2342                 if (skip_level < i && i >= lowest_unlock)
2343                         no_skips = 1;
2344
2345                 t = path->nodes[i];
2346                 if (i >= lowest_unlock && i > skip_level) {
2347                         btrfs_tree_unlock_rw(t, path->locks[i]);
2348                         path->locks[i] = 0;
2349                         if (write_lock_level &&
2350                             i > min_write_lock_level &&
2351                             i <= *write_lock_level) {
2352                                 *write_lock_level = i - 1;
2353                         }
2354                 }
2355         }
2356 }
2357
2358 /*
2359  * helper function for btrfs_search_slot.  The goal is to find a block
2360  * in cache without setting the path to blocking.  If we find the block
2361  * we return zero and the path is unchanged.
2362  *
2363  * If we can't find the block, we set the path blocking and do some
2364  * reada.  -EAGAIN is returned and the search must be repeated.
2365  */
2366 static int
2367 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2368                       struct extent_buffer **eb_ret, int level, int slot,
2369                       const struct btrfs_key *key)
2370 {
2371         struct btrfs_fs_info *fs_info = root->fs_info;
2372         u64 blocknr;
2373         u64 gen;
2374         struct extent_buffer *tmp;
2375         struct btrfs_key first_key;
2376         int ret;
2377         int parent_level;
2378
2379         blocknr = btrfs_node_blockptr(*eb_ret, slot);
2380         gen = btrfs_node_ptr_generation(*eb_ret, slot);
2381         parent_level = btrfs_header_level(*eb_ret);
2382         btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
2383
2384         tmp = find_extent_buffer(fs_info, blocknr);
2385         if (tmp) {
2386                 /* first we do an atomic uptodate check */
2387                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2388                         /*
2389                          * Do extra check for first_key, eb can be stale due to
2390                          * being cached, read from scrub, or have multiple
2391                          * parents (shared tree blocks).
2392                          */
2393                         if (btrfs_verify_level_key(tmp,
2394                                         parent_level - 1, &first_key, gen)) {
2395                                 free_extent_buffer(tmp);
2396                                 return -EUCLEAN;
2397                         }
2398                         *eb_ret = tmp;
2399                         return 0;
2400                 }
2401
2402                 /* the pages were up to date, but we failed
2403                  * the generation number check.  Do a full
2404                  * read for the generation number that is correct.
2405                  * We must do this without dropping locks so
2406                  * we can trust our generation number
2407                  */
2408                 btrfs_set_path_blocking(p);
2409
2410                 /* now we're allowed to do a blocking uptodate check */
2411                 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2412                 if (!ret) {
2413                         *eb_ret = tmp;
2414                         return 0;
2415                 }
2416                 free_extent_buffer(tmp);
2417                 btrfs_release_path(p);
2418                 return -EIO;
2419         }
2420
2421         /*
2422          * reduce lock contention at high levels
2423          * of the btree by dropping locks before
2424          * we read.  Don't release the lock on the current
2425          * level because we need to walk this node to figure
2426          * out which blocks to read.
2427          */
2428         btrfs_unlock_up_safe(p, level + 1);
2429         btrfs_set_path_blocking(p);
2430
2431         if (p->reada != READA_NONE)
2432                 reada_for_search(fs_info, p, level, slot, key->objectid);
2433
2434         ret = -EAGAIN;
2435         tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2436                               &first_key);
2437         if (!IS_ERR(tmp)) {
2438                 /*
2439                  * If the read above didn't mark this buffer up to date,
2440                  * it will never end up being up to date.  Set ret to EIO now
2441                  * and give up so that our caller doesn't loop forever
2442                  * on our EAGAINs.
2443                  */
2444                 if (!extent_buffer_uptodate(tmp))
2445                         ret = -EIO;
2446                 free_extent_buffer(tmp);
2447         } else {
2448                 ret = PTR_ERR(tmp);
2449         }
2450
2451         btrfs_release_path(p);
2452         return ret;
2453 }
2454
2455 /*
2456  * helper function for btrfs_search_slot.  This does all of the checks
2457  * for node-level blocks and does any balancing required based on
2458  * the ins_len.
2459  *
2460  * If no extra work was required, zero is returned.  If we had to
2461  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2462  * start over
2463  */
2464 static int
2465 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2466                        struct btrfs_root *root, struct btrfs_path *p,
2467                        struct extent_buffer *b, int level, int ins_len,
2468                        int *write_lock_level)
2469 {
2470         struct btrfs_fs_info *fs_info = root->fs_info;
2471         int ret;
2472
2473         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2474             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2475                 int sret;
2476
2477                 if (*write_lock_level < level + 1) {
2478                         *write_lock_level = level + 1;
2479                         btrfs_release_path(p);
2480                         goto again;
2481                 }
2482
2483                 btrfs_set_path_blocking(p);
2484                 reada_for_balance(fs_info, p, level);
2485                 sret = split_node(trans, root, p, level);
2486
2487                 BUG_ON(sret > 0);
2488                 if (sret) {
2489                         ret = sret;
2490                         goto done;
2491                 }
2492                 b = p->nodes[level];
2493         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2494                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2495                 int sret;
2496
2497                 if (*write_lock_level < level + 1) {
2498                         *write_lock_level = level + 1;
2499                         btrfs_release_path(p);
2500                         goto again;
2501                 }
2502
2503                 btrfs_set_path_blocking(p);
2504                 reada_for_balance(fs_info, p, level);
2505                 sret = balance_level(trans, root, p, level);
2506
2507                 if (sret) {
2508                         ret = sret;
2509                         goto done;
2510                 }
2511                 b = p->nodes[level];
2512                 if (!b) {
2513                         btrfs_release_path(p);
2514                         goto again;
2515                 }
2516                 BUG_ON(btrfs_header_nritems(b) == 1);
2517         }
2518         return 0;
2519
2520 again:
2521         ret = -EAGAIN;
2522 done:
2523         return ret;
2524 }
2525
2526 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2527                 u64 iobjectid, u64 ioff, u8 key_type,
2528                 struct btrfs_key *found_key)
2529 {
2530         int ret;
2531         struct btrfs_key key;
2532         struct extent_buffer *eb;
2533
2534         ASSERT(path);
2535         ASSERT(found_key);
2536
2537         key.type = key_type;
2538         key.objectid = iobjectid;
2539         key.offset = ioff;
2540
2541         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2542         if (ret < 0)
2543                 return ret;
2544
2545         eb = path->nodes[0];
2546         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2547                 ret = btrfs_next_leaf(fs_root, path);
2548                 if (ret)
2549                         return ret;
2550                 eb = path->nodes[0];
2551         }
2552
2553         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2554         if (found_key->type != key.type ||
2555                         found_key->objectid != key.objectid)
2556                 return 1;
2557
2558         return 0;
2559 }
2560
2561 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2562                                                         struct btrfs_path *p,
2563                                                         int write_lock_level)
2564 {
2565         struct btrfs_fs_info *fs_info = root->fs_info;
2566         struct extent_buffer *b;
2567         int root_lock;
2568         int level = 0;
2569
2570         /* We try very hard to do read locks on the root */
2571         root_lock = BTRFS_READ_LOCK;
2572
2573         if (p->search_commit_root) {
2574                 /*
2575                  * The commit roots are read only so we always do read locks,
2576                  * and we always must hold the commit_root_sem when doing
2577                  * searches on them, the only exception is send where we don't
2578                  * want to block transaction commits for a long time, so
2579                  * we need to clone the commit root in order to avoid races
2580                  * with transaction commits that create a snapshot of one of
2581                  * the roots used by a send operation.
2582                  */
2583                 if (p->need_commit_sem) {
2584                         down_read(&fs_info->commit_root_sem);
2585                         b = btrfs_clone_extent_buffer(root->commit_root);
2586                         up_read(&fs_info->commit_root_sem);
2587                         if (!b)
2588                                 return ERR_PTR(-ENOMEM);
2589
2590                 } else {
2591                         b = root->commit_root;
2592                         atomic_inc(&b->refs);
2593                 }
2594                 level = btrfs_header_level(b);
2595                 /*
2596                  * Ensure that all callers have set skip_locking when
2597                  * p->search_commit_root = 1.
2598                  */
2599                 ASSERT(p->skip_locking == 1);
2600
2601                 goto out;
2602         }
2603
2604         if (p->skip_locking) {
2605                 b = btrfs_root_node(root);
2606                 level = btrfs_header_level(b);
2607                 goto out;
2608         }
2609
2610         /*
2611          * If the level is set to maximum, we can skip trying to get the read
2612          * lock.
2613          */
2614         if (write_lock_level < BTRFS_MAX_LEVEL) {
2615                 /*
2616                  * We don't know the level of the root node until we actually
2617                  * have it read locked
2618                  */
2619                 b = __btrfs_read_lock_root_node(root, p->recurse);
2620                 level = btrfs_header_level(b);
2621                 if (level > write_lock_level)
2622                         goto out;
2623
2624                 /* Whoops, must trade for write lock */
2625                 btrfs_tree_read_unlock(b);
2626                 free_extent_buffer(b);
2627         }
2628
2629         b = btrfs_lock_root_node(root);
2630         root_lock = BTRFS_WRITE_LOCK;
2631
2632         /* The level might have changed, check again */
2633         level = btrfs_header_level(b);
2634
2635 out:
2636         p->nodes[level] = b;
2637         if (!p->skip_locking)
2638                 p->locks[level] = root_lock;
2639         /*
2640          * Callers are responsible for dropping b's references.
2641          */
2642         return b;
2643 }
2644
2645
2646 /*
2647  * btrfs_search_slot - look for a key in a tree and perform necessary
2648  * modifications to preserve tree invariants.
2649  *
2650  * @trans:      Handle of transaction, used when modifying the tree
2651  * @p:          Holds all btree nodes along the search path
2652  * @root:       The root node of the tree
2653  * @key:        The key we are looking for
2654  * @ins_len:    Indicates purpose of search, for inserts it is 1, for
2655  *              deletions it's -1. 0 for plain searches
2656  * @cow:        boolean should CoW operations be performed. Must always be 1
2657  *              when modifying the tree.
2658  *
2659  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2660  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2661  *
2662  * If @key is found, 0 is returned and you can find the item in the leaf level
2663  * of the path (level 0)
2664  *
2665  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2666  * points to the slot where it should be inserted
2667  *
2668  * If an error is encountered while searching the tree a negative error number
2669  * is returned
2670  */
2671 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2672                       const struct btrfs_key *key, struct btrfs_path *p,
2673                       int ins_len, int cow)
2674 {
2675         struct extent_buffer *b;
2676         int slot;
2677         int ret;
2678         int err;
2679         int level;
2680         int lowest_unlock = 1;
2681         /* everything at write_lock_level or lower must be write locked */
2682         int write_lock_level = 0;
2683         u8 lowest_level = 0;
2684         int min_write_lock_level;
2685         int prev_cmp;
2686
2687         lowest_level = p->lowest_level;
2688         WARN_ON(lowest_level && ins_len > 0);
2689         WARN_ON(p->nodes[0] != NULL);
2690         BUG_ON(!cow && ins_len);
2691
2692         if (ins_len < 0) {
2693                 lowest_unlock = 2;
2694
2695                 /* when we are removing items, we might have to go up to level
2696                  * two as we update tree pointers  Make sure we keep write
2697                  * for those levels as well
2698                  */
2699                 write_lock_level = 2;
2700         } else if (ins_len > 0) {
2701                 /*
2702                  * for inserting items, make sure we have a write lock on
2703                  * level 1 so we can update keys
2704                  */
2705                 write_lock_level = 1;
2706         }
2707
2708         if (!cow)
2709                 write_lock_level = -1;
2710
2711         if (cow && (p->keep_locks || p->lowest_level))
2712                 write_lock_level = BTRFS_MAX_LEVEL;
2713
2714         min_write_lock_level = write_lock_level;
2715
2716 again:
2717         prev_cmp = -1;
2718         b = btrfs_search_slot_get_root(root, p, write_lock_level);
2719         if (IS_ERR(b)) {
2720                 ret = PTR_ERR(b);
2721                 goto done;
2722         }
2723
2724         while (b) {
2725                 int dec = 0;
2726
2727                 level = btrfs_header_level(b);
2728
2729                 if (cow) {
2730                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2731
2732                         /*
2733                          * if we don't really need to cow this block
2734                          * then we don't want to set the path blocking,
2735                          * so we test it here
2736                          */
2737                         if (!should_cow_block(trans, root, b)) {
2738                                 trans->dirty = true;
2739                                 goto cow_done;
2740                         }
2741
2742                         /*
2743                          * must have write locks on this node and the
2744                          * parent
2745                          */
2746                         if (level > write_lock_level ||
2747                             (level + 1 > write_lock_level &&
2748                             level + 1 < BTRFS_MAX_LEVEL &&
2749                             p->nodes[level + 1])) {
2750                                 write_lock_level = level + 1;
2751                                 btrfs_release_path(p);
2752                                 goto again;
2753                         }
2754
2755                         btrfs_set_path_blocking(p);
2756                         if (last_level)
2757                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
2758                                                       &b,
2759                                                       BTRFS_NESTING_COW);
2760                         else
2761                                 err = btrfs_cow_block(trans, root, b,
2762                                                       p->nodes[level + 1],
2763                                                       p->slots[level + 1], &b,
2764                                                       BTRFS_NESTING_COW);
2765                         if (err) {
2766                                 ret = err;
2767                                 goto done;
2768                         }
2769                 }
2770 cow_done:
2771                 p->nodes[level] = b;
2772                 /*
2773                  * Leave path with blocking locks to avoid massive
2774                  * lock context switch, this is made on purpose.
2775                  */
2776
2777                 /*
2778                  * we have a lock on b and as long as we aren't changing
2779                  * the tree, there is no way to for the items in b to change.
2780                  * It is safe to drop the lock on our parent before we
2781                  * go through the expensive btree search on b.
2782                  *
2783                  * If we're inserting or deleting (ins_len != 0), then we might
2784                  * be changing slot zero, which may require changing the parent.
2785                  * So, we can't drop the lock until after we know which slot
2786                  * we're operating on.
2787                  */
2788                 if (!ins_len && !p->keep_locks) {
2789                         int u = level + 1;
2790
2791                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2792                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2793                                 p->locks[u] = 0;
2794                         }
2795                 }
2796
2797                 /*
2798                  * If btrfs_bin_search returns an exact match (prev_cmp == 0)
2799                  * we can safely assume the target key will always be in slot 0
2800                  * on lower levels due to the invariants BTRFS' btree provides,
2801                  * namely that a btrfs_key_ptr entry always points to the
2802                  * lowest key in the child node, thus we can skip searching
2803                  * lower levels
2804                  */
2805                 if (prev_cmp == 0) {
2806                         slot = 0;
2807                         ret = 0;
2808                 } else {
2809                         ret = btrfs_bin_search(b, key, &slot);
2810                         prev_cmp = ret;
2811                         if (ret < 0)
2812                                 goto done;
2813                 }
2814
2815                 if (level == 0) {
2816                         p->slots[level] = slot;
2817                         if (ins_len > 0 &&
2818                             btrfs_leaf_free_space(b) < ins_len) {
2819                                 if (write_lock_level < 1) {
2820                                         write_lock_level = 1;
2821                                         btrfs_release_path(p);
2822                                         goto again;
2823                                 }
2824
2825                                 btrfs_set_path_blocking(p);
2826                                 err = split_leaf(trans, root, key,
2827                                                  p, ins_len, ret == 0);
2828
2829                                 BUG_ON(err > 0);
2830                                 if (err) {
2831                                         ret = err;
2832                                         goto done;
2833                                 }
2834                         }
2835                         if (!p->search_for_split)
2836                                 unlock_up(p, level, lowest_unlock,
2837                                           min_write_lock_level, NULL);
2838                         goto done;
2839                 }
2840                 if (ret && slot > 0) {
2841                         dec = 1;
2842                         slot--;
2843                 }
2844                 p->slots[level] = slot;
2845                 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2846                                              &write_lock_level);
2847                 if (err == -EAGAIN)
2848                         goto again;
2849                 if (err) {
2850                         ret = err;
2851                         goto done;
2852                 }
2853                 b = p->nodes[level];
2854                 slot = p->slots[level];
2855
2856                 /*
2857                  * Slot 0 is special, if we change the key we have to update
2858                  * the parent pointer which means we must have a write lock on
2859                  * the parent
2860                  */
2861                 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2862                         write_lock_level = level + 1;
2863                         btrfs_release_path(p);
2864                         goto again;
2865                 }
2866
2867                 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2868                           &write_lock_level);
2869
2870                 if (level == lowest_level) {
2871                         if (dec)
2872                                 p->slots[level]++;
2873                         goto done;
2874                 }
2875
2876                 err = read_block_for_search(root, p, &b, level, slot, key);
2877                 if (err == -EAGAIN)
2878                         goto again;
2879                 if (err) {
2880                         ret = err;
2881                         goto done;
2882                 }
2883
2884                 if (!p->skip_locking) {
2885                         level = btrfs_header_level(b);
2886                         if (level <= write_lock_level) {
2887                                 if (!btrfs_try_tree_write_lock(b)) {
2888                                         btrfs_set_path_blocking(p);
2889                                         btrfs_tree_lock(b);
2890                                 }
2891                                 p->locks[level] = BTRFS_WRITE_LOCK;
2892                         } else {
2893                                 if (!btrfs_tree_read_lock_atomic(b)) {
2894                                         btrfs_set_path_blocking(p);
2895                                         __btrfs_tree_read_lock(b, BTRFS_NESTING_NORMAL,
2896                                                                p->recurse);
2897                                 }
2898                                 p->locks[level] = BTRFS_READ_LOCK;
2899                         }
2900                         p->nodes[level] = b;
2901                 }
2902         }
2903         ret = 1;
2904 done:
2905         /*
2906          * we don't really know what they plan on doing with the path
2907          * from here on, so for now just mark it as blocking
2908          */
2909         if (!p->leave_spinning)
2910                 btrfs_set_path_blocking(p);
2911         if (ret < 0 && !p->skip_release_on_error)
2912                 btrfs_release_path(p);
2913         return ret;
2914 }
2915
2916 /*
2917  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2918  * current state of the tree together with the operations recorded in the tree
2919  * modification log to search for the key in a previous version of this tree, as
2920  * denoted by the time_seq parameter.
2921  *
2922  * Naturally, there is no support for insert, delete or cow operations.
2923  *
2924  * The resulting path and return value will be set up as if we called
2925  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2926  */
2927 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2928                           struct btrfs_path *p, u64 time_seq)
2929 {
2930         struct btrfs_fs_info *fs_info = root->fs_info;
2931         struct extent_buffer *b;
2932         int slot;
2933         int ret;
2934         int err;
2935         int level;
2936         int lowest_unlock = 1;
2937         u8 lowest_level = 0;
2938
2939         lowest_level = p->lowest_level;
2940         WARN_ON(p->nodes[0] != NULL);
2941
2942         if (p->search_commit_root) {
2943                 BUG_ON(time_seq);
2944                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2945         }
2946
2947 again:
2948         b = get_old_root(root, time_seq);
2949         if (!b) {
2950                 ret = -EIO;
2951                 goto done;
2952         }
2953         level = btrfs_header_level(b);
2954         p->locks[level] = BTRFS_READ_LOCK;
2955
2956         while (b) {
2957                 int dec = 0;
2958
2959                 level = btrfs_header_level(b);
2960                 p->nodes[level] = b;
2961
2962                 /*
2963                  * we have a lock on b and as long as we aren't changing
2964                  * the tree, there is no way to for the items in b to change.
2965                  * It is safe to drop the lock on our parent before we
2966                  * go through the expensive btree search on b.
2967                  */
2968                 btrfs_unlock_up_safe(p, level + 1);
2969
2970                 ret = btrfs_bin_search(b, key, &slot);
2971                 if (ret < 0)
2972                         goto done;
2973
2974                 if (level == 0) {
2975                         p->slots[level] = slot;
2976                         unlock_up(p, level, lowest_unlock, 0, NULL);
2977                         goto done;
2978                 }
2979
2980                 if (ret && slot > 0) {
2981                         dec = 1;
2982                         slot--;
2983                 }
2984                 p->slots[level] = slot;
2985                 unlock_up(p, level, lowest_unlock, 0, NULL);
2986
2987                 if (level == lowest_level) {
2988                         if (dec)
2989                                 p->slots[level]++;
2990                         goto done;
2991                 }
2992
2993                 err = read_block_for_search(root, p, &b, level, slot, key);
2994                 if (err == -EAGAIN)
2995                         goto again;
2996                 if (err) {
2997                         ret = err;
2998                         goto done;
2999                 }
3000
3001                 level = btrfs_header_level(b);
3002                 if (!btrfs_tree_read_lock_atomic(b)) {
3003                         btrfs_set_path_blocking(p);
3004                         btrfs_tree_read_lock(b);
3005                 }
3006                 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3007                 if (!b) {
3008                         ret = -ENOMEM;
3009                         goto done;
3010                 }
3011                 p->locks[level] = BTRFS_READ_LOCK;
3012                 p->nodes[level] = b;
3013         }
3014         ret = 1;
3015 done:
3016         if (!p->leave_spinning)
3017                 btrfs_set_path_blocking(p);
3018         if (ret < 0)
3019                 btrfs_release_path(p);
3020
3021         return ret;
3022 }
3023
3024 /*
3025  * helper to use instead of search slot if no exact match is needed but
3026  * instead the next or previous item should be returned.
3027  * When find_higher is true, the next higher item is returned, the next lower
3028  * otherwise.
3029  * When return_any and find_higher are both true, and no higher item is found,
3030  * return the next lower instead.
3031  * When return_any is true and find_higher is false, and no lower item is found,
3032  * return the next higher instead.
3033  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3034  * < 0 on error
3035  */
3036 int btrfs_search_slot_for_read(struct btrfs_root *root,
3037                                const struct btrfs_key *key,
3038                                struct btrfs_path *p, int find_higher,
3039                                int return_any)
3040 {
3041         int ret;
3042         struct extent_buffer *leaf;
3043
3044 again:
3045         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3046         if (ret <= 0)
3047                 return ret;
3048         /*
3049          * a return value of 1 means the path is at the position where the
3050          * item should be inserted. Normally this is the next bigger item,
3051          * but in case the previous item is the last in a leaf, path points
3052          * to the first free slot in the previous leaf, i.e. at an invalid
3053          * item.
3054          */
3055         leaf = p->nodes[0];
3056
3057         if (find_higher) {
3058                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3059                         ret = btrfs_next_leaf(root, p);
3060                         if (ret <= 0)
3061                                 return ret;
3062                         if (!return_any)
3063                                 return 1;
3064                         /*
3065                          * no higher item found, return the next
3066                          * lower instead
3067                          */
3068                         return_any = 0;
3069                         find_higher = 0;
3070                         btrfs_release_path(p);
3071                         goto again;
3072                 }
3073         } else {
3074                 if (p->slots[0] == 0) {
3075                         ret = btrfs_prev_leaf(root, p);
3076                         if (ret < 0)
3077                                 return ret;
3078                         if (!ret) {
3079                                 leaf = p->nodes[0];
3080                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3081                                         p->slots[0]--;
3082                                 return 0;
3083                         }
3084                         if (!return_any)
3085                                 return 1;
3086                         /*
3087                          * no lower item found, return the next
3088                          * higher instead
3089                          */
3090                         return_any = 0;
3091                         find_higher = 1;
3092                         btrfs_release_path(p);
3093                         goto again;
3094                 } else {
3095                         --p->slots[0];
3096                 }
3097         }
3098         return 0;
3099 }
3100
3101 /*
3102  * adjust the pointers going up the tree, starting at level
3103  * making sure the right key of each node is points to 'key'.
3104  * This is used after shifting pointers to the left, so it stops
3105  * fixing up pointers when a given leaf/node is not in slot 0 of the
3106  * higher levels
3107  *
3108  */
3109 static void fixup_low_keys(struct btrfs_path *path,
3110                            struct btrfs_disk_key *key, int level)
3111 {
3112         int i;
3113         struct extent_buffer *t;
3114         int ret;
3115
3116         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3117                 int tslot = path->slots[i];
3118
3119                 if (!path->nodes[i])
3120                         break;
3121                 t = path->nodes[i];
3122                 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3123                                 GFP_ATOMIC);
3124                 BUG_ON(ret < 0);
3125                 btrfs_set_node_key(t, key, tslot);
3126                 btrfs_mark_buffer_dirty(path->nodes[i]);
3127                 if (tslot != 0)
3128                         break;
3129         }
3130 }
3131
3132 /*
3133  * update item key.
3134  *
3135  * This function isn't completely safe. It's the caller's responsibility
3136  * that the new key won't break the order
3137  */
3138 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3139                              struct btrfs_path *path,
3140                              const struct btrfs_key *new_key)
3141 {
3142         struct btrfs_disk_key disk_key;
3143         struct extent_buffer *eb;
3144         int slot;
3145
3146         eb = path->nodes[0];
3147         slot = path->slots[0];
3148         if (slot > 0) {
3149                 btrfs_item_key(eb, &disk_key, slot - 1);
3150                 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3151                         btrfs_crit(fs_info,
3152                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3153                                    slot, btrfs_disk_key_objectid(&disk_key),
3154                                    btrfs_disk_key_type(&disk_key),
3155                                    btrfs_disk_key_offset(&disk_key),
3156                                    new_key->objectid, new_key->type,
3157                                    new_key->offset);
3158                         btrfs_print_leaf(eb);
3159                         BUG();
3160                 }
3161         }
3162         if (slot < btrfs_header_nritems(eb) - 1) {
3163                 btrfs_item_key(eb, &disk_key, slot + 1);
3164                 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3165                         btrfs_crit(fs_info,
3166                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3167                                    slot, btrfs_disk_key_objectid(&disk_key),
3168                                    btrfs_disk_key_type(&disk_key),
3169                                    btrfs_disk_key_offset(&disk_key),
3170                                    new_key->objectid, new_key->type,
3171                                    new_key->offset);
3172                         btrfs_print_leaf(eb);
3173                         BUG();
3174                 }
3175         }
3176
3177         btrfs_cpu_key_to_disk(&disk_key, new_key);
3178         btrfs_set_item_key(eb, &disk_key, slot);
3179         btrfs_mark_buffer_dirty(eb);
3180         if (slot == 0)
3181                 fixup_low_keys(path, &disk_key, 1);
3182 }
3183
3184 /*
3185  * Check key order of two sibling extent buffers.
3186  *
3187  * Return true if something is wrong.
3188  * Return false if everything is fine.
3189  *
3190  * Tree-checker only works inside one tree block, thus the following
3191  * corruption can not be detected by tree-checker:
3192  *
3193  * Leaf @left                   | Leaf @right
3194  * --------------------------------------------------------------
3195  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
3196  *
3197  * Key f6 in leaf @left itself is valid, but not valid when the next
3198  * key in leaf @right is 7.
3199  * This can only be checked at tree block merge time.
3200  * And since tree checker has ensured all key order in each tree block
3201  * is correct, we only need to bother the last key of @left and the first
3202  * key of @right.
3203  */
3204 static bool check_sibling_keys(struct extent_buffer *left,
3205                                struct extent_buffer *right)
3206 {
3207         struct btrfs_key left_last;
3208         struct btrfs_key right_first;
3209         int level = btrfs_header_level(left);
3210         int nr_left = btrfs_header_nritems(left);
3211         int nr_right = btrfs_header_nritems(right);
3212
3213         /* No key to check in one of the tree blocks */
3214         if (!nr_left || !nr_right)
3215                 return false;
3216
3217         if (level) {
3218                 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
3219                 btrfs_node_key_to_cpu(right, &right_first, 0);
3220         } else {
3221                 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
3222                 btrfs_item_key_to_cpu(right, &right_first, 0);
3223         }
3224
3225         if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
3226                 btrfs_crit(left->fs_info,
3227 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
3228                            left_last.objectid, left_last.type,
3229                            left_last.offset, right_first.objectid,
3230                            right_first.type, right_first.offset);
3231                 return true;
3232         }
3233         return false;
3234 }
3235
3236 /*
3237  * try to push data from one node into the next node left in the
3238  * tree.
3239  *
3240  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3241  * error, and > 0 if there was no room in the left hand block.
3242  */
3243 static int push_node_left(struct btrfs_trans_handle *trans,
3244                           struct extent_buffer *dst,
3245                           struct extent_buffer *src, int empty)
3246 {
3247         struct btrfs_fs_info *fs_info = trans->fs_info;
3248         int push_items = 0;
3249         int src_nritems;
3250         int dst_nritems;
3251         int ret = 0;
3252
3253         src_nritems = btrfs_header_nritems(src);
3254         dst_nritems = btrfs_header_nritems(dst);
3255         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3256         WARN_ON(btrfs_header_generation(src) != trans->transid);
3257         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3258
3259         if (!empty && src_nritems <= 8)
3260                 return 1;
3261
3262         if (push_items <= 0)
3263                 return 1;
3264
3265         if (empty) {
3266                 push_items = min(src_nritems, push_items);
3267                 if (push_items < src_nritems) {
3268                         /* leave at least 8 pointers in the node if
3269                          * we aren't going to empty it
3270                          */
3271                         if (src_nritems - push_items < 8) {
3272                                 if (push_items <= 8)
3273                                         return 1;
3274                                 push_items -= 8;
3275                         }
3276                 }
3277         } else
3278                 push_items = min(src_nritems - 8, push_items);
3279
3280         /* dst is the left eb, src is the middle eb */
3281         if (check_sibling_keys(dst, src)) {
3282                 ret = -EUCLEAN;
3283                 btrfs_abort_transaction(trans, ret);
3284                 return ret;
3285         }
3286         ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3287         if (ret) {
3288                 btrfs_abort_transaction(trans, ret);
3289                 return ret;
3290         }
3291         copy_extent_buffer(dst, src,
3292                            btrfs_node_key_ptr_offset(dst_nritems),
3293                            btrfs_node_key_ptr_offset(0),
3294                            push_items * sizeof(struct btrfs_key_ptr));
3295
3296         if (push_items < src_nritems) {
3297                 /*
3298                  * Don't call tree_mod_log_insert_move here, key removal was
3299                  * already fully logged by tree_mod_log_eb_copy above.
3300                  */
3301                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3302                                       btrfs_node_key_ptr_offset(push_items),
3303                                       (src_nritems - push_items) *
3304                                       sizeof(struct btrfs_key_ptr));
3305         }
3306         btrfs_set_header_nritems(src, src_nritems - push_items);
3307         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3308         btrfs_mark_buffer_dirty(src);
3309         btrfs_mark_buffer_dirty(dst);
3310
3311         return ret;
3312 }
3313
3314 /*
3315  * try to push data from one node into the next node right in the
3316  * tree.
3317  *
3318  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3319  * error, and > 0 if there was no room in the right hand block.
3320  *
3321  * this will  only push up to 1/2 the contents of the left node over
3322  */
3323 static int balance_node_right(struct btrfs_trans_handle *trans,
3324                               struct extent_buffer *dst,
3325                               struct extent_buffer *src)
3326 {
3327         struct btrfs_fs_info *fs_info = trans->fs_info;
3328         int push_items = 0;
3329         int max_push;
3330         int src_nritems;
3331         int dst_nritems;
3332         int ret = 0;
3333
3334         WARN_ON(btrfs_header_generation(src) != trans->transid);
3335         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3336
3337         src_nritems = btrfs_header_nritems(src);
3338         dst_nritems = btrfs_header_nritems(dst);
3339         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3340         if (push_items <= 0)
3341                 return 1;
3342
3343         if (src_nritems < 4)
3344                 return 1;
3345
3346         max_push = src_nritems / 2 + 1;
3347         /* don't try to empty the node */
3348         if (max_push >= src_nritems)
3349                 return 1;
3350
3351         if (max_push < push_items)
3352                 push_items = max_push;
3353
3354         /* dst is the right eb, src is the middle eb */
3355         if (check_sibling_keys(src, dst)) {
3356                 ret = -EUCLEAN;
3357                 btrfs_abort_transaction(trans, ret);
3358                 return ret;
3359         }
3360         ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3361         BUG_ON(ret < 0);
3362         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3363                                       btrfs_node_key_ptr_offset(0),
3364                                       (dst_nritems) *
3365                                       sizeof(struct btrfs_key_ptr));
3366
3367         ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3368                                    push_items);
3369         if (ret) {
3370                 btrfs_abort_transaction(trans, ret);
3371                 return ret;
3372         }
3373         copy_extent_buffer(dst, src,
3374                            btrfs_node_key_ptr_offset(0),
3375                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3376                            push_items * sizeof(struct btrfs_key_ptr));
3377
3378         btrfs_set_header_nritems(src, src_nritems - push_items);
3379         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3380
3381         btrfs_mark_buffer_dirty(src);
3382         btrfs_mark_buffer_dirty(dst);
3383
3384         return ret;
3385 }
3386
3387 /*
3388  * helper function to insert a new root level in the tree.
3389  * A new node is allocated, and a single item is inserted to
3390  * point to the existing root
3391  *
3392  * returns zero on success or < 0 on failure.
3393  */
3394 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3395                            struct btrfs_root *root,
3396                            struct btrfs_path *path, int level)
3397 {
3398         struct btrfs_fs_info *fs_info = root->fs_info;
3399         u64 lower_gen;
3400         struct extent_buffer *lower;
3401         struct extent_buffer *c;
3402         struct extent_buffer *old;
3403         struct btrfs_disk_key lower_key;
3404         int ret;
3405
3406         BUG_ON(path->nodes[level]);
3407         BUG_ON(path->nodes[level-1] != root->node);
3408
3409         lower = path->nodes[level-1];
3410         if (level == 1)
3411                 btrfs_item_key(lower, &lower_key, 0);
3412         else
3413                 btrfs_node_key(lower, &lower_key, 0);
3414
3415         c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3416                                          root->node->start, 0,
3417                                          BTRFS_NESTING_NEW_ROOT);
3418         if (IS_ERR(c))
3419                 return PTR_ERR(c);
3420
3421         root_add_used(root, fs_info->nodesize);
3422
3423         btrfs_set_header_nritems(c, 1);
3424         btrfs_set_node_key(c, &lower_key, 0);
3425         btrfs_set_node_blockptr(c, 0, lower->start);
3426         lower_gen = btrfs_header_generation(lower);
3427         WARN_ON(lower_gen != trans->transid);
3428
3429         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3430
3431         btrfs_mark_buffer_dirty(c);
3432
3433         old = root->node;
3434         ret = tree_mod_log_insert_root(root->node, c, 0);
3435         BUG_ON(ret < 0);
3436         rcu_assign_pointer(root->node, c);
3437
3438         /* the super has an extra ref to root->node */
3439         free_extent_buffer(old);
3440
3441         add_root_to_dirty_list(root);
3442         atomic_inc(&c->refs);
3443         path->nodes[level] = c;
3444         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3445         path->slots[level] = 0;
3446         return 0;
3447 }
3448
3449 /*
3450  * worker function to insert a single pointer in a node.
3451  * the node should have enough room for the pointer already
3452  *
3453  * slot and level indicate where you want the key to go, and
3454  * blocknr is the block the key points to.
3455  */
3456 static void insert_ptr(struct btrfs_trans_handle *trans,
3457                        struct btrfs_path *path,
3458                        struct btrfs_disk_key *key, u64 bytenr,
3459                        int slot, int level)
3460 {
3461         struct extent_buffer *lower;
3462         int nritems;
3463         int ret;
3464
3465         BUG_ON(!path->nodes[level]);
3466         btrfs_assert_tree_locked(path->nodes[level]);
3467         lower = path->nodes[level];
3468         nritems = btrfs_header_nritems(lower);
3469         BUG_ON(slot > nritems);
3470         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3471         if (slot != nritems) {
3472                 if (level) {
3473                         ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3474                                         nritems - slot);
3475                         BUG_ON(ret < 0);
3476                 }
3477                 memmove_extent_buffer(lower,
3478                               btrfs_node_key_ptr_offset(slot + 1),
3479                               btrfs_node_key_ptr_offset(slot),
3480                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3481         }
3482         if (level) {
3483                 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3484                                 GFP_NOFS);
3485                 BUG_ON(ret < 0);
3486         }
3487         btrfs_set_node_key(lower, key, slot);
3488         btrfs_set_node_blockptr(lower, slot, bytenr);
3489         WARN_ON(trans->transid == 0);
3490         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3491         btrfs_set_header_nritems(lower, nritems + 1);
3492         btrfs_mark_buffer_dirty(lower);
3493 }
3494
3495 /*
3496  * split the node at the specified level in path in two.
3497  * The path is corrected to point to the appropriate node after the split
3498  *
3499  * Before splitting this tries to make some room in the node by pushing
3500  * left and right, if either one works, it returns right away.
3501  *
3502  * returns 0 on success and < 0 on failure
3503  */
3504 static noinline int split_node(struct btrfs_trans_handle *trans,
3505                                struct btrfs_root *root,
3506                                struct btrfs_path *path, int level)
3507 {
3508         struct btrfs_fs_info *fs_info = root->fs_info;
3509         struct extent_buffer *c;
3510         struct extent_buffer *split;
3511         struct btrfs_disk_key disk_key;
3512         int mid;
3513         int ret;
3514         u32 c_nritems;
3515
3516         c = path->nodes[level];
3517         WARN_ON(btrfs_header_generation(c) != trans->transid);
3518         if (c == root->node) {
3519                 /*
3520                  * trying to split the root, lets make a new one
3521                  *
3522                  * tree mod log: We don't log_removal old root in
3523                  * insert_new_root, because that root buffer will be kept as a
3524                  * normal node. We are going to log removal of half of the
3525                  * elements below with tree_mod_log_eb_copy. We're holding a
3526                  * tree lock on the buffer, which is why we cannot race with
3527                  * other tree_mod_log users.
3528                  */
3529                 ret = insert_new_root(trans, root, path, level + 1);
3530                 if (ret)
3531                         return ret;
3532         } else {
3533                 ret = push_nodes_for_insert(trans, root, path, level);
3534                 c = path->nodes[level];
3535                 if (!ret && btrfs_header_nritems(c) <
3536                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3537                         return 0;
3538                 if (ret < 0)
3539                         return ret;
3540         }
3541
3542         c_nritems = btrfs_header_nritems(c);
3543         mid = (c_nritems + 1) / 2;
3544         btrfs_node_key(c, &disk_key, mid);
3545
3546         split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3547                                              c->start, 0, BTRFS_NESTING_SPLIT);
3548         if (IS_ERR(split))
3549                 return PTR_ERR(split);
3550
3551         root_add_used(root, fs_info->nodesize);
3552         ASSERT(btrfs_header_level(c) == level);
3553
3554         ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3555         if (ret) {
3556                 btrfs_abort_transaction(trans, ret);
3557                 return ret;
3558         }
3559         copy_extent_buffer(split, c,
3560                            btrfs_node_key_ptr_offset(0),
3561                            btrfs_node_key_ptr_offset(mid),
3562                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3563         btrfs_set_header_nritems(split, c_nritems - mid);
3564         btrfs_set_header_nritems(c, mid);
3565         ret = 0;
3566
3567         btrfs_mark_buffer_dirty(c);
3568         btrfs_mark_buffer_dirty(split);
3569
3570         insert_ptr(trans, path, &disk_key, split->start,
3571                    path->slots[level + 1] + 1, level + 1);
3572
3573         if (path->slots[level] >= mid) {
3574                 path->slots[level] -= mid;
3575                 btrfs_tree_unlock(c);
3576                 free_extent_buffer(c);
3577                 path->nodes[level] = split;
3578                 path->slots[level + 1] += 1;
3579         } else {
3580                 btrfs_tree_unlock(split);
3581                 free_extent_buffer(split);
3582         }
3583         return ret;
3584 }
3585
3586 /*
3587  * how many bytes are required to store the items in a leaf.  start
3588  * and nr indicate which items in the leaf to check.  This totals up the
3589  * space used both by the item structs and the item data
3590  */
3591 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3592 {
3593         struct btrfs_item *start_item;
3594         struct btrfs_item *end_item;
3595         int data_len;
3596         int nritems = btrfs_header_nritems(l);
3597         int end = min(nritems, start + nr) - 1;
3598
3599         if (!nr)
3600                 return 0;
3601         start_item = btrfs_item_nr(start);
3602         end_item = btrfs_item_nr(end);
3603         data_len = btrfs_item_offset(l, start_item) +
3604                    btrfs_item_size(l, start_item);
3605         data_len = data_len - btrfs_item_offset(l, end_item);
3606         data_len += sizeof(struct btrfs_item) * nr;
3607         WARN_ON(data_len < 0);
3608         return data_len;
3609 }
3610
3611 /*
3612  * The space between the end of the leaf items and
3613  * the start of the leaf data.  IOW, how much room
3614  * the leaf has left for both items and data
3615  */
3616 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3617 {
3618         struct btrfs_fs_info *fs_info = leaf->fs_info;
3619         int nritems = btrfs_header_nritems(leaf);
3620         int ret;
3621
3622         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3623         if (ret < 0) {
3624                 btrfs_crit(fs_info,
3625                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3626                            ret,
3627                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3628                            leaf_space_used(leaf, 0, nritems), nritems);
3629         }
3630         return ret;
3631 }
3632
3633 /*
3634  * min slot controls the lowest index we're willing to push to the
3635  * right.  We'll push up to and including min_slot, but no lower
3636  */
3637 static noinline int __push_leaf_right(struct btrfs_path *path,
3638                                       int data_size, int empty,
3639                                       struct extent_buffer *right,
3640                                       int free_space, u32 left_nritems,
3641                                       u32 min_slot)
3642 {
3643         struct btrfs_fs_info *fs_info = right->fs_info;
3644         struct extent_buffer *left = path->nodes[0];
3645         struct extent_buffer *upper = path->nodes[1];
3646         struct btrfs_map_token token;
3647         struct btrfs_disk_key disk_key;
3648         int slot;
3649         u32 i;
3650         int push_space = 0;
3651         int push_items = 0;
3652         struct btrfs_item *item;
3653         u32 nr;
3654         u32 right_nritems;
3655         u32 data_end;
3656         u32 this_item_size;
3657
3658         if (empty)
3659                 nr = 0;
3660         else
3661                 nr = max_t(u32, 1, min_slot);
3662
3663         if (path->slots[0] >= left_nritems)
3664                 push_space += data_size;
3665
3666         slot = path->slots[1];
3667         i = left_nritems - 1;
3668         while (i >= nr) {
3669                 item = btrfs_item_nr(i);
3670
3671                 if (!empty && push_items > 0) {
3672                         if (path->slots[0] > i)
3673                                 break;
3674                         if (path->slots[0] == i) {
3675                                 int space = btrfs_leaf_free_space(left);
3676
3677                                 if (space + push_space * 2 > free_space)
3678                                         break;
3679                         }
3680                 }
3681
3682                 if (path->slots[0] == i)
3683                         push_space += data_size;
3684
3685                 this_item_size = btrfs_item_size(left, item);
3686                 if (this_item_size + sizeof(*item) + push_space > free_space)
3687                         break;
3688
3689                 push_items++;
3690                 push_space += this_item_size + sizeof(*item);
3691                 if (i == 0)
3692                         break;
3693                 i--;
3694         }
3695
3696         if (push_items == 0)
3697                 goto out_unlock;
3698
3699         WARN_ON(!empty && push_items == left_nritems);
3700
3701         /* push left to right */
3702         right_nritems = btrfs_header_nritems(right);
3703
3704         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3705         push_space -= leaf_data_end(left);
3706
3707         /* make room in the right data area */
3708         data_end = leaf_data_end(right);
3709         memmove_extent_buffer(right,
3710                               BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3711                               BTRFS_LEAF_DATA_OFFSET + data_end,
3712                               BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3713
3714         /* copy from the left data area */
3715         copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3716                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3717                      BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3718                      push_space);
3719
3720         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3721                               btrfs_item_nr_offset(0),
3722                               right_nritems * sizeof(struct btrfs_item));
3723
3724         /* copy the items from left to right */
3725         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3726                    btrfs_item_nr_offset(left_nritems - push_items),
3727                    push_items * sizeof(struct btrfs_item));
3728
3729         /* update the item pointers */
3730         btrfs_init_map_token(&token, right);
3731         right_nritems += push_items;
3732         btrfs_set_header_nritems(right, right_nritems);
3733         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3734         for (i = 0; i < right_nritems; i++) {
3735                 item = btrfs_item_nr(i);
3736                 push_space -= btrfs_token_item_size(&token, item);
3737                 btrfs_set_token_item_offset(&token, item, push_space);
3738         }
3739
3740         left_nritems -= push_items;
3741         btrfs_set_header_nritems(left, left_nritems);
3742
3743         if (left_nritems)
3744                 btrfs_mark_buffer_dirty(left);
3745         else
3746                 btrfs_clean_tree_block(left);
3747
3748         btrfs_mark_buffer_dirty(right);
3749
3750         btrfs_item_key(right, &disk_key, 0);
3751         btrfs_set_node_key(upper, &disk_key, slot + 1);
3752         btrfs_mark_buffer_dirty(upper);
3753
3754         /* then fixup the leaf pointer in the path */
3755         if (path->slots[0] >= left_nritems) {
3756                 path->slots[0] -= left_nritems;
3757                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3758                         btrfs_clean_tree_block(path->nodes[0]);
3759                 btrfs_tree_unlock(path->nodes[0]);
3760                 free_extent_buffer(path->nodes[0]);
3761                 path->nodes[0] = right;
3762                 path->slots[1] += 1;
3763         } else {
3764                 btrfs_tree_unlock(right);
3765                 free_extent_buffer(right);
3766         }
3767         return 0;
3768
3769 out_unlock:
3770         btrfs_tree_unlock(right);
3771         free_extent_buffer(right);
3772         return 1;
3773 }
3774
3775 /*
3776  * push some data in the path leaf to the right, trying to free up at
3777  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3778  *
3779  * returns 1 if the push failed because the other node didn't have enough
3780  * room, 0 if everything worked out and < 0 if there were major errors.
3781  *
3782  * this will push starting from min_slot to the end of the leaf.  It won't
3783  * push any slot lower than min_slot
3784  */
3785 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3786                            *root, struct btrfs_path *path,
3787                            int min_data_size, int data_size,
3788                            int empty, u32 min_slot)
3789 {
3790         struct extent_buffer *left = path->nodes[0];
3791         struct extent_buffer *right;
3792         struct extent_buffer *upper;
3793         int slot;
3794         int free_space;
3795         u32 left_nritems;
3796         int ret;
3797
3798         if (!path->nodes[1])
3799                 return 1;
3800
3801         slot = path->slots[1];
3802         upper = path->nodes[1];
3803         if (slot >= btrfs_header_nritems(upper) - 1)
3804                 return 1;
3805
3806         btrfs_assert_tree_locked(path->nodes[1]);
3807
3808         right = btrfs_read_node_slot(upper, slot + 1);
3809         /*
3810          * slot + 1 is not valid or we fail to read the right node,
3811          * no big deal, just return.
3812          */
3813         if (IS_ERR(right))
3814                 return 1;
3815
3816         __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3817         btrfs_set_lock_blocking_write(right);
3818
3819         free_space = btrfs_leaf_free_space(right);
3820         if (free_space < data_size)
3821                 goto out_unlock;
3822
3823         /* cow and double check */
3824         ret = btrfs_cow_block(trans, root, right, upper,
3825                               slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3826         if (ret)
3827                 goto out_unlock;
3828
3829         free_space = btrfs_leaf_free_space(right);
3830         if (free_space < data_size)
3831                 goto out_unlock;
3832
3833         left_nritems = btrfs_header_nritems(left);
3834         if (left_nritems == 0)
3835                 goto out_unlock;
3836
3837         if (check_sibling_keys(left, right)) {
3838                 ret = -EUCLEAN;
3839                 btrfs_tree_unlock(right);
3840                 free_extent_buffer(right);
3841                 return ret;
3842         }
3843         if (path->slots[0] == left_nritems && !empty) {
3844                 /* Key greater than all keys in the leaf, right neighbor has
3845                  * enough room for it and we're not emptying our leaf to delete
3846                  * it, therefore use right neighbor to insert the new item and
3847                  * no need to touch/dirty our left leaf. */
3848                 btrfs_tree_unlock(left);
3849                 free_extent_buffer(left);
3850                 path->nodes[0] = right;
3851                 path->slots[0] = 0;
3852                 path->slots[1]++;
3853                 return 0;
3854         }
3855
3856         return __push_leaf_right(path, min_data_size, empty,
3857                                 right, free_space, left_nritems, min_slot);
3858 out_unlock:
3859         btrfs_tree_unlock(right);
3860         free_extent_buffer(right);
3861         return 1;
3862 }
3863
3864 /*
3865  * push some data in the path leaf to the left, trying to free up at
3866  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3867  *
3868  * max_slot can put a limit on how far into the leaf we'll push items.  The
3869  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3870  * items
3871  */
3872 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3873                                      int empty, struct extent_buffer *left,
3874                                      int free_space, u32 right_nritems,
3875                                      u32 max_slot)
3876 {
3877         struct btrfs_fs_info *fs_info = left->fs_info;
3878         struct btrfs_disk_key disk_key;
3879         struct extent_buffer *right = path->nodes[0];
3880         int i;
3881         int push_space = 0;
3882         int push_items = 0;
3883         struct btrfs_item *item;
3884         u32 old_left_nritems;
3885         u32 nr;
3886         int ret = 0;
3887         u32 this_item_size;
3888         u32 old_left_item_size;
3889         struct btrfs_map_token token;
3890
3891         if (empty)
3892                 nr = min(right_nritems, max_slot);
3893         else
3894                 nr = min(right_nritems - 1, max_slot);
3895
3896         for (i = 0; i < nr; i++) {
3897                 item = btrfs_item_nr(i);
3898
3899                 if (!empty && push_items > 0) {
3900                         if (path->slots[0] < i)
3901                                 break;
3902                         if (path->slots[0] == i) {
3903                                 int space = btrfs_leaf_free_space(right);
3904
3905                                 if (space + push_space * 2 > free_space)
3906                                         break;
3907                         }
3908                 }
3909
3910                 if (path->slots[0] == i)
3911                         push_space += data_size;
3912
3913                 this_item_size = btrfs_item_size(right, item);
3914                 if (this_item_size + sizeof(*item) + push_space > free_space)
3915                         break;
3916
3917                 push_items++;
3918                 push_space += this_item_size + sizeof(*item);
3919         }
3920
3921         if (push_items == 0) {
3922                 ret = 1;
3923                 goto out;
3924         }
3925         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3926
3927         /* push data from right to left */
3928         copy_extent_buffer(left, right,
3929                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3930                            btrfs_item_nr_offset(0),
3931                            push_items * sizeof(struct btrfs_item));
3932
3933         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3934                      btrfs_item_offset_nr(right, push_items - 1);
3935
3936         copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3937                      leaf_data_end(left) - push_space,
3938                      BTRFS_LEAF_DATA_OFFSET +
3939                      btrfs_item_offset_nr(right, push_items - 1),
3940                      push_space);
3941         old_left_nritems = btrfs_header_nritems(left);
3942         BUG_ON(old_left_nritems <= 0);
3943
3944         btrfs_init_map_token(&token, left);
3945         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3946         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3947                 u32 ioff;
3948
3949                 item = btrfs_item_nr(i);
3950
3951                 ioff = btrfs_token_item_offset(&token, item);
3952                 btrfs_set_token_item_offset(&token, item,
3953                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3954         }
3955         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3956
3957         /* fixup right node */
3958         if (push_items > right_nritems)
3959                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3960                        right_nritems);
3961
3962         if (push_items < right_nritems) {
3963                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3964                                                   leaf_data_end(right);
3965                 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3966                                       BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3967                                       BTRFS_LEAF_DATA_OFFSET +
3968                                       leaf_data_end(right), push_space);
3969
3970                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3971                               btrfs_item_nr_offset(push_items),
3972                              (btrfs_header_nritems(right) - push_items) *
3973                              sizeof(struct btrfs_item));
3974         }
3975
3976         btrfs_init_map_token(&token, right);
3977         right_nritems -= push_items;
3978         btrfs_set_header_nritems(right, right_nritems);
3979         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3980         for (i = 0; i < right_nritems; i++) {
3981                 item = btrfs_item_nr(i);
3982
3983                 push_space = push_space - btrfs_token_item_size(&token, item);
3984                 btrfs_set_token_item_offset(&token, item, push_space);
3985         }
3986
3987         btrfs_mark_buffer_dirty(left);
3988         if (right_nritems)
3989                 btrfs_mark_buffer_dirty(right);
3990         else
3991                 btrfs_clean_tree_block(right);
3992
3993         btrfs_item_key(right, &disk_key, 0);
3994         fixup_low_keys(path, &disk_key, 1);
3995
3996         /* then fixup the leaf pointer in the path */
3997         if (path->slots[0] < push_items) {
3998                 path->slots[0] += old_left_nritems;
3999                 btrfs_tree_unlock(path->nodes[0]);
4000                 free_extent_buffer(path->nodes[0]);
4001                 path->nodes[0] = left;
4002                 path->slots[1] -= 1;
4003         } else {
4004                 btrfs_tree_unlock(left);
4005                 free_extent_buffer(left);
4006                 path->slots[0] -= push_items;
4007         }
4008         BUG_ON(path->slots[0] < 0);
4009         return ret;
4010 out:
4011         btrfs_tree_unlock(left);
4012         free_extent_buffer(left);
4013         return ret;
4014 }
4015
4016 /*
4017  * push some data in the path leaf to the left, trying to free up at
4018  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
4019  *
4020  * max_slot can put a limit on how far into the leaf we'll push items.  The
4021  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
4022  * items
4023  */
4024 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4025                           *root, struct btrfs_path *path, int min_data_size,
4026                           int data_size, int empty, u32 max_slot)
4027 {
4028         struct extent_buffer *right = path->nodes[0];
4029         struct extent_buffer *left;
4030         int slot;
4031         int free_space;
4032         u32 right_nritems;
4033         int ret = 0;
4034
4035         slot = path->slots[1];
4036         if (slot == 0)
4037                 return 1;
4038         if (!path->nodes[1])
4039                 return 1;
4040
4041         right_nritems = btrfs_header_nritems(right);
4042         if (right_nritems == 0)
4043                 return 1;
4044
4045         btrfs_assert_tree_locked(path->nodes[1]);
4046
4047         left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4048         /*
4049          * slot - 1 is not valid or we fail to read the left node,
4050          * no big deal, just return.
4051          */
4052         if (IS_ERR(left))
4053                 return 1;
4054
4055         __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
4056         btrfs_set_lock_blocking_write(left);
4057
4058         free_space = btrfs_leaf_free_space(left);
4059         if (free_space < data_size) {
4060                 ret = 1;
4061                 goto out;
4062         }
4063
4064         /* cow and double check */
4065         ret = btrfs_cow_block(trans, root, left,
4066                               path->nodes[1], slot - 1, &left,
4067                               BTRFS_NESTING_LEFT_COW);
4068         if (ret) {
4069                 /* we hit -ENOSPC, but it isn't fatal here */
4070                 if (ret == -ENOSPC)
4071                         ret = 1;
4072                 goto out;
4073         }
4074
4075         free_space = btrfs_leaf_free_space(left);
4076         if (free_space < data_size) {
4077                 ret = 1;
4078                 goto out;
4079         }
4080
4081         if (check_sibling_keys(left, right)) {
4082                 ret = -EUCLEAN;
4083                 goto out;
4084         }
4085         return __push_leaf_left(path, min_data_size,
4086                                empty, left, free_space, right_nritems,
4087                                max_slot);
4088 out:
4089         btrfs_tree_unlock(left);
4090         free_extent_buffer(left);
4091         return ret;
4092 }
4093
4094 /*
4095  * split the path's leaf in two, making sure there is at least data_size
4096  * available for the resulting leaf level of the path.
4097  */
4098 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4099                                     struct btrfs_path *path,
4100                                     struct extent_buffer *l,
4101                                     struct extent_buffer *right,
4102                                     int slot, int mid, int nritems)
4103 {
4104         struct btrfs_fs_info *fs_info = trans->fs_info;
4105         int data_copy_size;
4106         int rt_data_off;
4107         int i;
4108         struct btrfs_disk_key disk_key;
4109         struct btrfs_map_token token;
4110
4111         nritems = nritems - mid;
4112         btrfs_set_header_nritems(right, nritems);
4113         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4114
4115         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4116                            btrfs_item_nr_offset(mid),
4117                            nritems * sizeof(struct btrfs_item));
4118
4119         copy_extent_buffer(right, l,
4120                      BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4121                      data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4122                      leaf_data_end(l), data_copy_size);
4123
4124         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4125
4126         btrfs_init_map_token(&token, right);
4127         for (i = 0; i < nritems; i++) {
4128                 struct btrfs_item *item = btrfs_item_nr(i);
4129                 u32 ioff;
4130
4131                 ioff = btrfs_token_item_offset(&token, item);
4132                 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
4133         }
4134
4135         btrfs_set_header_nritems(l, mid);
4136         btrfs_item_key(right, &disk_key, 0);
4137         insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4138
4139         btrfs_mark_buffer_dirty(right);
4140         btrfs_mark_buffer_dirty(l);
4141         BUG_ON(path->slots[0] != slot);
4142
4143         if (mid <= slot) {
4144                 btrfs_tree_unlock(path->nodes[0]);
4145                 free_extent_buffer(path->nodes[0]);
4146                 path->nodes[0] = right;
4147                 path->slots[0] -= mid;
4148                 path->slots[1] += 1;
4149         } else {
4150                 btrfs_tree_unlock(right);
4151                 free_extent_buffer(right);
4152         }
4153
4154         BUG_ON(path->slots[0] < 0);
4155 }
4156
4157 /*
4158  * double splits happen when we need to insert a big item in the middle
4159  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4160  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4161  *          A                 B                 C
4162  *
4163  * We avoid this by trying to push the items on either side of our target
4164  * into the adjacent leaves.  If all goes well we can avoid the double split
4165  * completely.
4166  */
4167 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4168                                           struct btrfs_root *root,
4169                                           struct btrfs_path *path,
4170                                           int data_size)
4171 {
4172         int ret;
4173         int progress = 0;
4174         int slot;
4175         u32 nritems;
4176         int space_needed = data_size;
4177
4178         slot = path->slots[0];
4179         if (slot < btrfs_header_nritems(path->nodes[0]))
4180                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4181
4182         /*
4183          * try to push all the items after our slot into the
4184          * right leaf
4185          */
4186         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4187         if (ret < 0)
4188                 return ret;
4189
4190         if (ret == 0)
4191                 progress++;
4192
4193         nritems = btrfs_header_nritems(path->nodes[0]);
4194         /*
4195          * our goal is to get our slot at the start or end of a leaf.  If
4196          * we've done so we're done
4197          */
4198         if (path->slots[0] == 0 || path->slots[0] == nritems)
4199                 return 0;
4200
4201         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4202                 return 0;
4203
4204         /* try to push all the items before our slot into the next leaf */
4205         slot = path->slots[0];
4206         space_needed = data_size;
4207         if (slot > 0)
4208                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4209         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4210         if (ret < 0)
4211                 return ret;
4212
4213         if (ret == 0)
4214                 progress++;
4215
4216         if (progress)
4217                 return 0;
4218         return 1;
4219 }
4220
4221 /*
4222  * split the path's leaf in two, making sure there is at least data_size
4223  * available for the resulting leaf level of the path.
4224  *
4225  * returns 0 if all went well and < 0 on failure.
4226  */
4227 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4228                                struct btrfs_root *root,
4229                                const struct btrfs_key *ins_key,
4230                                struct btrfs_path *path, int data_size,
4231                                int extend)
4232 {
4233         struct btrfs_disk_key disk_key;
4234         struct extent_buffer *l;
4235         u32 nritems;
4236         int mid;
4237         int slot;
4238         struct extent_buffer *right;
4239         struct btrfs_fs_info *fs_info = root->fs_info;
4240         int ret = 0;
4241         int wret;
4242         int split;
4243         int num_doubles = 0;
4244         int tried_avoid_double = 0;
4245
4246         l = path->nodes[0];
4247         slot = path->slots[0];
4248         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4249             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4250                 return -EOVERFLOW;
4251
4252         /* first try to make some room by pushing left and right */
4253         if (data_size && path->nodes[1]) {
4254                 int space_needed = data_size;
4255
4256                 if (slot < btrfs_header_nritems(l))
4257                         space_needed -= btrfs_leaf_free_space(l);
4258
4259                 wret = push_leaf_right(trans, root, path, space_needed,
4260                                        space_needed, 0, 0);
4261                 if (wret < 0)
4262                         return wret;
4263                 if (wret) {
4264                         space_needed = data_size;
4265                         if (slot > 0)
4266                                 space_needed -= btrfs_leaf_free_space(l);
4267                         wret = push_leaf_left(trans, root, path, space_needed,
4268                                               space_needed, 0, (u32)-1);
4269                         if (wret < 0)
4270                                 return wret;
4271                 }
4272                 l = path->nodes[0];
4273
4274                 /* did the pushes work? */
4275                 if (btrfs_leaf_free_space(l) >= data_size)
4276                         return 0;
4277         }
4278
4279         if (!path->nodes[1]) {
4280                 ret = insert_new_root(trans, root, path, 1);
4281                 if (ret)
4282                         return ret;
4283         }
4284 again:
4285         split = 1;
4286         l = path->nodes[0];
4287         slot = path->slots[0];
4288         nritems = btrfs_header_nritems(l);
4289         mid = (nritems + 1) / 2;
4290
4291         if (mid <= slot) {
4292                 if (nritems == 1 ||
4293                     leaf_space_used(l, mid, nritems - mid) + data_size >
4294                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
4295                         if (slot >= nritems) {
4296                                 split = 0;
4297                         } else {
4298                                 mid = slot;
4299                                 if (mid != nritems &&
4300                                     leaf_space_used(l, mid, nritems - mid) +
4301                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4302                                         if (data_size && !tried_avoid_double)
4303                                                 goto push_for_double;
4304                                         split = 2;
4305                                 }
4306                         }
4307                 }
4308         } else {
4309                 if (leaf_space_used(l, 0, mid) + data_size >
4310                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
4311                         if (!extend && data_size && slot == 0) {
4312                                 split = 0;
4313                         } else if ((extend || !data_size) && slot == 0) {
4314                                 mid = 1;
4315                         } else {
4316                                 mid = slot;
4317                                 if (mid != nritems &&
4318                                     leaf_space_used(l, mid, nritems - mid) +
4319                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4320                                         if (data_size && !tried_avoid_double)
4321                                                 goto push_for_double;
4322                                         split = 2;
4323                                 }
4324                         }
4325                 }
4326         }
4327
4328         if (split == 0)
4329                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4330         else
4331                 btrfs_item_key(l, &disk_key, mid);
4332
4333         /*
4334          * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
4335          * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
4336          * subclasses, which is 8 at the time of this patch, and we've maxed it
4337          * out.  In the future we could add a
4338          * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
4339          * use BTRFS_NESTING_NEW_ROOT.
4340          */
4341         right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4342                                              l->start, 0, num_doubles ?
4343                                              BTRFS_NESTING_NEW_ROOT :
4344                                              BTRFS_NESTING_SPLIT);
4345         if (IS_ERR(right))
4346                 return PTR_ERR(right);
4347
4348         root_add_used(root, fs_info->nodesize);
4349
4350         if (split == 0) {
4351                 if (mid <= slot) {
4352                         btrfs_set_header_nritems(right, 0);
4353                         insert_ptr(trans, path, &disk_key,
4354                                    right->start, path->slots[1] + 1, 1);
4355                         btrfs_tree_unlock(path->nodes[0]);
4356                         free_extent_buffer(path->nodes[0]);
4357                         path->nodes[0] = right;
4358                         path->slots[0] = 0;
4359                         path->slots[1] += 1;
4360                 } else {
4361                         btrfs_set_header_nritems(right, 0);
4362                         insert_ptr(trans, path, &disk_key,
4363                                    right->start, path->slots[1], 1);
4364                         btrfs_tree_unlock(path->nodes[0]);
4365                         free_extent_buffer(path->nodes[0]);
4366                         path->nodes[0] = right;
4367                         path->slots[0] = 0;
4368                         if (path->slots[1] == 0)
4369                                 fixup_low_keys(path, &disk_key, 1);
4370                 }
4371                 /*
4372                  * We create a new leaf 'right' for the required ins_len and
4373                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4374                  * the content of ins_len to 'right'.
4375                  */
4376                 return ret;
4377         }
4378
4379         copy_for_split(trans, path, l, right, slot, mid, nritems);
4380
4381         if (split == 2) {
4382                 BUG_ON(num_doubles != 0);
4383                 num_doubles++;
4384                 goto again;
4385         }
4386
4387         return 0;
4388
4389 push_for_double:
4390         push_for_double_split(trans, root, path, data_size);
4391         tried_avoid_double = 1;
4392         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4393                 return 0;
4394         goto again;
4395 }
4396
4397 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4398                                          struct btrfs_root *root,
4399                                          struct btrfs_path *path, int ins_len)
4400 {
4401         struct btrfs_key key;
4402         struct extent_buffer *leaf;
4403         struct btrfs_file_extent_item *fi;
4404         u64 extent_len = 0;
4405         u32 item_size;
4406         int ret;
4407
4408         leaf = path->nodes[0];
4409         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4410
4411         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4412                key.type != BTRFS_EXTENT_CSUM_KEY);
4413
4414         if (btrfs_leaf_free_space(leaf) >= ins_len)
4415                 return 0;
4416
4417         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4418         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4419                 fi = btrfs_item_ptr(leaf, path->slots[0],
4420                                     struct btrfs_file_extent_item);
4421                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4422         }
4423         btrfs_release_path(path);
4424
4425         path->keep_locks = 1;
4426         path->search_for_split = 1;
4427         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4428         path->search_for_split = 0;
4429         if (ret > 0)
4430                 ret = -EAGAIN;
4431         if (ret < 0)
4432                 goto err;
4433
4434         ret = -EAGAIN;
4435         leaf = path->nodes[0];
4436         /* if our item isn't there, return now */
4437         if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4438                 goto err;
4439
4440         /* the leaf has  changed, it now has room.  return now */
4441         if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4442                 goto err;
4443
4444         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4445                 fi = btrfs_item_ptr(leaf, path->slots[0],
4446                                     struct btrfs_file_extent_item);
4447                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4448                         goto err;
4449         }
4450
4451         btrfs_set_path_blocking(path);
4452         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4453         if (ret)
4454                 goto err;
4455
4456         path->keep_locks = 0;
4457         btrfs_unlock_up_safe(path, 1);
4458         return 0;
4459 err:
4460         path->keep_locks = 0;
4461         return ret;
4462 }
4463
4464 static noinline int split_item(struct btrfs_path *path,
4465                                const struct btrfs_key *new_key,
4466                                unsigned long split_offset)
4467 {
4468         struct extent_buffer *leaf;
4469         struct btrfs_item *item;
4470         struct btrfs_item *new_item;
4471         int slot;
4472         char *buf;
4473         u32 nritems;
4474         u32 item_size;
4475         u32 orig_offset;
4476         struct btrfs_disk_key disk_key;
4477
4478         leaf = path->nodes[0];
4479         BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4480
4481         btrfs_set_path_blocking(path);
4482
4483         item = btrfs_item_nr(path->slots[0]);
4484         orig_offset = btrfs_item_offset(leaf, item);
4485         item_size = btrfs_item_size(leaf, item);
4486
4487         buf = kmalloc(item_size, GFP_NOFS);
4488         if (!buf)
4489                 return -ENOMEM;
4490
4491         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4492                             path->slots[0]), item_size);
4493
4494         slot = path->slots[0] + 1;
4495         nritems = btrfs_header_nritems(leaf);
4496         if (slot != nritems) {
4497                 /* shift the items */
4498                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4499                                 btrfs_item_nr_offset(slot),
4500                                 (nritems - slot) * sizeof(struct btrfs_item));
4501         }
4502
4503         btrfs_cpu_key_to_disk(&disk_key, new_key);
4504         btrfs_set_item_key(leaf, &disk_key, slot);
4505
4506         new_item = btrfs_item_nr(slot);
4507
4508         btrfs_set_item_offset(leaf, new_item, orig_offset);
4509         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4510
4511         btrfs_set_item_offset(leaf, item,
4512                               orig_offset + item_size - split_offset);
4513         btrfs_set_item_size(leaf, item, split_offset);
4514
4515         btrfs_set_header_nritems(leaf, nritems + 1);
4516
4517         /* write the data for the start of the original item */
4518         write_extent_buffer(leaf, buf,
4519                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4520                             split_offset);
4521
4522         /* write the data for the new item */
4523         write_extent_buffer(leaf, buf + split_offset,
4524                             btrfs_item_ptr_offset(leaf, slot),
4525                             item_size - split_offset);
4526         btrfs_mark_buffer_dirty(leaf);
4527
4528         BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4529         kfree(buf);
4530         return 0;
4531 }
4532
4533 /*
4534  * This function splits a single item into two items,
4535  * giving 'new_key' to the new item and splitting the
4536  * old one at split_offset (from the start of the item).
4537  *
4538  * The path may be released by this operation.  After
4539  * the split, the path is pointing to the old item.  The
4540  * new item is going to be in the same node as the old one.
4541  *
4542  * Note, the item being split must be smaller enough to live alone on
4543  * a tree block with room for one extra struct btrfs_item
4544  *
4545  * This allows us to split the item in place, keeping a lock on the
4546  * leaf the entire time.
4547  */
4548 int btrfs_split_item(struct btrfs_trans_handle *trans,
4549                      struct btrfs_root *root,
4550                      struct btrfs_path *path,
4551                      const struct btrfs_key *new_key,
4552                      unsigned long split_offset)
4553 {
4554         int ret;
4555         ret = setup_leaf_for_split(trans, root, path,
4556                                    sizeof(struct btrfs_item));
4557         if (ret)
4558                 return ret;
4559
4560         ret = split_item(path, new_key, split_offset);
4561         return ret;
4562 }
4563
4564 /*
4565  * This function duplicate a item, giving 'new_key' to the new item.
4566  * It guarantees both items live in the same tree leaf and the new item
4567  * is contiguous with the original item.
4568  *
4569  * This allows us to split file extent in place, keeping a lock on the
4570  * leaf the entire time.
4571  */
4572 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4573                          struct btrfs_root *root,
4574                          struct btrfs_path *path,
4575                          const struct btrfs_key *new_key)
4576 {
4577         struct extent_buffer *leaf;
4578         int ret;
4579         u32 item_size;
4580
4581         leaf = path->nodes[0];
4582         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4583         ret = setup_leaf_for_split(trans, root, path,
4584                                    item_size + sizeof(struct btrfs_item));
4585         if (ret)
4586                 return ret;
4587
4588         path->slots[0]++;
4589         setup_items_for_insert(root, path, new_key, &item_size, 1);
4590         leaf = path->nodes[0];
4591         memcpy_extent_buffer(leaf,
4592                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4593                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4594                              item_size);
4595         return 0;
4596 }
4597
4598 /*
4599  * make the item pointed to by the path smaller.  new_size indicates
4600  * how small to make it, and from_end tells us if we just chop bytes
4601  * off the end of the item or if we shift the item to chop bytes off
4602  * the front.
4603  */
4604 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4605 {
4606         int slot;
4607         struct extent_buffer *leaf;
4608         struct btrfs_item *item;
4609         u32 nritems;
4610         unsigned int data_end;
4611         unsigned int old_data_start;
4612         unsigned int old_size;
4613         unsigned int size_diff;
4614         int i;
4615         struct btrfs_map_token token;
4616
4617         leaf = path->nodes[0];
4618         slot = path->slots[0];
4619
4620         old_size = btrfs_item_size_nr(leaf, slot);
4621         if (old_size == new_size)
4622                 return;
4623
4624         nritems = btrfs_header_nritems(leaf);
4625         data_end = leaf_data_end(leaf);
4626
4627         old_data_start = btrfs_item_offset_nr(leaf, slot);
4628
4629         size_diff = old_size - new_size;
4630
4631         BUG_ON(slot < 0);
4632         BUG_ON(slot >= nritems);
4633
4634         /*
4635          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4636          */
4637         /* first correct the data pointers */
4638         btrfs_init_map_token(&token, leaf);
4639         for (i = slot; i < nritems; i++) {
4640                 u32 ioff;
4641                 item = btrfs_item_nr(i);
4642
4643                 ioff = btrfs_token_item_offset(&token, item);
4644                 btrfs_set_token_item_offset(&token, item, ioff + size_diff);
4645         }
4646
4647         /* shift the data */
4648         if (from_end) {
4649                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4650                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4651                               data_end, old_data_start + new_size - data_end);
4652         } else {
4653                 struct btrfs_disk_key disk_key;
4654                 u64 offset;
4655
4656                 btrfs_item_key(leaf, &disk_key, slot);
4657
4658                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4659                         unsigned long ptr;
4660                         struct btrfs_file_extent_item *fi;
4661
4662                         fi = btrfs_item_ptr(leaf, slot,
4663                                             struct btrfs_file_extent_item);
4664                         fi = (struct btrfs_file_extent_item *)(
4665                              (unsigned long)fi - size_diff);
4666
4667                         if (btrfs_file_extent_type(leaf, fi) ==
4668                             BTRFS_FILE_EXTENT_INLINE) {
4669                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4670                                 memmove_extent_buffer(leaf, ptr,
4671                                       (unsigned long)fi,
4672                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4673                         }
4674                 }
4675
4676                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4677                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4678                               data_end, old_data_start - data_end);
4679
4680                 offset = btrfs_disk_key_offset(&disk_key);
4681                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4682                 btrfs_set_item_key(leaf, &disk_key, slot);
4683                 if (slot == 0)
4684                         fixup_low_keys(path, &disk_key, 1);
4685         }
4686
4687         item = btrfs_item_nr(slot);
4688         btrfs_set_item_size(leaf, item, new_size);
4689         btrfs_mark_buffer_dirty(leaf);
4690
4691         if (btrfs_leaf_free_space(leaf) < 0) {
4692                 btrfs_print_leaf(leaf);
4693                 BUG();
4694         }
4695 }
4696
4697 /*
4698  * make the item pointed to by the path bigger, data_size is the added size.
4699  */
4700 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4701 {
4702         int slot;
4703         struct extent_buffer *leaf;
4704         struct btrfs_item *item;
4705         u32 nritems;
4706         unsigned int data_end;
4707         unsigned int old_data;
4708         unsigned int old_size;
4709         int i;
4710         struct btrfs_map_token token;
4711
4712         leaf = path->nodes[0];
4713
4714         nritems = btrfs_header_nritems(leaf);
4715         data_end = leaf_data_end(leaf);
4716
4717         if (btrfs_leaf_free_space(leaf) < data_size) {
4718                 btrfs_print_leaf(leaf);
4719                 BUG();
4720         }
4721         slot = path->slots[0];
4722         old_data = btrfs_item_end_nr(leaf, slot);
4723
4724         BUG_ON(slot < 0);
4725         if (slot >= nritems) {
4726                 btrfs_print_leaf(leaf);
4727                 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4728                            slot, nritems);
4729                 BUG();
4730         }
4731
4732         /*
4733          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4734          */
4735         /* first correct the data pointers */
4736         btrfs_init_map_token(&token, leaf);
4737         for (i = slot; i < nritems; i++) {
4738                 u32 ioff;
4739                 item = btrfs_item_nr(i);
4740
4741                 ioff = btrfs_token_item_offset(&token, item);
4742                 btrfs_set_token_item_offset(&token, item, ioff - data_size);
4743         }
4744
4745         /* shift the data */
4746         memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4747                       data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4748                       data_end, old_data - data_end);
4749
4750         data_end = old_data;
4751         old_size = btrfs_item_size_nr(leaf, slot);
4752         item = btrfs_item_nr(slot);
4753         btrfs_set_item_size(leaf, item, old_size + data_size);
4754         btrfs_mark_buffer_dirty(leaf);
4755
4756         if (btrfs_leaf_free_space(leaf) < 0) {
4757                 btrfs_print_leaf(leaf);
4758                 BUG();
4759         }
4760 }
4761
4762 /**
4763  * setup_items_for_insert - Helper called before inserting one or more items
4764  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
4765  * in a function that doesn't call btrfs_search_slot
4766  *
4767  * @root:       root we are inserting items to
4768  * @path:       points to the leaf/slot where we are going to insert new items
4769  * @cpu_key:    array of keys for items to be inserted
4770  * @data_size:  size of the body of each item we are going to insert
4771  * @nr:         size of @cpu_key/@data_size arrays
4772  */
4773 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4774                             const struct btrfs_key *cpu_key, u32 *data_size,
4775                             int nr)
4776 {
4777         struct btrfs_fs_info *fs_info = root->fs_info;
4778         struct btrfs_item *item;
4779         int i;
4780         u32 nritems;
4781         unsigned int data_end;
4782         struct btrfs_disk_key disk_key;
4783         struct extent_buffer *leaf;
4784         int slot;
4785         struct btrfs_map_token token;
4786         u32 total_size;
4787         u32 total_data = 0;
4788
4789         for (i = 0; i < nr; i++)
4790                 total_data += data_size[i];
4791         total_size = total_data + (nr * sizeof(struct btrfs_item));
4792
4793         if (path->slots[0] == 0) {
4794                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4795                 fixup_low_keys(path, &disk_key, 1);
4796         }
4797         btrfs_unlock_up_safe(path, 1);
4798
4799         leaf = path->nodes[0];
4800         slot = path->slots[0];
4801
4802         nritems = btrfs_header_nritems(leaf);
4803         data_end = leaf_data_end(leaf);
4804
4805         if (btrfs_leaf_free_space(leaf) < total_size) {
4806                 btrfs_print_leaf(leaf);
4807                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4808                            total_size, btrfs_leaf_free_space(leaf));
4809                 BUG();
4810         }
4811
4812         btrfs_init_map_token(&token, leaf);
4813         if (slot != nritems) {
4814                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4815
4816                 if (old_data < data_end) {
4817                         btrfs_print_leaf(leaf);
4818                         btrfs_crit(fs_info,
4819                 "item at slot %d with data offset %u beyond data end of leaf %u",
4820                                    slot, old_data, data_end);
4821                         BUG();
4822                 }
4823                 /*
4824                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4825                  */
4826                 /* first correct the data pointers */
4827                 for (i = slot; i < nritems; i++) {
4828                         u32 ioff;
4829
4830                         item = btrfs_item_nr(i);
4831                         ioff = btrfs_token_item_offset(&token, item);
4832                         btrfs_set_token_item_offset(&token, item,
4833                                                     ioff - total_data);
4834                 }
4835                 /* shift the items */
4836                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4837                               btrfs_item_nr_offset(slot),
4838                               (nritems - slot) * sizeof(struct btrfs_item));
4839
4840                 /* shift the data */
4841                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4842                               data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4843                               data_end, old_data - data_end);
4844                 data_end = old_data;
4845         }
4846
4847         /* setup the item for the new data */
4848         for (i = 0; i < nr; i++) {
4849                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4850                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4851                 item = btrfs_item_nr(slot + i);
4852                 data_end -= data_size[i];
4853                 btrfs_set_token_item_offset(&token, item, data_end);
4854                 btrfs_set_token_item_size(&token, item, data_size[i]);
4855         }
4856
4857         btrfs_set_header_nritems(leaf, nritems + nr);
4858         btrfs_mark_buffer_dirty(leaf);
4859
4860         if (btrfs_leaf_free_space(leaf) < 0) {
4861                 btrfs_print_leaf(leaf);
4862                 BUG();
4863         }
4864 }
4865
4866 /*
4867  * Given a key and some data, insert items into the tree.
4868  * This does all the path init required, making room in the tree if needed.
4869  */
4870 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4871                             struct btrfs_root *root,
4872                             struct btrfs_path *path,
4873                             const struct btrfs_key *cpu_key, u32 *data_size,
4874                             int nr)
4875 {
4876         int ret = 0;
4877         int slot;
4878         int i;
4879         u32 total_size = 0;
4880         u32 total_data = 0;
4881
4882         for (i = 0; i < nr; i++)
4883                 total_data += data_size[i];
4884
4885         total_size = total_data + (nr * sizeof(struct btrfs_item));
4886         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4887         if (ret == 0)
4888                 return -EEXIST;
4889         if (ret < 0)
4890                 return ret;
4891
4892         slot = path->slots[0];
4893         BUG_ON(slot < 0);
4894
4895         setup_items_for_insert(root, path, cpu_key, data_size, nr);
4896         return 0;
4897 }
4898
4899 /*
4900  * Given a key and some data, insert an item into the tree.
4901  * This does all the path init required, making room in the tree if needed.
4902  */
4903 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4904                       const struct btrfs_key *cpu_key, void *data,
4905                       u32 data_size)
4906 {
4907         int ret = 0;
4908         struct btrfs_path *path;
4909         struct extent_buffer *leaf;
4910         unsigned long ptr;
4911
4912         path = btrfs_alloc_path();
4913         if (!path)
4914                 return -ENOMEM;
4915         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4916         if (!ret) {
4917                 leaf = path->nodes[0];
4918                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4919                 write_extent_buffer(leaf, data, ptr, data_size);
4920                 btrfs_mark_buffer_dirty(leaf);
4921         }
4922         btrfs_free_path(path);
4923         return ret;
4924 }
4925
4926 /*
4927  * delete the pointer from a given node.
4928  *
4929  * the tree should have been previously balanced so the deletion does not
4930  * empty a node.
4931  */
4932 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4933                     int level, int slot)
4934 {
4935         struct extent_buffer *parent = path->nodes[level];
4936         u32 nritems;
4937         int ret;
4938
4939         nritems = btrfs_header_nritems(parent);
4940         if (slot != nritems - 1) {
4941                 if (level) {
4942                         ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4943                                         nritems - slot - 1);
4944                         BUG_ON(ret < 0);
4945                 }
4946                 memmove_extent_buffer(parent,
4947                               btrfs_node_key_ptr_offset(slot),
4948                               btrfs_node_key_ptr_offset(slot + 1),
4949                               sizeof(struct btrfs_key_ptr) *
4950                               (nritems - slot - 1));
4951         } else if (level) {
4952                 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4953                                 GFP_NOFS);
4954                 BUG_ON(ret < 0);
4955         }
4956
4957         nritems--;
4958         btrfs_set_header_nritems(parent, nritems);
4959         if (nritems == 0 && parent == root->node) {
4960                 BUG_ON(btrfs_header_level(root->node) != 1);
4961                 /* just turn the root into a leaf and break */
4962                 btrfs_set_header_level(root->node, 0);
4963         } else if (slot == 0) {
4964                 struct btrfs_disk_key disk_key;
4965
4966                 btrfs_node_key(parent, &disk_key, 0);
4967                 fixup_low_keys(path, &disk_key, level + 1);
4968         }
4969         btrfs_mark_buffer_dirty(parent);
4970 }
4971
4972 /*
4973  * a helper function to delete the leaf pointed to by path->slots[1] and
4974  * path->nodes[1].
4975  *
4976  * This deletes the pointer in path->nodes[1] and frees the leaf
4977  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4978  *
4979  * The path must have already been setup for deleting the leaf, including
4980  * all the proper balancing.  path->nodes[1] must be locked.
4981  */
4982 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4983                                     struct btrfs_root *root,
4984                                     struct btrfs_path *path,
4985                                     struct extent_buffer *leaf)
4986 {
4987         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4988         del_ptr(root, path, 1, path->slots[1]);
4989
4990         /*
4991          * btrfs_free_extent is expensive, we want to make sure we
4992          * aren't holding any locks when we call it
4993          */
4994         btrfs_unlock_up_safe(path, 0);
4995
4996         root_sub_used(root, leaf->len);
4997
4998         atomic_inc(&leaf->refs);
4999         btrfs_free_tree_block(trans, root, leaf, 0, 1);
5000         free_extent_buffer_stale(leaf);
5001 }
5002 /*
5003  * delete the item at the leaf level in path.  If that empties
5004  * the leaf, remove it from the tree
5005  */
5006 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5007                     struct btrfs_path *path, int slot, int nr)
5008 {
5009         struct btrfs_fs_info *fs_info = root->fs_info;
5010         struct extent_buffer *leaf;
5011         struct btrfs_item *item;
5012         u32 last_off;
5013         u32 dsize = 0;
5014         int ret = 0;
5015         int wret;
5016         int i;
5017         u32 nritems;
5018
5019         leaf = path->nodes[0];
5020         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
5021
5022         for (i = 0; i < nr; i++)
5023                 dsize += btrfs_item_size_nr(leaf, slot + i);
5024
5025         nritems = btrfs_header_nritems(leaf);
5026
5027         if (slot + nr != nritems) {
5028                 int data_end = leaf_data_end(leaf);
5029                 struct btrfs_map_token token;
5030
5031                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
5032                               data_end + dsize,
5033                               BTRFS_LEAF_DATA_OFFSET + data_end,
5034                               last_off - data_end);
5035
5036                 btrfs_init_map_token(&token, leaf);
5037                 for (i = slot + nr; i < nritems; i++) {
5038                         u32 ioff;
5039
5040                         item = btrfs_item_nr(i);
5041                         ioff = btrfs_token_item_offset(&token, item);
5042                         btrfs_set_token_item_offset(&token, item, ioff + dsize);
5043                 }
5044
5045                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5046                               btrfs_item_nr_offset(slot + nr),
5047                               sizeof(struct btrfs_item) *
5048                               (nritems - slot - nr));
5049         }
5050         btrfs_set_header_nritems(leaf, nritems - nr);
5051         nritems -= nr;
5052
5053         /* delete the leaf if we've emptied it */
5054         if (nritems == 0) {
5055                 if (leaf == root->node) {
5056                         btrfs_set_header_level(leaf, 0);
5057                 } else {
5058                         btrfs_set_path_blocking(path);
5059                         btrfs_clean_tree_block(leaf);
5060                         btrfs_del_leaf(trans, root, path, leaf);
5061                 }
5062         } else {
5063                 int used = leaf_space_used(leaf, 0, nritems);
5064                 if (slot == 0) {
5065                         struct btrfs_disk_key disk_key;
5066
5067                         btrfs_item_key(leaf, &disk_key, 0);
5068                         fixup_low_keys(path, &disk_key, 1);
5069                 }
5070
5071                 /* delete the leaf if it is mostly empty */
5072                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5073                         /* push_leaf_left fixes the path.
5074                          * make sure the path still points to our leaf
5075                          * for possible call to del_ptr below
5076                          */
5077                         slot = path->slots[1];
5078                         atomic_inc(&leaf->refs);
5079
5080                         btrfs_set_path_blocking(path);
5081                         wret = push_leaf_left(trans, root, path, 1, 1,
5082                                               1, (u32)-1);
5083                         if (wret < 0 && wret != -ENOSPC)
5084                                 ret = wret;
5085
5086                         if (path->nodes[0] == leaf &&
5087                             btrfs_header_nritems(leaf)) {
5088                                 wret = push_leaf_right(trans, root, path, 1,
5089                                                        1, 1, 0);
5090                                 if (wret < 0 && wret != -ENOSPC)
5091                                         ret = wret;
5092                         }
5093
5094                         if (btrfs_header_nritems(leaf) == 0) {
5095                                 path->slots[1] = slot;
5096                                 btrfs_del_leaf(trans, root, path, leaf);
5097                                 free_extent_buffer(leaf);
5098                                 ret = 0;
5099                         } else {
5100                                 /* if we're still in the path, make sure
5101                                  * we're dirty.  Otherwise, one of the
5102                                  * push_leaf functions must have already
5103                                  * dirtied this buffer
5104                                  */
5105                                 if (path->nodes[0] == leaf)
5106                                         btrfs_mark_buffer_dirty(leaf);
5107                                 free_extent_buffer(leaf);
5108                         }
5109                 } else {
5110                         btrfs_mark_buffer_dirty(leaf);
5111                 }
5112         }
5113         return ret;
5114 }
5115
5116 /*
5117  * search the tree again to find a leaf with lesser keys
5118  * returns 0 if it found something or 1 if there are no lesser leaves.
5119  * returns < 0 on io errors.
5120  *
5121  * This may release the path, and so you may lose any locks held at the
5122  * time you call it.
5123  */
5124 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5125 {
5126         struct btrfs_key key;
5127         struct btrfs_disk_key found_key;
5128         int ret;
5129
5130         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5131
5132         if (key.offset > 0) {
5133                 key.offset--;
5134         } else if (key.type > 0) {
5135                 key.type--;
5136                 key.offset = (u64)-1;
5137         } else if (key.objectid > 0) {
5138                 key.objectid--;
5139                 key.type = (u8)-1;
5140                 key.offset = (u64)-1;
5141         } else {
5142                 return 1;
5143         }
5144
5145         btrfs_release_path(path);
5146         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5147         if (ret < 0)
5148                 return ret;
5149         btrfs_item_key(path->nodes[0], &found_key, 0);
5150         ret = comp_keys(&found_key, &key);
5151         /*
5152          * We might have had an item with the previous key in the tree right
5153          * before we released our path. And after we released our path, that
5154          * item might have been pushed to the first slot (0) of the leaf we
5155          * were holding due to a tree balance. Alternatively, an item with the
5156          * previous key can exist as the only element of a leaf (big fat item).
5157          * Therefore account for these 2 cases, so that our callers (like
5158          * btrfs_previous_item) don't miss an existing item with a key matching
5159          * the previous key we computed above.
5160          */
5161         if (ret <= 0)
5162                 return 0;
5163         return 1;
5164 }
5165
5166 /*
5167  * A helper function to walk down the tree starting at min_key, and looking
5168  * for nodes or leaves that are have a minimum transaction id.
5169  * This is used by the btree defrag code, and tree logging
5170  *
5171  * This does not cow, but it does stuff the starting key it finds back
5172  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5173  * key and get a writable path.
5174  *
5175  * This honors path->lowest_level to prevent descent past a given level
5176  * of the tree.
5177  *
5178  * min_trans indicates the oldest transaction that you are interested
5179  * in walking through.  Any nodes or leaves older than min_trans are
5180  * skipped over (without reading them).
5181  *
5182  * returns zero if something useful was found, < 0 on error and 1 if there
5183  * was nothing in the tree that matched the search criteria.
5184  */
5185 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5186                          struct btrfs_path *path,
5187                          u64 min_trans)
5188 {
5189         struct extent_buffer *cur;
5190         struct btrfs_key found_key;
5191         int slot;
5192         int sret;
5193         u32 nritems;
5194         int level;
5195         int ret = 1;
5196         int keep_locks = path->keep_locks;
5197
5198         path->keep_locks = 1;
5199 again:
5200         cur = btrfs_read_lock_root_node(root);
5201         level = btrfs_header_level(cur);
5202         WARN_ON(path->nodes[level]);
5203         path->nodes[level] = cur;
5204         path->locks[level] = BTRFS_READ_LOCK;
5205
5206         if (btrfs_header_generation(cur) < min_trans) {
5207                 ret = 1;
5208                 goto out;
5209         }
5210         while (1) {
5211                 nritems = btrfs_header_nritems(cur);
5212                 level = btrfs_header_level(cur);
5213                 sret = btrfs_bin_search(cur, min_key, &slot);
5214                 if (sret < 0) {
5215                         ret = sret;
5216                         goto out;
5217                 }
5218
5219                 /* at the lowest level, we're done, setup the path and exit */
5220                 if (level == path->lowest_level) {
5221                         if (slot >= nritems)
5222                                 goto find_next_key;
5223                         ret = 0;
5224                         path->slots[level] = slot;
5225                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5226                         goto out;
5227                 }
5228                 if (sret && slot > 0)
5229                         slot--;
5230                 /*
5231                  * check this node pointer against the min_trans parameters.
5232                  * If it is too old, skip to the next one.
5233                  */
5234                 while (slot < nritems) {
5235                         u64 gen;
5236
5237                         gen = btrfs_node_ptr_generation(cur, slot);
5238                         if (gen < min_trans) {
5239                                 slot++;
5240                                 continue;
5241                         }
5242                         break;
5243                 }
5244 find_next_key:
5245                 /*
5246                  * we didn't find a candidate key in this node, walk forward
5247                  * and find another one
5248                  */
5249                 if (slot >= nritems) {
5250                         path->slots[level] = slot;
5251                         btrfs_set_path_blocking(path);
5252                         sret = btrfs_find_next_key(root, path, min_key, level,
5253                                                   min_trans);
5254                         if (sret == 0) {
5255                                 btrfs_release_path(path);
5256                                 goto again;
5257                         } else {
5258                                 goto out;
5259                         }
5260                 }
5261                 /* save our key for returning back */
5262                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5263                 path->slots[level] = slot;
5264                 if (level == path->lowest_level) {
5265                         ret = 0;
5266                         goto out;
5267                 }
5268                 btrfs_set_path_blocking(path);
5269                 cur = btrfs_read_node_slot(cur, slot);
5270                 if (IS_ERR(cur)) {
5271                         ret = PTR_ERR(cur);
5272                         goto out;
5273                 }
5274
5275                 btrfs_tree_read_lock(cur);
5276
5277                 path->locks[level - 1] = BTRFS_READ_LOCK;
5278                 path->nodes[level - 1] = cur;
5279                 unlock_up(path, level, 1, 0, NULL);
5280         }
5281 out:
5282         path->keep_locks = keep_locks;
5283         if (ret == 0) {
5284                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5285                 btrfs_set_path_blocking(path);
5286                 memcpy(min_key, &found_key, sizeof(found_key));
5287         }
5288         return ret;
5289 }
5290
5291 /*
5292  * this is similar to btrfs_next_leaf, but does not try to preserve
5293  * and fixup the path.  It looks for and returns the next key in the
5294  * tree based on the current path and the min_trans parameters.
5295  *
5296  * 0 is returned if another key is found, < 0 if there are any errors
5297  * and 1 is returned if there are no higher keys in the tree
5298  *
5299  * path->keep_locks should be set to 1 on the search made before
5300  * calling this function.
5301  */
5302 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5303                         struct btrfs_key *key, int level, u64 min_trans)
5304 {
5305         int slot;
5306         struct extent_buffer *c;
5307
5308         WARN_ON(!path->keep_locks && !path->skip_locking);
5309         while (level < BTRFS_MAX_LEVEL) {
5310                 if (!path->nodes[level])
5311                         return 1;
5312
5313                 slot = path->slots[level] + 1;
5314                 c = path->nodes[level];
5315 next:
5316                 if (slot >= btrfs_header_nritems(c)) {
5317                         int ret;
5318                         int orig_lowest;
5319                         struct btrfs_key cur_key;
5320                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5321                             !path->nodes[level + 1])
5322                                 return 1;
5323
5324                         if (path->locks[level + 1] || path->skip_locking) {
5325                                 level++;
5326                                 continue;
5327                         }
5328
5329                         slot = btrfs_header_nritems(c) - 1;
5330                         if (level == 0)
5331                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5332                         else
5333                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5334
5335                         orig_lowest = path->lowest_level;
5336                         btrfs_release_path(path);
5337                         path->lowest_level = level;
5338                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5339                                                 0, 0);
5340                         path->lowest_level = orig_lowest;
5341                         if (ret < 0)
5342                                 return ret;
5343
5344                         c = path->nodes[level];
5345                         slot = path->slots[level];
5346                         if (ret == 0)
5347                                 slot++;
5348                         goto next;
5349                 }
5350
5351                 if (level == 0)
5352                         btrfs_item_key_to_cpu(c, key, slot);
5353                 else {
5354                         u64 gen = btrfs_node_ptr_generation(c, slot);
5355
5356                         if (gen < min_trans) {
5357                                 slot++;
5358                                 goto next;
5359                         }
5360                         btrfs_node_key_to_cpu(c, key, slot);
5361                 }
5362                 return 0;
5363         }
5364         return 1;
5365 }
5366
5367 /*
5368  * search the tree again to find a leaf with greater keys
5369  * returns 0 if it found something or 1 if there are no greater leaves.
5370  * returns < 0 on io errors.
5371  */
5372 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5373 {
5374         return btrfs_next_old_leaf(root, path, 0);
5375 }
5376
5377 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5378                         u64 time_seq)
5379 {
5380         int slot;
5381         int level;
5382         struct extent_buffer *c;
5383         struct extent_buffer *next;
5384         struct btrfs_key key;
5385         u32 nritems;
5386         int ret;
5387         int old_spinning = path->leave_spinning;
5388         int next_rw_lock = 0;
5389
5390         nritems = btrfs_header_nritems(path->nodes[0]);
5391         if (nritems == 0)
5392                 return 1;
5393
5394         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5395 again:
5396         level = 1;
5397         next = NULL;
5398         next_rw_lock = 0;
5399         btrfs_release_path(path);
5400
5401         path->keep_locks = 1;
5402         path->leave_spinning = 1;
5403
5404         if (time_seq)
5405                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5406         else
5407                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5408         path->keep_locks = 0;
5409
5410         if (ret < 0)
5411                 return ret;
5412
5413         nritems = btrfs_header_nritems(path->nodes[0]);
5414         /*
5415          * by releasing the path above we dropped all our locks.  A balance
5416          * could have added more items next to the key that used to be
5417          * at the very end of the block.  So, check again here and
5418          * advance the path if there are now more items available.
5419          */
5420         if (nritems > 0 && path->slots[0] < nritems - 1) {
5421                 if (ret == 0)
5422                         path->slots[0]++;
5423                 ret = 0;
5424                 goto done;
5425         }
5426         /*
5427          * So the above check misses one case:
5428          * - after releasing the path above, someone has removed the item that
5429          *   used to be at the very end of the block, and balance between leafs
5430          *   gets another one with bigger key.offset to replace it.
5431          *
5432          * This one should be returned as well, or we can get leaf corruption
5433          * later(esp. in __btrfs_drop_extents()).
5434          *
5435          * And a bit more explanation about this check,
5436          * with ret > 0, the key isn't found, the path points to the slot
5437          * where it should be inserted, so the path->slots[0] item must be the
5438          * bigger one.
5439          */
5440         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5441                 ret = 0;
5442                 goto done;
5443         }
5444
5445         while (level < BTRFS_MAX_LEVEL) {
5446                 if (!path->nodes[level]) {
5447                         ret = 1;
5448                         goto done;
5449                 }
5450
5451                 slot = path->slots[level] + 1;
5452                 c = path->nodes[level];
5453                 if (slot >= btrfs_header_nritems(c)) {
5454                         level++;
5455                         if (level == BTRFS_MAX_LEVEL) {
5456                                 ret = 1;
5457                                 goto done;
5458                         }
5459                         continue;
5460                 }
5461
5462                 if (next) {
5463                         btrfs_tree_unlock_rw(next, next_rw_lock);
5464                         free_extent_buffer(next);
5465                 }
5466
5467                 next = c;
5468                 next_rw_lock = path->locks[level];
5469                 ret = read_block_for_search(root, path, &next, level,
5470                                             slot, &key);
5471                 if (ret == -EAGAIN)
5472                         goto again;
5473
5474                 if (ret < 0) {
5475                         btrfs_release_path(path);
5476                         goto done;
5477                 }
5478
5479                 if (!path->skip_locking) {
5480                         ret = btrfs_try_tree_read_lock(next);
5481                         if (!ret && time_seq) {
5482                                 /*
5483                                  * If we don't get the lock, we may be racing
5484                                  * with push_leaf_left, holding that lock while
5485                                  * itself waiting for the leaf we've currently
5486                                  * locked. To solve this situation, we give up
5487                                  * on our lock and cycle.
5488                                  */
5489                                 free_extent_buffer(next);
5490                                 btrfs_release_path(path);
5491                                 cond_resched();
5492                                 goto again;
5493                         }
5494                         if (!ret) {
5495                                 btrfs_set_path_blocking(path);
5496                                 __btrfs_tree_read_lock(next,
5497                                                        BTRFS_NESTING_RIGHT,
5498                                                        path->recurse);
5499                         }
5500                         next_rw_lock = BTRFS_READ_LOCK;
5501                 }
5502                 break;
5503         }
5504         path->slots[level] = slot;
5505         while (1) {
5506                 level--;
5507                 c = path->nodes[level];
5508                 if (path->locks[level])
5509                         btrfs_tree_unlock_rw(c, path->locks[level]);
5510
5511                 free_extent_buffer(c);
5512                 path->nodes[level] = next;
5513                 path->slots[level] = 0;
5514                 if (!path->skip_locking)
5515                         path->locks[level] = next_rw_lock;
5516                 if (!level)
5517                         break;
5518
5519                 ret = read_block_for_search(root, path, &next, level,
5520                                             0, &key);
5521                 if (ret == -EAGAIN)
5522                         goto again;
5523
5524                 if (ret < 0) {
5525                         btrfs_release_path(path);
5526                         goto done;
5527                 }
5528
5529                 if (!path->skip_locking) {
5530                         ret = btrfs_try_tree_read_lock(next);
5531                         if (!ret) {
5532                                 btrfs_set_path_blocking(path);
5533                                 __btrfs_tree_read_lock(next,
5534                                                        BTRFS_NESTING_RIGHT,
5535                                                        path->recurse);
5536                         }
5537                         next_rw_lock = BTRFS_READ_LOCK;
5538                 }
5539         }
5540         ret = 0;
5541 done:
5542         unlock_up(path, 0, 1, 0, NULL);
5543         path->leave_spinning = old_spinning;
5544         if (!old_spinning)
5545                 btrfs_set_path_blocking(path);
5546
5547         return ret;
5548 }
5549
5550 /*
5551  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5552  * searching until it gets past min_objectid or finds an item of 'type'
5553  *
5554  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5555  */
5556 int btrfs_previous_item(struct btrfs_root *root,
5557                         struct btrfs_path *path, u64 min_objectid,
5558                         int type)
5559 {
5560         struct btrfs_key found_key;
5561         struct extent_buffer *leaf;
5562         u32 nritems;
5563         int ret;
5564
5565         while (1) {
5566                 if (path->slots[0] == 0) {
5567                         btrfs_set_path_blocking(path);
5568                         ret = btrfs_prev_leaf(root, path);
5569                         if (ret != 0)
5570                                 return ret;
5571                 } else {
5572                         path->slots[0]--;
5573                 }
5574                 leaf = path->nodes[0];
5575                 nritems = btrfs_header_nritems(leaf);
5576                 if (nritems == 0)
5577                         return 1;
5578                 if (path->slots[0] == nritems)
5579                         path->slots[0]--;
5580
5581                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5582                 if (found_key.objectid < min_objectid)
5583                         break;
5584                 if (found_key.type == type)
5585                         return 0;
5586                 if (found_key.objectid == min_objectid &&
5587                     found_key.type < type)
5588                         break;
5589         }
5590         return 1;
5591 }
5592
5593 /*
5594  * search in extent tree to find a previous Metadata/Data extent item with
5595  * min objecitd.
5596  *
5597  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5598  */
5599 int btrfs_previous_extent_item(struct btrfs_root *root,
5600                         struct btrfs_path *path, u64 min_objectid)
5601 {
5602         struct btrfs_key found_key;
5603         struct extent_buffer *leaf;
5604         u32 nritems;
5605         int ret;
5606
5607         while (1) {
5608                 if (path->slots[0] == 0) {
5609                         btrfs_set_path_blocking(path);
5610                         ret = btrfs_prev_leaf(root, path);
5611                         if (ret != 0)
5612                                 return ret;
5613                 } else {
5614                         path->slots[0]--;
5615                 }
5616                 leaf = path->nodes[0];
5617                 nritems = btrfs_header_nritems(leaf);
5618                 if (nritems == 0)
5619                         return 1;
5620                 if (path->slots[0] == nritems)
5621                         path->slots[0]--;
5622
5623                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5624                 if (found_key.objectid < min_objectid)
5625                         break;
5626                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5627                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5628                         return 0;
5629                 if (found_key.objectid == min_objectid &&
5630                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5631                         break;
5632         }
5633         return 1;
5634 }