Merge tag 'dma-mapping-5.6' of git://git.infradead.org/users/hch/dma-mapping
[linux-2.6-microblaze.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19                       *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21                       const struct btrfs_key *ins_key, struct btrfs_path *path,
22                       int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24                           struct extent_buffer *dst,
25                           struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27                               struct extent_buffer *dst_buf,
28                               struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30                     int level, int slot);
31
32 static const struct btrfs_csums {
33         u16             size;
34         const char      *name;
35         const char      *driver;
36 } btrfs_csums[] = {
37         [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38         [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39         [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40         [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
41                                      .driver = "blake2b-256" },
42 };
43
44 int btrfs_super_csum_size(const struct btrfs_super_block *s)
45 {
46         u16 t = btrfs_super_csum_type(s);
47         /*
48          * csum type is validated at mount time
49          */
50         return btrfs_csums[t].size;
51 }
52
53 const char *btrfs_super_csum_name(u16 csum_type)
54 {
55         /* csum type is validated at mount time */
56         return btrfs_csums[csum_type].name;
57 }
58
59 /*
60  * Return driver name if defined, otherwise the name that's also a valid driver
61  * name
62  */
63 const char *btrfs_super_csum_driver(u16 csum_type)
64 {
65         /* csum type is validated at mount time */
66         return btrfs_csums[csum_type].driver ?:
67                 btrfs_csums[csum_type].name;
68 }
69
70 size_t __const btrfs_get_num_csums(void)
71 {
72         return ARRAY_SIZE(btrfs_csums);
73 }
74
75 struct btrfs_path *btrfs_alloc_path(void)
76 {
77         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
78 }
79
80 /* this also releases the path */
81 void btrfs_free_path(struct btrfs_path *p)
82 {
83         if (!p)
84                 return;
85         btrfs_release_path(p);
86         kmem_cache_free(btrfs_path_cachep, p);
87 }
88
89 /*
90  * path release drops references on the extent buffers in the path
91  * and it drops any locks held by this path
92  *
93  * It is safe to call this on paths that no locks or extent buffers held.
94  */
95 noinline void btrfs_release_path(struct btrfs_path *p)
96 {
97         int i;
98
99         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
100                 p->slots[i] = 0;
101                 if (!p->nodes[i])
102                         continue;
103                 if (p->locks[i]) {
104                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
105                         p->locks[i] = 0;
106                 }
107                 free_extent_buffer(p->nodes[i]);
108                 p->nodes[i] = NULL;
109         }
110 }
111
112 /*
113  * safely gets a reference on the root node of a tree.  A lock
114  * is not taken, so a concurrent writer may put a different node
115  * at the root of the tree.  See btrfs_lock_root_node for the
116  * looping required.
117  *
118  * The extent buffer returned by this has a reference taken, so
119  * it won't disappear.  It may stop being the root of the tree
120  * at any time because there are no locks held.
121  */
122 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
123 {
124         struct extent_buffer *eb;
125
126         while (1) {
127                 rcu_read_lock();
128                 eb = rcu_dereference(root->node);
129
130                 /*
131                  * RCU really hurts here, we could free up the root node because
132                  * it was COWed but we may not get the new root node yet so do
133                  * the inc_not_zero dance and if it doesn't work then
134                  * synchronize_rcu and try again.
135                  */
136                 if (atomic_inc_not_zero(&eb->refs)) {
137                         rcu_read_unlock();
138                         break;
139                 }
140                 rcu_read_unlock();
141                 synchronize_rcu();
142         }
143         return eb;
144 }
145
146 /* loop around taking references on and locking the root node of the
147  * tree until you end up with a lock on the root.  A locked buffer
148  * is returned, with a reference held.
149  */
150 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
151 {
152         struct extent_buffer *eb;
153
154         while (1) {
155                 eb = btrfs_root_node(root);
156                 btrfs_tree_lock(eb);
157                 if (eb == root->node)
158                         break;
159                 btrfs_tree_unlock(eb);
160                 free_extent_buffer(eb);
161         }
162         return eb;
163 }
164
165 /* loop around taking references on and locking the root node of the
166  * tree until you end up with a lock on the root.  A locked buffer
167  * is returned, with a reference held.
168  */
169 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
170 {
171         struct extent_buffer *eb;
172
173         while (1) {
174                 eb = btrfs_root_node(root);
175                 btrfs_tree_read_lock(eb);
176                 if (eb == root->node)
177                         break;
178                 btrfs_tree_read_unlock(eb);
179                 free_extent_buffer(eb);
180         }
181         return eb;
182 }
183
184 /* cowonly root (everything not a reference counted cow subvolume), just get
185  * put onto a simple dirty list.  transaction.c walks this to make sure they
186  * get properly updated on disk.
187  */
188 static void add_root_to_dirty_list(struct btrfs_root *root)
189 {
190         struct btrfs_fs_info *fs_info = root->fs_info;
191
192         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
193             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
194                 return;
195
196         spin_lock(&fs_info->trans_lock);
197         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
198                 /* Want the extent tree to be the last on the list */
199                 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
200                         list_move_tail(&root->dirty_list,
201                                        &fs_info->dirty_cowonly_roots);
202                 else
203                         list_move(&root->dirty_list,
204                                   &fs_info->dirty_cowonly_roots);
205         }
206         spin_unlock(&fs_info->trans_lock);
207 }
208
209 /*
210  * used by snapshot creation to make a copy of a root for a tree with
211  * a given objectid.  The buffer with the new root node is returned in
212  * cow_ret, and this func returns zero on success or a negative error code.
213  */
214 int btrfs_copy_root(struct btrfs_trans_handle *trans,
215                       struct btrfs_root *root,
216                       struct extent_buffer *buf,
217                       struct extent_buffer **cow_ret, u64 new_root_objectid)
218 {
219         struct btrfs_fs_info *fs_info = root->fs_info;
220         struct extent_buffer *cow;
221         int ret = 0;
222         int level;
223         struct btrfs_disk_key disk_key;
224
225         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
226                 trans->transid != fs_info->running_transaction->transid);
227         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
228                 trans->transid != root->last_trans);
229
230         level = btrfs_header_level(buf);
231         if (level == 0)
232                 btrfs_item_key(buf, &disk_key, 0);
233         else
234                 btrfs_node_key(buf, &disk_key, 0);
235
236         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
237                         &disk_key, level, buf->start, 0);
238         if (IS_ERR(cow))
239                 return PTR_ERR(cow);
240
241         copy_extent_buffer_full(cow, buf);
242         btrfs_set_header_bytenr(cow, cow->start);
243         btrfs_set_header_generation(cow, trans->transid);
244         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
245         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
246                                      BTRFS_HEADER_FLAG_RELOC);
247         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
248                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
249         else
250                 btrfs_set_header_owner(cow, new_root_objectid);
251
252         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
253
254         WARN_ON(btrfs_header_generation(buf) > trans->transid);
255         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
256                 ret = btrfs_inc_ref(trans, root, cow, 1);
257         else
258                 ret = btrfs_inc_ref(trans, root, cow, 0);
259
260         if (ret)
261                 return ret;
262
263         btrfs_mark_buffer_dirty(cow);
264         *cow_ret = cow;
265         return 0;
266 }
267
268 enum mod_log_op {
269         MOD_LOG_KEY_REPLACE,
270         MOD_LOG_KEY_ADD,
271         MOD_LOG_KEY_REMOVE,
272         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
273         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
274         MOD_LOG_MOVE_KEYS,
275         MOD_LOG_ROOT_REPLACE,
276 };
277
278 struct tree_mod_root {
279         u64 logical;
280         u8 level;
281 };
282
283 struct tree_mod_elem {
284         struct rb_node node;
285         u64 logical;
286         u64 seq;
287         enum mod_log_op op;
288
289         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
290         int slot;
291
292         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
293         u64 generation;
294
295         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
296         struct btrfs_disk_key key;
297         u64 blockptr;
298
299         /* this is used for op == MOD_LOG_MOVE_KEYS */
300         struct {
301                 int dst_slot;
302                 int nr_items;
303         } move;
304
305         /* this is used for op == MOD_LOG_ROOT_REPLACE */
306         struct tree_mod_root old_root;
307 };
308
309 /*
310  * Pull a new tree mod seq number for our operation.
311  */
312 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
313 {
314         return atomic64_inc_return(&fs_info->tree_mod_seq);
315 }
316
317 /*
318  * This adds a new blocker to the tree mod log's blocker list if the @elem
319  * passed does not already have a sequence number set. So when a caller expects
320  * to record tree modifications, it should ensure to set elem->seq to zero
321  * before calling btrfs_get_tree_mod_seq.
322  * Returns a fresh, unused tree log modification sequence number, even if no new
323  * blocker was added.
324  */
325 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
326                            struct seq_list *elem)
327 {
328         write_lock(&fs_info->tree_mod_log_lock);
329         if (!elem->seq) {
330                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
331                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
332         }
333         write_unlock(&fs_info->tree_mod_log_lock);
334
335         return elem->seq;
336 }
337
338 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
339                             struct seq_list *elem)
340 {
341         struct rb_root *tm_root;
342         struct rb_node *node;
343         struct rb_node *next;
344         struct seq_list *cur_elem;
345         struct tree_mod_elem *tm;
346         u64 min_seq = (u64)-1;
347         u64 seq_putting = elem->seq;
348
349         if (!seq_putting)
350                 return;
351
352         write_lock(&fs_info->tree_mod_log_lock);
353         list_del(&elem->list);
354         elem->seq = 0;
355
356         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
357                 if (cur_elem->seq < min_seq) {
358                         if (seq_putting > cur_elem->seq) {
359                                 /*
360                                  * blocker with lower sequence number exists, we
361                                  * cannot remove anything from the log
362                                  */
363                                 write_unlock(&fs_info->tree_mod_log_lock);
364                                 return;
365                         }
366                         min_seq = cur_elem->seq;
367                 }
368         }
369
370         /*
371          * anything that's lower than the lowest existing (read: blocked)
372          * sequence number can be removed from the tree.
373          */
374         tm_root = &fs_info->tree_mod_log;
375         for (node = rb_first(tm_root); node; node = next) {
376                 next = rb_next(node);
377                 tm = rb_entry(node, struct tree_mod_elem, node);
378                 if (tm->seq >= min_seq)
379                         continue;
380                 rb_erase(node, tm_root);
381                 kfree(tm);
382         }
383         write_unlock(&fs_info->tree_mod_log_lock);
384 }
385
386 /*
387  * key order of the log:
388  *       node/leaf start address -> sequence
389  *
390  * The 'start address' is the logical address of the *new* root node
391  * for root replace operations, or the logical address of the affected
392  * block for all other operations.
393  */
394 static noinline int
395 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
396 {
397         struct rb_root *tm_root;
398         struct rb_node **new;
399         struct rb_node *parent = NULL;
400         struct tree_mod_elem *cur;
401
402         lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
403
404         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
405
406         tm_root = &fs_info->tree_mod_log;
407         new = &tm_root->rb_node;
408         while (*new) {
409                 cur = rb_entry(*new, struct tree_mod_elem, node);
410                 parent = *new;
411                 if (cur->logical < tm->logical)
412                         new = &((*new)->rb_left);
413                 else if (cur->logical > tm->logical)
414                         new = &((*new)->rb_right);
415                 else if (cur->seq < tm->seq)
416                         new = &((*new)->rb_left);
417                 else if (cur->seq > tm->seq)
418                         new = &((*new)->rb_right);
419                 else
420                         return -EEXIST;
421         }
422
423         rb_link_node(&tm->node, parent, new);
424         rb_insert_color(&tm->node, tm_root);
425         return 0;
426 }
427
428 /*
429  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
430  * returns zero with the tree_mod_log_lock acquired. The caller must hold
431  * this until all tree mod log insertions are recorded in the rb tree and then
432  * write unlock fs_info::tree_mod_log_lock.
433  */
434 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
435                                     struct extent_buffer *eb) {
436         smp_mb();
437         if (list_empty(&(fs_info)->tree_mod_seq_list))
438                 return 1;
439         if (eb && btrfs_header_level(eb) == 0)
440                 return 1;
441
442         write_lock(&fs_info->tree_mod_log_lock);
443         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
444                 write_unlock(&fs_info->tree_mod_log_lock);
445                 return 1;
446         }
447
448         return 0;
449 }
450
451 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
452 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
453                                     struct extent_buffer *eb)
454 {
455         smp_mb();
456         if (list_empty(&(fs_info)->tree_mod_seq_list))
457                 return 0;
458         if (eb && btrfs_header_level(eb) == 0)
459                 return 0;
460
461         return 1;
462 }
463
464 static struct tree_mod_elem *
465 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
466                     enum mod_log_op op, gfp_t flags)
467 {
468         struct tree_mod_elem *tm;
469
470         tm = kzalloc(sizeof(*tm), flags);
471         if (!tm)
472                 return NULL;
473
474         tm->logical = eb->start;
475         if (op != MOD_LOG_KEY_ADD) {
476                 btrfs_node_key(eb, &tm->key, slot);
477                 tm->blockptr = btrfs_node_blockptr(eb, slot);
478         }
479         tm->op = op;
480         tm->slot = slot;
481         tm->generation = btrfs_node_ptr_generation(eb, slot);
482         RB_CLEAR_NODE(&tm->node);
483
484         return tm;
485 }
486
487 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
488                 enum mod_log_op op, gfp_t flags)
489 {
490         struct tree_mod_elem *tm;
491         int ret;
492
493         if (!tree_mod_need_log(eb->fs_info, eb))
494                 return 0;
495
496         tm = alloc_tree_mod_elem(eb, slot, op, flags);
497         if (!tm)
498                 return -ENOMEM;
499
500         if (tree_mod_dont_log(eb->fs_info, eb)) {
501                 kfree(tm);
502                 return 0;
503         }
504
505         ret = __tree_mod_log_insert(eb->fs_info, tm);
506         write_unlock(&eb->fs_info->tree_mod_log_lock);
507         if (ret)
508                 kfree(tm);
509
510         return ret;
511 }
512
513 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
514                 int dst_slot, int src_slot, int nr_items)
515 {
516         struct tree_mod_elem *tm = NULL;
517         struct tree_mod_elem **tm_list = NULL;
518         int ret = 0;
519         int i;
520         int locked = 0;
521
522         if (!tree_mod_need_log(eb->fs_info, eb))
523                 return 0;
524
525         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
526         if (!tm_list)
527                 return -ENOMEM;
528
529         tm = kzalloc(sizeof(*tm), GFP_NOFS);
530         if (!tm) {
531                 ret = -ENOMEM;
532                 goto free_tms;
533         }
534
535         tm->logical = eb->start;
536         tm->slot = src_slot;
537         tm->move.dst_slot = dst_slot;
538         tm->move.nr_items = nr_items;
539         tm->op = MOD_LOG_MOVE_KEYS;
540
541         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
542                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
543                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
544                 if (!tm_list[i]) {
545                         ret = -ENOMEM;
546                         goto free_tms;
547                 }
548         }
549
550         if (tree_mod_dont_log(eb->fs_info, eb))
551                 goto free_tms;
552         locked = 1;
553
554         /*
555          * When we override something during the move, we log these removals.
556          * This can only happen when we move towards the beginning of the
557          * buffer, i.e. dst_slot < src_slot.
558          */
559         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
560                 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
561                 if (ret)
562                         goto free_tms;
563         }
564
565         ret = __tree_mod_log_insert(eb->fs_info, tm);
566         if (ret)
567                 goto free_tms;
568         write_unlock(&eb->fs_info->tree_mod_log_lock);
569         kfree(tm_list);
570
571         return 0;
572 free_tms:
573         for (i = 0; i < nr_items; i++) {
574                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
575                         rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
576                 kfree(tm_list[i]);
577         }
578         if (locked)
579                 write_unlock(&eb->fs_info->tree_mod_log_lock);
580         kfree(tm_list);
581         kfree(tm);
582
583         return ret;
584 }
585
586 static inline int
587 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
588                        struct tree_mod_elem **tm_list,
589                        int nritems)
590 {
591         int i, j;
592         int ret;
593
594         for (i = nritems - 1; i >= 0; i--) {
595                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
596                 if (ret) {
597                         for (j = nritems - 1; j > i; j--)
598                                 rb_erase(&tm_list[j]->node,
599                                          &fs_info->tree_mod_log);
600                         return ret;
601                 }
602         }
603
604         return 0;
605 }
606
607 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
608                          struct extent_buffer *new_root, int log_removal)
609 {
610         struct btrfs_fs_info *fs_info = old_root->fs_info;
611         struct tree_mod_elem *tm = NULL;
612         struct tree_mod_elem **tm_list = NULL;
613         int nritems = 0;
614         int ret = 0;
615         int i;
616
617         if (!tree_mod_need_log(fs_info, NULL))
618                 return 0;
619
620         if (log_removal && btrfs_header_level(old_root) > 0) {
621                 nritems = btrfs_header_nritems(old_root);
622                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
623                                   GFP_NOFS);
624                 if (!tm_list) {
625                         ret = -ENOMEM;
626                         goto free_tms;
627                 }
628                 for (i = 0; i < nritems; i++) {
629                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
630                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
631                         if (!tm_list[i]) {
632                                 ret = -ENOMEM;
633                                 goto free_tms;
634                         }
635                 }
636         }
637
638         tm = kzalloc(sizeof(*tm), GFP_NOFS);
639         if (!tm) {
640                 ret = -ENOMEM;
641                 goto free_tms;
642         }
643
644         tm->logical = new_root->start;
645         tm->old_root.logical = old_root->start;
646         tm->old_root.level = btrfs_header_level(old_root);
647         tm->generation = btrfs_header_generation(old_root);
648         tm->op = MOD_LOG_ROOT_REPLACE;
649
650         if (tree_mod_dont_log(fs_info, NULL))
651                 goto free_tms;
652
653         if (tm_list)
654                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
655         if (!ret)
656                 ret = __tree_mod_log_insert(fs_info, tm);
657
658         write_unlock(&fs_info->tree_mod_log_lock);
659         if (ret)
660                 goto free_tms;
661         kfree(tm_list);
662
663         return ret;
664
665 free_tms:
666         if (tm_list) {
667                 for (i = 0; i < nritems; i++)
668                         kfree(tm_list[i]);
669                 kfree(tm_list);
670         }
671         kfree(tm);
672
673         return ret;
674 }
675
676 static struct tree_mod_elem *
677 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
678                       int smallest)
679 {
680         struct rb_root *tm_root;
681         struct rb_node *node;
682         struct tree_mod_elem *cur = NULL;
683         struct tree_mod_elem *found = NULL;
684
685         read_lock(&fs_info->tree_mod_log_lock);
686         tm_root = &fs_info->tree_mod_log;
687         node = tm_root->rb_node;
688         while (node) {
689                 cur = rb_entry(node, struct tree_mod_elem, node);
690                 if (cur->logical < start) {
691                         node = node->rb_left;
692                 } else if (cur->logical > start) {
693                         node = node->rb_right;
694                 } else if (cur->seq < min_seq) {
695                         node = node->rb_left;
696                 } else if (!smallest) {
697                         /* we want the node with the highest seq */
698                         if (found)
699                                 BUG_ON(found->seq > cur->seq);
700                         found = cur;
701                         node = node->rb_left;
702                 } else if (cur->seq > min_seq) {
703                         /* we want the node with the smallest seq */
704                         if (found)
705                                 BUG_ON(found->seq < cur->seq);
706                         found = cur;
707                         node = node->rb_right;
708                 } else {
709                         found = cur;
710                         break;
711                 }
712         }
713         read_unlock(&fs_info->tree_mod_log_lock);
714
715         return found;
716 }
717
718 /*
719  * this returns the element from the log with the smallest time sequence
720  * value that's in the log (the oldest log item). any element with a time
721  * sequence lower than min_seq will be ignored.
722  */
723 static struct tree_mod_elem *
724 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
725                            u64 min_seq)
726 {
727         return __tree_mod_log_search(fs_info, start, min_seq, 1);
728 }
729
730 /*
731  * this returns the element from the log with the largest time sequence
732  * value that's in the log (the most recent log item). any element with
733  * a time sequence lower than min_seq will be ignored.
734  */
735 static struct tree_mod_elem *
736 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
737 {
738         return __tree_mod_log_search(fs_info, start, min_seq, 0);
739 }
740
741 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
742                      struct extent_buffer *src, unsigned long dst_offset,
743                      unsigned long src_offset, int nr_items)
744 {
745         struct btrfs_fs_info *fs_info = dst->fs_info;
746         int ret = 0;
747         struct tree_mod_elem **tm_list = NULL;
748         struct tree_mod_elem **tm_list_add, **tm_list_rem;
749         int i;
750         int locked = 0;
751
752         if (!tree_mod_need_log(fs_info, NULL))
753                 return 0;
754
755         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
756                 return 0;
757
758         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
759                           GFP_NOFS);
760         if (!tm_list)
761                 return -ENOMEM;
762
763         tm_list_add = tm_list;
764         tm_list_rem = tm_list + nr_items;
765         for (i = 0; i < nr_items; i++) {
766                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
767                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
768                 if (!tm_list_rem[i]) {
769                         ret = -ENOMEM;
770                         goto free_tms;
771                 }
772
773                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
774                     MOD_LOG_KEY_ADD, GFP_NOFS);
775                 if (!tm_list_add[i]) {
776                         ret = -ENOMEM;
777                         goto free_tms;
778                 }
779         }
780
781         if (tree_mod_dont_log(fs_info, NULL))
782                 goto free_tms;
783         locked = 1;
784
785         for (i = 0; i < nr_items; i++) {
786                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
787                 if (ret)
788                         goto free_tms;
789                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
790                 if (ret)
791                         goto free_tms;
792         }
793
794         write_unlock(&fs_info->tree_mod_log_lock);
795         kfree(tm_list);
796
797         return 0;
798
799 free_tms:
800         for (i = 0; i < nr_items * 2; i++) {
801                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
802                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
803                 kfree(tm_list[i]);
804         }
805         if (locked)
806                 write_unlock(&fs_info->tree_mod_log_lock);
807         kfree(tm_list);
808
809         return ret;
810 }
811
812 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
813 {
814         struct tree_mod_elem **tm_list = NULL;
815         int nritems = 0;
816         int i;
817         int ret = 0;
818
819         if (btrfs_header_level(eb) == 0)
820                 return 0;
821
822         if (!tree_mod_need_log(eb->fs_info, NULL))
823                 return 0;
824
825         nritems = btrfs_header_nritems(eb);
826         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
827         if (!tm_list)
828                 return -ENOMEM;
829
830         for (i = 0; i < nritems; i++) {
831                 tm_list[i] = alloc_tree_mod_elem(eb, i,
832                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
833                 if (!tm_list[i]) {
834                         ret = -ENOMEM;
835                         goto free_tms;
836                 }
837         }
838
839         if (tree_mod_dont_log(eb->fs_info, eb))
840                 goto free_tms;
841
842         ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
843         write_unlock(&eb->fs_info->tree_mod_log_lock);
844         if (ret)
845                 goto free_tms;
846         kfree(tm_list);
847
848         return 0;
849
850 free_tms:
851         for (i = 0; i < nritems; i++)
852                 kfree(tm_list[i]);
853         kfree(tm_list);
854
855         return ret;
856 }
857
858 /*
859  * check if the tree block can be shared by multiple trees
860  */
861 int btrfs_block_can_be_shared(struct btrfs_root *root,
862                               struct extent_buffer *buf)
863 {
864         /*
865          * Tree blocks not in reference counted trees and tree roots
866          * are never shared. If a block was allocated after the last
867          * snapshot and the block was not allocated by tree relocation,
868          * we know the block is not shared.
869          */
870         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
871             buf != root->node && buf != root->commit_root &&
872             (btrfs_header_generation(buf) <=
873              btrfs_root_last_snapshot(&root->root_item) ||
874              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
875                 return 1;
876
877         return 0;
878 }
879
880 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
881                                        struct btrfs_root *root,
882                                        struct extent_buffer *buf,
883                                        struct extent_buffer *cow,
884                                        int *last_ref)
885 {
886         struct btrfs_fs_info *fs_info = root->fs_info;
887         u64 refs;
888         u64 owner;
889         u64 flags;
890         u64 new_flags = 0;
891         int ret;
892
893         /*
894          * Backrefs update rules:
895          *
896          * Always use full backrefs for extent pointers in tree block
897          * allocated by tree relocation.
898          *
899          * If a shared tree block is no longer referenced by its owner
900          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
901          * use full backrefs for extent pointers in tree block.
902          *
903          * If a tree block is been relocating
904          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
905          * use full backrefs for extent pointers in tree block.
906          * The reason for this is some operations (such as drop tree)
907          * are only allowed for blocks use full backrefs.
908          */
909
910         if (btrfs_block_can_be_shared(root, buf)) {
911                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
912                                                btrfs_header_level(buf), 1,
913                                                &refs, &flags);
914                 if (ret)
915                         return ret;
916                 if (refs == 0) {
917                         ret = -EROFS;
918                         btrfs_handle_fs_error(fs_info, ret, NULL);
919                         return ret;
920                 }
921         } else {
922                 refs = 1;
923                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
924                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
925                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
926                 else
927                         flags = 0;
928         }
929
930         owner = btrfs_header_owner(buf);
931         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
932                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
933
934         if (refs > 1) {
935                 if ((owner == root->root_key.objectid ||
936                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
937                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
938                         ret = btrfs_inc_ref(trans, root, buf, 1);
939                         if (ret)
940                                 return ret;
941
942                         if (root->root_key.objectid ==
943                             BTRFS_TREE_RELOC_OBJECTID) {
944                                 ret = btrfs_dec_ref(trans, root, buf, 0);
945                                 if (ret)
946                                         return ret;
947                                 ret = btrfs_inc_ref(trans, root, cow, 1);
948                                 if (ret)
949                                         return ret;
950                         }
951                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
952                 } else {
953
954                         if (root->root_key.objectid ==
955                             BTRFS_TREE_RELOC_OBJECTID)
956                                 ret = btrfs_inc_ref(trans, root, cow, 1);
957                         else
958                                 ret = btrfs_inc_ref(trans, root, cow, 0);
959                         if (ret)
960                                 return ret;
961                 }
962                 if (new_flags != 0) {
963                         int level = btrfs_header_level(buf);
964
965                         ret = btrfs_set_disk_extent_flags(trans,
966                                                           buf->start,
967                                                           buf->len,
968                                                           new_flags, level, 0);
969                         if (ret)
970                                 return ret;
971                 }
972         } else {
973                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
974                         if (root->root_key.objectid ==
975                             BTRFS_TREE_RELOC_OBJECTID)
976                                 ret = btrfs_inc_ref(trans, root, cow, 1);
977                         else
978                                 ret = btrfs_inc_ref(trans, root, cow, 0);
979                         if (ret)
980                                 return ret;
981                         ret = btrfs_dec_ref(trans, root, buf, 1);
982                         if (ret)
983                                 return ret;
984                 }
985                 btrfs_clean_tree_block(buf);
986                 *last_ref = 1;
987         }
988         return 0;
989 }
990
991 static struct extent_buffer *alloc_tree_block_no_bg_flush(
992                                           struct btrfs_trans_handle *trans,
993                                           struct btrfs_root *root,
994                                           u64 parent_start,
995                                           const struct btrfs_disk_key *disk_key,
996                                           int level,
997                                           u64 hint,
998                                           u64 empty_size)
999 {
1000         struct btrfs_fs_info *fs_info = root->fs_info;
1001         struct extent_buffer *ret;
1002
1003         /*
1004          * If we are COWing a node/leaf from the extent, chunk, device or free
1005          * space trees, make sure that we do not finish block group creation of
1006          * pending block groups. We do this to avoid a deadlock.
1007          * COWing can result in allocation of a new chunk, and flushing pending
1008          * block groups (btrfs_create_pending_block_groups()) can be triggered
1009          * when finishing allocation of a new chunk. Creation of a pending block
1010          * group modifies the extent, chunk, device and free space trees,
1011          * therefore we could deadlock with ourselves since we are holding a
1012          * lock on an extent buffer that btrfs_create_pending_block_groups() may
1013          * try to COW later.
1014          * For similar reasons, we also need to delay flushing pending block
1015          * groups when splitting a leaf or node, from one of those trees, since
1016          * we are holding a write lock on it and its parent or when inserting a
1017          * new root node for one of those trees.
1018          */
1019         if (root == fs_info->extent_root ||
1020             root == fs_info->chunk_root ||
1021             root == fs_info->dev_root ||
1022             root == fs_info->free_space_root)
1023                 trans->can_flush_pending_bgs = false;
1024
1025         ret = btrfs_alloc_tree_block(trans, root, parent_start,
1026                                      root->root_key.objectid, disk_key, level,
1027                                      hint, empty_size);
1028         trans->can_flush_pending_bgs = true;
1029
1030         return ret;
1031 }
1032
1033 /*
1034  * does the dirty work in cow of a single block.  The parent block (if
1035  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1036  * dirty and returned locked.  If you modify the block it needs to be marked
1037  * dirty again.
1038  *
1039  * search_start -- an allocation hint for the new block
1040  *
1041  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1042  * bytes the allocator should try to find free next to the block it returns.
1043  * This is just a hint and may be ignored by the allocator.
1044  */
1045 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1046                              struct btrfs_root *root,
1047                              struct extent_buffer *buf,
1048                              struct extent_buffer *parent, int parent_slot,
1049                              struct extent_buffer **cow_ret,
1050                              u64 search_start, u64 empty_size)
1051 {
1052         struct btrfs_fs_info *fs_info = root->fs_info;
1053         struct btrfs_disk_key disk_key;
1054         struct extent_buffer *cow;
1055         int level, ret;
1056         int last_ref = 0;
1057         int unlock_orig = 0;
1058         u64 parent_start = 0;
1059
1060         if (*cow_ret == buf)
1061                 unlock_orig = 1;
1062
1063         btrfs_assert_tree_locked(buf);
1064
1065         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1066                 trans->transid != fs_info->running_transaction->transid);
1067         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1068                 trans->transid != root->last_trans);
1069
1070         level = btrfs_header_level(buf);
1071
1072         if (level == 0)
1073                 btrfs_item_key(buf, &disk_key, 0);
1074         else
1075                 btrfs_node_key(buf, &disk_key, 0);
1076
1077         if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1078                 parent_start = parent->start;
1079
1080         cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1081                                            level, search_start, empty_size);
1082         if (IS_ERR(cow))
1083                 return PTR_ERR(cow);
1084
1085         /* cow is set to blocking by btrfs_init_new_buffer */
1086
1087         copy_extent_buffer_full(cow, buf);
1088         btrfs_set_header_bytenr(cow, cow->start);
1089         btrfs_set_header_generation(cow, trans->transid);
1090         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1091         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1092                                      BTRFS_HEADER_FLAG_RELOC);
1093         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1094                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1095         else
1096                 btrfs_set_header_owner(cow, root->root_key.objectid);
1097
1098         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1099
1100         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1101         if (ret) {
1102                 btrfs_abort_transaction(trans, ret);
1103                 return ret;
1104         }
1105
1106         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1107                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1108                 if (ret) {
1109                         btrfs_abort_transaction(trans, ret);
1110                         return ret;
1111                 }
1112         }
1113
1114         if (buf == root->node) {
1115                 WARN_ON(parent && parent != buf);
1116                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1117                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1118                         parent_start = buf->start;
1119
1120                 atomic_inc(&cow->refs);
1121                 ret = tree_mod_log_insert_root(root->node, cow, 1);
1122                 BUG_ON(ret < 0);
1123                 rcu_assign_pointer(root->node, cow);
1124
1125                 btrfs_free_tree_block(trans, root, buf, parent_start,
1126                                       last_ref);
1127                 free_extent_buffer(buf);
1128                 add_root_to_dirty_list(root);
1129         } else {
1130                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1131                 tree_mod_log_insert_key(parent, parent_slot,
1132                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1133                 btrfs_set_node_blockptr(parent, parent_slot,
1134                                         cow->start);
1135                 btrfs_set_node_ptr_generation(parent, parent_slot,
1136                                               trans->transid);
1137                 btrfs_mark_buffer_dirty(parent);
1138                 if (last_ref) {
1139                         ret = tree_mod_log_free_eb(buf);
1140                         if (ret) {
1141                                 btrfs_abort_transaction(trans, ret);
1142                                 return ret;
1143                         }
1144                 }
1145                 btrfs_free_tree_block(trans, root, buf, parent_start,
1146                                       last_ref);
1147         }
1148         if (unlock_orig)
1149                 btrfs_tree_unlock(buf);
1150         free_extent_buffer_stale(buf);
1151         btrfs_mark_buffer_dirty(cow);
1152         *cow_ret = cow;
1153         return 0;
1154 }
1155
1156 /*
1157  * returns the logical address of the oldest predecessor of the given root.
1158  * entries older than time_seq are ignored.
1159  */
1160 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1161                 struct extent_buffer *eb_root, u64 time_seq)
1162 {
1163         struct tree_mod_elem *tm;
1164         struct tree_mod_elem *found = NULL;
1165         u64 root_logical = eb_root->start;
1166         int looped = 0;
1167
1168         if (!time_seq)
1169                 return NULL;
1170
1171         /*
1172          * the very last operation that's logged for a root is the
1173          * replacement operation (if it is replaced at all). this has
1174          * the logical address of the *new* root, making it the very
1175          * first operation that's logged for this root.
1176          */
1177         while (1) {
1178                 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1179                                                 time_seq);
1180                 if (!looped && !tm)
1181                         return NULL;
1182                 /*
1183                  * if there are no tree operation for the oldest root, we simply
1184                  * return it. this should only happen if that (old) root is at
1185                  * level 0.
1186                  */
1187                 if (!tm)
1188                         break;
1189
1190                 /*
1191                  * if there's an operation that's not a root replacement, we
1192                  * found the oldest version of our root. normally, we'll find a
1193                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1194                  */
1195                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1196                         break;
1197
1198                 found = tm;
1199                 root_logical = tm->old_root.logical;
1200                 looped = 1;
1201         }
1202
1203         /* if there's no old root to return, return what we found instead */
1204         if (!found)
1205                 found = tm;
1206
1207         return found;
1208 }
1209
1210 /*
1211  * tm is a pointer to the first operation to rewind within eb. then, all
1212  * previous operations will be rewound (until we reach something older than
1213  * time_seq).
1214  */
1215 static void
1216 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1217                       u64 time_seq, struct tree_mod_elem *first_tm)
1218 {
1219         u32 n;
1220         struct rb_node *next;
1221         struct tree_mod_elem *tm = first_tm;
1222         unsigned long o_dst;
1223         unsigned long o_src;
1224         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1225
1226         n = btrfs_header_nritems(eb);
1227         read_lock(&fs_info->tree_mod_log_lock);
1228         while (tm && tm->seq >= time_seq) {
1229                 /*
1230                  * all the operations are recorded with the operator used for
1231                  * the modification. as we're going backwards, we do the
1232                  * opposite of each operation here.
1233                  */
1234                 switch (tm->op) {
1235                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1236                         BUG_ON(tm->slot < n);
1237                         /* Fallthrough */
1238                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1239                 case MOD_LOG_KEY_REMOVE:
1240                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1241                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1242                         btrfs_set_node_ptr_generation(eb, tm->slot,
1243                                                       tm->generation);
1244                         n++;
1245                         break;
1246                 case MOD_LOG_KEY_REPLACE:
1247                         BUG_ON(tm->slot >= n);
1248                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1249                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1250                         btrfs_set_node_ptr_generation(eb, tm->slot,
1251                                                       tm->generation);
1252                         break;
1253                 case MOD_LOG_KEY_ADD:
1254                         /* if a move operation is needed it's in the log */
1255                         n--;
1256                         break;
1257                 case MOD_LOG_MOVE_KEYS:
1258                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1259                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1260                         memmove_extent_buffer(eb, o_dst, o_src,
1261                                               tm->move.nr_items * p_size);
1262                         break;
1263                 case MOD_LOG_ROOT_REPLACE:
1264                         /*
1265                          * this operation is special. for roots, this must be
1266                          * handled explicitly before rewinding.
1267                          * for non-roots, this operation may exist if the node
1268                          * was a root: root A -> child B; then A gets empty and
1269                          * B is promoted to the new root. in the mod log, we'll
1270                          * have a root-replace operation for B, a tree block
1271                          * that is no root. we simply ignore that operation.
1272                          */
1273                         break;
1274                 }
1275                 next = rb_next(&tm->node);
1276                 if (!next)
1277                         break;
1278                 tm = rb_entry(next, struct tree_mod_elem, node);
1279                 if (tm->logical != first_tm->logical)
1280                         break;
1281         }
1282         read_unlock(&fs_info->tree_mod_log_lock);
1283         btrfs_set_header_nritems(eb, n);
1284 }
1285
1286 /*
1287  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1288  * is returned. If rewind operations happen, a fresh buffer is returned. The
1289  * returned buffer is always read-locked. If the returned buffer is not the
1290  * input buffer, the lock on the input buffer is released and the input buffer
1291  * is freed (its refcount is decremented).
1292  */
1293 static struct extent_buffer *
1294 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1295                     struct extent_buffer *eb, u64 time_seq)
1296 {
1297         struct extent_buffer *eb_rewin;
1298         struct tree_mod_elem *tm;
1299
1300         if (!time_seq)
1301                 return eb;
1302
1303         if (btrfs_header_level(eb) == 0)
1304                 return eb;
1305
1306         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1307         if (!tm)
1308                 return eb;
1309
1310         btrfs_set_path_blocking(path);
1311         btrfs_set_lock_blocking_read(eb);
1312
1313         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1314                 BUG_ON(tm->slot != 0);
1315                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1316                 if (!eb_rewin) {
1317                         btrfs_tree_read_unlock_blocking(eb);
1318                         free_extent_buffer(eb);
1319                         return NULL;
1320                 }
1321                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1322                 btrfs_set_header_backref_rev(eb_rewin,
1323                                              btrfs_header_backref_rev(eb));
1324                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1325                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1326         } else {
1327                 eb_rewin = btrfs_clone_extent_buffer(eb);
1328                 if (!eb_rewin) {
1329                         btrfs_tree_read_unlock_blocking(eb);
1330                         free_extent_buffer(eb);
1331                         return NULL;
1332                 }
1333         }
1334
1335         btrfs_tree_read_unlock_blocking(eb);
1336         free_extent_buffer(eb);
1337
1338         btrfs_tree_read_lock(eb_rewin);
1339         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1340         WARN_ON(btrfs_header_nritems(eb_rewin) >
1341                 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1342
1343         return eb_rewin;
1344 }
1345
1346 /*
1347  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1348  * value. If there are no changes, the current root->root_node is returned. If
1349  * anything changed in between, there's a fresh buffer allocated on which the
1350  * rewind operations are done. In any case, the returned buffer is read locked.
1351  * Returns NULL on error (with no locks held).
1352  */
1353 static inline struct extent_buffer *
1354 get_old_root(struct btrfs_root *root, u64 time_seq)
1355 {
1356         struct btrfs_fs_info *fs_info = root->fs_info;
1357         struct tree_mod_elem *tm;
1358         struct extent_buffer *eb = NULL;
1359         struct extent_buffer *eb_root;
1360         u64 eb_root_owner = 0;
1361         struct extent_buffer *old;
1362         struct tree_mod_root *old_root = NULL;
1363         u64 old_generation = 0;
1364         u64 logical;
1365         int level;
1366
1367         eb_root = btrfs_read_lock_root_node(root);
1368         tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1369         if (!tm)
1370                 return eb_root;
1371
1372         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1373                 old_root = &tm->old_root;
1374                 old_generation = tm->generation;
1375                 logical = old_root->logical;
1376                 level = old_root->level;
1377         } else {
1378                 logical = eb_root->start;
1379                 level = btrfs_header_level(eb_root);
1380         }
1381
1382         tm = tree_mod_log_search(fs_info, logical, time_seq);
1383         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1384                 btrfs_tree_read_unlock(eb_root);
1385                 free_extent_buffer(eb_root);
1386                 old = read_tree_block(fs_info, logical, 0, level, NULL);
1387                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1388                         if (!IS_ERR(old))
1389                                 free_extent_buffer(old);
1390                         btrfs_warn(fs_info,
1391                                    "failed to read tree block %llu from get_old_root",
1392                                    logical);
1393                 } else {
1394                         eb = btrfs_clone_extent_buffer(old);
1395                         free_extent_buffer(old);
1396                 }
1397         } else if (old_root) {
1398                 eb_root_owner = btrfs_header_owner(eb_root);
1399                 btrfs_tree_read_unlock(eb_root);
1400                 free_extent_buffer(eb_root);
1401                 eb = alloc_dummy_extent_buffer(fs_info, logical);
1402         } else {
1403                 btrfs_set_lock_blocking_read(eb_root);
1404                 eb = btrfs_clone_extent_buffer(eb_root);
1405                 btrfs_tree_read_unlock_blocking(eb_root);
1406                 free_extent_buffer(eb_root);
1407         }
1408
1409         if (!eb)
1410                 return NULL;
1411         btrfs_tree_read_lock(eb);
1412         if (old_root) {
1413                 btrfs_set_header_bytenr(eb, eb->start);
1414                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1415                 btrfs_set_header_owner(eb, eb_root_owner);
1416                 btrfs_set_header_level(eb, old_root->level);
1417                 btrfs_set_header_generation(eb, old_generation);
1418         }
1419         if (tm)
1420                 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1421         else
1422                 WARN_ON(btrfs_header_level(eb) != 0);
1423         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1424
1425         return eb;
1426 }
1427
1428 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1429 {
1430         struct tree_mod_elem *tm;
1431         int level;
1432         struct extent_buffer *eb_root = btrfs_root_node(root);
1433
1434         tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1435         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1436                 level = tm->old_root.level;
1437         } else {
1438                 level = btrfs_header_level(eb_root);
1439         }
1440         free_extent_buffer(eb_root);
1441
1442         return level;
1443 }
1444
1445 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1446                                    struct btrfs_root *root,
1447                                    struct extent_buffer *buf)
1448 {
1449         if (btrfs_is_testing(root->fs_info))
1450                 return 0;
1451
1452         /* Ensure we can see the FORCE_COW bit */
1453         smp_mb__before_atomic();
1454
1455         /*
1456          * We do not need to cow a block if
1457          * 1) this block is not created or changed in this transaction;
1458          * 2) this block does not belong to TREE_RELOC tree;
1459          * 3) the root is not forced COW.
1460          *
1461          * What is forced COW:
1462          *    when we create snapshot during committing the transaction,
1463          *    after we've finished copying src root, we must COW the shared
1464          *    block to ensure the metadata consistency.
1465          */
1466         if (btrfs_header_generation(buf) == trans->transid &&
1467             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1468             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1469               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1470             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1471                 return 0;
1472         return 1;
1473 }
1474
1475 /*
1476  * cows a single block, see __btrfs_cow_block for the real work.
1477  * This version of it has extra checks so that a block isn't COWed more than
1478  * once per transaction, as long as it hasn't been written yet
1479  */
1480 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1481                     struct btrfs_root *root, struct extent_buffer *buf,
1482                     struct extent_buffer *parent, int parent_slot,
1483                     struct extent_buffer **cow_ret)
1484 {
1485         struct btrfs_fs_info *fs_info = root->fs_info;
1486         u64 search_start;
1487         int ret;
1488
1489         if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1490                 btrfs_err(fs_info,
1491                         "COW'ing blocks on a fs root that's being dropped");
1492
1493         if (trans->transaction != fs_info->running_transaction)
1494                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1495                        trans->transid,
1496                        fs_info->running_transaction->transid);
1497
1498         if (trans->transid != fs_info->generation)
1499                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1500                        trans->transid, fs_info->generation);
1501
1502         if (!should_cow_block(trans, root, buf)) {
1503                 trans->dirty = true;
1504                 *cow_ret = buf;
1505                 return 0;
1506         }
1507
1508         search_start = buf->start & ~((u64)SZ_1G - 1);
1509
1510         if (parent)
1511                 btrfs_set_lock_blocking_write(parent);
1512         btrfs_set_lock_blocking_write(buf);
1513
1514         /*
1515          * Before CoWing this block for later modification, check if it's
1516          * the subtree root and do the delayed subtree trace if needed.
1517          *
1518          * Also We don't care about the error, as it's handled internally.
1519          */
1520         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1521         ret = __btrfs_cow_block(trans, root, buf, parent,
1522                                  parent_slot, cow_ret, search_start, 0);
1523
1524         trace_btrfs_cow_block(root, buf, *cow_ret);
1525
1526         return ret;
1527 }
1528
1529 /*
1530  * helper function for defrag to decide if two blocks pointed to by a
1531  * node are actually close by
1532  */
1533 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1534 {
1535         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1536                 return 1;
1537         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1538                 return 1;
1539         return 0;
1540 }
1541
1542 /*
1543  * compare two keys in a memcmp fashion
1544  */
1545 static int comp_keys(const struct btrfs_disk_key *disk,
1546                      const struct btrfs_key *k2)
1547 {
1548         struct btrfs_key k1;
1549
1550         btrfs_disk_key_to_cpu(&k1, disk);
1551
1552         return btrfs_comp_cpu_keys(&k1, k2);
1553 }
1554
1555 /*
1556  * same as comp_keys only with two btrfs_key's
1557  */
1558 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1559 {
1560         if (k1->objectid > k2->objectid)
1561                 return 1;
1562         if (k1->objectid < k2->objectid)
1563                 return -1;
1564         if (k1->type > k2->type)
1565                 return 1;
1566         if (k1->type < k2->type)
1567                 return -1;
1568         if (k1->offset > k2->offset)
1569                 return 1;
1570         if (k1->offset < k2->offset)
1571                 return -1;
1572         return 0;
1573 }
1574
1575 /*
1576  * this is used by the defrag code to go through all the
1577  * leaves pointed to by a node and reallocate them so that
1578  * disk order is close to key order
1579  */
1580 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1581                        struct btrfs_root *root, struct extent_buffer *parent,
1582                        int start_slot, u64 *last_ret,
1583                        struct btrfs_key *progress)
1584 {
1585         struct btrfs_fs_info *fs_info = root->fs_info;
1586         struct extent_buffer *cur;
1587         u64 blocknr;
1588         u64 gen;
1589         u64 search_start = *last_ret;
1590         u64 last_block = 0;
1591         u64 other;
1592         u32 parent_nritems;
1593         int end_slot;
1594         int i;
1595         int err = 0;
1596         int parent_level;
1597         int uptodate;
1598         u32 blocksize;
1599         int progress_passed = 0;
1600         struct btrfs_disk_key disk_key;
1601
1602         parent_level = btrfs_header_level(parent);
1603
1604         WARN_ON(trans->transaction != fs_info->running_transaction);
1605         WARN_ON(trans->transid != fs_info->generation);
1606
1607         parent_nritems = btrfs_header_nritems(parent);
1608         blocksize = fs_info->nodesize;
1609         end_slot = parent_nritems - 1;
1610
1611         if (parent_nritems <= 1)
1612                 return 0;
1613
1614         btrfs_set_lock_blocking_write(parent);
1615
1616         for (i = start_slot; i <= end_slot; i++) {
1617                 struct btrfs_key first_key;
1618                 int close = 1;
1619
1620                 btrfs_node_key(parent, &disk_key, i);
1621                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1622                         continue;
1623
1624                 progress_passed = 1;
1625                 blocknr = btrfs_node_blockptr(parent, i);
1626                 gen = btrfs_node_ptr_generation(parent, i);
1627                 btrfs_node_key_to_cpu(parent, &first_key, i);
1628                 if (last_block == 0)
1629                         last_block = blocknr;
1630
1631                 if (i > 0) {
1632                         other = btrfs_node_blockptr(parent, i - 1);
1633                         close = close_blocks(blocknr, other, blocksize);
1634                 }
1635                 if (!close && i < end_slot) {
1636                         other = btrfs_node_blockptr(parent, i + 1);
1637                         close = close_blocks(blocknr, other, blocksize);
1638                 }
1639                 if (close) {
1640                         last_block = blocknr;
1641                         continue;
1642                 }
1643
1644                 cur = find_extent_buffer(fs_info, blocknr);
1645                 if (cur)
1646                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1647                 else
1648                         uptodate = 0;
1649                 if (!cur || !uptodate) {
1650                         if (!cur) {
1651                                 cur = read_tree_block(fs_info, blocknr, gen,
1652                                                       parent_level - 1,
1653                                                       &first_key);
1654                                 if (IS_ERR(cur)) {
1655                                         return PTR_ERR(cur);
1656                                 } else if (!extent_buffer_uptodate(cur)) {
1657                                         free_extent_buffer(cur);
1658                                         return -EIO;
1659                                 }
1660                         } else if (!uptodate) {
1661                                 err = btrfs_read_buffer(cur, gen,
1662                                                 parent_level - 1,&first_key);
1663                                 if (err) {
1664                                         free_extent_buffer(cur);
1665                                         return err;
1666                                 }
1667                         }
1668                 }
1669                 if (search_start == 0)
1670                         search_start = last_block;
1671
1672                 btrfs_tree_lock(cur);
1673                 btrfs_set_lock_blocking_write(cur);
1674                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1675                                         &cur, search_start,
1676                                         min(16 * blocksize,
1677                                             (end_slot - i) * blocksize));
1678                 if (err) {
1679                         btrfs_tree_unlock(cur);
1680                         free_extent_buffer(cur);
1681                         break;
1682                 }
1683                 search_start = cur->start;
1684                 last_block = cur->start;
1685                 *last_ret = search_start;
1686                 btrfs_tree_unlock(cur);
1687                 free_extent_buffer(cur);
1688         }
1689         return err;
1690 }
1691
1692 /*
1693  * search for key in the extent_buffer.  The items start at offset p,
1694  * and they are item_size apart.  There are 'max' items in p.
1695  *
1696  * the slot in the array is returned via slot, and it points to
1697  * the place where you would insert key if it is not found in
1698  * the array.
1699  *
1700  * slot may point to max if the key is bigger than all of the keys
1701  */
1702 static noinline int generic_bin_search(struct extent_buffer *eb,
1703                                        unsigned long p, int item_size,
1704                                        const struct btrfs_key *key,
1705                                        int max, int *slot)
1706 {
1707         int low = 0;
1708         int high = max;
1709         int mid;
1710         int ret;
1711         struct btrfs_disk_key *tmp = NULL;
1712         struct btrfs_disk_key unaligned;
1713         unsigned long offset;
1714         char *kaddr = NULL;
1715         unsigned long map_start = 0;
1716         unsigned long map_len = 0;
1717         int err;
1718
1719         if (low > high) {
1720                 btrfs_err(eb->fs_info,
1721                  "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1722                           __func__, low, high, eb->start,
1723                           btrfs_header_owner(eb), btrfs_header_level(eb));
1724                 return -EINVAL;
1725         }
1726
1727         while (low < high) {
1728                 mid = (low + high) / 2;
1729                 offset = p + mid * item_size;
1730
1731                 if (!kaddr || offset < map_start ||
1732                     (offset + sizeof(struct btrfs_disk_key)) >
1733                     map_start + map_len) {
1734
1735                         err = map_private_extent_buffer(eb, offset,
1736                                                 sizeof(struct btrfs_disk_key),
1737                                                 &kaddr, &map_start, &map_len);
1738
1739                         if (!err) {
1740                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1741                                                         map_start);
1742                         } else if (err == 1) {
1743                                 read_extent_buffer(eb, &unaligned,
1744                                                    offset, sizeof(unaligned));
1745                                 tmp = &unaligned;
1746                         } else {
1747                                 return err;
1748                         }
1749
1750                 } else {
1751                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1752                                                         map_start);
1753                 }
1754                 ret = comp_keys(tmp, key);
1755
1756                 if (ret < 0)
1757                         low = mid + 1;
1758                 else if (ret > 0)
1759                         high = mid;
1760                 else {
1761                         *slot = mid;
1762                         return 0;
1763                 }
1764         }
1765         *slot = low;
1766         return 1;
1767 }
1768
1769 /*
1770  * simple bin_search frontend that does the right thing for
1771  * leaves vs nodes
1772  */
1773 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1774                      int level, int *slot)
1775 {
1776         if (level == 0)
1777                 return generic_bin_search(eb,
1778                                           offsetof(struct btrfs_leaf, items),
1779                                           sizeof(struct btrfs_item),
1780                                           key, btrfs_header_nritems(eb),
1781                                           slot);
1782         else
1783                 return generic_bin_search(eb,
1784                                           offsetof(struct btrfs_node, ptrs),
1785                                           sizeof(struct btrfs_key_ptr),
1786                                           key, btrfs_header_nritems(eb),
1787                                           slot);
1788 }
1789
1790 static void root_add_used(struct btrfs_root *root, u32 size)
1791 {
1792         spin_lock(&root->accounting_lock);
1793         btrfs_set_root_used(&root->root_item,
1794                             btrfs_root_used(&root->root_item) + size);
1795         spin_unlock(&root->accounting_lock);
1796 }
1797
1798 static void root_sub_used(struct btrfs_root *root, u32 size)
1799 {
1800         spin_lock(&root->accounting_lock);
1801         btrfs_set_root_used(&root->root_item,
1802                             btrfs_root_used(&root->root_item) - size);
1803         spin_unlock(&root->accounting_lock);
1804 }
1805
1806 /* given a node and slot number, this reads the blocks it points to.  The
1807  * extent buffer is returned with a reference taken (but unlocked).
1808  */
1809 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1810                                            int slot)
1811 {
1812         int level = btrfs_header_level(parent);
1813         struct extent_buffer *eb;
1814         struct btrfs_key first_key;
1815
1816         if (slot < 0 || slot >= btrfs_header_nritems(parent))
1817                 return ERR_PTR(-ENOENT);
1818
1819         BUG_ON(level == 0);
1820
1821         btrfs_node_key_to_cpu(parent, &first_key, slot);
1822         eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1823                              btrfs_node_ptr_generation(parent, slot),
1824                              level - 1, &first_key);
1825         if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1826                 free_extent_buffer(eb);
1827                 eb = ERR_PTR(-EIO);
1828         }
1829
1830         return eb;
1831 }
1832
1833 /*
1834  * node level balancing, used to make sure nodes are in proper order for
1835  * item deletion.  We balance from the top down, so we have to make sure
1836  * that a deletion won't leave an node completely empty later on.
1837  */
1838 static noinline int balance_level(struct btrfs_trans_handle *trans,
1839                          struct btrfs_root *root,
1840                          struct btrfs_path *path, int level)
1841 {
1842         struct btrfs_fs_info *fs_info = root->fs_info;
1843         struct extent_buffer *right = NULL;
1844         struct extent_buffer *mid;
1845         struct extent_buffer *left = NULL;
1846         struct extent_buffer *parent = NULL;
1847         int ret = 0;
1848         int wret;
1849         int pslot;
1850         int orig_slot = path->slots[level];
1851         u64 orig_ptr;
1852
1853         ASSERT(level > 0);
1854
1855         mid = path->nodes[level];
1856
1857         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1858                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1859         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1860
1861         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1862
1863         if (level < BTRFS_MAX_LEVEL - 1) {
1864                 parent = path->nodes[level + 1];
1865                 pslot = path->slots[level + 1];
1866         }
1867
1868         /*
1869          * deal with the case where there is only one pointer in the root
1870          * by promoting the node below to a root
1871          */
1872         if (!parent) {
1873                 struct extent_buffer *child;
1874
1875                 if (btrfs_header_nritems(mid) != 1)
1876                         return 0;
1877
1878                 /* promote the child to a root */
1879                 child = btrfs_read_node_slot(mid, 0);
1880                 if (IS_ERR(child)) {
1881                         ret = PTR_ERR(child);
1882                         btrfs_handle_fs_error(fs_info, ret, NULL);
1883                         goto enospc;
1884                 }
1885
1886                 btrfs_tree_lock(child);
1887                 btrfs_set_lock_blocking_write(child);
1888                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1889                 if (ret) {
1890                         btrfs_tree_unlock(child);
1891                         free_extent_buffer(child);
1892                         goto enospc;
1893                 }
1894
1895                 ret = tree_mod_log_insert_root(root->node, child, 1);
1896                 BUG_ON(ret < 0);
1897                 rcu_assign_pointer(root->node, child);
1898
1899                 add_root_to_dirty_list(root);
1900                 btrfs_tree_unlock(child);
1901
1902                 path->locks[level] = 0;
1903                 path->nodes[level] = NULL;
1904                 btrfs_clean_tree_block(mid);
1905                 btrfs_tree_unlock(mid);
1906                 /* once for the path */
1907                 free_extent_buffer(mid);
1908
1909                 root_sub_used(root, mid->len);
1910                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1911                 /* once for the root ptr */
1912                 free_extent_buffer_stale(mid);
1913                 return 0;
1914         }
1915         if (btrfs_header_nritems(mid) >
1916             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1917                 return 0;
1918
1919         left = btrfs_read_node_slot(parent, pslot - 1);
1920         if (IS_ERR(left))
1921                 left = NULL;
1922
1923         if (left) {
1924                 btrfs_tree_lock(left);
1925                 btrfs_set_lock_blocking_write(left);
1926                 wret = btrfs_cow_block(trans, root, left,
1927                                        parent, pslot - 1, &left);
1928                 if (wret) {
1929                         ret = wret;
1930                         goto enospc;
1931                 }
1932         }
1933
1934         right = btrfs_read_node_slot(parent, pslot + 1);
1935         if (IS_ERR(right))
1936                 right = NULL;
1937
1938         if (right) {
1939                 btrfs_tree_lock(right);
1940                 btrfs_set_lock_blocking_write(right);
1941                 wret = btrfs_cow_block(trans, root, right,
1942                                        parent, pslot + 1, &right);
1943                 if (wret) {
1944                         ret = wret;
1945                         goto enospc;
1946                 }
1947         }
1948
1949         /* first, try to make some room in the middle buffer */
1950         if (left) {
1951                 orig_slot += btrfs_header_nritems(left);
1952                 wret = push_node_left(trans, left, mid, 1);
1953                 if (wret < 0)
1954                         ret = wret;
1955         }
1956
1957         /*
1958          * then try to empty the right most buffer into the middle
1959          */
1960         if (right) {
1961                 wret = push_node_left(trans, mid, right, 1);
1962                 if (wret < 0 && wret != -ENOSPC)
1963                         ret = wret;
1964                 if (btrfs_header_nritems(right) == 0) {
1965                         btrfs_clean_tree_block(right);
1966                         btrfs_tree_unlock(right);
1967                         del_ptr(root, path, level + 1, pslot + 1);
1968                         root_sub_used(root, right->len);
1969                         btrfs_free_tree_block(trans, root, right, 0, 1);
1970                         free_extent_buffer_stale(right);
1971                         right = NULL;
1972                 } else {
1973                         struct btrfs_disk_key right_key;
1974                         btrfs_node_key(right, &right_key, 0);
1975                         ret = tree_mod_log_insert_key(parent, pslot + 1,
1976                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1977                         BUG_ON(ret < 0);
1978                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1979                         btrfs_mark_buffer_dirty(parent);
1980                 }
1981         }
1982         if (btrfs_header_nritems(mid) == 1) {
1983                 /*
1984                  * we're not allowed to leave a node with one item in the
1985                  * tree during a delete.  A deletion from lower in the tree
1986                  * could try to delete the only pointer in this node.
1987                  * So, pull some keys from the left.
1988                  * There has to be a left pointer at this point because
1989                  * otherwise we would have pulled some pointers from the
1990                  * right
1991                  */
1992                 if (!left) {
1993                         ret = -EROFS;
1994                         btrfs_handle_fs_error(fs_info, ret, NULL);
1995                         goto enospc;
1996                 }
1997                 wret = balance_node_right(trans, mid, left);
1998                 if (wret < 0) {
1999                         ret = wret;
2000                         goto enospc;
2001                 }
2002                 if (wret == 1) {
2003                         wret = push_node_left(trans, left, mid, 1);
2004                         if (wret < 0)
2005                                 ret = wret;
2006                 }
2007                 BUG_ON(wret == 1);
2008         }
2009         if (btrfs_header_nritems(mid) == 0) {
2010                 btrfs_clean_tree_block(mid);
2011                 btrfs_tree_unlock(mid);
2012                 del_ptr(root, path, level + 1, pslot);
2013                 root_sub_used(root, mid->len);
2014                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2015                 free_extent_buffer_stale(mid);
2016                 mid = NULL;
2017         } else {
2018                 /* update the parent key to reflect our changes */
2019                 struct btrfs_disk_key mid_key;
2020                 btrfs_node_key(mid, &mid_key, 0);
2021                 ret = tree_mod_log_insert_key(parent, pslot,
2022                                 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2023                 BUG_ON(ret < 0);
2024                 btrfs_set_node_key(parent, &mid_key, pslot);
2025                 btrfs_mark_buffer_dirty(parent);
2026         }
2027
2028         /* update the path */
2029         if (left) {
2030                 if (btrfs_header_nritems(left) > orig_slot) {
2031                         atomic_inc(&left->refs);
2032                         /* left was locked after cow */
2033                         path->nodes[level] = left;
2034                         path->slots[level + 1] -= 1;
2035                         path->slots[level] = orig_slot;
2036                         if (mid) {
2037                                 btrfs_tree_unlock(mid);
2038                                 free_extent_buffer(mid);
2039                         }
2040                 } else {
2041                         orig_slot -= btrfs_header_nritems(left);
2042                         path->slots[level] = orig_slot;
2043                 }
2044         }
2045         /* double check we haven't messed things up */
2046         if (orig_ptr !=
2047             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2048                 BUG();
2049 enospc:
2050         if (right) {
2051                 btrfs_tree_unlock(right);
2052                 free_extent_buffer(right);
2053         }
2054         if (left) {
2055                 if (path->nodes[level] != left)
2056                         btrfs_tree_unlock(left);
2057                 free_extent_buffer(left);
2058         }
2059         return ret;
2060 }
2061
2062 /* Node balancing for insertion.  Here we only split or push nodes around
2063  * when they are completely full.  This is also done top down, so we
2064  * have to be pessimistic.
2065  */
2066 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2067                                           struct btrfs_root *root,
2068                                           struct btrfs_path *path, int level)
2069 {
2070         struct btrfs_fs_info *fs_info = root->fs_info;
2071         struct extent_buffer *right = NULL;
2072         struct extent_buffer *mid;
2073         struct extent_buffer *left = NULL;
2074         struct extent_buffer *parent = NULL;
2075         int ret = 0;
2076         int wret;
2077         int pslot;
2078         int orig_slot = path->slots[level];
2079
2080         if (level == 0)
2081                 return 1;
2082
2083         mid = path->nodes[level];
2084         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2085
2086         if (level < BTRFS_MAX_LEVEL - 1) {
2087                 parent = path->nodes[level + 1];
2088                 pslot = path->slots[level + 1];
2089         }
2090
2091         if (!parent)
2092                 return 1;
2093
2094         left = btrfs_read_node_slot(parent, pslot - 1);
2095         if (IS_ERR(left))
2096                 left = NULL;
2097
2098         /* first, try to make some room in the middle buffer */
2099         if (left) {
2100                 u32 left_nr;
2101
2102                 btrfs_tree_lock(left);
2103                 btrfs_set_lock_blocking_write(left);
2104
2105                 left_nr = btrfs_header_nritems(left);
2106                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2107                         wret = 1;
2108                 } else {
2109                         ret = btrfs_cow_block(trans, root, left, parent,
2110                                               pslot - 1, &left);
2111                         if (ret)
2112                                 wret = 1;
2113                         else {
2114                                 wret = push_node_left(trans, left, mid, 0);
2115                         }
2116                 }
2117                 if (wret < 0)
2118                         ret = wret;
2119                 if (wret == 0) {
2120                         struct btrfs_disk_key disk_key;
2121                         orig_slot += left_nr;
2122                         btrfs_node_key(mid, &disk_key, 0);
2123                         ret = tree_mod_log_insert_key(parent, pslot,
2124                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
2125                         BUG_ON(ret < 0);
2126                         btrfs_set_node_key(parent, &disk_key, pslot);
2127                         btrfs_mark_buffer_dirty(parent);
2128                         if (btrfs_header_nritems(left) > orig_slot) {
2129                                 path->nodes[level] = left;
2130                                 path->slots[level + 1] -= 1;
2131                                 path->slots[level] = orig_slot;
2132                                 btrfs_tree_unlock(mid);
2133                                 free_extent_buffer(mid);
2134                         } else {
2135                                 orig_slot -=
2136                                         btrfs_header_nritems(left);
2137                                 path->slots[level] = orig_slot;
2138                                 btrfs_tree_unlock(left);
2139                                 free_extent_buffer(left);
2140                         }
2141                         return 0;
2142                 }
2143                 btrfs_tree_unlock(left);
2144                 free_extent_buffer(left);
2145         }
2146         right = btrfs_read_node_slot(parent, pslot + 1);
2147         if (IS_ERR(right))
2148                 right = NULL;
2149
2150         /*
2151          * then try to empty the right most buffer into the middle
2152          */
2153         if (right) {
2154                 u32 right_nr;
2155
2156                 btrfs_tree_lock(right);
2157                 btrfs_set_lock_blocking_write(right);
2158
2159                 right_nr = btrfs_header_nritems(right);
2160                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2161                         wret = 1;
2162                 } else {
2163                         ret = btrfs_cow_block(trans, root, right,
2164                                               parent, pslot + 1,
2165                                               &right);
2166                         if (ret)
2167                                 wret = 1;
2168                         else {
2169                                 wret = balance_node_right(trans, right, mid);
2170                         }
2171                 }
2172                 if (wret < 0)
2173                         ret = wret;
2174                 if (wret == 0) {
2175                         struct btrfs_disk_key disk_key;
2176
2177                         btrfs_node_key(right, &disk_key, 0);
2178                         ret = tree_mod_log_insert_key(parent, pslot + 1,
2179                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
2180                         BUG_ON(ret < 0);
2181                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2182                         btrfs_mark_buffer_dirty(parent);
2183
2184                         if (btrfs_header_nritems(mid) <= orig_slot) {
2185                                 path->nodes[level] = right;
2186                                 path->slots[level + 1] += 1;
2187                                 path->slots[level] = orig_slot -
2188                                         btrfs_header_nritems(mid);
2189                                 btrfs_tree_unlock(mid);
2190                                 free_extent_buffer(mid);
2191                         } else {
2192                                 btrfs_tree_unlock(right);
2193                                 free_extent_buffer(right);
2194                         }
2195                         return 0;
2196                 }
2197                 btrfs_tree_unlock(right);
2198                 free_extent_buffer(right);
2199         }
2200         return 1;
2201 }
2202
2203 /*
2204  * readahead one full node of leaves, finding things that are close
2205  * to the block in 'slot', and triggering ra on them.
2206  */
2207 static void reada_for_search(struct btrfs_fs_info *fs_info,
2208                              struct btrfs_path *path,
2209                              int level, int slot, u64 objectid)
2210 {
2211         struct extent_buffer *node;
2212         struct btrfs_disk_key disk_key;
2213         u32 nritems;
2214         u64 search;
2215         u64 target;
2216         u64 nread = 0;
2217         struct extent_buffer *eb;
2218         u32 nr;
2219         u32 blocksize;
2220         u32 nscan = 0;
2221
2222         if (level != 1)
2223                 return;
2224
2225         if (!path->nodes[level])
2226                 return;
2227
2228         node = path->nodes[level];
2229
2230         search = btrfs_node_blockptr(node, slot);
2231         blocksize = fs_info->nodesize;
2232         eb = find_extent_buffer(fs_info, search);
2233         if (eb) {
2234                 free_extent_buffer(eb);
2235                 return;
2236         }
2237
2238         target = search;
2239
2240         nritems = btrfs_header_nritems(node);
2241         nr = slot;
2242
2243         while (1) {
2244                 if (path->reada == READA_BACK) {
2245                         if (nr == 0)
2246                                 break;
2247                         nr--;
2248                 } else if (path->reada == READA_FORWARD) {
2249                         nr++;
2250                         if (nr >= nritems)
2251                                 break;
2252                 }
2253                 if (path->reada == READA_BACK && objectid) {
2254                         btrfs_node_key(node, &disk_key, nr);
2255                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2256                                 break;
2257                 }
2258                 search = btrfs_node_blockptr(node, nr);
2259                 if ((search <= target && target - search <= 65536) ||
2260                     (search > target && search - target <= 65536)) {
2261                         readahead_tree_block(fs_info, search);
2262                         nread += blocksize;
2263                 }
2264                 nscan++;
2265                 if ((nread > 65536 || nscan > 32))
2266                         break;
2267         }
2268 }
2269
2270 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2271                                        struct btrfs_path *path, int level)
2272 {
2273         int slot;
2274         int nritems;
2275         struct extent_buffer *parent;
2276         struct extent_buffer *eb;
2277         u64 gen;
2278         u64 block1 = 0;
2279         u64 block2 = 0;
2280
2281         parent = path->nodes[level + 1];
2282         if (!parent)
2283                 return;
2284
2285         nritems = btrfs_header_nritems(parent);
2286         slot = path->slots[level + 1];
2287
2288         if (slot > 0) {
2289                 block1 = btrfs_node_blockptr(parent, slot - 1);
2290                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2291                 eb = find_extent_buffer(fs_info, block1);
2292                 /*
2293                  * if we get -eagain from btrfs_buffer_uptodate, we
2294                  * don't want to return eagain here.  That will loop
2295                  * forever
2296                  */
2297                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2298                         block1 = 0;
2299                 free_extent_buffer(eb);
2300         }
2301         if (slot + 1 < nritems) {
2302                 block2 = btrfs_node_blockptr(parent, slot + 1);
2303                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2304                 eb = find_extent_buffer(fs_info, block2);
2305                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2306                         block2 = 0;
2307                 free_extent_buffer(eb);
2308         }
2309
2310         if (block1)
2311                 readahead_tree_block(fs_info, block1);
2312         if (block2)
2313                 readahead_tree_block(fs_info, block2);
2314 }
2315
2316
2317 /*
2318  * when we walk down the tree, it is usually safe to unlock the higher layers
2319  * in the tree.  The exceptions are when our path goes through slot 0, because
2320  * operations on the tree might require changing key pointers higher up in the
2321  * tree.
2322  *
2323  * callers might also have set path->keep_locks, which tells this code to keep
2324  * the lock if the path points to the last slot in the block.  This is part of
2325  * walking through the tree, and selecting the next slot in the higher block.
2326  *
2327  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2328  * if lowest_unlock is 1, level 0 won't be unlocked
2329  */
2330 static noinline void unlock_up(struct btrfs_path *path, int level,
2331                                int lowest_unlock, int min_write_lock_level,
2332                                int *write_lock_level)
2333 {
2334         int i;
2335         int skip_level = level;
2336         int no_skips = 0;
2337         struct extent_buffer *t;
2338
2339         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2340                 if (!path->nodes[i])
2341                         break;
2342                 if (!path->locks[i])
2343                         break;
2344                 if (!no_skips && path->slots[i] == 0) {
2345                         skip_level = i + 1;
2346                         continue;
2347                 }
2348                 if (!no_skips && path->keep_locks) {
2349                         u32 nritems;
2350                         t = path->nodes[i];
2351                         nritems = btrfs_header_nritems(t);
2352                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2353                                 skip_level = i + 1;
2354                                 continue;
2355                         }
2356                 }
2357                 if (skip_level < i && i >= lowest_unlock)
2358                         no_skips = 1;
2359
2360                 t = path->nodes[i];
2361                 if (i >= lowest_unlock && i > skip_level) {
2362                         btrfs_tree_unlock_rw(t, path->locks[i]);
2363                         path->locks[i] = 0;
2364                         if (write_lock_level &&
2365                             i > min_write_lock_level &&
2366                             i <= *write_lock_level) {
2367                                 *write_lock_level = i - 1;
2368                         }
2369                 }
2370         }
2371 }
2372
2373 /*
2374  * helper function for btrfs_search_slot.  The goal is to find a block
2375  * in cache without setting the path to blocking.  If we find the block
2376  * we return zero and the path is unchanged.
2377  *
2378  * If we can't find the block, we set the path blocking and do some
2379  * reada.  -EAGAIN is returned and the search must be repeated.
2380  */
2381 static int
2382 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2383                       struct extent_buffer **eb_ret, int level, int slot,
2384                       const struct btrfs_key *key)
2385 {
2386         struct btrfs_fs_info *fs_info = root->fs_info;
2387         u64 blocknr;
2388         u64 gen;
2389         struct extent_buffer *b = *eb_ret;
2390         struct extent_buffer *tmp;
2391         struct btrfs_key first_key;
2392         int ret;
2393         int parent_level;
2394
2395         blocknr = btrfs_node_blockptr(b, slot);
2396         gen = btrfs_node_ptr_generation(b, slot);
2397         parent_level = btrfs_header_level(b);
2398         btrfs_node_key_to_cpu(b, &first_key, slot);
2399
2400         tmp = find_extent_buffer(fs_info, blocknr);
2401         if (tmp) {
2402                 /* first we do an atomic uptodate check */
2403                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2404                         /*
2405                          * Do extra check for first_key, eb can be stale due to
2406                          * being cached, read from scrub, or have multiple
2407                          * parents (shared tree blocks).
2408                          */
2409                         if (btrfs_verify_level_key(tmp,
2410                                         parent_level - 1, &first_key, gen)) {
2411                                 free_extent_buffer(tmp);
2412                                 return -EUCLEAN;
2413                         }
2414                         *eb_ret = tmp;
2415                         return 0;
2416                 }
2417
2418                 /* the pages were up to date, but we failed
2419                  * the generation number check.  Do a full
2420                  * read for the generation number that is correct.
2421                  * We must do this without dropping locks so
2422                  * we can trust our generation number
2423                  */
2424                 btrfs_set_path_blocking(p);
2425
2426                 /* now we're allowed to do a blocking uptodate check */
2427                 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2428                 if (!ret) {
2429                         *eb_ret = tmp;
2430                         return 0;
2431                 }
2432                 free_extent_buffer(tmp);
2433                 btrfs_release_path(p);
2434                 return -EIO;
2435         }
2436
2437         /*
2438          * reduce lock contention at high levels
2439          * of the btree by dropping locks before
2440          * we read.  Don't release the lock on the current
2441          * level because we need to walk this node to figure
2442          * out which blocks to read.
2443          */
2444         btrfs_unlock_up_safe(p, level + 1);
2445         btrfs_set_path_blocking(p);
2446
2447         if (p->reada != READA_NONE)
2448                 reada_for_search(fs_info, p, level, slot, key->objectid);
2449
2450         ret = -EAGAIN;
2451         tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2452                               &first_key);
2453         if (!IS_ERR(tmp)) {
2454                 /*
2455                  * If the read above didn't mark this buffer up to date,
2456                  * it will never end up being up to date.  Set ret to EIO now
2457                  * and give up so that our caller doesn't loop forever
2458                  * on our EAGAINs.
2459                  */
2460                 if (!extent_buffer_uptodate(tmp))
2461                         ret = -EIO;
2462                 free_extent_buffer(tmp);
2463         } else {
2464                 ret = PTR_ERR(tmp);
2465         }
2466
2467         btrfs_release_path(p);
2468         return ret;
2469 }
2470
2471 /*
2472  * helper function for btrfs_search_slot.  This does all of the checks
2473  * for node-level blocks and does any balancing required based on
2474  * the ins_len.
2475  *
2476  * If no extra work was required, zero is returned.  If we had to
2477  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2478  * start over
2479  */
2480 static int
2481 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2482                        struct btrfs_root *root, struct btrfs_path *p,
2483                        struct extent_buffer *b, int level, int ins_len,
2484                        int *write_lock_level)
2485 {
2486         struct btrfs_fs_info *fs_info = root->fs_info;
2487         int ret;
2488
2489         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2490             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2491                 int sret;
2492
2493                 if (*write_lock_level < level + 1) {
2494                         *write_lock_level = level + 1;
2495                         btrfs_release_path(p);
2496                         goto again;
2497                 }
2498
2499                 btrfs_set_path_blocking(p);
2500                 reada_for_balance(fs_info, p, level);
2501                 sret = split_node(trans, root, p, level);
2502
2503                 BUG_ON(sret > 0);
2504                 if (sret) {
2505                         ret = sret;
2506                         goto done;
2507                 }
2508                 b = p->nodes[level];
2509         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2510                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2511                 int sret;
2512
2513                 if (*write_lock_level < level + 1) {
2514                         *write_lock_level = level + 1;
2515                         btrfs_release_path(p);
2516                         goto again;
2517                 }
2518
2519                 btrfs_set_path_blocking(p);
2520                 reada_for_balance(fs_info, p, level);
2521                 sret = balance_level(trans, root, p, level);
2522
2523                 if (sret) {
2524                         ret = sret;
2525                         goto done;
2526                 }
2527                 b = p->nodes[level];
2528                 if (!b) {
2529                         btrfs_release_path(p);
2530                         goto again;
2531                 }
2532                 BUG_ON(btrfs_header_nritems(b) == 1);
2533         }
2534         return 0;
2535
2536 again:
2537         ret = -EAGAIN;
2538 done:
2539         return ret;
2540 }
2541
2542 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2543                       int level, int *prev_cmp, int *slot)
2544 {
2545         if (*prev_cmp != 0) {
2546                 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2547                 return *prev_cmp;
2548         }
2549
2550         *slot = 0;
2551
2552         return 0;
2553 }
2554
2555 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2556                 u64 iobjectid, u64 ioff, u8 key_type,
2557                 struct btrfs_key *found_key)
2558 {
2559         int ret;
2560         struct btrfs_key key;
2561         struct extent_buffer *eb;
2562
2563         ASSERT(path);
2564         ASSERT(found_key);
2565
2566         key.type = key_type;
2567         key.objectid = iobjectid;
2568         key.offset = ioff;
2569
2570         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2571         if (ret < 0)
2572                 return ret;
2573
2574         eb = path->nodes[0];
2575         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2576                 ret = btrfs_next_leaf(fs_root, path);
2577                 if (ret)
2578                         return ret;
2579                 eb = path->nodes[0];
2580         }
2581
2582         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2583         if (found_key->type != key.type ||
2584                         found_key->objectid != key.objectid)
2585                 return 1;
2586
2587         return 0;
2588 }
2589
2590 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2591                                                         struct btrfs_path *p,
2592                                                         int write_lock_level)
2593 {
2594         struct btrfs_fs_info *fs_info = root->fs_info;
2595         struct extent_buffer *b;
2596         int root_lock;
2597         int level = 0;
2598
2599         /* We try very hard to do read locks on the root */
2600         root_lock = BTRFS_READ_LOCK;
2601
2602         if (p->search_commit_root) {
2603                 /*
2604                  * The commit roots are read only so we always do read locks,
2605                  * and we always must hold the commit_root_sem when doing
2606                  * searches on them, the only exception is send where we don't
2607                  * want to block transaction commits for a long time, so
2608                  * we need to clone the commit root in order to avoid races
2609                  * with transaction commits that create a snapshot of one of
2610                  * the roots used by a send operation.
2611                  */
2612                 if (p->need_commit_sem) {
2613                         down_read(&fs_info->commit_root_sem);
2614                         b = btrfs_clone_extent_buffer(root->commit_root);
2615                         up_read(&fs_info->commit_root_sem);
2616                         if (!b)
2617                                 return ERR_PTR(-ENOMEM);
2618
2619                 } else {
2620                         b = root->commit_root;
2621                         atomic_inc(&b->refs);
2622                 }
2623                 level = btrfs_header_level(b);
2624                 /*
2625                  * Ensure that all callers have set skip_locking when
2626                  * p->search_commit_root = 1.
2627                  */
2628                 ASSERT(p->skip_locking == 1);
2629
2630                 goto out;
2631         }
2632
2633         if (p->skip_locking) {
2634                 b = btrfs_root_node(root);
2635                 level = btrfs_header_level(b);
2636                 goto out;
2637         }
2638
2639         /*
2640          * If the level is set to maximum, we can skip trying to get the read
2641          * lock.
2642          */
2643         if (write_lock_level < BTRFS_MAX_LEVEL) {
2644                 /*
2645                  * We don't know the level of the root node until we actually
2646                  * have it read locked
2647                  */
2648                 b = btrfs_read_lock_root_node(root);
2649                 level = btrfs_header_level(b);
2650                 if (level > write_lock_level)
2651                         goto out;
2652
2653                 /* Whoops, must trade for write lock */
2654                 btrfs_tree_read_unlock(b);
2655                 free_extent_buffer(b);
2656         }
2657
2658         b = btrfs_lock_root_node(root);
2659         root_lock = BTRFS_WRITE_LOCK;
2660
2661         /* The level might have changed, check again */
2662         level = btrfs_header_level(b);
2663
2664 out:
2665         p->nodes[level] = b;
2666         if (!p->skip_locking)
2667                 p->locks[level] = root_lock;
2668         /*
2669          * Callers are responsible for dropping b's references.
2670          */
2671         return b;
2672 }
2673
2674
2675 /*
2676  * btrfs_search_slot - look for a key in a tree and perform necessary
2677  * modifications to preserve tree invariants.
2678  *
2679  * @trans:      Handle of transaction, used when modifying the tree
2680  * @p:          Holds all btree nodes along the search path
2681  * @root:       The root node of the tree
2682  * @key:        The key we are looking for
2683  * @ins_len:    Indicates purpose of search, for inserts it is 1, for
2684  *              deletions it's -1. 0 for plain searches
2685  * @cow:        boolean should CoW operations be performed. Must always be 1
2686  *              when modifying the tree.
2687  *
2688  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2689  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2690  *
2691  * If @key is found, 0 is returned and you can find the item in the leaf level
2692  * of the path (level 0)
2693  *
2694  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2695  * points to the slot where it should be inserted
2696  *
2697  * If an error is encountered while searching the tree a negative error number
2698  * is returned
2699  */
2700 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2701                       const struct btrfs_key *key, struct btrfs_path *p,
2702                       int ins_len, int cow)
2703 {
2704         struct extent_buffer *b;
2705         int slot;
2706         int ret;
2707         int err;
2708         int level;
2709         int lowest_unlock = 1;
2710         /* everything at write_lock_level or lower must be write locked */
2711         int write_lock_level = 0;
2712         u8 lowest_level = 0;
2713         int min_write_lock_level;
2714         int prev_cmp;
2715
2716         lowest_level = p->lowest_level;
2717         WARN_ON(lowest_level && ins_len > 0);
2718         WARN_ON(p->nodes[0] != NULL);
2719         BUG_ON(!cow && ins_len);
2720
2721         if (ins_len < 0) {
2722                 lowest_unlock = 2;
2723
2724                 /* when we are removing items, we might have to go up to level
2725                  * two as we update tree pointers  Make sure we keep write
2726                  * for those levels as well
2727                  */
2728                 write_lock_level = 2;
2729         } else if (ins_len > 0) {
2730                 /*
2731                  * for inserting items, make sure we have a write lock on
2732                  * level 1 so we can update keys
2733                  */
2734                 write_lock_level = 1;
2735         }
2736
2737         if (!cow)
2738                 write_lock_level = -1;
2739
2740         if (cow && (p->keep_locks || p->lowest_level))
2741                 write_lock_level = BTRFS_MAX_LEVEL;
2742
2743         min_write_lock_level = write_lock_level;
2744
2745 again:
2746         prev_cmp = -1;
2747         b = btrfs_search_slot_get_root(root, p, write_lock_level);
2748         if (IS_ERR(b)) {
2749                 ret = PTR_ERR(b);
2750                 goto done;
2751         }
2752
2753         while (b) {
2754                 int dec = 0;
2755
2756                 level = btrfs_header_level(b);
2757
2758                 if (cow) {
2759                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2760
2761                         /*
2762                          * if we don't really need to cow this block
2763                          * then we don't want to set the path blocking,
2764                          * so we test it here
2765                          */
2766                         if (!should_cow_block(trans, root, b)) {
2767                                 trans->dirty = true;
2768                                 goto cow_done;
2769                         }
2770
2771                         /*
2772                          * must have write locks on this node and the
2773                          * parent
2774                          */
2775                         if (level > write_lock_level ||
2776                             (level + 1 > write_lock_level &&
2777                             level + 1 < BTRFS_MAX_LEVEL &&
2778                             p->nodes[level + 1])) {
2779                                 write_lock_level = level + 1;
2780                                 btrfs_release_path(p);
2781                                 goto again;
2782                         }
2783
2784                         btrfs_set_path_blocking(p);
2785                         if (last_level)
2786                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
2787                                                       &b);
2788                         else
2789                                 err = btrfs_cow_block(trans, root, b,
2790                                                       p->nodes[level + 1],
2791                                                       p->slots[level + 1], &b);
2792                         if (err) {
2793                                 ret = err;
2794                                 goto done;
2795                         }
2796                 }
2797 cow_done:
2798                 p->nodes[level] = b;
2799                 /*
2800                  * Leave path with blocking locks to avoid massive
2801                  * lock context switch, this is made on purpose.
2802                  */
2803
2804                 /*
2805                  * we have a lock on b and as long as we aren't changing
2806                  * the tree, there is no way to for the items in b to change.
2807                  * It is safe to drop the lock on our parent before we
2808                  * go through the expensive btree search on b.
2809                  *
2810                  * If we're inserting or deleting (ins_len != 0), then we might
2811                  * be changing slot zero, which may require changing the parent.
2812                  * So, we can't drop the lock until after we know which slot
2813                  * we're operating on.
2814                  */
2815                 if (!ins_len && !p->keep_locks) {
2816                         int u = level + 1;
2817
2818                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2819                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2820                                 p->locks[u] = 0;
2821                         }
2822                 }
2823
2824                 ret = key_search(b, key, level, &prev_cmp, &slot);
2825                 if (ret < 0)
2826                         goto done;
2827
2828                 if (level == 0) {
2829                         p->slots[level] = slot;
2830                         if (ins_len > 0 &&
2831                             btrfs_leaf_free_space(b) < ins_len) {
2832                                 if (write_lock_level < 1) {
2833                                         write_lock_level = 1;
2834                                         btrfs_release_path(p);
2835                                         goto again;
2836                                 }
2837
2838                                 btrfs_set_path_blocking(p);
2839                                 err = split_leaf(trans, root, key,
2840                                                  p, ins_len, ret == 0);
2841
2842                                 BUG_ON(err > 0);
2843                                 if (err) {
2844                                         ret = err;
2845                                         goto done;
2846                                 }
2847                         }
2848                         if (!p->search_for_split)
2849                                 unlock_up(p, level, lowest_unlock,
2850                                           min_write_lock_level, NULL);
2851                         goto done;
2852                 }
2853                 if (ret && slot > 0) {
2854                         dec = 1;
2855                         slot--;
2856                 }
2857                 p->slots[level] = slot;
2858                 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2859                                              &write_lock_level);
2860                 if (err == -EAGAIN)
2861                         goto again;
2862                 if (err) {
2863                         ret = err;
2864                         goto done;
2865                 }
2866                 b = p->nodes[level];
2867                 slot = p->slots[level];
2868
2869                 /*
2870                  * Slot 0 is special, if we change the key we have to update
2871                  * the parent pointer which means we must have a write lock on
2872                  * the parent
2873                  */
2874                 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2875                         write_lock_level = level + 1;
2876                         btrfs_release_path(p);
2877                         goto again;
2878                 }
2879
2880                 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2881                           &write_lock_level);
2882
2883                 if (level == lowest_level) {
2884                         if (dec)
2885                                 p->slots[level]++;
2886                         goto done;
2887                 }
2888
2889                 err = read_block_for_search(root, p, &b, level, slot, key);
2890                 if (err == -EAGAIN)
2891                         goto again;
2892                 if (err) {
2893                         ret = err;
2894                         goto done;
2895                 }
2896
2897                 if (!p->skip_locking) {
2898                         level = btrfs_header_level(b);
2899                         if (level <= write_lock_level) {
2900                                 if (!btrfs_try_tree_write_lock(b)) {
2901                                         btrfs_set_path_blocking(p);
2902                                         btrfs_tree_lock(b);
2903                                 }
2904                                 p->locks[level] = BTRFS_WRITE_LOCK;
2905                         } else {
2906                                 if (!btrfs_tree_read_lock_atomic(b)) {
2907                                         btrfs_set_path_blocking(p);
2908                                         btrfs_tree_read_lock(b);
2909                                 }
2910                                 p->locks[level] = BTRFS_READ_LOCK;
2911                         }
2912                         p->nodes[level] = b;
2913                 }
2914         }
2915         ret = 1;
2916 done:
2917         /*
2918          * we don't really know what they plan on doing with the path
2919          * from here on, so for now just mark it as blocking
2920          */
2921         if (!p->leave_spinning)
2922                 btrfs_set_path_blocking(p);
2923         if (ret < 0 && !p->skip_release_on_error)
2924                 btrfs_release_path(p);
2925         return ret;
2926 }
2927
2928 /*
2929  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2930  * current state of the tree together with the operations recorded in the tree
2931  * modification log to search for the key in a previous version of this tree, as
2932  * denoted by the time_seq parameter.
2933  *
2934  * Naturally, there is no support for insert, delete or cow operations.
2935  *
2936  * The resulting path and return value will be set up as if we called
2937  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2938  */
2939 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2940                           struct btrfs_path *p, u64 time_seq)
2941 {
2942         struct btrfs_fs_info *fs_info = root->fs_info;
2943         struct extent_buffer *b;
2944         int slot;
2945         int ret;
2946         int err;
2947         int level;
2948         int lowest_unlock = 1;
2949         u8 lowest_level = 0;
2950         int prev_cmp = -1;
2951
2952         lowest_level = p->lowest_level;
2953         WARN_ON(p->nodes[0] != NULL);
2954
2955         if (p->search_commit_root) {
2956                 BUG_ON(time_seq);
2957                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2958         }
2959
2960 again:
2961         b = get_old_root(root, time_seq);
2962         if (!b) {
2963                 ret = -EIO;
2964                 goto done;
2965         }
2966         level = btrfs_header_level(b);
2967         p->locks[level] = BTRFS_READ_LOCK;
2968
2969         while (b) {
2970                 int dec = 0;
2971
2972                 level = btrfs_header_level(b);
2973                 p->nodes[level] = b;
2974
2975                 /*
2976                  * we have a lock on b and as long as we aren't changing
2977                  * the tree, there is no way to for the items in b to change.
2978                  * It is safe to drop the lock on our parent before we
2979                  * go through the expensive btree search on b.
2980                  */
2981                 btrfs_unlock_up_safe(p, level + 1);
2982
2983                 /*
2984                  * Since we can unwind ebs we want to do a real search every
2985                  * time.
2986                  */
2987                 prev_cmp = -1;
2988                 ret = key_search(b, key, level, &prev_cmp, &slot);
2989                 if (ret < 0)
2990                         goto done;
2991
2992                 if (level == 0) {
2993                         p->slots[level] = slot;
2994                         unlock_up(p, level, lowest_unlock, 0, NULL);
2995                         goto done;
2996                 }
2997
2998                 if (ret && slot > 0) {
2999                         dec = 1;
3000                         slot--;
3001                 }
3002                 p->slots[level] = slot;
3003                 unlock_up(p, level, lowest_unlock, 0, NULL);
3004
3005                 if (level == lowest_level) {
3006                         if (dec)
3007                                 p->slots[level]++;
3008                         goto done;
3009                 }
3010
3011                 err = read_block_for_search(root, p, &b, level, slot, key);
3012                 if (err == -EAGAIN)
3013                         goto again;
3014                 if (err) {
3015                         ret = err;
3016                         goto done;
3017                 }
3018
3019                 level = btrfs_header_level(b);
3020                 if (!btrfs_tree_read_lock_atomic(b)) {
3021                         btrfs_set_path_blocking(p);
3022                         btrfs_tree_read_lock(b);
3023                 }
3024                 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3025                 if (!b) {
3026                         ret = -ENOMEM;
3027                         goto done;
3028                 }
3029                 p->locks[level] = BTRFS_READ_LOCK;
3030                 p->nodes[level] = b;
3031         }
3032         ret = 1;
3033 done:
3034         if (!p->leave_spinning)
3035                 btrfs_set_path_blocking(p);
3036         if (ret < 0)
3037                 btrfs_release_path(p);
3038
3039         return ret;
3040 }
3041
3042 /*
3043  * helper to use instead of search slot if no exact match is needed but
3044  * instead the next or previous item should be returned.
3045  * When find_higher is true, the next higher item is returned, the next lower
3046  * otherwise.
3047  * When return_any and find_higher are both true, and no higher item is found,
3048  * return the next lower instead.
3049  * When return_any is true and find_higher is false, and no lower item is found,
3050  * return the next higher instead.
3051  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3052  * < 0 on error
3053  */
3054 int btrfs_search_slot_for_read(struct btrfs_root *root,
3055                                const struct btrfs_key *key,
3056                                struct btrfs_path *p, int find_higher,
3057                                int return_any)
3058 {
3059         int ret;
3060         struct extent_buffer *leaf;
3061
3062 again:
3063         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3064         if (ret <= 0)
3065                 return ret;
3066         /*
3067          * a return value of 1 means the path is at the position where the
3068          * item should be inserted. Normally this is the next bigger item,
3069          * but in case the previous item is the last in a leaf, path points
3070          * to the first free slot in the previous leaf, i.e. at an invalid
3071          * item.
3072          */
3073         leaf = p->nodes[0];
3074
3075         if (find_higher) {
3076                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3077                         ret = btrfs_next_leaf(root, p);
3078                         if (ret <= 0)
3079                                 return ret;
3080                         if (!return_any)
3081                                 return 1;
3082                         /*
3083                          * no higher item found, return the next
3084                          * lower instead
3085                          */
3086                         return_any = 0;
3087                         find_higher = 0;
3088                         btrfs_release_path(p);
3089                         goto again;
3090                 }
3091         } else {
3092                 if (p->slots[0] == 0) {
3093                         ret = btrfs_prev_leaf(root, p);
3094                         if (ret < 0)
3095                                 return ret;
3096                         if (!ret) {
3097                                 leaf = p->nodes[0];
3098                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3099                                         p->slots[0]--;
3100                                 return 0;
3101                         }
3102                         if (!return_any)
3103                                 return 1;
3104                         /*
3105                          * no lower item found, return the next
3106                          * higher instead
3107                          */
3108                         return_any = 0;
3109                         find_higher = 1;
3110                         btrfs_release_path(p);
3111                         goto again;
3112                 } else {
3113                         --p->slots[0];
3114                 }
3115         }
3116         return 0;
3117 }
3118
3119 /*
3120  * adjust the pointers going up the tree, starting at level
3121  * making sure the right key of each node is points to 'key'.
3122  * This is used after shifting pointers to the left, so it stops
3123  * fixing up pointers when a given leaf/node is not in slot 0 of the
3124  * higher levels
3125  *
3126  */
3127 static void fixup_low_keys(struct btrfs_path *path,
3128                            struct btrfs_disk_key *key, int level)
3129 {
3130         int i;
3131         struct extent_buffer *t;
3132         int ret;
3133
3134         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3135                 int tslot = path->slots[i];
3136
3137                 if (!path->nodes[i])
3138                         break;
3139                 t = path->nodes[i];
3140                 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3141                                 GFP_ATOMIC);
3142                 BUG_ON(ret < 0);
3143                 btrfs_set_node_key(t, key, tslot);
3144                 btrfs_mark_buffer_dirty(path->nodes[i]);
3145                 if (tslot != 0)
3146                         break;
3147         }
3148 }
3149
3150 /*
3151  * update item key.
3152  *
3153  * This function isn't completely safe. It's the caller's responsibility
3154  * that the new key won't break the order
3155  */
3156 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3157                              struct btrfs_path *path,
3158                              const struct btrfs_key *new_key)
3159 {
3160         struct btrfs_disk_key disk_key;
3161         struct extent_buffer *eb;
3162         int slot;
3163
3164         eb = path->nodes[0];
3165         slot = path->slots[0];
3166         if (slot > 0) {
3167                 btrfs_item_key(eb, &disk_key, slot - 1);
3168                 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3169                         btrfs_crit(fs_info,
3170                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3171                                    slot, btrfs_disk_key_objectid(&disk_key),
3172                                    btrfs_disk_key_type(&disk_key),
3173                                    btrfs_disk_key_offset(&disk_key),
3174                                    new_key->objectid, new_key->type,
3175                                    new_key->offset);
3176                         btrfs_print_leaf(eb);
3177                         BUG();
3178                 }
3179         }
3180         if (slot < btrfs_header_nritems(eb) - 1) {
3181                 btrfs_item_key(eb, &disk_key, slot + 1);
3182                 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3183                         btrfs_crit(fs_info,
3184                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3185                                    slot, btrfs_disk_key_objectid(&disk_key),
3186                                    btrfs_disk_key_type(&disk_key),
3187                                    btrfs_disk_key_offset(&disk_key),
3188                                    new_key->objectid, new_key->type,
3189                                    new_key->offset);
3190                         btrfs_print_leaf(eb);
3191                         BUG();
3192                 }
3193         }
3194
3195         btrfs_cpu_key_to_disk(&disk_key, new_key);
3196         btrfs_set_item_key(eb, &disk_key, slot);
3197         btrfs_mark_buffer_dirty(eb);
3198         if (slot == 0)
3199                 fixup_low_keys(path, &disk_key, 1);
3200 }
3201
3202 /*
3203  * try to push data from one node into the next node left in the
3204  * tree.
3205  *
3206  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3207  * error, and > 0 if there was no room in the left hand block.
3208  */
3209 static int push_node_left(struct btrfs_trans_handle *trans,
3210                           struct extent_buffer *dst,
3211                           struct extent_buffer *src, int empty)
3212 {
3213         struct btrfs_fs_info *fs_info = trans->fs_info;
3214         int push_items = 0;
3215         int src_nritems;
3216         int dst_nritems;
3217         int ret = 0;
3218
3219         src_nritems = btrfs_header_nritems(src);
3220         dst_nritems = btrfs_header_nritems(dst);
3221         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3222         WARN_ON(btrfs_header_generation(src) != trans->transid);
3223         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3224
3225         if (!empty && src_nritems <= 8)
3226                 return 1;
3227
3228         if (push_items <= 0)
3229                 return 1;
3230
3231         if (empty) {
3232                 push_items = min(src_nritems, push_items);
3233                 if (push_items < src_nritems) {
3234                         /* leave at least 8 pointers in the node if
3235                          * we aren't going to empty it
3236                          */
3237                         if (src_nritems - push_items < 8) {
3238                                 if (push_items <= 8)
3239                                         return 1;
3240                                 push_items -= 8;
3241                         }
3242                 }
3243         } else
3244                 push_items = min(src_nritems - 8, push_items);
3245
3246         ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3247         if (ret) {
3248                 btrfs_abort_transaction(trans, ret);
3249                 return ret;
3250         }
3251         copy_extent_buffer(dst, src,
3252                            btrfs_node_key_ptr_offset(dst_nritems),
3253                            btrfs_node_key_ptr_offset(0),
3254                            push_items * sizeof(struct btrfs_key_ptr));
3255
3256         if (push_items < src_nritems) {
3257                 /*
3258                  * Don't call tree_mod_log_insert_move here, key removal was
3259                  * already fully logged by tree_mod_log_eb_copy above.
3260                  */
3261                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3262                                       btrfs_node_key_ptr_offset(push_items),
3263                                       (src_nritems - push_items) *
3264                                       sizeof(struct btrfs_key_ptr));
3265         }
3266         btrfs_set_header_nritems(src, src_nritems - push_items);
3267         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3268         btrfs_mark_buffer_dirty(src);
3269         btrfs_mark_buffer_dirty(dst);
3270
3271         return ret;
3272 }
3273
3274 /*
3275  * try to push data from one node into the next node right in the
3276  * tree.
3277  *
3278  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3279  * error, and > 0 if there was no room in the right hand block.
3280  *
3281  * this will  only push up to 1/2 the contents of the left node over
3282  */
3283 static int balance_node_right(struct btrfs_trans_handle *trans,
3284                               struct extent_buffer *dst,
3285                               struct extent_buffer *src)
3286 {
3287         struct btrfs_fs_info *fs_info = trans->fs_info;
3288         int push_items = 0;
3289         int max_push;
3290         int src_nritems;
3291         int dst_nritems;
3292         int ret = 0;
3293
3294         WARN_ON(btrfs_header_generation(src) != trans->transid);
3295         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3296
3297         src_nritems = btrfs_header_nritems(src);
3298         dst_nritems = btrfs_header_nritems(dst);
3299         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3300         if (push_items <= 0)
3301                 return 1;
3302
3303         if (src_nritems < 4)
3304                 return 1;
3305
3306         max_push = src_nritems / 2 + 1;
3307         /* don't try to empty the node */
3308         if (max_push >= src_nritems)
3309                 return 1;
3310
3311         if (max_push < push_items)
3312                 push_items = max_push;
3313
3314         ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3315         BUG_ON(ret < 0);
3316         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3317                                       btrfs_node_key_ptr_offset(0),
3318                                       (dst_nritems) *
3319                                       sizeof(struct btrfs_key_ptr));
3320
3321         ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3322                                    push_items);
3323         if (ret) {
3324                 btrfs_abort_transaction(trans, ret);
3325                 return ret;
3326         }
3327         copy_extent_buffer(dst, src,
3328                            btrfs_node_key_ptr_offset(0),
3329                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3330                            push_items * sizeof(struct btrfs_key_ptr));
3331
3332         btrfs_set_header_nritems(src, src_nritems - push_items);
3333         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3334
3335         btrfs_mark_buffer_dirty(src);
3336         btrfs_mark_buffer_dirty(dst);
3337
3338         return ret;
3339 }
3340
3341 /*
3342  * helper function to insert a new root level in the tree.
3343  * A new node is allocated, and a single item is inserted to
3344  * point to the existing root
3345  *
3346  * returns zero on success or < 0 on failure.
3347  */
3348 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3349                            struct btrfs_root *root,
3350                            struct btrfs_path *path, int level)
3351 {
3352         struct btrfs_fs_info *fs_info = root->fs_info;
3353         u64 lower_gen;
3354         struct extent_buffer *lower;
3355         struct extent_buffer *c;
3356         struct extent_buffer *old;
3357         struct btrfs_disk_key lower_key;
3358         int ret;
3359
3360         BUG_ON(path->nodes[level]);
3361         BUG_ON(path->nodes[level-1] != root->node);
3362
3363         lower = path->nodes[level-1];
3364         if (level == 1)
3365                 btrfs_item_key(lower, &lower_key, 0);
3366         else
3367                 btrfs_node_key(lower, &lower_key, 0);
3368
3369         c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3370                                          root->node->start, 0);
3371         if (IS_ERR(c))
3372                 return PTR_ERR(c);
3373
3374         root_add_used(root, fs_info->nodesize);
3375
3376         btrfs_set_header_nritems(c, 1);
3377         btrfs_set_node_key(c, &lower_key, 0);
3378         btrfs_set_node_blockptr(c, 0, lower->start);
3379         lower_gen = btrfs_header_generation(lower);
3380         WARN_ON(lower_gen != trans->transid);
3381
3382         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3383
3384         btrfs_mark_buffer_dirty(c);
3385
3386         old = root->node;
3387         ret = tree_mod_log_insert_root(root->node, c, 0);
3388         BUG_ON(ret < 0);
3389         rcu_assign_pointer(root->node, c);
3390
3391         /* the super has an extra ref to root->node */
3392         free_extent_buffer(old);
3393
3394         add_root_to_dirty_list(root);
3395         atomic_inc(&c->refs);
3396         path->nodes[level] = c;
3397         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3398         path->slots[level] = 0;
3399         return 0;
3400 }
3401
3402 /*
3403  * worker function to insert a single pointer in a node.
3404  * the node should have enough room for the pointer already
3405  *
3406  * slot and level indicate where you want the key to go, and
3407  * blocknr is the block the key points to.
3408  */
3409 static void insert_ptr(struct btrfs_trans_handle *trans,
3410                        struct btrfs_path *path,
3411                        struct btrfs_disk_key *key, u64 bytenr,
3412                        int slot, int level)
3413 {
3414         struct extent_buffer *lower;
3415         int nritems;
3416         int ret;
3417
3418         BUG_ON(!path->nodes[level]);
3419         btrfs_assert_tree_locked(path->nodes[level]);
3420         lower = path->nodes[level];
3421         nritems = btrfs_header_nritems(lower);
3422         BUG_ON(slot > nritems);
3423         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3424         if (slot != nritems) {
3425                 if (level) {
3426                         ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3427                                         nritems - slot);
3428                         BUG_ON(ret < 0);
3429                 }
3430                 memmove_extent_buffer(lower,
3431                               btrfs_node_key_ptr_offset(slot + 1),
3432                               btrfs_node_key_ptr_offset(slot),
3433                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3434         }
3435         if (level) {
3436                 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3437                                 GFP_NOFS);
3438                 BUG_ON(ret < 0);
3439         }
3440         btrfs_set_node_key(lower, key, slot);
3441         btrfs_set_node_blockptr(lower, slot, bytenr);
3442         WARN_ON(trans->transid == 0);
3443         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3444         btrfs_set_header_nritems(lower, nritems + 1);
3445         btrfs_mark_buffer_dirty(lower);
3446 }
3447
3448 /*
3449  * split the node at the specified level in path in two.
3450  * The path is corrected to point to the appropriate node after the split
3451  *
3452  * Before splitting this tries to make some room in the node by pushing
3453  * left and right, if either one works, it returns right away.
3454  *
3455  * returns 0 on success and < 0 on failure
3456  */
3457 static noinline int split_node(struct btrfs_trans_handle *trans,
3458                                struct btrfs_root *root,
3459                                struct btrfs_path *path, int level)
3460 {
3461         struct btrfs_fs_info *fs_info = root->fs_info;
3462         struct extent_buffer *c;
3463         struct extent_buffer *split;
3464         struct btrfs_disk_key disk_key;
3465         int mid;
3466         int ret;
3467         u32 c_nritems;
3468
3469         c = path->nodes[level];
3470         WARN_ON(btrfs_header_generation(c) != trans->transid);
3471         if (c == root->node) {
3472                 /*
3473                  * trying to split the root, lets make a new one
3474                  *
3475                  * tree mod log: We don't log_removal old root in
3476                  * insert_new_root, because that root buffer will be kept as a
3477                  * normal node. We are going to log removal of half of the
3478                  * elements below with tree_mod_log_eb_copy. We're holding a
3479                  * tree lock on the buffer, which is why we cannot race with
3480                  * other tree_mod_log users.
3481                  */
3482                 ret = insert_new_root(trans, root, path, level + 1);
3483                 if (ret)
3484                         return ret;
3485         } else {
3486                 ret = push_nodes_for_insert(trans, root, path, level);
3487                 c = path->nodes[level];
3488                 if (!ret && btrfs_header_nritems(c) <
3489                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3490                         return 0;
3491                 if (ret < 0)
3492                         return ret;
3493         }
3494
3495         c_nritems = btrfs_header_nritems(c);
3496         mid = (c_nritems + 1) / 2;
3497         btrfs_node_key(c, &disk_key, mid);
3498
3499         split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3500                                              c->start, 0);
3501         if (IS_ERR(split))
3502                 return PTR_ERR(split);
3503
3504         root_add_used(root, fs_info->nodesize);
3505         ASSERT(btrfs_header_level(c) == level);
3506
3507         ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3508         if (ret) {
3509                 btrfs_abort_transaction(trans, ret);
3510                 return ret;
3511         }
3512         copy_extent_buffer(split, c,
3513                            btrfs_node_key_ptr_offset(0),
3514                            btrfs_node_key_ptr_offset(mid),
3515                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3516         btrfs_set_header_nritems(split, c_nritems - mid);
3517         btrfs_set_header_nritems(c, mid);
3518         ret = 0;
3519
3520         btrfs_mark_buffer_dirty(c);
3521         btrfs_mark_buffer_dirty(split);
3522
3523         insert_ptr(trans, path, &disk_key, split->start,
3524                    path->slots[level + 1] + 1, level + 1);
3525
3526         if (path->slots[level] >= mid) {
3527                 path->slots[level] -= mid;
3528                 btrfs_tree_unlock(c);
3529                 free_extent_buffer(c);
3530                 path->nodes[level] = split;
3531                 path->slots[level + 1] += 1;
3532         } else {
3533                 btrfs_tree_unlock(split);
3534                 free_extent_buffer(split);
3535         }
3536         return ret;
3537 }
3538
3539 /*
3540  * how many bytes are required to store the items in a leaf.  start
3541  * and nr indicate which items in the leaf to check.  This totals up the
3542  * space used both by the item structs and the item data
3543  */
3544 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3545 {
3546         struct btrfs_item *start_item;
3547         struct btrfs_item *end_item;
3548         struct btrfs_map_token token;
3549         int data_len;
3550         int nritems = btrfs_header_nritems(l);
3551         int end = min(nritems, start + nr) - 1;
3552
3553         if (!nr)
3554                 return 0;
3555         btrfs_init_map_token(&token, l);
3556         start_item = btrfs_item_nr(start);
3557         end_item = btrfs_item_nr(end);
3558         data_len = btrfs_token_item_offset(l, start_item, &token) +
3559                 btrfs_token_item_size(l, start_item, &token);
3560         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3561         data_len += sizeof(struct btrfs_item) * nr;
3562         WARN_ON(data_len < 0);
3563         return data_len;
3564 }
3565
3566 /*
3567  * The space between the end of the leaf items and
3568  * the start of the leaf data.  IOW, how much room
3569  * the leaf has left for both items and data
3570  */
3571 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3572 {
3573         struct btrfs_fs_info *fs_info = leaf->fs_info;
3574         int nritems = btrfs_header_nritems(leaf);
3575         int ret;
3576
3577         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3578         if (ret < 0) {
3579                 btrfs_crit(fs_info,
3580                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3581                            ret,
3582                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3583                            leaf_space_used(leaf, 0, nritems), nritems);
3584         }
3585         return ret;
3586 }
3587
3588 /*
3589  * min slot controls the lowest index we're willing to push to the
3590  * right.  We'll push up to and including min_slot, but no lower
3591  */
3592 static noinline int __push_leaf_right(struct btrfs_path *path,
3593                                       int data_size, int empty,
3594                                       struct extent_buffer *right,
3595                                       int free_space, u32 left_nritems,
3596                                       u32 min_slot)
3597 {
3598         struct btrfs_fs_info *fs_info = right->fs_info;
3599         struct extent_buffer *left = path->nodes[0];
3600         struct extent_buffer *upper = path->nodes[1];
3601         struct btrfs_map_token token;
3602         struct btrfs_disk_key disk_key;
3603         int slot;
3604         u32 i;
3605         int push_space = 0;
3606         int push_items = 0;
3607         struct btrfs_item *item;
3608         u32 nr;
3609         u32 right_nritems;
3610         u32 data_end;
3611         u32 this_item_size;
3612
3613         if (empty)
3614                 nr = 0;
3615         else
3616                 nr = max_t(u32, 1, min_slot);
3617
3618         if (path->slots[0] >= left_nritems)
3619                 push_space += data_size;
3620
3621         slot = path->slots[1];
3622         i = left_nritems - 1;
3623         while (i >= nr) {
3624                 item = btrfs_item_nr(i);
3625
3626                 if (!empty && push_items > 0) {
3627                         if (path->slots[0] > i)
3628                                 break;
3629                         if (path->slots[0] == i) {
3630                                 int space = btrfs_leaf_free_space(left);
3631
3632                                 if (space + push_space * 2 > free_space)
3633                                         break;
3634                         }
3635                 }
3636
3637                 if (path->slots[0] == i)
3638                         push_space += data_size;
3639
3640                 this_item_size = btrfs_item_size(left, item);
3641                 if (this_item_size + sizeof(*item) + push_space > free_space)
3642                         break;
3643
3644                 push_items++;
3645                 push_space += this_item_size + sizeof(*item);
3646                 if (i == 0)
3647                         break;
3648                 i--;
3649         }
3650
3651         if (push_items == 0)
3652                 goto out_unlock;
3653
3654         WARN_ON(!empty && push_items == left_nritems);
3655
3656         /* push left to right */
3657         right_nritems = btrfs_header_nritems(right);
3658
3659         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3660         push_space -= leaf_data_end(left);
3661
3662         /* make room in the right data area */
3663         data_end = leaf_data_end(right);
3664         memmove_extent_buffer(right,
3665                               BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3666                               BTRFS_LEAF_DATA_OFFSET + data_end,
3667                               BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3668
3669         /* copy from the left data area */
3670         copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3671                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3672                      BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3673                      push_space);
3674
3675         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3676                               btrfs_item_nr_offset(0),
3677                               right_nritems * sizeof(struct btrfs_item));
3678
3679         /* copy the items from left to right */
3680         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3681                    btrfs_item_nr_offset(left_nritems - push_items),
3682                    push_items * sizeof(struct btrfs_item));
3683
3684         /* update the item pointers */
3685         btrfs_init_map_token(&token, right);
3686         right_nritems += push_items;
3687         btrfs_set_header_nritems(right, right_nritems);
3688         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3689         for (i = 0; i < right_nritems; i++) {
3690                 item = btrfs_item_nr(i);
3691                 push_space -= btrfs_token_item_size(right, item, &token);
3692                 btrfs_set_token_item_offset(right, item, push_space, &token);
3693         }
3694
3695         left_nritems -= push_items;
3696         btrfs_set_header_nritems(left, left_nritems);
3697
3698         if (left_nritems)
3699                 btrfs_mark_buffer_dirty(left);
3700         else
3701                 btrfs_clean_tree_block(left);
3702
3703         btrfs_mark_buffer_dirty(right);
3704
3705         btrfs_item_key(right, &disk_key, 0);
3706         btrfs_set_node_key(upper, &disk_key, slot + 1);
3707         btrfs_mark_buffer_dirty(upper);
3708
3709         /* then fixup the leaf pointer in the path */
3710         if (path->slots[0] >= left_nritems) {
3711                 path->slots[0] -= left_nritems;
3712                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3713                         btrfs_clean_tree_block(path->nodes[0]);
3714                 btrfs_tree_unlock(path->nodes[0]);
3715                 free_extent_buffer(path->nodes[0]);
3716                 path->nodes[0] = right;
3717                 path->slots[1] += 1;
3718         } else {
3719                 btrfs_tree_unlock(right);
3720                 free_extent_buffer(right);
3721         }
3722         return 0;
3723
3724 out_unlock:
3725         btrfs_tree_unlock(right);
3726         free_extent_buffer(right);
3727         return 1;
3728 }
3729
3730 /*
3731  * push some data in the path leaf to the right, trying to free up at
3732  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3733  *
3734  * returns 1 if the push failed because the other node didn't have enough
3735  * room, 0 if everything worked out and < 0 if there were major errors.
3736  *
3737  * this will push starting from min_slot to the end of the leaf.  It won't
3738  * push any slot lower than min_slot
3739  */
3740 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3741                            *root, struct btrfs_path *path,
3742                            int min_data_size, int data_size,
3743                            int empty, u32 min_slot)
3744 {
3745         struct extent_buffer *left = path->nodes[0];
3746         struct extent_buffer *right;
3747         struct extent_buffer *upper;
3748         int slot;
3749         int free_space;
3750         u32 left_nritems;
3751         int ret;
3752
3753         if (!path->nodes[1])
3754                 return 1;
3755
3756         slot = path->slots[1];
3757         upper = path->nodes[1];
3758         if (slot >= btrfs_header_nritems(upper) - 1)
3759                 return 1;
3760
3761         btrfs_assert_tree_locked(path->nodes[1]);
3762
3763         right = btrfs_read_node_slot(upper, slot + 1);
3764         /*
3765          * slot + 1 is not valid or we fail to read the right node,
3766          * no big deal, just return.
3767          */
3768         if (IS_ERR(right))
3769                 return 1;
3770
3771         btrfs_tree_lock(right);
3772         btrfs_set_lock_blocking_write(right);
3773
3774         free_space = btrfs_leaf_free_space(right);
3775         if (free_space < data_size)
3776                 goto out_unlock;
3777
3778         /* cow and double check */
3779         ret = btrfs_cow_block(trans, root, right, upper,
3780                               slot + 1, &right);
3781         if (ret)
3782                 goto out_unlock;
3783
3784         free_space = btrfs_leaf_free_space(right);
3785         if (free_space < data_size)
3786                 goto out_unlock;
3787
3788         left_nritems = btrfs_header_nritems(left);
3789         if (left_nritems == 0)
3790                 goto out_unlock;
3791
3792         if (path->slots[0] == left_nritems && !empty) {
3793                 /* Key greater than all keys in the leaf, right neighbor has
3794                  * enough room for it and we're not emptying our leaf to delete
3795                  * it, therefore use right neighbor to insert the new item and
3796                  * no need to touch/dirty our left leaf. */
3797                 btrfs_tree_unlock(left);
3798                 free_extent_buffer(left);
3799                 path->nodes[0] = right;
3800                 path->slots[0] = 0;
3801                 path->slots[1]++;
3802                 return 0;
3803         }
3804
3805         return __push_leaf_right(path, min_data_size, empty,
3806                                 right, free_space, left_nritems, min_slot);
3807 out_unlock:
3808         btrfs_tree_unlock(right);
3809         free_extent_buffer(right);
3810         return 1;
3811 }
3812
3813 /*
3814  * push some data in the path leaf to the left, trying to free up at
3815  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3816  *
3817  * max_slot can put a limit on how far into the leaf we'll push items.  The
3818  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3819  * items
3820  */
3821 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3822                                      int empty, struct extent_buffer *left,
3823                                      int free_space, u32 right_nritems,
3824                                      u32 max_slot)
3825 {
3826         struct btrfs_fs_info *fs_info = left->fs_info;
3827         struct btrfs_disk_key disk_key;
3828         struct extent_buffer *right = path->nodes[0];
3829         int i;
3830         int push_space = 0;
3831         int push_items = 0;
3832         struct btrfs_item *item;
3833         u32 old_left_nritems;
3834         u32 nr;
3835         int ret = 0;
3836         u32 this_item_size;
3837         u32 old_left_item_size;
3838         struct btrfs_map_token token;
3839
3840         if (empty)
3841                 nr = min(right_nritems, max_slot);
3842         else
3843                 nr = min(right_nritems - 1, max_slot);
3844
3845         for (i = 0; i < nr; i++) {
3846                 item = btrfs_item_nr(i);
3847
3848                 if (!empty && push_items > 0) {
3849                         if (path->slots[0] < i)
3850                                 break;
3851                         if (path->slots[0] == i) {
3852                                 int space = btrfs_leaf_free_space(right);
3853
3854                                 if (space + push_space * 2 > free_space)
3855                                         break;
3856                         }
3857                 }
3858
3859                 if (path->slots[0] == i)
3860                         push_space += data_size;
3861
3862                 this_item_size = btrfs_item_size(right, item);
3863                 if (this_item_size + sizeof(*item) + push_space > free_space)
3864                         break;
3865
3866                 push_items++;
3867                 push_space += this_item_size + sizeof(*item);
3868         }
3869
3870         if (push_items == 0) {
3871                 ret = 1;
3872                 goto out;
3873         }
3874         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3875
3876         /* push data from right to left */
3877         copy_extent_buffer(left, right,
3878                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3879                            btrfs_item_nr_offset(0),
3880                            push_items * sizeof(struct btrfs_item));
3881
3882         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3883                      btrfs_item_offset_nr(right, push_items - 1);
3884
3885         copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3886                      leaf_data_end(left) - push_space,
3887                      BTRFS_LEAF_DATA_OFFSET +
3888                      btrfs_item_offset_nr(right, push_items - 1),
3889                      push_space);
3890         old_left_nritems = btrfs_header_nritems(left);
3891         BUG_ON(old_left_nritems <= 0);
3892
3893         btrfs_init_map_token(&token, left);
3894         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3895         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3896                 u32 ioff;
3897
3898                 item = btrfs_item_nr(i);
3899
3900                 ioff = btrfs_token_item_offset(left, item, &token);
3901                 btrfs_set_token_item_offset(left, item,
3902                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3903                       &token);
3904         }
3905         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3906
3907         /* fixup right node */
3908         if (push_items > right_nritems)
3909                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3910                        right_nritems);
3911
3912         if (push_items < right_nritems) {
3913                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3914                                                   leaf_data_end(right);
3915                 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3916                                       BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3917                                       BTRFS_LEAF_DATA_OFFSET +
3918                                       leaf_data_end(right), push_space);
3919
3920                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3921                               btrfs_item_nr_offset(push_items),
3922                              (btrfs_header_nritems(right) - push_items) *
3923                              sizeof(struct btrfs_item));
3924         }
3925
3926         btrfs_init_map_token(&token, right);
3927         right_nritems -= push_items;
3928         btrfs_set_header_nritems(right, right_nritems);
3929         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3930         for (i = 0; i < right_nritems; i++) {
3931                 item = btrfs_item_nr(i);
3932
3933                 push_space = push_space - btrfs_token_item_size(right,
3934                                                                 item, &token);
3935                 btrfs_set_token_item_offset(right, item, push_space, &token);
3936         }
3937
3938         btrfs_mark_buffer_dirty(left);
3939         if (right_nritems)
3940                 btrfs_mark_buffer_dirty(right);
3941         else
3942                 btrfs_clean_tree_block(right);
3943
3944         btrfs_item_key(right, &disk_key, 0);
3945         fixup_low_keys(path, &disk_key, 1);
3946
3947         /* then fixup the leaf pointer in the path */
3948         if (path->slots[0] < push_items) {
3949                 path->slots[0] += old_left_nritems;
3950                 btrfs_tree_unlock(path->nodes[0]);
3951                 free_extent_buffer(path->nodes[0]);
3952                 path->nodes[0] = left;
3953                 path->slots[1] -= 1;
3954         } else {
3955                 btrfs_tree_unlock(left);
3956                 free_extent_buffer(left);
3957                 path->slots[0] -= push_items;
3958         }
3959         BUG_ON(path->slots[0] < 0);
3960         return ret;
3961 out:
3962         btrfs_tree_unlock(left);
3963         free_extent_buffer(left);
3964         return ret;
3965 }
3966
3967 /*
3968  * push some data in the path leaf to the left, trying to free up at
3969  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3970  *
3971  * max_slot can put a limit on how far into the leaf we'll push items.  The
3972  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3973  * items
3974  */
3975 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3976                           *root, struct btrfs_path *path, int min_data_size,
3977                           int data_size, int empty, u32 max_slot)
3978 {
3979         struct extent_buffer *right = path->nodes[0];
3980         struct extent_buffer *left;
3981         int slot;
3982         int free_space;
3983         u32 right_nritems;
3984         int ret = 0;
3985
3986         slot = path->slots[1];
3987         if (slot == 0)
3988                 return 1;
3989         if (!path->nodes[1])
3990                 return 1;
3991
3992         right_nritems = btrfs_header_nritems(right);
3993         if (right_nritems == 0)
3994                 return 1;
3995
3996         btrfs_assert_tree_locked(path->nodes[1]);
3997
3998         left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3999         /*
4000          * slot - 1 is not valid or we fail to read the left node,
4001          * no big deal, just return.
4002          */
4003         if (IS_ERR(left))
4004                 return 1;
4005
4006         btrfs_tree_lock(left);
4007         btrfs_set_lock_blocking_write(left);
4008
4009         free_space = btrfs_leaf_free_space(left);
4010         if (free_space < data_size) {
4011                 ret = 1;
4012                 goto out;
4013         }
4014
4015         /* cow and double check */
4016         ret = btrfs_cow_block(trans, root, left,
4017                               path->nodes[1], slot - 1, &left);
4018         if (ret) {
4019                 /* we hit -ENOSPC, but it isn't fatal here */
4020                 if (ret == -ENOSPC)
4021                         ret = 1;
4022                 goto out;
4023         }
4024
4025         free_space = btrfs_leaf_free_space(left);
4026         if (free_space < data_size) {
4027                 ret = 1;
4028                 goto out;
4029         }
4030
4031         return __push_leaf_left(path, min_data_size,
4032                                empty, left, free_space, right_nritems,
4033                                max_slot);
4034 out:
4035         btrfs_tree_unlock(left);
4036         free_extent_buffer(left);
4037         return ret;
4038 }
4039
4040 /*
4041  * split the path's leaf in two, making sure there is at least data_size
4042  * available for the resulting leaf level of the path.
4043  */
4044 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4045                                     struct btrfs_path *path,
4046                                     struct extent_buffer *l,
4047                                     struct extent_buffer *right,
4048                                     int slot, int mid, int nritems)
4049 {
4050         struct btrfs_fs_info *fs_info = trans->fs_info;
4051         int data_copy_size;
4052         int rt_data_off;
4053         int i;
4054         struct btrfs_disk_key disk_key;
4055         struct btrfs_map_token token;
4056
4057         nritems = nritems - mid;
4058         btrfs_set_header_nritems(right, nritems);
4059         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4060
4061         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4062                            btrfs_item_nr_offset(mid),
4063                            nritems * sizeof(struct btrfs_item));
4064
4065         copy_extent_buffer(right, l,
4066                      BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4067                      data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4068                      leaf_data_end(l), data_copy_size);
4069
4070         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4071
4072         btrfs_init_map_token(&token, right);
4073         for (i = 0; i < nritems; i++) {
4074                 struct btrfs_item *item = btrfs_item_nr(i);
4075                 u32 ioff;
4076
4077                 ioff = btrfs_token_item_offset(right, item, &token);
4078                 btrfs_set_token_item_offset(right, item,
4079                                             ioff + rt_data_off, &token);
4080         }
4081
4082         btrfs_set_header_nritems(l, mid);
4083         btrfs_item_key(right, &disk_key, 0);
4084         insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4085
4086         btrfs_mark_buffer_dirty(right);
4087         btrfs_mark_buffer_dirty(l);
4088         BUG_ON(path->slots[0] != slot);
4089
4090         if (mid <= slot) {
4091                 btrfs_tree_unlock(path->nodes[0]);
4092                 free_extent_buffer(path->nodes[0]);
4093                 path->nodes[0] = right;
4094                 path->slots[0] -= mid;
4095                 path->slots[1] += 1;
4096         } else {
4097                 btrfs_tree_unlock(right);
4098                 free_extent_buffer(right);
4099         }
4100
4101         BUG_ON(path->slots[0] < 0);
4102 }
4103
4104 /*
4105  * double splits happen when we need to insert a big item in the middle
4106  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4107  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4108  *          A                 B                 C
4109  *
4110  * We avoid this by trying to push the items on either side of our target
4111  * into the adjacent leaves.  If all goes well we can avoid the double split
4112  * completely.
4113  */
4114 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4115                                           struct btrfs_root *root,
4116                                           struct btrfs_path *path,
4117                                           int data_size)
4118 {
4119         int ret;
4120         int progress = 0;
4121         int slot;
4122         u32 nritems;
4123         int space_needed = data_size;
4124
4125         slot = path->slots[0];
4126         if (slot < btrfs_header_nritems(path->nodes[0]))
4127                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4128
4129         /*
4130          * try to push all the items after our slot into the
4131          * right leaf
4132          */
4133         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4134         if (ret < 0)
4135                 return ret;
4136
4137         if (ret == 0)
4138                 progress++;
4139
4140         nritems = btrfs_header_nritems(path->nodes[0]);
4141         /*
4142          * our goal is to get our slot at the start or end of a leaf.  If
4143          * we've done so we're done
4144          */
4145         if (path->slots[0] == 0 || path->slots[0] == nritems)
4146                 return 0;
4147
4148         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4149                 return 0;
4150
4151         /* try to push all the items before our slot into the next leaf */
4152         slot = path->slots[0];
4153         space_needed = data_size;
4154         if (slot > 0)
4155                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4156         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4157         if (ret < 0)
4158                 return ret;
4159
4160         if (ret == 0)
4161                 progress++;
4162
4163         if (progress)
4164                 return 0;
4165         return 1;
4166 }
4167
4168 /*
4169  * split the path's leaf in two, making sure there is at least data_size
4170  * available for the resulting leaf level of the path.
4171  *
4172  * returns 0 if all went well and < 0 on failure.
4173  */
4174 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4175                                struct btrfs_root *root,
4176                                const struct btrfs_key *ins_key,
4177                                struct btrfs_path *path, int data_size,
4178                                int extend)
4179 {
4180         struct btrfs_disk_key disk_key;
4181         struct extent_buffer *l;
4182         u32 nritems;
4183         int mid;
4184         int slot;
4185         struct extent_buffer *right;
4186         struct btrfs_fs_info *fs_info = root->fs_info;
4187         int ret = 0;
4188         int wret;
4189         int split;
4190         int num_doubles = 0;
4191         int tried_avoid_double = 0;
4192
4193         l = path->nodes[0];
4194         slot = path->slots[0];
4195         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4196             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4197                 return -EOVERFLOW;
4198
4199         /* first try to make some room by pushing left and right */
4200         if (data_size && path->nodes[1]) {
4201                 int space_needed = data_size;
4202
4203                 if (slot < btrfs_header_nritems(l))
4204                         space_needed -= btrfs_leaf_free_space(l);
4205
4206                 wret = push_leaf_right(trans, root, path, space_needed,
4207                                        space_needed, 0, 0);
4208                 if (wret < 0)
4209                         return wret;
4210                 if (wret) {
4211                         space_needed = data_size;
4212                         if (slot > 0)
4213                                 space_needed -= btrfs_leaf_free_space(l);
4214                         wret = push_leaf_left(trans, root, path, space_needed,
4215                                               space_needed, 0, (u32)-1);
4216                         if (wret < 0)
4217                                 return wret;
4218                 }
4219                 l = path->nodes[0];
4220
4221                 /* did the pushes work? */
4222                 if (btrfs_leaf_free_space(l) >= data_size)
4223                         return 0;
4224         }
4225
4226         if (!path->nodes[1]) {
4227                 ret = insert_new_root(trans, root, path, 1);
4228                 if (ret)
4229                         return ret;
4230         }
4231 again:
4232         split = 1;
4233         l = path->nodes[0];
4234         slot = path->slots[0];
4235         nritems = btrfs_header_nritems(l);
4236         mid = (nritems + 1) / 2;
4237
4238         if (mid <= slot) {
4239                 if (nritems == 1 ||
4240                     leaf_space_used(l, mid, nritems - mid) + data_size >
4241                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
4242                         if (slot >= nritems) {
4243                                 split = 0;
4244                         } else {
4245                                 mid = slot;
4246                                 if (mid != nritems &&
4247                                     leaf_space_used(l, mid, nritems - mid) +
4248                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4249                                         if (data_size && !tried_avoid_double)
4250                                                 goto push_for_double;
4251                                         split = 2;
4252                                 }
4253                         }
4254                 }
4255         } else {
4256                 if (leaf_space_used(l, 0, mid) + data_size >
4257                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
4258                         if (!extend && data_size && slot == 0) {
4259                                 split = 0;
4260                         } else if ((extend || !data_size) && slot == 0) {
4261                                 mid = 1;
4262                         } else {
4263                                 mid = slot;
4264                                 if (mid != nritems &&
4265                                     leaf_space_used(l, mid, nritems - mid) +
4266                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4267                                         if (data_size && !tried_avoid_double)
4268                                                 goto push_for_double;
4269                                         split = 2;
4270                                 }
4271                         }
4272                 }
4273         }
4274
4275         if (split == 0)
4276                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4277         else
4278                 btrfs_item_key(l, &disk_key, mid);
4279
4280         right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4281                                              l->start, 0);
4282         if (IS_ERR(right))
4283                 return PTR_ERR(right);
4284
4285         root_add_used(root, fs_info->nodesize);
4286
4287         if (split == 0) {
4288                 if (mid <= slot) {
4289                         btrfs_set_header_nritems(right, 0);
4290                         insert_ptr(trans, path, &disk_key,
4291                                    right->start, path->slots[1] + 1, 1);
4292                         btrfs_tree_unlock(path->nodes[0]);
4293                         free_extent_buffer(path->nodes[0]);
4294                         path->nodes[0] = right;
4295                         path->slots[0] = 0;
4296                         path->slots[1] += 1;
4297                 } else {
4298                         btrfs_set_header_nritems(right, 0);
4299                         insert_ptr(trans, path, &disk_key,
4300                                    right->start, path->slots[1], 1);
4301                         btrfs_tree_unlock(path->nodes[0]);
4302                         free_extent_buffer(path->nodes[0]);
4303                         path->nodes[0] = right;
4304                         path->slots[0] = 0;
4305                         if (path->slots[1] == 0)
4306                                 fixup_low_keys(path, &disk_key, 1);
4307                 }
4308                 /*
4309                  * We create a new leaf 'right' for the required ins_len and
4310                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4311                  * the content of ins_len to 'right'.
4312                  */
4313                 return ret;
4314         }
4315
4316         copy_for_split(trans, path, l, right, slot, mid, nritems);
4317
4318         if (split == 2) {
4319                 BUG_ON(num_doubles != 0);
4320                 num_doubles++;
4321                 goto again;
4322         }
4323
4324         return 0;
4325
4326 push_for_double:
4327         push_for_double_split(trans, root, path, data_size);
4328         tried_avoid_double = 1;
4329         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4330                 return 0;
4331         goto again;
4332 }
4333
4334 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4335                                          struct btrfs_root *root,
4336                                          struct btrfs_path *path, int ins_len)
4337 {
4338         struct btrfs_key key;
4339         struct extent_buffer *leaf;
4340         struct btrfs_file_extent_item *fi;
4341         u64 extent_len = 0;
4342         u32 item_size;
4343         int ret;
4344
4345         leaf = path->nodes[0];
4346         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4347
4348         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4349                key.type != BTRFS_EXTENT_CSUM_KEY);
4350
4351         if (btrfs_leaf_free_space(leaf) >= ins_len)
4352                 return 0;
4353
4354         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4355         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4356                 fi = btrfs_item_ptr(leaf, path->slots[0],
4357                                     struct btrfs_file_extent_item);
4358                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4359         }
4360         btrfs_release_path(path);
4361
4362         path->keep_locks = 1;
4363         path->search_for_split = 1;
4364         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4365         path->search_for_split = 0;
4366         if (ret > 0)
4367                 ret = -EAGAIN;
4368         if (ret < 0)
4369                 goto err;
4370
4371         ret = -EAGAIN;
4372         leaf = path->nodes[0];
4373         /* if our item isn't there, return now */
4374         if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4375                 goto err;
4376
4377         /* the leaf has  changed, it now has room.  return now */
4378         if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4379                 goto err;
4380
4381         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4382                 fi = btrfs_item_ptr(leaf, path->slots[0],
4383                                     struct btrfs_file_extent_item);
4384                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4385                         goto err;
4386         }
4387
4388         btrfs_set_path_blocking(path);
4389         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4390         if (ret)
4391                 goto err;
4392
4393         path->keep_locks = 0;
4394         btrfs_unlock_up_safe(path, 1);
4395         return 0;
4396 err:
4397         path->keep_locks = 0;
4398         return ret;
4399 }
4400
4401 static noinline int split_item(struct btrfs_path *path,
4402                                const struct btrfs_key *new_key,
4403                                unsigned long split_offset)
4404 {
4405         struct extent_buffer *leaf;
4406         struct btrfs_item *item;
4407         struct btrfs_item *new_item;
4408         int slot;
4409         char *buf;
4410         u32 nritems;
4411         u32 item_size;
4412         u32 orig_offset;
4413         struct btrfs_disk_key disk_key;
4414
4415         leaf = path->nodes[0];
4416         BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4417
4418         btrfs_set_path_blocking(path);
4419
4420         item = btrfs_item_nr(path->slots[0]);
4421         orig_offset = btrfs_item_offset(leaf, item);
4422         item_size = btrfs_item_size(leaf, item);
4423
4424         buf = kmalloc(item_size, GFP_NOFS);
4425         if (!buf)
4426                 return -ENOMEM;
4427
4428         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4429                             path->slots[0]), item_size);
4430
4431         slot = path->slots[0] + 1;
4432         nritems = btrfs_header_nritems(leaf);
4433         if (slot != nritems) {
4434                 /* shift the items */
4435                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4436                                 btrfs_item_nr_offset(slot),
4437                                 (nritems - slot) * sizeof(struct btrfs_item));
4438         }
4439
4440         btrfs_cpu_key_to_disk(&disk_key, new_key);
4441         btrfs_set_item_key(leaf, &disk_key, slot);
4442
4443         new_item = btrfs_item_nr(slot);
4444
4445         btrfs_set_item_offset(leaf, new_item, orig_offset);
4446         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4447
4448         btrfs_set_item_offset(leaf, item,
4449                               orig_offset + item_size - split_offset);
4450         btrfs_set_item_size(leaf, item, split_offset);
4451
4452         btrfs_set_header_nritems(leaf, nritems + 1);
4453
4454         /* write the data for the start of the original item */
4455         write_extent_buffer(leaf, buf,
4456                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4457                             split_offset);
4458
4459         /* write the data for the new item */
4460         write_extent_buffer(leaf, buf + split_offset,
4461                             btrfs_item_ptr_offset(leaf, slot),
4462                             item_size - split_offset);
4463         btrfs_mark_buffer_dirty(leaf);
4464
4465         BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4466         kfree(buf);
4467         return 0;
4468 }
4469
4470 /*
4471  * This function splits a single item into two items,
4472  * giving 'new_key' to the new item and splitting the
4473  * old one at split_offset (from the start of the item).
4474  *
4475  * The path may be released by this operation.  After
4476  * the split, the path is pointing to the old item.  The
4477  * new item is going to be in the same node as the old one.
4478  *
4479  * Note, the item being split must be smaller enough to live alone on
4480  * a tree block with room for one extra struct btrfs_item
4481  *
4482  * This allows us to split the item in place, keeping a lock on the
4483  * leaf the entire time.
4484  */
4485 int btrfs_split_item(struct btrfs_trans_handle *trans,
4486                      struct btrfs_root *root,
4487                      struct btrfs_path *path,
4488                      const struct btrfs_key *new_key,
4489                      unsigned long split_offset)
4490 {
4491         int ret;
4492         ret = setup_leaf_for_split(trans, root, path,
4493                                    sizeof(struct btrfs_item));
4494         if (ret)
4495                 return ret;
4496
4497         ret = split_item(path, new_key, split_offset);
4498         return ret;
4499 }
4500
4501 /*
4502  * This function duplicate a item, giving 'new_key' to the new item.
4503  * It guarantees both items live in the same tree leaf and the new item
4504  * is contiguous with the original item.
4505  *
4506  * This allows us to split file extent in place, keeping a lock on the
4507  * leaf the entire time.
4508  */
4509 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4510                          struct btrfs_root *root,
4511                          struct btrfs_path *path,
4512                          const struct btrfs_key *new_key)
4513 {
4514         struct extent_buffer *leaf;
4515         int ret;
4516         u32 item_size;
4517
4518         leaf = path->nodes[0];
4519         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4520         ret = setup_leaf_for_split(trans, root, path,
4521                                    item_size + sizeof(struct btrfs_item));
4522         if (ret)
4523                 return ret;
4524
4525         path->slots[0]++;
4526         setup_items_for_insert(root, path, new_key, &item_size,
4527                                item_size, item_size +
4528                                sizeof(struct btrfs_item), 1);
4529         leaf = path->nodes[0];
4530         memcpy_extent_buffer(leaf,
4531                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4532                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4533                              item_size);
4534         return 0;
4535 }
4536
4537 /*
4538  * make the item pointed to by the path smaller.  new_size indicates
4539  * how small to make it, and from_end tells us if we just chop bytes
4540  * off the end of the item or if we shift the item to chop bytes off
4541  * the front.
4542  */
4543 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4544 {
4545         int slot;
4546         struct extent_buffer *leaf;
4547         struct btrfs_item *item;
4548         u32 nritems;
4549         unsigned int data_end;
4550         unsigned int old_data_start;
4551         unsigned int old_size;
4552         unsigned int size_diff;
4553         int i;
4554         struct btrfs_map_token token;
4555
4556         leaf = path->nodes[0];
4557         slot = path->slots[0];
4558
4559         old_size = btrfs_item_size_nr(leaf, slot);
4560         if (old_size == new_size)
4561                 return;
4562
4563         nritems = btrfs_header_nritems(leaf);
4564         data_end = leaf_data_end(leaf);
4565
4566         old_data_start = btrfs_item_offset_nr(leaf, slot);
4567
4568         size_diff = old_size - new_size;
4569
4570         BUG_ON(slot < 0);
4571         BUG_ON(slot >= nritems);
4572
4573         /*
4574          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4575          */
4576         /* first correct the data pointers */
4577         btrfs_init_map_token(&token, leaf);
4578         for (i = slot; i < nritems; i++) {
4579                 u32 ioff;
4580                 item = btrfs_item_nr(i);
4581
4582                 ioff = btrfs_token_item_offset(leaf, item, &token);
4583                 btrfs_set_token_item_offset(leaf, item,
4584                                             ioff + size_diff, &token);
4585         }
4586
4587         /* shift the data */
4588         if (from_end) {
4589                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4590                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4591                               data_end, old_data_start + new_size - data_end);
4592         } else {
4593                 struct btrfs_disk_key disk_key;
4594                 u64 offset;
4595
4596                 btrfs_item_key(leaf, &disk_key, slot);
4597
4598                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4599                         unsigned long ptr;
4600                         struct btrfs_file_extent_item *fi;
4601
4602                         fi = btrfs_item_ptr(leaf, slot,
4603                                             struct btrfs_file_extent_item);
4604                         fi = (struct btrfs_file_extent_item *)(
4605                              (unsigned long)fi - size_diff);
4606
4607                         if (btrfs_file_extent_type(leaf, fi) ==
4608                             BTRFS_FILE_EXTENT_INLINE) {
4609                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4610                                 memmove_extent_buffer(leaf, ptr,
4611                                       (unsigned long)fi,
4612                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4613                         }
4614                 }
4615
4616                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4617                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4618                               data_end, old_data_start - data_end);
4619
4620                 offset = btrfs_disk_key_offset(&disk_key);
4621                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4622                 btrfs_set_item_key(leaf, &disk_key, slot);
4623                 if (slot == 0)
4624                         fixup_low_keys(path, &disk_key, 1);
4625         }
4626
4627         item = btrfs_item_nr(slot);
4628         btrfs_set_item_size(leaf, item, new_size);
4629         btrfs_mark_buffer_dirty(leaf);
4630
4631         if (btrfs_leaf_free_space(leaf) < 0) {
4632                 btrfs_print_leaf(leaf);
4633                 BUG();
4634         }
4635 }
4636
4637 /*
4638  * make the item pointed to by the path bigger, data_size is the added size.
4639  */
4640 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4641 {
4642         int slot;
4643         struct extent_buffer *leaf;
4644         struct btrfs_item *item;
4645         u32 nritems;
4646         unsigned int data_end;
4647         unsigned int old_data;
4648         unsigned int old_size;
4649         int i;
4650         struct btrfs_map_token token;
4651
4652         leaf = path->nodes[0];
4653
4654         nritems = btrfs_header_nritems(leaf);
4655         data_end = leaf_data_end(leaf);
4656
4657         if (btrfs_leaf_free_space(leaf) < data_size) {
4658                 btrfs_print_leaf(leaf);
4659                 BUG();
4660         }
4661         slot = path->slots[0];
4662         old_data = btrfs_item_end_nr(leaf, slot);
4663
4664         BUG_ON(slot < 0);
4665         if (slot >= nritems) {
4666                 btrfs_print_leaf(leaf);
4667                 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4668                            slot, nritems);
4669                 BUG();
4670         }
4671
4672         /*
4673          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4674          */
4675         /* first correct the data pointers */
4676         btrfs_init_map_token(&token, leaf);
4677         for (i = slot; i < nritems; i++) {
4678                 u32 ioff;
4679                 item = btrfs_item_nr(i);
4680
4681                 ioff = btrfs_token_item_offset(leaf, item, &token);
4682                 btrfs_set_token_item_offset(leaf, item,
4683                                             ioff - data_size, &token);
4684         }
4685
4686         /* shift the data */
4687         memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4688                       data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4689                       data_end, old_data - data_end);
4690
4691         data_end = old_data;
4692         old_size = btrfs_item_size_nr(leaf, slot);
4693         item = btrfs_item_nr(slot);
4694         btrfs_set_item_size(leaf, item, old_size + data_size);
4695         btrfs_mark_buffer_dirty(leaf);
4696
4697         if (btrfs_leaf_free_space(leaf) < 0) {
4698                 btrfs_print_leaf(leaf);
4699                 BUG();
4700         }
4701 }
4702
4703 /*
4704  * this is a helper for btrfs_insert_empty_items, the main goal here is
4705  * to save stack depth by doing the bulk of the work in a function
4706  * that doesn't call btrfs_search_slot
4707  */
4708 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4709                             const struct btrfs_key *cpu_key, u32 *data_size,
4710                             u32 total_data, u32 total_size, int nr)
4711 {
4712         struct btrfs_fs_info *fs_info = root->fs_info;
4713         struct btrfs_item *item;
4714         int i;
4715         u32 nritems;
4716         unsigned int data_end;
4717         struct btrfs_disk_key disk_key;
4718         struct extent_buffer *leaf;
4719         int slot;
4720         struct btrfs_map_token token;
4721
4722         if (path->slots[0] == 0) {
4723                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4724                 fixup_low_keys(path, &disk_key, 1);
4725         }
4726         btrfs_unlock_up_safe(path, 1);
4727
4728         leaf = path->nodes[0];
4729         slot = path->slots[0];
4730
4731         nritems = btrfs_header_nritems(leaf);
4732         data_end = leaf_data_end(leaf);
4733
4734         if (btrfs_leaf_free_space(leaf) < total_size) {
4735                 btrfs_print_leaf(leaf);
4736                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4737                            total_size, btrfs_leaf_free_space(leaf));
4738                 BUG();
4739         }
4740
4741         btrfs_init_map_token(&token, leaf);
4742         if (slot != nritems) {
4743                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4744
4745                 if (old_data < data_end) {
4746                         btrfs_print_leaf(leaf);
4747                         btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4748                                    slot, old_data, data_end);
4749                         BUG();
4750                 }
4751                 /*
4752                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4753                  */
4754                 /* first correct the data pointers */
4755                 for (i = slot; i < nritems; i++) {
4756                         u32 ioff;
4757
4758                         item = btrfs_item_nr(i);
4759                         ioff = btrfs_token_item_offset(leaf, item, &token);
4760                         btrfs_set_token_item_offset(leaf, item,
4761                                                     ioff - total_data, &token);
4762                 }
4763                 /* shift the items */
4764                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4765                               btrfs_item_nr_offset(slot),
4766                               (nritems - slot) * sizeof(struct btrfs_item));
4767
4768                 /* shift the data */
4769                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4770                               data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4771                               data_end, old_data - data_end);
4772                 data_end = old_data;
4773         }
4774
4775         /* setup the item for the new data */
4776         for (i = 0; i < nr; i++) {
4777                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4778                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4779                 item = btrfs_item_nr(slot + i);
4780                 btrfs_set_token_item_offset(leaf, item,
4781                                             data_end - data_size[i], &token);
4782                 data_end -= data_size[i];
4783                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4784         }
4785
4786         btrfs_set_header_nritems(leaf, nritems + nr);
4787         btrfs_mark_buffer_dirty(leaf);
4788
4789         if (btrfs_leaf_free_space(leaf) < 0) {
4790                 btrfs_print_leaf(leaf);
4791                 BUG();
4792         }
4793 }
4794
4795 /*
4796  * Given a key and some data, insert items into the tree.
4797  * This does all the path init required, making room in the tree if needed.
4798  */
4799 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4800                             struct btrfs_root *root,
4801                             struct btrfs_path *path,
4802                             const struct btrfs_key *cpu_key, u32 *data_size,
4803                             int nr)
4804 {
4805         int ret = 0;
4806         int slot;
4807         int i;
4808         u32 total_size = 0;
4809         u32 total_data = 0;
4810
4811         for (i = 0; i < nr; i++)
4812                 total_data += data_size[i];
4813
4814         total_size = total_data + (nr * sizeof(struct btrfs_item));
4815         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4816         if (ret == 0)
4817                 return -EEXIST;
4818         if (ret < 0)
4819                 return ret;
4820
4821         slot = path->slots[0];
4822         BUG_ON(slot < 0);
4823
4824         setup_items_for_insert(root, path, cpu_key, data_size,
4825                                total_data, total_size, nr);
4826         return 0;
4827 }
4828
4829 /*
4830  * Given a key and some data, insert an item into the tree.
4831  * This does all the path init required, making room in the tree if needed.
4832  */
4833 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4834                       const struct btrfs_key *cpu_key, void *data,
4835                       u32 data_size)
4836 {
4837         int ret = 0;
4838         struct btrfs_path *path;
4839         struct extent_buffer *leaf;
4840         unsigned long ptr;
4841
4842         path = btrfs_alloc_path();
4843         if (!path)
4844                 return -ENOMEM;
4845         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4846         if (!ret) {
4847                 leaf = path->nodes[0];
4848                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4849                 write_extent_buffer(leaf, data, ptr, data_size);
4850                 btrfs_mark_buffer_dirty(leaf);
4851         }
4852         btrfs_free_path(path);
4853         return ret;
4854 }
4855
4856 /*
4857  * delete the pointer from a given node.
4858  *
4859  * the tree should have been previously balanced so the deletion does not
4860  * empty a node.
4861  */
4862 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4863                     int level, int slot)
4864 {
4865         struct extent_buffer *parent = path->nodes[level];
4866         u32 nritems;
4867         int ret;
4868
4869         nritems = btrfs_header_nritems(parent);
4870         if (slot != nritems - 1) {
4871                 if (level) {
4872                         ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4873                                         nritems - slot - 1);
4874                         BUG_ON(ret < 0);
4875                 }
4876                 memmove_extent_buffer(parent,
4877                               btrfs_node_key_ptr_offset(slot),
4878                               btrfs_node_key_ptr_offset(slot + 1),
4879                               sizeof(struct btrfs_key_ptr) *
4880                               (nritems - slot - 1));
4881         } else if (level) {
4882                 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4883                                 GFP_NOFS);
4884                 BUG_ON(ret < 0);
4885         }
4886
4887         nritems--;
4888         btrfs_set_header_nritems(parent, nritems);
4889         if (nritems == 0 && parent == root->node) {
4890                 BUG_ON(btrfs_header_level(root->node) != 1);
4891                 /* just turn the root into a leaf and break */
4892                 btrfs_set_header_level(root->node, 0);
4893         } else if (slot == 0) {
4894                 struct btrfs_disk_key disk_key;
4895
4896                 btrfs_node_key(parent, &disk_key, 0);
4897                 fixup_low_keys(path, &disk_key, level + 1);
4898         }
4899         btrfs_mark_buffer_dirty(parent);
4900 }
4901
4902 /*
4903  * a helper function to delete the leaf pointed to by path->slots[1] and
4904  * path->nodes[1].
4905  *
4906  * This deletes the pointer in path->nodes[1] and frees the leaf
4907  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4908  *
4909  * The path must have already been setup for deleting the leaf, including
4910  * all the proper balancing.  path->nodes[1] must be locked.
4911  */
4912 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4913                                     struct btrfs_root *root,
4914                                     struct btrfs_path *path,
4915                                     struct extent_buffer *leaf)
4916 {
4917         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4918         del_ptr(root, path, 1, path->slots[1]);
4919
4920         /*
4921          * btrfs_free_extent is expensive, we want to make sure we
4922          * aren't holding any locks when we call it
4923          */
4924         btrfs_unlock_up_safe(path, 0);
4925
4926         root_sub_used(root, leaf->len);
4927
4928         atomic_inc(&leaf->refs);
4929         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4930         free_extent_buffer_stale(leaf);
4931 }
4932 /*
4933  * delete the item at the leaf level in path.  If that empties
4934  * the leaf, remove it from the tree
4935  */
4936 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4937                     struct btrfs_path *path, int slot, int nr)
4938 {
4939         struct btrfs_fs_info *fs_info = root->fs_info;
4940         struct extent_buffer *leaf;
4941         struct btrfs_item *item;
4942         u32 last_off;
4943         u32 dsize = 0;
4944         int ret = 0;
4945         int wret;
4946         int i;
4947         u32 nritems;
4948
4949         leaf = path->nodes[0];
4950         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4951
4952         for (i = 0; i < nr; i++)
4953                 dsize += btrfs_item_size_nr(leaf, slot + i);
4954
4955         nritems = btrfs_header_nritems(leaf);
4956
4957         if (slot + nr != nritems) {
4958                 int data_end = leaf_data_end(leaf);
4959                 struct btrfs_map_token token;
4960
4961                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4962                               data_end + dsize,
4963                               BTRFS_LEAF_DATA_OFFSET + data_end,
4964                               last_off - data_end);
4965
4966                 btrfs_init_map_token(&token, leaf);
4967                 for (i = slot + nr; i < nritems; i++) {
4968                         u32 ioff;
4969
4970                         item = btrfs_item_nr(i);
4971                         ioff = btrfs_token_item_offset(leaf, item, &token);
4972                         btrfs_set_token_item_offset(leaf, item,
4973                                                     ioff + dsize, &token);
4974                 }
4975
4976                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4977                               btrfs_item_nr_offset(slot + nr),
4978                               sizeof(struct btrfs_item) *
4979                               (nritems - slot - nr));
4980         }
4981         btrfs_set_header_nritems(leaf, nritems - nr);
4982         nritems -= nr;
4983
4984         /* delete the leaf if we've emptied it */
4985         if (nritems == 0) {
4986                 if (leaf == root->node) {
4987                         btrfs_set_header_level(leaf, 0);
4988                 } else {
4989                         btrfs_set_path_blocking(path);
4990                         btrfs_clean_tree_block(leaf);
4991                         btrfs_del_leaf(trans, root, path, leaf);
4992                 }
4993         } else {
4994                 int used = leaf_space_used(leaf, 0, nritems);
4995                 if (slot == 0) {
4996                         struct btrfs_disk_key disk_key;
4997
4998                         btrfs_item_key(leaf, &disk_key, 0);
4999                         fixup_low_keys(path, &disk_key, 1);
5000                 }
5001
5002                 /* delete the leaf if it is mostly empty */
5003                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5004                         /* push_leaf_left fixes the path.
5005                          * make sure the path still points to our leaf
5006                          * for possible call to del_ptr below
5007                          */
5008                         slot = path->slots[1];
5009                         atomic_inc(&leaf->refs);
5010
5011                         btrfs_set_path_blocking(path);
5012                         wret = push_leaf_left(trans, root, path, 1, 1,
5013                                               1, (u32)-1);
5014                         if (wret < 0 && wret != -ENOSPC)
5015                                 ret = wret;
5016
5017                         if (path->nodes[0] == leaf &&
5018                             btrfs_header_nritems(leaf)) {
5019                                 wret = push_leaf_right(trans, root, path, 1,
5020                                                        1, 1, 0);
5021                                 if (wret < 0 && wret != -ENOSPC)
5022                                         ret = wret;
5023                         }
5024
5025                         if (btrfs_header_nritems(leaf) == 0) {
5026                                 path->slots[1] = slot;
5027                                 btrfs_del_leaf(trans, root, path, leaf);
5028                                 free_extent_buffer(leaf);
5029                                 ret = 0;
5030                         } else {
5031                                 /* if we're still in the path, make sure
5032                                  * we're dirty.  Otherwise, one of the
5033                                  * push_leaf functions must have already
5034                                  * dirtied this buffer
5035                                  */
5036                                 if (path->nodes[0] == leaf)
5037                                         btrfs_mark_buffer_dirty(leaf);
5038                                 free_extent_buffer(leaf);
5039                         }
5040                 } else {
5041                         btrfs_mark_buffer_dirty(leaf);
5042                 }
5043         }
5044         return ret;
5045 }
5046
5047 /*
5048  * search the tree again to find a leaf with lesser keys
5049  * returns 0 if it found something or 1 if there are no lesser leaves.
5050  * returns < 0 on io errors.
5051  *
5052  * This may release the path, and so you may lose any locks held at the
5053  * time you call it.
5054  */
5055 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5056 {
5057         struct btrfs_key key;
5058         struct btrfs_disk_key found_key;
5059         int ret;
5060
5061         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5062
5063         if (key.offset > 0) {
5064                 key.offset--;
5065         } else if (key.type > 0) {
5066                 key.type--;
5067                 key.offset = (u64)-1;
5068         } else if (key.objectid > 0) {
5069                 key.objectid--;
5070                 key.type = (u8)-1;
5071                 key.offset = (u64)-1;
5072         } else {
5073                 return 1;
5074         }
5075
5076         btrfs_release_path(path);
5077         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5078         if (ret < 0)
5079                 return ret;
5080         btrfs_item_key(path->nodes[0], &found_key, 0);
5081         ret = comp_keys(&found_key, &key);
5082         /*
5083          * We might have had an item with the previous key in the tree right
5084          * before we released our path. And after we released our path, that
5085          * item might have been pushed to the first slot (0) of the leaf we
5086          * were holding due to a tree balance. Alternatively, an item with the
5087          * previous key can exist as the only element of a leaf (big fat item).
5088          * Therefore account for these 2 cases, so that our callers (like
5089          * btrfs_previous_item) don't miss an existing item with a key matching
5090          * the previous key we computed above.
5091          */
5092         if (ret <= 0)
5093                 return 0;
5094         return 1;
5095 }
5096
5097 /*
5098  * A helper function to walk down the tree starting at min_key, and looking
5099  * for nodes or leaves that are have a minimum transaction id.
5100  * This is used by the btree defrag code, and tree logging
5101  *
5102  * This does not cow, but it does stuff the starting key it finds back
5103  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5104  * key and get a writable path.
5105  *
5106  * This honors path->lowest_level to prevent descent past a given level
5107  * of the tree.
5108  *
5109  * min_trans indicates the oldest transaction that you are interested
5110  * in walking through.  Any nodes or leaves older than min_trans are
5111  * skipped over (without reading them).
5112  *
5113  * returns zero if something useful was found, < 0 on error and 1 if there
5114  * was nothing in the tree that matched the search criteria.
5115  */
5116 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5117                          struct btrfs_path *path,
5118                          u64 min_trans)
5119 {
5120         struct extent_buffer *cur;
5121         struct btrfs_key found_key;
5122         int slot;
5123         int sret;
5124         u32 nritems;
5125         int level;
5126         int ret = 1;
5127         int keep_locks = path->keep_locks;
5128
5129         path->keep_locks = 1;
5130 again:
5131         cur = btrfs_read_lock_root_node(root);
5132         level = btrfs_header_level(cur);
5133         WARN_ON(path->nodes[level]);
5134         path->nodes[level] = cur;
5135         path->locks[level] = BTRFS_READ_LOCK;
5136
5137         if (btrfs_header_generation(cur) < min_trans) {
5138                 ret = 1;
5139                 goto out;
5140         }
5141         while (1) {
5142                 nritems = btrfs_header_nritems(cur);
5143                 level = btrfs_header_level(cur);
5144                 sret = btrfs_bin_search(cur, min_key, level, &slot);
5145                 if (sret < 0) {
5146                         ret = sret;
5147                         goto out;
5148                 }
5149
5150                 /* at the lowest level, we're done, setup the path and exit */
5151                 if (level == path->lowest_level) {
5152                         if (slot >= nritems)
5153                                 goto find_next_key;
5154                         ret = 0;
5155                         path->slots[level] = slot;
5156                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5157                         goto out;
5158                 }
5159                 if (sret && slot > 0)
5160                         slot--;
5161                 /*
5162                  * check this node pointer against the min_trans parameters.
5163                  * If it is too old, old, skip to the next one.
5164                  */
5165                 while (slot < nritems) {
5166                         u64 gen;
5167
5168                         gen = btrfs_node_ptr_generation(cur, slot);
5169                         if (gen < min_trans) {
5170                                 slot++;
5171                                 continue;
5172                         }
5173                         break;
5174                 }
5175 find_next_key:
5176                 /*
5177                  * we didn't find a candidate key in this node, walk forward
5178                  * and find another one
5179                  */
5180                 if (slot >= nritems) {
5181                         path->slots[level] = slot;
5182                         btrfs_set_path_blocking(path);
5183                         sret = btrfs_find_next_key(root, path, min_key, level,
5184                                                   min_trans);
5185                         if (sret == 0) {
5186                                 btrfs_release_path(path);
5187                                 goto again;
5188                         } else {
5189                                 goto out;
5190                         }
5191                 }
5192                 /* save our key for returning back */
5193                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5194                 path->slots[level] = slot;
5195                 if (level == path->lowest_level) {
5196                         ret = 0;
5197                         goto out;
5198                 }
5199                 btrfs_set_path_blocking(path);
5200                 cur = btrfs_read_node_slot(cur, slot);
5201                 if (IS_ERR(cur)) {
5202                         ret = PTR_ERR(cur);
5203                         goto out;
5204                 }
5205
5206                 btrfs_tree_read_lock(cur);
5207
5208                 path->locks[level - 1] = BTRFS_READ_LOCK;
5209                 path->nodes[level - 1] = cur;
5210                 unlock_up(path, level, 1, 0, NULL);
5211         }
5212 out:
5213         path->keep_locks = keep_locks;
5214         if (ret == 0) {
5215                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5216                 btrfs_set_path_blocking(path);
5217                 memcpy(min_key, &found_key, sizeof(found_key));
5218         }
5219         return ret;
5220 }
5221
5222 /*
5223  * this is similar to btrfs_next_leaf, but does not try to preserve
5224  * and fixup the path.  It looks for and returns the next key in the
5225  * tree based on the current path and the min_trans parameters.
5226  *
5227  * 0 is returned if another key is found, < 0 if there are any errors
5228  * and 1 is returned if there are no higher keys in the tree
5229  *
5230  * path->keep_locks should be set to 1 on the search made before
5231  * calling this function.
5232  */
5233 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5234                         struct btrfs_key *key, int level, u64 min_trans)
5235 {
5236         int slot;
5237         struct extent_buffer *c;
5238
5239         WARN_ON(!path->keep_locks && !path->skip_locking);
5240         while (level < BTRFS_MAX_LEVEL) {
5241                 if (!path->nodes[level])
5242                         return 1;
5243
5244                 slot = path->slots[level] + 1;
5245                 c = path->nodes[level];
5246 next:
5247                 if (slot >= btrfs_header_nritems(c)) {
5248                         int ret;
5249                         int orig_lowest;
5250                         struct btrfs_key cur_key;
5251                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5252                             !path->nodes[level + 1])
5253                                 return 1;
5254
5255                         if (path->locks[level + 1] || path->skip_locking) {
5256                                 level++;
5257                                 continue;
5258                         }
5259
5260                         slot = btrfs_header_nritems(c) - 1;
5261                         if (level == 0)
5262                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5263                         else
5264                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5265
5266                         orig_lowest = path->lowest_level;
5267                         btrfs_release_path(path);
5268                         path->lowest_level = level;
5269                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5270                                                 0, 0);
5271                         path->lowest_level = orig_lowest;
5272                         if (ret < 0)
5273                                 return ret;
5274
5275                         c = path->nodes[level];
5276                         slot = path->slots[level];
5277                         if (ret == 0)
5278                                 slot++;
5279                         goto next;
5280                 }
5281
5282                 if (level == 0)
5283                         btrfs_item_key_to_cpu(c, key, slot);
5284                 else {
5285                         u64 gen = btrfs_node_ptr_generation(c, slot);
5286
5287                         if (gen < min_trans) {
5288                                 slot++;
5289                                 goto next;
5290                         }
5291                         btrfs_node_key_to_cpu(c, key, slot);
5292                 }
5293                 return 0;
5294         }
5295         return 1;
5296 }
5297
5298 /*
5299  * search the tree again to find a leaf with greater keys
5300  * returns 0 if it found something or 1 if there are no greater leaves.
5301  * returns < 0 on io errors.
5302  */
5303 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5304 {
5305         return btrfs_next_old_leaf(root, path, 0);
5306 }
5307
5308 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5309                         u64 time_seq)
5310 {
5311         int slot;
5312         int level;
5313         struct extent_buffer *c;
5314         struct extent_buffer *next;
5315         struct btrfs_key key;
5316         u32 nritems;
5317         int ret;
5318         int old_spinning = path->leave_spinning;
5319         int next_rw_lock = 0;
5320
5321         nritems = btrfs_header_nritems(path->nodes[0]);
5322         if (nritems == 0)
5323                 return 1;
5324
5325         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5326 again:
5327         level = 1;
5328         next = NULL;
5329         next_rw_lock = 0;
5330         btrfs_release_path(path);
5331
5332         path->keep_locks = 1;
5333         path->leave_spinning = 1;
5334
5335         if (time_seq)
5336                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5337         else
5338                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5339         path->keep_locks = 0;
5340
5341         if (ret < 0)
5342                 return ret;
5343
5344         nritems = btrfs_header_nritems(path->nodes[0]);
5345         /*
5346          * by releasing the path above we dropped all our locks.  A balance
5347          * could have added more items next to the key that used to be
5348          * at the very end of the block.  So, check again here and
5349          * advance the path if there are now more items available.
5350          */
5351         if (nritems > 0 && path->slots[0] < nritems - 1) {
5352                 if (ret == 0)
5353                         path->slots[0]++;
5354                 ret = 0;
5355                 goto done;
5356         }
5357         /*
5358          * So the above check misses one case:
5359          * - after releasing the path above, someone has removed the item that
5360          *   used to be at the very end of the block, and balance between leafs
5361          *   gets another one with bigger key.offset to replace it.
5362          *
5363          * This one should be returned as well, or we can get leaf corruption
5364          * later(esp. in __btrfs_drop_extents()).
5365          *
5366          * And a bit more explanation about this check,
5367          * with ret > 0, the key isn't found, the path points to the slot
5368          * where it should be inserted, so the path->slots[0] item must be the
5369          * bigger one.
5370          */
5371         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5372                 ret = 0;
5373                 goto done;
5374         }
5375
5376         while (level < BTRFS_MAX_LEVEL) {
5377                 if (!path->nodes[level]) {
5378                         ret = 1;
5379                         goto done;
5380                 }
5381
5382                 slot = path->slots[level] + 1;
5383                 c = path->nodes[level];
5384                 if (slot >= btrfs_header_nritems(c)) {
5385                         level++;
5386                         if (level == BTRFS_MAX_LEVEL) {
5387                                 ret = 1;
5388                                 goto done;
5389                         }
5390                         continue;
5391                 }
5392
5393                 if (next) {
5394                         btrfs_tree_unlock_rw(next, next_rw_lock);
5395                         free_extent_buffer(next);
5396                 }
5397
5398                 next = c;
5399                 next_rw_lock = path->locks[level];
5400                 ret = read_block_for_search(root, path, &next, level,
5401                                             slot, &key);
5402                 if (ret == -EAGAIN)
5403                         goto again;
5404
5405                 if (ret < 0) {
5406                         btrfs_release_path(path);
5407                         goto done;
5408                 }
5409
5410                 if (!path->skip_locking) {
5411                         ret = btrfs_try_tree_read_lock(next);
5412                         if (!ret && time_seq) {
5413                                 /*
5414                                  * If we don't get the lock, we may be racing
5415                                  * with push_leaf_left, holding that lock while
5416                                  * itself waiting for the leaf we've currently
5417                                  * locked. To solve this situation, we give up
5418                                  * on our lock and cycle.
5419                                  */
5420                                 free_extent_buffer(next);
5421                                 btrfs_release_path(path);
5422                                 cond_resched();
5423                                 goto again;
5424                         }
5425                         if (!ret) {
5426                                 btrfs_set_path_blocking(path);
5427                                 btrfs_tree_read_lock(next);
5428                         }
5429                         next_rw_lock = BTRFS_READ_LOCK;
5430                 }
5431                 break;
5432         }
5433         path->slots[level] = slot;
5434         while (1) {
5435                 level--;
5436                 c = path->nodes[level];
5437                 if (path->locks[level])
5438                         btrfs_tree_unlock_rw(c, path->locks[level]);
5439
5440                 free_extent_buffer(c);
5441                 path->nodes[level] = next;
5442                 path->slots[level] = 0;
5443                 if (!path->skip_locking)
5444                         path->locks[level] = next_rw_lock;
5445                 if (!level)
5446                         break;
5447
5448                 ret = read_block_for_search(root, path, &next, level,
5449                                             0, &key);
5450                 if (ret == -EAGAIN)
5451                         goto again;
5452
5453                 if (ret < 0) {
5454                         btrfs_release_path(path);
5455                         goto done;
5456                 }
5457
5458                 if (!path->skip_locking) {
5459                         ret = btrfs_try_tree_read_lock(next);
5460                         if (!ret) {
5461                                 btrfs_set_path_blocking(path);
5462                                 btrfs_tree_read_lock(next);
5463                         }
5464                         next_rw_lock = BTRFS_READ_LOCK;
5465                 }
5466         }
5467         ret = 0;
5468 done:
5469         unlock_up(path, 0, 1, 0, NULL);
5470         path->leave_spinning = old_spinning;
5471         if (!old_spinning)
5472                 btrfs_set_path_blocking(path);
5473
5474         return ret;
5475 }
5476
5477 /*
5478  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5479  * searching until it gets past min_objectid or finds an item of 'type'
5480  *
5481  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5482  */
5483 int btrfs_previous_item(struct btrfs_root *root,
5484                         struct btrfs_path *path, u64 min_objectid,
5485                         int type)
5486 {
5487         struct btrfs_key found_key;
5488         struct extent_buffer *leaf;
5489         u32 nritems;
5490         int ret;
5491
5492         while (1) {
5493                 if (path->slots[0] == 0) {
5494                         btrfs_set_path_blocking(path);
5495                         ret = btrfs_prev_leaf(root, path);
5496                         if (ret != 0)
5497                                 return ret;
5498                 } else {
5499                         path->slots[0]--;
5500                 }
5501                 leaf = path->nodes[0];
5502                 nritems = btrfs_header_nritems(leaf);
5503                 if (nritems == 0)
5504                         return 1;
5505                 if (path->slots[0] == nritems)
5506                         path->slots[0]--;
5507
5508                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5509                 if (found_key.objectid < min_objectid)
5510                         break;
5511                 if (found_key.type == type)
5512                         return 0;
5513                 if (found_key.objectid == min_objectid &&
5514                     found_key.type < type)
5515                         break;
5516         }
5517         return 1;
5518 }
5519
5520 /*
5521  * search in extent tree to find a previous Metadata/Data extent item with
5522  * min objecitd.
5523  *
5524  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5525  */
5526 int btrfs_previous_extent_item(struct btrfs_root *root,
5527                         struct btrfs_path *path, u64 min_objectid)
5528 {
5529         struct btrfs_key found_key;
5530         struct extent_buffer *leaf;
5531         u32 nritems;
5532         int ret;
5533
5534         while (1) {
5535                 if (path->slots[0] == 0) {
5536                         btrfs_set_path_blocking(path);
5537                         ret = btrfs_prev_leaf(root, path);
5538                         if (ret != 0)
5539                                 return ret;
5540                 } else {
5541                         path->slots[0]--;
5542                 }
5543                 leaf = path->nodes[0];
5544                 nritems = btrfs_header_nritems(leaf);
5545                 if (nritems == 0)
5546                         return 1;
5547                 if (path->slots[0] == nritems)
5548                         path->slots[0]--;
5549
5550                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5551                 if (found_key.objectid < min_objectid)
5552                         break;
5553                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5554                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5555                         return 0;
5556                 if (found_key.objectid == min_objectid &&
5557                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5558                         break;
5559         }
5560         return 1;
5561 }