Merge tag 'io_uring-5.17-2022-02-11' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "ctree.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "print-tree.h"
15 #include "locking.h"
16 #include "volumes.h"
17 #include "qgroup.h"
18 #include "tree-mod-log.h"
19
20 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
21                       *root, struct btrfs_path *path, int level);
22 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
23                       const struct btrfs_key *ins_key, struct btrfs_path *path,
24                       int data_size, int extend);
25 static int push_node_left(struct btrfs_trans_handle *trans,
26                           struct extent_buffer *dst,
27                           struct extent_buffer *src, int empty);
28 static int balance_node_right(struct btrfs_trans_handle *trans,
29                               struct extent_buffer *dst_buf,
30                               struct extent_buffer *src_buf);
31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32                     int level, int slot);
33
34 static const struct btrfs_csums {
35         u16             size;
36         const char      name[10];
37         const char      driver[12];
38 } btrfs_csums[] = {
39         [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
40         [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
41         [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
42         [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
43                                      .driver = "blake2b-256" },
44 };
45
46 int btrfs_super_csum_size(const struct btrfs_super_block *s)
47 {
48         u16 t = btrfs_super_csum_type(s);
49         /*
50          * csum type is validated at mount time
51          */
52         return btrfs_csums[t].size;
53 }
54
55 const char *btrfs_super_csum_name(u16 csum_type)
56 {
57         /* csum type is validated at mount time */
58         return btrfs_csums[csum_type].name;
59 }
60
61 /*
62  * Return driver name if defined, otherwise the name that's also a valid driver
63  * name
64  */
65 const char *btrfs_super_csum_driver(u16 csum_type)
66 {
67         /* csum type is validated at mount time */
68         return btrfs_csums[csum_type].driver[0] ?
69                 btrfs_csums[csum_type].driver :
70                 btrfs_csums[csum_type].name;
71 }
72
73 size_t __attribute_const__ btrfs_get_num_csums(void)
74 {
75         return ARRAY_SIZE(btrfs_csums);
76 }
77
78 struct btrfs_path *btrfs_alloc_path(void)
79 {
80         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
81 }
82
83 /* this also releases the path */
84 void btrfs_free_path(struct btrfs_path *p)
85 {
86         if (!p)
87                 return;
88         btrfs_release_path(p);
89         kmem_cache_free(btrfs_path_cachep, p);
90 }
91
92 /*
93  * path release drops references on the extent buffers in the path
94  * and it drops any locks held by this path
95  *
96  * It is safe to call this on paths that no locks or extent buffers held.
97  */
98 noinline void btrfs_release_path(struct btrfs_path *p)
99 {
100         int i;
101
102         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
103                 p->slots[i] = 0;
104                 if (!p->nodes[i])
105                         continue;
106                 if (p->locks[i]) {
107                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
108                         p->locks[i] = 0;
109                 }
110                 free_extent_buffer(p->nodes[i]);
111                 p->nodes[i] = NULL;
112         }
113 }
114
115 /*
116  * safely gets a reference on the root node of a tree.  A lock
117  * is not taken, so a concurrent writer may put a different node
118  * at the root of the tree.  See btrfs_lock_root_node for the
119  * looping required.
120  *
121  * The extent buffer returned by this has a reference taken, so
122  * it won't disappear.  It may stop being the root of the tree
123  * at any time because there are no locks held.
124  */
125 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
126 {
127         struct extent_buffer *eb;
128
129         while (1) {
130                 rcu_read_lock();
131                 eb = rcu_dereference(root->node);
132
133                 /*
134                  * RCU really hurts here, we could free up the root node because
135                  * it was COWed but we may not get the new root node yet so do
136                  * the inc_not_zero dance and if it doesn't work then
137                  * synchronize_rcu and try again.
138                  */
139                 if (atomic_inc_not_zero(&eb->refs)) {
140                         rcu_read_unlock();
141                         break;
142                 }
143                 rcu_read_unlock();
144                 synchronize_rcu();
145         }
146         return eb;
147 }
148
149 /*
150  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
151  * just get put onto a simple dirty list.  Transaction walks this list to make
152  * sure they get properly updated on disk.
153  */
154 static void add_root_to_dirty_list(struct btrfs_root *root)
155 {
156         struct btrfs_fs_info *fs_info = root->fs_info;
157
158         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
159             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
160                 return;
161
162         spin_lock(&fs_info->trans_lock);
163         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
164                 /* Want the extent tree to be the last on the list */
165                 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
166                         list_move_tail(&root->dirty_list,
167                                        &fs_info->dirty_cowonly_roots);
168                 else
169                         list_move(&root->dirty_list,
170                                   &fs_info->dirty_cowonly_roots);
171         }
172         spin_unlock(&fs_info->trans_lock);
173 }
174
175 /*
176  * used by snapshot creation to make a copy of a root for a tree with
177  * a given objectid.  The buffer with the new root node is returned in
178  * cow_ret, and this func returns zero on success or a negative error code.
179  */
180 int btrfs_copy_root(struct btrfs_trans_handle *trans,
181                       struct btrfs_root *root,
182                       struct extent_buffer *buf,
183                       struct extent_buffer **cow_ret, u64 new_root_objectid)
184 {
185         struct btrfs_fs_info *fs_info = root->fs_info;
186         struct extent_buffer *cow;
187         int ret = 0;
188         int level;
189         struct btrfs_disk_key disk_key;
190
191         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192                 trans->transid != fs_info->running_transaction->transid);
193         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
194                 trans->transid != root->last_trans);
195
196         level = btrfs_header_level(buf);
197         if (level == 0)
198                 btrfs_item_key(buf, &disk_key, 0);
199         else
200                 btrfs_node_key(buf, &disk_key, 0);
201
202         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
203                                      &disk_key, level, buf->start, 0,
204                                      BTRFS_NESTING_NEW_ROOT);
205         if (IS_ERR(cow))
206                 return PTR_ERR(cow);
207
208         copy_extent_buffer_full(cow, buf);
209         btrfs_set_header_bytenr(cow, cow->start);
210         btrfs_set_header_generation(cow, trans->transid);
211         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
212         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
213                                      BTRFS_HEADER_FLAG_RELOC);
214         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
215                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
216         else
217                 btrfs_set_header_owner(cow, new_root_objectid);
218
219         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
220
221         WARN_ON(btrfs_header_generation(buf) > trans->transid);
222         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
223                 ret = btrfs_inc_ref(trans, root, cow, 1);
224         else
225                 ret = btrfs_inc_ref(trans, root, cow, 0);
226         if (ret) {
227                 btrfs_tree_unlock(cow);
228                 free_extent_buffer(cow);
229                 btrfs_abort_transaction(trans, ret);
230                 return ret;
231         }
232
233         btrfs_mark_buffer_dirty(cow);
234         *cow_ret = cow;
235         return 0;
236 }
237
238 /*
239  * check if the tree block can be shared by multiple trees
240  */
241 int btrfs_block_can_be_shared(struct btrfs_root *root,
242                               struct extent_buffer *buf)
243 {
244         /*
245          * Tree blocks not in shareable trees and tree roots are never shared.
246          * If a block was allocated after the last snapshot and the block was
247          * not allocated by tree relocation, we know the block is not shared.
248          */
249         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
250             buf != root->node && buf != root->commit_root &&
251             (btrfs_header_generation(buf) <=
252              btrfs_root_last_snapshot(&root->root_item) ||
253              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
254                 return 1;
255
256         return 0;
257 }
258
259 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
260                                        struct btrfs_root *root,
261                                        struct extent_buffer *buf,
262                                        struct extent_buffer *cow,
263                                        int *last_ref)
264 {
265         struct btrfs_fs_info *fs_info = root->fs_info;
266         u64 refs;
267         u64 owner;
268         u64 flags;
269         u64 new_flags = 0;
270         int ret;
271
272         /*
273          * Backrefs update rules:
274          *
275          * Always use full backrefs for extent pointers in tree block
276          * allocated by tree relocation.
277          *
278          * If a shared tree block is no longer referenced by its owner
279          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
280          * use full backrefs for extent pointers in tree block.
281          *
282          * If a tree block is been relocating
283          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
284          * use full backrefs for extent pointers in tree block.
285          * The reason for this is some operations (such as drop tree)
286          * are only allowed for blocks use full backrefs.
287          */
288
289         if (btrfs_block_can_be_shared(root, buf)) {
290                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
291                                                btrfs_header_level(buf), 1,
292                                                &refs, &flags);
293                 if (ret)
294                         return ret;
295                 if (refs == 0) {
296                         ret = -EROFS;
297                         btrfs_handle_fs_error(fs_info, ret, NULL);
298                         return ret;
299                 }
300         } else {
301                 refs = 1;
302                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
303                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
304                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
305                 else
306                         flags = 0;
307         }
308
309         owner = btrfs_header_owner(buf);
310         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
311                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
312
313         if (refs > 1) {
314                 if ((owner == root->root_key.objectid ||
315                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
316                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
317                         ret = btrfs_inc_ref(trans, root, buf, 1);
318                         if (ret)
319                                 return ret;
320
321                         if (root->root_key.objectid ==
322                             BTRFS_TREE_RELOC_OBJECTID) {
323                                 ret = btrfs_dec_ref(trans, root, buf, 0);
324                                 if (ret)
325                                         return ret;
326                                 ret = btrfs_inc_ref(trans, root, cow, 1);
327                                 if (ret)
328                                         return ret;
329                         }
330                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
331                 } else {
332
333                         if (root->root_key.objectid ==
334                             BTRFS_TREE_RELOC_OBJECTID)
335                                 ret = btrfs_inc_ref(trans, root, cow, 1);
336                         else
337                                 ret = btrfs_inc_ref(trans, root, cow, 0);
338                         if (ret)
339                                 return ret;
340                 }
341                 if (new_flags != 0) {
342                         int level = btrfs_header_level(buf);
343
344                         ret = btrfs_set_disk_extent_flags(trans, buf,
345                                                           new_flags, level, 0);
346                         if (ret)
347                                 return ret;
348                 }
349         } else {
350                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
351                         if (root->root_key.objectid ==
352                             BTRFS_TREE_RELOC_OBJECTID)
353                                 ret = btrfs_inc_ref(trans, root, cow, 1);
354                         else
355                                 ret = btrfs_inc_ref(trans, root, cow, 0);
356                         if (ret)
357                                 return ret;
358                         ret = btrfs_dec_ref(trans, root, buf, 1);
359                         if (ret)
360                                 return ret;
361                 }
362                 btrfs_clean_tree_block(buf);
363                 *last_ref = 1;
364         }
365         return 0;
366 }
367
368 /*
369  * does the dirty work in cow of a single block.  The parent block (if
370  * supplied) is updated to point to the new cow copy.  The new buffer is marked
371  * dirty and returned locked.  If you modify the block it needs to be marked
372  * dirty again.
373  *
374  * search_start -- an allocation hint for the new block
375  *
376  * empty_size -- a hint that you plan on doing more cow.  This is the size in
377  * bytes the allocator should try to find free next to the block it returns.
378  * This is just a hint and may be ignored by the allocator.
379  */
380 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
381                              struct btrfs_root *root,
382                              struct extent_buffer *buf,
383                              struct extent_buffer *parent, int parent_slot,
384                              struct extent_buffer **cow_ret,
385                              u64 search_start, u64 empty_size,
386                              enum btrfs_lock_nesting nest)
387 {
388         struct btrfs_fs_info *fs_info = root->fs_info;
389         struct btrfs_disk_key disk_key;
390         struct extent_buffer *cow;
391         int level, ret;
392         int last_ref = 0;
393         int unlock_orig = 0;
394         u64 parent_start = 0;
395
396         if (*cow_ret == buf)
397                 unlock_orig = 1;
398
399         btrfs_assert_tree_write_locked(buf);
400
401         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
402                 trans->transid != fs_info->running_transaction->transid);
403         WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
404                 trans->transid != root->last_trans);
405
406         level = btrfs_header_level(buf);
407
408         if (level == 0)
409                 btrfs_item_key(buf, &disk_key, 0);
410         else
411                 btrfs_node_key(buf, &disk_key, 0);
412
413         if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
414                 parent_start = parent->start;
415
416         cow = btrfs_alloc_tree_block(trans, root, parent_start,
417                                      root->root_key.objectid, &disk_key, level,
418                                      search_start, empty_size, nest);
419         if (IS_ERR(cow))
420                 return PTR_ERR(cow);
421
422         /* cow is set to blocking by btrfs_init_new_buffer */
423
424         copy_extent_buffer_full(cow, buf);
425         btrfs_set_header_bytenr(cow, cow->start);
426         btrfs_set_header_generation(cow, trans->transid);
427         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
428         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
429                                      BTRFS_HEADER_FLAG_RELOC);
430         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
431                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
432         else
433                 btrfs_set_header_owner(cow, root->root_key.objectid);
434
435         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
436
437         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
438         if (ret) {
439                 btrfs_tree_unlock(cow);
440                 free_extent_buffer(cow);
441                 btrfs_abort_transaction(trans, ret);
442                 return ret;
443         }
444
445         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
446                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
447                 if (ret) {
448                         btrfs_tree_unlock(cow);
449                         free_extent_buffer(cow);
450                         btrfs_abort_transaction(trans, ret);
451                         return ret;
452                 }
453         }
454
455         if (buf == root->node) {
456                 WARN_ON(parent && parent != buf);
457                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
458                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
459                         parent_start = buf->start;
460
461                 atomic_inc(&cow->refs);
462                 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
463                 BUG_ON(ret < 0);
464                 rcu_assign_pointer(root->node, cow);
465
466                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
467                                       parent_start, last_ref);
468                 free_extent_buffer(buf);
469                 add_root_to_dirty_list(root);
470         } else {
471                 WARN_ON(trans->transid != btrfs_header_generation(parent));
472                 btrfs_tree_mod_log_insert_key(parent, parent_slot,
473                                               BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
474                 btrfs_set_node_blockptr(parent, parent_slot,
475                                         cow->start);
476                 btrfs_set_node_ptr_generation(parent, parent_slot,
477                                               trans->transid);
478                 btrfs_mark_buffer_dirty(parent);
479                 if (last_ref) {
480                         ret = btrfs_tree_mod_log_free_eb(buf);
481                         if (ret) {
482                                 btrfs_tree_unlock(cow);
483                                 free_extent_buffer(cow);
484                                 btrfs_abort_transaction(trans, ret);
485                                 return ret;
486                         }
487                 }
488                 btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
489                                       parent_start, last_ref);
490         }
491         if (unlock_orig)
492                 btrfs_tree_unlock(buf);
493         free_extent_buffer_stale(buf);
494         btrfs_mark_buffer_dirty(cow);
495         *cow_ret = cow;
496         return 0;
497 }
498
499 static inline int should_cow_block(struct btrfs_trans_handle *trans,
500                                    struct btrfs_root *root,
501                                    struct extent_buffer *buf)
502 {
503         if (btrfs_is_testing(root->fs_info))
504                 return 0;
505
506         /* Ensure we can see the FORCE_COW bit */
507         smp_mb__before_atomic();
508
509         /*
510          * We do not need to cow a block if
511          * 1) this block is not created or changed in this transaction;
512          * 2) this block does not belong to TREE_RELOC tree;
513          * 3) the root is not forced COW.
514          *
515          * What is forced COW:
516          *    when we create snapshot during committing the transaction,
517          *    after we've finished copying src root, we must COW the shared
518          *    block to ensure the metadata consistency.
519          */
520         if (btrfs_header_generation(buf) == trans->transid &&
521             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
522             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
523               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
524             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
525                 return 0;
526         return 1;
527 }
528
529 /*
530  * cows a single block, see __btrfs_cow_block for the real work.
531  * This version of it has extra checks so that a block isn't COWed more than
532  * once per transaction, as long as it hasn't been written yet
533  */
534 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
535                     struct btrfs_root *root, struct extent_buffer *buf,
536                     struct extent_buffer *parent, int parent_slot,
537                     struct extent_buffer **cow_ret,
538                     enum btrfs_lock_nesting nest)
539 {
540         struct btrfs_fs_info *fs_info = root->fs_info;
541         u64 search_start;
542         int ret;
543
544         if (test_bit(BTRFS_ROOT_DELETING, &root->state))
545                 btrfs_err(fs_info,
546                         "COW'ing blocks on a fs root that's being dropped");
547
548         if (trans->transaction != fs_info->running_transaction)
549                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
550                        trans->transid,
551                        fs_info->running_transaction->transid);
552
553         if (trans->transid != fs_info->generation)
554                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
555                        trans->transid, fs_info->generation);
556
557         if (!should_cow_block(trans, root, buf)) {
558                 *cow_ret = buf;
559                 return 0;
560         }
561
562         search_start = buf->start & ~((u64)SZ_1G - 1);
563
564         /*
565          * Before CoWing this block for later modification, check if it's
566          * the subtree root and do the delayed subtree trace if needed.
567          *
568          * Also We don't care about the error, as it's handled internally.
569          */
570         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
571         ret = __btrfs_cow_block(trans, root, buf, parent,
572                                  parent_slot, cow_ret, search_start, 0, nest);
573
574         trace_btrfs_cow_block(root, buf, *cow_ret);
575
576         return ret;
577 }
578 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
579
580 /*
581  * helper function for defrag to decide if two blocks pointed to by a
582  * node are actually close by
583  */
584 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
585 {
586         if (blocknr < other && other - (blocknr + blocksize) < 32768)
587                 return 1;
588         if (blocknr > other && blocknr - (other + blocksize) < 32768)
589                 return 1;
590         return 0;
591 }
592
593 #ifdef __LITTLE_ENDIAN
594
595 /*
596  * Compare two keys, on little-endian the disk order is same as CPU order and
597  * we can avoid the conversion.
598  */
599 static int comp_keys(const struct btrfs_disk_key *disk_key,
600                      const struct btrfs_key *k2)
601 {
602         const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
603
604         return btrfs_comp_cpu_keys(k1, k2);
605 }
606
607 #else
608
609 /*
610  * compare two keys in a memcmp fashion
611  */
612 static int comp_keys(const struct btrfs_disk_key *disk,
613                      const struct btrfs_key *k2)
614 {
615         struct btrfs_key k1;
616
617         btrfs_disk_key_to_cpu(&k1, disk);
618
619         return btrfs_comp_cpu_keys(&k1, k2);
620 }
621 #endif
622
623 /*
624  * same as comp_keys only with two btrfs_key's
625  */
626 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
627 {
628         if (k1->objectid > k2->objectid)
629                 return 1;
630         if (k1->objectid < k2->objectid)
631                 return -1;
632         if (k1->type > k2->type)
633                 return 1;
634         if (k1->type < k2->type)
635                 return -1;
636         if (k1->offset > k2->offset)
637                 return 1;
638         if (k1->offset < k2->offset)
639                 return -1;
640         return 0;
641 }
642
643 /*
644  * this is used by the defrag code to go through all the
645  * leaves pointed to by a node and reallocate them so that
646  * disk order is close to key order
647  */
648 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
649                        struct btrfs_root *root, struct extent_buffer *parent,
650                        int start_slot, u64 *last_ret,
651                        struct btrfs_key *progress)
652 {
653         struct btrfs_fs_info *fs_info = root->fs_info;
654         struct extent_buffer *cur;
655         u64 blocknr;
656         u64 search_start = *last_ret;
657         u64 last_block = 0;
658         u64 other;
659         u32 parent_nritems;
660         int end_slot;
661         int i;
662         int err = 0;
663         u32 blocksize;
664         int progress_passed = 0;
665         struct btrfs_disk_key disk_key;
666
667         WARN_ON(trans->transaction != fs_info->running_transaction);
668         WARN_ON(trans->transid != fs_info->generation);
669
670         parent_nritems = btrfs_header_nritems(parent);
671         blocksize = fs_info->nodesize;
672         end_slot = parent_nritems - 1;
673
674         if (parent_nritems <= 1)
675                 return 0;
676
677         for (i = start_slot; i <= end_slot; i++) {
678                 int close = 1;
679
680                 btrfs_node_key(parent, &disk_key, i);
681                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
682                         continue;
683
684                 progress_passed = 1;
685                 blocknr = btrfs_node_blockptr(parent, i);
686                 if (last_block == 0)
687                         last_block = blocknr;
688
689                 if (i > 0) {
690                         other = btrfs_node_blockptr(parent, i - 1);
691                         close = close_blocks(blocknr, other, blocksize);
692                 }
693                 if (!close && i < end_slot) {
694                         other = btrfs_node_blockptr(parent, i + 1);
695                         close = close_blocks(blocknr, other, blocksize);
696                 }
697                 if (close) {
698                         last_block = blocknr;
699                         continue;
700                 }
701
702                 cur = btrfs_read_node_slot(parent, i);
703                 if (IS_ERR(cur))
704                         return PTR_ERR(cur);
705                 if (search_start == 0)
706                         search_start = last_block;
707
708                 btrfs_tree_lock(cur);
709                 err = __btrfs_cow_block(trans, root, cur, parent, i,
710                                         &cur, search_start,
711                                         min(16 * blocksize,
712                                             (end_slot - i) * blocksize),
713                                         BTRFS_NESTING_COW);
714                 if (err) {
715                         btrfs_tree_unlock(cur);
716                         free_extent_buffer(cur);
717                         break;
718                 }
719                 search_start = cur->start;
720                 last_block = cur->start;
721                 *last_ret = search_start;
722                 btrfs_tree_unlock(cur);
723                 free_extent_buffer(cur);
724         }
725         return err;
726 }
727
728 /*
729  * Search for a key in the given extent_buffer.
730  *
731  * The lower boundary for the search is specified by the slot number @low. Use a
732  * value of 0 to search over the whole extent buffer.
733  *
734  * The slot in the extent buffer is returned via @slot. If the key exists in the
735  * extent buffer, then @slot will point to the slot where the key is, otherwise
736  * it points to the slot where you would insert the key.
737  *
738  * Slot may point to the total number of items (i.e. one position beyond the last
739  * key) if the key is bigger than the last key in the extent buffer.
740  */
741 static noinline int generic_bin_search(struct extent_buffer *eb, int low,
742                                        const struct btrfs_key *key, int *slot)
743 {
744         unsigned long p;
745         int item_size;
746         int high = btrfs_header_nritems(eb);
747         int ret;
748         const int key_size = sizeof(struct btrfs_disk_key);
749
750         if (low > high) {
751                 btrfs_err(eb->fs_info,
752                  "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
753                           __func__, low, high, eb->start,
754                           btrfs_header_owner(eb), btrfs_header_level(eb));
755                 return -EINVAL;
756         }
757
758         if (btrfs_header_level(eb) == 0) {
759                 p = offsetof(struct btrfs_leaf, items);
760                 item_size = sizeof(struct btrfs_item);
761         } else {
762                 p = offsetof(struct btrfs_node, ptrs);
763                 item_size = sizeof(struct btrfs_key_ptr);
764         }
765
766         while (low < high) {
767                 unsigned long oip;
768                 unsigned long offset;
769                 struct btrfs_disk_key *tmp;
770                 struct btrfs_disk_key unaligned;
771                 int mid;
772
773                 mid = (low + high) / 2;
774                 offset = p + mid * item_size;
775                 oip = offset_in_page(offset);
776
777                 if (oip + key_size <= PAGE_SIZE) {
778                         const unsigned long idx = get_eb_page_index(offset);
779                         char *kaddr = page_address(eb->pages[idx]);
780
781                         oip = get_eb_offset_in_page(eb, offset);
782                         tmp = (struct btrfs_disk_key *)(kaddr + oip);
783                 } else {
784                         read_extent_buffer(eb, &unaligned, offset, key_size);
785                         tmp = &unaligned;
786                 }
787
788                 ret = comp_keys(tmp, key);
789
790                 if (ret < 0)
791                         low = mid + 1;
792                 else if (ret > 0)
793                         high = mid;
794                 else {
795                         *slot = mid;
796                         return 0;
797                 }
798         }
799         *slot = low;
800         return 1;
801 }
802
803 /*
804  * Simple binary search on an extent buffer. Works for both leaves and nodes, and
805  * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
806  */
807 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
808                      int *slot)
809 {
810         return generic_bin_search(eb, 0, key, slot);
811 }
812
813 static void root_add_used(struct btrfs_root *root, u32 size)
814 {
815         spin_lock(&root->accounting_lock);
816         btrfs_set_root_used(&root->root_item,
817                             btrfs_root_used(&root->root_item) + size);
818         spin_unlock(&root->accounting_lock);
819 }
820
821 static void root_sub_used(struct btrfs_root *root, u32 size)
822 {
823         spin_lock(&root->accounting_lock);
824         btrfs_set_root_used(&root->root_item,
825                             btrfs_root_used(&root->root_item) - size);
826         spin_unlock(&root->accounting_lock);
827 }
828
829 /* given a node and slot number, this reads the blocks it points to.  The
830  * extent buffer is returned with a reference taken (but unlocked).
831  */
832 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
833                                            int slot)
834 {
835         int level = btrfs_header_level(parent);
836         struct extent_buffer *eb;
837         struct btrfs_key first_key;
838
839         if (slot < 0 || slot >= btrfs_header_nritems(parent))
840                 return ERR_PTR(-ENOENT);
841
842         BUG_ON(level == 0);
843
844         btrfs_node_key_to_cpu(parent, &first_key, slot);
845         eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
846                              btrfs_header_owner(parent),
847                              btrfs_node_ptr_generation(parent, slot),
848                              level - 1, &first_key);
849         if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
850                 free_extent_buffer(eb);
851                 eb = ERR_PTR(-EIO);
852         }
853
854         return eb;
855 }
856
857 /*
858  * node level balancing, used to make sure nodes are in proper order for
859  * item deletion.  We balance from the top down, so we have to make sure
860  * that a deletion won't leave an node completely empty later on.
861  */
862 static noinline int balance_level(struct btrfs_trans_handle *trans,
863                          struct btrfs_root *root,
864                          struct btrfs_path *path, int level)
865 {
866         struct btrfs_fs_info *fs_info = root->fs_info;
867         struct extent_buffer *right = NULL;
868         struct extent_buffer *mid;
869         struct extent_buffer *left = NULL;
870         struct extent_buffer *parent = NULL;
871         int ret = 0;
872         int wret;
873         int pslot;
874         int orig_slot = path->slots[level];
875         u64 orig_ptr;
876
877         ASSERT(level > 0);
878
879         mid = path->nodes[level];
880
881         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
882         WARN_ON(btrfs_header_generation(mid) != trans->transid);
883
884         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
885
886         if (level < BTRFS_MAX_LEVEL - 1) {
887                 parent = path->nodes[level + 1];
888                 pslot = path->slots[level + 1];
889         }
890
891         /*
892          * deal with the case where there is only one pointer in the root
893          * by promoting the node below to a root
894          */
895         if (!parent) {
896                 struct extent_buffer *child;
897
898                 if (btrfs_header_nritems(mid) != 1)
899                         return 0;
900
901                 /* promote the child to a root */
902                 child = btrfs_read_node_slot(mid, 0);
903                 if (IS_ERR(child)) {
904                         ret = PTR_ERR(child);
905                         btrfs_handle_fs_error(fs_info, ret, NULL);
906                         goto enospc;
907                 }
908
909                 btrfs_tree_lock(child);
910                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
911                                       BTRFS_NESTING_COW);
912                 if (ret) {
913                         btrfs_tree_unlock(child);
914                         free_extent_buffer(child);
915                         goto enospc;
916                 }
917
918                 ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
919                 BUG_ON(ret < 0);
920                 rcu_assign_pointer(root->node, child);
921
922                 add_root_to_dirty_list(root);
923                 btrfs_tree_unlock(child);
924
925                 path->locks[level] = 0;
926                 path->nodes[level] = NULL;
927                 btrfs_clean_tree_block(mid);
928                 btrfs_tree_unlock(mid);
929                 /* once for the path */
930                 free_extent_buffer(mid);
931
932                 root_sub_used(root, mid->len);
933                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
934                 /* once for the root ptr */
935                 free_extent_buffer_stale(mid);
936                 return 0;
937         }
938         if (btrfs_header_nritems(mid) >
939             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
940                 return 0;
941
942         left = btrfs_read_node_slot(parent, pslot - 1);
943         if (IS_ERR(left))
944                 left = NULL;
945
946         if (left) {
947                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
948                 wret = btrfs_cow_block(trans, root, left,
949                                        parent, pslot - 1, &left,
950                                        BTRFS_NESTING_LEFT_COW);
951                 if (wret) {
952                         ret = wret;
953                         goto enospc;
954                 }
955         }
956
957         right = btrfs_read_node_slot(parent, pslot + 1);
958         if (IS_ERR(right))
959                 right = NULL;
960
961         if (right) {
962                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
963                 wret = btrfs_cow_block(trans, root, right,
964                                        parent, pslot + 1, &right,
965                                        BTRFS_NESTING_RIGHT_COW);
966                 if (wret) {
967                         ret = wret;
968                         goto enospc;
969                 }
970         }
971
972         /* first, try to make some room in the middle buffer */
973         if (left) {
974                 orig_slot += btrfs_header_nritems(left);
975                 wret = push_node_left(trans, left, mid, 1);
976                 if (wret < 0)
977                         ret = wret;
978         }
979
980         /*
981          * then try to empty the right most buffer into the middle
982          */
983         if (right) {
984                 wret = push_node_left(trans, mid, right, 1);
985                 if (wret < 0 && wret != -ENOSPC)
986                         ret = wret;
987                 if (btrfs_header_nritems(right) == 0) {
988                         btrfs_clean_tree_block(right);
989                         btrfs_tree_unlock(right);
990                         del_ptr(root, path, level + 1, pslot + 1);
991                         root_sub_used(root, right->len);
992                         btrfs_free_tree_block(trans, btrfs_root_id(root), right,
993                                               0, 1);
994                         free_extent_buffer_stale(right);
995                         right = NULL;
996                 } else {
997                         struct btrfs_disk_key right_key;
998                         btrfs_node_key(right, &right_key, 0);
999                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1000                                         BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1001                         BUG_ON(ret < 0);
1002                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1003                         btrfs_mark_buffer_dirty(parent);
1004                 }
1005         }
1006         if (btrfs_header_nritems(mid) == 1) {
1007                 /*
1008                  * we're not allowed to leave a node with one item in the
1009                  * tree during a delete.  A deletion from lower in the tree
1010                  * could try to delete the only pointer in this node.
1011                  * So, pull some keys from the left.
1012                  * There has to be a left pointer at this point because
1013                  * otherwise we would have pulled some pointers from the
1014                  * right
1015                  */
1016                 if (!left) {
1017                         ret = -EROFS;
1018                         btrfs_handle_fs_error(fs_info, ret, NULL);
1019                         goto enospc;
1020                 }
1021                 wret = balance_node_right(trans, mid, left);
1022                 if (wret < 0) {
1023                         ret = wret;
1024                         goto enospc;
1025                 }
1026                 if (wret == 1) {
1027                         wret = push_node_left(trans, left, mid, 1);
1028                         if (wret < 0)
1029                                 ret = wret;
1030                 }
1031                 BUG_ON(wret == 1);
1032         }
1033         if (btrfs_header_nritems(mid) == 0) {
1034                 btrfs_clean_tree_block(mid);
1035                 btrfs_tree_unlock(mid);
1036                 del_ptr(root, path, level + 1, pslot);
1037                 root_sub_used(root, mid->len);
1038                 btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1039                 free_extent_buffer_stale(mid);
1040                 mid = NULL;
1041         } else {
1042                 /* update the parent key to reflect our changes */
1043                 struct btrfs_disk_key mid_key;
1044                 btrfs_node_key(mid, &mid_key, 0);
1045                 ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1046                                 BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1047                 BUG_ON(ret < 0);
1048                 btrfs_set_node_key(parent, &mid_key, pslot);
1049                 btrfs_mark_buffer_dirty(parent);
1050         }
1051
1052         /* update the path */
1053         if (left) {
1054                 if (btrfs_header_nritems(left) > orig_slot) {
1055                         atomic_inc(&left->refs);
1056                         /* left was locked after cow */
1057                         path->nodes[level] = left;
1058                         path->slots[level + 1] -= 1;
1059                         path->slots[level] = orig_slot;
1060                         if (mid) {
1061                                 btrfs_tree_unlock(mid);
1062                                 free_extent_buffer(mid);
1063                         }
1064                 } else {
1065                         orig_slot -= btrfs_header_nritems(left);
1066                         path->slots[level] = orig_slot;
1067                 }
1068         }
1069         /* double check we haven't messed things up */
1070         if (orig_ptr !=
1071             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1072                 BUG();
1073 enospc:
1074         if (right) {
1075                 btrfs_tree_unlock(right);
1076                 free_extent_buffer(right);
1077         }
1078         if (left) {
1079                 if (path->nodes[level] != left)
1080                         btrfs_tree_unlock(left);
1081                 free_extent_buffer(left);
1082         }
1083         return ret;
1084 }
1085
1086 /* Node balancing for insertion.  Here we only split or push nodes around
1087  * when they are completely full.  This is also done top down, so we
1088  * have to be pessimistic.
1089  */
1090 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1091                                           struct btrfs_root *root,
1092                                           struct btrfs_path *path, int level)
1093 {
1094         struct btrfs_fs_info *fs_info = root->fs_info;
1095         struct extent_buffer *right = NULL;
1096         struct extent_buffer *mid;
1097         struct extent_buffer *left = NULL;
1098         struct extent_buffer *parent = NULL;
1099         int ret = 0;
1100         int wret;
1101         int pslot;
1102         int orig_slot = path->slots[level];
1103
1104         if (level == 0)
1105                 return 1;
1106
1107         mid = path->nodes[level];
1108         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1109
1110         if (level < BTRFS_MAX_LEVEL - 1) {
1111                 parent = path->nodes[level + 1];
1112                 pslot = path->slots[level + 1];
1113         }
1114
1115         if (!parent)
1116                 return 1;
1117
1118         left = btrfs_read_node_slot(parent, pslot - 1);
1119         if (IS_ERR(left))
1120                 left = NULL;
1121
1122         /* first, try to make some room in the middle buffer */
1123         if (left) {
1124                 u32 left_nr;
1125
1126                 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1127
1128                 left_nr = btrfs_header_nritems(left);
1129                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1130                         wret = 1;
1131                 } else {
1132                         ret = btrfs_cow_block(trans, root, left, parent,
1133                                               pslot - 1, &left,
1134                                               BTRFS_NESTING_LEFT_COW);
1135                         if (ret)
1136                                 wret = 1;
1137                         else {
1138                                 wret = push_node_left(trans, left, mid, 0);
1139                         }
1140                 }
1141                 if (wret < 0)
1142                         ret = wret;
1143                 if (wret == 0) {
1144                         struct btrfs_disk_key disk_key;
1145                         orig_slot += left_nr;
1146                         btrfs_node_key(mid, &disk_key, 0);
1147                         ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1148                                         BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1149                         BUG_ON(ret < 0);
1150                         btrfs_set_node_key(parent, &disk_key, pslot);
1151                         btrfs_mark_buffer_dirty(parent);
1152                         if (btrfs_header_nritems(left) > orig_slot) {
1153                                 path->nodes[level] = left;
1154                                 path->slots[level + 1] -= 1;
1155                                 path->slots[level] = orig_slot;
1156                                 btrfs_tree_unlock(mid);
1157                                 free_extent_buffer(mid);
1158                         } else {
1159                                 orig_slot -=
1160                                         btrfs_header_nritems(left);
1161                                 path->slots[level] = orig_slot;
1162                                 btrfs_tree_unlock(left);
1163                                 free_extent_buffer(left);
1164                         }
1165                         return 0;
1166                 }
1167                 btrfs_tree_unlock(left);
1168                 free_extent_buffer(left);
1169         }
1170         right = btrfs_read_node_slot(parent, pslot + 1);
1171         if (IS_ERR(right))
1172                 right = NULL;
1173
1174         /*
1175          * then try to empty the right most buffer into the middle
1176          */
1177         if (right) {
1178                 u32 right_nr;
1179
1180                 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1181
1182                 right_nr = btrfs_header_nritems(right);
1183                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1184                         wret = 1;
1185                 } else {
1186                         ret = btrfs_cow_block(trans, root, right,
1187                                               parent, pslot + 1,
1188                                               &right, BTRFS_NESTING_RIGHT_COW);
1189                         if (ret)
1190                                 wret = 1;
1191                         else {
1192                                 wret = balance_node_right(trans, right, mid);
1193                         }
1194                 }
1195                 if (wret < 0)
1196                         ret = wret;
1197                 if (wret == 0) {
1198                         struct btrfs_disk_key disk_key;
1199
1200                         btrfs_node_key(right, &disk_key, 0);
1201                         ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1202                                         BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1203                         BUG_ON(ret < 0);
1204                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1205                         btrfs_mark_buffer_dirty(parent);
1206
1207                         if (btrfs_header_nritems(mid) <= orig_slot) {
1208                                 path->nodes[level] = right;
1209                                 path->slots[level + 1] += 1;
1210                                 path->slots[level] = orig_slot -
1211                                         btrfs_header_nritems(mid);
1212                                 btrfs_tree_unlock(mid);
1213                                 free_extent_buffer(mid);
1214                         } else {
1215                                 btrfs_tree_unlock(right);
1216                                 free_extent_buffer(right);
1217                         }
1218                         return 0;
1219                 }
1220                 btrfs_tree_unlock(right);
1221                 free_extent_buffer(right);
1222         }
1223         return 1;
1224 }
1225
1226 /*
1227  * readahead one full node of leaves, finding things that are close
1228  * to the block in 'slot', and triggering ra on them.
1229  */
1230 static void reada_for_search(struct btrfs_fs_info *fs_info,
1231                              struct btrfs_path *path,
1232                              int level, int slot, u64 objectid)
1233 {
1234         struct extent_buffer *node;
1235         struct btrfs_disk_key disk_key;
1236         u32 nritems;
1237         u64 search;
1238         u64 target;
1239         u64 nread = 0;
1240         u64 nread_max;
1241         u32 nr;
1242         u32 blocksize;
1243         u32 nscan = 0;
1244
1245         if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1246                 return;
1247
1248         if (!path->nodes[level])
1249                 return;
1250
1251         node = path->nodes[level];
1252
1253         /*
1254          * Since the time between visiting leaves is much shorter than the time
1255          * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1256          * much IO at once (possibly random).
1257          */
1258         if (path->reada == READA_FORWARD_ALWAYS) {
1259                 if (level > 1)
1260                         nread_max = node->fs_info->nodesize;
1261                 else
1262                         nread_max = SZ_128K;
1263         } else {
1264                 nread_max = SZ_64K;
1265         }
1266
1267         search = btrfs_node_blockptr(node, slot);
1268         blocksize = fs_info->nodesize;
1269         if (path->reada != READA_FORWARD_ALWAYS) {
1270                 struct extent_buffer *eb;
1271
1272                 eb = find_extent_buffer(fs_info, search);
1273                 if (eb) {
1274                         free_extent_buffer(eb);
1275                         return;
1276                 }
1277         }
1278
1279         target = search;
1280
1281         nritems = btrfs_header_nritems(node);
1282         nr = slot;
1283
1284         while (1) {
1285                 if (path->reada == READA_BACK) {
1286                         if (nr == 0)
1287                                 break;
1288                         nr--;
1289                 } else if (path->reada == READA_FORWARD ||
1290                            path->reada == READA_FORWARD_ALWAYS) {
1291                         nr++;
1292                         if (nr >= nritems)
1293                                 break;
1294                 }
1295                 if (path->reada == READA_BACK && objectid) {
1296                         btrfs_node_key(node, &disk_key, nr);
1297                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1298                                 break;
1299                 }
1300                 search = btrfs_node_blockptr(node, nr);
1301                 if (path->reada == READA_FORWARD_ALWAYS ||
1302                     (search <= target && target - search <= 65536) ||
1303                     (search > target && search - target <= 65536)) {
1304                         btrfs_readahead_node_child(node, nr);
1305                         nread += blocksize;
1306                 }
1307                 nscan++;
1308                 if (nread > nread_max || nscan > 32)
1309                         break;
1310         }
1311 }
1312
1313 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1314 {
1315         struct extent_buffer *parent;
1316         int slot;
1317         int nritems;
1318
1319         parent = path->nodes[level + 1];
1320         if (!parent)
1321                 return;
1322
1323         nritems = btrfs_header_nritems(parent);
1324         slot = path->slots[level + 1];
1325
1326         if (slot > 0)
1327                 btrfs_readahead_node_child(parent, slot - 1);
1328         if (slot + 1 < nritems)
1329                 btrfs_readahead_node_child(parent, slot + 1);
1330 }
1331
1332
1333 /*
1334  * when we walk down the tree, it is usually safe to unlock the higher layers
1335  * in the tree.  The exceptions are when our path goes through slot 0, because
1336  * operations on the tree might require changing key pointers higher up in the
1337  * tree.
1338  *
1339  * callers might also have set path->keep_locks, which tells this code to keep
1340  * the lock if the path points to the last slot in the block.  This is part of
1341  * walking through the tree, and selecting the next slot in the higher block.
1342  *
1343  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1344  * if lowest_unlock is 1, level 0 won't be unlocked
1345  */
1346 static noinline void unlock_up(struct btrfs_path *path, int level,
1347                                int lowest_unlock, int min_write_lock_level,
1348                                int *write_lock_level)
1349 {
1350         int i;
1351         int skip_level = level;
1352         bool check_skip = true;
1353
1354         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1355                 if (!path->nodes[i])
1356                         break;
1357                 if (!path->locks[i])
1358                         break;
1359
1360                 if (check_skip) {
1361                         if (path->slots[i] == 0) {
1362                                 skip_level = i + 1;
1363                                 continue;
1364                         }
1365
1366                         if (path->keep_locks) {
1367                                 u32 nritems;
1368
1369                                 nritems = btrfs_header_nritems(path->nodes[i]);
1370                                 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1371                                         skip_level = i + 1;
1372                                         continue;
1373                                 }
1374                         }
1375                 }
1376
1377                 if (i >= lowest_unlock && i > skip_level) {
1378                         check_skip = false;
1379                         btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1380                         path->locks[i] = 0;
1381                         if (write_lock_level &&
1382                             i > min_write_lock_level &&
1383                             i <= *write_lock_level) {
1384                                 *write_lock_level = i - 1;
1385                         }
1386                 }
1387         }
1388 }
1389
1390 /*
1391  * helper function for btrfs_search_slot.  The goal is to find a block
1392  * in cache without setting the path to blocking.  If we find the block
1393  * we return zero and the path is unchanged.
1394  *
1395  * If we can't find the block, we set the path blocking and do some
1396  * reada.  -EAGAIN is returned and the search must be repeated.
1397  */
1398 static int
1399 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1400                       struct extent_buffer **eb_ret, int level, int slot,
1401                       const struct btrfs_key *key)
1402 {
1403         struct btrfs_fs_info *fs_info = root->fs_info;
1404         u64 blocknr;
1405         u64 gen;
1406         struct extent_buffer *tmp;
1407         struct btrfs_key first_key;
1408         int ret;
1409         int parent_level;
1410
1411         blocknr = btrfs_node_blockptr(*eb_ret, slot);
1412         gen = btrfs_node_ptr_generation(*eb_ret, slot);
1413         parent_level = btrfs_header_level(*eb_ret);
1414         btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1415
1416         tmp = find_extent_buffer(fs_info, blocknr);
1417         if (tmp) {
1418                 if (p->reada == READA_FORWARD_ALWAYS)
1419                         reada_for_search(fs_info, p, level, slot, key->objectid);
1420
1421                 /* first we do an atomic uptodate check */
1422                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1423                         /*
1424                          * Do extra check for first_key, eb can be stale due to
1425                          * being cached, read from scrub, or have multiple
1426                          * parents (shared tree blocks).
1427                          */
1428                         if (btrfs_verify_level_key(tmp,
1429                                         parent_level - 1, &first_key, gen)) {
1430                                 free_extent_buffer(tmp);
1431                                 return -EUCLEAN;
1432                         }
1433                         *eb_ret = tmp;
1434                         return 0;
1435                 }
1436
1437                 /* now we're allowed to do a blocking uptodate check */
1438                 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1439                 if (!ret) {
1440                         *eb_ret = tmp;
1441                         return 0;
1442                 }
1443                 free_extent_buffer(tmp);
1444                 btrfs_release_path(p);
1445                 return -EIO;
1446         }
1447
1448         /*
1449          * reduce lock contention at high levels
1450          * of the btree by dropping locks before
1451          * we read.  Don't release the lock on the current
1452          * level because we need to walk this node to figure
1453          * out which blocks to read.
1454          */
1455         btrfs_unlock_up_safe(p, level + 1);
1456
1457         if (p->reada != READA_NONE)
1458                 reada_for_search(fs_info, p, level, slot, key->objectid);
1459
1460         ret = -EAGAIN;
1461         tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1462                               gen, parent_level - 1, &first_key);
1463         if (!IS_ERR(tmp)) {
1464                 /*
1465                  * If the read above didn't mark this buffer up to date,
1466                  * it will never end up being up to date.  Set ret to EIO now
1467                  * and give up so that our caller doesn't loop forever
1468                  * on our EAGAINs.
1469                  */
1470                 if (!extent_buffer_uptodate(tmp))
1471                         ret = -EIO;
1472                 free_extent_buffer(tmp);
1473         } else {
1474                 ret = PTR_ERR(tmp);
1475         }
1476
1477         btrfs_release_path(p);
1478         return ret;
1479 }
1480
1481 /*
1482  * helper function for btrfs_search_slot.  This does all of the checks
1483  * for node-level blocks and does any balancing required based on
1484  * the ins_len.
1485  *
1486  * If no extra work was required, zero is returned.  If we had to
1487  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1488  * start over
1489  */
1490 static int
1491 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1492                        struct btrfs_root *root, struct btrfs_path *p,
1493                        struct extent_buffer *b, int level, int ins_len,
1494                        int *write_lock_level)
1495 {
1496         struct btrfs_fs_info *fs_info = root->fs_info;
1497         int ret = 0;
1498
1499         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1500             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1501
1502                 if (*write_lock_level < level + 1) {
1503                         *write_lock_level = level + 1;
1504                         btrfs_release_path(p);
1505                         return -EAGAIN;
1506                 }
1507
1508                 reada_for_balance(p, level);
1509                 ret = split_node(trans, root, p, level);
1510
1511                 b = p->nodes[level];
1512         } else if (ins_len < 0 && btrfs_header_nritems(b) <
1513                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1514
1515                 if (*write_lock_level < level + 1) {
1516                         *write_lock_level = level + 1;
1517                         btrfs_release_path(p);
1518                         return -EAGAIN;
1519                 }
1520
1521                 reada_for_balance(p, level);
1522                 ret = balance_level(trans, root, p, level);
1523                 if (ret)
1524                         return ret;
1525
1526                 b = p->nodes[level];
1527                 if (!b) {
1528                         btrfs_release_path(p);
1529                         return -EAGAIN;
1530                 }
1531                 BUG_ON(btrfs_header_nritems(b) == 1);
1532         }
1533         return ret;
1534 }
1535
1536 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1537                 u64 iobjectid, u64 ioff, u8 key_type,
1538                 struct btrfs_key *found_key)
1539 {
1540         int ret;
1541         struct btrfs_key key;
1542         struct extent_buffer *eb;
1543
1544         ASSERT(path);
1545         ASSERT(found_key);
1546
1547         key.type = key_type;
1548         key.objectid = iobjectid;
1549         key.offset = ioff;
1550
1551         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1552         if (ret < 0)
1553                 return ret;
1554
1555         eb = path->nodes[0];
1556         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1557                 ret = btrfs_next_leaf(fs_root, path);
1558                 if (ret)
1559                         return ret;
1560                 eb = path->nodes[0];
1561         }
1562
1563         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1564         if (found_key->type != key.type ||
1565                         found_key->objectid != key.objectid)
1566                 return 1;
1567
1568         return 0;
1569 }
1570
1571 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1572                                                         struct btrfs_path *p,
1573                                                         int write_lock_level)
1574 {
1575         struct extent_buffer *b;
1576         int root_lock = 0;
1577         int level = 0;
1578
1579         if (p->search_commit_root) {
1580                 b = root->commit_root;
1581                 atomic_inc(&b->refs);
1582                 level = btrfs_header_level(b);
1583                 /*
1584                  * Ensure that all callers have set skip_locking when
1585                  * p->search_commit_root = 1.
1586                  */
1587                 ASSERT(p->skip_locking == 1);
1588
1589                 goto out;
1590         }
1591
1592         if (p->skip_locking) {
1593                 b = btrfs_root_node(root);
1594                 level = btrfs_header_level(b);
1595                 goto out;
1596         }
1597
1598         /* We try very hard to do read locks on the root */
1599         root_lock = BTRFS_READ_LOCK;
1600
1601         /*
1602          * If the level is set to maximum, we can skip trying to get the read
1603          * lock.
1604          */
1605         if (write_lock_level < BTRFS_MAX_LEVEL) {
1606                 /*
1607                  * We don't know the level of the root node until we actually
1608                  * have it read locked
1609                  */
1610                 b = btrfs_read_lock_root_node(root);
1611                 level = btrfs_header_level(b);
1612                 if (level > write_lock_level)
1613                         goto out;
1614
1615                 /* Whoops, must trade for write lock */
1616                 btrfs_tree_read_unlock(b);
1617                 free_extent_buffer(b);
1618         }
1619
1620         b = btrfs_lock_root_node(root);
1621         root_lock = BTRFS_WRITE_LOCK;
1622
1623         /* The level might have changed, check again */
1624         level = btrfs_header_level(b);
1625
1626 out:
1627         /*
1628          * The root may have failed to write out at some point, and thus is no
1629          * longer valid, return an error in this case.
1630          */
1631         if (!extent_buffer_uptodate(b)) {
1632                 if (root_lock)
1633                         btrfs_tree_unlock_rw(b, root_lock);
1634                 free_extent_buffer(b);
1635                 return ERR_PTR(-EIO);
1636         }
1637
1638         p->nodes[level] = b;
1639         if (!p->skip_locking)
1640                 p->locks[level] = root_lock;
1641         /*
1642          * Callers are responsible for dropping b's references.
1643          */
1644         return b;
1645 }
1646
1647 /*
1648  * Replace the extent buffer at the lowest level of the path with a cloned
1649  * version. The purpose is to be able to use it safely, after releasing the
1650  * commit root semaphore, even if relocation is happening in parallel, the
1651  * transaction used for relocation is committed and the extent buffer is
1652  * reallocated in the next transaction.
1653  *
1654  * This is used in a context where the caller does not prevent transaction
1655  * commits from happening, either by holding a transaction handle or holding
1656  * some lock, while it's doing searches through a commit root.
1657  * At the moment it's only used for send operations.
1658  */
1659 static int finish_need_commit_sem_search(struct btrfs_path *path)
1660 {
1661         const int i = path->lowest_level;
1662         const int slot = path->slots[i];
1663         struct extent_buffer *lowest = path->nodes[i];
1664         struct extent_buffer *clone;
1665
1666         ASSERT(path->need_commit_sem);
1667
1668         if (!lowest)
1669                 return 0;
1670
1671         lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1672
1673         clone = btrfs_clone_extent_buffer(lowest);
1674         if (!clone)
1675                 return -ENOMEM;
1676
1677         btrfs_release_path(path);
1678         path->nodes[i] = clone;
1679         path->slots[i] = slot;
1680
1681         return 0;
1682 }
1683
1684 static inline int search_for_key_slot(struct extent_buffer *eb,
1685                                       int search_low_slot,
1686                                       const struct btrfs_key *key,
1687                                       int prev_cmp,
1688                                       int *slot)
1689 {
1690         /*
1691          * If a previous call to btrfs_bin_search() on a parent node returned an
1692          * exact match (prev_cmp == 0), we can safely assume the target key will
1693          * always be at slot 0 on lower levels, since each key pointer
1694          * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1695          * subtree it points to. Thus we can skip searching lower levels.
1696          */
1697         if (prev_cmp == 0) {
1698                 *slot = 0;
1699                 return 0;
1700         }
1701
1702         return generic_bin_search(eb, search_low_slot, key, slot);
1703 }
1704
1705 static int search_leaf(struct btrfs_trans_handle *trans,
1706                        struct btrfs_root *root,
1707                        const struct btrfs_key *key,
1708                        struct btrfs_path *path,
1709                        int ins_len,
1710                        int prev_cmp)
1711 {
1712         struct extent_buffer *leaf = path->nodes[0];
1713         int leaf_free_space = -1;
1714         int search_low_slot = 0;
1715         int ret;
1716         bool do_bin_search = true;
1717
1718         /*
1719          * If we are doing an insertion, the leaf has enough free space and the
1720          * destination slot for the key is not slot 0, then we can unlock our
1721          * write lock on the parent, and any other upper nodes, before doing the
1722          * binary search on the leaf (with search_for_key_slot()), allowing other
1723          * tasks to lock the parent and any other upper nodes.
1724          */
1725         if (ins_len > 0) {
1726                 /*
1727                  * Cache the leaf free space, since we will need it later and it
1728                  * will not change until then.
1729                  */
1730                 leaf_free_space = btrfs_leaf_free_space(leaf);
1731
1732                 /*
1733                  * !path->locks[1] means we have a single node tree, the leaf is
1734                  * the root of the tree.
1735                  */
1736                 if (path->locks[1] && leaf_free_space >= ins_len) {
1737                         struct btrfs_disk_key first_key;
1738
1739                         ASSERT(btrfs_header_nritems(leaf) > 0);
1740                         btrfs_item_key(leaf, &first_key, 0);
1741
1742                         /*
1743                          * Doing the extra comparison with the first key is cheap,
1744                          * taking into account that the first key is very likely
1745                          * already in a cache line because it immediately follows
1746                          * the extent buffer's header and we have recently accessed
1747                          * the header's level field.
1748                          */
1749                         ret = comp_keys(&first_key, key);
1750                         if (ret < 0) {
1751                                 /*
1752                                  * The first key is smaller than the key we want
1753                                  * to insert, so we are safe to unlock all upper
1754                                  * nodes and we have to do the binary search.
1755                                  *
1756                                  * We do use btrfs_unlock_up_safe() and not
1757                                  * unlock_up() because the later does not unlock
1758                                  * nodes with a slot of 0 - we can safely unlock
1759                                  * any node even if its slot is 0 since in this
1760                                  * case the key does not end up at slot 0 of the
1761                                  * leaf and there's no need to split the leaf.
1762                                  */
1763                                 btrfs_unlock_up_safe(path, 1);
1764                                 search_low_slot = 1;
1765                         } else {
1766                                 /*
1767                                  * The first key is >= then the key we want to
1768                                  * insert, so we can skip the binary search as
1769                                  * the target key will be at slot 0.
1770                                  *
1771                                  * We can not unlock upper nodes when the key is
1772                                  * less than the first key, because we will need
1773                                  * to update the key at slot 0 of the parent node
1774                                  * and possibly of other upper nodes too.
1775                                  * If the key matches the first key, then we can
1776                                  * unlock all the upper nodes, using
1777                                  * btrfs_unlock_up_safe() instead of unlock_up()
1778                                  * as stated above.
1779                                  */
1780                                 if (ret == 0)
1781                                         btrfs_unlock_up_safe(path, 1);
1782                                 /*
1783                                  * ret is already 0 or 1, matching the result of
1784                                  * a btrfs_bin_search() call, so there is no need
1785                                  * to adjust it.
1786                                  */
1787                                 do_bin_search = false;
1788                                 path->slots[0] = 0;
1789                         }
1790                 }
1791         }
1792
1793         if (do_bin_search) {
1794                 ret = search_for_key_slot(leaf, search_low_slot, key,
1795                                           prev_cmp, &path->slots[0]);
1796                 if (ret < 0)
1797                         return ret;
1798         }
1799
1800         if (ins_len > 0) {
1801                 /*
1802                  * Item key already exists. In this case, if we are allowed to
1803                  * insert the item (for example, in dir_item case, item key
1804                  * collision is allowed), it will be merged with the original
1805                  * item. Only the item size grows, no new btrfs item will be
1806                  * added. If search_for_extension is not set, ins_len already
1807                  * accounts the size btrfs_item, deduct it here so leaf space
1808                  * check will be correct.
1809                  */
1810                 if (ret == 0 && !path->search_for_extension) {
1811                         ASSERT(ins_len >= sizeof(struct btrfs_item));
1812                         ins_len -= sizeof(struct btrfs_item);
1813                 }
1814
1815                 ASSERT(leaf_free_space >= 0);
1816
1817                 if (leaf_free_space < ins_len) {
1818                         int err;
1819
1820                         err = split_leaf(trans, root, key, path, ins_len,
1821                                          (ret == 0));
1822                         ASSERT(err <= 0);
1823                         if (WARN_ON(err > 0))
1824                                 err = -EUCLEAN;
1825                         if (err)
1826                                 ret = err;
1827                 }
1828         }
1829
1830         return ret;
1831 }
1832
1833 /*
1834  * btrfs_search_slot - look for a key in a tree and perform necessary
1835  * modifications to preserve tree invariants.
1836  *
1837  * @trans:      Handle of transaction, used when modifying the tree
1838  * @p:          Holds all btree nodes along the search path
1839  * @root:       The root node of the tree
1840  * @key:        The key we are looking for
1841  * @ins_len:    Indicates purpose of search:
1842  *              >0  for inserts it's size of item inserted (*)
1843  *              <0  for deletions
1844  *               0  for plain searches, not modifying the tree
1845  *
1846  *              (*) If size of item inserted doesn't include
1847  *              sizeof(struct btrfs_item), then p->search_for_extension must
1848  *              be set.
1849  * @cow:        boolean should CoW operations be performed. Must always be 1
1850  *              when modifying the tree.
1851  *
1852  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1853  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1854  *
1855  * If @key is found, 0 is returned and you can find the item in the leaf level
1856  * of the path (level 0)
1857  *
1858  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1859  * points to the slot where it should be inserted
1860  *
1861  * If an error is encountered while searching the tree a negative error number
1862  * is returned
1863  */
1864 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1865                       const struct btrfs_key *key, struct btrfs_path *p,
1866                       int ins_len, int cow)
1867 {
1868         struct btrfs_fs_info *fs_info = root->fs_info;
1869         struct extent_buffer *b;
1870         int slot;
1871         int ret;
1872         int err;
1873         int level;
1874         int lowest_unlock = 1;
1875         /* everything at write_lock_level or lower must be write locked */
1876         int write_lock_level = 0;
1877         u8 lowest_level = 0;
1878         int min_write_lock_level;
1879         int prev_cmp;
1880
1881         lowest_level = p->lowest_level;
1882         WARN_ON(lowest_level && ins_len > 0);
1883         WARN_ON(p->nodes[0] != NULL);
1884         BUG_ON(!cow && ins_len);
1885
1886         if (ins_len < 0) {
1887                 lowest_unlock = 2;
1888
1889                 /* when we are removing items, we might have to go up to level
1890                  * two as we update tree pointers  Make sure we keep write
1891                  * for those levels as well
1892                  */
1893                 write_lock_level = 2;
1894         } else if (ins_len > 0) {
1895                 /*
1896                  * for inserting items, make sure we have a write lock on
1897                  * level 1 so we can update keys
1898                  */
1899                 write_lock_level = 1;
1900         }
1901
1902         if (!cow)
1903                 write_lock_level = -1;
1904
1905         if (cow && (p->keep_locks || p->lowest_level))
1906                 write_lock_level = BTRFS_MAX_LEVEL;
1907
1908         min_write_lock_level = write_lock_level;
1909
1910         if (p->need_commit_sem) {
1911                 ASSERT(p->search_commit_root);
1912                 down_read(&fs_info->commit_root_sem);
1913         }
1914
1915 again:
1916         prev_cmp = -1;
1917         b = btrfs_search_slot_get_root(root, p, write_lock_level);
1918         if (IS_ERR(b)) {
1919                 ret = PTR_ERR(b);
1920                 goto done;
1921         }
1922
1923         while (b) {
1924                 int dec = 0;
1925
1926                 level = btrfs_header_level(b);
1927
1928                 if (cow) {
1929                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1930
1931                         /*
1932                          * if we don't really need to cow this block
1933                          * then we don't want to set the path blocking,
1934                          * so we test it here
1935                          */
1936                         if (!should_cow_block(trans, root, b))
1937                                 goto cow_done;
1938
1939                         /*
1940                          * must have write locks on this node and the
1941                          * parent
1942                          */
1943                         if (level > write_lock_level ||
1944                             (level + 1 > write_lock_level &&
1945                             level + 1 < BTRFS_MAX_LEVEL &&
1946                             p->nodes[level + 1])) {
1947                                 write_lock_level = level + 1;
1948                                 btrfs_release_path(p);
1949                                 goto again;
1950                         }
1951
1952                         if (last_level)
1953                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
1954                                                       &b,
1955                                                       BTRFS_NESTING_COW);
1956                         else
1957                                 err = btrfs_cow_block(trans, root, b,
1958                                                       p->nodes[level + 1],
1959                                                       p->slots[level + 1], &b,
1960                                                       BTRFS_NESTING_COW);
1961                         if (err) {
1962                                 ret = err;
1963                                 goto done;
1964                         }
1965                 }
1966 cow_done:
1967                 p->nodes[level] = b;
1968
1969                 /*
1970                  * we have a lock on b and as long as we aren't changing
1971                  * the tree, there is no way to for the items in b to change.
1972                  * It is safe to drop the lock on our parent before we
1973                  * go through the expensive btree search on b.
1974                  *
1975                  * If we're inserting or deleting (ins_len != 0), then we might
1976                  * be changing slot zero, which may require changing the parent.
1977                  * So, we can't drop the lock until after we know which slot
1978                  * we're operating on.
1979                  */
1980                 if (!ins_len && !p->keep_locks) {
1981                         int u = level + 1;
1982
1983                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1984                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1985                                 p->locks[u] = 0;
1986                         }
1987                 }
1988
1989                 if (level == 0) {
1990                         if (ins_len > 0)
1991                                 ASSERT(write_lock_level >= 1);
1992
1993                         ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
1994                         if (!p->search_for_split)
1995                                 unlock_up(p, level, lowest_unlock,
1996                                           min_write_lock_level, NULL);
1997                         goto done;
1998                 }
1999
2000                 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2001                 if (ret < 0)
2002                         goto done;
2003                 prev_cmp = ret;
2004
2005                 if (ret && slot > 0) {
2006                         dec = 1;
2007                         slot--;
2008                 }
2009                 p->slots[level] = slot;
2010                 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2011                                              &write_lock_level);
2012                 if (err == -EAGAIN)
2013                         goto again;
2014                 if (err) {
2015                         ret = err;
2016                         goto done;
2017                 }
2018                 b = p->nodes[level];
2019                 slot = p->slots[level];
2020
2021                 /*
2022                  * Slot 0 is special, if we change the key we have to update
2023                  * the parent pointer which means we must have a write lock on
2024                  * the parent
2025                  */
2026                 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2027                         write_lock_level = level + 1;
2028                         btrfs_release_path(p);
2029                         goto again;
2030                 }
2031
2032                 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2033                           &write_lock_level);
2034
2035                 if (level == lowest_level) {
2036                         if (dec)
2037                                 p->slots[level]++;
2038                         goto done;
2039                 }
2040
2041                 err = read_block_for_search(root, p, &b, level, slot, key);
2042                 if (err == -EAGAIN)
2043                         goto again;
2044                 if (err) {
2045                         ret = err;
2046                         goto done;
2047                 }
2048
2049                 if (!p->skip_locking) {
2050                         level = btrfs_header_level(b);
2051                         if (level <= write_lock_level) {
2052                                 btrfs_tree_lock(b);
2053                                 p->locks[level] = BTRFS_WRITE_LOCK;
2054                         } else {
2055                                 btrfs_tree_read_lock(b);
2056                                 p->locks[level] = BTRFS_READ_LOCK;
2057                         }
2058                         p->nodes[level] = b;
2059                 }
2060         }
2061         ret = 1;
2062 done:
2063         if (ret < 0 && !p->skip_release_on_error)
2064                 btrfs_release_path(p);
2065
2066         if (p->need_commit_sem) {
2067                 int ret2;
2068
2069                 ret2 = finish_need_commit_sem_search(p);
2070                 up_read(&fs_info->commit_root_sem);
2071                 if (ret2)
2072                         ret = ret2;
2073         }
2074
2075         return ret;
2076 }
2077 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2078
2079 /*
2080  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2081  * current state of the tree together with the operations recorded in the tree
2082  * modification log to search for the key in a previous version of this tree, as
2083  * denoted by the time_seq parameter.
2084  *
2085  * Naturally, there is no support for insert, delete or cow operations.
2086  *
2087  * The resulting path and return value will be set up as if we called
2088  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2089  */
2090 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2091                           struct btrfs_path *p, u64 time_seq)
2092 {
2093         struct btrfs_fs_info *fs_info = root->fs_info;
2094         struct extent_buffer *b;
2095         int slot;
2096         int ret;
2097         int err;
2098         int level;
2099         int lowest_unlock = 1;
2100         u8 lowest_level = 0;
2101
2102         lowest_level = p->lowest_level;
2103         WARN_ON(p->nodes[0] != NULL);
2104
2105         if (p->search_commit_root) {
2106                 BUG_ON(time_seq);
2107                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2108         }
2109
2110 again:
2111         b = btrfs_get_old_root(root, time_seq);
2112         if (!b) {
2113                 ret = -EIO;
2114                 goto done;
2115         }
2116         level = btrfs_header_level(b);
2117         p->locks[level] = BTRFS_READ_LOCK;
2118
2119         while (b) {
2120                 int dec = 0;
2121
2122                 level = btrfs_header_level(b);
2123                 p->nodes[level] = b;
2124
2125                 /*
2126                  * we have a lock on b and as long as we aren't changing
2127                  * the tree, there is no way to for the items in b to change.
2128                  * It is safe to drop the lock on our parent before we
2129                  * go through the expensive btree search on b.
2130                  */
2131                 btrfs_unlock_up_safe(p, level + 1);
2132
2133                 ret = btrfs_bin_search(b, key, &slot);
2134                 if (ret < 0)
2135                         goto done;
2136
2137                 if (level == 0) {
2138                         p->slots[level] = slot;
2139                         unlock_up(p, level, lowest_unlock, 0, NULL);
2140                         goto done;
2141                 }
2142
2143                 if (ret && slot > 0) {
2144                         dec = 1;
2145                         slot--;
2146                 }
2147                 p->slots[level] = slot;
2148                 unlock_up(p, level, lowest_unlock, 0, NULL);
2149
2150                 if (level == lowest_level) {
2151                         if (dec)
2152                                 p->slots[level]++;
2153                         goto done;
2154                 }
2155
2156                 err = read_block_for_search(root, p, &b, level, slot, key);
2157                 if (err == -EAGAIN)
2158                         goto again;
2159                 if (err) {
2160                         ret = err;
2161                         goto done;
2162                 }
2163
2164                 level = btrfs_header_level(b);
2165                 btrfs_tree_read_lock(b);
2166                 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2167                 if (!b) {
2168                         ret = -ENOMEM;
2169                         goto done;
2170                 }
2171                 p->locks[level] = BTRFS_READ_LOCK;
2172                 p->nodes[level] = b;
2173         }
2174         ret = 1;
2175 done:
2176         if (ret < 0)
2177                 btrfs_release_path(p);
2178
2179         return ret;
2180 }
2181
2182 /*
2183  * helper to use instead of search slot if no exact match is needed but
2184  * instead the next or previous item should be returned.
2185  * When find_higher is true, the next higher item is returned, the next lower
2186  * otherwise.
2187  * When return_any and find_higher are both true, and no higher item is found,
2188  * return the next lower instead.
2189  * When return_any is true and find_higher is false, and no lower item is found,
2190  * return the next higher instead.
2191  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2192  * < 0 on error
2193  */
2194 int btrfs_search_slot_for_read(struct btrfs_root *root,
2195                                const struct btrfs_key *key,
2196                                struct btrfs_path *p, int find_higher,
2197                                int return_any)
2198 {
2199         int ret;
2200         struct extent_buffer *leaf;
2201
2202 again:
2203         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2204         if (ret <= 0)
2205                 return ret;
2206         /*
2207          * a return value of 1 means the path is at the position where the
2208          * item should be inserted. Normally this is the next bigger item,
2209          * but in case the previous item is the last in a leaf, path points
2210          * to the first free slot in the previous leaf, i.e. at an invalid
2211          * item.
2212          */
2213         leaf = p->nodes[0];
2214
2215         if (find_higher) {
2216                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2217                         ret = btrfs_next_leaf(root, p);
2218                         if (ret <= 0)
2219                                 return ret;
2220                         if (!return_any)
2221                                 return 1;
2222                         /*
2223                          * no higher item found, return the next
2224                          * lower instead
2225                          */
2226                         return_any = 0;
2227                         find_higher = 0;
2228                         btrfs_release_path(p);
2229                         goto again;
2230                 }
2231         } else {
2232                 if (p->slots[0] == 0) {
2233                         ret = btrfs_prev_leaf(root, p);
2234                         if (ret < 0)
2235                                 return ret;
2236                         if (!ret) {
2237                                 leaf = p->nodes[0];
2238                                 if (p->slots[0] == btrfs_header_nritems(leaf))
2239                                         p->slots[0]--;
2240                                 return 0;
2241                         }
2242                         if (!return_any)
2243                                 return 1;
2244                         /*
2245                          * no lower item found, return the next
2246                          * higher instead
2247                          */
2248                         return_any = 0;
2249                         find_higher = 1;
2250                         btrfs_release_path(p);
2251                         goto again;
2252                 } else {
2253                         --p->slots[0];
2254                 }
2255         }
2256         return 0;
2257 }
2258
2259 /*
2260  * Execute search and call btrfs_previous_item to traverse backwards if the item
2261  * was not found.
2262  *
2263  * Return 0 if found, 1 if not found and < 0 if error.
2264  */
2265 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2266                            struct btrfs_path *path)
2267 {
2268         int ret;
2269
2270         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2271         if (ret > 0)
2272                 ret = btrfs_previous_item(root, path, key->objectid, key->type);
2273
2274         if (ret == 0)
2275                 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2276
2277         return ret;
2278 }
2279
2280 /*
2281  * adjust the pointers going up the tree, starting at level
2282  * making sure the right key of each node is points to 'key'.
2283  * This is used after shifting pointers to the left, so it stops
2284  * fixing up pointers when a given leaf/node is not in slot 0 of the
2285  * higher levels
2286  *
2287  */
2288 static void fixup_low_keys(struct btrfs_path *path,
2289                            struct btrfs_disk_key *key, int level)
2290 {
2291         int i;
2292         struct extent_buffer *t;
2293         int ret;
2294
2295         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2296                 int tslot = path->slots[i];
2297
2298                 if (!path->nodes[i])
2299                         break;
2300                 t = path->nodes[i];
2301                 ret = btrfs_tree_mod_log_insert_key(t, tslot,
2302                                 BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2303                 BUG_ON(ret < 0);
2304                 btrfs_set_node_key(t, key, tslot);
2305                 btrfs_mark_buffer_dirty(path->nodes[i]);
2306                 if (tslot != 0)
2307                         break;
2308         }
2309 }
2310
2311 /*
2312  * update item key.
2313  *
2314  * This function isn't completely safe. It's the caller's responsibility
2315  * that the new key won't break the order
2316  */
2317 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2318                              struct btrfs_path *path,
2319                              const struct btrfs_key *new_key)
2320 {
2321         struct btrfs_disk_key disk_key;
2322         struct extent_buffer *eb;
2323         int slot;
2324
2325         eb = path->nodes[0];
2326         slot = path->slots[0];
2327         if (slot > 0) {
2328                 btrfs_item_key(eb, &disk_key, slot - 1);
2329                 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2330                         btrfs_crit(fs_info,
2331                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2332                                    slot, btrfs_disk_key_objectid(&disk_key),
2333                                    btrfs_disk_key_type(&disk_key),
2334                                    btrfs_disk_key_offset(&disk_key),
2335                                    new_key->objectid, new_key->type,
2336                                    new_key->offset);
2337                         btrfs_print_leaf(eb);
2338                         BUG();
2339                 }
2340         }
2341         if (slot < btrfs_header_nritems(eb) - 1) {
2342                 btrfs_item_key(eb, &disk_key, slot + 1);
2343                 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2344                         btrfs_crit(fs_info,
2345                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2346                                    slot, btrfs_disk_key_objectid(&disk_key),
2347                                    btrfs_disk_key_type(&disk_key),
2348                                    btrfs_disk_key_offset(&disk_key),
2349                                    new_key->objectid, new_key->type,
2350                                    new_key->offset);
2351                         btrfs_print_leaf(eb);
2352                         BUG();
2353                 }
2354         }
2355
2356         btrfs_cpu_key_to_disk(&disk_key, new_key);
2357         btrfs_set_item_key(eb, &disk_key, slot);
2358         btrfs_mark_buffer_dirty(eb);
2359         if (slot == 0)
2360                 fixup_low_keys(path, &disk_key, 1);
2361 }
2362
2363 /*
2364  * Check key order of two sibling extent buffers.
2365  *
2366  * Return true if something is wrong.
2367  * Return false if everything is fine.
2368  *
2369  * Tree-checker only works inside one tree block, thus the following
2370  * corruption can not be detected by tree-checker:
2371  *
2372  * Leaf @left                   | Leaf @right
2373  * --------------------------------------------------------------
2374  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2375  *
2376  * Key f6 in leaf @left itself is valid, but not valid when the next
2377  * key in leaf @right is 7.
2378  * This can only be checked at tree block merge time.
2379  * And since tree checker has ensured all key order in each tree block
2380  * is correct, we only need to bother the last key of @left and the first
2381  * key of @right.
2382  */
2383 static bool check_sibling_keys(struct extent_buffer *left,
2384                                struct extent_buffer *right)
2385 {
2386         struct btrfs_key left_last;
2387         struct btrfs_key right_first;
2388         int level = btrfs_header_level(left);
2389         int nr_left = btrfs_header_nritems(left);
2390         int nr_right = btrfs_header_nritems(right);
2391
2392         /* No key to check in one of the tree blocks */
2393         if (!nr_left || !nr_right)
2394                 return false;
2395
2396         if (level) {
2397                 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2398                 btrfs_node_key_to_cpu(right, &right_first, 0);
2399         } else {
2400                 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2401                 btrfs_item_key_to_cpu(right, &right_first, 0);
2402         }
2403
2404         if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2405                 btrfs_crit(left->fs_info,
2406 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2407                            left_last.objectid, left_last.type,
2408                            left_last.offset, right_first.objectid,
2409                            right_first.type, right_first.offset);
2410                 return true;
2411         }
2412         return false;
2413 }
2414
2415 /*
2416  * try to push data from one node into the next node left in the
2417  * tree.
2418  *
2419  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2420  * error, and > 0 if there was no room in the left hand block.
2421  */
2422 static int push_node_left(struct btrfs_trans_handle *trans,
2423                           struct extent_buffer *dst,
2424                           struct extent_buffer *src, int empty)
2425 {
2426         struct btrfs_fs_info *fs_info = trans->fs_info;
2427         int push_items = 0;
2428         int src_nritems;
2429         int dst_nritems;
2430         int ret = 0;
2431
2432         src_nritems = btrfs_header_nritems(src);
2433         dst_nritems = btrfs_header_nritems(dst);
2434         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2435         WARN_ON(btrfs_header_generation(src) != trans->transid);
2436         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2437
2438         if (!empty && src_nritems <= 8)
2439                 return 1;
2440
2441         if (push_items <= 0)
2442                 return 1;
2443
2444         if (empty) {
2445                 push_items = min(src_nritems, push_items);
2446                 if (push_items < src_nritems) {
2447                         /* leave at least 8 pointers in the node if
2448                          * we aren't going to empty it
2449                          */
2450                         if (src_nritems - push_items < 8) {
2451                                 if (push_items <= 8)
2452                                         return 1;
2453                                 push_items -= 8;
2454                         }
2455                 }
2456         } else
2457                 push_items = min(src_nritems - 8, push_items);
2458
2459         /* dst is the left eb, src is the middle eb */
2460         if (check_sibling_keys(dst, src)) {
2461                 ret = -EUCLEAN;
2462                 btrfs_abort_transaction(trans, ret);
2463                 return ret;
2464         }
2465         ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2466         if (ret) {
2467                 btrfs_abort_transaction(trans, ret);
2468                 return ret;
2469         }
2470         copy_extent_buffer(dst, src,
2471                            btrfs_node_key_ptr_offset(dst_nritems),
2472                            btrfs_node_key_ptr_offset(0),
2473                            push_items * sizeof(struct btrfs_key_ptr));
2474
2475         if (push_items < src_nritems) {
2476                 /*
2477                  * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2478                  * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2479                  */
2480                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2481                                       btrfs_node_key_ptr_offset(push_items),
2482                                       (src_nritems - push_items) *
2483                                       sizeof(struct btrfs_key_ptr));
2484         }
2485         btrfs_set_header_nritems(src, src_nritems - push_items);
2486         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2487         btrfs_mark_buffer_dirty(src);
2488         btrfs_mark_buffer_dirty(dst);
2489
2490         return ret;
2491 }
2492
2493 /*
2494  * try to push data from one node into the next node right in the
2495  * tree.
2496  *
2497  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2498  * error, and > 0 if there was no room in the right hand block.
2499  *
2500  * this will  only push up to 1/2 the contents of the left node over
2501  */
2502 static int balance_node_right(struct btrfs_trans_handle *trans,
2503                               struct extent_buffer *dst,
2504                               struct extent_buffer *src)
2505 {
2506         struct btrfs_fs_info *fs_info = trans->fs_info;
2507         int push_items = 0;
2508         int max_push;
2509         int src_nritems;
2510         int dst_nritems;
2511         int ret = 0;
2512
2513         WARN_ON(btrfs_header_generation(src) != trans->transid);
2514         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2515
2516         src_nritems = btrfs_header_nritems(src);
2517         dst_nritems = btrfs_header_nritems(dst);
2518         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2519         if (push_items <= 0)
2520                 return 1;
2521
2522         if (src_nritems < 4)
2523                 return 1;
2524
2525         max_push = src_nritems / 2 + 1;
2526         /* don't try to empty the node */
2527         if (max_push >= src_nritems)
2528                 return 1;
2529
2530         if (max_push < push_items)
2531                 push_items = max_push;
2532
2533         /* dst is the right eb, src is the middle eb */
2534         if (check_sibling_keys(src, dst)) {
2535                 ret = -EUCLEAN;
2536                 btrfs_abort_transaction(trans, ret);
2537                 return ret;
2538         }
2539         ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2540         BUG_ON(ret < 0);
2541         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2542                                       btrfs_node_key_ptr_offset(0),
2543                                       (dst_nritems) *
2544                                       sizeof(struct btrfs_key_ptr));
2545
2546         ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2547                                          push_items);
2548         if (ret) {
2549                 btrfs_abort_transaction(trans, ret);
2550                 return ret;
2551         }
2552         copy_extent_buffer(dst, src,
2553                            btrfs_node_key_ptr_offset(0),
2554                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2555                            push_items * sizeof(struct btrfs_key_ptr));
2556
2557         btrfs_set_header_nritems(src, src_nritems - push_items);
2558         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2559
2560         btrfs_mark_buffer_dirty(src);
2561         btrfs_mark_buffer_dirty(dst);
2562
2563         return ret;
2564 }
2565
2566 /*
2567  * helper function to insert a new root level in the tree.
2568  * A new node is allocated, and a single item is inserted to
2569  * point to the existing root
2570  *
2571  * returns zero on success or < 0 on failure.
2572  */
2573 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2574                            struct btrfs_root *root,
2575                            struct btrfs_path *path, int level)
2576 {
2577         struct btrfs_fs_info *fs_info = root->fs_info;
2578         u64 lower_gen;
2579         struct extent_buffer *lower;
2580         struct extent_buffer *c;
2581         struct extent_buffer *old;
2582         struct btrfs_disk_key lower_key;
2583         int ret;
2584
2585         BUG_ON(path->nodes[level]);
2586         BUG_ON(path->nodes[level-1] != root->node);
2587
2588         lower = path->nodes[level-1];
2589         if (level == 1)
2590                 btrfs_item_key(lower, &lower_key, 0);
2591         else
2592                 btrfs_node_key(lower, &lower_key, 0);
2593
2594         c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2595                                    &lower_key, level, root->node->start, 0,
2596                                    BTRFS_NESTING_NEW_ROOT);
2597         if (IS_ERR(c))
2598                 return PTR_ERR(c);
2599
2600         root_add_used(root, fs_info->nodesize);
2601
2602         btrfs_set_header_nritems(c, 1);
2603         btrfs_set_node_key(c, &lower_key, 0);
2604         btrfs_set_node_blockptr(c, 0, lower->start);
2605         lower_gen = btrfs_header_generation(lower);
2606         WARN_ON(lower_gen != trans->transid);
2607
2608         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2609
2610         btrfs_mark_buffer_dirty(c);
2611
2612         old = root->node;
2613         ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2614         BUG_ON(ret < 0);
2615         rcu_assign_pointer(root->node, c);
2616
2617         /* the super has an extra ref to root->node */
2618         free_extent_buffer(old);
2619
2620         add_root_to_dirty_list(root);
2621         atomic_inc(&c->refs);
2622         path->nodes[level] = c;
2623         path->locks[level] = BTRFS_WRITE_LOCK;
2624         path->slots[level] = 0;
2625         return 0;
2626 }
2627
2628 /*
2629  * worker function to insert a single pointer in a node.
2630  * the node should have enough room for the pointer already
2631  *
2632  * slot and level indicate where you want the key to go, and
2633  * blocknr is the block the key points to.
2634  */
2635 static void insert_ptr(struct btrfs_trans_handle *trans,
2636                        struct btrfs_path *path,
2637                        struct btrfs_disk_key *key, u64 bytenr,
2638                        int slot, int level)
2639 {
2640         struct extent_buffer *lower;
2641         int nritems;
2642         int ret;
2643
2644         BUG_ON(!path->nodes[level]);
2645         btrfs_assert_tree_write_locked(path->nodes[level]);
2646         lower = path->nodes[level];
2647         nritems = btrfs_header_nritems(lower);
2648         BUG_ON(slot > nritems);
2649         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2650         if (slot != nritems) {
2651                 if (level) {
2652                         ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2653                                         slot, nritems - slot);
2654                         BUG_ON(ret < 0);
2655                 }
2656                 memmove_extent_buffer(lower,
2657                               btrfs_node_key_ptr_offset(slot + 1),
2658                               btrfs_node_key_ptr_offset(slot),
2659                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2660         }
2661         if (level) {
2662                 ret = btrfs_tree_mod_log_insert_key(lower, slot,
2663                                             BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2664                 BUG_ON(ret < 0);
2665         }
2666         btrfs_set_node_key(lower, key, slot);
2667         btrfs_set_node_blockptr(lower, slot, bytenr);
2668         WARN_ON(trans->transid == 0);
2669         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2670         btrfs_set_header_nritems(lower, nritems + 1);
2671         btrfs_mark_buffer_dirty(lower);
2672 }
2673
2674 /*
2675  * split the node at the specified level in path in two.
2676  * The path is corrected to point to the appropriate node after the split
2677  *
2678  * Before splitting this tries to make some room in the node by pushing
2679  * left and right, if either one works, it returns right away.
2680  *
2681  * returns 0 on success and < 0 on failure
2682  */
2683 static noinline int split_node(struct btrfs_trans_handle *trans,
2684                                struct btrfs_root *root,
2685                                struct btrfs_path *path, int level)
2686 {
2687         struct btrfs_fs_info *fs_info = root->fs_info;
2688         struct extent_buffer *c;
2689         struct extent_buffer *split;
2690         struct btrfs_disk_key disk_key;
2691         int mid;
2692         int ret;
2693         u32 c_nritems;
2694
2695         c = path->nodes[level];
2696         WARN_ON(btrfs_header_generation(c) != trans->transid);
2697         if (c == root->node) {
2698                 /*
2699                  * trying to split the root, lets make a new one
2700                  *
2701                  * tree mod log: We don't log_removal old root in
2702                  * insert_new_root, because that root buffer will be kept as a
2703                  * normal node. We are going to log removal of half of the
2704                  * elements below with btrfs_tree_mod_log_eb_copy(). We're
2705                  * holding a tree lock on the buffer, which is why we cannot
2706                  * race with other tree_mod_log users.
2707                  */
2708                 ret = insert_new_root(trans, root, path, level + 1);
2709                 if (ret)
2710                         return ret;
2711         } else {
2712                 ret = push_nodes_for_insert(trans, root, path, level);
2713                 c = path->nodes[level];
2714                 if (!ret && btrfs_header_nritems(c) <
2715                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2716                         return 0;
2717                 if (ret < 0)
2718                         return ret;
2719         }
2720
2721         c_nritems = btrfs_header_nritems(c);
2722         mid = (c_nritems + 1) / 2;
2723         btrfs_node_key(c, &disk_key, mid);
2724
2725         split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2726                                        &disk_key, level, c->start, 0,
2727                                        BTRFS_NESTING_SPLIT);
2728         if (IS_ERR(split))
2729                 return PTR_ERR(split);
2730
2731         root_add_used(root, fs_info->nodesize);
2732         ASSERT(btrfs_header_level(c) == level);
2733
2734         ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2735         if (ret) {
2736                 btrfs_abort_transaction(trans, ret);
2737                 return ret;
2738         }
2739         copy_extent_buffer(split, c,
2740                            btrfs_node_key_ptr_offset(0),
2741                            btrfs_node_key_ptr_offset(mid),
2742                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2743         btrfs_set_header_nritems(split, c_nritems - mid);
2744         btrfs_set_header_nritems(c, mid);
2745
2746         btrfs_mark_buffer_dirty(c);
2747         btrfs_mark_buffer_dirty(split);
2748
2749         insert_ptr(trans, path, &disk_key, split->start,
2750                    path->slots[level + 1] + 1, level + 1);
2751
2752         if (path->slots[level] >= mid) {
2753                 path->slots[level] -= mid;
2754                 btrfs_tree_unlock(c);
2755                 free_extent_buffer(c);
2756                 path->nodes[level] = split;
2757                 path->slots[level + 1] += 1;
2758         } else {
2759                 btrfs_tree_unlock(split);
2760                 free_extent_buffer(split);
2761         }
2762         return 0;
2763 }
2764
2765 /*
2766  * how many bytes are required to store the items in a leaf.  start
2767  * and nr indicate which items in the leaf to check.  This totals up the
2768  * space used both by the item structs and the item data
2769  */
2770 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2771 {
2772         int data_len;
2773         int nritems = btrfs_header_nritems(l);
2774         int end = min(nritems, start + nr) - 1;
2775
2776         if (!nr)
2777                 return 0;
2778         data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
2779         data_len = data_len - btrfs_item_offset(l, end);
2780         data_len += sizeof(struct btrfs_item) * nr;
2781         WARN_ON(data_len < 0);
2782         return data_len;
2783 }
2784
2785 /*
2786  * The space between the end of the leaf items and
2787  * the start of the leaf data.  IOW, how much room
2788  * the leaf has left for both items and data
2789  */
2790 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2791 {
2792         struct btrfs_fs_info *fs_info = leaf->fs_info;
2793         int nritems = btrfs_header_nritems(leaf);
2794         int ret;
2795
2796         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2797         if (ret < 0) {
2798                 btrfs_crit(fs_info,
2799                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2800                            ret,
2801                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2802                            leaf_space_used(leaf, 0, nritems), nritems);
2803         }
2804         return ret;
2805 }
2806
2807 /*
2808  * min slot controls the lowest index we're willing to push to the
2809  * right.  We'll push up to and including min_slot, but no lower
2810  */
2811 static noinline int __push_leaf_right(struct btrfs_path *path,
2812                                       int data_size, int empty,
2813                                       struct extent_buffer *right,
2814                                       int free_space, u32 left_nritems,
2815                                       u32 min_slot)
2816 {
2817         struct btrfs_fs_info *fs_info = right->fs_info;
2818         struct extent_buffer *left = path->nodes[0];
2819         struct extent_buffer *upper = path->nodes[1];
2820         struct btrfs_map_token token;
2821         struct btrfs_disk_key disk_key;
2822         int slot;
2823         u32 i;
2824         int push_space = 0;
2825         int push_items = 0;
2826         u32 nr;
2827         u32 right_nritems;
2828         u32 data_end;
2829         u32 this_item_size;
2830
2831         if (empty)
2832                 nr = 0;
2833         else
2834                 nr = max_t(u32, 1, min_slot);
2835
2836         if (path->slots[0] >= left_nritems)
2837                 push_space += data_size;
2838
2839         slot = path->slots[1];
2840         i = left_nritems - 1;
2841         while (i >= nr) {
2842                 if (!empty && push_items > 0) {
2843                         if (path->slots[0] > i)
2844                                 break;
2845                         if (path->slots[0] == i) {
2846                                 int space = btrfs_leaf_free_space(left);
2847
2848                                 if (space + push_space * 2 > free_space)
2849                                         break;
2850                         }
2851                 }
2852
2853                 if (path->slots[0] == i)
2854                         push_space += data_size;
2855
2856                 this_item_size = btrfs_item_size(left, i);
2857                 if (this_item_size + sizeof(struct btrfs_item) +
2858                     push_space > free_space)
2859                         break;
2860
2861                 push_items++;
2862                 push_space += this_item_size + sizeof(struct btrfs_item);
2863                 if (i == 0)
2864                         break;
2865                 i--;
2866         }
2867
2868         if (push_items == 0)
2869                 goto out_unlock;
2870
2871         WARN_ON(!empty && push_items == left_nritems);
2872
2873         /* push left to right */
2874         right_nritems = btrfs_header_nritems(right);
2875
2876         push_space = btrfs_item_data_end(left, left_nritems - push_items);
2877         push_space -= leaf_data_end(left);
2878
2879         /* make room in the right data area */
2880         data_end = leaf_data_end(right);
2881         memmove_extent_buffer(right,
2882                               BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2883                               BTRFS_LEAF_DATA_OFFSET + data_end,
2884                               BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2885
2886         /* copy from the left data area */
2887         copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2888                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2889                      BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2890                      push_space);
2891
2892         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2893                               btrfs_item_nr_offset(0),
2894                               right_nritems * sizeof(struct btrfs_item));
2895
2896         /* copy the items from left to right */
2897         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2898                    btrfs_item_nr_offset(left_nritems - push_items),
2899                    push_items * sizeof(struct btrfs_item));
2900
2901         /* update the item pointers */
2902         btrfs_init_map_token(&token, right);
2903         right_nritems += push_items;
2904         btrfs_set_header_nritems(right, right_nritems);
2905         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2906         for (i = 0; i < right_nritems; i++) {
2907                 push_space -= btrfs_token_item_size(&token, i);
2908                 btrfs_set_token_item_offset(&token, i, push_space);
2909         }
2910
2911         left_nritems -= push_items;
2912         btrfs_set_header_nritems(left, left_nritems);
2913
2914         if (left_nritems)
2915                 btrfs_mark_buffer_dirty(left);
2916         else
2917                 btrfs_clean_tree_block(left);
2918
2919         btrfs_mark_buffer_dirty(right);
2920
2921         btrfs_item_key(right, &disk_key, 0);
2922         btrfs_set_node_key(upper, &disk_key, slot + 1);
2923         btrfs_mark_buffer_dirty(upper);
2924
2925         /* then fixup the leaf pointer in the path */
2926         if (path->slots[0] >= left_nritems) {
2927                 path->slots[0] -= left_nritems;
2928                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2929                         btrfs_clean_tree_block(path->nodes[0]);
2930                 btrfs_tree_unlock(path->nodes[0]);
2931                 free_extent_buffer(path->nodes[0]);
2932                 path->nodes[0] = right;
2933                 path->slots[1] += 1;
2934         } else {
2935                 btrfs_tree_unlock(right);
2936                 free_extent_buffer(right);
2937         }
2938         return 0;
2939
2940 out_unlock:
2941         btrfs_tree_unlock(right);
2942         free_extent_buffer(right);
2943         return 1;
2944 }
2945
2946 /*
2947  * push some data in the path leaf to the right, trying to free up at
2948  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2949  *
2950  * returns 1 if the push failed because the other node didn't have enough
2951  * room, 0 if everything worked out and < 0 if there were major errors.
2952  *
2953  * this will push starting from min_slot to the end of the leaf.  It won't
2954  * push any slot lower than min_slot
2955  */
2956 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2957                            *root, struct btrfs_path *path,
2958                            int min_data_size, int data_size,
2959                            int empty, u32 min_slot)
2960 {
2961         struct extent_buffer *left = path->nodes[0];
2962         struct extent_buffer *right;
2963         struct extent_buffer *upper;
2964         int slot;
2965         int free_space;
2966         u32 left_nritems;
2967         int ret;
2968
2969         if (!path->nodes[1])
2970                 return 1;
2971
2972         slot = path->slots[1];
2973         upper = path->nodes[1];
2974         if (slot >= btrfs_header_nritems(upper) - 1)
2975                 return 1;
2976
2977         btrfs_assert_tree_write_locked(path->nodes[1]);
2978
2979         right = btrfs_read_node_slot(upper, slot + 1);
2980         /*
2981          * slot + 1 is not valid or we fail to read the right node,
2982          * no big deal, just return.
2983          */
2984         if (IS_ERR(right))
2985                 return 1;
2986
2987         __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2988
2989         free_space = btrfs_leaf_free_space(right);
2990         if (free_space < data_size)
2991                 goto out_unlock;
2992
2993         /* cow and double check */
2994         ret = btrfs_cow_block(trans, root, right, upper,
2995                               slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2996         if (ret)
2997                 goto out_unlock;
2998
2999         free_space = btrfs_leaf_free_space(right);
3000         if (free_space < data_size)
3001                 goto out_unlock;
3002
3003         left_nritems = btrfs_header_nritems(left);
3004         if (left_nritems == 0)
3005                 goto out_unlock;
3006
3007         if (check_sibling_keys(left, right)) {
3008                 ret = -EUCLEAN;
3009                 btrfs_tree_unlock(right);
3010                 free_extent_buffer(right);
3011                 return ret;
3012         }
3013         if (path->slots[0] == left_nritems && !empty) {
3014                 /* Key greater than all keys in the leaf, right neighbor has
3015                  * enough room for it and we're not emptying our leaf to delete
3016                  * it, therefore use right neighbor to insert the new item and
3017                  * no need to touch/dirty our left leaf. */
3018                 btrfs_tree_unlock(left);
3019                 free_extent_buffer(left);
3020                 path->nodes[0] = right;
3021                 path->slots[0] = 0;
3022                 path->slots[1]++;
3023                 return 0;
3024         }
3025
3026         return __push_leaf_right(path, min_data_size, empty,
3027                                 right, free_space, left_nritems, min_slot);
3028 out_unlock:
3029         btrfs_tree_unlock(right);
3030         free_extent_buffer(right);
3031         return 1;
3032 }
3033
3034 /*
3035  * push some data in the path leaf to the left, trying to free up at
3036  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3037  *
3038  * max_slot can put a limit on how far into the leaf we'll push items.  The
3039  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3040  * items
3041  */
3042 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3043                                      int empty, struct extent_buffer *left,
3044                                      int free_space, u32 right_nritems,
3045                                      u32 max_slot)
3046 {
3047         struct btrfs_fs_info *fs_info = left->fs_info;
3048         struct btrfs_disk_key disk_key;
3049         struct extent_buffer *right = path->nodes[0];
3050         int i;
3051         int push_space = 0;
3052         int push_items = 0;
3053         u32 old_left_nritems;
3054         u32 nr;
3055         int ret = 0;
3056         u32 this_item_size;
3057         u32 old_left_item_size;
3058         struct btrfs_map_token token;
3059
3060         if (empty)
3061                 nr = min(right_nritems, max_slot);
3062         else
3063                 nr = min(right_nritems - 1, max_slot);
3064
3065         for (i = 0; i < nr; i++) {
3066                 if (!empty && push_items > 0) {
3067                         if (path->slots[0] < i)
3068                                 break;
3069                         if (path->slots[0] == i) {
3070                                 int space = btrfs_leaf_free_space(right);
3071
3072                                 if (space + push_space * 2 > free_space)
3073                                         break;
3074                         }
3075                 }
3076
3077                 if (path->slots[0] == i)
3078                         push_space += data_size;
3079
3080                 this_item_size = btrfs_item_size(right, i);
3081                 if (this_item_size + sizeof(struct btrfs_item) + push_space >
3082                     free_space)
3083                         break;
3084
3085                 push_items++;
3086                 push_space += this_item_size + sizeof(struct btrfs_item);
3087         }
3088
3089         if (push_items == 0) {
3090                 ret = 1;
3091                 goto out;
3092         }
3093         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3094
3095         /* push data from right to left */
3096         copy_extent_buffer(left, right,
3097                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3098                            btrfs_item_nr_offset(0),
3099                            push_items * sizeof(struct btrfs_item));
3100
3101         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3102                      btrfs_item_offset(right, push_items - 1);
3103
3104         copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3105                      leaf_data_end(left) - push_space,
3106                      BTRFS_LEAF_DATA_OFFSET +
3107                      btrfs_item_offset(right, push_items - 1),
3108                      push_space);
3109         old_left_nritems = btrfs_header_nritems(left);
3110         BUG_ON(old_left_nritems <= 0);
3111
3112         btrfs_init_map_token(&token, left);
3113         old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3114         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3115                 u32 ioff;
3116
3117                 ioff = btrfs_token_item_offset(&token, i);
3118                 btrfs_set_token_item_offset(&token, i,
3119                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3120         }
3121         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3122
3123         /* fixup right node */
3124         if (push_items > right_nritems)
3125                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3126                        right_nritems);
3127
3128         if (push_items < right_nritems) {
3129                 push_space = btrfs_item_offset(right, push_items - 1) -
3130                                                   leaf_data_end(right);
3131                 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3132                                       BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3133                                       BTRFS_LEAF_DATA_OFFSET +
3134                                       leaf_data_end(right), push_space);
3135
3136                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3137                               btrfs_item_nr_offset(push_items),
3138                              (btrfs_header_nritems(right) - push_items) *
3139                              sizeof(struct btrfs_item));
3140         }
3141
3142         btrfs_init_map_token(&token, right);
3143         right_nritems -= push_items;
3144         btrfs_set_header_nritems(right, right_nritems);
3145         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3146         for (i = 0; i < right_nritems; i++) {
3147                 push_space = push_space - btrfs_token_item_size(&token, i);
3148                 btrfs_set_token_item_offset(&token, i, push_space);
3149         }
3150
3151         btrfs_mark_buffer_dirty(left);
3152         if (right_nritems)
3153                 btrfs_mark_buffer_dirty(right);
3154         else
3155                 btrfs_clean_tree_block(right);
3156
3157         btrfs_item_key(right, &disk_key, 0);
3158         fixup_low_keys(path, &disk_key, 1);
3159
3160         /* then fixup the leaf pointer in the path */
3161         if (path->slots[0] < push_items) {
3162                 path->slots[0] += old_left_nritems;
3163                 btrfs_tree_unlock(path->nodes[0]);
3164                 free_extent_buffer(path->nodes[0]);
3165                 path->nodes[0] = left;
3166                 path->slots[1] -= 1;
3167         } else {
3168                 btrfs_tree_unlock(left);
3169                 free_extent_buffer(left);
3170                 path->slots[0] -= push_items;
3171         }
3172         BUG_ON(path->slots[0] < 0);
3173         return ret;
3174 out:
3175         btrfs_tree_unlock(left);
3176         free_extent_buffer(left);
3177         return ret;
3178 }
3179
3180 /*
3181  * push some data in the path leaf to the left, trying to free up at
3182  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3183  *
3184  * max_slot can put a limit on how far into the leaf we'll push items.  The
3185  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3186  * items
3187  */
3188 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3189                           *root, struct btrfs_path *path, int min_data_size,
3190                           int data_size, int empty, u32 max_slot)
3191 {
3192         struct extent_buffer *right = path->nodes[0];
3193         struct extent_buffer *left;
3194         int slot;
3195         int free_space;
3196         u32 right_nritems;
3197         int ret = 0;
3198
3199         slot = path->slots[1];
3200         if (slot == 0)
3201                 return 1;
3202         if (!path->nodes[1])
3203                 return 1;
3204
3205         right_nritems = btrfs_header_nritems(right);
3206         if (right_nritems == 0)
3207                 return 1;
3208
3209         btrfs_assert_tree_write_locked(path->nodes[1]);
3210
3211         left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3212         /*
3213          * slot - 1 is not valid or we fail to read the left node,
3214          * no big deal, just return.
3215          */
3216         if (IS_ERR(left))
3217                 return 1;
3218
3219         __btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3220
3221         free_space = btrfs_leaf_free_space(left);
3222         if (free_space < data_size) {
3223                 ret = 1;
3224                 goto out;
3225         }
3226
3227         /* cow and double check */
3228         ret = btrfs_cow_block(trans, root, left,
3229                               path->nodes[1], slot - 1, &left,
3230                               BTRFS_NESTING_LEFT_COW);
3231         if (ret) {
3232                 /* we hit -ENOSPC, but it isn't fatal here */
3233                 if (ret == -ENOSPC)
3234                         ret = 1;
3235                 goto out;
3236         }
3237
3238         free_space = btrfs_leaf_free_space(left);
3239         if (free_space < data_size) {
3240                 ret = 1;
3241                 goto out;
3242         }
3243
3244         if (check_sibling_keys(left, right)) {
3245                 ret = -EUCLEAN;
3246                 goto out;
3247         }
3248         return __push_leaf_left(path, min_data_size,
3249                                empty, left, free_space, right_nritems,
3250                                max_slot);
3251 out:
3252         btrfs_tree_unlock(left);
3253         free_extent_buffer(left);
3254         return ret;
3255 }
3256
3257 /*
3258  * split the path's leaf in two, making sure there is at least data_size
3259  * available for the resulting leaf level of the path.
3260  */
3261 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3262                                     struct btrfs_path *path,
3263                                     struct extent_buffer *l,
3264                                     struct extent_buffer *right,
3265                                     int slot, int mid, int nritems)
3266 {
3267         struct btrfs_fs_info *fs_info = trans->fs_info;
3268         int data_copy_size;
3269         int rt_data_off;
3270         int i;
3271         struct btrfs_disk_key disk_key;
3272         struct btrfs_map_token token;
3273
3274         nritems = nritems - mid;
3275         btrfs_set_header_nritems(right, nritems);
3276         data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3277
3278         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3279                            btrfs_item_nr_offset(mid),
3280                            nritems * sizeof(struct btrfs_item));
3281
3282         copy_extent_buffer(right, l,
3283                      BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3284                      data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3285                      leaf_data_end(l), data_copy_size);
3286
3287         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3288
3289         btrfs_init_map_token(&token, right);
3290         for (i = 0; i < nritems; i++) {
3291                 u32 ioff;
3292
3293                 ioff = btrfs_token_item_offset(&token, i);
3294                 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3295         }
3296
3297         btrfs_set_header_nritems(l, mid);
3298         btrfs_item_key(right, &disk_key, 0);
3299         insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3300
3301         btrfs_mark_buffer_dirty(right);
3302         btrfs_mark_buffer_dirty(l);
3303         BUG_ON(path->slots[0] != slot);
3304
3305         if (mid <= slot) {
3306                 btrfs_tree_unlock(path->nodes[0]);
3307                 free_extent_buffer(path->nodes[0]);
3308                 path->nodes[0] = right;
3309                 path->slots[0] -= mid;
3310                 path->slots[1] += 1;
3311         } else {
3312                 btrfs_tree_unlock(right);
3313                 free_extent_buffer(right);
3314         }
3315
3316         BUG_ON(path->slots[0] < 0);
3317 }
3318
3319 /*
3320  * double splits happen when we need to insert a big item in the middle
3321  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3322  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3323  *          A                 B                 C
3324  *
3325  * We avoid this by trying to push the items on either side of our target
3326  * into the adjacent leaves.  If all goes well we can avoid the double split
3327  * completely.
3328  */
3329 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3330                                           struct btrfs_root *root,
3331                                           struct btrfs_path *path,
3332                                           int data_size)
3333 {
3334         int ret;
3335         int progress = 0;
3336         int slot;
3337         u32 nritems;
3338         int space_needed = data_size;
3339
3340         slot = path->slots[0];
3341         if (slot < btrfs_header_nritems(path->nodes[0]))
3342                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3343
3344         /*
3345          * try to push all the items after our slot into the
3346          * right leaf
3347          */
3348         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3349         if (ret < 0)
3350                 return ret;
3351
3352         if (ret == 0)
3353                 progress++;
3354
3355         nritems = btrfs_header_nritems(path->nodes[0]);
3356         /*
3357          * our goal is to get our slot at the start or end of a leaf.  If
3358          * we've done so we're done
3359          */
3360         if (path->slots[0] == 0 || path->slots[0] == nritems)
3361                 return 0;
3362
3363         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3364                 return 0;
3365
3366         /* try to push all the items before our slot into the next leaf */
3367         slot = path->slots[0];
3368         space_needed = data_size;
3369         if (slot > 0)
3370                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3371         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3372         if (ret < 0)
3373                 return ret;
3374
3375         if (ret == 0)
3376                 progress++;
3377
3378         if (progress)
3379                 return 0;
3380         return 1;
3381 }
3382
3383 /*
3384  * split the path's leaf in two, making sure there is at least data_size
3385  * available for the resulting leaf level of the path.
3386  *
3387  * returns 0 if all went well and < 0 on failure.
3388  */
3389 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3390                                struct btrfs_root *root,
3391                                const struct btrfs_key *ins_key,
3392                                struct btrfs_path *path, int data_size,
3393                                int extend)
3394 {
3395         struct btrfs_disk_key disk_key;
3396         struct extent_buffer *l;
3397         u32 nritems;
3398         int mid;
3399         int slot;
3400         struct extent_buffer *right;
3401         struct btrfs_fs_info *fs_info = root->fs_info;
3402         int ret = 0;
3403         int wret;
3404         int split;
3405         int num_doubles = 0;
3406         int tried_avoid_double = 0;
3407
3408         l = path->nodes[0];
3409         slot = path->slots[0];
3410         if (extend && data_size + btrfs_item_size(l, slot) +
3411             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3412                 return -EOVERFLOW;
3413
3414         /* first try to make some room by pushing left and right */
3415         if (data_size && path->nodes[1]) {
3416                 int space_needed = data_size;
3417
3418                 if (slot < btrfs_header_nritems(l))
3419                         space_needed -= btrfs_leaf_free_space(l);
3420
3421                 wret = push_leaf_right(trans, root, path, space_needed,
3422                                        space_needed, 0, 0);
3423                 if (wret < 0)
3424                         return wret;
3425                 if (wret) {
3426                         space_needed = data_size;
3427                         if (slot > 0)
3428                                 space_needed -= btrfs_leaf_free_space(l);
3429                         wret = push_leaf_left(trans, root, path, space_needed,
3430                                               space_needed, 0, (u32)-1);
3431                         if (wret < 0)
3432                                 return wret;
3433                 }
3434                 l = path->nodes[0];
3435
3436                 /* did the pushes work? */
3437                 if (btrfs_leaf_free_space(l) >= data_size)
3438                         return 0;
3439         }
3440
3441         if (!path->nodes[1]) {
3442                 ret = insert_new_root(trans, root, path, 1);
3443                 if (ret)
3444                         return ret;
3445         }
3446 again:
3447         split = 1;
3448         l = path->nodes[0];
3449         slot = path->slots[0];
3450         nritems = btrfs_header_nritems(l);
3451         mid = (nritems + 1) / 2;
3452
3453         if (mid <= slot) {
3454                 if (nritems == 1 ||
3455                     leaf_space_used(l, mid, nritems - mid) + data_size >
3456                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3457                         if (slot >= nritems) {
3458                                 split = 0;
3459                         } else {
3460                                 mid = slot;
3461                                 if (mid != nritems &&
3462                                     leaf_space_used(l, mid, nritems - mid) +
3463                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3464                                         if (data_size && !tried_avoid_double)
3465                                                 goto push_for_double;
3466                                         split = 2;
3467                                 }
3468                         }
3469                 }
3470         } else {
3471                 if (leaf_space_used(l, 0, mid) + data_size >
3472                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
3473                         if (!extend && data_size && slot == 0) {
3474                                 split = 0;
3475                         } else if ((extend || !data_size) && slot == 0) {
3476                                 mid = 1;
3477                         } else {
3478                                 mid = slot;
3479                                 if (mid != nritems &&
3480                                     leaf_space_used(l, mid, nritems - mid) +
3481                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3482                                         if (data_size && !tried_avoid_double)
3483                                                 goto push_for_double;
3484                                         split = 2;
3485                                 }
3486                         }
3487                 }
3488         }
3489
3490         if (split == 0)
3491                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3492         else
3493                 btrfs_item_key(l, &disk_key, mid);
3494
3495         /*
3496          * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3497          * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3498          * subclasses, which is 8 at the time of this patch, and we've maxed it
3499          * out.  In the future we could add a
3500          * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3501          * use BTRFS_NESTING_NEW_ROOT.
3502          */
3503         right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3504                                        &disk_key, 0, l->start, 0,
3505                                        num_doubles ? BTRFS_NESTING_NEW_ROOT :
3506                                        BTRFS_NESTING_SPLIT);
3507         if (IS_ERR(right))
3508                 return PTR_ERR(right);
3509
3510         root_add_used(root, fs_info->nodesize);
3511
3512         if (split == 0) {
3513                 if (mid <= slot) {
3514                         btrfs_set_header_nritems(right, 0);
3515                         insert_ptr(trans, path, &disk_key,
3516                                    right->start, path->slots[1] + 1, 1);
3517                         btrfs_tree_unlock(path->nodes[0]);
3518                         free_extent_buffer(path->nodes[0]);
3519                         path->nodes[0] = right;
3520                         path->slots[0] = 0;
3521                         path->slots[1] += 1;
3522                 } else {
3523                         btrfs_set_header_nritems(right, 0);
3524                         insert_ptr(trans, path, &disk_key,
3525                                    right->start, path->slots[1], 1);
3526                         btrfs_tree_unlock(path->nodes[0]);
3527                         free_extent_buffer(path->nodes[0]);
3528                         path->nodes[0] = right;
3529                         path->slots[0] = 0;
3530                         if (path->slots[1] == 0)
3531                                 fixup_low_keys(path, &disk_key, 1);
3532                 }
3533                 /*
3534                  * We create a new leaf 'right' for the required ins_len and
3535                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3536                  * the content of ins_len to 'right'.
3537                  */
3538                 return ret;
3539         }
3540
3541         copy_for_split(trans, path, l, right, slot, mid, nritems);
3542
3543         if (split == 2) {
3544                 BUG_ON(num_doubles != 0);
3545                 num_doubles++;
3546                 goto again;
3547         }
3548
3549         return 0;
3550
3551 push_for_double:
3552         push_for_double_split(trans, root, path, data_size);
3553         tried_avoid_double = 1;
3554         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3555                 return 0;
3556         goto again;
3557 }
3558
3559 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3560                                          struct btrfs_root *root,
3561                                          struct btrfs_path *path, int ins_len)
3562 {
3563         struct btrfs_key key;
3564         struct extent_buffer *leaf;
3565         struct btrfs_file_extent_item *fi;
3566         u64 extent_len = 0;
3567         u32 item_size;
3568         int ret;
3569
3570         leaf = path->nodes[0];
3571         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3572
3573         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3574                key.type != BTRFS_EXTENT_CSUM_KEY);
3575
3576         if (btrfs_leaf_free_space(leaf) >= ins_len)
3577                 return 0;
3578
3579         item_size = btrfs_item_size(leaf, path->slots[0]);
3580         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3581                 fi = btrfs_item_ptr(leaf, path->slots[0],
3582                                     struct btrfs_file_extent_item);
3583                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3584         }
3585         btrfs_release_path(path);
3586
3587         path->keep_locks = 1;
3588         path->search_for_split = 1;
3589         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3590         path->search_for_split = 0;
3591         if (ret > 0)
3592                 ret = -EAGAIN;
3593         if (ret < 0)
3594                 goto err;
3595
3596         ret = -EAGAIN;
3597         leaf = path->nodes[0];
3598         /* if our item isn't there, return now */
3599         if (item_size != btrfs_item_size(leaf, path->slots[0]))
3600                 goto err;
3601
3602         /* the leaf has  changed, it now has room.  return now */
3603         if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3604                 goto err;
3605
3606         if (key.type == BTRFS_EXTENT_DATA_KEY) {
3607                 fi = btrfs_item_ptr(leaf, path->slots[0],
3608                                     struct btrfs_file_extent_item);
3609                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3610                         goto err;
3611         }
3612
3613         ret = split_leaf(trans, root, &key, path, ins_len, 1);
3614         if (ret)
3615                 goto err;
3616
3617         path->keep_locks = 0;
3618         btrfs_unlock_up_safe(path, 1);
3619         return 0;
3620 err:
3621         path->keep_locks = 0;
3622         return ret;
3623 }
3624
3625 static noinline int split_item(struct btrfs_path *path,
3626                                const struct btrfs_key *new_key,
3627                                unsigned long split_offset)
3628 {
3629         struct extent_buffer *leaf;
3630         int orig_slot, slot;
3631         char *buf;
3632         u32 nritems;
3633         u32 item_size;
3634         u32 orig_offset;
3635         struct btrfs_disk_key disk_key;
3636
3637         leaf = path->nodes[0];
3638         BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3639
3640         orig_slot = path->slots[0];
3641         orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3642         item_size = btrfs_item_size(leaf, path->slots[0]);
3643
3644         buf = kmalloc(item_size, GFP_NOFS);
3645         if (!buf)
3646                 return -ENOMEM;
3647
3648         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3649                             path->slots[0]), item_size);
3650
3651         slot = path->slots[0] + 1;
3652         nritems = btrfs_header_nritems(leaf);
3653         if (slot != nritems) {
3654                 /* shift the items */
3655                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3656                                 btrfs_item_nr_offset(slot),
3657                                 (nritems - slot) * sizeof(struct btrfs_item));
3658         }
3659
3660         btrfs_cpu_key_to_disk(&disk_key, new_key);
3661         btrfs_set_item_key(leaf, &disk_key, slot);
3662
3663         btrfs_set_item_offset(leaf, slot, orig_offset);
3664         btrfs_set_item_size(leaf, slot, item_size - split_offset);
3665
3666         btrfs_set_item_offset(leaf, orig_slot,
3667                                  orig_offset + item_size - split_offset);
3668         btrfs_set_item_size(leaf, orig_slot, split_offset);
3669
3670         btrfs_set_header_nritems(leaf, nritems + 1);
3671
3672         /* write the data for the start of the original item */
3673         write_extent_buffer(leaf, buf,
3674                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3675                             split_offset);
3676
3677         /* write the data for the new item */
3678         write_extent_buffer(leaf, buf + split_offset,
3679                             btrfs_item_ptr_offset(leaf, slot),
3680                             item_size - split_offset);
3681         btrfs_mark_buffer_dirty(leaf);
3682
3683         BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3684         kfree(buf);
3685         return 0;
3686 }
3687
3688 /*
3689  * This function splits a single item into two items,
3690  * giving 'new_key' to the new item and splitting the
3691  * old one at split_offset (from the start of the item).
3692  *
3693  * The path may be released by this operation.  After
3694  * the split, the path is pointing to the old item.  The
3695  * new item is going to be in the same node as the old one.
3696  *
3697  * Note, the item being split must be smaller enough to live alone on
3698  * a tree block with room for one extra struct btrfs_item
3699  *
3700  * This allows us to split the item in place, keeping a lock on the
3701  * leaf the entire time.
3702  */
3703 int btrfs_split_item(struct btrfs_trans_handle *trans,
3704                      struct btrfs_root *root,
3705                      struct btrfs_path *path,
3706                      const struct btrfs_key *new_key,
3707                      unsigned long split_offset)
3708 {
3709         int ret;
3710         ret = setup_leaf_for_split(trans, root, path,
3711                                    sizeof(struct btrfs_item));
3712         if (ret)
3713                 return ret;
3714
3715         ret = split_item(path, new_key, split_offset);
3716         return ret;
3717 }
3718
3719 /*
3720  * make the item pointed to by the path smaller.  new_size indicates
3721  * how small to make it, and from_end tells us if we just chop bytes
3722  * off the end of the item or if we shift the item to chop bytes off
3723  * the front.
3724  */
3725 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3726 {
3727         int slot;
3728         struct extent_buffer *leaf;
3729         u32 nritems;
3730         unsigned int data_end;
3731         unsigned int old_data_start;
3732         unsigned int old_size;
3733         unsigned int size_diff;
3734         int i;
3735         struct btrfs_map_token token;
3736
3737         leaf = path->nodes[0];
3738         slot = path->slots[0];
3739
3740         old_size = btrfs_item_size(leaf, slot);
3741         if (old_size == new_size)
3742                 return;
3743
3744         nritems = btrfs_header_nritems(leaf);
3745         data_end = leaf_data_end(leaf);
3746
3747         old_data_start = btrfs_item_offset(leaf, slot);
3748
3749         size_diff = old_size - new_size;
3750
3751         BUG_ON(slot < 0);
3752         BUG_ON(slot >= nritems);
3753
3754         /*
3755          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3756          */
3757         /* first correct the data pointers */
3758         btrfs_init_map_token(&token, leaf);
3759         for (i = slot; i < nritems; i++) {
3760                 u32 ioff;
3761
3762                 ioff = btrfs_token_item_offset(&token, i);
3763                 btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3764         }
3765
3766         /* shift the data */
3767         if (from_end) {
3768                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3769                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3770                               data_end, old_data_start + new_size - data_end);
3771         } else {
3772                 struct btrfs_disk_key disk_key;
3773                 u64 offset;
3774
3775                 btrfs_item_key(leaf, &disk_key, slot);
3776
3777                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3778                         unsigned long ptr;
3779                         struct btrfs_file_extent_item *fi;
3780
3781                         fi = btrfs_item_ptr(leaf, slot,
3782                                             struct btrfs_file_extent_item);
3783                         fi = (struct btrfs_file_extent_item *)(
3784                              (unsigned long)fi - size_diff);
3785
3786                         if (btrfs_file_extent_type(leaf, fi) ==
3787                             BTRFS_FILE_EXTENT_INLINE) {
3788                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3789                                 memmove_extent_buffer(leaf, ptr,
3790                                       (unsigned long)fi,
3791                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
3792                         }
3793                 }
3794
3795                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3796                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3797                               data_end, old_data_start - data_end);
3798
3799                 offset = btrfs_disk_key_offset(&disk_key);
3800                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3801                 btrfs_set_item_key(leaf, &disk_key, slot);
3802                 if (slot == 0)
3803                         fixup_low_keys(path, &disk_key, 1);
3804         }
3805
3806         btrfs_set_item_size(leaf, slot, new_size);
3807         btrfs_mark_buffer_dirty(leaf);
3808
3809         if (btrfs_leaf_free_space(leaf) < 0) {
3810                 btrfs_print_leaf(leaf);
3811                 BUG();
3812         }
3813 }
3814
3815 /*
3816  * make the item pointed to by the path bigger, data_size is the added size.
3817  */
3818 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3819 {
3820         int slot;
3821         struct extent_buffer *leaf;
3822         u32 nritems;
3823         unsigned int data_end;
3824         unsigned int old_data;
3825         unsigned int old_size;
3826         int i;
3827         struct btrfs_map_token token;
3828
3829         leaf = path->nodes[0];
3830
3831         nritems = btrfs_header_nritems(leaf);
3832         data_end = leaf_data_end(leaf);
3833
3834         if (btrfs_leaf_free_space(leaf) < data_size) {
3835                 btrfs_print_leaf(leaf);
3836                 BUG();
3837         }
3838         slot = path->slots[0];
3839         old_data = btrfs_item_data_end(leaf, slot);
3840
3841         BUG_ON(slot < 0);
3842         if (slot >= nritems) {
3843                 btrfs_print_leaf(leaf);
3844                 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3845                            slot, nritems);
3846                 BUG();
3847         }
3848
3849         /*
3850          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3851          */
3852         /* first correct the data pointers */
3853         btrfs_init_map_token(&token, leaf);
3854         for (i = slot; i < nritems; i++) {
3855                 u32 ioff;
3856
3857                 ioff = btrfs_token_item_offset(&token, i);
3858                 btrfs_set_token_item_offset(&token, i, ioff - data_size);
3859         }
3860
3861         /* shift the data */
3862         memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3863                       data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3864                       data_end, old_data - data_end);
3865
3866         data_end = old_data;
3867         old_size = btrfs_item_size(leaf, slot);
3868         btrfs_set_item_size(leaf, slot, old_size + data_size);
3869         btrfs_mark_buffer_dirty(leaf);
3870
3871         if (btrfs_leaf_free_space(leaf) < 0) {
3872                 btrfs_print_leaf(leaf);
3873                 BUG();
3874         }
3875 }
3876
3877 /**
3878  * setup_items_for_insert - Helper called before inserting one or more items
3879  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3880  * in a function that doesn't call btrfs_search_slot
3881  *
3882  * @root:       root we are inserting items to
3883  * @path:       points to the leaf/slot where we are going to insert new items
3884  * @batch:      information about the batch of items to insert
3885  */
3886 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3887                                    const struct btrfs_item_batch *batch)
3888 {
3889         struct btrfs_fs_info *fs_info = root->fs_info;
3890         int i;
3891         u32 nritems;
3892         unsigned int data_end;
3893         struct btrfs_disk_key disk_key;
3894         struct extent_buffer *leaf;
3895         int slot;
3896         struct btrfs_map_token token;
3897         u32 total_size;
3898
3899         /*
3900          * Before anything else, update keys in the parent and other ancestors
3901          * if needed, then release the write locks on them, so that other tasks
3902          * can use them while we modify the leaf.
3903          */
3904         if (path->slots[0] == 0) {
3905                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
3906                 fixup_low_keys(path, &disk_key, 1);
3907         }
3908         btrfs_unlock_up_safe(path, 1);
3909
3910         leaf = path->nodes[0];
3911         slot = path->slots[0];
3912
3913         nritems = btrfs_header_nritems(leaf);
3914         data_end = leaf_data_end(leaf);
3915         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3916
3917         if (btrfs_leaf_free_space(leaf) < total_size) {
3918                 btrfs_print_leaf(leaf);
3919                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
3920                            total_size, btrfs_leaf_free_space(leaf));
3921                 BUG();
3922         }
3923
3924         btrfs_init_map_token(&token, leaf);
3925         if (slot != nritems) {
3926                 unsigned int old_data = btrfs_item_data_end(leaf, slot);
3927
3928                 if (old_data < data_end) {
3929                         btrfs_print_leaf(leaf);
3930                         btrfs_crit(fs_info,
3931                 "item at slot %d with data offset %u beyond data end of leaf %u",
3932                                    slot, old_data, data_end);
3933                         BUG();
3934                 }
3935                 /*
3936                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3937                  */
3938                 /* first correct the data pointers */
3939                 for (i = slot; i < nritems; i++) {
3940                         u32 ioff;
3941
3942                         ioff = btrfs_token_item_offset(&token, i);
3943                         btrfs_set_token_item_offset(&token, i,
3944                                                        ioff - batch->total_data_size);
3945                 }
3946                 /* shift the items */
3947                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
3948                               btrfs_item_nr_offset(slot),
3949                               (nritems - slot) * sizeof(struct btrfs_item));
3950
3951                 /* shift the data */
3952                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3953                                       data_end - batch->total_data_size,
3954                                       BTRFS_LEAF_DATA_OFFSET + data_end,
3955                                       old_data - data_end);
3956                 data_end = old_data;
3957         }
3958
3959         /* setup the item for the new data */
3960         for (i = 0; i < batch->nr; i++) {
3961                 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
3962                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3963                 data_end -= batch->data_sizes[i];
3964                 btrfs_set_token_item_offset(&token, slot + i, data_end);
3965                 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
3966         }
3967
3968         btrfs_set_header_nritems(leaf, nritems + batch->nr);
3969         btrfs_mark_buffer_dirty(leaf);
3970
3971         if (btrfs_leaf_free_space(leaf) < 0) {
3972                 btrfs_print_leaf(leaf);
3973                 BUG();
3974         }
3975 }
3976
3977 /*
3978  * Insert a new item into a leaf.
3979  *
3980  * @root:      The root of the btree.
3981  * @path:      A path pointing to the target leaf and slot.
3982  * @key:       The key of the new item.
3983  * @data_size: The size of the data associated with the new key.
3984  */
3985 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3986                                  struct btrfs_path *path,
3987                                  const struct btrfs_key *key,
3988                                  u32 data_size)
3989 {
3990         struct btrfs_item_batch batch;
3991
3992         batch.keys = key;
3993         batch.data_sizes = &data_size;
3994         batch.total_data_size = data_size;
3995         batch.nr = 1;
3996
3997         setup_items_for_insert(root, path, &batch);
3998 }
3999
4000 /*
4001  * Given a key and some data, insert items into the tree.
4002  * This does all the path init required, making room in the tree if needed.
4003  */
4004 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4005                             struct btrfs_root *root,
4006                             struct btrfs_path *path,
4007                             const struct btrfs_item_batch *batch)
4008 {
4009         int ret = 0;
4010         int slot;
4011         u32 total_size;
4012
4013         total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4014         ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4015         if (ret == 0)
4016                 return -EEXIST;
4017         if (ret < 0)
4018                 return ret;
4019
4020         slot = path->slots[0];
4021         BUG_ON(slot < 0);
4022
4023         setup_items_for_insert(root, path, batch);
4024         return 0;
4025 }
4026
4027 /*
4028  * Given a key and some data, insert an item into the tree.
4029  * This does all the path init required, making room in the tree if needed.
4030  */
4031 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4032                       const struct btrfs_key *cpu_key, void *data,
4033                       u32 data_size)
4034 {
4035         int ret = 0;
4036         struct btrfs_path *path;
4037         struct extent_buffer *leaf;
4038         unsigned long ptr;
4039
4040         path = btrfs_alloc_path();
4041         if (!path)
4042                 return -ENOMEM;
4043         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4044         if (!ret) {
4045                 leaf = path->nodes[0];
4046                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4047                 write_extent_buffer(leaf, data, ptr, data_size);
4048                 btrfs_mark_buffer_dirty(leaf);
4049         }
4050         btrfs_free_path(path);
4051         return ret;
4052 }
4053
4054 /*
4055  * This function duplicates an item, giving 'new_key' to the new item.
4056  * It guarantees both items live in the same tree leaf and the new item is
4057  * contiguous with the original item.
4058  *
4059  * This allows us to split a file extent in place, keeping a lock on the leaf
4060  * the entire time.
4061  */
4062 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4063                          struct btrfs_root *root,
4064                          struct btrfs_path *path,
4065                          const struct btrfs_key *new_key)
4066 {
4067         struct extent_buffer *leaf;
4068         int ret;
4069         u32 item_size;
4070
4071         leaf = path->nodes[0];
4072         item_size = btrfs_item_size(leaf, path->slots[0]);
4073         ret = setup_leaf_for_split(trans, root, path,
4074                                    item_size + sizeof(struct btrfs_item));
4075         if (ret)
4076                 return ret;
4077
4078         path->slots[0]++;
4079         btrfs_setup_item_for_insert(root, path, new_key, item_size);
4080         leaf = path->nodes[0];
4081         memcpy_extent_buffer(leaf,
4082                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4083                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4084                              item_size);
4085         return 0;
4086 }
4087
4088 /*
4089  * delete the pointer from a given node.
4090  *
4091  * the tree should have been previously balanced so the deletion does not
4092  * empty a node.
4093  */
4094 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4095                     int level, int slot)
4096 {
4097         struct extent_buffer *parent = path->nodes[level];
4098         u32 nritems;
4099         int ret;
4100
4101         nritems = btrfs_header_nritems(parent);
4102         if (slot != nritems - 1) {
4103                 if (level) {
4104                         ret = btrfs_tree_mod_log_insert_move(parent, slot,
4105                                         slot + 1, nritems - slot - 1);
4106                         BUG_ON(ret < 0);
4107                 }
4108                 memmove_extent_buffer(parent,
4109                               btrfs_node_key_ptr_offset(slot),
4110                               btrfs_node_key_ptr_offset(slot + 1),
4111                               sizeof(struct btrfs_key_ptr) *
4112                               (nritems - slot - 1));
4113         } else if (level) {
4114                 ret = btrfs_tree_mod_log_insert_key(parent, slot,
4115                                 BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
4116                 BUG_ON(ret < 0);
4117         }
4118
4119         nritems--;
4120         btrfs_set_header_nritems(parent, nritems);
4121         if (nritems == 0 && parent == root->node) {
4122                 BUG_ON(btrfs_header_level(root->node) != 1);
4123                 /* just turn the root into a leaf and break */
4124                 btrfs_set_header_level(root->node, 0);
4125         } else if (slot == 0) {
4126                 struct btrfs_disk_key disk_key;
4127
4128                 btrfs_node_key(parent, &disk_key, 0);
4129                 fixup_low_keys(path, &disk_key, level + 1);
4130         }
4131         btrfs_mark_buffer_dirty(parent);
4132 }
4133
4134 /*
4135  * a helper function to delete the leaf pointed to by path->slots[1] and
4136  * path->nodes[1].
4137  *
4138  * This deletes the pointer in path->nodes[1] and frees the leaf
4139  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4140  *
4141  * The path must have already been setup for deleting the leaf, including
4142  * all the proper balancing.  path->nodes[1] must be locked.
4143  */
4144 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4145                                     struct btrfs_root *root,
4146                                     struct btrfs_path *path,
4147                                     struct extent_buffer *leaf)
4148 {
4149         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4150         del_ptr(root, path, 1, path->slots[1]);
4151
4152         /*
4153          * btrfs_free_extent is expensive, we want to make sure we
4154          * aren't holding any locks when we call it
4155          */
4156         btrfs_unlock_up_safe(path, 0);
4157
4158         root_sub_used(root, leaf->len);
4159
4160         atomic_inc(&leaf->refs);
4161         btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4162         free_extent_buffer_stale(leaf);
4163 }
4164 /*
4165  * delete the item at the leaf level in path.  If that empties
4166  * the leaf, remove it from the tree
4167  */
4168 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4169                     struct btrfs_path *path, int slot, int nr)
4170 {
4171         struct btrfs_fs_info *fs_info = root->fs_info;
4172         struct extent_buffer *leaf;
4173         u32 last_off;
4174         u32 dsize = 0;
4175         int ret = 0;
4176         int wret;
4177         int i;
4178         u32 nritems;
4179
4180         leaf = path->nodes[0];
4181         last_off = btrfs_item_offset(leaf, slot + nr - 1);
4182
4183         for (i = 0; i < nr; i++)
4184                 dsize += btrfs_item_size(leaf, slot + i);
4185
4186         nritems = btrfs_header_nritems(leaf);
4187
4188         if (slot + nr != nritems) {
4189                 int data_end = leaf_data_end(leaf);
4190                 struct btrfs_map_token token;
4191
4192                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4193                               data_end + dsize,
4194                               BTRFS_LEAF_DATA_OFFSET + data_end,
4195                               last_off - data_end);
4196
4197                 btrfs_init_map_token(&token, leaf);
4198                 for (i = slot + nr; i < nritems; i++) {
4199                         u32 ioff;
4200
4201                         ioff = btrfs_token_item_offset(&token, i);
4202                         btrfs_set_token_item_offset(&token, i, ioff + dsize);
4203                 }
4204
4205                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4206                               btrfs_item_nr_offset(slot + nr),
4207                               sizeof(struct btrfs_item) *
4208                               (nritems - slot - nr));
4209         }
4210         btrfs_set_header_nritems(leaf, nritems - nr);
4211         nritems -= nr;
4212
4213         /* delete the leaf if we've emptied it */
4214         if (nritems == 0) {
4215                 if (leaf == root->node) {
4216                         btrfs_set_header_level(leaf, 0);
4217                 } else {
4218                         btrfs_clean_tree_block(leaf);
4219                         btrfs_del_leaf(trans, root, path, leaf);
4220                 }
4221         } else {
4222                 int used = leaf_space_used(leaf, 0, nritems);
4223                 if (slot == 0) {
4224                         struct btrfs_disk_key disk_key;
4225
4226                         btrfs_item_key(leaf, &disk_key, 0);
4227                         fixup_low_keys(path, &disk_key, 1);
4228                 }
4229
4230                 /* delete the leaf if it is mostly empty */
4231                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4232                         /* push_leaf_left fixes the path.
4233                          * make sure the path still points to our leaf
4234                          * for possible call to del_ptr below
4235                          */
4236                         slot = path->slots[1];
4237                         atomic_inc(&leaf->refs);
4238
4239                         wret = push_leaf_left(trans, root, path, 1, 1,
4240                                               1, (u32)-1);
4241                         if (wret < 0 && wret != -ENOSPC)
4242                                 ret = wret;
4243
4244                         if (path->nodes[0] == leaf &&
4245                             btrfs_header_nritems(leaf)) {
4246                                 wret = push_leaf_right(trans, root, path, 1,
4247                                                        1, 1, 0);
4248                                 if (wret < 0 && wret != -ENOSPC)
4249                                         ret = wret;
4250                         }
4251
4252                         if (btrfs_header_nritems(leaf) == 0) {
4253                                 path->slots[1] = slot;
4254                                 btrfs_del_leaf(trans, root, path, leaf);
4255                                 free_extent_buffer(leaf);
4256                                 ret = 0;
4257                         } else {
4258                                 /* if we're still in the path, make sure
4259                                  * we're dirty.  Otherwise, one of the
4260                                  * push_leaf functions must have already
4261                                  * dirtied this buffer
4262                                  */
4263                                 if (path->nodes[0] == leaf)
4264                                         btrfs_mark_buffer_dirty(leaf);
4265                                 free_extent_buffer(leaf);
4266                         }
4267                 } else {
4268                         btrfs_mark_buffer_dirty(leaf);
4269                 }
4270         }
4271         return ret;
4272 }
4273
4274 /*
4275  * search the tree again to find a leaf with lesser keys
4276  * returns 0 if it found something or 1 if there are no lesser leaves.
4277  * returns < 0 on io errors.
4278  *
4279  * This may release the path, and so you may lose any locks held at the
4280  * time you call it.
4281  */
4282 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4283 {
4284         struct btrfs_key key;
4285         struct btrfs_disk_key found_key;
4286         int ret;
4287
4288         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4289
4290         if (key.offset > 0) {
4291                 key.offset--;
4292         } else if (key.type > 0) {
4293                 key.type--;
4294                 key.offset = (u64)-1;
4295         } else if (key.objectid > 0) {
4296                 key.objectid--;
4297                 key.type = (u8)-1;
4298                 key.offset = (u64)-1;
4299         } else {
4300                 return 1;
4301         }
4302
4303         btrfs_release_path(path);
4304         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4305         if (ret < 0)
4306                 return ret;
4307         btrfs_item_key(path->nodes[0], &found_key, 0);
4308         ret = comp_keys(&found_key, &key);
4309         /*
4310          * We might have had an item with the previous key in the tree right
4311          * before we released our path. And after we released our path, that
4312          * item might have been pushed to the first slot (0) of the leaf we
4313          * were holding due to a tree balance. Alternatively, an item with the
4314          * previous key can exist as the only element of a leaf (big fat item).
4315          * Therefore account for these 2 cases, so that our callers (like
4316          * btrfs_previous_item) don't miss an existing item with a key matching
4317          * the previous key we computed above.
4318          */
4319         if (ret <= 0)
4320                 return 0;
4321         return 1;
4322 }
4323
4324 /*
4325  * A helper function to walk down the tree starting at min_key, and looking
4326  * for nodes or leaves that are have a minimum transaction id.
4327  * This is used by the btree defrag code, and tree logging
4328  *
4329  * This does not cow, but it does stuff the starting key it finds back
4330  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4331  * key and get a writable path.
4332  *
4333  * This honors path->lowest_level to prevent descent past a given level
4334  * of the tree.
4335  *
4336  * min_trans indicates the oldest transaction that you are interested
4337  * in walking through.  Any nodes or leaves older than min_trans are
4338  * skipped over (without reading them).
4339  *
4340  * returns zero if something useful was found, < 0 on error and 1 if there
4341  * was nothing in the tree that matched the search criteria.
4342  */
4343 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4344                          struct btrfs_path *path,
4345                          u64 min_trans)
4346 {
4347         struct extent_buffer *cur;
4348         struct btrfs_key found_key;
4349         int slot;
4350         int sret;
4351         u32 nritems;
4352         int level;
4353         int ret = 1;
4354         int keep_locks = path->keep_locks;
4355
4356         path->keep_locks = 1;
4357 again:
4358         cur = btrfs_read_lock_root_node(root);
4359         level = btrfs_header_level(cur);
4360         WARN_ON(path->nodes[level]);
4361         path->nodes[level] = cur;
4362         path->locks[level] = BTRFS_READ_LOCK;
4363
4364         if (btrfs_header_generation(cur) < min_trans) {
4365                 ret = 1;
4366                 goto out;
4367         }
4368         while (1) {
4369                 nritems = btrfs_header_nritems(cur);
4370                 level = btrfs_header_level(cur);
4371                 sret = btrfs_bin_search(cur, min_key, &slot);
4372                 if (sret < 0) {
4373                         ret = sret;
4374                         goto out;
4375                 }
4376
4377                 /* at the lowest level, we're done, setup the path and exit */
4378                 if (level == path->lowest_level) {
4379                         if (slot >= nritems)
4380                                 goto find_next_key;
4381                         ret = 0;
4382                         path->slots[level] = slot;
4383                         btrfs_item_key_to_cpu(cur, &found_key, slot);
4384                         goto out;
4385                 }
4386                 if (sret && slot > 0)
4387                         slot--;
4388                 /*
4389                  * check this node pointer against the min_trans parameters.
4390                  * If it is too old, skip to the next one.
4391                  */
4392                 while (slot < nritems) {
4393                         u64 gen;
4394
4395                         gen = btrfs_node_ptr_generation(cur, slot);
4396                         if (gen < min_trans) {
4397                                 slot++;
4398                                 continue;
4399                         }
4400                         break;
4401                 }
4402 find_next_key:
4403                 /*
4404                  * we didn't find a candidate key in this node, walk forward
4405                  * and find another one
4406                  */
4407                 if (slot >= nritems) {
4408                         path->slots[level] = slot;
4409                         sret = btrfs_find_next_key(root, path, min_key, level,
4410                                                   min_trans);
4411                         if (sret == 0) {
4412                                 btrfs_release_path(path);
4413                                 goto again;
4414                         } else {
4415                                 goto out;
4416                         }
4417                 }
4418                 /* save our key for returning back */
4419                 btrfs_node_key_to_cpu(cur, &found_key, slot);
4420                 path->slots[level] = slot;
4421                 if (level == path->lowest_level) {
4422                         ret = 0;
4423                         goto out;
4424                 }
4425                 cur = btrfs_read_node_slot(cur, slot);
4426                 if (IS_ERR(cur)) {
4427                         ret = PTR_ERR(cur);
4428                         goto out;
4429                 }
4430
4431                 btrfs_tree_read_lock(cur);
4432
4433                 path->locks[level - 1] = BTRFS_READ_LOCK;
4434                 path->nodes[level - 1] = cur;
4435                 unlock_up(path, level, 1, 0, NULL);
4436         }
4437 out:
4438         path->keep_locks = keep_locks;
4439         if (ret == 0) {
4440                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
4441                 memcpy(min_key, &found_key, sizeof(found_key));
4442         }
4443         return ret;
4444 }
4445
4446 /*
4447  * this is similar to btrfs_next_leaf, but does not try to preserve
4448  * and fixup the path.  It looks for and returns the next key in the
4449  * tree based on the current path and the min_trans parameters.
4450  *
4451  * 0 is returned if another key is found, < 0 if there are any errors
4452  * and 1 is returned if there are no higher keys in the tree
4453  *
4454  * path->keep_locks should be set to 1 on the search made before
4455  * calling this function.
4456  */
4457 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4458                         struct btrfs_key *key, int level, u64 min_trans)
4459 {
4460         int slot;
4461         struct extent_buffer *c;
4462
4463         WARN_ON(!path->keep_locks && !path->skip_locking);
4464         while (level < BTRFS_MAX_LEVEL) {
4465                 if (!path->nodes[level])
4466                         return 1;
4467
4468                 slot = path->slots[level] + 1;
4469                 c = path->nodes[level];
4470 next:
4471                 if (slot >= btrfs_header_nritems(c)) {
4472                         int ret;
4473                         int orig_lowest;
4474                         struct btrfs_key cur_key;
4475                         if (level + 1 >= BTRFS_MAX_LEVEL ||
4476                             !path->nodes[level + 1])
4477                                 return 1;
4478
4479                         if (path->locks[level + 1] || path->skip_locking) {
4480                                 level++;
4481                                 continue;
4482                         }
4483
4484                         slot = btrfs_header_nritems(c) - 1;
4485                         if (level == 0)
4486                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
4487                         else
4488                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
4489
4490                         orig_lowest = path->lowest_level;
4491                         btrfs_release_path(path);
4492                         path->lowest_level = level;
4493                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
4494                                                 0, 0);
4495                         path->lowest_level = orig_lowest;
4496                         if (ret < 0)
4497                                 return ret;
4498
4499                         c = path->nodes[level];
4500                         slot = path->slots[level];
4501                         if (ret == 0)
4502                                 slot++;
4503                         goto next;
4504                 }
4505
4506                 if (level == 0)
4507                         btrfs_item_key_to_cpu(c, key, slot);
4508                 else {
4509                         u64 gen = btrfs_node_ptr_generation(c, slot);
4510
4511                         if (gen < min_trans) {
4512                                 slot++;
4513                                 goto next;
4514                         }
4515                         btrfs_node_key_to_cpu(c, key, slot);
4516                 }
4517                 return 0;
4518         }
4519         return 1;
4520 }
4521
4522 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4523                         u64 time_seq)
4524 {
4525         int slot;
4526         int level;
4527         struct extent_buffer *c;
4528         struct extent_buffer *next;
4529         struct btrfs_fs_info *fs_info = root->fs_info;
4530         struct btrfs_key key;
4531         bool need_commit_sem = false;
4532         u32 nritems;
4533         int ret;
4534         int i;
4535
4536         nritems = btrfs_header_nritems(path->nodes[0]);
4537         if (nritems == 0)
4538                 return 1;
4539
4540         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4541 again:
4542         level = 1;
4543         next = NULL;
4544         btrfs_release_path(path);
4545
4546         path->keep_locks = 1;
4547
4548         if (time_seq) {
4549                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
4550         } else {
4551                 if (path->need_commit_sem) {
4552                         path->need_commit_sem = 0;
4553                         need_commit_sem = true;
4554                         down_read(&fs_info->commit_root_sem);
4555                 }
4556                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4557         }
4558         path->keep_locks = 0;
4559
4560         if (ret < 0)
4561                 goto done;
4562
4563         nritems = btrfs_header_nritems(path->nodes[0]);
4564         /*
4565          * by releasing the path above we dropped all our locks.  A balance
4566          * could have added more items next to the key that used to be
4567          * at the very end of the block.  So, check again here and
4568          * advance the path if there are now more items available.
4569          */
4570         if (nritems > 0 && path->slots[0] < nritems - 1) {
4571                 if (ret == 0)
4572                         path->slots[0]++;
4573                 ret = 0;
4574                 goto done;
4575         }
4576         /*
4577          * So the above check misses one case:
4578          * - after releasing the path above, someone has removed the item that
4579          *   used to be at the very end of the block, and balance between leafs
4580          *   gets another one with bigger key.offset to replace it.
4581          *
4582          * This one should be returned as well, or we can get leaf corruption
4583          * later(esp. in __btrfs_drop_extents()).
4584          *
4585          * And a bit more explanation about this check,
4586          * with ret > 0, the key isn't found, the path points to the slot
4587          * where it should be inserted, so the path->slots[0] item must be the
4588          * bigger one.
4589          */
4590         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4591                 ret = 0;
4592                 goto done;
4593         }
4594
4595         while (level < BTRFS_MAX_LEVEL) {
4596                 if (!path->nodes[level]) {
4597                         ret = 1;
4598                         goto done;
4599                 }
4600
4601                 slot = path->slots[level] + 1;
4602                 c = path->nodes[level];
4603                 if (slot >= btrfs_header_nritems(c)) {
4604                         level++;
4605                         if (level == BTRFS_MAX_LEVEL) {
4606                                 ret = 1;
4607                                 goto done;
4608                         }
4609                         continue;
4610                 }
4611
4612
4613                 /*
4614                  * Our current level is where we're going to start from, and to
4615                  * make sure lockdep doesn't complain we need to drop our locks
4616                  * and nodes from 0 to our current level.
4617                  */
4618                 for (i = 0; i < level; i++) {
4619                         if (path->locks[level]) {
4620                                 btrfs_tree_read_unlock(path->nodes[i]);
4621                                 path->locks[i] = 0;
4622                         }
4623                         free_extent_buffer(path->nodes[i]);
4624                         path->nodes[i] = NULL;
4625                 }
4626
4627                 next = c;
4628                 ret = read_block_for_search(root, path, &next, level,
4629                                             slot, &key);
4630                 if (ret == -EAGAIN)
4631                         goto again;
4632
4633                 if (ret < 0) {
4634                         btrfs_release_path(path);
4635                         goto done;
4636                 }
4637
4638                 if (!path->skip_locking) {
4639                         ret = btrfs_try_tree_read_lock(next);
4640                         if (!ret && time_seq) {
4641                                 /*
4642                                  * If we don't get the lock, we may be racing
4643                                  * with push_leaf_left, holding that lock while
4644                                  * itself waiting for the leaf we've currently
4645                                  * locked. To solve this situation, we give up
4646                                  * on our lock and cycle.
4647                                  */
4648                                 free_extent_buffer(next);
4649                                 btrfs_release_path(path);
4650                                 cond_resched();
4651                                 goto again;
4652                         }
4653                         if (!ret)
4654                                 btrfs_tree_read_lock(next);
4655                 }
4656                 break;
4657         }
4658         path->slots[level] = slot;
4659         while (1) {
4660                 level--;
4661                 path->nodes[level] = next;
4662                 path->slots[level] = 0;
4663                 if (!path->skip_locking)
4664                         path->locks[level] = BTRFS_READ_LOCK;
4665                 if (!level)
4666                         break;
4667
4668                 ret = read_block_for_search(root, path, &next, level,
4669                                             0, &key);
4670                 if (ret == -EAGAIN)
4671                         goto again;
4672
4673                 if (ret < 0) {
4674                         btrfs_release_path(path);
4675                         goto done;
4676                 }
4677
4678                 if (!path->skip_locking)
4679                         btrfs_tree_read_lock(next);
4680         }
4681         ret = 0;
4682 done:
4683         unlock_up(path, 0, 1, 0, NULL);
4684         if (need_commit_sem) {
4685                 int ret2;
4686
4687                 path->need_commit_sem = 1;
4688                 ret2 = finish_need_commit_sem_search(path);
4689                 up_read(&fs_info->commit_root_sem);
4690                 if (ret2)
4691                         ret = ret2;
4692         }
4693
4694         return ret;
4695 }
4696
4697 /*
4698  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4699  * searching until it gets past min_objectid or finds an item of 'type'
4700  *
4701  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4702  */
4703 int btrfs_previous_item(struct btrfs_root *root,
4704                         struct btrfs_path *path, u64 min_objectid,
4705                         int type)
4706 {
4707         struct btrfs_key found_key;
4708         struct extent_buffer *leaf;
4709         u32 nritems;
4710         int ret;
4711
4712         while (1) {
4713                 if (path->slots[0] == 0) {
4714                         ret = btrfs_prev_leaf(root, path);
4715                         if (ret != 0)
4716                                 return ret;
4717                 } else {
4718                         path->slots[0]--;
4719                 }
4720                 leaf = path->nodes[0];
4721                 nritems = btrfs_header_nritems(leaf);
4722                 if (nritems == 0)
4723                         return 1;
4724                 if (path->slots[0] == nritems)
4725                         path->slots[0]--;
4726
4727                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4728                 if (found_key.objectid < min_objectid)
4729                         break;
4730                 if (found_key.type == type)
4731                         return 0;
4732                 if (found_key.objectid == min_objectid &&
4733                     found_key.type < type)
4734                         break;
4735         }
4736         return 1;
4737 }
4738
4739 /*
4740  * search in extent tree to find a previous Metadata/Data extent item with
4741  * min objecitd.
4742  *
4743  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4744  */
4745 int btrfs_previous_extent_item(struct btrfs_root *root,
4746                         struct btrfs_path *path, u64 min_objectid)
4747 {
4748         struct btrfs_key found_key;
4749         struct extent_buffer *leaf;
4750         u32 nritems;
4751         int ret;
4752
4753         while (1) {
4754                 if (path->slots[0] == 0) {
4755                         ret = btrfs_prev_leaf(root, path);
4756                         if (ret != 0)
4757                                 return ret;
4758                 } else {
4759                         path->slots[0]--;
4760                 }
4761                 leaf = path->nodes[0];
4762                 nritems = btrfs_header_nritems(leaf);
4763                 if (nritems == 0)
4764                         return 1;
4765                 if (path->slots[0] == nritems)
4766                         path->slots[0]--;
4767
4768                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4769                 if (found_key.objectid < min_objectid)
4770                         break;
4771                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4772                     found_key.type == BTRFS_METADATA_ITEM_KEY)
4773                         return 0;
4774                 if (found_key.objectid == min_objectid &&
4775                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
4776                         break;
4777         }
4778         return 1;
4779 }