mm/huge_memory.c: use head to emphasize the purpose of page
[linux-2.6-microblaze.git] / fs / btrfs / ctree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19                       *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21                       const struct btrfs_key *ins_key, struct btrfs_path *path,
22                       int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24                           struct extent_buffer *dst,
25                           struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27                               struct extent_buffer *dst_buf,
28                               struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30                     int level, int slot);
31
32 static const struct btrfs_csums {
33         u16             size;
34         const char      *name;
35         const char      *driver;
36 } btrfs_csums[] = {
37         [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38         [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39         [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40         [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
41                                      .driver = "blake2b-256" },
42 };
43
44 int btrfs_super_csum_size(const struct btrfs_super_block *s)
45 {
46         u16 t = btrfs_super_csum_type(s);
47         /*
48          * csum type is validated at mount time
49          */
50         return btrfs_csums[t].size;
51 }
52
53 const char *btrfs_super_csum_name(u16 csum_type)
54 {
55         /* csum type is validated at mount time */
56         return btrfs_csums[csum_type].name;
57 }
58
59 /*
60  * Return driver name if defined, otherwise the name that's also a valid driver
61  * name
62  */
63 const char *btrfs_super_csum_driver(u16 csum_type)
64 {
65         /* csum type is validated at mount time */
66         return btrfs_csums[csum_type].driver ?:
67                 btrfs_csums[csum_type].name;
68 }
69
70 size_t __const btrfs_get_num_csums(void)
71 {
72         return ARRAY_SIZE(btrfs_csums);
73 }
74
75 struct btrfs_path *btrfs_alloc_path(void)
76 {
77         return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
78 }
79
80 /* this also releases the path */
81 void btrfs_free_path(struct btrfs_path *p)
82 {
83         if (!p)
84                 return;
85         btrfs_release_path(p);
86         kmem_cache_free(btrfs_path_cachep, p);
87 }
88
89 /*
90  * path release drops references on the extent buffers in the path
91  * and it drops any locks held by this path
92  *
93  * It is safe to call this on paths that no locks or extent buffers held.
94  */
95 noinline void btrfs_release_path(struct btrfs_path *p)
96 {
97         int i;
98
99         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
100                 p->slots[i] = 0;
101                 if (!p->nodes[i])
102                         continue;
103                 if (p->locks[i]) {
104                         btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
105                         p->locks[i] = 0;
106                 }
107                 free_extent_buffer(p->nodes[i]);
108                 p->nodes[i] = NULL;
109         }
110 }
111
112 /*
113  * safely gets a reference on the root node of a tree.  A lock
114  * is not taken, so a concurrent writer may put a different node
115  * at the root of the tree.  See btrfs_lock_root_node for the
116  * looping required.
117  *
118  * The extent buffer returned by this has a reference taken, so
119  * it won't disappear.  It may stop being the root of the tree
120  * at any time because there are no locks held.
121  */
122 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
123 {
124         struct extent_buffer *eb;
125
126         while (1) {
127                 rcu_read_lock();
128                 eb = rcu_dereference(root->node);
129
130                 /*
131                  * RCU really hurts here, we could free up the root node because
132                  * it was COWed but we may not get the new root node yet so do
133                  * the inc_not_zero dance and if it doesn't work then
134                  * synchronize_rcu and try again.
135                  */
136                 if (atomic_inc_not_zero(&eb->refs)) {
137                         rcu_read_unlock();
138                         break;
139                 }
140                 rcu_read_unlock();
141                 synchronize_rcu();
142         }
143         return eb;
144 }
145
146 /* loop around taking references on and locking the root node of the
147  * tree until you end up with a lock on the root.  A locked buffer
148  * is returned, with a reference held.
149  */
150 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
151 {
152         struct extent_buffer *eb;
153
154         while (1) {
155                 eb = btrfs_root_node(root);
156                 btrfs_tree_lock(eb);
157                 if (eb == root->node)
158                         break;
159                 btrfs_tree_unlock(eb);
160                 free_extent_buffer(eb);
161         }
162         return eb;
163 }
164
165 /* loop around taking references on and locking the root node of the
166  * tree until you end up with a lock on the root.  A locked buffer
167  * is returned, with a reference held.
168  */
169 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
170 {
171         struct extent_buffer *eb;
172
173         while (1) {
174                 eb = btrfs_root_node(root);
175                 btrfs_tree_read_lock(eb);
176                 if (eb == root->node)
177                         break;
178                 btrfs_tree_read_unlock(eb);
179                 free_extent_buffer(eb);
180         }
181         return eb;
182 }
183
184 /* cowonly root (everything not a reference counted cow subvolume), just get
185  * put onto a simple dirty list.  transaction.c walks this to make sure they
186  * get properly updated on disk.
187  */
188 static void add_root_to_dirty_list(struct btrfs_root *root)
189 {
190         struct btrfs_fs_info *fs_info = root->fs_info;
191
192         if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
193             !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
194                 return;
195
196         spin_lock(&fs_info->trans_lock);
197         if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
198                 /* Want the extent tree to be the last on the list */
199                 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
200                         list_move_tail(&root->dirty_list,
201                                        &fs_info->dirty_cowonly_roots);
202                 else
203                         list_move(&root->dirty_list,
204                                   &fs_info->dirty_cowonly_roots);
205         }
206         spin_unlock(&fs_info->trans_lock);
207 }
208
209 /*
210  * used by snapshot creation to make a copy of a root for a tree with
211  * a given objectid.  The buffer with the new root node is returned in
212  * cow_ret, and this func returns zero on success or a negative error code.
213  */
214 int btrfs_copy_root(struct btrfs_trans_handle *trans,
215                       struct btrfs_root *root,
216                       struct extent_buffer *buf,
217                       struct extent_buffer **cow_ret, u64 new_root_objectid)
218 {
219         struct btrfs_fs_info *fs_info = root->fs_info;
220         struct extent_buffer *cow;
221         int ret = 0;
222         int level;
223         struct btrfs_disk_key disk_key;
224
225         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
226                 trans->transid != fs_info->running_transaction->transid);
227         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
228                 trans->transid != root->last_trans);
229
230         level = btrfs_header_level(buf);
231         if (level == 0)
232                 btrfs_item_key(buf, &disk_key, 0);
233         else
234                 btrfs_node_key(buf, &disk_key, 0);
235
236         cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
237                         &disk_key, level, buf->start, 0);
238         if (IS_ERR(cow))
239                 return PTR_ERR(cow);
240
241         copy_extent_buffer_full(cow, buf);
242         btrfs_set_header_bytenr(cow, cow->start);
243         btrfs_set_header_generation(cow, trans->transid);
244         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
245         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
246                                      BTRFS_HEADER_FLAG_RELOC);
247         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
248                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
249         else
250                 btrfs_set_header_owner(cow, new_root_objectid);
251
252         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
253
254         WARN_ON(btrfs_header_generation(buf) > trans->transid);
255         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
256                 ret = btrfs_inc_ref(trans, root, cow, 1);
257         else
258                 ret = btrfs_inc_ref(trans, root, cow, 0);
259
260         if (ret)
261                 return ret;
262
263         btrfs_mark_buffer_dirty(cow);
264         *cow_ret = cow;
265         return 0;
266 }
267
268 enum mod_log_op {
269         MOD_LOG_KEY_REPLACE,
270         MOD_LOG_KEY_ADD,
271         MOD_LOG_KEY_REMOVE,
272         MOD_LOG_KEY_REMOVE_WHILE_FREEING,
273         MOD_LOG_KEY_REMOVE_WHILE_MOVING,
274         MOD_LOG_MOVE_KEYS,
275         MOD_LOG_ROOT_REPLACE,
276 };
277
278 struct tree_mod_root {
279         u64 logical;
280         u8 level;
281 };
282
283 struct tree_mod_elem {
284         struct rb_node node;
285         u64 logical;
286         u64 seq;
287         enum mod_log_op op;
288
289         /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
290         int slot;
291
292         /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
293         u64 generation;
294
295         /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
296         struct btrfs_disk_key key;
297         u64 blockptr;
298
299         /* this is used for op == MOD_LOG_MOVE_KEYS */
300         struct {
301                 int dst_slot;
302                 int nr_items;
303         } move;
304
305         /* this is used for op == MOD_LOG_ROOT_REPLACE */
306         struct tree_mod_root old_root;
307 };
308
309 /*
310  * Pull a new tree mod seq number for our operation.
311  */
312 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
313 {
314         return atomic64_inc_return(&fs_info->tree_mod_seq);
315 }
316
317 /*
318  * This adds a new blocker to the tree mod log's blocker list if the @elem
319  * passed does not already have a sequence number set. So when a caller expects
320  * to record tree modifications, it should ensure to set elem->seq to zero
321  * before calling btrfs_get_tree_mod_seq.
322  * Returns a fresh, unused tree log modification sequence number, even if no new
323  * blocker was added.
324  */
325 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
326                            struct seq_list *elem)
327 {
328         write_lock(&fs_info->tree_mod_log_lock);
329         spin_lock(&fs_info->tree_mod_seq_lock);
330         if (!elem->seq) {
331                 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
332                 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
333         }
334         spin_unlock(&fs_info->tree_mod_seq_lock);
335         write_unlock(&fs_info->tree_mod_log_lock);
336
337         return elem->seq;
338 }
339
340 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
341                             struct seq_list *elem)
342 {
343         struct rb_root *tm_root;
344         struct rb_node *node;
345         struct rb_node *next;
346         struct seq_list *cur_elem;
347         struct tree_mod_elem *tm;
348         u64 min_seq = (u64)-1;
349         u64 seq_putting = elem->seq;
350
351         if (!seq_putting)
352                 return;
353
354         spin_lock(&fs_info->tree_mod_seq_lock);
355         list_del(&elem->list);
356         elem->seq = 0;
357
358         list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
359                 if (cur_elem->seq < min_seq) {
360                         if (seq_putting > cur_elem->seq) {
361                                 /*
362                                  * blocker with lower sequence number exists, we
363                                  * cannot remove anything from the log
364                                  */
365                                 spin_unlock(&fs_info->tree_mod_seq_lock);
366                                 return;
367                         }
368                         min_seq = cur_elem->seq;
369                 }
370         }
371         spin_unlock(&fs_info->tree_mod_seq_lock);
372
373         /*
374          * anything that's lower than the lowest existing (read: blocked)
375          * sequence number can be removed from the tree.
376          */
377         write_lock(&fs_info->tree_mod_log_lock);
378         tm_root = &fs_info->tree_mod_log;
379         for (node = rb_first(tm_root); node; node = next) {
380                 next = rb_next(node);
381                 tm = rb_entry(node, struct tree_mod_elem, node);
382                 if (tm->seq >= min_seq)
383                         continue;
384                 rb_erase(node, tm_root);
385                 kfree(tm);
386         }
387         write_unlock(&fs_info->tree_mod_log_lock);
388 }
389
390 /*
391  * key order of the log:
392  *       node/leaf start address -> sequence
393  *
394  * The 'start address' is the logical address of the *new* root node
395  * for root replace operations, or the logical address of the affected
396  * block for all other operations.
397  */
398 static noinline int
399 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
400 {
401         struct rb_root *tm_root;
402         struct rb_node **new;
403         struct rb_node *parent = NULL;
404         struct tree_mod_elem *cur;
405
406         lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
407
408         tm->seq = btrfs_inc_tree_mod_seq(fs_info);
409
410         tm_root = &fs_info->tree_mod_log;
411         new = &tm_root->rb_node;
412         while (*new) {
413                 cur = rb_entry(*new, struct tree_mod_elem, node);
414                 parent = *new;
415                 if (cur->logical < tm->logical)
416                         new = &((*new)->rb_left);
417                 else if (cur->logical > tm->logical)
418                         new = &((*new)->rb_right);
419                 else if (cur->seq < tm->seq)
420                         new = &((*new)->rb_left);
421                 else if (cur->seq > tm->seq)
422                         new = &((*new)->rb_right);
423                 else
424                         return -EEXIST;
425         }
426
427         rb_link_node(&tm->node, parent, new);
428         rb_insert_color(&tm->node, tm_root);
429         return 0;
430 }
431
432 /*
433  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
434  * returns zero with the tree_mod_log_lock acquired. The caller must hold
435  * this until all tree mod log insertions are recorded in the rb tree and then
436  * write unlock fs_info::tree_mod_log_lock.
437  */
438 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
439                                     struct extent_buffer *eb) {
440         smp_mb();
441         if (list_empty(&(fs_info)->tree_mod_seq_list))
442                 return 1;
443         if (eb && btrfs_header_level(eb) == 0)
444                 return 1;
445
446         write_lock(&fs_info->tree_mod_log_lock);
447         if (list_empty(&(fs_info)->tree_mod_seq_list)) {
448                 write_unlock(&fs_info->tree_mod_log_lock);
449                 return 1;
450         }
451
452         return 0;
453 }
454
455 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
456 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
457                                     struct extent_buffer *eb)
458 {
459         smp_mb();
460         if (list_empty(&(fs_info)->tree_mod_seq_list))
461                 return 0;
462         if (eb && btrfs_header_level(eb) == 0)
463                 return 0;
464
465         return 1;
466 }
467
468 static struct tree_mod_elem *
469 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
470                     enum mod_log_op op, gfp_t flags)
471 {
472         struct tree_mod_elem *tm;
473
474         tm = kzalloc(sizeof(*tm), flags);
475         if (!tm)
476                 return NULL;
477
478         tm->logical = eb->start;
479         if (op != MOD_LOG_KEY_ADD) {
480                 btrfs_node_key(eb, &tm->key, slot);
481                 tm->blockptr = btrfs_node_blockptr(eb, slot);
482         }
483         tm->op = op;
484         tm->slot = slot;
485         tm->generation = btrfs_node_ptr_generation(eb, slot);
486         RB_CLEAR_NODE(&tm->node);
487
488         return tm;
489 }
490
491 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
492                 enum mod_log_op op, gfp_t flags)
493 {
494         struct tree_mod_elem *tm;
495         int ret;
496
497         if (!tree_mod_need_log(eb->fs_info, eb))
498                 return 0;
499
500         tm = alloc_tree_mod_elem(eb, slot, op, flags);
501         if (!tm)
502                 return -ENOMEM;
503
504         if (tree_mod_dont_log(eb->fs_info, eb)) {
505                 kfree(tm);
506                 return 0;
507         }
508
509         ret = __tree_mod_log_insert(eb->fs_info, tm);
510         write_unlock(&eb->fs_info->tree_mod_log_lock);
511         if (ret)
512                 kfree(tm);
513
514         return ret;
515 }
516
517 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
518                 int dst_slot, int src_slot, int nr_items)
519 {
520         struct tree_mod_elem *tm = NULL;
521         struct tree_mod_elem **tm_list = NULL;
522         int ret = 0;
523         int i;
524         int locked = 0;
525
526         if (!tree_mod_need_log(eb->fs_info, eb))
527                 return 0;
528
529         tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
530         if (!tm_list)
531                 return -ENOMEM;
532
533         tm = kzalloc(sizeof(*tm), GFP_NOFS);
534         if (!tm) {
535                 ret = -ENOMEM;
536                 goto free_tms;
537         }
538
539         tm->logical = eb->start;
540         tm->slot = src_slot;
541         tm->move.dst_slot = dst_slot;
542         tm->move.nr_items = nr_items;
543         tm->op = MOD_LOG_MOVE_KEYS;
544
545         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
546                 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
547                     MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
548                 if (!tm_list[i]) {
549                         ret = -ENOMEM;
550                         goto free_tms;
551                 }
552         }
553
554         if (tree_mod_dont_log(eb->fs_info, eb))
555                 goto free_tms;
556         locked = 1;
557
558         /*
559          * When we override something during the move, we log these removals.
560          * This can only happen when we move towards the beginning of the
561          * buffer, i.e. dst_slot < src_slot.
562          */
563         for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
564                 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
565                 if (ret)
566                         goto free_tms;
567         }
568
569         ret = __tree_mod_log_insert(eb->fs_info, tm);
570         if (ret)
571                 goto free_tms;
572         write_unlock(&eb->fs_info->tree_mod_log_lock);
573         kfree(tm_list);
574
575         return 0;
576 free_tms:
577         for (i = 0; i < nr_items; i++) {
578                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
579                         rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
580                 kfree(tm_list[i]);
581         }
582         if (locked)
583                 write_unlock(&eb->fs_info->tree_mod_log_lock);
584         kfree(tm_list);
585         kfree(tm);
586
587         return ret;
588 }
589
590 static inline int
591 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
592                        struct tree_mod_elem **tm_list,
593                        int nritems)
594 {
595         int i, j;
596         int ret;
597
598         for (i = nritems - 1; i >= 0; i--) {
599                 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
600                 if (ret) {
601                         for (j = nritems - 1; j > i; j--)
602                                 rb_erase(&tm_list[j]->node,
603                                          &fs_info->tree_mod_log);
604                         return ret;
605                 }
606         }
607
608         return 0;
609 }
610
611 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
612                          struct extent_buffer *new_root, int log_removal)
613 {
614         struct btrfs_fs_info *fs_info = old_root->fs_info;
615         struct tree_mod_elem *tm = NULL;
616         struct tree_mod_elem **tm_list = NULL;
617         int nritems = 0;
618         int ret = 0;
619         int i;
620
621         if (!tree_mod_need_log(fs_info, NULL))
622                 return 0;
623
624         if (log_removal && btrfs_header_level(old_root) > 0) {
625                 nritems = btrfs_header_nritems(old_root);
626                 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
627                                   GFP_NOFS);
628                 if (!tm_list) {
629                         ret = -ENOMEM;
630                         goto free_tms;
631                 }
632                 for (i = 0; i < nritems; i++) {
633                         tm_list[i] = alloc_tree_mod_elem(old_root, i,
634                             MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
635                         if (!tm_list[i]) {
636                                 ret = -ENOMEM;
637                                 goto free_tms;
638                         }
639                 }
640         }
641
642         tm = kzalloc(sizeof(*tm), GFP_NOFS);
643         if (!tm) {
644                 ret = -ENOMEM;
645                 goto free_tms;
646         }
647
648         tm->logical = new_root->start;
649         tm->old_root.logical = old_root->start;
650         tm->old_root.level = btrfs_header_level(old_root);
651         tm->generation = btrfs_header_generation(old_root);
652         tm->op = MOD_LOG_ROOT_REPLACE;
653
654         if (tree_mod_dont_log(fs_info, NULL))
655                 goto free_tms;
656
657         if (tm_list)
658                 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
659         if (!ret)
660                 ret = __tree_mod_log_insert(fs_info, tm);
661
662         write_unlock(&fs_info->tree_mod_log_lock);
663         if (ret)
664                 goto free_tms;
665         kfree(tm_list);
666
667         return ret;
668
669 free_tms:
670         if (tm_list) {
671                 for (i = 0; i < nritems; i++)
672                         kfree(tm_list[i]);
673                 kfree(tm_list);
674         }
675         kfree(tm);
676
677         return ret;
678 }
679
680 static struct tree_mod_elem *
681 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
682                       int smallest)
683 {
684         struct rb_root *tm_root;
685         struct rb_node *node;
686         struct tree_mod_elem *cur = NULL;
687         struct tree_mod_elem *found = NULL;
688
689         read_lock(&fs_info->tree_mod_log_lock);
690         tm_root = &fs_info->tree_mod_log;
691         node = tm_root->rb_node;
692         while (node) {
693                 cur = rb_entry(node, struct tree_mod_elem, node);
694                 if (cur->logical < start) {
695                         node = node->rb_left;
696                 } else if (cur->logical > start) {
697                         node = node->rb_right;
698                 } else if (cur->seq < min_seq) {
699                         node = node->rb_left;
700                 } else if (!smallest) {
701                         /* we want the node with the highest seq */
702                         if (found)
703                                 BUG_ON(found->seq > cur->seq);
704                         found = cur;
705                         node = node->rb_left;
706                 } else if (cur->seq > min_seq) {
707                         /* we want the node with the smallest seq */
708                         if (found)
709                                 BUG_ON(found->seq < cur->seq);
710                         found = cur;
711                         node = node->rb_right;
712                 } else {
713                         found = cur;
714                         break;
715                 }
716         }
717         read_unlock(&fs_info->tree_mod_log_lock);
718
719         return found;
720 }
721
722 /*
723  * this returns the element from the log with the smallest time sequence
724  * value that's in the log (the oldest log item). any element with a time
725  * sequence lower than min_seq will be ignored.
726  */
727 static struct tree_mod_elem *
728 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
729                            u64 min_seq)
730 {
731         return __tree_mod_log_search(fs_info, start, min_seq, 1);
732 }
733
734 /*
735  * this returns the element from the log with the largest time sequence
736  * value that's in the log (the most recent log item). any element with
737  * a time sequence lower than min_seq will be ignored.
738  */
739 static struct tree_mod_elem *
740 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
741 {
742         return __tree_mod_log_search(fs_info, start, min_seq, 0);
743 }
744
745 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
746                      struct extent_buffer *src, unsigned long dst_offset,
747                      unsigned long src_offset, int nr_items)
748 {
749         struct btrfs_fs_info *fs_info = dst->fs_info;
750         int ret = 0;
751         struct tree_mod_elem **tm_list = NULL;
752         struct tree_mod_elem **tm_list_add, **tm_list_rem;
753         int i;
754         int locked = 0;
755
756         if (!tree_mod_need_log(fs_info, NULL))
757                 return 0;
758
759         if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
760                 return 0;
761
762         tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
763                           GFP_NOFS);
764         if (!tm_list)
765                 return -ENOMEM;
766
767         tm_list_add = tm_list;
768         tm_list_rem = tm_list + nr_items;
769         for (i = 0; i < nr_items; i++) {
770                 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
771                     MOD_LOG_KEY_REMOVE, GFP_NOFS);
772                 if (!tm_list_rem[i]) {
773                         ret = -ENOMEM;
774                         goto free_tms;
775                 }
776
777                 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
778                     MOD_LOG_KEY_ADD, GFP_NOFS);
779                 if (!tm_list_add[i]) {
780                         ret = -ENOMEM;
781                         goto free_tms;
782                 }
783         }
784
785         if (tree_mod_dont_log(fs_info, NULL))
786                 goto free_tms;
787         locked = 1;
788
789         for (i = 0; i < nr_items; i++) {
790                 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
791                 if (ret)
792                         goto free_tms;
793                 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
794                 if (ret)
795                         goto free_tms;
796         }
797
798         write_unlock(&fs_info->tree_mod_log_lock);
799         kfree(tm_list);
800
801         return 0;
802
803 free_tms:
804         for (i = 0; i < nr_items * 2; i++) {
805                 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
806                         rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
807                 kfree(tm_list[i]);
808         }
809         if (locked)
810                 write_unlock(&fs_info->tree_mod_log_lock);
811         kfree(tm_list);
812
813         return ret;
814 }
815
816 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
817 {
818         struct tree_mod_elem **tm_list = NULL;
819         int nritems = 0;
820         int i;
821         int ret = 0;
822
823         if (btrfs_header_level(eb) == 0)
824                 return 0;
825
826         if (!tree_mod_need_log(eb->fs_info, NULL))
827                 return 0;
828
829         nritems = btrfs_header_nritems(eb);
830         tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
831         if (!tm_list)
832                 return -ENOMEM;
833
834         for (i = 0; i < nritems; i++) {
835                 tm_list[i] = alloc_tree_mod_elem(eb, i,
836                     MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
837                 if (!tm_list[i]) {
838                         ret = -ENOMEM;
839                         goto free_tms;
840                 }
841         }
842
843         if (tree_mod_dont_log(eb->fs_info, eb))
844                 goto free_tms;
845
846         ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
847         write_unlock(&eb->fs_info->tree_mod_log_lock);
848         if (ret)
849                 goto free_tms;
850         kfree(tm_list);
851
852         return 0;
853
854 free_tms:
855         for (i = 0; i < nritems; i++)
856                 kfree(tm_list[i]);
857         kfree(tm_list);
858
859         return ret;
860 }
861
862 /*
863  * check if the tree block can be shared by multiple trees
864  */
865 int btrfs_block_can_be_shared(struct btrfs_root *root,
866                               struct extent_buffer *buf)
867 {
868         /*
869          * Tree blocks not in reference counted trees and tree roots
870          * are never shared. If a block was allocated after the last
871          * snapshot and the block was not allocated by tree relocation,
872          * we know the block is not shared.
873          */
874         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
875             buf != root->node && buf != root->commit_root &&
876             (btrfs_header_generation(buf) <=
877              btrfs_root_last_snapshot(&root->root_item) ||
878              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
879                 return 1;
880
881         return 0;
882 }
883
884 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
885                                        struct btrfs_root *root,
886                                        struct extent_buffer *buf,
887                                        struct extent_buffer *cow,
888                                        int *last_ref)
889 {
890         struct btrfs_fs_info *fs_info = root->fs_info;
891         u64 refs;
892         u64 owner;
893         u64 flags;
894         u64 new_flags = 0;
895         int ret;
896
897         /*
898          * Backrefs update rules:
899          *
900          * Always use full backrefs for extent pointers in tree block
901          * allocated by tree relocation.
902          *
903          * If a shared tree block is no longer referenced by its owner
904          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
905          * use full backrefs for extent pointers in tree block.
906          *
907          * If a tree block is been relocating
908          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
909          * use full backrefs for extent pointers in tree block.
910          * The reason for this is some operations (such as drop tree)
911          * are only allowed for blocks use full backrefs.
912          */
913
914         if (btrfs_block_can_be_shared(root, buf)) {
915                 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
916                                                btrfs_header_level(buf), 1,
917                                                &refs, &flags);
918                 if (ret)
919                         return ret;
920                 if (refs == 0) {
921                         ret = -EROFS;
922                         btrfs_handle_fs_error(fs_info, ret, NULL);
923                         return ret;
924                 }
925         } else {
926                 refs = 1;
927                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
928                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
929                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
930                 else
931                         flags = 0;
932         }
933
934         owner = btrfs_header_owner(buf);
935         BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
936                !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
937
938         if (refs > 1) {
939                 if ((owner == root->root_key.objectid ||
940                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
941                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
942                         ret = btrfs_inc_ref(trans, root, buf, 1);
943                         if (ret)
944                                 return ret;
945
946                         if (root->root_key.objectid ==
947                             BTRFS_TREE_RELOC_OBJECTID) {
948                                 ret = btrfs_dec_ref(trans, root, buf, 0);
949                                 if (ret)
950                                         return ret;
951                                 ret = btrfs_inc_ref(trans, root, cow, 1);
952                                 if (ret)
953                                         return ret;
954                         }
955                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
956                 } else {
957
958                         if (root->root_key.objectid ==
959                             BTRFS_TREE_RELOC_OBJECTID)
960                                 ret = btrfs_inc_ref(trans, root, cow, 1);
961                         else
962                                 ret = btrfs_inc_ref(trans, root, cow, 0);
963                         if (ret)
964                                 return ret;
965                 }
966                 if (new_flags != 0) {
967                         int level = btrfs_header_level(buf);
968
969                         ret = btrfs_set_disk_extent_flags(trans,
970                                                           buf->start,
971                                                           buf->len,
972                                                           new_flags, level, 0);
973                         if (ret)
974                                 return ret;
975                 }
976         } else {
977                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
978                         if (root->root_key.objectid ==
979                             BTRFS_TREE_RELOC_OBJECTID)
980                                 ret = btrfs_inc_ref(trans, root, cow, 1);
981                         else
982                                 ret = btrfs_inc_ref(trans, root, cow, 0);
983                         if (ret)
984                                 return ret;
985                         ret = btrfs_dec_ref(trans, root, buf, 1);
986                         if (ret)
987                                 return ret;
988                 }
989                 btrfs_clean_tree_block(buf);
990                 *last_ref = 1;
991         }
992         return 0;
993 }
994
995 static struct extent_buffer *alloc_tree_block_no_bg_flush(
996                                           struct btrfs_trans_handle *trans,
997                                           struct btrfs_root *root,
998                                           u64 parent_start,
999                                           const struct btrfs_disk_key *disk_key,
1000                                           int level,
1001                                           u64 hint,
1002                                           u64 empty_size)
1003 {
1004         struct btrfs_fs_info *fs_info = root->fs_info;
1005         struct extent_buffer *ret;
1006
1007         /*
1008          * If we are COWing a node/leaf from the extent, chunk, device or free
1009          * space trees, make sure that we do not finish block group creation of
1010          * pending block groups. We do this to avoid a deadlock.
1011          * COWing can result in allocation of a new chunk, and flushing pending
1012          * block groups (btrfs_create_pending_block_groups()) can be triggered
1013          * when finishing allocation of a new chunk. Creation of a pending block
1014          * group modifies the extent, chunk, device and free space trees,
1015          * therefore we could deadlock with ourselves since we are holding a
1016          * lock on an extent buffer that btrfs_create_pending_block_groups() may
1017          * try to COW later.
1018          * For similar reasons, we also need to delay flushing pending block
1019          * groups when splitting a leaf or node, from one of those trees, since
1020          * we are holding a write lock on it and its parent or when inserting a
1021          * new root node for one of those trees.
1022          */
1023         if (root == fs_info->extent_root ||
1024             root == fs_info->chunk_root ||
1025             root == fs_info->dev_root ||
1026             root == fs_info->free_space_root)
1027                 trans->can_flush_pending_bgs = false;
1028
1029         ret = btrfs_alloc_tree_block(trans, root, parent_start,
1030                                      root->root_key.objectid, disk_key, level,
1031                                      hint, empty_size);
1032         trans->can_flush_pending_bgs = true;
1033
1034         return ret;
1035 }
1036
1037 /*
1038  * does the dirty work in cow of a single block.  The parent block (if
1039  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1040  * dirty and returned locked.  If you modify the block it needs to be marked
1041  * dirty again.
1042  *
1043  * search_start -- an allocation hint for the new block
1044  *
1045  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1046  * bytes the allocator should try to find free next to the block it returns.
1047  * This is just a hint and may be ignored by the allocator.
1048  */
1049 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1050                              struct btrfs_root *root,
1051                              struct extent_buffer *buf,
1052                              struct extent_buffer *parent, int parent_slot,
1053                              struct extent_buffer **cow_ret,
1054                              u64 search_start, u64 empty_size)
1055 {
1056         struct btrfs_fs_info *fs_info = root->fs_info;
1057         struct btrfs_disk_key disk_key;
1058         struct extent_buffer *cow;
1059         int level, ret;
1060         int last_ref = 0;
1061         int unlock_orig = 0;
1062         u64 parent_start = 0;
1063
1064         if (*cow_ret == buf)
1065                 unlock_orig = 1;
1066
1067         btrfs_assert_tree_locked(buf);
1068
1069         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1070                 trans->transid != fs_info->running_transaction->transid);
1071         WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1072                 trans->transid != root->last_trans);
1073
1074         level = btrfs_header_level(buf);
1075
1076         if (level == 0)
1077                 btrfs_item_key(buf, &disk_key, 0);
1078         else
1079                 btrfs_node_key(buf, &disk_key, 0);
1080
1081         if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1082                 parent_start = parent->start;
1083
1084         cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1085                                            level, search_start, empty_size);
1086         if (IS_ERR(cow))
1087                 return PTR_ERR(cow);
1088
1089         /* cow is set to blocking by btrfs_init_new_buffer */
1090
1091         copy_extent_buffer_full(cow, buf);
1092         btrfs_set_header_bytenr(cow, cow->start);
1093         btrfs_set_header_generation(cow, trans->transid);
1094         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1095         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1096                                      BTRFS_HEADER_FLAG_RELOC);
1097         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1098                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1099         else
1100                 btrfs_set_header_owner(cow, root->root_key.objectid);
1101
1102         write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1103
1104         ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1105         if (ret) {
1106                 btrfs_abort_transaction(trans, ret);
1107                 return ret;
1108         }
1109
1110         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1111                 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1112                 if (ret) {
1113                         btrfs_abort_transaction(trans, ret);
1114                         return ret;
1115                 }
1116         }
1117
1118         if (buf == root->node) {
1119                 WARN_ON(parent && parent != buf);
1120                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1121                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1122                         parent_start = buf->start;
1123
1124                 atomic_inc(&cow->refs);
1125                 ret = tree_mod_log_insert_root(root->node, cow, 1);
1126                 BUG_ON(ret < 0);
1127                 rcu_assign_pointer(root->node, cow);
1128
1129                 btrfs_free_tree_block(trans, root, buf, parent_start,
1130                                       last_ref);
1131                 free_extent_buffer(buf);
1132                 add_root_to_dirty_list(root);
1133         } else {
1134                 WARN_ON(trans->transid != btrfs_header_generation(parent));
1135                 tree_mod_log_insert_key(parent, parent_slot,
1136                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1137                 btrfs_set_node_blockptr(parent, parent_slot,
1138                                         cow->start);
1139                 btrfs_set_node_ptr_generation(parent, parent_slot,
1140                                               trans->transid);
1141                 btrfs_mark_buffer_dirty(parent);
1142                 if (last_ref) {
1143                         ret = tree_mod_log_free_eb(buf);
1144                         if (ret) {
1145                                 btrfs_abort_transaction(trans, ret);
1146                                 return ret;
1147                         }
1148                 }
1149                 btrfs_free_tree_block(trans, root, buf, parent_start,
1150                                       last_ref);
1151         }
1152         if (unlock_orig)
1153                 btrfs_tree_unlock(buf);
1154         free_extent_buffer_stale(buf);
1155         btrfs_mark_buffer_dirty(cow);
1156         *cow_ret = cow;
1157         return 0;
1158 }
1159
1160 /*
1161  * returns the logical address of the oldest predecessor of the given root.
1162  * entries older than time_seq are ignored.
1163  */
1164 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1165                 struct extent_buffer *eb_root, u64 time_seq)
1166 {
1167         struct tree_mod_elem *tm;
1168         struct tree_mod_elem *found = NULL;
1169         u64 root_logical = eb_root->start;
1170         int looped = 0;
1171
1172         if (!time_seq)
1173                 return NULL;
1174
1175         /*
1176          * the very last operation that's logged for a root is the
1177          * replacement operation (if it is replaced at all). this has
1178          * the logical address of the *new* root, making it the very
1179          * first operation that's logged for this root.
1180          */
1181         while (1) {
1182                 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1183                                                 time_seq);
1184                 if (!looped && !tm)
1185                         return NULL;
1186                 /*
1187                  * if there are no tree operation for the oldest root, we simply
1188                  * return it. this should only happen if that (old) root is at
1189                  * level 0.
1190                  */
1191                 if (!tm)
1192                         break;
1193
1194                 /*
1195                  * if there's an operation that's not a root replacement, we
1196                  * found the oldest version of our root. normally, we'll find a
1197                  * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1198                  */
1199                 if (tm->op != MOD_LOG_ROOT_REPLACE)
1200                         break;
1201
1202                 found = tm;
1203                 root_logical = tm->old_root.logical;
1204                 looped = 1;
1205         }
1206
1207         /* if there's no old root to return, return what we found instead */
1208         if (!found)
1209                 found = tm;
1210
1211         return found;
1212 }
1213
1214 /*
1215  * tm is a pointer to the first operation to rewind within eb. then, all
1216  * previous operations will be rewound (until we reach something older than
1217  * time_seq).
1218  */
1219 static void
1220 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1221                       u64 time_seq, struct tree_mod_elem *first_tm)
1222 {
1223         u32 n;
1224         struct rb_node *next;
1225         struct tree_mod_elem *tm = first_tm;
1226         unsigned long o_dst;
1227         unsigned long o_src;
1228         unsigned long p_size = sizeof(struct btrfs_key_ptr);
1229
1230         n = btrfs_header_nritems(eb);
1231         read_lock(&fs_info->tree_mod_log_lock);
1232         while (tm && tm->seq >= time_seq) {
1233                 /*
1234                  * all the operations are recorded with the operator used for
1235                  * the modification. as we're going backwards, we do the
1236                  * opposite of each operation here.
1237                  */
1238                 switch (tm->op) {
1239                 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1240                         BUG_ON(tm->slot < n);
1241                         /* Fallthrough */
1242                 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1243                 case MOD_LOG_KEY_REMOVE:
1244                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1245                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1246                         btrfs_set_node_ptr_generation(eb, tm->slot,
1247                                                       tm->generation);
1248                         n++;
1249                         break;
1250                 case MOD_LOG_KEY_REPLACE:
1251                         BUG_ON(tm->slot >= n);
1252                         btrfs_set_node_key(eb, &tm->key, tm->slot);
1253                         btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1254                         btrfs_set_node_ptr_generation(eb, tm->slot,
1255                                                       tm->generation);
1256                         break;
1257                 case MOD_LOG_KEY_ADD:
1258                         /* if a move operation is needed it's in the log */
1259                         n--;
1260                         break;
1261                 case MOD_LOG_MOVE_KEYS:
1262                         o_dst = btrfs_node_key_ptr_offset(tm->slot);
1263                         o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1264                         memmove_extent_buffer(eb, o_dst, o_src,
1265                                               tm->move.nr_items * p_size);
1266                         break;
1267                 case MOD_LOG_ROOT_REPLACE:
1268                         /*
1269                          * this operation is special. for roots, this must be
1270                          * handled explicitly before rewinding.
1271                          * for non-roots, this operation may exist if the node
1272                          * was a root: root A -> child B; then A gets empty and
1273                          * B is promoted to the new root. in the mod log, we'll
1274                          * have a root-replace operation for B, a tree block
1275                          * that is no root. we simply ignore that operation.
1276                          */
1277                         break;
1278                 }
1279                 next = rb_next(&tm->node);
1280                 if (!next)
1281                         break;
1282                 tm = rb_entry(next, struct tree_mod_elem, node);
1283                 if (tm->logical != first_tm->logical)
1284                         break;
1285         }
1286         read_unlock(&fs_info->tree_mod_log_lock);
1287         btrfs_set_header_nritems(eb, n);
1288 }
1289
1290 /*
1291  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1292  * is returned. If rewind operations happen, a fresh buffer is returned. The
1293  * returned buffer is always read-locked. If the returned buffer is not the
1294  * input buffer, the lock on the input buffer is released and the input buffer
1295  * is freed (its refcount is decremented).
1296  */
1297 static struct extent_buffer *
1298 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1299                     struct extent_buffer *eb, u64 time_seq)
1300 {
1301         struct extent_buffer *eb_rewin;
1302         struct tree_mod_elem *tm;
1303
1304         if (!time_seq)
1305                 return eb;
1306
1307         if (btrfs_header_level(eb) == 0)
1308                 return eb;
1309
1310         tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1311         if (!tm)
1312                 return eb;
1313
1314         btrfs_set_path_blocking(path);
1315         btrfs_set_lock_blocking_read(eb);
1316
1317         if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1318                 BUG_ON(tm->slot != 0);
1319                 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1320                 if (!eb_rewin) {
1321                         btrfs_tree_read_unlock_blocking(eb);
1322                         free_extent_buffer(eb);
1323                         return NULL;
1324                 }
1325                 btrfs_set_header_bytenr(eb_rewin, eb->start);
1326                 btrfs_set_header_backref_rev(eb_rewin,
1327                                              btrfs_header_backref_rev(eb));
1328                 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1329                 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1330         } else {
1331                 eb_rewin = btrfs_clone_extent_buffer(eb);
1332                 if (!eb_rewin) {
1333                         btrfs_tree_read_unlock_blocking(eb);
1334                         free_extent_buffer(eb);
1335                         return NULL;
1336                 }
1337         }
1338
1339         btrfs_tree_read_unlock_blocking(eb);
1340         free_extent_buffer(eb);
1341
1342         btrfs_tree_read_lock(eb_rewin);
1343         __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1344         WARN_ON(btrfs_header_nritems(eb_rewin) >
1345                 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1346
1347         return eb_rewin;
1348 }
1349
1350 /*
1351  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1352  * value. If there are no changes, the current root->root_node is returned. If
1353  * anything changed in between, there's a fresh buffer allocated on which the
1354  * rewind operations are done. In any case, the returned buffer is read locked.
1355  * Returns NULL on error (with no locks held).
1356  */
1357 static inline struct extent_buffer *
1358 get_old_root(struct btrfs_root *root, u64 time_seq)
1359 {
1360         struct btrfs_fs_info *fs_info = root->fs_info;
1361         struct tree_mod_elem *tm;
1362         struct extent_buffer *eb = NULL;
1363         struct extent_buffer *eb_root;
1364         u64 eb_root_owner = 0;
1365         struct extent_buffer *old;
1366         struct tree_mod_root *old_root = NULL;
1367         u64 old_generation = 0;
1368         u64 logical;
1369         int level;
1370
1371         eb_root = btrfs_read_lock_root_node(root);
1372         tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1373         if (!tm)
1374                 return eb_root;
1375
1376         if (tm->op == MOD_LOG_ROOT_REPLACE) {
1377                 old_root = &tm->old_root;
1378                 old_generation = tm->generation;
1379                 logical = old_root->logical;
1380                 level = old_root->level;
1381         } else {
1382                 logical = eb_root->start;
1383                 level = btrfs_header_level(eb_root);
1384         }
1385
1386         tm = tree_mod_log_search(fs_info, logical, time_seq);
1387         if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1388                 btrfs_tree_read_unlock(eb_root);
1389                 free_extent_buffer(eb_root);
1390                 old = read_tree_block(fs_info, logical, 0, level, NULL);
1391                 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1392                         if (!IS_ERR(old))
1393                                 free_extent_buffer(old);
1394                         btrfs_warn(fs_info,
1395                                    "failed to read tree block %llu from get_old_root",
1396                                    logical);
1397                 } else {
1398                         eb = btrfs_clone_extent_buffer(old);
1399                         free_extent_buffer(old);
1400                 }
1401         } else if (old_root) {
1402                 eb_root_owner = btrfs_header_owner(eb_root);
1403                 btrfs_tree_read_unlock(eb_root);
1404                 free_extent_buffer(eb_root);
1405                 eb = alloc_dummy_extent_buffer(fs_info, logical);
1406         } else {
1407                 btrfs_set_lock_blocking_read(eb_root);
1408                 eb = btrfs_clone_extent_buffer(eb_root);
1409                 btrfs_tree_read_unlock_blocking(eb_root);
1410                 free_extent_buffer(eb_root);
1411         }
1412
1413         if (!eb)
1414                 return NULL;
1415         btrfs_tree_read_lock(eb);
1416         if (old_root) {
1417                 btrfs_set_header_bytenr(eb, eb->start);
1418                 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1419                 btrfs_set_header_owner(eb, eb_root_owner);
1420                 btrfs_set_header_level(eb, old_root->level);
1421                 btrfs_set_header_generation(eb, old_generation);
1422         }
1423         if (tm)
1424                 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1425         else
1426                 WARN_ON(btrfs_header_level(eb) != 0);
1427         WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1428
1429         return eb;
1430 }
1431
1432 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1433 {
1434         struct tree_mod_elem *tm;
1435         int level;
1436         struct extent_buffer *eb_root = btrfs_root_node(root);
1437
1438         tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1439         if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1440                 level = tm->old_root.level;
1441         } else {
1442                 level = btrfs_header_level(eb_root);
1443         }
1444         free_extent_buffer(eb_root);
1445
1446         return level;
1447 }
1448
1449 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1450                                    struct btrfs_root *root,
1451                                    struct extent_buffer *buf)
1452 {
1453         if (btrfs_is_testing(root->fs_info))
1454                 return 0;
1455
1456         /* Ensure we can see the FORCE_COW bit */
1457         smp_mb__before_atomic();
1458
1459         /*
1460          * We do not need to cow a block if
1461          * 1) this block is not created or changed in this transaction;
1462          * 2) this block does not belong to TREE_RELOC tree;
1463          * 3) the root is not forced COW.
1464          *
1465          * What is forced COW:
1466          *    when we create snapshot during committing the transaction,
1467          *    after we've finished copying src root, we must COW the shared
1468          *    block to ensure the metadata consistency.
1469          */
1470         if (btrfs_header_generation(buf) == trans->transid &&
1471             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1472             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1473               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1474             !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1475                 return 0;
1476         return 1;
1477 }
1478
1479 /*
1480  * cows a single block, see __btrfs_cow_block for the real work.
1481  * This version of it has extra checks so that a block isn't COWed more than
1482  * once per transaction, as long as it hasn't been written yet
1483  */
1484 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1485                     struct btrfs_root *root, struct extent_buffer *buf,
1486                     struct extent_buffer *parent, int parent_slot,
1487                     struct extent_buffer **cow_ret)
1488 {
1489         struct btrfs_fs_info *fs_info = root->fs_info;
1490         u64 search_start;
1491         int ret;
1492
1493         if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1494                 btrfs_err(fs_info,
1495                         "COW'ing blocks on a fs root that's being dropped");
1496
1497         if (trans->transaction != fs_info->running_transaction)
1498                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1499                        trans->transid,
1500                        fs_info->running_transaction->transid);
1501
1502         if (trans->transid != fs_info->generation)
1503                 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1504                        trans->transid, fs_info->generation);
1505
1506         if (!should_cow_block(trans, root, buf)) {
1507                 trans->dirty = true;
1508                 *cow_ret = buf;
1509                 return 0;
1510         }
1511
1512         search_start = buf->start & ~((u64)SZ_1G - 1);
1513
1514         if (parent)
1515                 btrfs_set_lock_blocking_write(parent);
1516         btrfs_set_lock_blocking_write(buf);
1517
1518         /*
1519          * Before CoWing this block for later modification, check if it's
1520          * the subtree root and do the delayed subtree trace if needed.
1521          *
1522          * Also We don't care about the error, as it's handled internally.
1523          */
1524         btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1525         ret = __btrfs_cow_block(trans, root, buf, parent,
1526                                  parent_slot, cow_ret, search_start, 0);
1527
1528         trace_btrfs_cow_block(root, buf, *cow_ret);
1529
1530         return ret;
1531 }
1532
1533 /*
1534  * helper function for defrag to decide if two blocks pointed to by a
1535  * node are actually close by
1536  */
1537 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1538 {
1539         if (blocknr < other && other - (blocknr + blocksize) < 32768)
1540                 return 1;
1541         if (blocknr > other && blocknr - (other + blocksize) < 32768)
1542                 return 1;
1543         return 0;
1544 }
1545
1546 /*
1547  * compare two keys in a memcmp fashion
1548  */
1549 static int comp_keys(const struct btrfs_disk_key *disk,
1550                      const struct btrfs_key *k2)
1551 {
1552         struct btrfs_key k1;
1553
1554         btrfs_disk_key_to_cpu(&k1, disk);
1555
1556         return btrfs_comp_cpu_keys(&k1, k2);
1557 }
1558
1559 /*
1560  * same as comp_keys only with two btrfs_key's
1561  */
1562 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1563 {
1564         if (k1->objectid > k2->objectid)
1565                 return 1;
1566         if (k1->objectid < k2->objectid)
1567                 return -1;
1568         if (k1->type > k2->type)
1569                 return 1;
1570         if (k1->type < k2->type)
1571                 return -1;
1572         if (k1->offset > k2->offset)
1573                 return 1;
1574         if (k1->offset < k2->offset)
1575                 return -1;
1576         return 0;
1577 }
1578
1579 /*
1580  * this is used by the defrag code to go through all the
1581  * leaves pointed to by a node and reallocate them so that
1582  * disk order is close to key order
1583  */
1584 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1585                        struct btrfs_root *root, struct extent_buffer *parent,
1586                        int start_slot, u64 *last_ret,
1587                        struct btrfs_key *progress)
1588 {
1589         struct btrfs_fs_info *fs_info = root->fs_info;
1590         struct extent_buffer *cur;
1591         u64 blocknr;
1592         u64 gen;
1593         u64 search_start = *last_ret;
1594         u64 last_block = 0;
1595         u64 other;
1596         u32 parent_nritems;
1597         int end_slot;
1598         int i;
1599         int err = 0;
1600         int parent_level;
1601         int uptodate;
1602         u32 blocksize;
1603         int progress_passed = 0;
1604         struct btrfs_disk_key disk_key;
1605
1606         parent_level = btrfs_header_level(parent);
1607
1608         WARN_ON(trans->transaction != fs_info->running_transaction);
1609         WARN_ON(trans->transid != fs_info->generation);
1610
1611         parent_nritems = btrfs_header_nritems(parent);
1612         blocksize = fs_info->nodesize;
1613         end_slot = parent_nritems - 1;
1614
1615         if (parent_nritems <= 1)
1616                 return 0;
1617
1618         btrfs_set_lock_blocking_write(parent);
1619
1620         for (i = start_slot; i <= end_slot; i++) {
1621                 struct btrfs_key first_key;
1622                 int close = 1;
1623
1624                 btrfs_node_key(parent, &disk_key, i);
1625                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1626                         continue;
1627
1628                 progress_passed = 1;
1629                 blocknr = btrfs_node_blockptr(parent, i);
1630                 gen = btrfs_node_ptr_generation(parent, i);
1631                 btrfs_node_key_to_cpu(parent, &first_key, i);
1632                 if (last_block == 0)
1633                         last_block = blocknr;
1634
1635                 if (i > 0) {
1636                         other = btrfs_node_blockptr(parent, i - 1);
1637                         close = close_blocks(blocknr, other, blocksize);
1638                 }
1639                 if (!close && i < end_slot) {
1640                         other = btrfs_node_blockptr(parent, i + 1);
1641                         close = close_blocks(blocknr, other, blocksize);
1642                 }
1643                 if (close) {
1644                         last_block = blocknr;
1645                         continue;
1646                 }
1647
1648                 cur = find_extent_buffer(fs_info, blocknr);
1649                 if (cur)
1650                         uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1651                 else
1652                         uptodate = 0;
1653                 if (!cur || !uptodate) {
1654                         if (!cur) {
1655                                 cur = read_tree_block(fs_info, blocknr, gen,
1656                                                       parent_level - 1,
1657                                                       &first_key);
1658                                 if (IS_ERR(cur)) {
1659                                         return PTR_ERR(cur);
1660                                 } else if (!extent_buffer_uptodate(cur)) {
1661                                         free_extent_buffer(cur);
1662                                         return -EIO;
1663                                 }
1664                         } else if (!uptodate) {
1665                                 err = btrfs_read_buffer(cur, gen,
1666                                                 parent_level - 1,&first_key);
1667                                 if (err) {
1668                                         free_extent_buffer(cur);
1669                                         return err;
1670                                 }
1671                         }
1672                 }
1673                 if (search_start == 0)
1674                         search_start = last_block;
1675
1676                 btrfs_tree_lock(cur);
1677                 btrfs_set_lock_blocking_write(cur);
1678                 err = __btrfs_cow_block(trans, root, cur, parent, i,
1679                                         &cur, search_start,
1680                                         min(16 * blocksize,
1681                                             (end_slot - i) * blocksize));
1682                 if (err) {
1683                         btrfs_tree_unlock(cur);
1684                         free_extent_buffer(cur);
1685                         break;
1686                 }
1687                 search_start = cur->start;
1688                 last_block = cur->start;
1689                 *last_ret = search_start;
1690                 btrfs_tree_unlock(cur);
1691                 free_extent_buffer(cur);
1692         }
1693         return err;
1694 }
1695
1696 /*
1697  * search for key in the extent_buffer.  The items start at offset p,
1698  * and they are item_size apart.  There are 'max' items in p.
1699  *
1700  * the slot in the array is returned via slot, and it points to
1701  * the place where you would insert key if it is not found in
1702  * the array.
1703  *
1704  * slot may point to max if the key is bigger than all of the keys
1705  */
1706 static noinline int generic_bin_search(struct extent_buffer *eb,
1707                                        unsigned long p, int item_size,
1708                                        const struct btrfs_key *key,
1709                                        int max, int *slot)
1710 {
1711         int low = 0;
1712         int high = max;
1713         int mid;
1714         int ret;
1715         struct btrfs_disk_key *tmp = NULL;
1716         struct btrfs_disk_key unaligned;
1717         unsigned long offset;
1718         char *kaddr = NULL;
1719         unsigned long map_start = 0;
1720         unsigned long map_len = 0;
1721         int err;
1722
1723         if (low > high) {
1724                 btrfs_err(eb->fs_info,
1725                  "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1726                           __func__, low, high, eb->start,
1727                           btrfs_header_owner(eb), btrfs_header_level(eb));
1728                 return -EINVAL;
1729         }
1730
1731         while (low < high) {
1732                 mid = (low + high) / 2;
1733                 offset = p + mid * item_size;
1734
1735                 if (!kaddr || offset < map_start ||
1736                     (offset + sizeof(struct btrfs_disk_key)) >
1737                     map_start + map_len) {
1738
1739                         err = map_private_extent_buffer(eb, offset,
1740                                                 sizeof(struct btrfs_disk_key),
1741                                                 &kaddr, &map_start, &map_len);
1742
1743                         if (!err) {
1744                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1745                                                         map_start);
1746                         } else if (err == 1) {
1747                                 read_extent_buffer(eb, &unaligned,
1748                                                    offset, sizeof(unaligned));
1749                                 tmp = &unaligned;
1750                         } else {
1751                                 return err;
1752                         }
1753
1754                 } else {
1755                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
1756                                                         map_start);
1757                 }
1758                 ret = comp_keys(tmp, key);
1759
1760                 if (ret < 0)
1761                         low = mid + 1;
1762                 else if (ret > 0)
1763                         high = mid;
1764                 else {
1765                         *slot = mid;
1766                         return 0;
1767                 }
1768         }
1769         *slot = low;
1770         return 1;
1771 }
1772
1773 /*
1774  * simple bin_search frontend that does the right thing for
1775  * leaves vs nodes
1776  */
1777 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1778                      int level, int *slot)
1779 {
1780         if (level == 0)
1781                 return generic_bin_search(eb,
1782                                           offsetof(struct btrfs_leaf, items),
1783                                           sizeof(struct btrfs_item),
1784                                           key, btrfs_header_nritems(eb),
1785                                           slot);
1786         else
1787                 return generic_bin_search(eb,
1788                                           offsetof(struct btrfs_node, ptrs),
1789                                           sizeof(struct btrfs_key_ptr),
1790                                           key, btrfs_header_nritems(eb),
1791                                           slot);
1792 }
1793
1794 static void root_add_used(struct btrfs_root *root, u32 size)
1795 {
1796         spin_lock(&root->accounting_lock);
1797         btrfs_set_root_used(&root->root_item,
1798                             btrfs_root_used(&root->root_item) + size);
1799         spin_unlock(&root->accounting_lock);
1800 }
1801
1802 static void root_sub_used(struct btrfs_root *root, u32 size)
1803 {
1804         spin_lock(&root->accounting_lock);
1805         btrfs_set_root_used(&root->root_item,
1806                             btrfs_root_used(&root->root_item) - size);
1807         spin_unlock(&root->accounting_lock);
1808 }
1809
1810 /* given a node and slot number, this reads the blocks it points to.  The
1811  * extent buffer is returned with a reference taken (but unlocked).
1812  */
1813 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1814                                            int slot)
1815 {
1816         int level = btrfs_header_level(parent);
1817         struct extent_buffer *eb;
1818         struct btrfs_key first_key;
1819
1820         if (slot < 0 || slot >= btrfs_header_nritems(parent))
1821                 return ERR_PTR(-ENOENT);
1822
1823         BUG_ON(level == 0);
1824
1825         btrfs_node_key_to_cpu(parent, &first_key, slot);
1826         eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1827                              btrfs_node_ptr_generation(parent, slot),
1828                              level - 1, &first_key);
1829         if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1830                 free_extent_buffer(eb);
1831                 eb = ERR_PTR(-EIO);
1832         }
1833
1834         return eb;
1835 }
1836
1837 /*
1838  * node level balancing, used to make sure nodes are in proper order for
1839  * item deletion.  We balance from the top down, so we have to make sure
1840  * that a deletion won't leave an node completely empty later on.
1841  */
1842 static noinline int balance_level(struct btrfs_trans_handle *trans,
1843                          struct btrfs_root *root,
1844                          struct btrfs_path *path, int level)
1845 {
1846         struct btrfs_fs_info *fs_info = root->fs_info;
1847         struct extent_buffer *right = NULL;
1848         struct extent_buffer *mid;
1849         struct extent_buffer *left = NULL;
1850         struct extent_buffer *parent = NULL;
1851         int ret = 0;
1852         int wret;
1853         int pslot;
1854         int orig_slot = path->slots[level];
1855         u64 orig_ptr;
1856
1857         ASSERT(level > 0);
1858
1859         mid = path->nodes[level];
1860
1861         WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1862                 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1863         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1864
1865         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1866
1867         if (level < BTRFS_MAX_LEVEL - 1) {
1868                 parent = path->nodes[level + 1];
1869                 pslot = path->slots[level + 1];
1870         }
1871
1872         /*
1873          * deal with the case where there is only one pointer in the root
1874          * by promoting the node below to a root
1875          */
1876         if (!parent) {
1877                 struct extent_buffer *child;
1878
1879                 if (btrfs_header_nritems(mid) != 1)
1880                         return 0;
1881
1882                 /* promote the child to a root */
1883                 child = btrfs_read_node_slot(mid, 0);
1884                 if (IS_ERR(child)) {
1885                         ret = PTR_ERR(child);
1886                         btrfs_handle_fs_error(fs_info, ret, NULL);
1887                         goto enospc;
1888                 }
1889
1890                 btrfs_tree_lock(child);
1891                 btrfs_set_lock_blocking_write(child);
1892                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1893                 if (ret) {
1894                         btrfs_tree_unlock(child);
1895                         free_extent_buffer(child);
1896                         goto enospc;
1897                 }
1898
1899                 ret = tree_mod_log_insert_root(root->node, child, 1);
1900                 BUG_ON(ret < 0);
1901                 rcu_assign_pointer(root->node, child);
1902
1903                 add_root_to_dirty_list(root);
1904                 btrfs_tree_unlock(child);
1905
1906                 path->locks[level] = 0;
1907                 path->nodes[level] = NULL;
1908                 btrfs_clean_tree_block(mid);
1909                 btrfs_tree_unlock(mid);
1910                 /* once for the path */
1911                 free_extent_buffer(mid);
1912
1913                 root_sub_used(root, mid->len);
1914                 btrfs_free_tree_block(trans, root, mid, 0, 1);
1915                 /* once for the root ptr */
1916                 free_extent_buffer_stale(mid);
1917                 return 0;
1918         }
1919         if (btrfs_header_nritems(mid) >
1920             BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1921                 return 0;
1922
1923         left = btrfs_read_node_slot(parent, pslot - 1);
1924         if (IS_ERR(left))
1925                 left = NULL;
1926
1927         if (left) {
1928                 btrfs_tree_lock(left);
1929                 btrfs_set_lock_blocking_write(left);
1930                 wret = btrfs_cow_block(trans, root, left,
1931                                        parent, pslot - 1, &left);
1932                 if (wret) {
1933                         ret = wret;
1934                         goto enospc;
1935                 }
1936         }
1937
1938         right = btrfs_read_node_slot(parent, pslot + 1);
1939         if (IS_ERR(right))
1940                 right = NULL;
1941
1942         if (right) {
1943                 btrfs_tree_lock(right);
1944                 btrfs_set_lock_blocking_write(right);
1945                 wret = btrfs_cow_block(trans, root, right,
1946                                        parent, pslot + 1, &right);
1947                 if (wret) {
1948                         ret = wret;
1949                         goto enospc;
1950                 }
1951         }
1952
1953         /* first, try to make some room in the middle buffer */
1954         if (left) {
1955                 orig_slot += btrfs_header_nritems(left);
1956                 wret = push_node_left(trans, left, mid, 1);
1957                 if (wret < 0)
1958                         ret = wret;
1959         }
1960
1961         /*
1962          * then try to empty the right most buffer into the middle
1963          */
1964         if (right) {
1965                 wret = push_node_left(trans, mid, right, 1);
1966                 if (wret < 0 && wret != -ENOSPC)
1967                         ret = wret;
1968                 if (btrfs_header_nritems(right) == 0) {
1969                         btrfs_clean_tree_block(right);
1970                         btrfs_tree_unlock(right);
1971                         del_ptr(root, path, level + 1, pslot + 1);
1972                         root_sub_used(root, right->len);
1973                         btrfs_free_tree_block(trans, root, right, 0, 1);
1974                         free_extent_buffer_stale(right);
1975                         right = NULL;
1976                 } else {
1977                         struct btrfs_disk_key right_key;
1978                         btrfs_node_key(right, &right_key, 0);
1979                         ret = tree_mod_log_insert_key(parent, pslot + 1,
1980                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
1981                         BUG_ON(ret < 0);
1982                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1983                         btrfs_mark_buffer_dirty(parent);
1984                 }
1985         }
1986         if (btrfs_header_nritems(mid) == 1) {
1987                 /*
1988                  * we're not allowed to leave a node with one item in the
1989                  * tree during a delete.  A deletion from lower in the tree
1990                  * could try to delete the only pointer in this node.
1991                  * So, pull some keys from the left.
1992                  * There has to be a left pointer at this point because
1993                  * otherwise we would have pulled some pointers from the
1994                  * right
1995                  */
1996                 if (!left) {
1997                         ret = -EROFS;
1998                         btrfs_handle_fs_error(fs_info, ret, NULL);
1999                         goto enospc;
2000                 }
2001                 wret = balance_node_right(trans, mid, left);
2002                 if (wret < 0) {
2003                         ret = wret;
2004                         goto enospc;
2005                 }
2006                 if (wret == 1) {
2007                         wret = push_node_left(trans, left, mid, 1);
2008                         if (wret < 0)
2009                                 ret = wret;
2010                 }
2011                 BUG_ON(wret == 1);
2012         }
2013         if (btrfs_header_nritems(mid) == 0) {
2014                 btrfs_clean_tree_block(mid);
2015                 btrfs_tree_unlock(mid);
2016                 del_ptr(root, path, level + 1, pslot);
2017                 root_sub_used(root, mid->len);
2018                 btrfs_free_tree_block(trans, root, mid, 0, 1);
2019                 free_extent_buffer_stale(mid);
2020                 mid = NULL;
2021         } else {
2022                 /* update the parent key to reflect our changes */
2023                 struct btrfs_disk_key mid_key;
2024                 btrfs_node_key(mid, &mid_key, 0);
2025                 ret = tree_mod_log_insert_key(parent, pslot,
2026                                 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2027                 BUG_ON(ret < 0);
2028                 btrfs_set_node_key(parent, &mid_key, pslot);
2029                 btrfs_mark_buffer_dirty(parent);
2030         }
2031
2032         /* update the path */
2033         if (left) {
2034                 if (btrfs_header_nritems(left) > orig_slot) {
2035                         atomic_inc(&left->refs);
2036                         /* left was locked after cow */
2037                         path->nodes[level] = left;
2038                         path->slots[level + 1] -= 1;
2039                         path->slots[level] = orig_slot;
2040                         if (mid) {
2041                                 btrfs_tree_unlock(mid);
2042                                 free_extent_buffer(mid);
2043                         }
2044                 } else {
2045                         orig_slot -= btrfs_header_nritems(left);
2046                         path->slots[level] = orig_slot;
2047                 }
2048         }
2049         /* double check we haven't messed things up */
2050         if (orig_ptr !=
2051             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2052                 BUG();
2053 enospc:
2054         if (right) {
2055                 btrfs_tree_unlock(right);
2056                 free_extent_buffer(right);
2057         }
2058         if (left) {
2059                 if (path->nodes[level] != left)
2060                         btrfs_tree_unlock(left);
2061                 free_extent_buffer(left);
2062         }
2063         return ret;
2064 }
2065
2066 /* Node balancing for insertion.  Here we only split or push nodes around
2067  * when they are completely full.  This is also done top down, so we
2068  * have to be pessimistic.
2069  */
2070 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2071                                           struct btrfs_root *root,
2072                                           struct btrfs_path *path, int level)
2073 {
2074         struct btrfs_fs_info *fs_info = root->fs_info;
2075         struct extent_buffer *right = NULL;
2076         struct extent_buffer *mid;
2077         struct extent_buffer *left = NULL;
2078         struct extent_buffer *parent = NULL;
2079         int ret = 0;
2080         int wret;
2081         int pslot;
2082         int orig_slot = path->slots[level];
2083
2084         if (level == 0)
2085                 return 1;
2086
2087         mid = path->nodes[level];
2088         WARN_ON(btrfs_header_generation(mid) != trans->transid);
2089
2090         if (level < BTRFS_MAX_LEVEL - 1) {
2091                 parent = path->nodes[level + 1];
2092                 pslot = path->slots[level + 1];
2093         }
2094
2095         if (!parent)
2096                 return 1;
2097
2098         left = btrfs_read_node_slot(parent, pslot - 1);
2099         if (IS_ERR(left))
2100                 left = NULL;
2101
2102         /* first, try to make some room in the middle buffer */
2103         if (left) {
2104                 u32 left_nr;
2105
2106                 btrfs_tree_lock(left);
2107                 btrfs_set_lock_blocking_write(left);
2108
2109                 left_nr = btrfs_header_nritems(left);
2110                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2111                         wret = 1;
2112                 } else {
2113                         ret = btrfs_cow_block(trans, root, left, parent,
2114                                               pslot - 1, &left);
2115                         if (ret)
2116                                 wret = 1;
2117                         else {
2118                                 wret = push_node_left(trans, left, mid, 0);
2119                         }
2120                 }
2121                 if (wret < 0)
2122                         ret = wret;
2123                 if (wret == 0) {
2124                         struct btrfs_disk_key disk_key;
2125                         orig_slot += left_nr;
2126                         btrfs_node_key(mid, &disk_key, 0);
2127                         ret = tree_mod_log_insert_key(parent, pslot,
2128                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
2129                         BUG_ON(ret < 0);
2130                         btrfs_set_node_key(parent, &disk_key, pslot);
2131                         btrfs_mark_buffer_dirty(parent);
2132                         if (btrfs_header_nritems(left) > orig_slot) {
2133                                 path->nodes[level] = left;
2134                                 path->slots[level + 1] -= 1;
2135                                 path->slots[level] = orig_slot;
2136                                 btrfs_tree_unlock(mid);
2137                                 free_extent_buffer(mid);
2138                         } else {
2139                                 orig_slot -=
2140                                         btrfs_header_nritems(left);
2141                                 path->slots[level] = orig_slot;
2142                                 btrfs_tree_unlock(left);
2143                                 free_extent_buffer(left);
2144                         }
2145                         return 0;
2146                 }
2147                 btrfs_tree_unlock(left);
2148                 free_extent_buffer(left);
2149         }
2150         right = btrfs_read_node_slot(parent, pslot + 1);
2151         if (IS_ERR(right))
2152                 right = NULL;
2153
2154         /*
2155          * then try to empty the right most buffer into the middle
2156          */
2157         if (right) {
2158                 u32 right_nr;
2159
2160                 btrfs_tree_lock(right);
2161                 btrfs_set_lock_blocking_write(right);
2162
2163                 right_nr = btrfs_header_nritems(right);
2164                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2165                         wret = 1;
2166                 } else {
2167                         ret = btrfs_cow_block(trans, root, right,
2168                                               parent, pslot + 1,
2169                                               &right);
2170                         if (ret)
2171                                 wret = 1;
2172                         else {
2173                                 wret = balance_node_right(trans, right, mid);
2174                         }
2175                 }
2176                 if (wret < 0)
2177                         ret = wret;
2178                 if (wret == 0) {
2179                         struct btrfs_disk_key disk_key;
2180
2181                         btrfs_node_key(right, &disk_key, 0);
2182                         ret = tree_mod_log_insert_key(parent, pslot + 1,
2183                                         MOD_LOG_KEY_REPLACE, GFP_NOFS);
2184                         BUG_ON(ret < 0);
2185                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
2186                         btrfs_mark_buffer_dirty(parent);
2187
2188                         if (btrfs_header_nritems(mid) <= orig_slot) {
2189                                 path->nodes[level] = right;
2190                                 path->slots[level + 1] += 1;
2191                                 path->slots[level] = orig_slot -
2192                                         btrfs_header_nritems(mid);
2193                                 btrfs_tree_unlock(mid);
2194                                 free_extent_buffer(mid);
2195                         } else {
2196                                 btrfs_tree_unlock(right);
2197                                 free_extent_buffer(right);
2198                         }
2199                         return 0;
2200                 }
2201                 btrfs_tree_unlock(right);
2202                 free_extent_buffer(right);
2203         }
2204         return 1;
2205 }
2206
2207 /*
2208  * readahead one full node of leaves, finding things that are close
2209  * to the block in 'slot', and triggering ra on them.
2210  */
2211 static void reada_for_search(struct btrfs_fs_info *fs_info,
2212                              struct btrfs_path *path,
2213                              int level, int slot, u64 objectid)
2214 {
2215         struct extent_buffer *node;
2216         struct btrfs_disk_key disk_key;
2217         u32 nritems;
2218         u64 search;
2219         u64 target;
2220         u64 nread = 0;
2221         struct extent_buffer *eb;
2222         u32 nr;
2223         u32 blocksize;
2224         u32 nscan = 0;
2225
2226         if (level != 1)
2227                 return;
2228
2229         if (!path->nodes[level])
2230                 return;
2231
2232         node = path->nodes[level];
2233
2234         search = btrfs_node_blockptr(node, slot);
2235         blocksize = fs_info->nodesize;
2236         eb = find_extent_buffer(fs_info, search);
2237         if (eb) {
2238                 free_extent_buffer(eb);
2239                 return;
2240         }
2241
2242         target = search;
2243
2244         nritems = btrfs_header_nritems(node);
2245         nr = slot;
2246
2247         while (1) {
2248                 if (path->reada == READA_BACK) {
2249                         if (nr == 0)
2250                                 break;
2251                         nr--;
2252                 } else if (path->reada == READA_FORWARD) {
2253                         nr++;
2254                         if (nr >= nritems)
2255                                 break;
2256                 }
2257                 if (path->reada == READA_BACK && objectid) {
2258                         btrfs_node_key(node, &disk_key, nr);
2259                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
2260                                 break;
2261                 }
2262                 search = btrfs_node_blockptr(node, nr);
2263                 if ((search <= target && target - search <= 65536) ||
2264                     (search > target && search - target <= 65536)) {
2265                         readahead_tree_block(fs_info, search);
2266                         nread += blocksize;
2267                 }
2268                 nscan++;
2269                 if ((nread > 65536 || nscan > 32))
2270                         break;
2271         }
2272 }
2273
2274 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2275                                        struct btrfs_path *path, int level)
2276 {
2277         int slot;
2278         int nritems;
2279         struct extent_buffer *parent;
2280         struct extent_buffer *eb;
2281         u64 gen;
2282         u64 block1 = 0;
2283         u64 block2 = 0;
2284
2285         parent = path->nodes[level + 1];
2286         if (!parent)
2287                 return;
2288
2289         nritems = btrfs_header_nritems(parent);
2290         slot = path->slots[level + 1];
2291
2292         if (slot > 0) {
2293                 block1 = btrfs_node_blockptr(parent, slot - 1);
2294                 gen = btrfs_node_ptr_generation(parent, slot - 1);
2295                 eb = find_extent_buffer(fs_info, block1);
2296                 /*
2297                  * if we get -eagain from btrfs_buffer_uptodate, we
2298                  * don't want to return eagain here.  That will loop
2299                  * forever
2300                  */
2301                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2302                         block1 = 0;
2303                 free_extent_buffer(eb);
2304         }
2305         if (slot + 1 < nritems) {
2306                 block2 = btrfs_node_blockptr(parent, slot + 1);
2307                 gen = btrfs_node_ptr_generation(parent, slot + 1);
2308                 eb = find_extent_buffer(fs_info, block2);
2309                 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2310                         block2 = 0;
2311                 free_extent_buffer(eb);
2312         }
2313
2314         if (block1)
2315                 readahead_tree_block(fs_info, block1);
2316         if (block2)
2317                 readahead_tree_block(fs_info, block2);
2318 }
2319
2320
2321 /*
2322  * when we walk down the tree, it is usually safe to unlock the higher layers
2323  * in the tree.  The exceptions are when our path goes through slot 0, because
2324  * operations on the tree might require changing key pointers higher up in the
2325  * tree.
2326  *
2327  * callers might also have set path->keep_locks, which tells this code to keep
2328  * the lock if the path points to the last slot in the block.  This is part of
2329  * walking through the tree, and selecting the next slot in the higher block.
2330  *
2331  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2332  * if lowest_unlock is 1, level 0 won't be unlocked
2333  */
2334 static noinline void unlock_up(struct btrfs_path *path, int level,
2335                                int lowest_unlock, int min_write_lock_level,
2336                                int *write_lock_level)
2337 {
2338         int i;
2339         int skip_level = level;
2340         int no_skips = 0;
2341         struct extent_buffer *t;
2342
2343         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2344                 if (!path->nodes[i])
2345                         break;
2346                 if (!path->locks[i])
2347                         break;
2348                 if (!no_skips && path->slots[i] == 0) {
2349                         skip_level = i + 1;
2350                         continue;
2351                 }
2352                 if (!no_skips && path->keep_locks) {
2353                         u32 nritems;
2354                         t = path->nodes[i];
2355                         nritems = btrfs_header_nritems(t);
2356                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
2357                                 skip_level = i + 1;
2358                                 continue;
2359                         }
2360                 }
2361                 if (skip_level < i && i >= lowest_unlock)
2362                         no_skips = 1;
2363
2364                 t = path->nodes[i];
2365                 if (i >= lowest_unlock && i > skip_level) {
2366                         btrfs_tree_unlock_rw(t, path->locks[i]);
2367                         path->locks[i] = 0;
2368                         if (write_lock_level &&
2369                             i > min_write_lock_level &&
2370                             i <= *write_lock_level) {
2371                                 *write_lock_level = i - 1;
2372                         }
2373                 }
2374         }
2375 }
2376
2377 /*
2378  * helper function for btrfs_search_slot.  The goal is to find a block
2379  * in cache without setting the path to blocking.  If we find the block
2380  * we return zero and the path is unchanged.
2381  *
2382  * If we can't find the block, we set the path blocking and do some
2383  * reada.  -EAGAIN is returned and the search must be repeated.
2384  */
2385 static int
2386 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2387                       struct extent_buffer **eb_ret, int level, int slot,
2388                       const struct btrfs_key *key)
2389 {
2390         struct btrfs_fs_info *fs_info = root->fs_info;
2391         u64 blocknr;
2392         u64 gen;
2393         struct extent_buffer *b = *eb_ret;
2394         struct extent_buffer *tmp;
2395         struct btrfs_key first_key;
2396         int ret;
2397         int parent_level;
2398
2399         blocknr = btrfs_node_blockptr(b, slot);
2400         gen = btrfs_node_ptr_generation(b, slot);
2401         parent_level = btrfs_header_level(b);
2402         btrfs_node_key_to_cpu(b, &first_key, slot);
2403
2404         tmp = find_extent_buffer(fs_info, blocknr);
2405         if (tmp) {
2406                 /* first we do an atomic uptodate check */
2407                 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2408                         /*
2409                          * Do extra check for first_key, eb can be stale due to
2410                          * being cached, read from scrub, or have multiple
2411                          * parents (shared tree blocks).
2412                          */
2413                         if (btrfs_verify_level_key(tmp,
2414                                         parent_level - 1, &first_key, gen)) {
2415                                 free_extent_buffer(tmp);
2416                                 return -EUCLEAN;
2417                         }
2418                         *eb_ret = tmp;
2419                         return 0;
2420                 }
2421
2422                 /* the pages were up to date, but we failed
2423                  * the generation number check.  Do a full
2424                  * read for the generation number that is correct.
2425                  * We must do this without dropping locks so
2426                  * we can trust our generation number
2427                  */
2428                 btrfs_set_path_blocking(p);
2429
2430                 /* now we're allowed to do a blocking uptodate check */
2431                 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2432                 if (!ret) {
2433                         *eb_ret = tmp;
2434                         return 0;
2435                 }
2436                 free_extent_buffer(tmp);
2437                 btrfs_release_path(p);
2438                 return -EIO;
2439         }
2440
2441         /*
2442          * reduce lock contention at high levels
2443          * of the btree by dropping locks before
2444          * we read.  Don't release the lock on the current
2445          * level because we need to walk this node to figure
2446          * out which blocks to read.
2447          */
2448         btrfs_unlock_up_safe(p, level + 1);
2449         btrfs_set_path_blocking(p);
2450
2451         if (p->reada != READA_NONE)
2452                 reada_for_search(fs_info, p, level, slot, key->objectid);
2453
2454         ret = -EAGAIN;
2455         tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2456                               &first_key);
2457         if (!IS_ERR(tmp)) {
2458                 /*
2459                  * If the read above didn't mark this buffer up to date,
2460                  * it will never end up being up to date.  Set ret to EIO now
2461                  * and give up so that our caller doesn't loop forever
2462                  * on our EAGAINs.
2463                  */
2464                 if (!extent_buffer_uptodate(tmp))
2465                         ret = -EIO;
2466                 free_extent_buffer(tmp);
2467         } else {
2468                 ret = PTR_ERR(tmp);
2469         }
2470
2471         btrfs_release_path(p);
2472         return ret;
2473 }
2474
2475 /*
2476  * helper function for btrfs_search_slot.  This does all of the checks
2477  * for node-level blocks and does any balancing required based on
2478  * the ins_len.
2479  *
2480  * If no extra work was required, zero is returned.  If we had to
2481  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2482  * start over
2483  */
2484 static int
2485 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2486                        struct btrfs_root *root, struct btrfs_path *p,
2487                        struct extent_buffer *b, int level, int ins_len,
2488                        int *write_lock_level)
2489 {
2490         struct btrfs_fs_info *fs_info = root->fs_info;
2491         int ret;
2492
2493         if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2494             BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2495                 int sret;
2496
2497                 if (*write_lock_level < level + 1) {
2498                         *write_lock_level = level + 1;
2499                         btrfs_release_path(p);
2500                         goto again;
2501                 }
2502
2503                 btrfs_set_path_blocking(p);
2504                 reada_for_balance(fs_info, p, level);
2505                 sret = split_node(trans, root, p, level);
2506
2507                 BUG_ON(sret > 0);
2508                 if (sret) {
2509                         ret = sret;
2510                         goto done;
2511                 }
2512                 b = p->nodes[level];
2513         } else if (ins_len < 0 && btrfs_header_nritems(b) <
2514                    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2515                 int sret;
2516
2517                 if (*write_lock_level < level + 1) {
2518                         *write_lock_level = level + 1;
2519                         btrfs_release_path(p);
2520                         goto again;
2521                 }
2522
2523                 btrfs_set_path_blocking(p);
2524                 reada_for_balance(fs_info, p, level);
2525                 sret = balance_level(trans, root, p, level);
2526
2527                 if (sret) {
2528                         ret = sret;
2529                         goto done;
2530                 }
2531                 b = p->nodes[level];
2532                 if (!b) {
2533                         btrfs_release_path(p);
2534                         goto again;
2535                 }
2536                 BUG_ON(btrfs_header_nritems(b) == 1);
2537         }
2538         return 0;
2539
2540 again:
2541         ret = -EAGAIN;
2542 done:
2543         return ret;
2544 }
2545
2546 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2547                       int level, int *prev_cmp, int *slot)
2548 {
2549         if (*prev_cmp != 0) {
2550                 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2551                 return *prev_cmp;
2552         }
2553
2554         *slot = 0;
2555
2556         return 0;
2557 }
2558
2559 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2560                 u64 iobjectid, u64 ioff, u8 key_type,
2561                 struct btrfs_key *found_key)
2562 {
2563         int ret;
2564         struct btrfs_key key;
2565         struct extent_buffer *eb;
2566
2567         ASSERT(path);
2568         ASSERT(found_key);
2569
2570         key.type = key_type;
2571         key.objectid = iobjectid;
2572         key.offset = ioff;
2573
2574         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2575         if (ret < 0)
2576                 return ret;
2577
2578         eb = path->nodes[0];
2579         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2580                 ret = btrfs_next_leaf(fs_root, path);
2581                 if (ret)
2582                         return ret;
2583                 eb = path->nodes[0];
2584         }
2585
2586         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2587         if (found_key->type != key.type ||
2588                         found_key->objectid != key.objectid)
2589                 return 1;
2590
2591         return 0;
2592 }
2593
2594 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2595                                                         struct btrfs_path *p,
2596                                                         int write_lock_level)
2597 {
2598         struct btrfs_fs_info *fs_info = root->fs_info;
2599         struct extent_buffer *b;
2600         int root_lock;
2601         int level = 0;
2602
2603         /* We try very hard to do read locks on the root */
2604         root_lock = BTRFS_READ_LOCK;
2605
2606         if (p->search_commit_root) {
2607                 /*
2608                  * The commit roots are read only so we always do read locks,
2609                  * and we always must hold the commit_root_sem when doing
2610                  * searches on them, the only exception is send where we don't
2611                  * want to block transaction commits for a long time, so
2612                  * we need to clone the commit root in order to avoid races
2613                  * with transaction commits that create a snapshot of one of
2614                  * the roots used by a send operation.
2615                  */
2616                 if (p->need_commit_sem) {
2617                         down_read(&fs_info->commit_root_sem);
2618                         b = btrfs_clone_extent_buffer(root->commit_root);
2619                         up_read(&fs_info->commit_root_sem);
2620                         if (!b)
2621                                 return ERR_PTR(-ENOMEM);
2622
2623                 } else {
2624                         b = root->commit_root;
2625                         atomic_inc(&b->refs);
2626                 }
2627                 level = btrfs_header_level(b);
2628                 /*
2629                  * Ensure that all callers have set skip_locking when
2630                  * p->search_commit_root = 1.
2631                  */
2632                 ASSERT(p->skip_locking == 1);
2633
2634                 goto out;
2635         }
2636
2637         if (p->skip_locking) {
2638                 b = btrfs_root_node(root);
2639                 level = btrfs_header_level(b);
2640                 goto out;
2641         }
2642
2643         /*
2644          * If the level is set to maximum, we can skip trying to get the read
2645          * lock.
2646          */
2647         if (write_lock_level < BTRFS_MAX_LEVEL) {
2648                 /*
2649                  * We don't know the level of the root node until we actually
2650                  * have it read locked
2651                  */
2652                 b = btrfs_read_lock_root_node(root);
2653                 level = btrfs_header_level(b);
2654                 if (level > write_lock_level)
2655                         goto out;
2656
2657                 /* Whoops, must trade for write lock */
2658                 btrfs_tree_read_unlock(b);
2659                 free_extent_buffer(b);
2660         }
2661
2662         b = btrfs_lock_root_node(root);
2663         root_lock = BTRFS_WRITE_LOCK;
2664
2665         /* The level might have changed, check again */
2666         level = btrfs_header_level(b);
2667
2668 out:
2669         p->nodes[level] = b;
2670         if (!p->skip_locking)
2671                 p->locks[level] = root_lock;
2672         /*
2673          * Callers are responsible for dropping b's references.
2674          */
2675         return b;
2676 }
2677
2678
2679 /*
2680  * btrfs_search_slot - look for a key in a tree and perform necessary
2681  * modifications to preserve tree invariants.
2682  *
2683  * @trans:      Handle of transaction, used when modifying the tree
2684  * @p:          Holds all btree nodes along the search path
2685  * @root:       The root node of the tree
2686  * @key:        The key we are looking for
2687  * @ins_len:    Indicates purpose of search, for inserts it is 1, for
2688  *              deletions it's -1. 0 for plain searches
2689  * @cow:        boolean should CoW operations be performed. Must always be 1
2690  *              when modifying the tree.
2691  *
2692  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2693  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2694  *
2695  * If @key is found, 0 is returned and you can find the item in the leaf level
2696  * of the path (level 0)
2697  *
2698  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2699  * points to the slot where it should be inserted
2700  *
2701  * If an error is encountered while searching the tree a negative error number
2702  * is returned
2703  */
2704 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2705                       const struct btrfs_key *key, struct btrfs_path *p,
2706                       int ins_len, int cow)
2707 {
2708         struct extent_buffer *b;
2709         int slot;
2710         int ret;
2711         int err;
2712         int level;
2713         int lowest_unlock = 1;
2714         /* everything at write_lock_level or lower must be write locked */
2715         int write_lock_level = 0;
2716         u8 lowest_level = 0;
2717         int min_write_lock_level;
2718         int prev_cmp;
2719
2720         lowest_level = p->lowest_level;
2721         WARN_ON(lowest_level && ins_len > 0);
2722         WARN_ON(p->nodes[0] != NULL);
2723         BUG_ON(!cow && ins_len);
2724
2725         if (ins_len < 0) {
2726                 lowest_unlock = 2;
2727
2728                 /* when we are removing items, we might have to go up to level
2729                  * two as we update tree pointers  Make sure we keep write
2730                  * for those levels as well
2731                  */
2732                 write_lock_level = 2;
2733         } else if (ins_len > 0) {
2734                 /*
2735                  * for inserting items, make sure we have a write lock on
2736                  * level 1 so we can update keys
2737                  */
2738                 write_lock_level = 1;
2739         }
2740
2741         if (!cow)
2742                 write_lock_level = -1;
2743
2744         if (cow && (p->keep_locks || p->lowest_level))
2745                 write_lock_level = BTRFS_MAX_LEVEL;
2746
2747         min_write_lock_level = write_lock_level;
2748
2749 again:
2750         prev_cmp = -1;
2751         b = btrfs_search_slot_get_root(root, p, write_lock_level);
2752         if (IS_ERR(b)) {
2753                 ret = PTR_ERR(b);
2754                 goto done;
2755         }
2756
2757         while (b) {
2758                 int dec = 0;
2759
2760                 level = btrfs_header_level(b);
2761
2762                 if (cow) {
2763                         bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2764
2765                         /*
2766                          * if we don't really need to cow this block
2767                          * then we don't want to set the path blocking,
2768                          * so we test it here
2769                          */
2770                         if (!should_cow_block(trans, root, b)) {
2771                                 trans->dirty = true;
2772                                 goto cow_done;
2773                         }
2774
2775                         /*
2776                          * must have write locks on this node and the
2777                          * parent
2778                          */
2779                         if (level > write_lock_level ||
2780                             (level + 1 > write_lock_level &&
2781                             level + 1 < BTRFS_MAX_LEVEL &&
2782                             p->nodes[level + 1])) {
2783                                 write_lock_level = level + 1;
2784                                 btrfs_release_path(p);
2785                                 goto again;
2786                         }
2787
2788                         btrfs_set_path_blocking(p);
2789                         if (last_level)
2790                                 err = btrfs_cow_block(trans, root, b, NULL, 0,
2791                                                       &b);
2792                         else
2793                                 err = btrfs_cow_block(trans, root, b,
2794                                                       p->nodes[level + 1],
2795                                                       p->slots[level + 1], &b);
2796                         if (err) {
2797                                 ret = err;
2798                                 goto done;
2799                         }
2800                 }
2801 cow_done:
2802                 p->nodes[level] = b;
2803                 /*
2804                  * Leave path with blocking locks to avoid massive
2805                  * lock context switch, this is made on purpose.
2806                  */
2807
2808                 /*
2809                  * we have a lock on b and as long as we aren't changing
2810                  * the tree, there is no way to for the items in b to change.
2811                  * It is safe to drop the lock on our parent before we
2812                  * go through the expensive btree search on b.
2813                  *
2814                  * If we're inserting or deleting (ins_len != 0), then we might
2815                  * be changing slot zero, which may require changing the parent.
2816                  * So, we can't drop the lock until after we know which slot
2817                  * we're operating on.
2818                  */
2819                 if (!ins_len && !p->keep_locks) {
2820                         int u = level + 1;
2821
2822                         if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2823                                 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2824                                 p->locks[u] = 0;
2825                         }
2826                 }
2827
2828                 ret = key_search(b, key, level, &prev_cmp, &slot);
2829                 if (ret < 0)
2830                         goto done;
2831
2832                 if (level == 0) {
2833                         p->slots[level] = slot;
2834                         if (ins_len > 0 &&
2835                             btrfs_leaf_free_space(b) < ins_len) {
2836                                 if (write_lock_level < 1) {
2837                                         write_lock_level = 1;
2838                                         btrfs_release_path(p);
2839                                         goto again;
2840                                 }
2841
2842                                 btrfs_set_path_blocking(p);
2843                                 err = split_leaf(trans, root, key,
2844                                                  p, ins_len, ret == 0);
2845
2846                                 BUG_ON(err > 0);
2847                                 if (err) {
2848                                         ret = err;
2849                                         goto done;
2850                                 }
2851                         }
2852                         if (!p->search_for_split)
2853                                 unlock_up(p, level, lowest_unlock,
2854                                           min_write_lock_level, NULL);
2855                         goto done;
2856                 }
2857                 if (ret && slot > 0) {
2858                         dec = 1;
2859                         slot--;
2860                 }
2861                 p->slots[level] = slot;
2862                 err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2863                                              &write_lock_level);
2864                 if (err == -EAGAIN)
2865                         goto again;
2866                 if (err) {
2867                         ret = err;
2868                         goto done;
2869                 }
2870                 b = p->nodes[level];
2871                 slot = p->slots[level];
2872
2873                 /*
2874                  * Slot 0 is special, if we change the key we have to update
2875                  * the parent pointer which means we must have a write lock on
2876                  * the parent
2877                  */
2878                 if (slot == 0 && ins_len && write_lock_level < level + 1) {
2879                         write_lock_level = level + 1;
2880                         btrfs_release_path(p);
2881                         goto again;
2882                 }
2883
2884                 unlock_up(p, level, lowest_unlock, min_write_lock_level,
2885                           &write_lock_level);
2886
2887                 if (level == lowest_level) {
2888                         if (dec)
2889                                 p->slots[level]++;
2890                         goto done;
2891                 }
2892
2893                 err = read_block_for_search(root, p, &b, level, slot, key);
2894                 if (err == -EAGAIN)
2895                         goto again;
2896                 if (err) {
2897                         ret = err;
2898                         goto done;
2899                 }
2900
2901                 if (!p->skip_locking) {
2902                         level = btrfs_header_level(b);
2903                         if (level <= write_lock_level) {
2904                                 if (!btrfs_try_tree_write_lock(b)) {
2905                                         btrfs_set_path_blocking(p);
2906                                         btrfs_tree_lock(b);
2907                                 }
2908                                 p->locks[level] = BTRFS_WRITE_LOCK;
2909                         } else {
2910                                 if (!btrfs_tree_read_lock_atomic(b)) {
2911                                         btrfs_set_path_blocking(p);
2912                                         btrfs_tree_read_lock(b);
2913                                 }
2914                                 p->locks[level] = BTRFS_READ_LOCK;
2915                         }
2916                         p->nodes[level] = b;
2917                 }
2918         }
2919         ret = 1;
2920 done:
2921         /*
2922          * we don't really know what they plan on doing with the path
2923          * from here on, so for now just mark it as blocking
2924          */
2925         if (!p->leave_spinning)
2926                 btrfs_set_path_blocking(p);
2927         if (ret < 0 && !p->skip_release_on_error)
2928                 btrfs_release_path(p);
2929         return ret;
2930 }
2931
2932 /*
2933  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2934  * current state of the tree together with the operations recorded in the tree
2935  * modification log to search for the key in a previous version of this tree, as
2936  * denoted by the time_seq parameter.
2937  *
2938  * Naturally, there is no support for insert, delete or cow operations.
2939  *
2940  * The resulting path and return value will be set up as if we called
2941  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2942  */
2943 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2944                           struct btrfs_path *p, u64 time_seq)
2945 {
2946         struct btrfs_fs_info *fs_info = root->fs_info;
2947         struct extent_buffer *b;
2948         int slot;
2949         int ret;
2950         int err;
2951         int level;
2952         int lowest_unlock = 1;
2953         u8 lowest_level = 0;
2954         int prev_cmp = -1;
2955
2956         lowest_level = p->lowest_level;
2957         WARN_ON(p->nodes[0] != NULL);
2958
2959         if (p->search_commit_root) {
2960                 BUG_ON(time_seq);
2961                 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2962         }
2963
2964 again:
2965         b = get_old_root(root, time_seq);
2966         if (!b) {
2967                 ret = -EIO;
2968                 goto done;
2969         }
2970         level = btrfs_header_level(b);
2971         p->locks[level] = BTRFS_READ_LOCK;
2972
2973         while (b) {
2974                 int dec = 0;
2975
2976                 level = btrfs_header_level(b);
2977                 p->nodes[level] = b;
2978
2979                 /*
2980                  * we have a lock on b and as long as we aren't changing
2981                  * the tree, there is no way to for the items in b to change.
2982                  * It is safe to drop the lock on our parent before we
2983                  * go through the expensive btree search on b.
2984                  */
2985                 btrfs_unlock_up_safe(p, level + 1);
2986
2987                 /*
2988                  * Since we can unwind ebs we want to do a real search every
2989                  * time.
2990                  */
2991                 prev_cmp = -1;
2992                 ret = key_search(b, key, level, &prev_cmp, &slot);
2993                 if (ret < 0)
2994                         goto done;
2995
2996                 if (level == 0) {
2997                         p->slots[level] = slot;
2998                         unlock_up(p, level, lowest_unlock, 0, NULL);
2999                         goto done;
3000                 }
3001
3002                 if (ret && slot > 0) {
3003                         dec = 1;
3004                         slot--;
3005                 }
3006                 p->slots[level] = slot;
3007                 unlock_up(p, level, lowest_unlock, 0, NULL);
3008
3009                 if (level == lowest_level) {
3010                         if (dec)
3011                                 p->slots[level]++;
3012                         goto done;
3013                 }
3014
3015                 err = read_block_for_search(root, p, &b, level, slot, key);
3016                 if (err == -EAGAIN)
3017                         goto again;
3018                 if (err) {
3019                         ret = err;
3020                         goto done;
3021                 }
3022
3023                 level = btrfs_header_level(b);
3024                 if (!btrfs_tree_read_lock_atomic(b)) {
3025                         btrfs_set_path_blocking(p);
3026                         btrfs_tree_read_lock(b);
3027                 }
3028                 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3029                 if (!b) {
3030                         ret = -ENOMEM;
3031                         goto done;
3032                 }
3033                 p->locks[level] = BTRFS_READ_LOCK;
3034                 p->nodes[level] = b;
3035         }
3036         ret = 1;
3037 done:
3038         if (!p->leave_spinning)
3039                 btrfs_set_path_blocking(p);
3040         if (ret < 0)
3041                 btrfs_release_path(p);
3042
3043         return ret;
3044 }
3045
3046 /*
3047  * helper to use instead of search slot if no exact match is needed but
3048  * instead the next or previous item should be returned.
3049  * When find_higher is true, the next higher item is returned, the next lower
3050  * otherwise.
3051  * When return_any and find_higher are both true, and no higher item is found,
3052  * return the next lower instead.
3053  * When return_any is true and find_higher is false, and no lower item is found,
3054  * return the next higher instead.
3055  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3056  * < 0 on error
3057  */
3058 int btrfs_search_slot_for_read(struct btrfs_root *root,
3059                                const struct btrfs_key *key,
3060                                struct btrfs_path *p, int find_higher,
3061                                int return_any)
3062 {
3063         int ret;
3064         struct extent_buffer *leaf;
3065
3066 again:
3067         ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3068         if (ret <= 0)
3069                 return ret;
3070         /*
3071          * a return value of 1 means the path is at the position where the
3072          * item should be inserted. Normally this is the next bigger item,
3073          * but in case the previous item is the last in a leaf, path points
3074          * to the first free slot in the previous leaf, i.e. at an invalid
3075          * item.
3076          */
3077         leaf = p->nodes[0];
3078
3079         if (find_higher) {
3080                 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3081                         ret = btrfs_next_leaf(root, p);
3082                         if (ret <= 0)
3083                                 return ret;
3084                         if (!return_any)
3085                                 return 1;
3086                         /*
3087                          * no higher item found, return the next
3088                          * lower instead
3089                          */
3090                         return_any = 0;
3091                         find_higher = 0;
3092                         btrfs_release_path(p);
3093                         goto again;
3094                 }
3095         } else {
3096                 if (p->slots[0] == 0) {
3097                         ret = btrfs_prev_leaf(root, p);
3098                         if (ret < 0)
3099                                 return ret;
3100                         if (!ret) {
3101                                 leaf = p->nodes[0];
3102                                 if (p->slots[0] == btrfs_header_nritems(leaf))
3103                                         p->slots[0]--;
3104                                 return 0;
3105                         }
3106                         if (!return_any)
3107                                 return 1;
3108                         /*
3109                          * no lower item found, return the next
3110                          * higher instead
3111                          */
3112                         return_any = 0;
3113                         find_higher = 1;
3114                         btrfs_release_path(p);
3115                         goto again;
3116                 } else {
3117                         --p->slots[0];
3118                 }
3119         }
3120         return 0;
3121 }
3122
3123 /*
3124  * adjust the pointers going up the tree, starting at level
3125  * making sure the right key of each node is points to 'key'.
3126  * This is used after shifting pointers to the left, so it stops
3127  * fixing up pointers when a given leaf/node is not in slot 0 of the
3128  * higher levels
3129  *
3130  */
3131 static void fixup_low_keys(struct btrfs_path *path,
3132                            struct btrfs_disk_key *key, int level)
3133 {
3134         int i;
3135         struct extent_buffer *t;
3136         int ret;
3137
3138         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3139                 int tslot = path->slots[i];
3140
3141                 if (!path->nodes[i])
3142                         break;
3143                 t = path->nodes[i];
3144                 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3145                                 GFP_ATOMIC);
3146                 BUG_ON(ret < 0);
3147                 btrfs_set_node_key(t, key, tslot);
3148                 btrfs_mark_buffer_dirty(path->nodes[i]);
3149                 if (tslot != 0)
3150                         break;
3151         }
3152 }
3153
3154 /*
3155  * update item key.
3156  *
3157  * This function isn't completely safe. It's the caller's responsibility
3158  * that the new key won't break the order
3159  */
3160 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3161                              struct btrfs_path *path,
3162                              const struct btrfs_key *new_key)
3163 {
3164         struct btrfs_disk_key disk_key;
3165         struct extent_buffer *eb;
3166         int slot;
3167
3168         eb = path->nodes[0];
3169         slot = path->slots[0];
3170         if (slot > 0) {
3171                 btrfs_item_key(eb, &disk_key, slot - 1);
3172                 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3173                         btrfs_crit(fs_info,
3174                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3175                                    slot, btrfs_disk_key_objectid(&disk_key),
3176                                    btrfs_disk_key_type(&disk_key),
3177                                    btrfs_disk_key_offset(&disk_key),
3178                                    new_key->objectid, new_key->type,
3179                                    new_key->offset);
3180                         btrfs_print_leaf(eb);
3181                         BUG();
3182                 }
3183         }
3184         if (slot < btrfs_header_nritems(eb) - 1) {
3185                 btrfs_item_key(eb, &disk_key, slot + 1);
3186                 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3187                         btrfs_crit(fs_info,
3188                 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3189                                    slot, btrfs_disk_key_objectid(&disk_key),
3190                                    btrfs_disk_key_type(&disk_key),
3191                                    btrfs_disk_key_offset(&disk_key),
3192                                    new_key->objectid, new_key->type,
3193                                    new_key->offset);
3194                         btrfs_print_leaf(eb);
3195                         BUG();
3196                 }
3197         }
3198
3199         btrfs_cpu_key_to_disk(&disk_key, new_key);
3200         btrfs_set_item_key(eb, &disk_key, slot);
3201         btrfs_mark_buffer_dirty(eb);
3202         if (slot == 0)
3203                 fixup_low_keys(path, &disk_key, 1);
3204 }
3205
3206 /*
3207  * try to push data from one node into the next node left in the
3208  * tree.
3209  *
3210  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3211  * error, and > 0 if there was no room in the left hand block.
3212  */
3213 static int push_node_left(struct btrfs_trans_handle *trans,
3214                           struct extent_buffer *dst,
3215                           struct extent_buffer *src, int empty)
3216 {
3217         struct btrfs_fs_info *fs_info = trans->fs_info;
3218         int push_items = 0;
3219         int src_nritems;
3220         int dst_nritems;
3221         int ret = 0;
3222
3223         src_nritems = btrfs_header_nritems(src);
3224         dst_nritems = btrfs_header_nritems(dst);
3225         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3226         WARN_ON(btrfs_header_generation(src) != trans->transid);
3227         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3228
3229         if (!empty && src_nritems <= 8)
3230                 return 1;
3231
3232         if (push_items <= 0)
3233                 return 1;
3234
3235         if (empty) {
3236                 push_items = min(src_nritems, push_items);
3237                 if (push_items < src_nritems) {
3238                         /* leave at least 8 pointers in the node if
3239                          * we aren't going to empty it
3240                          */
3241                         if (src_nritems - push_items < 8) {
3242                                 if (push_items <= 8)
3243                                         return 1;
3244                                 push_items -= 8;
3245                         }
3246                 }
3247         } else
3248                 push_items = min(src_nritems - 8, push_items);
3249
3250         ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3251         if (ret) {
3252                 btrfs_abort_transaction(trans, ret);
3253                 return ret;
3254         }
3255         copy_extent_buffer(dst, src,
3256                            btrfs_node_key_ptr_offset(dst_nritems),
3257                            btrfs_node_key_ptr_offset(0),
3258                            push_items * sizeof(struct btrfs_key_ptr));
3259
3260         if (push_items < src_nritems) {
3261                 /*
3262                  * Don't call tree_mod_log_insert_move here, key removal was
3263                  * already fully logged by tree_mod_log_eb_copy above.
3264                  */
3265                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3266                                       btrfs_node_key_ptr_offset(push_items),
3267                                       (src_nritems - push_items) *
3268                                       sizeof(struct btrfs_key_ptr));
3269         }
3270         btrfs_set_header_nritems(src, src_nritems - push_items);
3271         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3272         btrfs_mark_buffer_dirty(src);
3273         btrfs_mark_buffer_dirty(dst);
3274
3275         return ret;
3276 }
3277
3278 /*
3279  * try to push data from one node into the next node right in the
3280  * tree.
3281  *
3282  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3283  * error, and > 0 if there was no room in the right hand block.
3284  *
3285  * this will  only push up to 1/2 the contents of the left node over
3286  */
3287 static int balance_node_right(struct btrfs_trans_handle *trans,
3288                               struct extent_buffer *dst,
3289                               struct extent_buffer *src)
3290 {
3291         struct btrfs_fs_info *fs_info = trans->fs_info;
3292         int push_items = 0;
3293         int max_push;
3294         int src_nritems;
3295         int dst_nritems;
3296         int ret = 0;
3297
3298         WARN_ON(btrfs_header_generation(src) != trans->transid);
3299         WARN_ON(btrfs_header_generation(dst) != trans->transid);
3300
3301         src_nritems = btrfs_header_nritems(src);
3302         dst_nritems = btrfs_header_nritems(dst);
3303         push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3304         if (push_items <= 0)
3305                 return 1;
3306
3307         if (src_nritems < 4)
3308                 return 1;
3309
3310         max_push = src_nritems / 2 + 1;
3311         /* don't try to empty the node */
3312         if (max_push >= src_nritems)
3313                 return 1;
3314
3315         if (max_push < push_items)
3316                 push_items = max_push;
3317
3318         ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3319         BUG_ON(ret < 0);
3320         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3321                                       btrfs_node_key_ptr_offset(0),
3322                                       (dst_nritems) *
3323                                       sizeof(struct btrfs_key_ptr));
3324
3325         ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3326                                    push_items);
3327         if (ret) {
3328                 btrfs_abort_transaction(trans, ret);
3329                 return ret;
3330         }
3331         copy_extent_buffer(dst, src,
3332                            btrfs_node_key_ptr_offset(0),
3333                            btrfs_node_key_ptr_offset(src_nritems - push_items),
3334                            push_items * sizeof(struct btrfs_key_ptr));
3335
3336         btrfs_set_header_nritems(src, src_nritems - push_items);
3337         btrfs_set_header_nritems(dst, dst_nritems + push_items);
3338
3339         btrfs_mark_buffer_dirty(src);
3340         btrfs_mark_buffer_dirty(dst);
3341
3342         return ret;
3343 }
3344
3345 /*
3346  * helper function to insert a new root level in the tree.
3347  * A new node is allocated, and a single item is inserted to
3348  * point to the existing root
3349  *
3350  * returns zero on success or < 0 on failure.
3351  */
3352 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3353                            struct btrfs_root *root,
3354                            struct btrfs_path *path, int level)
3355 {
3356         struct btrfs_fs_info *fs_info = root->fs_info;
3357         u64 lower_gen;
3358         struct extent_buffer *lower;
3359         struct extent_buffer *c;
3360         struct extent_buffer *old;
3361         struct btrfs_disk_key lower_key;
3362         int ret;
3363
3364         BUG_ON(path->nodes[level]);
3365         BUG_ON(path->nodes[level-1] != root->node);
3366
3367         lower = path->nodes[level-1];
3368         if (level == 1)
3369                 btrfs_item_key(lower, &lower_key, 0);
3370         else
3371                 btrfs_node_key(lower, &lower_key, 0);
3372
3373         c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3374                                          root->node->start, 0);
3375         if (IS_ERR(c))
3376                 return PTR_ERR(c);
3377
3378         root_add_used(root, fs_info->nodesize);
3379
3380         btrfs_set_header_nritems(c, 1);
3381         btrfs_set_node_key(c, &lower_key, 0);
3382         btrfs_set_node_blockptr(c, 0, lower->start);
3383         lower_gen = btrfs_header_generation(lower);
3384         WARN_ON(lower_gen != trans->transid);
3385
3386         btrfs_set_node_ptr_generation(c, 0, lower_gen);
3387
3388         btrfs_mark_buffer_dirty(c);
3389
3390         old = root->node;
3391         ret = tree_mod_log_insert_root(root->node, c, 0);
3392         BUG_ON(ret < 0);
3393         rcu_assign_pointer(root->node, c);
3394
3395         /* the super has an extra ref to root->node */
3396         free_extent_buffer(old);
3397
3398         add_root_to_dirty_list(root);
3399         atomic_inc(&c->refs);
3400         path->nodes[level] = c;
3401         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3402         path->slots[level] = 0;
3403         return 0;
3404 }
3405
3406 /*
3407  * worker function to insert a single pointer in a node.
3408  * the node should have enough room for the pointer already
3409  *
3410  * slot and level indicate where you want the key to go, and
3411  * blocknr is the block the key points to.
3412  */
3413 static void insert_ptr(struct btrfs_trans_handle *trans,
3414                        struct btrfs_path *path,
3415                        struct btrfs_disk_key *key, u64 bytenr,
3416                        int slot, int level)
3417 {
3418         struct extent_buffer *lower;
3419         int nritems;
3420         int ret;
3421
3422         BUG_ON(!path->nodes[level]);
3423         btrfs_assert_tree_locked(path->nodes[level]);
3424         lower = path->nodes[level];
3425         nritems = btrfs_header_nritems(lower);
3426         BUG_ON(slot > nritems);
3427         BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3428         if (slot != nritems) {
3429                 if (level) {
3430                         ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3431                                         nritems - slot);
3432                         BUG_ON(ret < 0);
3433                 }
3434                 memmove_extent_buffer(lower,
3435                               btrfs_node_key_ptr_offset(slot + 1),
3436                               btrfs_node_key_ptr_offset(slot),
3437                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
3438         }
3439         if (level) {
3440                 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3441                                 GFP_NOFS);
3442                 BUG_ON(ret < 0);
3443         }
3444         btrfs_set_node_key(lower, key, slot);
3445         btrfs_set_node_blockptr(lower, slot, bytenr);
3446         WARN_ON(trans->transid == 0);
3447         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3448         btrfs_set_header_nritems(lower, nritems + 1);
3449         btrfs_mark_buffer_dirty(lower);
3450 }
3451
3452 /*
3453  * split the node at the specified level in path in two.
3454  * The path is corrected to point to the appropriate node after the split
3455  *
3456  * Before splitting this tries to make some room in the node by pushing
3457  * left and right, if either one works, it returns right away.
3458  *
3459  * returns 0 on success and < 0 on failure
3460  */
3461 static noinline int split_node(struct btrfs_trans_handle *trans,
3462                                struct btrfs_root *root,
3463                                struct btrfs_path *path, int level)
3464 {
3465         struct btrfs_fs_info *fs_info = root->fs_info;
3466         struct extent_buffer *c;
3467         struct extent_buffer *split;
3468         struct btrfs_disk_key disk_key;
3469         int mid;
3470         int ret;
3471         u32 c_nritems;
3472
3473         c = path->nodes[level];
3474         WARN_ON(btrfs_header_generation(c) != trans->transid);
3475         if (c == root->node) {
3476                 /*
3477                  * trying to split the root, lets make a new one
3478                  *
3479                  * tree mod log: We don't log_removal old root in
3480                  * insert_new_root, because that root buffer will be kept as a
3481                  * normal node. We are going to log removal of half of the
3482                  * elements below with tree_mod_log_eb_copy. We're holding a
3483                  * tree lock on the buffer, which is why we cannot race with
3484                  * other tree_mod_log users.
3485                  */
3486                 ret = insert_new_root(trans, root, path, level + 1);
3487                 if (ret)
3488                         return ret;
3489         } else {
3490                 ret = push_nodes_for_insert(trans, root, path, level);
3491                 c = path->nodes[level];
3492                 if (!ret && btrfs_header_nritems(c) <
3493                     BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3494                         return 0;
3495                 if (ret < 0)
3496                         return ret;
3497         }
3498
3499         c_nritems = btrfs_header_nritems(c);
3500         mid = (c_nritems + 1) / 2;
3501         btrfs_node_key(c, &disk_key, mid);
3502
3503         split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3504                                              c->start, 0);
3505         if (IS_ERR(split))
3506                 return PTR_ERR(split);
3507
3508         root_add_used(root, fs_info->nodesize);
3509         ASSERT(btrfs_header_level(c) == level);
3510
3511         ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3512         if (ret) {
3513                 btrfs_abort_transaction(trans, ret);
3514                 return ret;
3515         }
3516         copy_extent_buffer(split, c,
3517                            btrfs_node_key_ptr_offset(0),
3518                            btrfs_node_key_ptr_offset(mid),
3519                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3520         btrfs_set_header_nritems(split, c_nritems - mid);
3521         btrfs_set_header_nritems(c, mid);
3522         ret = 0;
3523
3524         btrfs_mark_buffer_dirty(c);
3525         btrfs_mark_buffer_dirty(split);
3526
3527         insert_ptr(trans, path, &disk_key, split->start,
3528                    path->slots[level + 1] + 1, level + 1);
3529
3530         if (path->slots[level] >= mid) {
3531                 path->slots[level] -= mid;
3532                 btrfs_tree_unlock(c);
3533                 free_extent_buffer(c);
3534                 path->nodes[level] = split;
3535                 path->slots[level + 1] += 1;
3536         } else {
3537                 btrfs_tree_unlock(split);
3538                 free_extent_buffer(split);
3539         }
3540         return ret;
3541 }
3542
3543 /*
3544  * how many bytes are required to store the items in a leaf.  start
3545  * and nr indicate which items in the leaf to check.  This totals up the
3546  * space used both by the item structs and the item data
3547  */
3548 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3549 {
3550         struct btrfs_item *start_item;
3551         struct btrfs_item *end_item;
3552         struct btrfs_map_token token;
3553         int data_len;
3554         int nritems = btrfs_header_nritems(l);
3555         int end = min(nritems, start + nr) - 1;
3556
3557         if (!nr)
3558                 return 0;
3559         btrfs_init_map_token(&token, l);
3560         start_item = btrfs_item_nr(start);
3561         end_item = btrfs_item_nr(end);
3562         data_len = btrfs_token_item_offset(l, start_item, &token) +
3563                 btrfs_token_item_size(l, start_item, &token);
3564         data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3565         data_len += sizeof(struct btrfs_item) * nr;
3566         WARN_ON(data_len < 0);
3567         return data_len;
3568 }
3569
3570 /*
3571  * The space between the end of the leaf items and
3572  * the start of the leaf data.  IOW, how much room
3573  * the leaf has left for both items and data
3574  */
3575 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3576 {
3577         struct btrfs_fs_info *fs_info = leaf->fs_info;
3578         int nritems = btrfs_header_nritems(leaf);
3579         int ret;
3580
3581         ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3582         if (ret < 0) {
3583                 btrfs_crit(fs_info,
3584                            "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3585                            ret,
3586                            (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3587                            leaf_space_used(leaf, 0, nritems), nritems);
3588         }
3589         return ret;
3590 }
3591
3592 /*
3593  * min slot controls the lowest index we're willing to push to the
3594  * right.  We'll push up to and including min_slot, but no lower
3595  */
3596 static noinline int __push_leaf_right(struct btrfs_path *path,
3597                                       int data_size, int empty,
3598                                       struct extent_buffer *right,
3599                                       int free_space, u32 left_nritems,
3600                                       u32 min_slot)
3601 {
3602         struct btrfs_fs_info *fs_info = right->fs_info;
3603         struct extent_buffer *left = path->nodes[0];
3604         struct extent_buffer *upper = path->nodes[1];
3605         struct btrfs_map_token token;
3606         struct btrfs_disk_key disk_key;
3607         int slot;
3608         u32 i;
3609         int push_space = 0;
3610         int push_items = 0;
3611         struct btrfs_item *item;
3612         u32 nr;
3613         u32 right_nritems;
3614         u32 data_end;
3615         u32 this_item_size;
3616
3617         if (empty)
3618                 nr = 0;
3619         else
3620                 nr = max_t(u32, 1, min_slot);
3621
3622         if (path->slots[0] >= left_nritems)
3623                 push_space += data_size;
3624
3625         slot = path->slots[1];
3626         i = left_nritems - 1;
3627         while (i >= nr) {
3628                 item = btrfs_item_nr(i);
3629
3630                 if (!empty && push_items > 0) {
3631                         if (path->slots[0] > i)
3632                                 break;
3633                         if (path->slots[0] == i) {
3634                                 int space = btrfs_leaf_free_space(left);
3635
3636                                 if (space + push_space * 2 > free_space)
3637                                         break;
3638                         }
3639                 }
3640
3641                 if (path->slots[0] == i)
3642                         push_space += data_size;
3643
3644                 this_item_size = btrfs_item_size(left, item);
3645                 if (this_item_size + sizeof(*item) + push_space > free_space)
3646                         break;
3647
3648                 push_items++;
3649                 push_space += this_item_size + sizeof(*item);
3650                 if (i == 0)
3651                         break;
3652                 i--;
3653         }
3654
3655         if (push_items == 0)
3656                 goto out_unlock;
3657
3658         WARN_ON(!empty && push_items == left_nritems);
3659
3660         /* push left to right */
3661         right_nritems = btrfs_header_nritems(right);
3662
3663         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3664         push_space -= leaf_data_end(left);
3665
3666         /* make room in the right data area */
3667         data_end = leaf_data_end(right);
3668         memmove_extent_buffer(right,
3669                               BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3670                               BTRFS_LEAF_DATA_OFFSET + data_end,
3671                               BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3672
3673         /* copy from the left data area */
3674         copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3675                      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3676                      BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3677                      push_space);
3678
3679         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3680                               btrfs_item_nr_offset(0),
3681                               right_nritems * sizeof(struct btrfs_item));
3682
3683         /* copy the items from left to right */
3684         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3685                    btrfs_item_nr_offset(left_nritems - push_items),
3686                    push_items * sizeof(struct btrfs_item));
3687
3688         /* update the item pointers */
3689         btrfs_init_map_token(&token, right);
3690         right_nritems += push_items;
3691         btrfs_set_header_nritems(right, right_nritems);
3692         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3693         for (i = 0; i < right_nritems; i++) {
3694                 item = btrfs_item_nr(i);
3695                 push_space -= btrfs_token_item_size(right, item, &token);
3696                 btrfs_set_token_item_offset(right, item, push_space, &token);
3697         }
3698
3699         left_nritems -= push_items;
3700         btrfs_set_header_nritems(left, left_nritems);
3701
3702         if (left_nritems)
3703                 btrfs_mark_buffer_dirty(left);
3704         else
3705                 btrfs_clean_tree_block(left);
3706
3707         btrfs_mark_buffer_dirty(right);
3708
3709         btrfs_item_key(right, &disk_key, 0);
3710         btrfs_set_node_key(upper, &disk_key, slot + 1);
3711         btrfs_mark_buffer_dirty(upper);
3712
3713         /* then fixup the leaf pointer in the path */
3714         if (path->slots[0] >= left_nritems) {
3715                 path->slots[0] -= left_nritems;
3716                 if (btrfs_header_nritems(path->nodes[0]) == 0)
3717                         btrfs_clean_tree_block(path->nodes[0]);
3718                 btrfs_tree_unlock(path->nodes[0]);
3719                 free_extent_buffer(path->nodes[0]);
3720                 path->nodes[0] = right;
3721                 path->slots[1] += 1;
3722         } else {
3723                 btrfs_tree_unlock(right);
3724                 free_extent_buffer(right);
3725         }
3726         return 0;
3727
3728 out_unlock:
3729         btrfs_tree_unlock(right);
3730         free_extent_buffer(right);
3731         return 1;
3732 }
3733
3734 /*
3735  * push some data in the path leaf to the right, trying to free up at
3736  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3737  *
3738  * returns 1 if the push failed because the other node didn't have enough
3739  * room, 0 if everything worked out and < 0 if there were major errors.
3740  *
3741  * this will push starting from min_slot to the end of the leaf.  It won't
3742  * push any slot lower than min_slot
3743  */
3744 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3745                            *root, struct btrfs_path *path,
3746                            int min_data_size, int data_size,
3747                            int empty, u32 min_slot)
3748 {
3749         struct extent_buffer *left = path->nodes[0];
3750         struct extent_buffer *right;
3751         struct extent_buffer *upper;
3752         int slot;
3753         int free_space;
3754         u32 left_nritems;
3755         int ret;
3756
3757         if (!path->nodes[1])
3758                 return 1;
3759
3760         slot = path->slots[1];
3761         upper = path->nodes[1];
3762         if (slot >= btrfs_header_nritems(upper) - 1)
3763                 return 1;
3764
3765         btrfs_assert_tree_locked(path->nodes[1]);
3766
3767         right = btrfs_read_node_slot(upper, slot + 1);
3768         /*
3769          * slot + 1 is not valid or we fail to read the right node,
3770          * no big deal, just return.
3771          */
3772         if (IS_ERR(right))
3773                 return 1;
3774
3775         btrfs_tree_lock(right);
3776         btrfs_set_lock_blocking_write(right);
3777
3778         free_space = btrfs_leaf_free_space(right);
3779         if (free_space < data_size)
3780                 goto out_unlock;
3781
3782         /* cow and double check */
3783         ret = btrfs_cow_block(trans, root, right, upper,
3784                               slot + 1, &right);
3785         if (ret)
3786                 goto out_unlock;
3787
3788         free_space = btrfs_leaf_free_space(right);
3789         if (free_space < data_size)
3790                 goto out_unlock;
3791
3792         left_nritems = btrfs_header_nritems(left);
3793         if (left_nritems == 0)
3794                 goto out_unlock;
3795
3796         if (path->slots[0] == left_nritems && !empty) {
3797                 /* Key greater than all keys in the leaf, right neighbor has
3798                  * enough room for it and we're not emptying our leaf to delete
3799                  * it, therefore use right neighbor to insert the new item and
3800                  * no need to touch/dirty our left leaf. */
3801                 btrfs_tree_unlock(left);
3802                 free_extent_buffer(left);
3803                 path->nodes[0] = right;
3804                 path->slots[0] = 0;
3805                 path->slots[1]++;
3806                 return 0;
3807         }
3808
3809         return __push_leaf_right(path, min_data_size, empty,
3810                                 right, free_space, left_nritems, min_slot);
3811 out_unlock:
3812         btrfs_tree_unlock(right);
3813         free_extent_buffer(right);
3814         return 1;
3815 }
3816
3817 /*
3818  * push some data in the path leaf to the left, trying to free up at
3819  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3820  *
3821  * max_slot can put a limit on how far into the leaf we'll push items.  The
3822  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3823  * items
3824  */
3825 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3826                                      int empty, struct extent_buffer *left,
3827                                      int free_space, u32 right_nritems,
3828                                      u32 max_slot)
3829 {
3830         struct btrfs_fs_info *fs_info = left->fs_info;
3831         struct btrfs_disk_key disk_key;
3832         struct extent_buffer *right = path->nodes[0];
3833         int i;
3834         int push_space = 0;
3835         int push_items = 0;
3836         struct btrfs_item *item;
3837         u32 old_left_nritems;
3838         u32 nr;
3839         int ret = 0;
3840         u32 this_item_size;
3841         u32 old_left_item_size;
3842         struct btrfs_map_token token;
3843
3844         if (empty)
3845                 nr = min(right_nritems, max_slot);
3846         else
3847                 nr = min(right_nritems - 1, max_slot);
3848
3849         for (i = 0; i < nr; i++) {
3850                 item = btrfs_item_nr(i);
3851
3852                 if (!empty && push_items > 0) {
3853                         if (path->slots[0] < i)
3854                                 break;
3855                         if (path->slots[0] == i) {
3856                                 int space = btrfs_leaf_free_space(right);
3857
3858                                 if (space + push_space * 2 > free_space)
3859                                         break;
3860                         }
3861                 }
3862
3863                 if (path->slots[0] == i)
3864                         push_space += data_size;
3865
3866                 this_item_size = btrfs_item_size(right, item);
3867                 if (this_item_size + sizeof(*item) + push_space > free_space)
3868                         break;
3869
3870                 push_items++;
3871                 push_space += this_item_size + sizeof(*item);
3872         }
3873
3874         if (push_items == 0) {
3875                 ret = 1;
3876                 goto out;
3877         }
3878         WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3879
3880         /* push data from right to left */
3881         copy_extent_buffer(left, right,
3882                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
3883                            btrfs_item_nr_offset(0),
3884                            push_items * sizeof(struct btrfs_item));
3885
3886         push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3887                      btrfs_item_offset_nr(right, push_items - 1);
3888
3889         copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3890                      leaf_data_end(left) - push_space,
3891                      BTRFS_LEAF_DATA_OFFSET +
3892                      btrfs_item_offset_nr(right, push_items - 1),
3893                      push_space);
3894         old_left_nritems = btrfs_header_nritems(left);
3895         BUG_ON(old_left_nritems <= 0);
3896
3897         btrfs_init_map_token(&token, left);
3898         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3899         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3900                 u32 ioff;
3901
3902                 item = btrfs_item_nr(i);
3903
3904                 ioff = btrfs_token_item_offset(left, item, &token);
3905                 btrfs_set_token_item_offset(left, item,
3906                       ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3907                       &token);
3908         }
3909         btrfs_set_header_nritems(left, old_left_nritems + push_items);
3910
3911         /* fixup right node */
3912         if (push_items > right_nritems)
3913                 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3914                        right_nritems);
3915
3916         if (push_items < right_nritems) {
3917                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3918                                                   leaf_data_end(right);
3919                 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3920                                       BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3921                                       BTRFS_LEAF_DATA_OFFSET +
3922                                       leaf_data_end(right), push_space);
3923
3924                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3925                               btrfs_item_nr_offset(push_items),
3926                              (btrfs_header_nritems(right) - push_items) *
3927                              sizeof(struct btrfs_item));
3928         }
3929
3930         btrfs_init_map_token(&token, right);
3931         right_nritems -= push_items;
3932         btrfs_set_header_nritems(right, right_nritems);
3933         push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3934         for (i = 0; i < right_nritems; i++) {
3935                 item = btrfs_item_nr(i);
3936
3937                 push_space = push_space - btrfs_token_item_size(right,
3938                                                                 item, &token);
3939                 btrfs_set_token_item_offset(right, item, push_space, &token);
3940         }
3941
3942         btrfs_mark_buffer_dirty(left);
3943         if (right_nritems)
3944                 btrfs_mark_buffer_dirty(right);
3945         else
3946                 btrfs_clean_tree_block(right);
3947
3948         btrfs_item_key(right, &disk_key, 0);
3949         fixup_low_keys(path, &disk_key, 1);
3950
3951         /* then fixup the leaf pointer in the path */
3952         if (path->slots[0] < push_items) {
3953                 path->slots[0] += old_left_nritems;
3954                 btrfs_tree_unlock(path->nodes[0]);
3955                 free_extent_buffer(path->nodes[0]);
3956                 path->nodes[0] = left;
3957                 path->slots[1] -= 1;
3958         } else {
3959                 btrfs_tree_unlock(left);
3960                 free_extent_buffer(left);
3961                 path->slots[0] -= push_items;
3962         }
3963         BUG_ON(path->slots[0] < 0);
3964         return ret;
3965 out:
3966         btrfs_tree_unlock(left);
3967         free_extent_buffer(left);
3968         return ret;
3969 }
3970
3971 /*
3972  * push some data in the path leaf to the left, trying to free up at
3973  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3974  *
3975  * max_slot can put a limit on how far into the leaf we'll push items.  The
3976  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3977  * items
3978  */
3979 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3980                           *root, struct btrfs_path *path, int min_data_size,
3981                           int data_size, int empty, u32 max_slot)
3982 {
3983         struct extent_buffer *right = path->nodes[0];
3984         struct extent_buffer *left;
3985         int slot;
3986         int free_space;
3987         u32 right_nritems;
3988         int ret = 0;
3989
3990         slot = path->slots[1];
3991         if (slot == 0)
3992                 return 1;
3993         if (!path->nodes[1])
3994                 return 1;
3995
3996         right_nritems = btrfs_header_nritems(right);
3997         if (right_nritems == 0)
3998                 return 1;
3999
4000         btrfs_assert_tree_locked(path->nodes[1]);
4001
4002         left = btrfs_read_node_slot(path->nodes[1], slot - 1);
4003         /*
4004          * slot - 1 is not valid or we fail to read the left node,
4005          * no big deal, just return.
4006          */
4007         if (IS_ERR(left))
4008                 return 1;
4009
4010         btrfs_tree_lock(left);
4011         btrfs_set_lock_blocking_write(left);
4012
4013         free_space = btrfs_leaf_free_space(left);
4014         if (free_space < data_size) {
4015                 ret = 1;
4016                 goto out;
4017         }
4018
4019         /* cow and double check */
4020         ret = btrfs_cow_block(trans, root, left,
4021                               path->nodes[1], slot - 1, &left);
4022         if (ret) {
4023                 /* we hit -ENOSPC, but it isn't fatal here */
4024                 if (ret == -ENOSPC)
4025                         ret = 1;
4026                 goto out;
4027         }
4028
4029         free_space = btrfs_leaf_free_space(left);
4030         if (free_space < data_size) {
4031                 ret = 1;
4032                 goto out;
4033         }
4034
4035         return __push_leaf_left(path, min_data_size,
4036                                empty, left, free_space, right_nritems,
4037                                max_slot);
4038 out:
4039         btrfs_tree_unlock(left);
4040         free_extent_buffer(left);
4041         return ret;
4042 }
4043
4044 /*
4045  * split the path's leaf in two, making sure there is at least data_size
4046  * available for the resulting leaf level of the path.
4047  */
4048 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4049                                     struct btrfs_path *path,
4050                                     struct extent_buffer *l,
4051                                     struct extent_buffer *right,
4052                                     int slot, int mid, int nritems)
4053 {
4054         struct btrfs_fs_info *fs_info = trans->fs_info;
4055         int data_copy_size;
4056         int rt_data_off;
4057         int i;
4058         struct btrfs_disk_key disk_key;
4059         struct btrfs_map_token token;
4060
4061         nritems = nritems - mid;
4062         btrfs_set_header_nritems(right, nritems);
4063         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4064
4065         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4066                            btrfs_item_nr_offset(mid),
4067                            nritems * sizeof(struct btrfs_item));
4068
4069         copy_extent_buffer(right, l,
4070                      BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4071                      data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4072                      leaf_data_end(l), data_copy_size);
4073
4074         rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4075
4076         btrfs_init_map_token(&token, right);
4077         for (i = 0; i < nritems; i++) {
4078                 struct btrfs_item *item = btrfs_item_nr(i);
4079                 u32 ioff;
4080
4081                 ioff = btrfs_token_item_offset(right, item, &token);
4082                 btrfs_set_token_item_offset(right, item,
4083                                             ioff + rt_data_off, &token);
4084         }
4085
4086         btrfs_set_header_nritems(l, mid);
4087         btrfs_item_key(right, &disk_key, 0);
4088         insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4089
4090         btrfs_mark_buffer_dirty(right);
4091         btrfs_mark_buffer_dirty(l);
4092         BUG_ON(path->slots[0] != slot);
4093
4094         if (mid <= slot) {
4095                 btrfs_tree_unlock(path->nodes[0]);
4096                 free_extent_buffer(path->nodes[0]);
4097                 path->nodes[0] = right;
4098                 path->slots[0] -= mid;
4099                 path->slots[1] += 1;
4100         } else {
4101                 btrfs_tree_unlock(right);
4102                 free_extent_buffer(right);
4103         }
4104
4105         BUG_ON(path->slots[0] < 0);
4106 }
4107
4108 /*
4109  * double splits happen when we need to insert a big item in the middle
4110  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4111  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4112  *          A                 B                 C
4113  *
4114  * We avoid this by trying to push the items on either side of our target
4115  * into the adjacent leaves.  If all goes well we can avoid the double split
4116  * completely.
4117  */
4118 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4119                                           struct btrfs_root *root,
4120                                           struct btrfs_path *path,
4121                                           int data_size)
4122 {
4123         int ret;
4124         int progress = 0;
4125         int slot;
4126         u32 nritems;
4127         int space_needed = data_size;
4128
4129         slot = path->slots[0];
4130         if (slot < btrfs_header_nritems(path->nodes[0]))
4131                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4132
4133         /*
4134          * try to push all the items after our slot into the
4135          * right leaf
4136          */
4137         ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4138         if (ret < 0)
4139                 return ret;
4140
4141         if (ret == 0)
4142                 progress++;
4143
4144         nritems = btrfs_header_nritems(path->nodes[0]);
4145         /*
4146          * our goal is to get our slot at the start or end of a leaf.  If
4147          * we've done so we're done
4148          */
4149         if (path->slots[0] == 0 || path->slots[0] == nritems)
4150                 return 0;
4151
4152         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4153                 return 0;
4154
4155         /* try to push all the items before our slot into the next leaf */
4156         slot = path->slots[0];
4157         space_needed = data_size;
4158         if (slot > 0)
4159                 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4160         ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4161         if (ret < 0)
4162                 return ret;
4163
4164         if (ret == 0)
4165                 progress++;
4166
4167         if (progress)
4168                 return 0;
4169         return 1;
4170 }
4171
4172 /*
4173  * split the path's leaf in two, making sure there is at least data_size
4174  * available for the resulting leaf level of the path.
4175  *
4176  * returns 0 if all went well and < 0 on failure.
4177  */
4178 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4179                                struct btrfs_root *root,
4180                                const struct btrfs_key *ins_key,
4181                                struct btrfs_path *path, int data_size,
4182                                int extend)
4183 {
4184         struct btrfs_disk_key disk_key;
4185         struct extent_buffer *l;
4186         u32 nritems;
4187         int mid;
4188         int slot;
4189         struct extent_buffer *right;
4190         struct btrfs_fs_info *fs_info = root->fs_info;
4191         int ret = 0;
4192         int wret;
4193         int split;
4194         int num_doubles = 0;
4195         int tried_avoid_double = 0;
4196
4197         l = path->nodes[0];
4198         slot = path->slots[0];
4199         if (extend && data_size + btrfs_item_size_nr(l, slot) +
4200             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4201                 return -EOVERFLOW;
4202
4203         /* first try to make some room by pushing left and right */
4204         if (data_size && path->nodes[1]) {
4205                 int space_needed = data_size;
4206
4207                 if (slot < btrfs_header_nritems(l))
4208                         space_needed -= btrfs_leaf_free_space(l);
4209
4210                 wret = push_leaf_right(trans, root, path, space_needed,
4211                                        space_needed, 0, 0);
4212                 if (wret < 0)
4213                         return wret;
4214                 if (wret) {
4215                         space_needed = data_size;
4216                         if (slot > 0)
4217                                 space_needed -= btrfs_leaf_free_space(l);
4218                         wret = push_leaf_left(trans, root, path, space_needed,
4219                                               space_needed, 0, (u32)-1);
4220                         if (wret < 0)
4221                                 return wret;
4222                 }
4223                 l = path->nodes[0];
4224
4225                 /* did the pushes work? */
4226                 if (btrfs_leaf_free_space(l) >= data_size)
4227                         return 0;
4228         }
4229
4230         if (!path->nodes[1]) {
4231                 ret = insert_new_root(trans, root, path, 1);
4232                 if (ret)
4233                         return ret;
4234         }
4235 again:
4236         split = 1;
4237         l = path->nodes[0];
4238         slot = path->slots[0];
4239         nritems = btrfs_header_nritems(l);
4240         mid = (nritems + 1) / 2;
4241
4242         if (mid <= slot) {
4243                 if (nritems == 1 ||
4244                     leaf_space_used(l, mid, nritems - mid) + data_size >
4245                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
4246                         if (slot >= nritems) {
4247                                 split = 0;
4248                         } else {
4249                                 mid = slot;
4250                                 if (mid != nritems &&
4251                                     leaf_space_used(l, mid, nritems - mid) +
4252                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4253                                         if (data_size && !tried_avoid_double)
4254                                                 goto push_for_double;
4255                                         split = 2;
4256                                 }
4257                         }
4258                 }
4259         } else {
4260                 if (leaf_space_used(l, 0, mid) + data_size >
4261                         BTRFS_LEAF_DATA_SIZE(fs_info)) {
4262                         if (!extend && data_size && slot == 0) {
4263                                 split = 0;
4264                         } else if ((extend || !data_size) && slot == 0) {
4265                                 mid = 1;
4266                         } else {
4267                                 mid = slot;
4268                                 if (mid != nritems &&
4269                                     leaf_space_used(l, mid, nritems - mid) +
4270                                     data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4271                                         if (data_size && !tried_avoid_double)
4272                                                 goto push_for_double;
4273                                         split = 2;
4274                                 }
4275                         }
4276                 }
4277         }
4278
4279         if (split == 0)
4280                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4281         else
4282                 btrfs_item_key(l, &disk_key, mid);
4283
4284         right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4285                                              l->start, 0);
4286         if (IS_ERR(right))
4287                 return PTR_ERR(right);
4288
4289         root_add_used(root, fs_info->nodesize);
4290
4291         if (split == 0) {
4292                 if (mid <= slot) {
4293                         btrfs_set_header_nritems(right, 0);
4294                         insert_ptr(trans, path, &disk_key,
4295                                    right->start, path->slots[1] + 1, 1);
4296                         btrfs_tree_unlock(path->nodes[0]);
4297                         free_extent_buffer(path->nodes[0]);
4298                         path->nodes[0] = right;
4299                         path->slots[0] = 0;
4300                         path->slots[1] += 1;
4301                 } else {
4302                         btrfs_set_header_nritems(right, 0);
4303                         insert_ptr(trans, path, &disk_key,
4304                                    right->start, path->slots[1], 1);
4305                         btrfs_tree_unlock(path->nodes[0]);
4306                         free_extent_buffer(path->nodes[0]);
4307                         path->nodes[0] = right;
4308                         path->slots[0] = 0;
4309                         if (path->slots[1] == 0)
4310                                 fixup_low_keys(path, &disk_key, 1);
4311                 }
4312                 /*
4313                  * We create a new leaf 'right' for the required ins_len and
4314                  * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4315                  * the content of ins_len to 'right'.
4316                  */
4317                 return ret;
4318         }
4319
4320         copy_for_split(trans, path, l, right, slot, mid, nritems);
4321
4322         if (split == 2) {
4323                 BUG_ON(num_doubles != 0);
4324                 num_doubles++;
4325                 goto again;
4326         }
4327
4328         return 0;
4329
4330 push_for_double:
4331         push_for_double_split(trans, root, path, data_size);
4332         tried_avoid_double = 1;
4333         if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4334                 return 0;
4335         goto again;
4336 }
4337
4338 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4339                                          struct btrfs_root *root,
4340                                          struct btrfs_path *path, int ins_len)
4341 {
4342         struct btrfs_key key;
4343         struct extent_buffer *leaf;
4344         struct btrfs_file_extent_item *fi;
4345         u64 extent_len = 0;
4346         u32 item_size;
4347         int ret;
4348
4349         leaf = path->nodes[0];
4350         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4351
4352         BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4353                key.type != BTRFS_EXTENT_CSUM_KEY);
4354
4355         if (btrfs_leaf_free_space(leaf) >= ins_len)
4356                 return 0;
4357
4358         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4359         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4360                 fi = btrfs_item_ptr(leaf, path->slots[0],
4361                                     struct btrfs_file_extent_item);
4362                 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4363         }
4364         btrfs_release_path(path);
4365
4366         path->keep_locks = 1;
4367         path->search_for_split = 1;
4368         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4369         path->search_for_split = 0;
4370         if (ret > 0)
4371                 ret = -EAGAIN;
4372         if (ret < 0)
4373                 goto err;
4374
4375         ret = -EAGAIN;
4376         leaf = path->nodes[0];
4377         /* if our item isn't there, return now */
4378         if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4379                 goto err;
4380
4381         /* the leaf has  changed, it now has room.  return now */
4382         if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4383                 goto err;
4384
4385         if (key.type == BTRFS_EXTENT_DATA_KEY) {
4386                 fi = btrfs_item_ptr(leaf, path->slots[0],
4387                                     struct btrfs_file_extent_item);
4388                 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4389                         goto err;
4390         }
4391
4392         btrfs_set_path_blocking(path);
4393         ret = split_leaf(trans, root, &key, path, ins_len, 1);
4394         if (ret)
4395                 goto err;
4396
4397         path->keep_locks = 0;
4398         btrfs_unlock_up_safe(path, 1);
4399         return 0;
4400 err:
4401         path->keep_locks = 0;
4402         return ret;
4403 }
4404
4405 static noinline int split_item(struct btrfs_path *path,
4406                                const struct btrfs_key *new_key,
4407                                unsigned long split_offset)
4408 {
4409         struct extent_buffer *leaf;
4410         struct btrfs_item *item;
4411         struct btrfs_item *new_item;
4412         int slot;
4413         char *buf;
4414         u32 nritems;
4415         u32 item_size;
4416         u32 orig_offset;
4417         struct btrfs_disk_key disk_key;
4418
4419         leaf = path->nodes[0];
4420         BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4421
4422         btrfs_set_path_blocking(path);
4423
4424         item = btrfs_item_nr(path->slots[0]);
4425         orig_offset = btrfs_item_offset(leaf, item);
4426         item_size = btrfs_item_size(leaf, item);
4427
4428         buf = kmalloc(item_size, GFP_NOFS);
4429         if (!buf)
4430                 return -ENOMEM;
4431
4432         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4433                             path->slots[0]), item_size);
4434
4435         slot = path->slots[0] + 1;
4436         nritems = btrfs_header_nritems(leaf);
4437         if (slot != nritems) {
4438                 /* shift the items */
4439                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4440                                 btrfs_item_nr_offset(slot),
4441                                 (nritems - slot) * sizeof(struct btrfs_item));
4442         }
4443
4444         btrfs_cpu_key_to_disk(&disk_key, new_key);
4445         btrfs_set_item_key(leaf, &disk_key, slot);
4446
4447         new_item = btrfs_item_nr(slot);
4448
4449         btrfs_set_item_offset(leaf, new_item, orig_offset);
4450         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4451
4452         btrfs_set_item_offset(leaf, item,
4453                               orig_offset + item_size - split_offset);
4454         btrfs_set_item_size(leaf, item, split_offset);
4455
4456         btrfs_set_header_nritems(leaf, nritems + 1);
4457
4458         /* write the data for the start of the original item */
4459         write_extent_buffer(leaf, buf,
4460                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4461                             split_offset);
4462
4463         /* write the data for the new item */
4464         write_extent_buffer(leaf, buf + split_offset,
4465                             btrfs_item_ptr_offset(leaf, slot),
4466                             item_size - split_offset);
4467         btrfs_mark_buffer_dirty(leaf);
4468
4469         BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4470         kfree(buf);
4471         return 0;
4472 }
4473
4474 /*
4475  * This function splits a single item into two items,
4476  * giving 'new_key' to the new item and splitting the
4477  * old one at split_offset (from the start of the item).
4478  *
4479  * The path may be released by this operation.  After
4480  * the split, the path is pointing to the old item.  The
4481  * new item is going to be in the same node as the old one.
4482  *
4483  * Note, the item being split must be smaller enough to live alone on
4484  * a tree block with room for one extra struct btrfs_item
4485  *
4486  * This allows us to split the item in place, keeping a lock on the
4487  * leaf the entire time.
4488  */
4489 int btrfs_split_item(struct btrfs_trans_handle *trans,
4490                      struct btrfs_root *root,
4491                      struct btrfs_path *path,
4492                      const struct btrfs_key *new_key,
4493                      unsigned long split_offset)
4494 {
4495         int ret;
4496         ret = setup_leaf_for_split(trans, root, path,
4497                                    sizeof(struct btrfs_item));
4498         if (ret)
4499                 return ret;
4500
4501         ret = split_item(path, new_key, split_offset);
4502         return ret;
4503 }
4504
4505 /*
4506  * This function duplicate a item, giving 'new_key' to the new item.
4507  * It guarantees both items live in the same tree leaf and the new item
4508  * is contiguous with the original item.
4509  *
4510  * This allows us to split file extent in place, keeping a lock on the
4511  * leaf the entire time.
4512  */
4513 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4514                          struct btrfs_root *root,
4515                          struct btrfs_path *path,
4516                          const struct btrfs_key *new_key)
4517 {
4518         struct extent_buffer *leaf;
4519         int ret;
4520         u32 item_size;
4521
4522         leaf = path->nodes[0];
4523         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4524         ret = setup_leaf_for_split(trans, root, path,
4525                                    item_size + sizeof(struct btrfs_item));
4526         if (ret)
4527                 return ret;
4528
4529         path->slots[0]++;
4530         setup_items_for_insert(root, path, new_key, &item_size,
4531                                item_size, item_size +
4532                                sizeof(struct btrfs_item), 1);
4533         leaf = path->nodes[0];
4534         memcpy_extent_buffer(leaf,
4535                              btrfs_item_ptr_offset(leaf, path->slots[0]),
4536                              btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4537                              item_size);
4538         return 0;
4539 }
4540
4541 /*
4542  * make the item pointed to by the path smaller.  new_size indicates
4543  * how small to make it, and from_end tells us if we just chop bytes
4544  * off the end of the item or if we shift the item to chop bytes off
4545  * the front.
4546  */
4547 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4548 {
4549         int slot;
4550         struct extent_buffer *leaf;
4551         struct btrfs_item *item;
4552         u32 nritems;
4553         unsigned int data_end;
4554         unsigned int old_data_start;
4555         unsigned int old_size;
4556         unsigned int size_diff;
4557         int i;
4558         struct btrfs_map_token token;
4559
4560         leaf = path->nodes[0];
4561         slot = path->slots[0];
4562
4563         old_size = btrfs_item_size_nr(leaf, slot);
4564         if (old_size == new_size)
4565                 return;
4566
4567         nritems = btrfs_header_nritems(leaf);
4568         data_end = leaf_data_end(leaf);
4569
4570         old_data_start = btrfs_item_offset_nr(leaf, slot);
4571
4572         size_diff = old_size - new_size;
4573
4574         BUG_ON(slot < 0);
4575         BUG_ON(slot >= nritems);
4576
4577         /*
4578          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4579          */
4580         /* first correct the data pointers */
4581         btrfs_init_map_token(&token, leaf);
4582         for (i = slot; i < nritems; i++) {
4583                 u32 ioff;
4584                 item = btrfs_item_nr(i);
4585
4586                 ioff = btrfs_token_item_offset(leaf, item, &token);
4587                 btrfs_set_token_item_offset(leaf, item,
4588                                             ioff + size_diff, &token);
4589         }
4590
4591         /* shift the data */
4592         if (from_end) {
4593                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4594                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4595                               data_end, old_data_start + new_size - data_end);
4596         } else {
4597                 struct btrfs_disk_key disk_key;
4598                 u64 offset;
4599
4600                 btrfs_item_key(leaf, &disk_key, slot);
4601
4602                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4603                         unsigned long ptr;
4604                         struct btrfs_file_extent_item *fi;
4605
4606                         fi = btrfs_item_ptr(leaf, slot,
4607                                             struct btrfs_file_extent_item);
4608                         fi = (struct btrfs_file_extent_item *)(
4609                              (unsigned long)fi - size_diff);
4610
4611                         if (btrfs_file_extent_type(leaf, fi) ==
4612                             BTRFS_FILE_EXTENT_INLINE) {
4613                                 ptr = btrfs_item_ptr_offset(leaf, slot);
4614                                 memmove_extent_buffer(leaf, ptr,
4615                                       (unsigned long)fi,
4616                                       BTRFS_FILE_EXTENT_INLINE_DATA_START);
4617                         }
4618                 }
4619
4620                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4621                               data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4622                               data_end, old_data_start - data_end);
4623
4624                 offset = btrfs_disk_key_offset(&disk_key);
4625                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4626                 btrfs_set_item_key(leaf, &disk_key, slot);
4627                 if (slot == 0)
4628                         fixup_low_keys(path, &disk_key, 1);
4629         }
4630
4631         item = btrfs_item_nr(slot);
4632         btrfs_set_item_size(leaf, item, new_size);
4633         btrfs_mark_buffer_dirty(leaf);
4634
4635         if (btrfs_leaf_free_space(leaf) < 0) {
4636                 btrfs_print_leaf(leaf);
4637                 BUG();
4638         }
4639 }
4640
4641 /*
4642  * make the item pointed to by the path bigger, data_size is the added size.
4643  */
4644 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4645 {
4646         int slot;
4647         struct extent_buffer *leaf;
4648         struct btrfs_item *item;
4649         u32 nritems;
4650         unsigned int data_end;
4651         unsigned int old_data;
4652         unsigned int old_size;
4653         int i;
4654         struct btrfs_map_token token;
4655
4656         leaf = path->nodes[0];
4657
4658         nritems = btrfs_header_nritems(leaf);
4659         data_end = leaf_data_end(leaf);
4660
4661         if (btrfs_leaf_free_space(leaf) < data_size) {
4662                 btrfs_print_leaf(leaf);
4663                 BUG();
4664         }
4665         slot = path->slots[0];
4666         old_data = btrfs_item_end_nr(leaf, slot);
4667
4668         BUG_ON(slot < 0);
4669         if (slot >= nritems) {
4670                 btrfs_print_leaf(leaf);
4671                 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4672                            slot, nritems);
4673                 BUG();
4674         }
4675
4676         /*
4677          * item0..itemN ... dataN.offset..dataN.size .. data0.size
4678          */
4679         /* first correct the data pointers */
4680         btrfs_init_map_token(&token, leaf);
4681         for (i = slot; i < nritems; i++) {
4682                 u32 ioff;
4683                 item = btrfs_item_nr(i);
4684
4685                 ioff = btrfs_token_item_offset(leaf, item, &token);
4686                 btrfs_set_token_item_offset(leaf, item,
4687                                             ioff - data_size, &token);
4688         }
4689
4690         /* shift the data */
4691         memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4692                       data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4693                       data_end, old_data - data_end);
4694
4695         data_end = old_data;
4696         old_size = btrfs_item_size_nr(leaf, slot);
4697         item = btrfs_item_nr(slot);
4698         btrfs_set_item_size(leaf, item, old_size + data_size);
4699         btrfs_mark_buffer_dirty(leaf);
4700
4701         if (btrfs_leaf_free_space(leaf) < 0) {
4702                 btrfs_print_leaf(leaf);
4703                 BUG();
4704         }
4705 }
4706
4707 /*
4708  * this is a helper for btrfs_insert_empty_items, the main goal here is
4709  * to save stack depth by doing the bulk of the work in a function
4710  * that doesn't call btrfs_search_slot
4711  */
4712 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4713                             const struct btrfs_key *cpu_key, u32 *data_size,
4714                             u32 total_data, u32 total_size, int nr)
4715 {
4716         struct btrfs_fs_info *fs_info = root->fs_info;
4717         struct btrfs_item *item;
4718         int i;
4719         u32 nritems;
4720         unsigned int data_end;
4721         struct btrfs_disk_key disk_key;
4722         struct extent_buffer *leaf;
4723         int slot;
4724         struct btrfs_map_token token;
4725
4726         if (path->slots[0] == 0) {
4727                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4728                 fixup_low_keys(path, &disk_key, 1);
4729         }
4730         btrfs_unlock_up_safe(path, 1);
4731
4732         leaf = path->nodes[0];
4733         slot = path->slots[0];
4734
4735         nritems = btrfs_header_nritems(leaf);
4736         data_end = leaf_data_end(leaf);
4737
4738         if (btrfs_leaf_free_space(leaf) < total_size) {
4739                 btrfs_print_leaf(leaf);
4740                 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4741                            total_size, btrfs_leaf_free_space(leaf));
4742                 BUG();
4743         }
4744
4745         btrfs_init_map_token(&token, leaf);
4746         if (slot != nritems) {
4747                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4748
4749                 if (old_data < data_end) {
4750                         btrfs_print_leaf(leaf);
4751                         btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4752                                    slot, old_data, data_end);
4753                         BUG();
4754                 }
4755                 /*
4756                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
4757                  */
4758                 /* first correct the data pointers */
4759                 for (i = slot; i < nritems; i++) {
4760                         u32 ioff;
4761
4762                         item = btrfs_item_nr(i);
4763                         ioff = btrfs_token_item_offset(leaf, item, &token);
4764                         btrfs_set_token_item_offset(leaf, item,
4765                                                     ioff - total_data, &token);
4766                 }
4767                 /* shift the items */
4768                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4769                               btrfs_item_nr_offset(slot),
4770                               (nritems - slot) * sizeof(struct btrfs_item));
4771
4772                 /* shift the data */
4773                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4774                               data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4775                               data_end, old_data - data_end);
4776                 data_end = old_data;
4777         }
4778
4779         /* setup the item for the new data */
4780         for (i = 0; i < nr; i++) {
4781                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4782                 btrfs_set_item_key(leaf, &disk_key, slot + i);
4783                 item = btrfs_item_nr(slot + i);
4784                 btrfs_set_token_item_offset(leaf, item,
4785                                             data_end - data_size[i], &token);
4786                 data_end -= data_size[i];
4787                 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4788         }
4789
4790         btrfs_set_header_nritems(leaf, nritems + nr);
4791         btrfs_mark_buffer_dirty(leaf);
4792
4793         if (btrfs_leaf_free_space(leaf) < 0) {
4794                 btrfs_print_leaf(leaf);
4795                 BUG();
4796         }
4797 }
4798
4799 /*
4800  * Given a key and some data, insert items into the tree.
4801  * This does all the path init required, making room in the tree if needed.
4802  */
4803 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4804                             struct btrfs_root *root,
4805                             struct btrfs_path *path,
4806                             const struct btrfs_key *cpu_key, u32 *data_size,
4807                             int nr)
4808 {
4809         int ret = 0;
4810         int slot;
4811         int i;
4812         u32 total_size = 0;
4813         u32 total_data = 0;
4814
4815         for (i = 0; i < nr; i++)
4816                 total_data += data_size[i];
4817
4818         total_size = total_data + (nr * sizeof(struct btrfs_item));
4819         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4820         if (ret == 0)
4821                 return -EEXIST;
4822         if (ret < 0)
4823                 return ret;
4824
4825         slot = path->slots[0];
4826         BUG_ON(slot < 0);
4827
4828         setup_items_for_insert(root, path, cpu_key, data_size,
4829                                total_data, total_size, nr);
4830         return 0;
4831 }
4832
4833 /*
4834  * Given a key and some data, insert an item into the tree.
4835  * This does all the path init required, making room in the tree if needed.
4836  */
4837 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4838                       const struct btrfs_key *cpu_key, void *data,
4839                       u32 data_size)
4840 {
4841         int ret = 0;
4842         struct btrfs_path *path;
4843         struct extent_buffer *leaf;
4844         unsigned long ptr;
4845
4846         path = btrfs_alloc_path();
4847         if (!path)
4848                 return -ENOMEM;
4849         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4850         if (!ret) {
4851                 leaf = path->nodes[0];
4852                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4853                 write_extent_buffer(leaf, data, ptr, data_size);
4854                 btrfs_mark_buffer_dirty(leaf);
4855         }
4856         btrfs_free_path(path);
4857         return ret;
4858 }
4859
4860 /*
4861  * delete the pointer from a given node.
4862  *
4863  * the tree should have been previously balanced so the deletion does not
4864  * empty a node.
4865  */
4866 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4867                     int level, int slot)
4868 {
4869         struct extent_buffer *parent = path->nodes[level];
4870         u32 nritems;
4871         int ret;
4872
4873         nritems = btrfs_header_nritems(parent);
4874         if (slot != nritems - 1) {
4875                 if (level) {
4876                         ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4877                                         nritems - slot - 1);
4878                         BUG_ON(ret < 0);
4879                 }
4880                 memmove_extent_buffer(parent,
4881                               btrfs_node_key_ptr_offset(slot),
4882                               btrfs_node_key_ptr_offset(slot + 1),
4883                               sizeof(struct btrfs_key_ptr) *
4884                               (nritems - slot - 1));
4885         } else if (level) {
4886                 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4887                                 GFP_NOFS);
4888                 BUG_ON(ret < 0);
4889         }
4890
4891         nritems--;
4892         btrfs_set_header_nritems(parent, nritems);
4893         if (nritems == 0 && parent == root->node) {
4894                 BUG_ON(btrfs_header_level(root->node) != 1);
4895                 /* just turn the root into a leaf and break */
4896                 btrfs_set_header_level(root->node, 0);
4897         } else if (slot == 0) {
4898                 struct btrfs_disk_key disk_key;
4899
4900                 btrfs_node_key(parent, &disk_key, 0);
4901                 fixup_low_keys(path, &disk_key, level + 1);
4902         }
4903         btrfs_mark_buffer_dirty(parent);
4904 }
4905
4906 /*
4907  * a helper function to delete the leaf pointed to by path->slots[1] and
4908  * path->nodes[1].
4909  *
4910  * This deletes the pointer in path->nodes[1] and frees the leaf
4911  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4912  *
4913  * The path must have already been setup for deleting the leaf, including
4914  * all the proper balancing.  path->nodes[1] must be locked.
4915  */
4916 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4917                                     struct btrfs_root *root,
4918                                     struct btrfs_path *path,
4919                                     struct extent_buffer *leaf)
4920 {
4921         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4922         del_ptr(root, path, 1, path->slots[1]);
4923
4924         /*
4925          * btrfs_free_extent is expensive, we want to make sure we
4926          * aren't holding any locks when we call it
4927          */
4928         btrfs_unlock_up_safe(path, 0);
4929
4930         root_sub_used(root, leaf->len);
4931
4932         atomic_inc(&leaf->refs);
4933         btrfs_free_tree_block(trans, root, leaf, 0, 1);
4934         free_extent_buffer_stale(leaf);
4935 }
4936 /*
4937  * delete the item at the leaf level in path.  If that empties
4938  * the leaf, remove it from the tree
4939  */
4940 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4941                     struct btrfs_path *path, int slot, int nr)
4942 {
4943         struct btrfs_fs_info *fs_info = root->fs_info;
4944         struct extent_buffer *leaf;
4945         struct btrfs_item *item;
4946         u32 last_off;
4947         u32 dsize = 0;
4948         int ret = 0;
4949         int wret;
4950         int i;
4951         u32 nritems;
4952
4953         leaf = path->nodes[0];
4954         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4955
4956         for (i = 0; i < nr; i++)
4957                 dsize += btrfs_item_size_nr(leaf, slot + i);
4958
4959         nritems = btrfs_header_nritems(leaf);
4960
4961         if (slot + nr != nritems) {
4962                 int data_end = leaf_data_end(leaf);
4963                 struct btrfs_map_token token;
4964
4965                 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4966                               data_end + dsize,
4967                               BTRFS_LEAF_DATA_OFFSET + data_end,
4968                               last_off - data_end);
4969
4970                 btrfs_init_map_token(&token, leaf);
4971                 for (i = slot + nr; i < nritems; i++) {
4972                         u32 ioff;
4973
4974                         item = btrfs_item_nr(i);
4975                         ioff = btrfs_token_item_offset(leaf, item, &token);
4976                         btrfs_set_token_item_offset(leaf, item,
4977                                                     ioff + dsize, &token);
4978                 }
4979
4980                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4981                               btrfs_item_nr_offset(slot + nr),
4982                               sizeof(struct btrfs_item) *
4983                               (nritems - slot - nr));
4984         }
4985         btrfs_set_header_nritems(leaf, nritems - nr);
4986         nritems -= nr;
4987
4988         /* delete the leaf if we've emptied it */
4989         if (nritems == 0) {
4990                 if (leaf == root->node) {
4991                         btrfs_set_header_level(leaf, 0);
4992                 } else {
4993                         btrfs_set_path_blocking(path);
4994                         btrfs_clean_tree_block(leaf);
4995                         btrfs_del_leaf(trans, root, path, leaf);
4996                 }
4997         } else {
4998                 int used = leaf_space_used(leaf, 0, nritems);
4999                 if (slot == 0) {
5000                         struct btrfs_disk_key disk_key;
5001
5002                         btrfs_item_key(leaf, &disk_key, 0);
5003                         fixup_low_keys(path, &disk_key, 1);
5004                 }
5005
5006                 /* delete the leaf if it is mostly empty */
5007                 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5008                         /* push_leaf_left fixes the path.
5009                          * make sure the path still points to our leaf
5010                          * for possible call to del_ptr below
5011                          */
5012                         slot = path->slots[1];
5013                         atomic_inc(&leaf->refs);
5014
5015                         btrfs_set_path_blocking(path);
5016                         wret = push_leaf_left(trans, root, path, 1, 1,
5017                                               1, (u32)-1);
5018                         if (wret < 0 && wret != -ENOSPC)
5019                                 ret = wret;
5020
5021                         if (path->nodes[0] == leaf &&
5022                             btrfs_header_nritems(leaf)) {
5023                                 wret = push_leaf_right(trans, root, path, 1,
5024                                                        1, 1, 0);
5025                                 if (wret < 0 && wret != -ENOSPC)
5026                                         ret = wret;
5027                         }
5028
5029                         if (btrfs_header_nritems(leaf) == 0) {
5030                                 path->slots[1] = slot;
5031                                 btrfs_del_leaf(trans, root, path, leaf);
5032                                 free_extent_buffer(leaf);
5033                                 ret = 0;
5034                         } else {
5035                                 /* if we're still in the path, make sure
5036                                  * we're dirty.  Otherwise, one of the
5037                                  * push_leaf functions must have already
5038                                  * dirtied this buffer
5039                                  */
5040                                 if (path->nodes[0] == leaf)
5041                                         btrfs_mark_buffer_dirty(leaf);
5042                                 free_extent_buffer(leaf);
5043                         }
5044                 } else {
5045                         btrfs_mark_buffer_dirty(leaf);
5046                 }
5047         }
5048         return ret;
5049 }
5050
5051 /*
5052  * search the tree again to find a leaf with lesser keys
5053  * returns 0 if it found something or 1 if there are no lesser leaves.
5054  * returns < 0 on io errors.
5055  *
5056  * This may release the path, and so you may lose any locks held at the
5057  * time you call it.
5058  */
5059 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5060 {
5061         struct btrfs_key key;
5062         struct btrfs_disk_key found_key;
5063         int ret;
5064
5065         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5066
5067         if (key.offset > 0) {
5068                 key.offset--;
5069         } else if (key.type > 0) {
5070                 key.type--;
5071                 key.offset = (u64)-1;
5072         } else if (key.objectid > 0) {
5073                 key.objectid--;
5074                 key.type = (u8)-1;
5075                 key.offset = (u64)-1;
5076         } else {
5077                 return 1;
5078         }
5079
5080         btrfs_release_path(path);
5081         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5082         if (ret < 0)
5083                 return ret;
5084         btrfs_item_key(path->nodes[0], &found_key, 0);
5085         ret = comp_keys(&found_key, &key);
5086         /*
5087          * We might have had an item with the previous key in the tree right
5088          * before we released our path. And after we released our path, that
5089          * item might have been pushed to the first slot (0) of the leaf we
5090          * were holding due to a tree balance. Alternatively, an item with the
5091          * previous key can exist as the only element of a leaf (big fat item).
5092          * Therefore account for these 2 cases, so that our callers (like
5093          * btrfs_previous_item) don't miss an existing item with a key matching
5094          * the previous key we computed above.
5095          */
5096         if (ret <= 0)
5097                 return 0;
5098         return 1;
5099 }
5100
5101 /*
5102  * A helper function to walk down the tree starting at min_key, and looking
5103  * for nodes or leaves that are have a minimum transaction id.
5104  * This is used by the btree defrag code, and tree logging
5105  *
5106  * This does not cow, but it does stuff the starting key it finds back
5107  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5108  * key and get a writable path.
5109  *
5110  * This honors path->lowest_level to prevent descent past a given level
5111  * of the tree.
5112  *
5113  * min_trans indicates the oldest transaction that you are interested
5114  * in walking through.  Any nodes or leaves older than min_trans are
5115  * skipped over (without reading them).
5116  *
5117  * returns zero if something useful was found, < 0 on error and 1 if there
5118  * was nothing in the tree that matched the search criteria.
5119  */
5120 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5121                          struct btrfs_path *path,
5122                          u64 min_trans)
5123 {
5124         struct extent_buffer *cur;
5125         struct btrfs_key found_key;
5126         int slot;
5127         int sret;
5128         u32 nritems;
5129         int level;
5130         int ret = 1;
5131         int keep_locks = path->keep_locks;
5132
5133         path->keep_locks = 1;
5134 again:
5135         cur = btrfs_read_lock_root_node(root);
5136         level = btrfs_header_level(cur);
5137         WARN_ON(path->nodes[level]);
5138         path->nodes[level] = cur;
5139         path->locks[level] = BTRFS_READ_LOCK;
5140
5141         if (btrfs_header_generation(cur) < min_trans) {
5142                 ret = 1;
5143                 goto out;
5144         }
5145         while (1) {
5146                 nritems = btrfs_header_nritems(cur);
5147                 level = btrfs_header_level(cur);
5148                 sret = btrfs_bin_search(cur, min_key, level, &slot);
5149                 if (sret < 0) {
5150                         ret = sret;
5151                         goto out;
5152                 }
5153
5154                 /* at the lowest level, we're done, setup the path and exit */
5155                 if (level == path->lowest_level) {
5156                         if (slot >= nritems)
5157                                 goto find_next_key;
5158                         ret = 0;
5159                         path->slots[level] = slot;
5160                         btrfs_item_key_to_cpu(cur, &found_key, slot);
5161                         goto out;
5162                 }
5163                 if (sret && slot > 0)
5164                         slot--;
5165                 /*
5166                  * check this node pointer against the min_trans parameters.
5167                  * If it is too old, old, skip to the next one.
5168                  */
5169                 while (slot < nritems) {
5170                         u64 gen;
5171
5172                         gen = btrfs_node_ptr_generation(cur, slot);
5173                         if (gen < min_trans) {
5174                                 slot++;
5175                                 continue;
5176                         }
5177                         break;
5178                 }
5179 find_next_key:
5180                 /*
5181                  * we didn't find a candidate key in this node, walk forward
5182                  * and find another one
5183                  */
5184                 if (slot >= nritems) {
5185                         path->slots[level] = slot;
5186                         btrfs_set_path_blocking(path);
5187                         sret = btrfs_find_next_key(root, path, min_key, level,
5188                                                   min_trans);
5189                         if (sret == 0) {
5190                                 btrfs_release_path(path);
5191                                 goto again;
5192                         } else {
5193                                 goto out;
5194                         }
5195                 }
5196                 /* save our key for returning back */
5197                 btrfs_node_key_to_cpu(cur, &found_key, slot);
5198                 path->slots[level] = slot;
5199                 if (level == path->lowest_level) {
5200                         ret = 0;
5201                         goto out;
5202                 }
5203                 btrfs_set_path_blocking(path);
5204                 cur = btrfs_read_node_slot(cur, slot);
5205                 if (IS_ERR(cur)) {
5206                         ret = PTR_ERR(cur);
5207                         goto out;
5208                 }
5209
5210                 btrfs_tree_read_lock(cur);
5211
5212                 path->locks[level - 1] = BTRFS_READ_LOCK;
5213                 path->nodes[level - 1] = cur;
5214                 unlock_up(path, level, 1, 0, NULL);
5215         }
5216 out:
5217         path->keep_locks = keep_locks;
5218         if (ret == 0) {
5219                 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5220                 btrfs_set_path_blocking(path);
5221                 memcpy(min_key, &found_key, sizeof(found_key));
5222         }
5223         return ret;
5224 }
5225
5226 /*
5227  * this is similar to btrfs_next_leaf, but does not try to preserve
5228  * and fixup the path.  It looks for and returns the next key in the
5229  * tree based on the current path and the min_trans parameters.
5230  *
5231  * 0 is returned if another key is found, < 0 if there are any errors
5232  * and 1 is returned if there are no higher keys in the tree
5233  *
5234  * path->keep_locks should be set to 1 on the search made before
5235  * calling this function.
5236  */
5237 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5238                         struct btrfs_key *key, int level, u64 min_trans)
5239 {
5240         int slot;
5241         struct extent_buffer *c;
5242
5243         WARN_ON(!path->keep_locks && !path->skip_locking);
5244         while (level < BTRFS_MAX_LEVEL) {
5245                 if (!path->nodes[level])
5246                         return 1;
5247
5248                 slot = path->slots[level] + 1;
5249                 c = path->nodes[level];
5250 next:
5251                 if (slot >= btrfs_header_nritems(c)) {
5252                         int ret;
5253                         int orig_lowest;
5254                         struct btrfs_key cur_key;
5255                         if (level + 1 >= BTRFS_MAX_LEVEL ||
5256                             !path->nodes[level + 1])
5257                                 return 1;
5258
5259                         if (path->locks[level + 1] || path->skip_locking) {
5260                                 level++;
5261                                 continue;
5262                         }
5263
5264                         slot = btrfs_header_nritems(c) - 1;
5265                         if (level == 0)
5266                                 btrfs_item_key_to_cpu(c, &cur_key, slot);
5267                         else
5268                                 btrfs_node_key_to_cpu(c, &cur_key, slot);
5269
5270                         orig_lowest = path->lowest_level;
5271                         btrfs_release_path(path);
5272                         path->lowest_level = level;
5273                         ret = btrfs_search_slot(NULL, root, &cur_key, path,
5274                                                 0, 0);
5275                         path->lowest_level = orig_lowest;
5276                         if (ret < 0)
5277                                 return ret;
5278
5279                         c = path->nodes[level];
5280                         slot = path->slots[level];
5281                         if (ret == 0)
5282                                 slot++;
5283                         goto next;
5284                 }
5285
5286                 if (level == 0)
5287                         btrfs_item_key_to_cpu(c, key, slot);
5288                 else {
5289                         u64 gen = btrfs_node_ptr_generation(c, slot);
5290
5291                         if (gen < min_trans) {
5292                                 slot++;
5293                                 goto next;
5294                         }
5295                         btrfs_node_key_to_cpu(c, key, slot);
5296                 }
5297                 return 0;
5298         }
5299         return 1;
5300 }
5301
5302 /*
5303  * search the tree again to find a leaf with greater keys
5304  * returns 0 if it found something or 1 if there are no greater leaves.
5305  * returns < 0 on io errors.
5306  */
5307 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5308 {
5309         return btrfs_next_old_leaf(root, path, 0);
5310 }
5311
5312 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5313                         u64 time_seq)
5314 {
5315         int slot;
5316         int level;
5317         struct extent_buffer *c;
5318         struct extent_buffer *next;
5319         struct btrfs_key key;
5320         u32 nritems;
5321         int ret;
5322         int old_spinning = path->leave_spinning;
5323         int next_rw_lock = 0;
5324
5325         nritems = btrfs_header_nritems(path->nodes[0]);
5326         if (nritems == 0)
5327                 return 1;
5328
5329         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5330 again:
5331         level = 1;
5332         next = NULL;
5333         next_rw_lock = 0;
5334         btrfs_release_path(path);
5335
5336         path->keep_locks = 1;
5337         path->leave_spinning = 1;
5338
5339         if (time_seq)
5340                 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5341         else
5342                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5343         path->keep_locks = 0;
5344
5345         if (ret < 0)
5346                 return ret;
5347
5348         nritems = btrfs_header_nritems(path->nodes[0]);
5349         /*
5350          * by releasing the path above we dropped all our locks.  A balance
5351          * could have added more items next to the key that used to be
5352          * at the very end of the block.  So, check again here and
5353          * advance the path if there are now more items available.
5354          */
5355         if (nritems > 0 && path->slots[0] < nritems - 1) {
5356                 if (ret == 0)
5357                         path->slots[0]++;
5358                 ret = 0;
5359                 goto done;
5360         }
5361         /*
5362          * So the above check misses one case:
5363          * - after releasing the path above, someone has removed the item that
5364          *   used to be at the very end of the block, and balance between leafs
5365          *   gets another one with bigger key.offset to replace it.
5366          *
5367          * This one should be returned as well, or we can get leaf corruption
5368          * later(esp. in __btrfs_drop_extents()).
5369          *
5370          * And a bit more explanation about this check,
5371          * with ret > 0, the key isn't found, the path points to the slot
5372          * where it should be inserted, so the path->slots[0] item must be the
5373          * bigger one.
5374          */
5375         if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5376                 ret = 0;
5377                 goto done;
5378         }
5379
5380         while (level < BTRFS_MAX_LEVEL) {
5381                 if (!path->nodes[level]) {
5382                         ret = 1;
5383                         goto done;
5384                 }
5385
5386                 slot = path->slots[level] + 1;
5387                 c = path->nodes[level];
5388                 if (slot >= btrfs_header_nritems(c)) {
5389                         level++;
5390                         if (level == BTRFS_MAX_LEVEL) {
5391                                 ret = 1;
5392                                 goto done;
5393                         }
5394                         continue;
5395                 }
5396
5397                 if (next) {
5398                         btrfs_tree_unlock_rw(next, next_rw_lock);
5399                         free_extent_buffer(next);
5400                 }
5401
5402                 next = c;
5403                 next_rw_lock = path->locks[level];
5404                 ret = read_block_for_search(root, path, &next, level,
5405                                             slot, &key);
5406                 if (ret == -EAGAIN)
5407                         goto again;
5408
5409                 if (ret < 0) {
5410                         btrfs_release_path(path);
5411                         goto done;
5412                 }
5413
5414                 if (!path->skip_locking) {
5415                         ret = btrfs_try_tree_read_lock(next);
5416                         if (!ret && time_seq) {
5417                                 /*
5418                                  * If we don't get the lock, we may be racing
5419                                  * with push_leaf_left, holding that lock while
5420                                  * itself waiting for the leaf we've currently
5421                                  * locked. To solve this situation, we give up
5422                                  * on our lock and cycle.
5423                                  */
5424                                 free_extent_buffer(next);
5425                                 btrfs_release_path(path);
5426                                 cond_resched();
5427                                 goto again;
5428                         }
5429                         if (!ret) {
5430                                 btrfs_set_path_blocking(path);
5431                                 btrfs_tree_read_lock(next);
5432                         }
5433                         next_rw_lock = BTRFS_READ_LOCK;
5434                 }
5435                 break;
5436         }
5437         path->slots[level] = slot;
5438         while (1) {
5439                 level--;
5440                 c = path->nodes[level];
5441                 if (path->locks[level])
5442                         btrfs_tree_unlock_rw(c, path->locks[level]);
5443
5444                 free_extent_buffer(c);
5445                 path->nodes[level] = next;
5446                 path->slots[level] = 0;
5447                 if (!path->skip_locking)
5448                         path->locks[level] = next_rw_lock;
5449                 if (!level)
5450                         break;
5451
5452                 ret = read_block_for_search(root, path, &next, level,
5453                                             0, &key);
5454                 if (ret == -EAGAIN)
5455                         goto again;
5456
5457                 if (ret < 0) {
5458                         btrfs_release_path(path);
5459                         goto done;
5460                 }
5461
5462                 if (!path->skip_locking) {
5463                         ret = btrfs_try_tree_read_lock(next);
5464                         if (!ret) {
5465                                 btrfs_set_path_blocking(path);
5466                                 btrfs_tree_read_lock(next);
5467                         }
5468                         next_rw_lock = BTRFS_READ_LOCK;
5469                 }
5470         }
5471         ret = 0;
5472 done:
5473         unlock_up(path, 0, 1, 0, NULL);
5474         path->leave_spinning = old_spinning;
5475         if (!old_spinning)
5476                 btrfs_set_path_blocking(path);
5477
5478         return ret;
5479 }
5480
5481 /*
5482  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5483  * searching until it gets past min_objectid or finds an item of 'type'
5484  *
5485  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5486  */
5487 int btrfs_previous_item(struct btrfs_root *root,
5488                         struct btrfs_path *path, u64 min_objectid,
5489                         int type)
5490 {
5491         struct btrfs_key found_key;
5492         struct extent_buffer *leaf;
5493         u32 nritems;
5494         int ret;
5495
5496         while (1) {
5497                 if (path->slots[0] == 0) {
5498                         btrfs_set_path_blocking(path);
5499                         ret = btrfs_prev_leaf(root, path);
5500                         if (ret != 0)
5501                                 return ret;
5502                 } else {
5503                         path->slots[0]--;
5504                 }
5505                 leaf = path->nodes[0];
5506                 nritems = btrfs_header_nritems(leaf);
5507                 if (nritems == 0)
5508                         return 1;
5509                 if (path->slots[0] == nritems)
5510                         path->slots[0]--;
5511
5512                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5513                 if (found_key.objectid < min_objectid)
5514                         break;
5515                 if (found_key.type == type)
5516                         return 0;
5517                 if (found_key.objectid == min_objectid &&
5518                     found_key.type < type)
5519                         break;
5520         }
5521         return 1;
5522 }
5523
5524 /*
5525  * search in extent tree to find a previous Metadata/Data extent item with
5526  * min objecitd.
5527  *
5528  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5529  */
5530 int btrfs_previous_extent_item(struct btrfs_root *root,
5531                         struct btrfs_path *path, u64 min_objectid)
5532 {
5533         struct btrfs_key found_key;
5534         struct extent_buffer *leaf;
5535         u32 nritems;
5536         int ret;
5537
5538         while (1) {
5539                 if (path->slots[0] == 0) {
5540                         btrfs_set_path_blocking(path);
5541                         ret = btrfs_prev_leaf(root, path);
5542                         if (ret != 0)
5543                                 return ret;
5544                 } else {
5545                         path->slots[0]--;
5546                 }
5547                 leaf = path->nodes[0];
5548                 nritems = btrfs_header_nritems(leaf);
5549                 if (nritems == 0)
5550                         return 1;
5551                 if (path->slots[0] == nritems)
5552                         path->slots[0]--;
5553
5554                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5555                 if (found_key.objectid < min_objectid)
5556                         break;
5557                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5558                     found_key.type == BTRFS_METADATA_ITEM_KEY)
5559                         return 0;
5560                 if (found_key.objectid == min_objectid &&
5561                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
5562                         break;
5563         }
5564         return 1;
5565 }