Merge tag 'ceph-for-5.9-rc1' of git://github.com/ceph/ceph-client
[linux-2.6-microblaze.git] / fs / btrfs / block-group.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18
19 /*
20  * Return target flags in extended format or 0 if restripe for this chunk_type
21  * is not in progress
22  *
23  * Should be called with balance_lock held
24  */
25 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
26 {
27         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
28         u64 target = 0;
29
30         if (!bctl)
31                 return 0;
32
33         if (flags & BTRFS_BLOCK_GROUP_DATA &&
34             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
35                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
36         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
37                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
38                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
39         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
40                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
41                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
42         }
43
44         return target;
45 }
46
47 /*
48  * @flags: available profiles in extended format (see ctree.h)
49  *
50  * Return reduced profile in chunk format.  If profile changing is in progress
51  * (either running or paused) picks the target profile (if it's already
52  * available), otherwise falls back to plain reducing.
53  */
54 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
55 {
56         u64 num_devices = fs_info->fs_devices->rw_devices;
57         u64 target;
58         u64 raid_type;
59         u64 allowed = 0;
60
61         /*
62          * See if restripe for this chunk_type is in progress, if so try to
63          * reduce to the target profile
64          */
65         spin_lock(&fs_info->balance_lock);
66         target = get_restripe_target(fs_info, flags);
67         if (target) {
68                 spin_unlock(&fs_info->balance_lock);
69                 return extended_to_chunk(target);
70         }
71         spin_unlock(&fs_info->balance_lock);
72
73         /* First, mask out the RAID levels which aren't possible */
74         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
75                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
76                         allowed |= btrfs_raid_array[raid_type].bg_flag;
77         }
78         allowed &= flags;
79
80         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
81                 allowed = BTRFS_BLOCK_GROUP_RAID6;
82         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
83                 allowed = BTRFS_BLOCK_GROUP_RAID5;
84         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
85                 allowed = BTRFS_BLOCK_GROUP_RAID10;
86         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
87                 allowed = BTRFS_BLOCK_GROUP_RAID1;
88         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
89                 allowed = BTRFS_BLOCK_GROUP_RAID0;
90
91         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
92
93         return extended_to_chunk(flags | allowed);
94 }
95
96 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
97 {
98         unsigned seq;
99         u64 flags;
100
101         do {
102                 flags = orig_flags;
103                 seq = read_seqbegin(&fs_info->profiles_lock);
104
105                 if (flags & BTRFS_BLOCK_GROUP_DATA)
106                         flags |= fs_info->avail_data_alloc_bits;
107                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
108                         flags |= fs_info->avail_system_alloc_bits;
109                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
110                         flags |= fs_info->avail_metadata_alloc_bits;
111         } while (read_seqretry(&fs_info->profiles_lock, seq));
112
113         return btrfs_reduce_alloc_profile(fs_info, flags);
114 }
115
116 void btrfs_get_block_group(struct btrfs_block_group *cache)
117 {
118         refcount_inc(&cache->refs);
119 }
120
121 void btrfs_put_block_group(struct btrfs_block_group *cache)
122 {
123         if (refcount_dec_and_test(&cache->refs)) {
124                 WARN_ON(cache->pinned > 0);
125                 WARN_ON(cache->reserved > 0);
126
127                 /*
128                  * A block_group shouldn't be on the discard_list anymore.
129                  * Remove the block_group from the discard_list to prevent us
130                  * from causing a panic due to NULL pointer dereference.
131                  */
132                 if (WARN_ON(!list_empty(&cache->discard_list)))
133                         btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
134                                                   cache);
135
136                 /*
137                  * If not empty, someone is still holding mutex of
138                  * full_stripe_lock, which can only be released by caller.
139                  * And it will definitely cause use-after-free when caller
140                  * tries to release full stripe lock.
141                  *
142                  * No better way to resolve, but only to warn.
143                  */
144                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145                 kfree(cache->free_space_ctl);
146                 kfree(cache);
147         }
148 }
149
150 /*
151  * This adds the block group to the fs_info rb tree for the block group cache
152  */
153 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
154                                        struct btrfs_block_group *block_group)
155 {
156         struct rb_node **p;
157         struct rb_node *parent = NULL;
158         struct btrfs_block_group *cache;
159
160         ASSERT(block_group->length != 0);
161
162         spin_lock(&info->block_group_cache_lock);
163         p = &info->block_group_cache_tree.rb_node;
164
165         while (*p) {
166                 parent = *p;
167                 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
168                 if (block_group->start < cache->start) {
169                         p = &(*p)->rb_left;
170                 } else if (block_group->start > cache->start) {
171                         p = &(*p)->rb_right;
172                 } else {
173                         spin_unlock(&info->block_group_cache_lock);
174                         return -EEXIST;
175                 }
176         }
177
178         rb_link_node(&block_group->cache_node, parent, p);
179         rb_insert_color(&block_group->cache_node,
180                         &info->block_group_cache_tree);
181
182         if (info->first_logical_byte > block_group->start)
183                 info->first_logical_byte = block_group->start;
184
185         spin_unlock(&info->block_group_cache_lock);
186
187         return 0;
188 }
189
190 /*
191  * This will return the block group at or after bytenr if contains is 0, else
192  * it will return the block group that contains the bytenr
193  */
194 static struct btrfs_block_group *block_group_cache_tree_search(
195                 struct btrfs_fs_info *info, u64 bytenr, int contains)
196 {
197         struct btrfs_block_group *cache, *ret = NULL;
198         struct rb_node *n;
199         u64 end, start;
200
201         spin_lock(&info->block_group_cache_lock);
202         n = info->block_group_cache_tree.rb_node;
203
204         while (n) {
205                 cache = rb_entry(n, struct btrfs_block_group, cache_node);
206                 end = cache->start + cache->length - 1;
207                 start = cache->start;
208
209                 if (bytenr < start) {
210                         if (!contains && (!ret || start < ret->start))
211                                 ret = cache;
212                         n = n->rb_left;
213                 } else if (bytenr > start) {
214                         if (contains && bytenr <= end) {
215                                 ret = cache;
216                                 break;
217                         }
218                         n = n->rb_right;
219                 } else {
220                         ret = cache;
221                         break;
222                 }
223         }
224         if (ret) {
225                 btrfs_get_block_group(ret);
226                 if (bytenr == 0 && info->first_logical_byte > ret->start)
227                         info->first_logical_byte = ret->start;
228         }
229         spin_unlock(&info->block_group_cache_lock);
230
231         return ret;
232 }
233
234 /*
235  * Return the block group that starts at or after bytenr
236  */
237 struct btrfs_block_group *btrfs_lookup_first_block_group(
238                 struct btrfs_fs_info *info, u64 bytenr)
239 {
240         return block_group_cache_tree_search(info, bytenr, 0);
241 }
242
243 /*
244  * Return the block group that contains the given bytenr
245  */
246 struct btrfs_block_group *btrfs_lookup_block_group(
247                 struct btrfs_fs_info *info, u64 bytenr)
248 {
249         return block_group_cache_tree_search(info, bytenr, 1);
250 }
251
252 struct btrfs_block_group *btrfs_next_block_group(
253                 struct btrfs_block_group *cache)
254 {
255         struct btrfs_fs_info *fs_info = cache->fs_info;
256         struct rb_node *node;
257
258         spin_lock(&fs_info->block_group_cache_lock);
259
260         /* If our block group was removed, we need a full search. */
261         if (RB_EMPTY_NODE(&cache->cache_node)) {
262                 const u64 next_bytenr = cache->start + cache->length;
263
264                 spin_unlock(&fs_info->block_group_cache_lock);
265                 btrfs_put_block_group(cache);
266                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
267         }
268         node = rb_next(&cache->cache_node);
269         btrfs_put_block_group(cache);
270         if (node) {
271                 cache = rb_entry(node, struct btrfs_block_group, cache_node);
272                 btrfs_get_block_group(cache);
273         } else
274                 cache = NULL;
275         spin_unlock(&fs_info->block_group_cache_lock);
276         return cache;
277 }
278
279 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
280 {
281         struct btrfs_block_group *bg;
282         bool ret = true;
283
284         bg = btrfs_lookup_block_group(fs_info, bytenr);
285         if (!bg)
286                 return false;
287
288         spin_lock(&bg->lock);
289         if (bg->ro)
290                 ret = false;
291         else
292                 atomic_inc(&bg->nocow_writers);
293         spin_unlock(&bg->lock);
294
295         /* No put on block group, done by btrfs_dec_nocow_writers */
296         if (!ret)
297                 btrfs_put_block_group(bg);
298
299         return ret;
300 }
301
302 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
303 {
304         struct btrfs_block_group *bg;
305
306         bg = btrfs_lookup_block_group(fs_info, bytenr);
307         ASSERT(bg);
308         if (atomic_dec_and_test(&bg->nocow_writers))
309                 wake_up_var(&bg->nocow_writers);
310         /*
311          * Once for our lookup and once for the lookup done by a previous call
312          * to btrfs_inc_nocow_writers()
313          */
314         btrfs_put_block_group(bg);
315         btrfs_put_block_group(bg);
316 }
317
318 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
319 {
320         wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
321 }
322
323 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
324                                         const u64 start)
325 {
326         struct btrfs_block_group *bg;
327
328         bg = btrfs_lookup_block_group(fs_info, start);
329         ASSERT(bg);
330         if (atomic_dec_and_test(&bg->reservations))
331                 wake_up_var(&bg->reservations);
332         btrfs_put_block_group(bg);
333 }
334
335 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
336 {
337         struct btrfs_space_info *space_info = bg->space_info;
338
339         ASSERT(bg->ro);
340
341         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
342                 return;
343
344         /*
345          * Our block group is read only but before we set it to read only,
346          * some task might have had allocated an extent from it already, but it
347          * has not yet created a respective ordered extent (and added it to a
348          * root's list of ordered extents).
349          * Therefore wait for any task currently allocating extents, since the
350          * block group's reservations counter is incremented while a read lock
351          * on the groups' semaphore is held and decremented after releasing
352          * the read access on that semaphore and creating the ordered extent.
353          */
354         down_write(&space_info->groups_sem);
355         up_write(&space_info->groups_sem);
356
357         wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
358 }
359
360 struct btrfs_caching_control *btrfs_get_caching_control(
361                 struct btrfs_block_group *cache)
362 {
363         struct btrfs_caching_control *ctl;
364
365         spin_lock(&cache->lock);
366         if (!cache->caching_ctl) {
367                 spin_unlock(&cache->lock);
368                 return NULL;
369         }
370
371         ctl = cache->caching_ctl;
372         refcount_inc(&ctl->count);
373         spin_unlock(&cache->lock);
374         return ctl;
375 }
376
377 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
378 {
379         if (refcount_dec_and_test(&ctl->count))
380                 kfree(ctl);
381 }
382
383 /*
384  * When we wait for progress in the block group caching, its because our
385  * allocation attempt failed at least once.  So, we must sleep and let some
386  * progress happen before we try again.
387  *
388  * This function will sleep at least once waiting for new free space to show
389  * up, and then it will check the block group free space numbers for our min
390  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
391  * a free extent of a given size, but this is a good start.
392  *
393  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
394  * any of the information in this block group.
395  */
396 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
397                                            u64 num_bytes)
398 {
399         struct btrfs_caching_control *caching_ctl;
400
401         caching_ctl = btrfs_get_caching_control(cache);
402         if (!caching_ctl)
403                 return;
404
405         wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
406                    (cache->free_space_ctl->free_space >= num_bytes));
407
408         btrfs_put_caching_control(caching_ctl);
409 }
410
411 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
412 {
413         struct btrfs_caching_control *caching_ctl;
414         int ret = 0;
415
416         caching_ctl = btrfs_get_caching_control(cache);
417         if (!caching_ctl)
418                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
419
420         wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
421         if (cache->cached == BTRFS_CACHE_ERROR)
422                 ret = -EIO;
423         btrfs_put_caching_control(caching_ctl);
424         return ret;
425 }
426
427 #ifdef CONFIG_BTRFS_DEBUG
428 static void fragment_free_space(struct btrfs_block_group *block_group)
429 {
430         struct btrfs_fs_info *fs_info = block_group->fs_info;
431         u64 start = block_group->start;
432         u64 len = block_group->length;
433         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
434                 fs_info->nodesize : fs_info->sectorsize;
435         u64 step = chunk << 1;
436
437         while (len > chunk) {
438                 btrfs_remove_free_space(block_group, start, chunk);
439                 start += step;
440                 if (len < step)
441                         len = 0;
442                 else
443                         len -= step;
444         }
445 }
446 #endif
447
448 /*
449  * This is only called by btrfs_cache_block_group, since we could have freed
450  * extents we need to check the pinned_extents for any extents that can't be
451  * used yet since their free space will be released as soon as the transaction
452  * commits.
453  */
454 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
455 {
456         struct btrfs_fs_info *info = block_group->fs_info;
457         u64 extent_start, extent_end, size, total_added = 0;
458         int ret;
459
460         while (start < end) {
461                 ret = find_first_extent_bit(&info->excluded_extents, start,
462                                             &extent_start, &extent_end,
463                                             EXTENT_DIRTY | EXTENT_UPTODATE,
464                                             NULL);
465                 if (ret)
466                         break;
467
468                 if (extent_start <= start) {
469                         start = extent_end + 1;
470                 } else if (extent_start > start && extent_start < end) {
471                         size = extent_start - start;
472                         total_added += size;
473                         ret = btrfs_add_free_space_async_trimmed(block_group,
474                                                                  start, size);
475                         BUG_ON(ret); /* -ENOMEM or logic error */
476                         start = extent_end + 1;
477                 } else {
478                         break;
479                 }
480         }
481
482         if (start < end) {
483                 size = end - start;
484                 total_added += size;
485                 ret = btrfs_add_free_space_async_trimmed(block_group, start,
486                                                          size);
487                 BUG_ON(ret); /* -ENOMEM or logic error */
488         }
489
490         return total_added;
491 }
492
493 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
494 {
495         struct btrfs_block_group *block_group = caching_ctl->block_group;
496         struct btrfs_fs_info *fs_info = block_group->fs_info;
497         struct btrfs_root *extent_root = fs_info->extent_root;
498         struct btrfs_path *path;
499         struct extent_buffer *leaf;
500         struct btrfs_key key;
501         u64 total_found = 0;
502         u64 last = 0;
503         u32 nritems;
504         int ret;
505         bool wakeup = true;
506
507         path = btrfs_alloc_path();
508         if (!path)
509                 return -ENOMEM;
510
511         last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
512
513 #ifdef CONFIG_BTRFS_DEBUG
514         /*
515          * If we're fragmenting we don't want to make anybody think we can
516          * allocate from this block group until we've had a chance to fragment
517          * the free space.
518          */
519         if (btrfs_should_fragment_free_space(block_group))
520                 wakeup = false;
521 #endif
522         /*
523          * We don't want to deadlock with somebody trying to allocate a new
524          * extent for the extent root while also trying to search the extent
525          * root to add free space.  So we skip locking and search the commit
526          * root, since its read-only
527          */
528         path->skip_locking = 1;
529         path->search_commit_root = 1;
530         path->reada = READA_FORWARD;
531
532         key.objectid = last;
533         key.offset = 0;
534         key.type = BTRFS_EXTENT_ITEM_KEY;
535
536 next:
537         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
538         if (ret < 0)
539                 goto out;
540
541         leaf = path->nodes[0];
542         nritems = btrfs_header_nritems(leaf);
543
544         while (1) {
545                 if (btrfs_fs_closing(fs_info) > 1) {
546                         last = (u64)-1;
547                         break;
548                 }
549
550                 if (path->slots[0] < nritems) {
551                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
552                 } else {
553                         ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
554                         if (ret)
555                                 break;
556
557                         if (need_resched() ||
558                             rwsem_is_contended(&fs_info->commit_root_sem)) {
559                                 if (wakeup)
560                                         caching_ctl->progress = last;
561                                 btrfs_release_path(path);
562                                 up_read(&fs_info->commit_root_sem);
563                                 mutex_unlock(&caching_ctl->mutex);
564                                 cond_resched();
565                                 mutex_lock(&caching_ctl->mutex);
566                                 down_read(&fs_info->commit_root_sem);
567                                 goto next;
568                         }
569
570                         ret = btrfs_next_leaf(extent_root, path);
571                         if (ret < 0)
572                                 goto out;
573                         if (ret)
574                                 break;
575                         leaf = path->nodes[0];
576                         nritems = btrfs_header_nritems(leaf);
577                         continue;
578                 }
579
580                 if (key.objectid < last) {
581                         key.objectid = last;
582                         key.offset = 0;
583                         key.type = BTRFS_EXTENT_ITEM_KEY;
584
585                         if (wakeup)
586                                 caching_ctl->progress = last;
587                         btrfs_release_path(path);
588                         goto next;
589                 }
590
591                 if (key.objectid < block_group->start) {
592                         path->slots[0]++;
593                         continue;
594                 }
595
596                 if (key.objectid >= block_group->start + block_group->length)
597                         break;
598
599                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
600                     key.type == BTRFS_METADATA_ITEM_KEY) {
601                         total_found += add_new_free_space(block_group, last,
602                                                           key.objectid);
603                         if (key.type == BTRFS_METADATA_ITEM_KEY)
604                                 last = key.objectid +
605                                         fs_info->nodesize;
606                         else
607                                 last = key.objectid + key.offset;
608
609                         if (total_found > CACHING_CTL_WAKE_UP) {
610                                 total_found = 0;
611                                 if (wakeup)
612                                         wake_up(&caching_ctl->wait);
613                         }
614                 }
615                 path->slots[0]++;
616         }
617         ret = 0;
618
619         total_found += add_new_free_space(block_group, last,
620                                 block_group->start + block_group->length);
621         caching_ctl->progress = (u64)-1;
622
623 out:
624         btrfs_free_path(path);
625         return ret;
626 }
627
628 static noinline void caching_thread(struct btrfs_work *work)
629 {
630         struct btrfs_block_group *block_group;
631         struct btrfs_fs_info *fs_info;
632         struct btrfs_caching_control *caching_ctl;
633         int ret;
634
635         caching_ctl = container_of(work, struct btrfs_caching_control, work);
636         block_group = caching_ctl->block_group;
637         fs_info = block_group->fs_info;
638
639         mutex_lock(&caching_ctl->mutex);
640         down_read(&fs_info->commit_root_sem);
641
642         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
643                 ret = load_free_space_tree(caching_ctl);
644         else
645                 ret = load_extent_tree_free(caching_ctl);
646
647         spin_lock(&block_group->lock);
648         block_group->caching_ctl = NULL;
649         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
650         spin_unlock(&block_group->lock);
651
652 #ifdef CONFIG_BTRFS_DEBUG
653         if (btrfs_should_fragment_free_space(block_group)) {
654                 u64 bytes_used;
655
656                 spin_lock(&block_group->space_info->lock);
657                 spin_lock(&block_group->lock);
658                 bytes_used = block_group->length - block_group->used;
659                 block_group->space_info->bytes_used += bytes_used >> 1;
660                 spin_unlock(&block_group->lock);
661                 spin_unlock(&block_group->space_info->lock);
662                 fragment_free_space(block_group);
663         }
664 #endif
665
666         caching_ctl->progress = (u64)-1;
667
668         up_read(&fs_info->commit_root_sem);
669         btrfs_free_excluded_extents(block_group);
670         mutex_unlock(&caching_ctl->mutex);
671
672         wake_up(&caching_ctl->wait);
673
674         btrfs_put_caching_control(caching_ctl);
675         btrfs_put_block_group(block_group);
676 }
677
678 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
679 {
680         DEFINE_WAIT(wait);
681         struct btrfs_fs_info *fs_info = cache->fs_info;
682         struct btrfs_caching_control *caching_ctl;
683         int ret = 0;
684
685         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
686         if (!caching_ctl)
687                 return -ENOMEM;
688
689         INIT_LIST_HEAD(&caching_ctl->list);
690         mutex_init(&caching_ctl->mutex);
691         init_waitqueue_head(&caching_ctl->wait);
692         caching_ctl->block_group = cache;
693         caching_ctl->progress = cache->start;
694         refcount_set(&caching_ctl->count, 1);
695         btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
696
697         spin_lock(&cache->lock);
698         /*
699          * This should be a rare occasion, but this could happen I think in the
700          * case where one thread starts to load the space cache info, and then
701          * some other thread starts a transaction commit which tries to do an
702          * allocation while the other thread is still loading the space cache
703          * info.  The previous loop should have kept us from choosing this block
704          * group, but if we've moved to the state where we will wait on caching
705          * block groups we need to first check if we're doing a fast load here,
706          * so we can wait for it to finish, otherwise we could end up allocating
707          * from a block group who's cache gets evicted for one reason or
708          * another.
709          */
710         while (cache->cached == BTRFS_CACHE_FAST) {
711                 struct btrfs_caching_control *ctl;
712
713                 ctl = cache->caching_ctl;
714                 refcount_inc(&ctl->count);
715                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
716                 spin_unlock(&cache->lock);
717
718                 schedule();
719
720                 finish_wait(&ctl->wait, &wait);
721                 btrfs_put_caching_control(ctl);
722                 spin_lock(&cache->lock);
723         }
724
725         if (cache->cached != BTRFS_CACHE_NO) {
726                 spin_unlock(&cache->lock);
727                 kfree(caching_ctl);
728                 return 0;
729         }
730         WARN_ON(cache->caching_ctl);
731         cache->caching_ctl = caching_ctl;
732         cache->cached = BTRFS_CACHE_FAST;
733         spin_unlock(&cache->lock);
734
735         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
736                 mutex_lock(&caching_ctl->mutex);
737                 ret = load_free_space_cache(cache);
738
739                 spin_lock(&cache->lock);
740                 if (ret == 1) {
741                         cache->caching_ctl = NULL;
742                         cache->cached = BTRFS_CACHE_FINISHED;
743                         cache->last_byte_to_unpin = (u64)-1;
744                         caching_ctl->progress = (u64)-1;
745                 } else {
746                         if (load_cache_only) {
747                                 cache->caching_ctl = NULL;
748                                 cache->cached = BTRFS_CACHE_NO;
749                         } else {
750                                 cache->cached = BTRFS_CACHE_STARTED;
751                                 cache->has_caching_ctl = 1;
752                         }
753                 }
754                 spin_unlock(&cache->lock);
755 #ifdef CONFIG_BTRFS_DEBUG
756                 if (ret == 1 &&
757                     btrfs_should_fragment_free_space(cache)) {
758                         u64 bytes_used;
759
760                         spin_lock(&cache->space_info->lock);
761                         spin_lock(&cache->lock);
762                         bytes_used = cache->length - cache->used;
763                         cache->space_info->bytes_used += bytes_used >> 1;
764                         spin_unlock(&cache->lock);
765                         spin_unlock(&cache->space_info->lock);
766                         fragment_free_space(cache);
767                 }
768 #endif
769                 mutex_unlock(&caching_ctl->mutex);
770
771                 wake_up(&caching_ctl->wait);
772                 if (ret == 1) {
773                         btrfs_put_caching_control(caching_ctl);
774                         btrfs_free_excluded_extents(cache);
775                         return 0;
776                 }
777         } else {
778                 /*
779                  * We're either using the free space tree or no caching at all.
780                  * Set cached to the appropriate value and wakeup any waiters.
781                  */
782                 spin_lock(&cache->lock);
783                 if (load_cache_only) {
784                         cache->caching_ctl = NULL;
785                         cache->cached = BTRFS_CACHE_NO;
786                 } else {
787                         cache->cached = BTRFS_CACHE_STARTED;
788                         cache->has_caching_ctl = 1;
789                 }
790                 spin_unlock(&cache->lock);
791                 wake_up(&caching_ctl->wait);
792         }
793
794         if (load_cache_only) {
795                 btrfs_put_caching_control(caching_ctl);
796                 return 0;
797         }
798
799         down_write(&fs_info->commit_root_sem);
800         refcount_inc(&caching_ctl->count);
801         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
802         up_write(&fs_info->commit_root_sem);
803
804         btrfs_get_block_group(cache);
805
806         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
807
808         return ret;
809 }
810
811 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
812 {
813         u64 extra_flags = chunk_to_extended(flags) &
814                                 BTRFS_EXTENDED_PROFILE_MASK;
815
816         write_seqlock(&fs_info->profiles_lock);
817         if (flags & BTRFS_BLOCK_GROUP_DATA)
818                 fs_info->avail_data_alloc_bits &= ~extra_flags;
819         if (flags & BTRFS_BLOCK_GROUP_METADATA)
820                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
821         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
822                 fs_info->avail_system_alloc_bits &= ~extra_flags;
823         write_sequnlock(&fs_info->profiles_lock);
824 }
825
826 /*
827  * Clear incompat bits for the following feature(s):
828  *
829  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
830  *            in the whole filesystem
831  *
832  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
833  */
834 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
835 {
836         bool found_raid56 = false;
837         bool found_raid1c34 = false;
838
839         if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
840             (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
841             (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
842                 struct list_head *head = &fs_info->space_info;
843                 struct btrfs_space_info *sinfo;
844
845                 list_for_each_entry_rcu(sinfo, head, list) {
846                         down_read(&sinfo->groups_sem);
847                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
848                                 found_raid56 = true;
849                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
850                                 found_raid56 = true;
851                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
852                                 found_raid1c34 = true;
853                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
854                                 found_raid1c34 = true;
855                         up_read(&sinfo->groups_sem);
856                 }
857                 if (!found_raid56)
858                         btrfs_clear_fs_incompat(fs_info, RAID56);
859                 if (!found_raid1c34)
860                         btrfs_clear_fs_incompat(fs_info, RAID1C34);
861         }
862 }
863
864 static int remove_block_group_item(struct btrfs_trans_handle *trans,
865                                    struct btrfs_path *path,
866                                    struct btrfs_block_group *block_group)
867 {
868         struct btrfs_fs_info *fs_info = trans->fs_info;
869         struct btrfs_root *root;
870         struct btrfs_key key;
871         int ret;
872
873         root = fs_info->extent_root;
874         key.objectid = block_group->start;
875         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
876         key.offset = block_group->length;
877
878         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
879         if (ret > 0)
880                 ret = -ENOENT;
881         if (ret < 0)
882                 return ret;
883
884         ret = btrfs_del_item(trans, root, path);
885         return ret;
886 }
887
888 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
889                              u64 group_start, struct extent_map *em)
890 {
891         struct btrfs_fs_info *fs_info = trans->fs_info;
892         struct btrfs_path *path;
893         struct btrfs_block_group *block_group;
894         struct btrfs_free_cluster *cluster;
895         struct btrfs_root *tree_root = fs_info->tree_root;
896         struct btrfs_key key;
897         struct inode *inode;
898         struct kobject *kobj = NULL;
899         int ret;
900         int index;
901         int factor;
902         struct btrfs_caching_control *caching_ctl = NULL;
903         bool remove_em;
904         bool remove_rsv = false;
905
906         block_group = btrfs_lookup_block_group(fs_info, group_start);
907         BUG_ON(!block_group);
908         BUG_ON(!block_group->ro);
909
910         trace_btrfs_remove_block_group(block_group);
911         /*
912          * Free the reserved super bytes from this block group before
913          * remove it.
914          */
915         btrfs_free_excluded_extents(block_group);
916         btrfs_free_ref_tree_range(fs_info, block_group->start,
917                                   block_group->length);
918
919         index = btrfs_bg_flags_to_raid_index(block_group->flags);
920         factor = btrfs_bg_type_to_factor(block_group->flags);
921
922         /* make sure this block group isn't part of an allocation cluster */
923         cluster = &fs_info->data_alloc_cluster;
924         spin_lock(&cluster->refill_lock);
925         btrfs_return_cluster_to_free_space(block_group, cluster);
926         spin_unlock(&cluster->refill_lock);
927
928         /*
929          * make sure this block group isn't part of a metadata
930          * allocation cluster
931          */
932         cluster = &fs_info->meta_alloc_cluster;
933         spin_lock(&cluster->refill_lock);
934         btrfs_return_cluster_to_free_space(block_group, cluster);
935         spin_unlock(&cluster->refill_lock);
936
937         path = btrfs_alloc_path();
938         if (!path) {
939                 ret = -ENOMEM;
940                 goto out;
941         }
942
943         /*
944          * get the inode first so any iput calls done for the io_list
945          * aren't the final iput (no unlinks allowed now)
946          */
947         inode = lookup_free_space_inode(block_group, path);
948
949         mutex_lock(&trans->transaction->cache_write_mutex);
950         /*
951          * Make sure our free space cache IO is done before removing the
952          * free space inode
953          */
954         spin_lock(&trans->transaction->dirty_bgs_lock);
955         if (!list_empty(&block_group->io_list)) {
956                 list_del_init(&block_group->io_list);
957
958                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
959
960                 spin_unlock(&trans->transaction->dirty_bgs_lock);
961                 btrfs_wait_cache_io(trans, block_group, path);
962                 btrfs_put_block_group(block_group);
963                 spin_lock(&trans->transaction->dirty_bgs_lock);
964         }
965
966         if (!list_empty(&block_group->dirty_list)) {
967                 list_del_init(&block_group->dirty_list);
968                 remove_rsv = true;
969                 btrfs_put_block_group(block_group);
970         }
971         spin_unlock(&trans->transaction->dirty_bgs_lock);
972         mutex_unlock(&trans->transaction->cache_write_mutex);
973
974         if (!IS_ERR(inode)) {
975                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
976                 if (ret) {
977                         btrfs_add_delayed_iput(inode);
978                         goto out;
979                 }
980                 clear_nlink(inode);
981                 /* One for the block groups ref */
982                 spin_lock(&block_group->lock);
983                 if (block_group->iref) {
984                         block_group->iref = 0;
985                         block_group->inode = NULL;
986                         spin_unlock(&block_group->lock);
987                         iput(inode);
988                 } else {
989                         spin_unlock(&block_group->lock);
990                 }
991                 /* One for our lookup ref */
992                 btrfs_add_delayed_iput(inode);
993         }
994
995         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
996         key.type = 0;
997         key.offset = block_group->start;
998
999         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
1000         if (ret < 0)
1001                 goto out;
1002         if (ret > 0)
1003                 btrfs_release_path(path);
1004         if (ret == 0) {
1005                 ret = btrfs_del_item(trans, tree_root, path);
1006                 if (ret)
1007                         goto out;
1008                 btrfs_release_path(path);
1009         }
1010
1011         spin_lock(&fs_info->block_group_cache_lock);
1012         rb_erase(&block_group->cache_node,
1013                  &fs_info->block_group_cache_tree);
1014         RB_CLEAR_NODE(&block_group->cache_node);
1015
1016         /* Once for the block groups rbtree */
1017         btrfs_put_block_group(block_group);
1018
1019         if (fs_info->first_logical_byte == block_group->start)
1020                 fs_info->first_logical_byte = (u64)-1;
1021         spin_unlock(&fs_info->block_group_cache_lock);
1022
1023         down_write(&block_group->space_info->groups_sem);
1024         /*
1025          * we must use list_del_init so people can check to see if they
1026          * are still on the list after taking the semaphore
1027          */
1028         list_del_init(&block_group->list);
1029         if (list_empty(&block_group->space_info->block_groups[index])) {
1030                 kobj = block_group->space_info->block_group_kobjs[index];
1031                 block_group->space_info->block_group_kobjs[index] = NULL;
1032                 clear_avail_alloc_bits(fs_info, block_group->flags);
1033         }
1034         up_write(&block_group->space_info->groups_sem);
1035         clear_incompat_bg_bits(fs_info, block_group->flags);
1036         if (kobj) {
1037                 kobject_del(kobj);
1038                 kobject_put(kobj);
1039         }
1040
1041         if (block_group->has_caching_ctl)
1042                 caching_ctl = btrfs_get_caching_control(block_group);
1043         if (block_group->cached == BTRFS_CACHE_STARTED)
1044                 btrfs_wait_block_group_cache_done(block_group);
1045         if (block_group->has_caching_ctl) {
1046                 down_write(&fs_info->commit_root_sem);
1047                 if (!caching_ctl) {
1048                         struct btrfs_caching_control *ctl;
1049
1050                         list_for_each_entry(ctl,
1051                                     &fs_info->caching_block_groups, list)
1052                                 if (ctl->block_group == block_group) {
1053                                         caching_ctl = ctl;
1054                                         refcount_inc(&caching_ctl->count);
1055                                         break;
1056                                 }
1057                 }
1058                 if (caching_ctl)
1059                         list_del_init(&caching_ctl->list);
1060                 up_write(&fs_info->commit_root_sem);
1061                 if (caching_ctl) {
1062                         /* Once for the caching bgs list and once for us. */
1063                         btrfs_put_caching_control(caching_ctl);
1064                         btrfs_put_caching_control(caching_ctl);
1065                 }
1066         }
1067
1068         spin_lock(&trans->transaction->dirty_bgs_lock);
1069         WARN_ON(!list_empty(&block_group->dirty_list));
1070         WARN_ON(!list_empty(&block_group->io_list));
1071         spin_unlock(&trans->transaction->dirty_bgs_lock);
1072
1073         btrfs_remove_free_space_cache(block_group);
1074
1075         spin_lock(&block_group->space_info->lock);
1076         list_del_init(&block_group->ro_list);
1077
1078         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1079                 WARN_ON(block_group->space_info->total_bytes
1080                         < block_group->length);
1081                 WARN_ON(block_group->space_info->bytes_readonly
1082                         < block_group->length);
1083                 WARN_ON(block_group->space_info->disk_total
1084                         < block_group->length * factor);
1085         }
1086         block_group->space_info->total_bytes -= block_group->length;
1087         block_group->space_info->bytes_readonly -= block_group->length;
1088         block_group->space_info->disk_total -= block_group->length * factor;
1089
1090         spin_unlock(&block_group->space_info->lock);
1091
1092         /*
1093          * Remove the free space for the block group from the free space tree
1094          * and the block group's item from the extent tree before marking the
1095          * block group as removed. This is to prevent races with tasks that
1096          * freeze and unfreeze a block group, this task and another task
1097          * allocating a new block group - the unfreeze task ends up removing
1098          * the block group's extent map before the task calling this function
1099          * deletes the block group item from the extent tree, allowing for
1100          * another task to attempt to create another block group with the same
1101          * item key (and failing with -EEXIST and a transaction abort).
1102          */
1103         ret = remove_block_group_free_space(trans, block_group);
1104         if (ret)
1105                 goto out;
1106
1107         ret = remove_block_group_item(trans, path, block_group);
1108         if (ret < 0)
1109                 goto out;
1110
1111         spin_lock(&block_group->lock);
1112         block_group->removed = 1;
1113         /*
1114          * At this point trimming or scrub can't start on this block group,
1115          * because we removed the block group from the rbtree
1116          * fs_info->block_group_cache_tree so no one can't find it anymore and
1117          * even if someone already got this block group before we removed it
1118          * from the rbtree, they have already incremented block_group->frozen -
1119          * if they didn't, for the trimming case they won't find any free space
1120          * entries because we already removed them all when we called
1121          * btrfs_remove_free_space_cache().
1122          *
1123          * And we must not remove the extent map from the fs_info->mapping_tree
1124          * to prevent the same logical address range and physical device space
1125          * ranges from being reused for a new block group. This is needed to
1126          * avoid races with trimming and scrub.
1127          *
1128          * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1129          * completely transactionless, so while it is trimming a range the
1130          * currently running transaction might finish and a new one start,
1131          * allowing for new block groups to be created that can reuse the same
1132          * physical device locations unless we take this special care.
1133          *
1134          * There may also be an implicit trim operation if the file system
1135          * is mounted with -odiscard. The same protections must remain
1136          * in place until the extents have been discarded completely when
1137          * the transaction commit has completed.
1138          */
1139         remove_em = (atomic_read(&block_group->frozen) == 0);
1140         spin_unlock(&block_group->lock);
1141
1142         if (remove_em) {
1143                 struct extent_map_tree *em_tree;
1144
1145                 em_tree = &fs_info->mapping_tree;
1146                 write_lock(&em_tree->lock);
1147                 remove_extent_mapping(em_tree, em);
1148                 write_unlock(&em_tree->lock);
1149                 /* once for the tree */
1150                 free_extent_map(em);
1151         }
1152
1153 out:
1154         /* Once for the lookup reference */
1155         btrfs_put_block_group(block_group);
1156         if (remove_rsv)
1157                 btrfs_delayed_refs_rsv_release(fs_info, 1);
1158         btrfs_free_path(path);
1159         return ret;
1160 }
1161
1162 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1163                 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1164 {
1165         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1166         struct extent_map *em;
1167         struct map_lookup *map;
1168         unsigned int num_items;
1169
1170         read_lock(&em_tree->lock);
1171         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1172         read_unlock(&em_tree->lock);
1173         ASSERT(em && em->start == chunk_offset);
1174
1175         /*
1176          * We need to reserve 3 + N units from the metadata space info in order
1177          * to remove a block group (done at btrfs_remove_chunk() and at
1178          * btrfs_remove_block_group()), which are used for:
1179          *
1180          * 1 unit for adding the free space inode's orphan (located in the tree
1181          * of tree roots).
1182          * 1 unit for deleting the block group item (located in the extent
1183          * tree).
1184          * 1 unit for deleting the free space item (located in tree of tree
1185          * roots).
1186          * N units for deleting N device extent items corresponding to each
1187          * stripe (located in the device tree).
1188          *
1189          * In order to remove a block group we also need to reserve units in the
1190          * system space info in order to update the chunk tree (update one or
1191          * more device items and remove one chunk item), but this is done at
1192          * btrfs_remove_chunk() through a call to check_system_chunk().
1193          */
1194         map = em->map_lookup;
1195         num_items = 3 + map->num_stripes;
1196         free_extent_map(em);
1197
1198         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1199                                                            num_items);
1200 }
1201
1202 /*
1203  * Mark block group @cache read-only, so later write won't happen to block
1204  * group @cache.
1205  *
1206  * If @force is not set, this function will only mark the block group readonly
1207  * if we have enough free space (1M) in other metadata/system block groups.
1208  * If @force is not set, this function will mark the block group readonly
1209  * without checking free space.
1210  *
1211  * NOTE: This function doesn't care if other block groups can contain all the
1212  * data in this block group. That check should be done by relocation routine,
1213  * not this function.
1214  */
1215 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1216 {
1217         struct btrfs_space_info *sinfo = cache->space_info;
1218         u64 num_bytes;
1219         int ret = -ENOSPC;
1220
1221         spin_lock(&sinfo->lock);
1222         spin_lock(&cache->lock);
1223
1224         if (cache->ro) {
1225                 cache->ro++;
1226                 ret = 0;
1227                 goto out;
1228         }
1229
1230         num_bytes = cache->length - cache->reserved - cache->pinned -
1231                     cache->bytes_super - cache->used;
1232
1233         /*
1234          * Data never overcommits, even in mixed mode, so do just the straight
1235          * check of left over space in how much we have allocated.
1236          */
1237         if (force) {
1238                 ret = 0;
1239         } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1240                 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1241
1242                 /*
1243                  * Here we make sure if we mark this bg RO, we still have enough
1244                  * free space as buffer.
1245                  */
1246                 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1247                         ret = 0;
1248         } else {
1249                 /*
1250                  * We overcommit metadata, so we need to do the
1251                  * btrfs_can_overcommit check here, and we need to pass in
1252                  * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1253                  * leeway to allow us to mark this block group as read only.
1254                  */
1255                 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1256                                          BTRFS_RESERVE_NO_FLUSH))
1257                         ret = 0;
1258         }
1259
1260         if (!ret) {
1261                 sinfo->bytes_readonly += num_bytes;
1262                 cache->ro++;
1263                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1264         }
1265 out:
1266         spin_unlock(&cache->lock);
1267         spin_unlock(&sinfo->lock);
1268         if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1269                 btrfs_info(cache->fs_info,
1270                         "unable to make block group %llu ro", cache->start);
1271                 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1272         }
1273         return ret;
1274 }
1275
1276 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1277                                  struct btrfs_block_group *bg)
1278 {
1279         struct btrfs_fs_info *fs_info = bg->fs_info;
1280         struct btrfs_transaction *prev_trans = NULL;
1281         const u64 start = bg->start;
1282         const u64 end = start + bg->length - 1;
1283         int ret;
1284
1285         spin_lock(&fs_info->trans_lock);
1286         if (trans->transaction->list.prev != &fs_info->trans_list) {
1287                 prev_trans = list_last_entry(&trans->transaction->list,
1288                                              struct btrfs_transaction, list);
1289                 refcount_inc(&prev_trans->use_count);
1290         }
1291         spin_unlock(&fs_info->trans_lock);
1292
1293         /*
1294          * Hold the unused_bg_unpin_mutex lock to avoid racing with
1295          * btrfs_finish_extent_commit(). If we are at transaction N, another
1296          * task might be running finish_extent_commit() for the previous
1297          * transaction N - 1, and have seen a range belonging to the block
1298          * group in pinned_extents before we were able to clear the whole block
1299          * group range from pinned_extents. This means that task can lookup for
1300          * the block group after we unpinned it from pinned_extents and removed
1301          * it, leading to a BUG_ON() at unpin_extent_range().
1302          */
1303         mutex_lock(&fs_info->unused_bg_unpin_mutex);
1304         if (prev_trans) {
1305                 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1306                                         EXTENT_DIRTY);
1307                 if (ret)
1308                         goto out;
1309         }
1310
1311         ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1312                                 EXTENT_DIRTY);
1313 out:
1314         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1315         if (prev_trans)
1316                 btrfs_put_transaction(prev_trans);
1317
1318         return ret == 0;
1319 }
1320
1321 /*
1322  * Process the unused_bgs list and remove any that don't have any allocated
1323  * space inside of them.
1324  */
1325 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1326 {
1327         struct btrfs_block_group *block_group;
1328         struct btrfs_space_info *space_info;
1329         struct btrfs_trans_handle *trans;
1330         const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1331         int ret = 0;
1332
1333         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1334                 return;
1335
1336         spin_lock(&fs_info->unused_bgs_lock);
1337         while (!list_empty(&fs_info->unused_bgs)) {
1338                 int trimming;
1339
1340                 block_group = list_first_entry(&fs_info->unused_bgs,
1341                                                struct btrfs_block_group,
1342                                                bg_list);
1343                 list_del_init(&block_group->bg_list);
1344
1345                 space_info = block_group->space_info;
1346
1347                 if (ret || btrfs_mixed_space_info(space_info)) {
1348                         btrfs_put_block_group(block_group);
1349                         continue;
1350                 }
1351                 spin_unlock(&fs_info->unused_bgs_lock);
1352
1353                 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1354
1355                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
1356
1357                 /* Don't want to race with allocators so take the groups_sem */
1358                 down_write(&space_info->groups_sem);
1359
1360                 /*
1361                  * Async discard moves the final block group discard to be prior
1362                  * to the unused_bgs code path.  Therefore, if it's not fully
1363                  * trimmed, punt it back to the async discard lists.
1364                  */
1365                 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1366                     !btrfs_is_free_space_trimmed(block_group)) {
1367                         trace_btrfs_skip_unused_block_group(block_group);
1368                         up_write(&space_info->groups_sem);
1369                         /* Requeue if we failed because of async discard */
1370                         btrfs_discard_queue_work(&fs_info->discard_ctl,
1371                                                  block_group);
1372                         goto next;
1373                 }
1374
1375                 spin_lock(&block_group->lock);
1376                 if (block_group->reserved || block_group->pinned ||
1377                     block_group->used || block_group->ro ||
1378                     list_is_singular(&block_group->list)) {
1379                         /*
1380                          * We want to bail if we made new allocations or have
1381                          * outstanding allocations in this block group.  We do
1382                          * the ro check in case balance is currently acting on
1383                          * this block group.
1384                          */
1385                         trace_btrfs_skip_unused_block_group(block_group);
1386                         spin_unlock(&block_group->lock);
1387                         up_write(&space_info->groups_sem);
1388                         goto next;
1389                 }
1390                 spin_unlock(&block_group->lock);
1391
1392                 /* We don't want to force the issue, only flip if it's ok. */
1393                 ret = inc_block_group_ro(block_group, 0);
1394                 up_write(&space_info->groups_sem);
1395                 if (ret < 0) {
1396                         ret = 0;
1397                         goto next;
1398                 }
1399
1400                 /*
1401                  * Want to do this before we do anything else so we can recover
1402                  * properly if we fail to join the transaction.
1403                  */
1404                 trans = btrfs_start_trans_remove_block_group(fs_info,
1405                                                      block_group->start);
1406                 if (IS_ERR(trans)) {
1407                         btrfs_dec_block_group_ro(block_group);
1408                         ret = PTR_ERR(trans);
1409                         goto next;
1410                 }
1411
1412                 /*
1413                  * We could have pending pinned extents for this block group,
1414                  * just delete them, we don't care about them anymore.
1415                  */
1416                 if (!clean_pinned_extents(trans, block_group)) {
1417                         btrfs_dec_block_group_ro(block_group);
1418                         goto end_trans;
1419                 }
1420
1421                 /*
1422                  * At this point, the block_group is read only and should fail
1423                  * new allocations.  However, btrfs_finish_extent_commit() can
1424                  * cause this block_group to be placed back on the discard
1425                  * lists because now the block_group isn't fully discarded.
1426                  * Bail here and try again later after discarding everything.
1427                  */
1428                 spin_lock(&fs_info->discard_ctl.lock);
1429                 if (!list_empty(&block_group->discard_list)) {
1430                         spin_unlock(&fs_info->discard_ctl.lock);
1431                         btrfs_dec_block_group_ro(block_group);
1432                         btrfs_discard_queue_work(&fs_info->discard_ctl,
1433                                                  block_group);
1434                         goto end_trans;
1435                 }
1436                 spin_unlock(&fs_info->discard_ctl.lock);
1437
1438                 /* Reset pinned so btrfs_put_block_group doesn't complain */
1439                 spin_lock(&space_info->lock);
1440                 spin_lock(&block_group->lock);
1441
1442                 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1443                                                      -block_group->pinned);
1444                 space_info->bytes_readonly += block_group->pinned;
1445                 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1446                                    -block_group->pinned,
1447                                    BTRFS_TOTAL_BYTES_PINNED_BATCH);
1448                 block_group->pinned = 0;
1449
1450                 spin_unlock(&block_group->lock);
1451                 spin_unlock(&space_info->lock);
1452
1453                 /*
1454                  * The normal path here is an unused block group is passed here,
1455                  * then trimming is handled in the transaction commit path.
1456                  * Async discard interposes before this to do the trimming
1457                  * before coming down the unused block group path as trimming
1458                  * will no longer be done later in the transaction commit path.
1459                  */
1460                 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1461                         goto flip_async;
1462
1463                 /* DISCARD can flip during remount */
1464                 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1465
1466                 /* Implicit trim during transaction commit. */
1467                 if (trimming)
1468                         btrfs_freeze_block_group(block_group);
1469
1470                 /*
1471                  * Btrfs_remove_chunk will abort the transaction if things go
1472                  * horribly wrong.
1473                  */
1474                 ret = btrfs_remove_chunk(trans, block_group->start);
1475
1476                 if (ret) {
1477                         if (trimming)
1478                                 btrfs_unfreeze_block_group(block_group);
1479                         goto end_trans;
1480                 }
1481
1482                 /*
1483                  * If we're not mounted with -odiscard, we can just forget
1484                  * about this block group. Otherwise we'll need to wait
1485                  * until transaction commit to do the actual discard.
1486                  */
1487                 if (trimming) {
1488                         spin_lock(&fs_info->unused_bgs_lock);
1489                         /*
1490                          * A concurrent scrub might have added us to the list
1491                          * fs_info->unused_bgs, so use a list_move operation
1492                          * to add the block group to the deleted_bgs list.
1493                          */
1494                         list_move(&block_group->bg_list,
1495                                   &trans->transaction->deleted_bgs);
1496                         spin_unlock(&fs_info->unused_bgs_lock);
1497                         btrfs_get_block_group(block_group);
1498                 }
1499 end_trans:
1500                 btrfs_end_transaction(trans);
1501 next:
1502                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1503                 btrfs_put_block_group(block_group);
1504                 spin_lock(&fs_info->unused_bgs_lock);
1505         }
1506         spin_unlock(&fs_info->unused_bgs_lock);
1507         return;
1508
1509 flip_async:
1510         btrfs_end_transaction(trans);
1511         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1512         btrfs_put_block_group(block_group);
1513         btrfs_discard_punt_unused_bgs_list(fs_info);
1514 }
1515
1516 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1517 {
1518         struct btrfs_fs_info *fs_info = bg->fs_info;
1519
1520         spin_lock(&fs_info->unused_bgs_lock);
1521         if (list_empty(&bg->bg_list)) {
1522                 btrfs_get_block_group(bg);
1523                 trace_btrfs_add_unused_block_group(bg);
1524                 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1525         }
1526         spin_unlock(&fs_info->unused_bgs_lock);
1527 }
1528
1529 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1530                            struct btrfs_path *path)
1531 {
1532         struct extent_map_tree *em_tree;
1533         struct extent_map *em;
1534         struct btrfs_block_group_item bg;
1535         struct extent_buffer *leaf;
1536         int slot;
1537         u64 flags;
1538         int ret = 0;
1539
1540         slot = path->slots[0];
1541         leaf = path->nodes[0];
1542
1543         em_tree = &fs_info->mapping_tree;
1544         read_lock(&em_tree->lock);
1545         em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1546         read_unlock(&em_tree->lock);
1547         if (!em) {
1548                 btrfs_err(fs_info,
1549                           "logical %llu len %llu found bg but no related chunk",
1550                           key->objectid, key->offset);
1551                 return -ENOENT;
1552         }
1553
1554         if (em->start != key->objectid || em->len != key->offset) {
1555                 btrfs_err(fs_info,
1556                         "block group %llu len %llu mismatch with chunk %llu len %llu",
1557                         key->objectid, key->offset, em->start, em->len);
1558                 ret = -EUCLEAN;
1559                 goto out_free_em;
1560         }
1561
1562         read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1563                            sizeof(bg));
1564         flags = btrfs_stack_block_group_flags(&bg) &
1565                 BTRFS_BLOCK_GROUP_TYPE_MASK;
1566
1567         if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1568                 btrfs_err(fs_info,
1569 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1570                           key->objectid, key->offset, flags,
1571                           (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1572                 ret = -EUCLEAN;
1573         }
1574
1575 out_free_em:
1576         free_extent_map(em);
1577         return ret;
1578 }
1579
1580 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1581                                   struct btrfs_path *path,
1582                                   struct btrfs_key *key)
1583 {
1584         struct btrfs_root *root = fs_info->extent_root;
1585         int ret;
1586         struct btrfs_key found_key;
1587         struct extent_buffer *leaf;
1588         int slot;
1589
1590         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1591         if (ret < 0)
1592                 return ret;
1593
1594         while (1) {
1595                 slot = path->slots[0];
1596                 leaf = path->nodes[0];
1597                 if (slot >= btrfs_header_nritems(leaf)) {
1598                         ret = btrfs_next_leaf(root, path);
1599                         if (ret == 0)
1600                                 continue;
1601                         if (ret < 0)
1602                                 goto out;
1603                         break;
1604                 }
1605                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1606
1607                 if (found_key.objectid >= key->objectid &&
1608                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1609                         ret = read_bg_from_eb(fs_info, &found_key, path);
1610                         break;
1611                 }
1612
1613                 path->slots[0]++;
1614         }
1615 out:
1616         return ret;
1617 }
1618
1619 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1620 {
1621         u64 extra_flags = chunk_to_extended(flags) &
1622                                 BTRFS_EXTENDED_PROFILE_MASK;
1623
1624         write_seqlock(&fs_info->profiles_lock);
1625         if (flags & BTRFS_BLOCK_GROUP_DATA)
1626                 fs_info->avail_data_alloc_bits |= extra_flags;
1627         if (flags & BTRFS_BLOCK_GROUP_METADATA)
1628                 fs_info->avail_metadata_alloc_bits |= extra_flags;
1629         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1630                 fs_info->avail_system_alloc_bits |= extra_flags;
1631         write_sequnlock(&fs_info->profiles_lock);
1632 }
1633
1634 /**
1635  * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1636  * @chunk_start:   logical address of block group
1637  * @physical:      physical address to map to logical addresses
1638  * @logical:       return array of logical addresses which map to @physical
1639  * @naddrs:        length of @logical
1640  * @stripe_len:    size of IO stripe for the given block group
1641  *
1642  * Maps a particular @physical disk address to a list of @logical addresses.
1643  * Used primarily to exclude those portions of a block group that contain super
1644  * block copies.
1645  */
1646 EXPORT_FOR_TESTS
1647 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1648                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1649 {
1650         struct extent_map *em;
1651         struct map_lookup *map;
1652         u64 *buf;
1653         u64 bytenr;
1654         u64 data_stripe_length;
1655         u64 io_stripe_size;
1656         int i, nr = 0;
1657         int ret = 0;
1658
1659         em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1660         if (IS_ERR(em))
1661                 return -EIO;
1662
1663         map = em->map_lookup;
1664         data_stripe_length = em->orig_block_len;
1665         io_stripe_size = map->stripe_len;
1666
1667         /* For RAID5/6 adjust to a full IO stripe length */
1668         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1669                 io_stripe_size = map->stripe_len * nr_data_stripes(map);
1670
1671         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1672         if (!buf) {
1673                 ret = -ENOMEM;
1674                 goto out;
1675         }
1676
1677         for (i = 0; i < map->num_stripes; i++) {
1678                 bool already_inserted = false;
1679                 u64 stripe_nr;
1680                 int j;
1681
1682                 if (!in_range(physical, map->stripes[i].physical,
1683                               data_stripe_length))
1684                         continue;
1685
1686                 stripe_nr = physical - map->stripes[i].physical;
1687                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1688
1689                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1690                         stripe_nr = stripe_nr * map->num_stripes + i;
1691                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1692                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1693                         stripe_nr = stripe_nr * map->num_stripes + i;
1694                 }
1695                 /*
1696                  * The remaining case would be for RAID56, multiply by
1697                  * nr_data_stripes().  Alternatively, just use rmap_len below
1698                  * instead of map->stripe_len
1699                  */
1700
1701                 bytenr = chunk_start + stripe_nr * io_stripe_size;
1702
1703                 /* Ensure we don't add duplicate addresses */
1704                 for (j = 0; j < nr; j++) {
1705                         if (buf[j] == bytenr) {
1706                                 already_inserted = true;
1707                                 break;
1708                         }
1709                 }
1710
1711                 if (!already_inserted)
1712                         buf[nr++] = bytenr;
1713         }
1714
1715         *logical = buf;
1716         *naddrs = nr;
1717         *stripe_len = io_stripe_size;
1718 out:
1719         free_extent_map(em);
1720         return ret;
1721 }
1722
1723 static int exclude_super_stripes(struct btrfs_block_group *cache)
1724 {
1725         struct btrfs_fs_info *fs_info = cache->fs_info;
1726         u64 bytenr;
1727         u64 *logical;
1728         int stripe_len;
1729         int i, nr, ret;
1730
1731         if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1732                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1733                 cache->bytes_super += stripe_len;
1734                 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1735                                                 stripe_len);
1736                 if (ret)
1737                         return ret;
1738         }
1739
1740         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1741                 bytenr = btrfs_sb_offset(i);
1742                 ret = btrfs_rmap_block(fs_info, cache->start,
1743                                        bytenr, &logical, &nr, &stripe_len);
1744                 if (ret)
1745                         return ret;
1746
1747                 while (nr--) {
1748                         u64 len = min_t(u64, stripe_len,
1749                                 cache->start + cache->length - logical[nr]);
1750
1751                         cache->bytes_super += len;
1752                         ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1753                                                         len);
1754                         if (ret) {
1755                                 kfree(logical);
1756                                 return ret;
1757                         }
1758                 }
1759
1760                 kfree(logical);
1761         }
1762         return 0;
1763 }
1764
1765 static void link_block_group(struct btrfs_block_group *cache)
1766 {
1767         struct btrfs_space_info *space_info = cache->space_info;
1768         int index = btrfs_bg_flags_to_raid_index(cache->flags);
1769         bool first = false;
1770
1771         down_write(&space_info->groups_sem);
1772         if (list_empty(&space_info->block_groups[index]))
1773                 first = true;
1774         list_add_tail(&cache->list, &space_info->block_groups[index]);
1775         up_write(&space_info->groups_sem);
1776
1777         if (first)
1778                 btrfs_sysfs_add_block_group_type(cache);
1779 }
1780
1781 static struct btrfs_block_group *btrfs_create_block_group_cache(
1782                 struct btrfs_fs_info *fs_info, u64 start)
1783 {
1784         struct btrfs_block_group *cache;
1785
1786         cache = kzalloc(sizeof(*cache), GFP_NOFS);
1787         if (!cache)
1788                 return NULL;
1789
1790         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1791                                         GFP_NOFS);
1792         if (!cache->free_space_ctl) {
1793                 kfree(cache);
1794                 return NULL;
1795         }
1796
1797         cache->start = start;
1798
1799         cache->fs_info = fs_info;
1800         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1801         set_free_space_tree_thresholds(cache);
1802
1803         cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1804
1805         refcount_set(&cache->refs, 1);
1806         spin_lock_init(&cache->lock);
1807         init_rwsem(&cache->data_rwsem);
1808         INIT_LIST_HEAD(&cache->list);
1809         INIT_LIST_HEAD(&cache->cluster_list);
1810         INIT_LIST_HEAD(&cache->bg_list);
1811         INIT_LIST_HEAD(&cache->ro_list);
1812         INIT_LIST_HEAD(&cache->discard_list);
1813         INIT_LIST_HEAD(&cache->dirty_list);
1814         INIT_LIST_HEAD(&cache->io_list);
1815         btrfs_init_free_space_ctl(cache);
1816         atomic_set(&cache->frozen, 0);
1817         mutex_init(&cache->free_space_lock);
1818         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1819
1820         return cache;
1821 }
1822
1823 /*
1824  * Iterate all chunks and verify that each of them has the corresponding block
1825  * group
1826  */
1827 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1828 {
1829         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1830         struct extent_map *em;
1831         struct btrfs_block_group *bg;
1832         u64 start = 0;
1833         int ret = 0;
1834
1835         while (1) {
1836                 read_lock(&map_tree->lock);
1837                 /*
1838                  * lookup_extent_mapping will return the first extent map
1839                  * intersecting the range, so setting @len to 1 is enough to
1840                  * get the first chunk.
1841                  */
1842                 em = lookup_extent_mapping(map_tree, start, 1);
1843                 read_unlock(&map_tree->lock);
1844                 if (!em)
1845                         break;
1846
1847                 bg = btrfs_lookup_block_group(fs_info, em->start);
1848                 if (!bg) {
1849                         btrfs_err(fs_info,
1850         "chunk start=%llu len=%llu doesn't have corresponding block group",
1851                                      em->start, em->len);
1852                         ret = -EUCLEAN;
1853                         free_extent_map(em);
1854                         break;
1855                 }
1856                 if (bg->start != em->start || bg->length != em->len ||
1857                     (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1858                     (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1859                         btrfs_err(fs_info,
1860 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1861                                 em->start, em->len,
1862                                 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1863                                 bg->start, bg->length,
1864                                 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1865                         ret = -EUCLEAN;
1866                         free_extent_map(em);
1867                         btrfs_put_block_group(bg);
1868                         break;
1869                 }
1870                 start = em->start + em->len;
1871                 free_extent_map(em);
1872                 btrfs_put_block_group(bg);
1873         }
1874         return ret;
1875 }
1876
1877 static int read_block_group_item(struct btrfs_block_group *cache,
1878                                  struct btrfs_path *path,
1879                                  const struct btrfs_key *key)
1880 {
1881         struct extent_buffer *leaf = path->nodes[0];
1882         struct btrfs_block_group_item bgi;
1883         int slot = path->slots[0];
1884
1885         cache->length = key->offset;
1886
1887         read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1888                            sizeof(bgi));
1889         cache->used = btrfs_stack_block_group_used(&bgi);
1890         cache->flags = btrfs_stack_block_group_flags(&bgi);
1891
1892         return 0;
1893 }
1894
1895 static int read_one_block_group(struct btrfs_fs_info *info,
1896                                 struct btrfs_path *path,
1897                                 const struct btrfs_key *key,
1898                                 int need_clear)
1899 {
1900         struct btrfs_block_group *cache;
1901         struct btrfs_space_info *space_info;
1902         const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1903         int ret;
1904
1905         ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1906
1907         cache = btrfs_create_block_group_cache(info, key->objectid);
1908         if (!cache)
1909                 return -ENOMEM;
1910
1911         ret = read_block_group_item(cache, path, key);
1912         if (ret < 0)
1913                 goto error;
1914
1915         if (need_clear) {
1916                 /*
1917                  * When we mount with old space cache, we need to
1918                  * set BTRFS_DC_CLEAR and set dirty flag.
1919                  *
1920                  * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1921                  *    truncate the old free space cache inode and
1922                  *    setup a new one.
1923                  * b) Setting 'dirty flag' makes sure that we flush
1924                  *    the new space cache info onto disk.
1925                  */
1926                 if (btrfs_test_opt(info, SPACE_CACHE))
1927                         cache->disk_cache_state = BTRFS_DC_CLEAR;
1928         }
1929         if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1930             (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1931                         btrfs_err(info,
1932 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1933                                   cache->start);
1934                         ret = -EINVAL;
1935                         goto error;
1936         }
1937
1938         /*
1939          * We need to exclude the super stripes now so that the space info has
1940          * super bytes accounted for, otherwise we'll think we have more space
1941          * than we actually do.
1942          */
1943         ret = exclude_super_stripes(cache);
1944         if (ret) {
1945                 /* We may have excluded something, so call this just in case. */
1946                 btrfs_free_excluded_extents(cache);
1947                 goto error;
1948         }
1949
1950         /*
1951          * Check for two cases, either we are full, and therefore don't need
1952          * to bother with the caching work since we won't find any space, or we
1953          * are empty, and we can just add all the space in and be done with it.
1954          * This saves us _a_lot_ of time, particularly in the full case.
1955          */
1956         if (cache->length == cache->used) {
1957                 cache->last_byte_to_unpin = (u64)-1;
1958                 cache->cached = BTRFS_CACHE_FINISHED;
1959                 btrfs_free_excluded_extents(cache);
1960         } else if (cache->used == 0) {
1961                 cache->last_byte_to_unpin = (u64)-1;
1962                 cache->cached = BTRFS_CACHE_FINISHED;
1963                 add_new_free_space(cache, cache->start,
1964                                    cache->start + cache->length);
1965                 btrfs_free_excluded_extents(cache);
1966         }
1967
1968         ret = btrfs_add_block_group_cache(info, cache);
1969         if (ret) {
1970                 btrfs_remove_free_space_cache(cache);
1971                 goto error;
1972         }
1973         trace_btrfs_add_block_group(info, cache, 0);
1974         btrfs_update_space_info(info, cache->flags, cache->length,
1975                                 cache->used, cache->bytes_super, &space_info);
1976
1977         cache->space_info = space_info;
1978
1979         link_block_group(cache);
1980
1981         set_avail_alloc_bits(info, cache->flags);
1982         if (btrfs_chunk_readonly(info, cache->start)) {
1983                 inc_block_group_ro(cache, 1);
1984         } else if (cache->used == 0) {
1985                 ASSERT(list_empty(&cache->bg_list));
1986                 if (btrfs_test_opt(info, DISCARD_ASYNC))
1987                         btrfs_discard_queue_work(&info->discard_ctl, cache);
1988                 else
1989                         btrfs_mark_bg_unused(cache);
1990         }
1991         return 0;
1992 error:
1993         btrfs_put_block_group(cache);
1994         return ret;
1995 }
1996
1997 int btrfs_read_block_groups(struct btrfs_fs_info *info)
1998 {
1999         struct btrfs_path *path;
2000         int ret;
2001         struct btrfs_block_group *cache;
2002         struct btrfs_space_info *space_info;
2003         struct btrfs_key key;
2004         int need_clear = 0;
2005         u64 cache_gen;
2006
2007         key.objectid = 0;
2008         key.offset = 0;
2009         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2010         path = btrfs_alloc_path();
2011         if (!path)
2012                 return -ENOMEM;
2013
2014         cache_gen = btrfs_super_cache_generation(info->super_copy);
2015         if (btrfs_test_opt(info, SPACE_CACHE) &&
2016             btrfs_super_generation(info->super_copy) != cache_gen)
2017                 need_clear = 1;
2018         if (btrfs_test_opt(info, CLEAR_CACHE))
2019                 need_clear = 1;
2020
2021         while (1) {
2022                 ret = find_first_block_group(info, path, &key);
2023                 if (ret > 0)
2024                         break;
2025                 if (ret != 0)
2026                         goto error;
2027
2028                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2029                 ret = read_one_block_group(info, path, &key, need_clear);
2030                 if (ret < 0)
2031                         goto error;
2032                 key.objectid += key.offset;
2033                 key.offset = 0;
2034                 btrfs_release_path(path);
2035         }
2036
2037         rcu_read_lock();
2038         list_for_each_entry_rcu(space_info, &info->space_info, list) {
2039                 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2040                       (BTRFS_BLOCK_GROUP_RAID10 |
2041                        BTRFS_BLOCK_GROUP_RAID1_MASK |
2042                        BTRFS_BLOCK_GROUP_RAID56_MASK |
2043                        BTRFS_BLOCK_GROUP_DUP)))
2044                         continue;
2045                 /*
2046                  * Avoid allocating from un-mirrored block group if there are
2047                  * mirrored block groups.
2048                  */
2049                 list_for_each_entry(cache,
2050                                 &space_info->block_groups[BTRFS_RAID_RAID0],
2051                                 list)
2052                         inc_block_group_ro(cache, 1);
2053                 list_for_each_entry(cache,
2054                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
2055                                 list)
2056                         inc_block_group_ro(cache, 1);
2057         }
2058         rcu_read_unlock();
2059
2060         btrfs_init_global_block_rsv(info);
2061         ret = check_chunk_block_group_mappings(info);
2062 error:
2063         btrfs_free_path(path);
2064         return ret;
2065 }
2066
2067 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2068                                    struct btrfs_block_group *block_group)
2069 {
2070         struct btrfs_fs_info *fs_info = trans->fs_info;
2071         struct btrfs_block_group_item bgi;
2072         struct btrfs_root *root;
2073         struct btrfs_key key;
2074
2075         spin_lock(&block_group->lock);
2076         btrfs_set_stack_block_group_used(&bgi, block_group->used);
2077         btrfs_set_stack_block_group_chunk_objectid(&bgi,
2078                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2079         btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2080         key.objectid = block_group->start;
2081         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2082         key.offset = block_group->length;
2083         spin_unlock(&block_group->lock);
2084
2085         root = fs_info->extent_root;
2086         return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2087 }
2088
2089 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2090 {
2091         struct btrfs_fs_info *fs_info = trans->fs_info;
2092         struct btrfs_block_group *block_group;
2093         int ret = 0;
2094
2095         if (!trans->can_flush_pending_bgs)
2096                 return;
2097
2098         while (!list_empty(&trans->new_bgs)) {
2099                 block_group = list_first_entry(&trans->new_bgs,
2100                                                struct btrfs_block_group,
2101                                                bg_list);
2102                 if (ret)
2103                         goto next;
2104
2105                 ret = insert_block_group_item(trans, block_group);
2106                 if (ret)
2107                         btrfs_abort_transaction(trans, ret);
2108                 ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2109                                         block_group->length);
2110                 if (ret)
2111                         btrfs_abort_transaction(trans, ret);
2112                 add_block_group_free_space(trans, block_group);
2113                 /* Already aborted the transaction if it failed. */
2114 next:
2115                 btrfs_delayed_refs_rsv_release(fs_info, 1);
2116                 list_del_init(&block_group->bg_list);
2117         }
2118         btrfs_trans_release_chunk_metadata(trans);
2119 }
2120
2121 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2122                            u64 type, u64 chunk_offset, u64 size)
2123 {
2124         struct btrfs_fs_info *fs_info = trans->fs_info;
2125         struct btrfs_block_group *cache;
2126         int ret;
2127
2128         btrfs_set_log_full_commit(trans);
2129
2130         cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2131         if (!cache)
2132                 return -ENOMEM;
2133
2134         cache->length = size;
2135         cache->used = bytes_used;
2136         cache->flags = type;
2137         cache->last_byte_to_unpin = (u64)-1;
2138         cache->cached = BTRFS_CACHE_FINISHED;
2139         cache->needs_free_space = 1;
2140         ret = exclude_super_stripes(cache);
2141         if (ret) {
2142                 /* We may have excluded something, so call this just in case */
2143                 btrfs_free_excluded_extents(cache);
2144                 btrfs_put_block_group(cache);
2145                 return ret;
2146         }
2147
2148         add_new_free_space(cache, chunk_offset, chunk_offset + size);
2149
2150         btrfs_free_excluded_extents(cache);
2151
2152 #ifdef CONFIG_BTRFS_DEBUG
2153         if (btrfs_should_fragment_free_space(cache)) {
2154                 u64 new_bytes_used = size - bytes_used;
2155
2156                 bytes_used += new_bytes_used >> 1;
2157                 fragment_free_space(cache);
2158         }
2159 #endif
2160         /*
2161          * Ensure the corresponding space_info object is created and
2162          * assigned to our block group. We want our bg to be added to the rbtree
2163          * with its ->space_info set.
2164          */
2165         cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2166         ASSERT(cache->space_info);
2167
2168         ret = btrfs_add_block_group_cache(fs_info, cache);
2169         if (ret) {
2170                 btrfs_remove_free_space_cache(cache);
2171                 btrfs_put_block_group(cache);
2172                 return ret;
2173         }
2174
2175         /*
2176          * Now that our block group has its ->space_info set and is inserted in
2177          * the rbtree, update the space info's counters.
2178          */
2179         trace_btrfs_add_block_group(fs_info, cache, 1);
2180         btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2181                                 cache->bytes_super, &cache->space_info);
2182         btrfs_update_global_block_rsv(fs_info);
2183
2184         link_block_group(cache);
2185
2186         list_add_tail(&cache->bg_list, &trans->new_bgs);
2187         trans->delayed_ref_updates++;
2188         btrfs_update_delayed_refs_rsv(trans);
2189
2190         set_avail_alloc_bits(fs_info, type);
2191         return 0;
2192 }
2193
2194 /*
2195  * Mark one block group RO, can be called several times for the same block
2196  * group.
2197  *
2198  * @cache:              the destination block group
2199  * @do_chunk_alloc:     whether need to do chunk pre-allocation, this is to
2200  *                      ensure we still have some free space after marking this
2201  *                      block group RO.
2202  */
2203 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2204                              bool do_chunk_alloc)
2205 {
2206         struct btrfs_fs_info *fs_info = cache->fs_info;
2207         struct btrfs_trans_handle *trans;
2208         u64 alloc_flags;
2209         int ret;
2210
2211 again:
2212         trans = btrfs_join_transaction(fs_info->extent_root);
2213         if (IS_ERR(trans))
2214                 return PTR_ERR(trans);
2215
2216         /*
2217          * we're not allowed to set block groups readonly after the dirty
2218          * block groups cache has started writing.  If it already started,
2219          * back off and let this transaction commit
2220          */
2221         mutex_lock(&fs_info->ro_block_group_mutex);
2222         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2223                 u64 transid = trans->transid;
2224
2225                 mutex_unlock(&fs_info->ro_block_group_mutex);
2226                 btrfs_end_transaction(trans);
2227
2228                 ret = btrfs_wait_for_commit(fs_info, transid);
2229                 if (ret)
2230                         return ret;
2231                 goto again;
2232         }
2233
2234         if (do_chunk_alloc) {
2235                 /*
2236                  * If we are changing raid levels, try to allocate a
2237                  * corresponding block group with the new raid level.
2238                  */
2239                 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2240                 if (alloc_flags != cache->flags) {
2241                         ret = btrfs_chunk_alloc(trans, alloc_flags,
2242                                                 CHUNK_ALLOC_FORCE);
2243                         /*
2244                          * ENOSPC is allowed here, we may have enough space
2245                          * already allocated at the new raid level to carry on
2246                          */
2247                         if (ret == -ENOSPC)
2248                                 ret = 0;
2249                         if (ret < 0)
2250                                 goto out;
2251                 }
2252         }
2253
2254         ret = inc_block_group_ro(cache, 0);
2255         if (!do_chunk_alloc)
2256                 goto unlock_out;
2257         if (!ret)
2258                 goto out;
2259         alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2260         ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2261         if (ret < 0)
2262                 goto out;
2263         ret = inc_block_group_ro(cache, 0);
2264 out:
2265         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2266                 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2267                 mutex_lock(&fs_info->chunk_mutex);
2268                 check_system_chunk(trans, alloc_flags);
2269                 mutex_unlock(&fs_info->chunk_mutex);
2270         }
2271 unlock_out:
2272         mutex_unlock(&fs_info->ro_block_group_mutex);
2273
2274         btrfs_end_transaction(trans);
2275         return ret;
2276 }
2277
2278 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2279 {
2280         struct btrfs_space_info *sinfo = cache->space_info;
2281         u64 num_bytes;
2282
2283         BUG_ON(!cache->ro);
2284
2285         spin_lock(&sinfo->lock);
2286         spin_lock(&cache->lock);
2287         if (!--cache->ro) {
2288                 num_bytes = cache->length - cache->reserved -
2289                             cache->pinned - cache->bytes_super - cache->used;
2290                 sinfo->bytes_readonly -= num_bytes;
2291                 list_del_init(&cache->ro_list);
2292         }
2293         spin_unlock(&cache->lock);
2294         spin_unlock(&sinfo->lock);
2295 }
2296
2297 static int update_block_group_item(struct btrfs_trans_handle *trans,
2298                                    struct btrfs_path *path,
2299                                    struct btrfs_block_group *cache)
2300 {
2301         struct btrfs_fs_info *fs_info = trans->fs_info;
2302         int ret;
2303         struct btrfs_root *root = fs_info->extent_root;
2304         unsigned long bi;
2305         struct extent_buffer *leaf;
2306         struct btrfs_block_group_item bgi;
2307         struct btrfs_key key;
2308
2309         key.objectid = cache->start;
2310         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2311         key.offset = cache->length;
2312
2313         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2314         if (ret) {
2315                 if (ret > 0)
2316                         ret = -ENOENT;
2317                 goto fail;
2318         }
2319
2320         leaf = path->nodes[0];
2321         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2322         btrfs_set_stack_block_group_used(&bgi, cache->used);
2323         btrfs_set_stack_block_group_chunk_objectid(&bgi,
2324                         BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2325         btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2326         write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2327         btrfs_mark_buffer_dirty(leaf);
2328 fail:
2329         btrfs_release_path(path);
2330         return ret;
2331
2332 }
2333
2334 static int cache_save_setup(struct btrfs_block_group *block_group,
2335                             struct btrfs_trans_handle *trans,
2336                             struct btrfs_path *path)
2337 {
2338         struct btrfs_fs_info *fs_info = block_group->fs_info;
2339         struct btrfs_root *root = fs_info->tree_root;
2340         struct inode *inode = NULL;
2341         struct extent_changeset *data_reserved = NULL;
2342         u64 alloc_hint = 0;
2343         int dcs = BTRFS_DC_ERROR;
2344         u64 num_pages = 0;
2345         int retries = 0;
2346         int ret = 0;
2347
2348         /*
2349          * If this block group is smaller than 100 megs don't bother caching the
2350          * block group.
2351          */
2352         if (block_group->length < (100 * SZ_1M)) {
2353                 spin_lock(&block_group->lock);
2354                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2355                 spin_unlock(&block_group->lock);
2356                 return 0;
2357         }
2358
2359         if (TRANS_ABORTED(trans))
2360                 return 0;
2361 again:
2362         inode = lookup_free_space_inode(block_group, path);
2363         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2364                 ret = PTR_ERR(inode);
2365                 btrfs_release_path(path);
2366                 goto out;
2367         }
2368
2369         if (IS_ERR(inode)) {
2370                 BUG_ON(retries);
2371                 retries++;
2372
2373                 if (block_group->ro)
2374                         goto out_free;
2375
2376                 ret = create_free_space_inode(trans, block_group, path);
2377                 if (ret)
2378                         goto out_free;
2379                 goto again;
2380         }
2381
2382         /*
2383          * We want to set the generation to 0, that way if anything goes wrong
2384          * from here on out we know not to trust this cache when we load up next
2385          * time.
2386          */
2387         BTRFS_I(inode)->generation = 0;
2388         ret = btrfs_update_inode(trans, root, inode);
2389         if (ret) {
2390                 /*
2391                  * So theoretically we could recover from this, simply set the
2392                  * super cache generation to 0 so we know to invalidate the
2393                  * cache, but then we'd have to keep track of the block groups
2394                  * that fail this way so we know we _have_ to reset this cache
2395                  * before the next commit or risk reading stale cache.  So to
2396                  * limit our exposure to horrible edge cases lets just abort the
2397                  * transaction, this only happens in really bad situations
2398                  * anyway.
2399                  */
2400                 btrfs_abort_transaction(trans, ret);
2401                 goto out_put;
2402         }
2403         WARN_ON(ret);
2404
2405         /* We've already setup this transaction, go ahead and exit */
2406         if (block_group->cache_generation == trans->transid &&
2407             i_size_read(inode)) {
2408                 dcs = BTRFS_DC_SETUP;
2409                 goto out_put;
2410         }
2411
2412         if (i_size_read(inode) > 0) {
2413                 ret = btrfs_check_trunc_cache_free_space(fs_info,
2414                                         &fs_info->global_block_rsv);
2415                 if (ret)
2416                         goto out_put;
2417
2418                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2419                 if (ret)
2420                         goto out_put;
2421         }
2422
2423         spin_lock(&block_group->lock);
2424         if (block_group->cached != BTRFS_CACHE_FINISHED ||
2425             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2426                 /*
2427                  * don't bother trying to write stuff out _if_
2428                  * a) we're not cached,
2429                  * b) we're with nospace_cache mount option,
2430                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
2431                  */
2432                 dcs = BTRFS_DC_WRITTEN;
2433                 spin_unlock(&block_group->lock);
2434                 goto out_put;
2435         }
2436         spin_unlock(&block_group->lock);
2437
2438         /*
2439          * We hit an ENOSPC when setting up the cache in this transaction, just
2440          * skip doing the setup, we've already cleared the cache so we're safe.
2441          */
2442         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2443                 ret = -ENOSPC;
2444                 goto out_put;
2445         }
2446
2447         /*
2448          * Try to preallocate enough space based on how big the block group is.
2449          * Keep in mind this has to include any pinned space which could end up
2450          * taking up quite a bit since it's not folded into the other space
2451          * cache.
2452          */
2453         num_pages = div_u64(block_group->length, SZ_256M);
2454         if (!num_pages)
2455                 num_pages = 1;
2456
2457         num_pages *= 16;
2458         num_pages *= PAGE_SIZE;
2459
2460         ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2461                                           num_pages);
2462         if (ret)
2463                 goto out_put;
2464
2465         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2466                                               num_pages, num_pages,
2467                                               &alloc_hint);
2468         /*
2469          * Our cache requires contiguous chunks so that we don't modify a bunch
2470          * of metadata or split extents when writing the cache out, which means
2471          * we can enospc if we are heavily fragmented in addition to just normal
2472          * out of space conditions.  So if we hit this just skip setting up any
2473          * other block groups for this transaction, maybe we'll unpin enough
2474          * space the next time around.
2475          */
2476         if (!ret)
2477                 dcs = BTRFS_DC_SETUP;
2478         else if (ret == -ENOSPC)
2479                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2480
2481 out_put:
2482         iput(inode);
2483 out_free:
2484         btrfs_release_path(path);
2485 out:
2486         spin_lock(&block_group->lock);
2487         if (!ret && dcs == BTRFS_DC_SETUP)
2488                 block_group->cache_generation = trans->transid;
2489         block_group->disk_cache_state = dcs;
2490         spin_unlock(&block_group->lock);
2491
2492         extent_changeset_free(data_reserved);
2493         return ret;
2494 }
2495
2496 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2497 {
2498         struct btrfs_fs_info *fs_info = trans->fs_info;
2499         struct btrfs_block_group *cache, *tmp;
2500         struct btrfs_transaction *cur_trans = trans->transaction;
2501         struct btrfs_path *path;
2502
2503         if (list_empty(&cur_trans->dirty_bgs) ||
2504             !btrfs_test_opt(fs_info, SPACE_CACHE))
2505                 return 0;
2506
2507         path = btrfs_alloc_path();
2508         if (!path)
2509                 return -ENOMEM;
2510
2511         /* Could add new block groups, use _safe just in case */
2512         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2513                                  dirty_list) {
2514                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2515                         cache_save_setup(cache, trans, path);
2516         }
2517
2518         btrfs_free_path(path);
2519         return 0;
2520 }
2521
2522 /*
2523  * Transaction commit does final block group cache writeback during a critical
2524  * section where nothing is allowed to change the FS.  This is required in
2525  * order for the cache to actually match the block group, but can introduce a
2526  * lot of latency into the commit.
2527  *
2528  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2529  * There's a chance we'll have to redo some of it if the block group changes
2530  * again during the commit, but it greatly reduces the commit latency by
2531  * getting rid of the easy block groups while we're still allowing others to
2532  * join the commit.
2533  */
2534 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2535 {
2536         struct btrfs_fs_info *fs_info = trans->fs_info;
2537         struct btrfs_block_group *cache;
2538         struct btrfs_transaction *cur_trans = trans->transaction;
2539         int ret = 0;
2540         int should_put;
2541         struct btrfs_path *path = NULL;
2542         LIST_HEAD(dirty);
2543         struct list_head *io = &cur_trans->io_bgs;
2544         int num_started = 0;
2545         int loops = 0;
2546
2547         spin_lock(&cur_trans->dirty_bgs_lock);
2548         if (list_empty(&cur_trans->dirty_bgs)) {
2549                 spin_unlock(&cur_trans->dirty_bgs_lock);
2550                 return 0;
2551         }
2552         list_splice_init(&cur_trans->dirty_bgs, &dirty);
2553         spin_unlock(&cur_trans->dirty_bgs_lock);
2554
2555 again:
2556         /* Make sure all the block groups on our dirty list actually exist */
2557         btrfs_create_pending_block_groups(trans);
2558
2559         if (!path) {
2560                 path = btrfs_alloc_path();
2561                 if (!path)
2562                         return -ENOMEM;
2563         }
2564
2565         /*
2566          * cache_write_mutex is here only to save us from balance or automatic
2567          * removal of empty block groups deleting this block group while we are
2568          * writing out the cache
2569          */
2570         mutex_lock(&trans->transaction->cache_write_mutex);
2571         while (!list_empty(&dirty)) {
2572                 bool drop_reserve = true;
2573
2574                 cache = list_first_entry(&dirty, struct btrfs_block_group,
2575                                          dirty_list);
2576                 /*
2577                  * This can happen if something re-dirties a block group that
2578                  * is already under IO.  Just wait for it to finish and then do
2579                  * it all again
2580                  */
2581                 if (!list_empty(&cache->io_list)) {
2582                         list_del_init(&cache->io_list);
2583                         btrfs_wait_cache_io(trans, cache, path);
2584                         btrfs_put_block_group(cache);
2585                 }
2586
2587
2588                 /*
2589                  * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2590                  * it should update the cache_state.  Don't delete until after
2591                  * we wait.
2592                  *
2593                  * Since we're not running in the commit critical section
2594                  * we need the dirty_bgs_lock to protect from update_block_group
2595                  */
2596                 spin_lock(&cur_trans->dirty_bgs_lock);
2597                 list_del_init(&cache->dirty_list);
2598                 spin_unlock(&cur_trans->dirty_bgs_lock);
2599
2600                 should_put = 1;
2601
2602                 cache_save_setup(cache, trans, path);
2603
2604                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2605                         cache->io_ctl.inode = NULL;
2606                         ret = btrfs_write_out_cache(trans, cache, path);
2607                         if (ret == 0 && cache->io_ctl.inode) {
2608                                 num_started++;
2609                                 should_put = 0;
2610
2611                                 /*
2612                                  * The cache_write_mutex is protecting the
2613                                  * io_list, also refer to the definition of
2614                                  * btrfs_transaction::io_bgs for more details
2615                                  */
2616                                 list_add_tail(&cache->io_list, io);
2617                         } else {
2618                                 /*
2619                                  * If we failed to write the cache, the
2620                                  * generation will be bad and life goes on
2621                                  */
2622                                 ret = 0;
2623                         }
2624                 }
2625                 if (!ret) {
2626                         ret = update_block_group_item(trans, path, cache);
2627                         /*
2628                          * Our block group might still be attached to the list
2629                          * of new block groups in the transaction handle of some
2630                          * other task (struct btrfs_trans_handle->new_bgs). This
2631                          * means its block group item isn't yet in the extent
2632                          * tree. If this happens ignore the error, as we will
2633                          * try again later in the critical section of the
2634                          * transaction commit.
2635                          */
2636                         if (ret == -ENOENT) {
2637                                 ret = 0;
2638                                 spin_lock(&cur_trans->dirty_bgs_lock);
2639                                 if (list_empty(&cache->dirty_list)) {
2640                                         list_add_tail(&cache->dirty_list,
2641                                                       &cur_trans->dirty_bgs);
2642                                         btrfs_get_block_group(cache);
2643                                         drop_reserve = false;
2644                                 }
2645                                 spin_unlock(&cur_trans->dirty_bgs_lock);
2646                         } else if (ret) {
2647                                 btrfs_abort_transaction(trans, ret);
2648                         }
2649                 }
2650
2651                 /* If it's not on the io list, we need to put the block group */
2652                 if (should_put)
2653                         btrfs_put_block_group(cache);
2654                 if (drop_reserve)
2655                         btrfs_delayed_refs_rsv_release(fs_info, 1);
2656
2657                 if (ret)
2658                         break;
2659
2660                 /*
2661                  * Avoid blocking other tasks for too long. It might even save
2662                  * us from writing caches for block groups that are going to be
2663                  * removed.
2664                  */
2665                 mutex_unlock(&trans->transaction->cache_write_mutex);
2666                 mutex_lock(&trans->transaction->cache_write_mutex);
2667         }
2668         mutex_unlock(&trans->transaction->cache_write_mutex);
2669
2670         /*
2671          * Go through delayed refs for all the stuff we've just kicked off
2672          * and then loop back (just once)
2673          */
2674         ret = btrfs_run_delayed_refs(trans, 0);
2675         if (!ret && loops == 0) {
2676                 loops++;
2677                 spin_lock(&cur_trans->dirty_bgs_lock);
2678                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2679                 /*
2680                  * dirty_bgs_lock protects us from concurrent block group
2681                  * deletes too (not just cache_write_mutex).
2682                  */
2683                 if (!list_empty(&dirty)) {
2684                         spin_unlock(&cur_trans->dirty_bgs_lock);
2685                         goto again;
2686                 }
2687                 spin_unlock(&cur_trans->dirty_bgs_lock);
2688         } else if (ret < 0) {
2689                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2690         }
2691
2692         btrfs_free_path(path);
2693         return ret;
2694 }
2695
2696 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2697 {
2698         struct btrfs_fs_info *fs_info = trans->fs_info;
2699         struct btrfs_block_group *cache;
2700         struct btrfs_transaction *cur_trans = trans->transaction;
2701         int ret = 0;
2702         int should_put;
2703         struct btrfs_path *path;
2704         struct list_head *io = &cur_trans->io_bgs;
2705         int num_started = 0;
2706
2707         path = btrfs_alloc_path();
2708         if (!path)
2709                 return -ENOMEM;
2710
2711         /*
2712          * Even though we are in the critical section of the transaction commit,
2713          * we can still have concurrent tasks adding elements to this
2714          * transaction's list of dirty block groups. These tasks correspond to
2715          * endio free space workers started when writeback finishes for a
2716          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2717          * allocate new block groups as a result of COWing nodes of the root
2718          * tree when updating the free space inode. The writeback for the space
2719          * caches is triggered by an earlier call to
2720          * btrfs_start_dirty_block_groups() and iterations of the following
2721          * loop.
2722          * Also we want to do the cache_save_setup first and then run the
2723          * delayed refs to make sure we have the best chance at doing this all
2724          * in one shot.
2725          */
2726         spin_lock(&cur_trans->dirty_bgs_lock);
2727         while (!list_empty(&cur_trans->dirty_bgs)) {
2728                 cache = list_first_entry(&cur_trans->dirty_bgs,
2729                                          struct btrfs_block_group,
2730                                          dirty_list);
2731
2732                 /*
2733                  * This can happen if cache_save_setup re-dirties a block group
2734                  * that is already under IO.  Just wait for it to finish and
2735                  * then do it all again
2736                  */
2737                 if (!list_empty(&cache->io_list)) {
2738                         spin_unlock(&cur_trans->dirty_bgs_lock);
2739                         list_del_init(&cache->io_list);
2740                         btrfs_wait_cache_io(trans, cache, path);
2741                         btrfs_put_block_group(cache);
2742                         spin_lock(&cur_trans->dirty_bgs_lock);
2743                 }
2744
2745                 /*
2746                  * Don't remove from the dirty list until after we've waited on
2747                  * any pending IO
2748                  */
2749                 list_del_init(&cache->dirty_list);
2750                 spin_unlock(&cur_trans->dirty_bgs_lock);
2751                 should_put = 1;
2752
2753                 cache_save_setup(cache, trans, path);
2754
2755                 if (!ret)
2756                         ret = btrfs_run_delayed_refs(trans,
2757                                                      (unsigned long) -1);
2758
2759                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2760                         cache->io_ctl.inode = NULL;
2761                         ret = btrfs_write_out_cache(trans, cache, path);
2762                         if (ret == 0 && cache->io_ctl.inode) {
2763                                 num_started++;
2764                                 should_put = 0;
2765                                 list_add_tail(&cache->io_list, io);
2766                         } else {
2767                                 /*
2768                                  * If we failed to write the cache, the
2769                                  * generation will be bad and life goes on
2770                                  */
2771                                 ret = 0;
2772                         }
2773                 }
2774                 if (!ret) {
2775                         ret = update_block_group_item(trans, path, cache);
2776                         /*
2777                          * One of the free space endio workers might have
2778                          * created a new block group while updating a free space
2779                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
2780                          * and hasn't released its transaction handle yet, in
2781                          * which case the new block group is still attached to
2782                          * its transaction handle and its creation has not
2783                          * finished yet (no block group item in the extent tree
2784                          * yet, etc). If this is the case, wait for all free
2785                          * space endio workers to finish and retry. This is a
2786                          * a very rare case so no need for a more efficient and
2787                          * complex approach.
2788                          */
2789                         if (ret == -ENOENT) {
2790                                 wait_event(cur_trans->writer_wait,
2791                                    atomic_read(&cur_trans->num_writers) == 1);
2792                                 ret = update_block_group_item(trans, path, cache);
2793                         }
2794                         if (ret)
2795                                 btrfs_abort_transaction(trans, ret);
2796                 }
2797
2798                 /* If its not on the io list, we need to put the block group */
2799                 if (should_put)
2800                         btrfs_put_block_group(cache);
2801                 btrfs_delayed_refs_rsv_release(fs_info, 1);
2802                 spin_lock(&cur_trans->dirty_bgs_lock);
2803         }
2804         spin_unlock(&cur_trans->dirty_bgs_lock);
2805
2806         /*
2807          * Refer to the definition of io_bgs member for details why it's safe
2808          * to use it without any locking
2809          */
2810         while (!list_empty(io)) {
2811                 cache = list_first_entry(io, struct btrfs_block_group,
2812                                          io_list);
2813                 list_del_init(&cache->io_list);
2814                 btrfs_wait_cache_io(trans, cache, path);
2815                 btrfs_put_block_group(cache);
2816         }
2817
2818         btrfs_free_path(path);
2819         return ret;
2820 }
2821
2822 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2823                              u64 bytenr, u64 num_bytes, int alloc)
2824 {
2825         struct btrfs_fs_info *info = trans->fs_info;
2826         struct btrfs_block_group *cache = NULL;
2827         u64 total = num_bytes;
2828         u64 old_val;
2829         u64 byte_in_group;
2830         int factor;
2831         int ret = 0;
2832
2833         /* Block accounting for super block */
2834         spin_lock(&info->delalloc_root_lock);
2835         old_val = btrfs_super_bytes_used(info->super_copy);
2836         if (alloc)
2837                 old_val += num_bytes;
2838         else
2839                 old_val -= num_bytes;
2840         btrfs_set_super_bytes_used(info->super_copy, old_val);
2841         spin_unlock(&info->delalloc_root_lock);
2842
2843         while (total) {
2844                 cache = btrfs_lookup_block_group(info, bytenr);
2845                 if (!cache) {
2846                         ret = -ENOENT;
2847                         break;
2848                 }
2849                 factor = btrfs_bg_type_to_factor(cache->flags);
2850
2851                 /*
2852                  * If this block group has free space cache written out, we
2853                  * need to make sure to load it if we are removing space.  This
2854                  * is because we need the unpinning stage to actually add the
2855                  * space back to the block group, otherwise we will leak space.
2856                  */
2857                 if (!alloc && !btrfs_block_group_done(cache))
2858                         btrfs_cache_block_group(cache, 1);
2859
2860                 byte_in_group = bytenr - cache->start;
2861                 WARN_ON(byte_in_group > cache->length);
2862
2863                 spin_lock(&cache->space_info->lock);
2864                 spin_lock(&cache->lock);
2865
2866                 if (btrfs_test_opt(info, SPACE_CACHE) &&
2867                     cache->disk_cache_state < BTRFS_DC_CLEAR)
2868                         cache->disk_cache_state = BTRFS_DC_CLEAR;
2869
2870                 old_val = cache->used;
2871                 num_bytes = min(total, cache->length - byte_in_group);
2872                 if (alloc) {
2873                         old_val += num_bytes;
2874                         cache->used = old_val;
2875                         cache->reserved -= num_bytes;
2876                         cache->space_info->bytes_reserved -= num_bytes;
2877                         cache->space_info->bytes_used += num_bytes;
2878                         cache->space_info->disk_used += num_bytes * factor;
2879                         spin_unlock(&cache->lock);
2880                         spin_unlock(&cache->space_info->lock);
2881                 } else {
2882                         old_val -= num_bytes;
2883                         cache->used = old_val;
2884                         cache->pinned += num_bytes;
2885                         btrfs_space_info_update_bytes_pinned(info,
2886                                         cache->space_info, num_bytes);
2887                         cache->space_info->bytes_used -= num_bytes;
2888                         cache->space_info->disk_used -= num_bytes * factor;
2889                         spin_unlock(&cache->lock);
2890                         spin_unlock(&cache->space_info->lock);
2891
2892                         percpu_counter_add_batch(
2893                                         &cache->space_info->total_bytes_pinned,
2894                                         num_bytes,
2895                                         BTRFS_TOTAL_BYTES_PINNED_BATCH);
2896                         set_extent_dirty(&trans->transaction->pinned_extents,
2897                                          bytenr, bytenr + num_bytes - 1,
2898                                          GFP_NOFS | __GFP_NOFAIL);
2899                 }
2900
2901                 spin_lock(&trans->transaction->dirty_bgs_lock);
2902                 if (list_empty(&cache->dirty_list)) {
2903                         list_add_tail(&cache->dirty_list,
2904                                       &trans->transaction->dirty_bgs);
2905                         trans->delayed_ref_updates++;
2906                         btrfs_get_block_group(cache);
2907                 }
2908                 spin_unlock(&trans->transaction->dirty_bgs_lock);
2909
2910                 /*
2911                  * No longer have used bytes in this block group, queue it for
2912                  * deletion. We do this after adding the block group to the
2913                  * dirty list to avoid races between cleaner kthread and space
2914                  * cache writeout.
2915                  */
2916                 if (!alloc && old_val == 0) {
2917                         if (!btrfs_test_opt(info, DISCARD_ASYNC))
2918                                 btrfs_mark_bg_unused(cache);
2919                 }
2920
2921                 btrfs_put_block_group(cache);
2922                 total -= num_bytes;
2923                 bytenr += num_bytes;
2924         }
2925
2926         /* Modified block groups are accounted for in the delayed_refs_rsv. */
2927         btrfs_update_delayed_refs_rsv(trans);
2928         return ret;
2929 }
2930
2931 /**
2932  * btrfs_add_reserved_bytes - update the block_group and space info counters
2933  * @cache:      The cache we are manipulating
2934  * @ram_bytes:  The number of bytes of file content, and will be same to
2935  *              @num_bytes except for the compress path.
2936  * @num_bytes:  The number of bytes in question
2937  * @delalloc:   The blocks are allocated for the delalloc write
2938  *
2939  * This is called by the allocator when it reserves space. If this is a
2940  * reservation and the block group has become read only we cannot make the
2941  * reservation and return -EAGAIN, otherwise this function always succeeds.
2942  */
2943 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
2944                              u64 ram_bytes, u64 num_bytes, int delalloc)
2945 {
2946         struct btrfs_space_info *space_info = cache->space_info;
2947         int ret = 0;
2948
2949         spin_lock(&space_info->lock);
2950         spin_lock(&cache->lock);
2951         if (cache->ro) {
2952                 ret = -EAGAIN;
2953         } else {
2954                 cache->reserved += num_bytes;
2955                 space_info->bytes_reserved += num_bytes;
2956                 trace_btrfs_space_reservation(cache->fs_info, "space_info",
2957                                               space_info->flags, num_bytes, 1);
2958                 btrfs_space_info_update_bytes_may_use(cache->fs_info,
2959                                                       space_info, -ram_bytes);
2960                 if (delalloc)
2961                         cache->delalloc_bytes += num_bytes;
2962         }
2963         spin_unlock(&cache->lock);
2964         spin_unlock(&space_info->lock);
2965         return ret;
2966 }
2967
2968 /**
2969  * btrfs_free_reserved_bytes - update the block_group and space info counters
2970  * @cache:      The cache we are manipulating
2971  * @num_bytes:  The number of bytes in question
2972  * @delalloc:   The blocks are allocated for the delalloc write
2973  *
2974  * This is called by somebody who is freeing space that was never actually used
2975  * on disk.  For example if you reserve some space for a new leaf in transaction
2976  * A and before transaction A commits you free that leaf, you call this with
2977  * reserve set to 0 in order to clear the reservation.
2978  */
2979 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
2980                                u64 num_bytes, int delalloc)
2981 {
2982         struct btrfs_space_info *space_info = cache->space_info;
2983
2984         spin_lock(&space_info->lock);
2985         spin_lock(&cache->lock);
2986         if (cache->ro)
2987                 space_info->bytes_readonly += num_bytes;
2988         cache->reserved -= num_bytes;
2989         space_info->bytes_reserved -= num_bytes;
2990         space_info->max_extent_size = 0;
2991
2992         if (delalloc)
2993                 cache->delalloc_bytes -= num_bytes;
2994         spin_unlock(&cache->lock);
2995         spin_unlock(&space_info->lock);
2996 }
2997
2998 static void force_metadata_allocation(struct btrfs_fs_info *info)
2999 {
3000         struct list_head *head = &info->space_info;
3001         struct btrfs_space_info *found;
3002
3003         rcu_read_lock();
3004         list_for_each_entry_rcu(found, head, list) {
3005                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3006                         found->force_alloc = CHUNK_ALLOC_FORCE;
3007         }
3008         rcu_read_unlock();
3009 }
3010
3011 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3012                               struct btrfs_space_info *sinfo, int force)
3013 {
3014         u64 bytes_used = btrfs_space_info_used(sinfo, false);
3015         u64 thresh;
3016
3017         if (force == CHUNK_ALLOC_FORCE)
3018                 return 1;
3019
3020         /*
3021          * in limited mode, we want to have some free space up to
3022          * about 1% of the FS size.
3023          */
3024         if (force == CHUNK_ALLOC_LIMITED) {
3025                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3026                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3027
3028                 if (sinfo->total_bytes - bytes_used < thresh)
3029                         return 1;
3030         }
3031
3032         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3033                 return 0;
3034         return 1;
3035 }
3036
3037 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3038 {
3039         u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3040
3041         return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3042 }
3043
3044 /*
3045  * If force is CHUNK_ALLOC_FORCE:
3046  *    - return 1 if it successfully allocates a chunk,
3047  *    - return errors including -ENOSPC otherwise.
3048  * If force is NOT CHUNK_ALLOC_FORCE:
3049  *    - return 0 if it doesn't need to allocate a new chunk,
3050  *    - return 1 if it successfully allocates a chunk,
3051  *    - return errors including -ENOSPC otherwise.
3052  */
3053 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3054                       enum btrfs_chunk_alloc_enum force)
3055 {
3056         struct btrfs_fs_info *fs_info = trans->fs_info;
3057         struct btrfs_space_info *space_info;
3058         bool wait_for_alloc = false;
3059         bool should_alloc = false;
3060         int ret = 0;
3061
3062         /* Don't re-enter if we're already allocating a chunk */
3063         if (trans->allocating_chunk)
3064                 return -ENOSPC;
3065
3066         space_info = btrfs_find_space_info(fs_info, flags);
3067         ASSERT(space_info);
3068
3069         do {
3070                 spin_lock(&space_info->lock);
3071                 if (force < space_info->force_alloc)
3072                         force = space_info->force_alloc;
3073                 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3074                 if (space_info->full) {
3075                         /* No more free physical space */
3076                         if (should_alloc)
3077                                 ret = -ENOSPC;
3078                         else
3079                                 ret = 0;
3080                         spin_unlock(&space_info->lock);
3081                         return ret;
3082                 } else if (!should_alloc) {
3083                         spin_unlock(&space_info->lock);
3084                         return 0;
3085                 } else if (space_info->chunk_alloc) {
3086                         /*
3087                          * Someone is already allocating, so we need to block
3088                          * until this someone is finished and then loop to
3089                          * recheck if we should continue with our allocation
3090                          * attempt.
3091                          */
3092                         wait_for_alloc = true;
3093                         spin_unlock(&space_info->lock);
3094                         mutex_lock(&fs_info->chunk_mutex);
3095                         mutex_unlock(&fs_info->chunk_mutex);
3096                 } else {
3097                         /* Proceed with allocation */
3098                         space_info->chunk_alloc = 1;
3099                         wait_for_alloc = false;
3100                         spin_unlock(&space_info->lock);
3101                 }
3102
3103                 cond_resched();
3104         } while (wait_for_alloc);
3105
3106         mutex_lock(&fs_info->chunk_mutex);
3107         trans->allocating_chunk = true;
3108
3109         /*
3110          * If we have mixed data/metadata chunks we want to make sure we keep
3111          * allocating mixed chunks instead of individual chunks.
3112          */
3113         if (btrfs_mixed_space_info(space_info))
3114                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3115
3116         /*
3117          * if we're doing a data chunk, go ahead and make sure that
3118          * we keep a reasonable number of metadata chunks allocated in the
3119          * FS as well.
3120          */
3121         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3122                 fs_info->data_chunk_allocations++;
3123                 if (!(fs_info->data_chunk_allocations %
3124                       fs_info->metadata_ratio))
3125                         force_metadata_allocation(fs_info);
3126         }
3127
3128         /*
3129          * Check if we have enough space in SYSTEM chunk because we may need
3130          * to update devices.
3131          */
3132         check_system_chunk(trans, flags);
3133
3134         ret = btrfs_alloc_chunk(trans, flags);
3135         trans->allocating_chunk = false;
3136
3137         spin_lock(&space_info->lock);
3138         if (ret < 0) {
3139                 if (ret == -ENOSPC)
3140                         space_info->full = 1;
3141                 else
3142                         goto out;
3143         } else {
3144                 ret = 1;
3145                 space_info->max_extent_size = 0;
3146         }
3147
3148         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3149 out:
3150         space_info->chunk_alloc = 0;
3151         spin_unlock(&space_info->lock);
3152         mutex_unlock(&fs_info->chunk_mutex);
3153         /*
3154          * When we allocate a new chunk we reserve space in the chunk block
3155          * reserve to make sure we can COW nodes/leafs in the chunk tree or
3156          * add new nodes/leafs to it if we end up needing to do it when
3157          * inserting the chunk item and updating device items as part of the
3158          * second phase of chunk allocation, performed by
3159          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3160          * large number of new block groups to create in our transaction
3161          * handle's new_bgs list to avoid exhausting the chunk block reserve
3162          * in extreme cases - like having a single transaction create many new
3163          * block groups when starting to write out the free space caches of all
3164          * the block groups that were made dirty during the lifetime of the
3165          * transaction.
3166          */
3167         if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3168                 btrfs_create_pending_block_groups(trans);
3169
3170         return ret;
3171 }
3172
3173 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3174 {
3175         u64 num_dev;
3176
3177         num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3178         if (!num_dev)
3179                 num_dev = fs_info->fs_devices->rw_devices;
3180
3181         return num_dev;
3182 }
3183
3184 /*
3185  * Reserve space in the system space for allocating or removing a chunk
3186  */
3187 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3188 {
3189         struct btrfs_fs_info *fs_info = trans->fs_info;
3190         struct btrfs_space_info *info;
3191         u64 left;
3192         u64 thresh;
3193         int ret = 0;
3194         u64 num_devs;
3195
3196         /*
3197          * Needed because we can end up allocating a system chunk and for an
3198          * atomic and race free space reservation in the chunk block reserve.
3199          */
3200         lockdep_assert_held(&fs_info->chunk_mutex);
3201
3202         info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3203         spin_lock(&info->lock);
3204         left = info->total_bytes - btrfs_space_info_used(info, true);
3205         spin_unlock(&info->lock);
3206
3207         num_devs = get_profile_num_devs(fs_info, type);
3208
3209         /* num_devs device items to update and 1 chunk item to add or remove */
3210         thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3211                 btrfs_calc_insert_metadata_size(fs_info, 1);
3212
3213         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3214                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3215                            left, thresh, type);
3216                 btrfs_dump_space_info(fs_info, info, 0, 0);
3217         }
3218
3219         if (left < thresh) {
3220                 u64 flags = btrfs_system_alloc_profile(fs_info);
3221
3222                 /*
3223                  * Ignore failure to create system chunk. We might end up not
3224                  * needing it, as we might not need to COW all nodes/leafs from
3225                  * the paths we visit in the chunk tree (they were already COWed
3226                  * or created in the current transaction for example).
3227                  */
3228                 ret = btrfs_alloc_chunk(trans, flags);
3229         }
3230
3231         if (!ret) {
3232                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3233                                           &fs_info->chunk_block_rsv,
3234                                           thresh, BTRFS_RESERVE_NO_FLUSH);
3235                 if (!ret)
3236                         trans->chunk_bytes_reserved += thresh;
3237         }
3238 }
3239
3240 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3241 {
3242         struct btrfs_block_group *block_group;
3243         u64 last = 0;
3244
3245         while (1) {
3246                 struct inode *inode;
3247
3248                 block_group = btrfs_lookup_first_block_group(info, last);
3249                 while (block_group) {
3250                         btrfs_wait_block_group_cache_done(block_group);
3251                         spin_lock(&block_group->lock);
3252                         if (block_group->iref)
3253                                 break;
3254                         spin_unlock(&block_group->lock);
3255                         block_group = btrfs_next_block_group(block_group);
3256                 }
3257                 if (!block_group) {
3258                         if (last == 0)
3259                                 break;
3260                         last = 0;
3261                         continue;
3262                 }
3263
3264                 inode = block_group->inode;
3265                 block_group->iref = 0;
3266                 block_group->inode = NULL;
3267                 spin_unlock(&block_group->lock);
3268                 ASSERT(block_group->io_ctl.inode == NULL);
3269                 iput(inode);
3270                 last = block_group->start + block_group->length;
3271                 btrfs_put_block_group(block_group);
3272         }
3273 }
3274
3275 /*
3276  * Must be called only after stopping all workers, since we could have block
3277  * group caching kthreads running, and therefore they could race with us if we
3278  * freed the block groups before stopping them.
3279  */
3280 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3281 {
3282         struct btrfs_block_group *block_group;
3283         struct btrfs_space_info *space_info;
3284         struct btrfs_caching_control *caching_ctl;
3285         struct rb_node *n;
3286
3287         down_write(&info->commit_root_sem);
3288         while (!list_empty(&info->caching_block_groups)) {
3289                 caching_ctl = list_entry(info->caching_block_groups.next,
3290                                          struct btrfs_caching_control, list);
3291                 list_del(&caching_ctl->list);
3292                 btrfs_put_caching_control(caching_ctl);
3293         }
3294         up_write(&info->commit_root_sem);
3295
3296         spin_lock(&info->unused_bgs_lock);
3297         while (!list_empty(&info->unused_bgs)) {
3298                 block_group = list_first_entry(&info->unused_bgs,
3299                                                struct btrfs_block_group,
3300                                                bg_list);
3301                 list_del_init(&block_group->bg_list);
3302                 btrfs_put_block_group(block_group);
3303         }
3304         spin_unlock(&info->unused_bgs_lock);
3305
3306         spin_lock(&info->block_group_cache_lock);
3307         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3308                 block_group = rb_entry(n, struct btrfs_block_group,
3309                                        cache_node);
3310                 rb_erase(&block_group->cache_node,
3311                          &info->block_group_cache_tree);
3312                 RB_CLEAR_NODE(&block_group->cache_node);
3313                 spin_unlock(&info->block_group_cache_lock);
3314
3315                 down_write(&block_group->space_info->groups_sem);
3316                 list_del(&block_group->list);
3317                 up_write(&block_group->space_info->groups_sem);
3318
3319                 /*
3320                  * We haven't cached this block group, which means we could
3321                  * possibly have excluded extents on this block group.
3322                  */
3323                 if (block_group->cached == BTRFS_CACHE_NO ||
3324                     block_group->cached == BTRFS_CACHE_ERROR)
3325                         btrfs_free_excluded_extents(block_group);
3326
3327                 btrfs_remove_free_space_cache(block_group);
3328                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3329                 ASSERT(list_empty(&block_group->dirty_list));
3330                 ASSERT(list_empty(&block_group->io_list));
3331                 ASSERT(list_empty(&block_group->bg_list));
3332                 ASSERT(refcount_read(&block_group->refs) == 1);
3333                 btrfs_put_block_group(block_group);
3334
3335                 spin_lock(&info->block_group_cache_lock);
3336         }
3337         spin_unlock(&info->block_group_cache_lock);
3338
3339         /*
3340          * Now that all the block groups are freed, go through and free all the
3341          * space_info structs.  This is only called during the final stages of
3342          * unmount, and so we know nobody is using them.  We call
3343          * synchronize_rcu() once before we start, just to be on the safe side.
3344          */
3345         synchronize_rcu();
3346
3347         btrfs_release_global_block_rsv(info);
3348
3349         while (!list_empty(&info->space_info)) {
3350                 space_info = list_entry(info->space_info.next,
3351                                         struct btrfs_space_info,
3352                                         list);
3353
3354                 /*
3355                  * Do not hide this behind enospc_debug, this is actually
3356                  * important and indicates a real bug if this happens.
3357                  */
3358                 if (WARN_ON(space_info->bytes_pinned > 0 ||
3359                             space_info->bytes_reserved > 0 ||
3360                             space_info->bytes_may_use > 0))
3361                         btrfs_dump_space_info(info, space_info, 0, 0);
3362                 WARN_ON(space_info->reclaim_size > 0);
3363                 list_del(&space_info->list);
3364                 btrfs_sysfs_remove_space_info(space_info);
3365         }
3366         return 0;
3367 }
3368
3369 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3370 {
3371         atomic_inc(&cache->frozen);
3372 }
3373
3374 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3375 {
3376         struct btrfs_fs_info *fs_info = block_group->fs_info;
3377         struct extent_map_tree *em_tree;
3378         struct extent_map *em;
3379         bool cleanup;
3380
3381         spin_lock(&block_group->lock);
3382         cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3383                    block_group->removed);
3384         spin_unlock(&block_group->lock);
3385
3386         if (cleanup) {
3387                 em_tree = &fs_info->mapping_tree;
3388                 write_lock(&em_tree->lock);
3389                 em = lookup_extent_mapping(em_tree, block_group->start,
3390                                            1);
3391                 BUG_ON(!em); /* logic error, can't happen */
3392                 remove_extent_mapping(em_tree, em);
3393                 write_unlock(&em_tree->lock);
3394
3395                 /* once for us and once for the tree */
3396                 free_extent_map(em);
3397                 free_extent_map(em);
3398
3399                 /*
3400                  * We may have left one free space entry and other possible
3401                  * tasks trimming this block group have left 1 entry each one.
3402                  * Free them if any.
3403                  */
3404                 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3405         }
3406 }