exfat: write multiple sectors at once
[linux-2.6-microblaze.git] / fs / btrfs / block-group.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18
19 /*
20  * Return target flags in extended format or 0 if restripe for this chunk_type
21  * is not in progress
22  *
23  * Should be called with balance_lock held
24  */
25 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
26 {
27         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
28         u64 target = 0;
29
30         if (!bctl)
31                 return 0;
32
33         if (flags & BTRFS_BLOCK_GROUP_DATA &&
34             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
35                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
36         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
37                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
38                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
39         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
40                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
41                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
42         }
43
44         return target;
45 }
46
47 /*
48  * @flags: available profiles in extended format (see ctree.h)
49  *
50  * Return reduced profile in chunk format.  If profile changing is in progress
51  * (either running or paused) picks the target profile (if it's already
52  * available), otherwise falls back to plain reducing.
53  */
54 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
55 {
56         u64 num_devices = fs_info->fs_devices->rw_devices;
57         u64 target;
58         u64 raid_type;
59         u64 allowed = 0;
60
61         /*
62          * See if restripe for this chunk_type is in progress, if so try to
63          * reduce to the target profile
64          */
65         spin_lock(&fs_info->balance_lock);
66         target = get_restripe_target(fs_info, flags);
67         if (target) {
68                 /* Pick target profile only if it's already available */
69                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
70                         spin_unlock(&fs_info->balance_lock);
71                         return extended_to_chunk(target);
72                 }
73         }
74         spin_unlock(&fs_info->balance_lock);
75
76         /* First, mask out the RAID levels which aren't possible */
77         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
78                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
79                         allowed |= btrfs_raid_array[raid_type].bg_flag;
80         }
81         allowed &= flags;
82
83         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
84                 allowed = BTRFS_BLOCK_GROUP_RAID6;
85         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
86                 allowed = BTRFS_BLOCK_GROUP_RAID5;
87         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
88                 allowed = BTRFS_BLOCK_GROUP_RAID10;
89         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
90                 allowed = BTRFS_BLOCK_GROUP_RAID1;
91         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
92                 allowed = BTRFS_BLOCK_GROUP_RAID0;
93
94         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
95
96         return extended_to_chunk(flags | allowed);
97 }
98
99 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
100 {
101         unsigned seq;
102         u64 flags;
103
104         do {
105                 flags = orig_flags;
106                 seq = read_seqbegin(&fs_info->profiles_lock);
107
108                 if (flags & BTRFS_BLOCK_GROUP_DATA)
109                         flags |= fs_info->avail_data_alloc_bits;
110                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
111                         flags |= fs_info->avail_system_alloc_bits;
112                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
113                         flags |= fs_info->avail_metadata_alloc_bits;
114         } while (read_seqretry(&fs_info->profiles_lock, seq));
115
116         return btrfs_reduce_alloc_profile(fs_info, flags);
117 }
118
119 void btrfs_get_block_group(struct btrfs_block_group *cache)
120 {
121         atomic_inc(&cache->count);
122 }
123
124 void btrfs_put_block_group(struct btrfs_block_group *cache)
125 {
126         if (atomic_dec_and_test(&cache->count)) {
127                 WARN_ON(cache->pinned > 0);
128                 WARN_ON(cache->reserved > 0);
129
130                 /*
131                  * A block_group shouldn't be on the discard_list anymore.
132                  * Remove the block_group from the discard_list to prevent us
133                  * from causing a panic due to NULL pointer dereference.
134                  */
135                 if (WARN_ON(!list_empty(&cache->discard_list)))
136                         btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
137                                                   cache);
138
139                 /*
140                  * If not empty, someone is still holding mutex of
141                  * full_stripe_lock, which can only be released by caller.
142                  * And it will definitely cause use-after-free when caller
143                  * tries to release full stripe lock.
144                  *
145                  * No better way to resolve, but only to warn.
146                  */
147                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
148                 kfree(cache->free_space_ctl);
149                 kfree(cache);
150         }
151 }
152
153 /*
154  * This adds the block group to the fs_info rb tree for the block group cache
155  */
156 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
157                                        struct btrfs_block_group *block_group)
158 {
159         struct rb_node **p;
160         struct rb_node *parent = NULL;
161         struct btrfs_block_group *cache;
162
163         ASSERT(block_group->length != 0);
164
165         spin_lock(&info->block_group_cache_lock);
166         p = &info->block_group_cache_tree.rb_node;
167
168         while (*p) {
169                 parent = *p;
170                 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
171                 if (block_group->start < cache->start) {
172                         p = &(*p)->rb_left;
173                 } else if (block_group->start > cache->start) {
174                         p = &(*p)->rb_right;
175                 } else {
176                         spin_unlock(&info->block_group_cache_lock);
177                         return -EEXIST;
178                 }
179         }
180
181         rb_link_node(&block_group->cache_node, parent, p);
182         rb_insert_color(&block_group->cache_node,
183                         &info->block_group_cache_tree);
184
185         if (info->first_logical_byte > block_group->start)
186                 info->first_logical_byte = block_group->start;
187
188         spin_unlock(&info->block_group_cache_lock);
189
190         return 0;
191 }
192
193 /*
194  * This will return the block group at or after bytenr if contains is 0, else
195  * it will return the block group that contains the bytenr
196  */
197 static struct btrfs_block_group *block_group_cache_tree_search(
198                 struct btrfs_fs_info *info, u64 bytenr, int contains)
199 {
200         struct btrfs_block_group *cache, *ret = NULL;
201         struct rb_node *n;
202         u64 end, start;
203
204         spin_lock(&info->block_group_cache_lock);
205         n = info->block_group_cache_tree.rb_node;
206
207         while (n) {
208                 cache = rb_entry(n, struct btrfs_block_group, cache_node);
209                 end = cache->start + cache->length - 1;
210                 start = cache->start;
211
212                 if (bytenr < start) {
213                         if (!contains && (!ret || start < ret->start))
214                                 ret = cache;
215                         n = n->rb_left;
216                 } else if (bytenr > start) {
217                         if (contains && bytenr <= end) {
218                                 ret = cache;
219                                 break;
220                         }
221                         n = n->rb_right;
222                 } else {
223                         ret = cache;
224                         break;
225                 }
226         }
227         if (ret) {
228                 btrfs_get_block_group(ret);
229                 if (bytenr == 0 && info->first_logical_byte > ret->start)
230                         info->first_logical_byte = ret->start;
231         }
232         spin_unlock(&info->block_group_cache_lock);
233
234         return ret;
235 }
236
237 /*
238  * Return the block group that starts at or after bytenr
239  */
240 struct btrfs_block_group *btrfs_lookup_first_block_group(
241                 struct btrfs_fs_info *info, u64 bytenr)
242 {
243         return block_group_cache_tree_search(info, bytenr, 0);
244 }
245
246 /*
247  * Return the block group that contains the given bytenr
248  */
249 struct btrfs_block_group *btrfs_lookup_block_group(
250                 struct btrfs_fs_info *info, u64 bytenr)
251 {
252         return block_group_cache_tree_search(info, bytenr, 1);
253 }
254
255 struct btrfs_block_group *btrfs_next_block_group(
256                 struct btrfs_block_group *cache)
257 {
258         struct btrfs_fs_info *fs_info = cache->fs_info;
259         struct rb_node *node;
260
261         spin_lock(&fs_info->block_group_cache_lock);
262
263         /* If our block group was removed, we need a full search. */
264         if (RB_EMPTY_NODE(&cache->cache_node)) {
265                 const u64 next_bytenr = cache->start + cache->length;
266
267                 spin_unlock(&fs_info->block_group_cache_lock);
268                 btrfs_put_block_group(cache);
269                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
270         }
271         node = rb_next(&cache->cache_node);
272         btrfs_put_block_group(cache);
273         if (node) {
274                 cache = rb_entry(node, struct btrfs_block_group, cache_node);
275                 btrfs_get_block_group(cache);
276         } else
277                 cache = NULL;
278         spin_unlock(&fs_info->block_group_cache_lock);
279         return cache;
280 }
281
282 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
283 {
284         struct btrfs_block_group *bg;
285         bool ret = true;
286
287         bg = btrfs_lookup_block_group(fs_info, bytenr);
288         if (!bg)
289                 return false;
290
291         spin_lock(&bg->lock);
292         if (bg->ro)
293                 ret = false;
294         else
295                 atomic_inc(&bg->nocow_writers);
296         spin_unlock(&bg->lock);
297
298         /* No put on block group, done by btrfs_dec_nocow_writers */
299         if (!ret)
300                 btrfs_put_block_group(bg);
301
302         return ret;
303 }
304
305 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
306 {
307         struct btrfs_block_group *bg;
308
309         bg = btrfs_lookup_block_group(fs_info, bytenr);
310         ASSERT(bg);
311         if (atomic_dec_and_test(&bg->nocow_writers))
312                 wake_up_var(&bg->nocow_writers);
313         /*
314          * Once for our lookup and once for the lookup done by a previous call
315          * to btrfs_inc_nocow_writers()
316          */
317         btrfs_put_block_group(bg);
318         btrfs_put_block_group(bg);
319 }
320
321 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
322 {
323         wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
324 }
325
326 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
327                                         const u64 start)
328 {
329         struct btrfs_block_group *bg;
330
331         bg = btrfs_lookup_block_group(fs_info, start);
332         ASSERT(bg);
333         if (atomic_dec_and_test(&bg->reservations))
334                 wake_up_var(&bg->reservations);
335         btrfs_put_block_group(bg);
336 }
337
338 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
339 {
340         struct btrfs_space_info *space_info = bg->space_info;
341
342         ASSERT(bg->ro);
343
344         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
345                 return;
346
347         /*
348          * Our block group is read only but before we set it to read only,
349          * some task might have had allocated an extent from it already, but it
350          * has not yet created a respective ordered extent (and added it to a
351          * root's list of ordered extents).
352          * Therefore wait for any task currently allocating extents, since the
353          * block group's reservations counter is incremented while a read lock
354          * on the groups' semaphore is held and decremented after releasing
355          * the read access on that semaphore and creating the ordered extent.
356          */
357         down_write(&space_info->groups_sem);
358         up_write(&space_info->groups_sem);
359
360         wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
361 }
362
363 struct btrfs_caching_control *btrfs_get_caching_control(
364                 struct btrfs_block_group *cache)
365 {
366         struct btrfs_caching_control *ctl;
367
368         spin_lock(&cache->lock);
369         if (!cache->caching_ctl) {
370                 spin_unlock(&cache->lock);
371                 return NULL;
372         }
373
374         ctl = cache->caching_ctl;
375         refcount_inc(&ctl->count);
376         spin_unlock(&cache->lock);
377         return ctl;
378 }
379
380 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
381 {
382         if (refcount_dec_and_test(&ctl->count))
383                 kfree(ctl);
384 }
385
386 /*
387  * When we wait for progress in the block group caching, its because our
388  * allocation attempt failed at least once.  So, we must sleep and let some
389  * progress happen before we try again.
390  *
391  * This function will sleep at least once waiting for new free space to show
392  * up, and then it will check the block group free space numbers for our min
393  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
394  * a free extent of a given size, but this is a good start.
395  *
396  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
397  * any of the information in this block group.
398  */
399 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
400                                            u64 num_bytes)
401 {
402         struct btrfs_caching_control *caching_ctl;
403
404         caching_ctl = btrfs_get_caching_control(cache);
405         if (!caching_ctl)
406                 return;
407
408         wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
409                    (cache->free_space_ctl->free_space >= num_bytes));
410
411         btrfs_put_caching_control(caching_ctl);
412 }
413
414 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
415 {
416         struct btrfs_caching_control *caching_ctl;
417         int ret = 0;
418
419         caching_ctl = btrfs_get_caching_control(cache);
420         if (!caching_ctl)
421                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
422
423         wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
424         if (cache->cached == BTRFS_CACHE_ERROR)
425                 ret = -EIO;
426         btrfs_put_caching_control(caching_ctl);
427         return ret;
428 }
429
430 #ifdef CONFIG_BTRFS_DEBUG
431 static void fragment_free_space(struct btrfs_block_group *block_group)
432 {
433         struct btrfs_fs_info *fs_info = block_group->fs_info;
434         u64 start = block_group->start;
435         u64 len = block_group->length;
436         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
437                 fs_info->nodesize : fs_info->sectorsize;
438         u64 step = chunk << 1;
439
440         while (len > chunk) {
441                 btrfs_remove_free_space(block_group, start, chunk);
442                 start += step;
443                 if (len < step)
444                         len = 0;
445                 else
446                         len -= step;
447         }
448 }
449 #endif
450
451 /*
452  * This is only called by btrfs_cache_block_group, since we could have freed
453  * extents we need to check the pinned_extents for any extents that can't be
454  * used yet since their free space will be released as soon as the transaction
455  * commits.
456  */
457 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
458 {
459         struct btrfs_fs_info *info = block_group->fs_info;
460         u64 extent_start, extent_end, size, total_added = 0;
461         int ret;
462
463         while (start < end) {
464                 ret = find_first_extent_bit(&info->excluded_extents, start,
465                                             &extent_start, &extent_end,
466                                             EXTENT_DIRTY | EXTENT_UPTODATE,
467                                             NULL);
468                 if (ret)
469                         break;
470
471                 if (extent_start <= start) {
472                         start = extent_end + 1;
473                 } else if (extent_start > start && extent_start < end) {
474                         size = extent_start - start;
475                         total_added += size;
476                         ret = btrfs_add_free_space_async_trimmed(block_group,
477                                                                  start, size);
478                         BUG_ON(ret); /* -ENOMEM or logic error */
479                         start = extent_end + 1;
480                 } else {
481                         break;
482                 }
483         }
484
485         if (start < end) {
486                 size = end - start;
487                 total_added += size;
488                 ret = btrfs_add_free_space_async_trimmed(block_group, start,
489                                                          size);
490                 BUG_ON(ret); /* -ENOMEM or logic error */
491         }
492
493         return total_added;
494 }
495
496 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
497 {
498         struct btrfs_block_group *block_group = caching_ctl->block_group;
499         struct btrfs_fs_info *fs_info = block_group->fs_info;
500         struct btrfs_root *extent_root = fs_info->extent_root;
501         struct btrfs_path *path;
502         struct extent_buffer *leaf;
503         struct btrfs_key key;
504         u64 total_found = 0;
505         u64 last = 0;
506         u32 nritems;
507         int ret;
508         bool wakeup = true;
509
510         path = btrfs_alloc_path();
511         if (!path)
512                 return -ENOMEM;
513
514         last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
515
516 #ifdef CONFIG_BTRFS_DEBUG
517         /*
518          * If we're fragmenting we don't want to make anybody think we can
519          * allocate from this block group until we've had a chance to fragment
520          * the free space.
521          */
522         if (btrfs_should_fragment_free_space(block_group))
523                 wakeup = false;
524 #endif
525         /*
526          * We don't want to deadlock with somebody trying to allocate a new
527          * extent for the extent root while also trying to search the extent
528          * root to add free space.  So we skip locking and search the commit
529          * root, since its read-only
530          */
531         path->skip_locking = 1;
532         path->search_commit_root = 1;
533         path->reada = READA_FORWARD;
534
535         key.objectid = last;
536         key.offset = 0;
537         key.type = BTRFS_EXTENT_ITEM_KEY;
538
539 next:
540         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
541         if (ret < 0)
542                 goto out;
543
544         leaf = path->nodes[0];
545         nritems = btrfs_header_nritems(leaf);
546
547         while (1) {
548                 if (btrfs_fs_closing(fs_info) > 1) {
549                         last = (u64)-1;
550                         break;
551                 }
552
553                 if (path->slots[0] < nritems) {
554                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
555                 } else {
556                         ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
557                         if (ret)
558                                 break;
559
560                         if (need_resched() ||
561                             rwsem_is_contended(&fs_info->commit_root_sem)) {
562                                 if (wakeup)
563                                         caching_ctl->progress = last;
564                                 btrfs_release_path(path);
565                                 up_read(&fs_info->commit_root_sem);
566                                 mutex_unlock(&caching_ctl->mutex);
567                                 cond_resched();
568                                 mutex_lock(&caching_ctl->mutex);
569                                 down_read(&fs_info->commit_root_sem);
570                                 goto next;
571                         }
572
573                         ret = btrfs_next_leaf(extent_root, path);
574                         if (ret < 0)
575                                 goto out;
576                         if (ret)
577                                 break;
578                         leaf = path->nodes[0];
579                         nritems = btrfs_header_nritems(leaf);
580                         continue;
581                 }
582
583                 if (key.objectid < last) {
584                         key.objectid = last;
585                         key.offset = 0;
586                         key.type = BTRFS_EXTENT_ITEM_KEY;
587
588                         if (wakeup)
589                                 caching_ctl->progress = last;
590                         btrfs_release_path(path);
591                         goto next;
592                 }
593
594                 if (key.objectid < block_group->start) {
595                         path->slots[0]++;
596                         continue;
597                 }
598
599                 if (key.objectid >= block_group->start + block_group->length)
600                         break;
601
602                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
603                     key.type == BTRFS_METADATA_ITEM_KEY) {
604                         total_found += add_new_free_space(block_group, last,
605                                                           key.objectid);
606                         if (key.type == BTRFS_METADATA_ITEM_KEY)
607                                 last = key.objectid +
608                                         fs_info->nodesize;
609                         else
610                                 last = key.objectid + key.offset;
611
612                         if (total_found > CACHING_CTL_WAKE_UP) {
613                                 total_found = 0;
614                                 if (wakeup)
615                                         wake_up(&caching_ctl->wait);
616                         }
617                 }
618                 path->slots[0]++;
619         }
620         ret = 0;
621
622         total_found += add_new_free_space(block_group, last,
623                                 block_group->start + block_group->length);
624         caching_ctl->progress = (u64)-1;
625
626 out:
627         btrfs_free_path(path);
628         return ret;
629 }
630
631 static noinline void caching_thread(struct btrfs_work *work)
632 {
633         struct btrfs_block_group *block_group;
634         struct btrfs_fs_info *fs_info;
635         struct btrfs_caching_control *caching_ctl;
636         int ret;
637
638         caching_ctl = container_of(work, struct btrfs_caching_control, work);
639         block_group = caching_ctl->block_group;
640         fs_info = block_group->fs_info;
641
642         mutex_lock(&caching_ctl->mutex);
643         down_read(&fs_info->commit_root_sem);
644
645         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
646                 ret = load_free_space_tree(caching_ctl);
647         else
648                 ret = load_extent_tree_free(caching_ctl);
649
650         spin_lock(&block_group->lock);
651         block_group->caching_ctl = NULL;
652         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
653         spin_unlock(&block_group->lock);
654
655 #ifdef CONFIG_BTRFS_DEBUG
656         if (btrfs_should_fragment_free_space(block_group)) {
657                 u64 bytes_used;
658
659                 spin_lock(&block_group->space_info->lock);
660                 spin_lock(&block_group->lock);
661                 bytes_used = block_group->length - block_group->used;
662                 block_group->space_info->bytes_used += bytes_used >> 1;
663                 spin_unlock(&block_group->lock);
664                 spin_unlock(&block_group->space_info->lock);
665                 fragment_free_space(block_group);
666         }
667 #endif
668
669         caching_ctl->progress = (u64)-1;
670
671         up_read(&fs_info->commit_root_sem);
672         btrfs_free_excluded_extents(block_group);
673         mutex_unlock(&caching_ctl->mutex);
674
675         wake_up(&caching_ctl->wait);
676
677         btrfs_put_caching_control(caching_ctl);
678         btrfs_put_block_group(block_group);
679 }
680
681 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
682 {
683         DEFINE_WAIT(wait);
684         struct btrfs_fs_info *fs_info = cache->fs_info;
685         struct btrfs_caching_control *caching_ctl;
686         int ret = 0;
687
688         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
689         if (!caching_ctl)
690                 return -ENOMEM;
691
692         INIT_LIST_HEAD(&caching_ctl->list);
693         mutex_init(&caching_ctl->mutex);
694         init_waitqueue_head(&caching_ctl->wait);
695         caching_ctl->block_group = cache;
696         caching_ctl->progress = cache->start;
697         refcount_set(&caching_ctl->count, 1);
698         btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
699
700         spin_lock(&cache->lock);
701         /*
702          * This should be a rare occasion, but this could happen I think in the
703          * case where one thread starts to load the space cache info, and then
704          * some other thread starts a transaction commit which tries to do an
705          * allocation while the other thread is still loading the space cache
706          * info.  The previous loop should have kept us from choosing this block
707          * group, but if we've moved to the state where we will wait on caching
708          * block groups we need to first check if we're doing a fast load here,
709          * so we can wait for it to finish, otherwise we could end up allocating
710          * from a block group who's cache gets evicted for one reason or
711          * another.
712          */
713         while (cache->cached == BTRFS_CACHE_FAST) {
714                 struct btrfs_caching_control *ctl;
715
716                 ctl = cache->caching_ctl;
717                 refcount_inc(&ctl->count);
718                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
719                 spin_unlock(&cache->lock);
720
721                 schedule();
722
723                 finish_wait(&ctl->wait, &wait);
724                 btrfs_put_caching_control(ctl);
725                 spin_lock(&cache->lock);
726         }
727
728         if (cache->cached != BTRFS_CACHE_NO) {
729                 spin_unlock(&cache->lock);
730                 kfree(caching_ctl);
731                 return 0;
732         }
733         WARN_ON(cache->caching_ctl);
734         cache->caching_ctl = caching_ctl;
735         cache->cached = BTRFS_CACHE_FAST;
736         spin_unlock(&cache->lock);
737
738         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
739                 mutex_lock(&caching_ctl->mutex);
740                 ret = load_free_space_cache(cache);
741
742                 spin_lock(&cache->lock);
743                 if (ret == 1) {
744                         cache->caching_ctl = NULL;
745                         cache->cached = BTRFS_CACHE_FINISHED;
746                         cache->last_byte_to_unpin = (u64)-1;
747                         caching_ctl->progress = (u64)-1;
748                 } else {
749                         if (load_cache_only) {
750                                 cache->caching_ctl = NULL;
751                                 cache->cached = BTRFS_CACHE_NO;
752                         } else {
753                                 cache->cached = BTRFS_CACHE_STARTED;
754                                 cache->has_caching_ctl = 1;
755                         }
756                 }
757                 spin_unlock(&cache->lock);
758 #ifdef CONFIG_BTRFS_DEBUG
759                 if (ret == 1 &&
760                     btrfs_should_fragment_free_space(cache)) {
761                         u64 bytes_used;
762
763                         spin_lock(&cache->space_info->lock);
764                         spin_lock(&cache->lock);
765                         bytes_used = cache->length - cache->used;
766                         cache->space_info->bytes_used += bytes_used >> 1;
767                         spin_unlock(&cache->lock);
768                         spin_unlock(&cache->space_info->lock);
769                         fragment_free_space(cache);
770                 }
771 #endif
772                 mutex_unlock(&caching_ctl->mutex);
773
774                 wake_up(&caching_ctl->wait);
775                 if (ret == 1) {
776                         btrfs_put_caching_control(caching_ctl);
777                         btrfs_free_excluded_extents(cache);
778                         return 0;
779                 }
780         } else {
781                 /*
782                  * We're either using the free space tree or no caching at all.
783                  * Set cached to the appropriate value and wakeup any waiters.
784                  */
785                 spin_lock(&cache->lock);
786                 if (load_cache_only) {
787                         cache->caching_ctl = NULL;
788                         cache->cached = BTRFS_CACHE_NO;
789                 } else {
790                         cache->cached = BTRFS_CACHE_STARTED;
791                         cache->has_caching_ctl = 1;
792                 }
793                 spin_unlock(&cache->lock);
794                 wake_up(&caching_ctl->wait);
795         }
796
797         if (load_cache_only) {
798                 btrfs_put_caching_control(caching_ctl);
799                 return 0;
800         }
801
802         down_write(&fs_info->commit_root_sem);
803         refcount_inc(&caching_ctl->count);
804         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
805         up_write(&fs_info->commit_root_sem);
806
807         btrfs_get_block_group(cache);
808
809         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
810
811         return ret;
812 }
813
814 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
815 {
816         u64 extra_flags = chunk_to_extended(flags) &
817                                 BTRFS_EXTENDED_PROFILE_MASK;
818
819         write_seqlock(&fs_info->profiles_lock);
820         if (flags & BTRFS_BLOCK_GROUP_DATA)
821                 fs_info->avail_data_alloc_bits &= ~extra_flags;
822         if (flags & BTRFS_BLOCK_GROUP_METADATA)
823                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
824         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
825                 fs_info->avail_system_alloc_bits &= ~extra_flags;
826         write_sequnlock(&fs_info->profiles_lock);
827 }
828
829 /*
830  * Clear incompat bits for the following feature(s):
831  *
832  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
833  *            in the whole filesystem
834  *
835  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
836  */
837 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
838 {
839         bool found_raid56 = false;
840         bool found_raid1c34 = false;
841
842         if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
843             (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
844             (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
845                 struct list_head *head = &fs_info->space_info;
846                 struct btrfs_space_info *sinfo;
847
848                 list_for_each_entry_rcu(sinfo, head, list) {
849                         down_read(&sinfo->groups_sem);
850                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
851                                 found_raid56 = true;
852                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
853                                 found_raid56 = true;
854                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
855                                 found_raid1c34 = true;
856                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
857                                 found_raid1c34 = true;
858                         up_read(&sinfo->groups_sem);
859                 }
860                 if (!found_raid56)
861                         btrfs_clear_fs_incompat(fs_info, RAID56);
862                 if (!found_raid1c34)
863                         btrfs_clear_fs_incompat(fs_info, RAID1C34);
864         }
865 }
866
867 static int remove_block_group_item(struct btrfs_trans_handle *trans,
868                                    struct btrfs_path *path,
869                                    struct btrfs_block_group *block_group)
870 {
871         struct btrfs_fs_info *fs_info = trans->fs_info;
872         struct btrfs_root *root;
873         struct btrfs_key key;
874         int ret;
875
876         root = fs_info->extent_root;
877         key.objectid = block_group->start;
878         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
879         key.offset = block_group->length;
880
881         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
882         if (ret > 0)
883                 ret = -ENOENT;
884         if (ret < 0)
885                 return ret;
886
887         ret = btrfs_del_item(trans, root, path);
888         return ret;
889 }
890
891 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
892                              u64 group_start, struct extent_map *em)
893 {
894         struct btrfs_fs_info *fs_info = trans->fs_info;
895         struct btrfs_path *path;
896         struct btrfs_block_group *block_group;
897         struct btrfs_free_cluster *cluster;
898         struct btrfs_root *tree_root = fs_info->tree_root;
899         struct btrfs_key key;
900         struct inode *inode;
901         struct kobject *kobj = NULL;
902         int ret;
903         int index;
904         int factor;
905         struct btrfs_caching_control *caching_ctl = NULL;
906         bool remove_em;
907         bool remove_rsv = false;
908
909         block_group = btrfs_lookup_block_group(fs_info, group_start);
910         BUG_ON(!block_group);
911         BUG_ON(!block_group->ro);
912
913         trace_btrfs_remove_block_group(block_group);
914         /*
915          * Free the reserved super bytes from this block group before
916          * remove it.
917          */
918         btrfs_free_excluded_extents(block_group);
919         btrfs_free_ref_tree_range(fs_info, block_group->start,
920                                   block_group->length);
921
922         index = btrfs_bg_flags_to_raid_index(block_group->flags);
923         factor = btrfs_bg_type_to_factor(block_group->flags);
924
925         /* make sure this block group isn't part of an allocation cluster */
926         cluster = &fs_info->data_alloc_cluster;
927         spin_lock(&cluster->refill_lock);
928         btrfs_return_cluster_to_free_space(block_group, cluster);
929         spin_unlock(&cluster->refill_lock);
930
931         /*
932          * make sure this block group isn't part of a metadata
933          * allocation cluster
934          */
935         cluster = &fs_info->meta_alloc_cluster;
936         spin_lock(&cluster->refill_lock);
937         btrfs_return_cluster_to_free_space(block_group, cluster);
938         spin_unlock(&cluster->refill_lock);
939
940         path = btrfs_alloc_path();
941         if (!path) {
942                 ret = -ENOMEM;
943                 goto out;
944         }
945
946         /*
947          * get the inode first so any iput calls done for the io_list
948          * aren't the final iput (no unlinks allowed now)
949          */
950         inode = lookup_free_space_inode(block_group, path);
951
952         mutex_lock(&trans->transaction->cache_write_mutex);
953         /*
954          * Make sure our free space cache IO is done before removing the
955          * free space inode
956          */
957         spin_lock(&trans->transaction->dirty_bgs_lock);
958         if (!list_empty(&block_group->io_list)) {
959                 list_del_init(&block_group->io_list);
960
961                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
962
963                 spin_unlock(&trans->transaction->dirty_bgs_lock);
964                 btrfs_wait_cache_io(trans, block_group, path);
965                 btrfs_put_block_group(block_group);
966                 spin_lock(&trans->transaction->dirty_bgs_lock);
967         }
968
969         if (!list_empty(&block_group->dirty_list)) {
970                 list_del_init(&block_group->dirty_list);
971                 remove_rsv = true;
972                 btrfs_put_block_group(block_group);
973         }
974         spin_unlock(&trans->transaction->dirty_bgs_lock);
975         mutex_unlock(&trans->transaction->cache_write_mutex);
976
977         if (!IS_ERR(inode)) {
978                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
979                 if (ret) {
980                         btrfs_add_delayed_iput(inode);
981                         goto out;
982                 }
983                 clear_nlink(inode);
984                 /* One for the block groups ref */
985                 spin_lock(&block_group->lock);
986                 if (block_group->iref) {
987                         block_group->iref = 0;
988                         block_group->inode = NULL;
989                         spin_unlock(&block_group->lock);
990                         iput(inode);
991                 } else {
992                         spin_unlock(&block_group->lock);
993                 }
994                 /* One for our lookup ref */
995                 btrfs_add_delayed_iput(inode);
996         }
997
998         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
999         key.type = 0;
1000         key.offset = block_group->start;
1001
1002         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
1003         if (ret < 0)
1004                 goto out;
1005         if (ret > 0)
1006                 btrfs_release_path(path);
1007         if (ret == 0) {
1008                 ret = btrfs_del_item(trans, tree_root, path);
1009                 if (ret)
1010                         goto out;
1011                 btrfs_release_path(path);
1012         }
1013
1014         spin_lock(&fs_info->block_group_cache_lock);
1015         rb_erase(&block_group->cache_node,
1016                  &fs_info->block_group_cache_tree);
1017         RB_CLEAR_NODE(&block_group->cache_node);
1018
1019         /* Once for the block groups rbtree */
1020         btrfs_put_block_group(block_group);
1021
1022         if (fs_info->first_logical_byte == block_group->start)
1023                 fs_info->first_logical_byte = (u64)-1;
1024         spin_unlock(&fs_info->block_group_cache_lock);
1025
1026         down_write(&block_group->space_info->groups_sem);
1027         /*
1028          * we must use list_del_init so people can check to see if they
1029          * are still on the list after taking the semaphore
1030          */
1031         list_del_init(&block_group->list);
1032         if (list_empty(&block_group->space_info->block_groups[index])) {
1033                 kobj = block_group->space_info->block_group_kobjs[index];
1034                 block_group->space_info->block_group_kobjs[index] = NULL;
1035                 clear_avail_alloc_bits(fs_info, block_group->flags);
1036         }
1037         up_write(&block_group->space_info->groups_sem);
1038         clear_incompat_bg_bits(fs_info, block_group->flags);
1039         if (kobj) {
1040                 kobject_del(kobj);
1041                 kobject_put(kobj);
1042         }
1043
1044         if (block_group->has_caching_ctl)
1045                 caching_ctl = btrfs_get_caching_control(block_group);
1046         if (block_group->cached == BTRFS_CACHE_STARTED)
1047                 btrfs_wait_block_group_cache_done(block_group);
1048         if (block_group->has_caching_ctl) {
1049                 down_write(&fs_info->commit_root_sem);
1050                 if (!caching_ctl) {
1051                         struct btrfs_caching_control *ctl;
1052
1053                         list_for_each_entry(ctl,
1054                                     &fs_info->caching_block_groups, list)
1055                                 if (ctl->block_group == block_group) {
1056                                         caching_ctl = ctl;
1057                                         refcount_inc(&caching_ctl->count);
1058                                         break;
1059                                 }
1060                 }
1061                 if (caching_ctl)
1062                         list_del_init(&caching_ctl->list);
1063                 up_write(&fs_info->commit_root_sem);
1064                 if (caching_ctl) {
1065                         /* Once for the caching bgs list and once for us. */
1066                         btrfs_put_caching_control(caching_ctl);
1067                         btrfs_put_caching_control(caching_ctl);
1068                 }
1069         }
1070
1071         spin_lock(&trans->transaction->dirty_bgs_lock);
1072         WARN_ON(!list_empty(&block_group->dirty_list));
1073         WARN_ON(!list_empty(&block_group->io_list));
1074         spin_unlock(&trans->transaction->dirty_bgs_lock);
1075
1076         btrfs_remove_free_space_cache(block_group);
1077
1078         spin_lock(&block_group->space_info->lock);
1079         list_del_init(&block_group->ro_list);
1080
1081         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1082                 WARN_ON(block_group->space_info->total_bytes
1083                         < block_group->length);
1084                 WARN_ON(block_group->space_info->bytes_readonly
1085                         < block_group->length);
1086                 WARN_ON(block_group->space_info->disk_total
1087                         < block_group->length * factor);
1088         }
1089         block_group->space_info->total_bytes -= block_group->length;
1090         block_group->space_info->bytes_readonly -= block_group->length;
1091         block_group->space_info->disk_total -= block_group->length * factor;
1092
1093         spin_unlock(&block_group->space_info->lock);
1094
1095         /*
1096          * Remove the free space for the block group from the free space tree
1097          * and the block group's item from the extent tree before marking the
1098          * block group as removed. This is to prevent races with tasks that
1099          * freeze and unfreeze a block group, this task and another task
1100          * allocating a new block group - the unfreeze task ends up removing
1101          * the block group's extent map before the task calling this function
1102          * deletes the block group item from the extent tree, allowing for
1103          * another task to attempt to create another block group with the same
1104          * item key (and failing with -EEXIST and a transaction abort).
1105          */
1106         ret = remove_block_group_free_space(trans, block_group);
1107         if (ret)
1108                 goto out;
1109
1110         ret = remove_block_group_item(trans, path, block_group);
1111         if (ret < 0)
1112                 goto out;
1113
1114         mutex_lock(&fs_info->chunk_mutex);
1115         spin_lock(&block_group->lock);
1116         block_group->removed = 1;
1117         /*
1118          * At this point trimming or scrub can't start on this block group,
1119          * because we removed the block group from the rbtree
1120          * fs_info->block_group_cache_tree so no one can't find it anymore and
1121          * even if someone already got this block group before we removed it
1122          * from the rbtree, they have already incremented block_group->frozen -
1123          * if they didn't, for the trimming case they won't find any free space
1124          * entries because we already removed them all when we called
1125          * btrfs_remove_free_space_cache().
1126          *
1127          * And we must not remove the extent map from the fs_info->mapping_tree
1128          * to prevent the same logical address range and physical device space
1129          * ranges from being reused for a new block group. This is needed to
1130          * avoid races with trimming and scrub.
1131          *
1132          * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1133          * completely transactionless, so while it is trimming a range the
1134          * currently running transaction might finish and a new one start,
1135          * allowing for new block groups to be created that can reuse the same
1136          * physical device locations unless we take this special care.
1137          *
1138          * There may also be an implicit trim operation if the file system
1139          * is mounted with -odiscard. The same protections must remain
1140          * in place until the extents have been discarded completely when
1141          * the transaction commit has completed.
1142          */
1143         remove_em = (atomic_read(&block_group->frozen) == 0);
1144         spin_unlock(&block_group->lock);
1145
1146         mutex_unlock(&fs_info->chunk_mutex);
1147
1148         if (remove_em) {
1149                 struct extent_map_tree *em_tree;
1150
1151                 em_tree = &fs_info->mapping_tree;
1152                 write_lock(&em_tree->lock);
1153                 remove_extent_mapping(em_tree, em);
1154                 write_unlock(&em_tree->lock);
1155                 /* once for the tree */
1156                 free_extent_map(em);
1157         }
1158
1159 out:
1160         /* Once for the lookup reference */
1161         btrfs_put_block_group(block_group);
1162         if (remove_rsv)
1163                 btrfs_delayed_refs_rsv_release(fs_info, 1);
1164         btrfs_free_path(path);
1165         return ret;
1166 }
1167
1168 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1169                 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1170 {
1171         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1172         struct extent_map *em;
1173         struct map_lookup *map;
1174         unsigned int num_items;
1175
1176         read_lock(&em_tree->lock);
1177         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1178         read_unlock(&em_tree->lock);
1179         ASSERT(em && em->start == chunk_offset);
1180
1181         /*
1182          * We need to reserve 3 + N units from the metadata space info in order
1183          * to remove a block group (done at btrfs_remove_chunk() and at
1184          * btrfs_remove_block_group()), which are used for:
1185          *
1186          * 1 unit for adding the free space inode's orphan (located in the tree
1187          * of tree roots).
1188          * 1 unit for deleting the block group item (located in the extent
1189          * tree).
1190          * 1 unit for deleting the free space item (located in tree of tree
1191          * roots).
1192          * N units for deleting N device extent items corresponding to each
1193          * stripe (located in the device tree).
1194          *
1195          * In order to remove a block group we also need to reserve units in the
1196          * system space info in order to update the chunk tree (update one or
1197          * more device items and remove one chunk item), but this is done at
1198          * btrfs_remove_chunk() through a call to check_system_chunk().
1199          */
1200         map = em->map_lookup;
1201         num_items = 3 + map->num_stripes;
1202         free_extent_map(em);
1203
1204         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1205                                                            num_items);
1206 }
1207
1208 /*
1209  * Mark block group @cache read-only, so later write won't happen to block
1210  * group @cache.
1211  *
1212  * If @force is not set, this function will only mark the block group readonly
1213  * if we have enough free space (1M) in other metadata/system block groups.
1214  * If @force is not set, this function will mark the block group readonly
1215  * without checking free space.
1216  *
1217  * NOTE: This function doesn't care if other block groups can contain all the
1218  * data in this block group. That check should be done by relocation routine,
1219  * not this function.
1220  */
1221 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1222 {
1223         struct btrfs_space_info *sinfo = cache->space_info;
1224         u64 num_bytes;
1225         int ret = -ENOSPC;
1226
1227         spin_lock(&sinfo->lock);
1228         spin_lock(&cache->lock);
1229
1230         if (cache->ro) {
1231                 cache->ro++;
1232                 ret = 0;
1233                 goto out;
1234         }
1235
1236         num_bytes = cache->length - cache->reserved - cache->pinned -
1237                     cache->bytes_super - cache->used;
1238
1239         /*
1240          * Data never overcommits, even in mixed mode, so do just the straight
1241          * check of left over space in how much we have allocated.
1242          */
1243         if (force) {
1244                 ret = 0;
1245         } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1246                 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1247
1248                 /*
1249                  * Here we make sure if we mark this bg RO, we still have enough
1250                  * free space as buffer.
1251                  */
1252                 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1253                         ret = 0;
1254         } else {
1255                 /*
1256                  * We overcommit metadata, so we need to do the
1257                  * btrfs_can_overcommit check here, and we need to pass in
1258                  * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1259                  * leeway to allow us to mark this block group as read only.
1260                  */
1261                 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1262                                          BTRFS_RESERVE_NO_FLUSH))
1263                         ret = 0;
1264         }
1265
1266         if (!ret) {
1267                 sinfo->bytes_readonly += num_bytes;
1268                 cache->ro++;
1269                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1270         }
1271 out:
1272         spin_unlock(&cache->lock);
1273         spin_unlock(&sinfo->lock);
1274         if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1275                 btrfs_info(cache->fs_info,
1276                         "unable to make block group %llu ro", cache->start);
1277                 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1278         }
1279         return ret;
1280 }
1281
1282 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1283                                  struct btrfs_block_group *bg)
1284 {
1285         struct btrfs_fs_info *fs_info = bg->fs_info;
1286         struct btrfs_transaction *prev_trans = NULL;
1287         const u64 start = bg->start;
1288         const u64 end = start + bg->length - 1;
1289         int ret;
1290
1291         spin_lock(&fs_info->trans_lock);
1292         if (trans->transaction->list.prev != &fs_info->trans_list) {
1293                 prev_trans = list_last_entry(&trans->transaction->list,
1294                                              struct btrfs_transaction, list);
1295                 refcount_inc(&prev_trans->use_count);
1296         }
1297         spin_unlock(&fs_info->trans_lock);
1298
1299         /*
1300          * Hold the unused_bg_unpin_mutex lock to avoid racing with
1301          * btrfs_finish_extent_commit(). If we are at transaction N, another
1302          * task might be running finish_extent_commit() for the previous
1303          * transaction N - 1, and have seen a range belonging to the block
1304          * group in pinned_extents before we were able to clear the whole block
1305          * group range from pinned_extents. This means that task can lookup for
1306          * the block group after we unpinned it from pinned_extents and removed
1307          * it, leading to a BUG_ON() at unpin_extent_range().
1308          */
1309         mutex_lock(&fs_info->unused_bg_unpin_mutex);
1310         if (prev_trans) {
1311                 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1312                                         EXTENT_DIRTY);
1313                 if (ret)
1314                         goto out;
1315         }
1316
1317         ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1318                                 EXTENT_DIRTY);
1319 out:
1320         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1321         if (prev_trans)
1322                 btrfs_put_transaction(prev_trans);
1323
1324         return ret == 0;
1325 }
1326
1327 /*
1328  * Process the unused_bgs list and remove any that don't have any allocated
1329  * space inside of them.
1330  */
1331 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1332 {
1333         struct btrfs_block_group *block_group;
1334         struct btrfs_space_info *space_info;
1335         struct btrfs_trans_handle *trans;
1336         const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1337         int ret = 0;
1338
1339         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1340                 return;
1341
1342         spin_lock(&fs_info->unused_bgs_lock);
1343         while (!list_empty(&fs_info->unused_bgs)) {
1344                 int trimming;
1345
1346                 block_group = list_first_entry(&fs_info->unused_bgs,
1347                                                struct btrfs_block_group,
1348                                                bg_list);
1349                 list_del_init(&block_group->bg_list);
1350
1351                 space_info = block_group->space_info;
1352
1353                 if (ret || btrfs_mixed_space_info(space_info)) {
1354                         btrfs_put_block_group(block_group);
1355                         continue;
1356                 }
1357                 spin_unlock(&fs_info->unused_bgs_lock);
1358
1359                 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1360
1361                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
1362
1363                 /* Don't want to race with allocators so take the groups_sem */
1364                 down_write(&space_info->groups_sem);
1365
1366                 /*
1367                  * Async discard moves the final block group discard to be prior
1368                  * to the unused_bgs code path.  Therefore, if it's not fully
1369                  * trimmed, punt it back to the async discard lists.
1370                  */
1371                 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1372                     !btrfs_is_free_space_trimmed(block_group)) {
1373                         trace_btrfs_skip_unused_block_group(block_group);
1374                         up_write(&space_info->groups_sem);
1375                         /* Requeue if we failed because of async discard */
1376                         btrfs_discard_queue_work(&fs_info->discard_ctl,
1377                                                  block_group);
1378                         goto next;
1379                 }
1380
1381                 spin_lock(&block_group->lock);
1382                 if (block_group->reserved || block_group->pinned ||
1383                     block_group->used || block_group->ro ||
1384                     list_is_singular(&block_group->list)) {
1385                         /*
1386                          * We want to bail if we made new allocations or have
1387                          * outstanding allocations in this block group.  We do
1388                          * the ro check in case balance is currently acting on
1389                          * this block group.
1390                          */
1391                         trace_btrfs_skip_unused_block_group(block_group);
1392                         spin_unlock(&block_group->lock);
1393                         up_write(&space_info->groups_sem);
1394                         goto next;
1395                 }
1396                 spin_unlock(&block_group->lock);
1397
1398                 /* We don't want to force the issue, only flip if it's ok. */
1399                 ret = inc_block_group_ro(block_group, 0);
1400                 up_write(&space_info->groups_sem);
1401                 if (ret < 0) {
1402                         ret = 0;
1403                         goto next;
1404                 }
1405
1406                 /*
1407                  * Want to do this before we do anything else so we can recover
1408                  * properly if we fail to join the transaction.
1409                  */
1410                 trans = btrfs_start_trans_remove_block_group(fs_info,
1411                                                      block_group->start);
1412                 if (IS_ERR(trans)) {
1413                         btrfs_dec_block_group_ro(block_group);
1414                         ret = PTR_ERR(trans);
1415                         goto next;
1416                 }
1417
1418                 /*
1419                  * We could have pending pinned extents for this block group,
1420                  * just delete them, we don't care about them anymore.
1421                  */
1422                 if (!clean_pinned_extents(trans, block_group)) {
1423                         btrfs_dec_block_group_ro(block_group);
1424                         goto end_trans;
1425                 }
1426
1427                 /*
1428                  * At this point, the block_group is read only and should fail
1429                  * new allocations.  However, btrfs_finish_extent_commit() can
1430                  * cause this block_group to be placed back on the discard
1431                  * lists because now the block_group isn't fully discarded.
1432                  * Bail here and try again later after discarding everything.
1433                  */
1434                 spin_lock(&fs_info->discard_ctl.lock);
1435                 if (!list_empty(&block_group->discard_list)) {
1436                         spin_unlock(&fs_info->discard_ctl.lock);
1437                         btrfs_dec_block_group_ro(block_group);
1438                         btrfs_discard_queue_work(&fs_info->discard_ctl,
1439                                                  block_group);
1440                         goto end_trans;
1441                 }
1442                 spin_unlock(&fs_info->discard_ctl.lock);
1443
1444                 /* Reset pinned so btrfs_put_block_group doesn't complain */
1445                 spin_lock(&space_info->lock);
1446                 spin_lock(&block_group->lock);
1447
1448                 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1449                                                      -block_group->pinned);
1450                 space_info->bytes_readonly += block_group->pinned;
1451                 percpu_counter_add_batch(&space_info->total_bytes_pinned,
1452                                    -block_group->pinned,
1453                                    BTRFS_TOTAL_BYTES_PINNED_BATCH);
1454                 block_group->pinned = 0;
1455
1456                 spin_unlock(&block_group->lock);
1457                 spin_unlock(&space_info->lock);
1458
1459                 /*
1460                  * The normal path here is an unused block group is passed here,
1461                  * then trimming is handled in the transaction commit path.
1462                  * Async discard interposes before this to do the trimming
1463                  * before coming down the unused block group path as trimming
1464                  * will no longer be done later in the transaction commit path.
1465                  */
1466                 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1467                         goto flip_async;
1468
1469                 /* DISCARD can flip during remount */
1470                 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC);
1471
1472                 /* Implicit trim during transaction commit. */
1473                 if (trimming)
1474                         btrfs_freeze_block_group(block_group);
1475
1476                 /*
1477                  * Btrfs_remove_chunk will abort the transaction if things go
1478                  * horribly wrong.
1479                  */
1480                 ret = btrfs_remove_chunk(trans, block_group->start);
1481
1482                 if (ret) {
1483                         if (trimming)
1484                                 btrfs_unfreeze_block_group(block_group);
1485                         goto end_trans;
1486                 }
1487
1488                 /*
1489                  * If we're not mounted with -odiscard, we can just forget
1490                  * about this block group. Otherwise we'll need to wait
1491                  * until transaction commit to do the actual discard.
1492                  */
1493                 if (trimming) {
1494                         spin_lock(&fs_info->unused_bgs_lock);
1495                         /*
1496                          * A concurrent scrub might have added us to the list
1497                          * fs_info->unused_bgs, so use a list_move operation
1498                          * to add the block group to the deleted_bgs list.
1499                          */
1500                         list_move(&block_group->bg_list,
1501                                   &trans->transaction->deleted_bgs);
1502                         spin_unlock(&fs_info->unused_bgs_lock);
1503                         btrfs_get_block_group(block_group);
1504                 }
1505 end_trans:
1506                 btrfs_end_transaction(trans);
1507 next:
1508                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1509                 btrfs_put_block_group(block_group);
1510                 spin_lock(&fs_info->unused_bgs_lock);
1511         }
1512         spin_unlock(&fs_info->unused_bgs_lock);
1513         return;
1514
1515 flip_async:
1516         btrfs_end_transaction(trans);
1517         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
1518         btrfs_put_block_group(block_group);
1519         btrfs_discard_punt_unused_bgs_list(fs_info);
1520 }
1521
1522 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1523 {
1524         struct btrfs_fs_info *fs_info = bg->fs_info;
1525
1526         spin_lock(&fs_info->unused_bgs_lock);
1527         if (list_empty(&bg->bg_list)) {
1528                 btrfs_get_block_group(bg);
1529                 trace_btrfs_add_unused_block_group(bg);
1530                 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1531         }
1532         spin_unlock(&fs_info->unused_bgs_lock);
1533 }
1534
1535 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1536                                   struct btrfs_path *path,
1537                                   struct btrfs_key *key)
1538 {
1539         struct btrfs_root *root = fs_info->extent_root;
1540         int ret = 0;
1541         struct btrfs_key found_key;
1542         struct extent_buffer *leaf;
1543         struct btrfs_block_group_item bg;
1544         u64 flags;
1545         int slot;
1546
1547         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1548         if (ret < 0)
1549                 goto out;
1550
1551         while (1) {
1552                 slot = path->slots[0];
1553                 leaf = path->nodes[0];
1554                 if (slot >= btrfs_header_nritems(leaf)) {
1555                         ret = btrfs_next_leaf(root, path);
1556                         if (ret == 0)
1557                                 continue;
1558                         if (ret < 0)
1559                                 goto out;
1560                         break;
1561                 }
1562                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1563
1564                 if (found_key.objectid >= key->objectid &&
1565                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1566                         struct extent_map_tree *em_tree;
1567                         struct extent_map *em;
1568
1569                         em_tree = &root->fs_info->mapping_tree;
1570                         read_lock(&em_tree->lock);
1571                         em = lookup_extent_mapping(em_tree, found_key.objectid,
1572                                                    found_key.offset);
1573                         read_unlock(&em_tree->lock);
1574                         if (!em) {
1575                                 btrfs_err(fs_info,
1576                         "logical %llu len %llu found bg but no related chunk",
1577                                           found_key.objectid, found_key.offset);
1578                                 ret = -ENOENT;
1579                         } else if (em->start != found_key.objectid ||
1580                                    em->len != found_key.offset) {
1581                                 btrfs_err(fs_info,
1582                 "block group %llu len %llu mismatch with chunk %llu len %llu",
1583                                           found_key.objectid, found_key.offset,
1584                                           em->start, em->len);
1585                                 ret = -EUCLEAN;
1586                         } else {
1587                                 read_extent_buffer(leaf, &bg,
1588                                         btrfs_item_ptr_offset(leaf, slot),
1589                                         sizeof(bg));
1590                                 flags = btrfs_stack_block_group_flags(&bg) &
1591                                         BTRFS_BLOCK_GROUP_TYPE_MASK;
1592
1593                                 if (flags != (em->map_lookup->type &
1594                                               BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1595                                         btrfs_err(fs_info,
1596 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1597                                                 found_key.objectid,
1598                                                 found_key.offset, flags,
1599                                                 (BTRFS_BLOCK_GROUP_TYPE_MASK &
1600                                                  em->map_lookup->type));
1601                                         ret = -EUCLEAN;
1602                                 } else {
1603                                         ret = 0;
1604                                 }
1605                         }
1606                         free_extent_map(em);
1607                         goto out;
1608                 }
1609                 path->slots[0]++;
1610         }
1611 out:
1612         return ret;
1613 }
1614
1615 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1616 {
1617         u64 extra_flags = chunk_to_extended(flags) &
1618                                 BTRFS_EXTENDED_PROFILE_MASK;
1619
1620         write_seqlock(&fs_info->profiles_lock);
1621         if (flags & BTRFS_BLOCK_GROUP_DATA)
1622                 fs_info->avail_data_alloc_bits |= extra_flags;
1623         if (flags & BTRFS_BLOCK_GROUP_METADATA)
1624                 fs_info->avail_metadata_alloc_bits |= extra_flags;
1625         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1626                 fs_info->avail_system_alloc_bits |= extra_flags;
1627         write_sequnlock(&fs_info->profiles_lock);
1628 }
1629
1630 /**
1631  * btrfs_rmap_block - Map a physical disk address to a list of logical addresses
1632  * @chunk_start:   logical address of block group
1633  * @physical:      physical address to map to logical addresses
1634  * @logical:       return array of logical addresses which map to @physical
1635  * @naddrs:        length of @logical
1636  * @stripe_len:    size of IO stripe for the given block group
1637  *
1638  * Maps a particular @physical disk address to a list of @logical addresses.
1639  * Used primarily to exclude those portions of a block group that contain super
1640  * block copies.
1641  */
1642 EXPORT_FOR_TESTS
1643 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1644                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
1645 {
1646         struct extent_map *em;
1647         struct map_lookup *map;
1648         u64 *buf;
1649         u64 bytenr;
1650         u64 data_stripe_length;
1651         u64 io_stripe_size;
1652         int i, nr = 0;
1653         int ret = 0;
1654
1655         em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1656         if (IS_ERR(em))
1657                 return -EIO;
1658
1659         map = em->map_lookup;
1660         data_stripe_length = em->len;
1661         io_stripe_size = map->stripe_len;
1662
1663         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
1664                 data_stripe_length = div_u64(data_stripe_length,
1665                                              map->num_stripes / map->sub_stripes);
1666         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
1667                 data_stripe_length = div_u64(data_stripe_length, map->num_stripes);
1668         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1669                 data_stripe_length = div_u64(data_stripe_length,
1670                                              nr_data_stripes(map));
1671                 io_stripe_size = map->stripe_len * nr_data_stripes(map);
1672         }
1673
1674         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1675         if (!buf) {
1676                 ret = -ENOMEM;
1677                 goto out;
1678         }
1679
1680         for (i = 0; i < map->num_stripes; i++) {
1681                 bool already_inserted = false;
1682                 u64 stripe_nr;
1683                 int j;
1684
1685                 if (!in_range(physical, map->stripes[i].physical,
1686                               data_stripe_length))
1687                         continue;
1688
1689                 stripe_nr = physical - map->stripes[i].physical;
1690                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
1691
1692                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1693                         stripe_nr = stripe_nr * map->num_stripes + i;
1694                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1695                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1696                         stripe_nr = stripe_nr * map->num_stripes + i;
1697                 }
1698                 /*
1699                  * The remaining case would be for RAID56, multiply by
1700                  * nr_data_stripes().  Alternatively, just use rmap_len below
1701                  * instead of map->stripe_len
1702                  */
1703
1704                 bytenr = chunk_start + stripe_nr * io_stripe_size;
1705
1706                 /* Ensure we don't add duplicate addresses */
1707                 for (j = 0; j < nr; j++) {
1708                         if (buf[j] == bytenr) {
1709                                 already_inserted = true;
1710                                 break;
1711                         }
1712                 }
1713
1714                 if (!already_inserted)
1715                         buf[nr++] = bytenr;
1716         }
1717
1718         *logical = buf;
1719         *naddrs = nr;
1720         *stripe_len = io_stripe_size;
1721 out:
1722         free_extent_map(em);
1723         return ret;
1724 }
1725
1726 static int exclude_super_stripes(struct btrfs_block_group *cache)
1727 {
1728         struct btrfs_fs_info *fs_info = cache->fs_info;
1729         u64 bytenr;
1730         u64 *logical;
1731         int stripe_len;
1732         int i, nr, ret;
1733
1734         if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1735                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1736                 cache->bytes_super += stripe_len;
1737                 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1738                                                 stripe_len);
1739                 if (ret)
1740                         return ret;
1741         }
1742
1743         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1744                 bytenr = btrfs_sb_offset(i);
1745                 ret = btrfs_rmap_block(fs_info, cache->start,
1746                                        bytenr, &logical, &nr, &stripe_len);
1747                 if (ret)
1748                         return ret;
1749
1750                 while (nr--) {
1751                         u64 start, len;
1752
1753                         if (logical[nr] > cache->start + cache->length)
1754                                 continue;
1755
1756                         if (logical[nr] + stripe_len <= cache->start)
1757                                 continue;
1758
1759                         start = logical[nr];
1760                         if (start < cache->start) {
1761                                 start = cache->start;
1762                                 len = (logical[nr] + stripe_len) - start;
1763                         } else {
1764                                 len = min_t(u64, stripe_len,
1765                                             cache->start + cache->length - start);
1766                         }
1767
1768                         cache->bytes_super += len;
1769                         ret = btrfs_add_excluded_extent(fs_info, start, len);
1770                         if (ret) {
1771                                 kfree(logical);
1772                                 return ret;
1773                         }
1774                 }
1775
1776                 kfree(logical);
1777         }
1778         return 0;
1779 }
1780
1781 static void link_block_group(struct btrfs_block_group *cache)
1782 {
1783         struct btrfs_space_info *space_info = cache->space_info;
1784         int index = btrfs_bg_flags_to_raid_index(cache->flags);
1785         bool first = false;
1786
1787         down_write(&space_info->groups_sem);
1788         if (list_empty(&space_info->block_groups[index]))
1789                 first = true;
1790         list_add_tail(&cache->list, &space_info->block_groups[index]);
1791         up_write(&space_info->groups_sem);
1792
1793         if (first)
1794                 btrfs_sysfs_add_block_group_type(cache);
1795 }
1796
1797 static struct btrfs_block_group *btrfs_create_block_group_cache(
1798                 struct btrfs_fs_info *fs_info, u64 start)
1799 {
1800         struct btrfs_block_group *cache;
1801
1802         cache = kzalloc(sizeof(*cache), GFP_NOFS);
1803         if (!cache)
1804                 return NULL;
1805
1806         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1807                                         GFP_NOFS);
1808         if (!cache->free_space_ctl) {
1809                 kfree(cache);
1810                 return NULL;
1811         }
1812
1813         cache->start = start;
1814
1815         cache->fs_info = fs_info;
1816         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1817         set_free_space_tree_thresholds(cache);
1818
1819         cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1820
1821         atomic_set(&cache->count, 1);
1822         spin_lock_init(&cache->lock);
1823         init_rwsem(&cache->data_rwsem);
1824         INIT_LIST_HEAD(&cache->list);
1825         INIT_LIST_HEAD(&cache->cluster_list);
1826         INIT_LIST_HEAD(&cache->bg_list);
1827         INIT_LIST_HEAD(&cache->ro_list);
1828         INIT_LIST_HEAD(&cache->discard_list);
1829         INIT_LIST_HEAD(&cache->dirty_list);
1830         INIT_LIST_HEAD(&cache->io_list);
1831         btrfs_init_free_space_ctl(cache);
1832         atomic_set(&cache->frozen, 0);
1833         mutex_init(&cache->free_space_lock);
1834         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1835
1836         return cache;
1837 }
1838
1839 /*
1840  * Iterate all chunks and verify that each of them has the corresponding block
1841  * group
1842  */
1843 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1844 {
1845         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1846         struct extent_map *em;
1847         struct btrfs_block_group *bg;
1848         u64 start = 0;
1849         int ret = 0;
1850
1851         while (1) {
1852                 read_lock(&map_tree->lock);
1853                 /*
1854                  * lookup_extent_mapping will return the first extent map
1855                  * intersecting the range, so setting @len to 1 is enough to
1856                  * get the first chunk.
1857                  */
1858                 em = lookup_extent_mapping(map_tree, start, 1);
1859                 read_unlock(&map_tree->lock);
1860                 if (!em)
1861                         break;
1862
1863                 bg = btrfs_lookup_block_group(fs_info, em->start);
1864                 if (!bg) {
1865                         btrfs_err(fs_info,
1866         "chunk start=%llu len=%llu doesn't have corresponding block group",
1867                                      em->start, em->len);
1868                         ret = -EUCLEAN;
1869                         free_extent_map(em);
1870                         break;
1871                 }
1872                 if (bg->start != em->start || bg->length != em->len ||
1873                     (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1874                     (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1875                         btrfs_err(fs_info,
1876 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1877                                 em->start, em->len,
1878                                 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1879                                 bg->start, bg->length,
1880                                 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1881                         ret = -EUCLEAN;
1882                         free_extent_map(em);
1883                         btrfs_put_block_group(bg);
1884                         break;
1885                 }
1886                 start = em->start + em->len;
1887                 free_extent_map(em);
1888                 btrfs_put_block_group(bg);
1889         }
1890         return ret;
1891 }
1892
1893 static int read_block_group_item(struct btrfs_block_group *cache,
1894                                  struct btrfs_path *path,
1895                                  const struct btrfs_key *key)
1896 {
1897         struct extent_buffer *leaf = path->nodes[0];
1898         struct btrfs_block_group_item bgi;
1899         int slot = path->slots[0];
1900
1901         cache->length = key->offset;
1902
1903         read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
1904                            sizeof(bgi));
1905         cache->used = btrfs_stack_block_group_used(&bgi);
1906         cache->flags = btrfs_stack_block_group_flags(&bgi);
1907
1908         return 0;
1909 }
1910
1911 static int read_one_block_group(struct btrfs_fs_info *info,
1912                                 struct btrfs_path *path,
1913                                 const struct btrfs_key *key,
1914                                 int need_clear)
1915 {
1916         struct btrfs_block_group *cache;
1917         struct btrfs_space_info *space_info;
1918         const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1919         int ret;
1920
1921         ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1922
1923         cache = btrfs_create_block_group_cache(info, key->objectid);
1924         if (!cache)
1925                 return -ENOMEM;
1926
1927         ret = read_block_group_item(cache, path, key);
1928         if (ret < 0)
1929                 goto error;
1930
1931         if (need_clear) {
1932                 /*
1933                  * When we mount with old space cache, we need to
1934                  * set BTRFS_DC_CLEAR and set dirty flag.
1935                  *
1936                  * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1937                  *    truncate the old free space cache inode and
1938                  *    setup a new one.
1939                  * b) Setting 'dirty flag' makes sure that we flush
1940                  *    the new space cache info onto disk.
1941                  */
1942                 if (btrfs_test_opt(info, SPACE_CACHE))
1943                         cache->disk_cache_state = BTRFS_DC_CLEAR;
1944         }
1945         if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1946             (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1947                         btrfs_err(info,
1948 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1949                                   cache->start);
1950                         ret = -EINVAL;
1951                         goto error;
1952         }
1953
1954         /*
1955          * We need to exclude the super stripes now so that the space info has
1956          * super bytes accounted for, otherwise we'll think we have more space
1957          * than we actually do.
1958          */
1959         ret = exclude_super_stripes(cache);
1960         if (ret) {
1961                 /* We may have excluded something, so call this just in case. */
1962                 btrfs_free_excluded_extents(cache);
1963                 goto error;
1964         }
1965
1966         /*
1967          * Check for two cases, either we are full, and therefore don't need
1968          * to bother with the caching work since we won't find any space, or we
1969          * are empty, and we can just add all the space in and be done with it.
1970          * This saves us _a_lot_ of time, particularly in the full case.
1971          */
1972         if (cache->length == cache->used) {
1973                 cache->last_byte_to_unpin = (u64)-1;
1974                 cache->cached = BTRFS_CACHE_FINISHED;
1975                 btrfs_free_excluded_extents(cache);
1976         } else if (cache->used == 0) {
1977                 cache->last_byte_to_unpin = (u64)-1;
1978                 cache->cached = BTRFS_CACHE_FINISHED;
1979                 add_new_free_space(cache, cache->start,
1980                                    cache->start + cache->length);
1981                 btrfs_free_excluded_extents(cache);
1982         }
1983
1984         ret = btrfs_add_block_group_cache(info, cache);
1985         if (ret) {
1986                 btrfs_remove_free_space_cache(cache);
1987                 goto error;
1988         }
1989         trace_btrfs_add_block_group(info, cache, 0);
1990         btrfs_update_space_info(info, cache->flags, cache->length,
1991                                 cache->used, cache->bytes_super, &space_info);
1992
1993         cache->space_info = space_info;
1994
1995         link_block_group(cache);
1996
1997         set_avail_alloc_bits(info, cache->flags);
1998         if (btrfs_chunk_readonly(info, cache->start)) {
1999                 inc_block_group_ro(cache, 1);
2000         } else if (cache->used == 0) {
2001                 ASSERT(list_empty(&cache->bg_list));
2002                 if (btrfs_test_opt(info, DISCARD_ASYNC))
2003                         btrfs_discard_queue_work(&info->discard_ctl, cache);
2004                 else
2005                         btrfs_mark_bg_unused(cache);
2006         }
2007         return 0;
2008 error:
2009         btrfs_put_block_group(cache);
2010         return ret;
2011 }
2012
2013 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2014 {
2015         struct btrfs_path *path;
2016         int ret;
2017         struct btrfs_block_group *cache;
2018         struct btrfs_space_info *space_info;
2019         struct btrfs_key key;
2020         int need_clear = 0;
2021         u64 cache_gen;
2022
2023         key.objectid = 0;
2024         key.offset = 0;
2025         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2026         path = btrfs_alloc_path();
2027         if (!path)
2028                 return -ENOMEM;
2029
2030         cache_gen = btrfs_super_cache_generation(info->super_copy);
2031         if (btrfs_test_opt(info, SPACE_CACHE) &&
2032             btrfs_super_generation(info->super_copy) != cache_gen)
2033                 need_clear = 1;
2034         if (btrfs_test_opt(info, CLEAR_CACHE))
2035                 need_clear = 1;
2036
2037         while (1) {
2038                 ret = find_first_block_group(info, path, &key);
2039                 if (ret > 0)
2040                         break;
2041                 if (ret != 0)
2042                         goto error;
2043
2044                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2045                 ret = read_one_block_group(info, path, &key, need_clear);
2046                 if (ret < 0)
2047                         goto error;
2048                 key.objectid += key.offset;
2049                 key.offset = 0;
2050                 btrfs_release_path(path);
2051         }
2052
2053         rcu_read_lock();
2054         list_for_each_entry_rcu(space_info, &info->space_info, list) {
2055                 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2056                       (BTRFS_BLOCK_GROUP_RAID10 |
2057                        BTRFS_BLOCK_GROUP_RAID1_MASK |
2058                        BTRFS_BLOCK_GROUP_RAID56_MASK |
2059                        BTRFS_BLOCK_GROUP_DUP)))
2060                         continue;
2061                 /*
2062                  * Avoid allocating from un-mirrored block group if there are
2063                  * mirrored block groups.
2064                  */
2065                 list_for_each_entry(cache,
2066                                 &space_info->block_groups[BTRFS_RAID_RAID0],
2067                                 list)
2068                         inc_block_group_ro(cache, 1);
2069                 list_for_each_entry(cache,
2070                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
2071                                 list)
2072                         inc_block_group_ro(cache, 1);
2073         }
2074         rcu_read_unlock();
2075
2076         btrfs_init_global_block_rsv(info);
2077         ret = check_chunk_block_group_mappings(info);
2078 error:
2079         btrfs_free_path(path);
2080         return ret;
2081 }
2082
2083 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2084                                    struct btrfs_block_group *block_group)
2085 {
2086         struct btrfs_fs_info *fs_info = trans->fs_info;
2087         struct btrfs_block_group_item bgi;
2088         struct btrfs_root *root;
2089         struct btrfs_key key;
2090
2091         spin_lock(&block_group->lock);
2092         btrfs_set_stack_block_group_used(&bgi, block_group->used);
2093         btrfs_set_stack_block_group_chunk_objectid(&bgi,
2094                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2095         btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2096         key.objectid = block_group->start;
2097         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2098         key.offset = block_group->length;
2099         spin_unlock(&block_group->lock);
2100
2101         root = fs_info->extent_root;
2102         return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2103 }
2104
2105 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2106 {
2107         struct btrfs_fs_info *fs_info = trans->fs_info;
2108         struct btrfs_block_group *block_group;
2109         int ret = 0;
2110
2111         if (!trans->can_flush_pending_bgs)
2112                 return;
2113
2114         while (!list_empty(&trans->new_bgs)) {
2115                 block_group = list_first_entry(&trans->new_bgs,
2116                                                struct btrfs_block_group,
2117                                                bg_list);
2118                 if (ret)
2119                         goto next;
2120
2121                 ret = insert_block_group_item(trans, block_group);
2122                 if (ret)
2123                         btrfs_abort_transaction(trans, ret);
2124                 ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2125                                         block_group->length);
2126                 if (ret)
2127                         btrfs_abort_transaction(trans, ret);
2128                 add_block_group_free_space(trans, block_group);
2129                 /* Already aborted the transaction if it failed. */
2130 next:
2131                 btrfs_delayed_refs_rsv_release(fs_info, 1);
2132                 list_del_init(&block_group->bg_list);
2133         }
2134         btrfs_trans_release_chunk_metadata(trans);
2135 }
2136
2137 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2138                            u64 type, u64 chunk_offset, u64 size)
2139 {
2140         struct btrfs_fs_info *fs_info = trans->fs_info;
2141         struct btrfs_block_group *cache;
2142         int ret;
2143
2144         btrfs_set_log_full_commit(trans);
2145
2146         cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2147         if (!cache)
2148                 return -ENOMEM;
2149
2150         cache->length = size;
2151         cache->used = bytes_used;
2152         cache->flags = type;
2153         cache->last_byte_to_unpin = (u64)-1;
2154         cache->cached = BTRFS_CACHE_FINISHED;
2155         cache->needs_free_space = 1;
2156         ret = exclude_super_stripes(cache);
2157         if (ret) {
2158                 /* We may have excluded something, so call this just in case */
2159                 btrfs_free_excluded_extents(cache);
2160                 btrfs_put_block_group(cache);
2161                 return ret;
2162         }
2163
2164         add_new_free_space(cache, chunk_offset, chunk_offset + size);
2165
2166         btrfs_free_excluded_extents(cache);
2167
2168 #ifdef CONFIG_BTRFS_DEBUG
2169         if (btrfs_should_fragment_free_space(cache)) {
2170                 u64 new_bytes_used = size - bytes_used;
2171
2172                 bytes_used += new_bytes_used >> 1;
2173                 fragment_free_space(cache);
2174         }
2175 #endif
2176         /*
2177          * Ensure the corresponding space_info object is created and
2178          * assigned to our block group. We want our bg to be added to the rbtree
2179          * with its ->space_info set.
2180          */
2181         cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2182         ASSERT(cache->space_info);
2183
2184         ret = btrfs_add_block_group_cache(fs_info, cache);
2185         if (ret) {
2186                 btrfs_remove_free_space_cache(cache);
2187                 btrfs_put_block_group(cache);
2188                 return ret;
2189         }
2190
2191         /*
2192          * Now that our block group has its ->space_info set and is inserted in
2193          * the rbtree, update the space info's counters.
2194          */
2195         trace_btrfs_add_block_group(fs_info, cache, 1);
2196         btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2197                                 cache->bytes_super, &cache->space_info);
2198         btrfs_update_global_block_rsv(fs_info);
2199
2200         link_block_group(cache);
2201
2202         list_add_tail(&cache->bg_list, &trans->new_bgs);
2203         trans->delayed_ref_updates++;
2204         btrfs_update_delayed_refs_rsv(trans);
2205
2206         set_avail_alloc_bits(fs_info, type);
2207         return 0;
2208 }
2209
2210 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
2211 {
2212         u64 num_devices;
2213         u64 stripped;
2214
2215         /*
2216          * if restripe for this chunk_type is on pick target profile and
2217          * return, otherwise do the usual balance
2218          */
2219         stripped = get_restripe_target(fs_info, flags);
2220         if (stripped)
2221                 return extended_to_chunk(stripped);
2222
2223         num_devices = fs_info->fs_devices->rw_devices;
2224
2225         stripped = BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID56_MASK |
2226                 BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10;
2227
2228         if (num_devices == 1) {
2229                 stripped |= BTRFS_BLOCK_GROUP_DUP;
2230                 stripped = flags & ~stripped;
2231
2232                 /* turn raid0 into single device chunks */
2233                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
2234                         return stripped;
2235
2236                 /* turn mirroring into duplication */
2237                 if (flags & (BTRFS_BLOCK_GROUP_RAID1_MASK |
2238                              BTRFS_BLOCK_GROUP_RAID10))
2239                         return stripped | BTRFS_BLOCK_GROUP_DUP;
2240         } else {
2241                 /* they already had raid on here, just return */
2242                 if (flags & stripped)
2243                         return flags;
2244
2245                 stripped |= BTRFS_BLOCK_GROUP_DUP;
2246                 stripped = flags & ~stripped;
2247
2248                 /* switch duplicated blocks with raid1 */
2249                 if (flags & BTRFS_BLOCK_GROUP_DUP)
2250                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
2251
2252                 /* this is drive concat, leave it alone */
2253         }
2254
2255         return flags;
2256 }
2257
2258 /*
2259  * Mark one block group RO, can be called several times for the same block
2260  * group.
2261  *
2262  * @cache:              the destination block group
2263  * @do_chunk_alloc:     whether need to do chunk pre-allocation, this is to
2264  *                      ensure we still have some free space after marking this
2265  *                      block group RO.
2266  */
2267 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2268                              bool do_chunk_alloc)
2269 {
2270         struct btrfs_fs_info *fs_info = cache->fs_info;
2271         struct btrfs_trans_handle *trans;
2272         u64 alloc_flags;
2273         int ret;
2274
2275 again:
2276         trans = btrfs_join_transaction(fs_info->extent_root);
2277         if (IS_ERR(trans))
2278                 return PTR_ERR(trans);
2279
2280         /*
2281          * we're not allowed to set block groups readonly after the dirty
2282          * block groups cache has started writing.  If it already started,
2283          * back off and let this transaction commit
2284          */
2285         mutex_lock(&fs_info->ro_block_group_mutex);
2286         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2287                 u64 transid = trans->transid;
2288
2289                 mutex_unlock(&fs_info->ro_block_group_mutex);
2290                 btrfs_end_transaction(trans);
2291
2292                 ret = btrfs_wait_for_commit(fs_info, transid);
2293                 if (ret)
2294                         return ret;
2295                 goto again;
2296         }
2297
2298         if (do_chunk_alloc) {
2299                 /*
2300                  * If we are changing raid levels, try to allocate a
2301                  * corresponding block group with the new raid level.
2302                  */
2303                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2304                 if (alloc_flags != cache->flags) {
2305                         ret = btrfs_chunk_alloc(trans, alloc_flags,
2306                                                 CHUNK_ALLOC_FORCE);
2307                         /*
2308                          * ENOSPC is allowed here, we may have enough space
2309                          * already allocated at the new raid level to carry on
2310                          */
2311                         if (ret == -ENOSPC)
2312                                 ret = 0;
2313                         if (ret < 0)
2314                                 goto out;
2315                 }
2316         }
2317
2318         ret = inc_block_group_ro(cache, 0);
2319         if (!do_chunk_alloc)
2320                 goto unlock_out;
2321         if (!ret)
2322                 goto out;
2323         alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2324         ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2325         if (ret < 0)
2326                 goto out;
2327         ret = inc_block_group_ro(cache, 0);
2328 out:
2329         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2330                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
2331                 mutex_lock(&fs_info->chunk_mutex);
2332                 check_system_chunk(trans, alloc_flags);
2333                 mutex_unlock(&fs_info->chunk_mutex);
2334         }
2335 unlock_out:
2336         mutex_unlock(&fs_info->ro_block_group_mutex);
2337
2338         btrfs_end_transaction(trans);
2339         return ret;
2340 }
2341
2342 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2343 {
2344         struct btrfs_space_info *sinfo = cache->space_info;
2345         u64 num_bytes;
2346
2347         BUG_ON(!cache->ro);
2348
2349         spin_lock(&sinfo->lock);
2350         spin_lock(&cache->lock);
2351         if (!--cache->ro) {
2352                 num_bytes = cache->length - cache->reserved -
2353                             cache->pinned - cache->bytes_super - cache->used;
2354                 sinfo->bytes_readonly -= num_bytes;
2355                 list_del_init(&cache->ro_list);
2356         }
2357         spin_unlock(&cache->lock);
2358         spin_unlock(&sinfo->lock);
2359 }
2360
2361 static int update_block_group_item(struct btrfs_trans_handle *trans,
2362                                    struct btrfs_path *path,
2363                                    struct btrfs_block_group *cache)
2364 {
2365         struct btrfs_fs_info *fs_info = trans->fs_info;
2366         int ret;
2367         struct btrfs_root *root = fs_info->extent_root;
2368         unsigned long bi;
2369         struct extent_buffer *leaf;
2370         struct btrfs_block_group_item bgi;
2371         struct btrfs_key key;
2372
2373         key.objectid = cache->start;
2374         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2375         key.offset = cache->length;
2376
2377         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2378         if (ret) {
2379                 if (ret > 0)
2380                         ret = -ENOENT;
2381                 goto fail;
2382         }
2383
2384         leaf = path->nodes[0];
2385         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2386         btrfs_set_stack_block_group_used(&bgi, cache->used);
2387         btrfs_set_stack_block_group_chunk_objectid(&bgi,
2388                         BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2389         btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2390         write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2391         btrfs_mark_buffer_dirty(leaf);
2392 fail:
2393         btrfs_release_path(path);
2394         return ret;
2395
2396 }
2397
2398 static int cache_save_setup(struct btrfs_block_group *block_group,
2399                             struct btrfs_trans_handle *trans,
2400                             struct btrfs_path *path)
2401 {
2402         struct btrfs_fs_info *fs_info = block_group->fs_info;
2403         struct btrfs_root *root = fs_info->tree_root;
2404         struct inode *inode = NULL;
2405         struct extent_changeset *data_reserved = NULL;
2406         u64 alloc_hint = 0;
2407         int dcs = BTRFS_DC_ERROR;
2408         u64 num_pages = 0;
2409         int retries = 0;
2410         int ret = 0;
2411
2412         /*
2413          * If this block group is smaller than 100 megs don't bother caching the
2414          * block group.
2415          */
2416         if (block_group->length < (100 * SZ_1M)) {
2417                 spin_lock(&block_group->lock);
2418                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2419                 spin_unlock(&block_group->lock);
2420                 return 0;
2421         }
2422
2423         if (TRANS_ABORTED(trans))
2424                 return 0;
2425 again:
2426         inode = lookup_free_space_inode(block_group, path);
2427         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2428                 ret = PTR_ERR(inode);
2429                 btrfs_release_path(path);
2430                 goto out;
2431         }
2432
2433         if (IS_ERR(inode)) {
2434                 BUG_ON(retries);
2435                 retries++;
2436
2437                 if (block_group->ro)
2438                         goto out_free;
2439
2440                 ret = create_free_space_inode(trans, block_group, path);
2441                 if (ret)
2442                         goto out_free;
2443                 goto again;
2444         }
2445
2446         /*
2447          * We want to set the generation to 0, that way if anything goes wrong
2448          * from here on out we know not to trust this cache when we load up next
2449          * time.
2450          */
2451         BTRFS_I(inode)->generation = 0;
2452         ret = btrfs_update_inode(trans, root, inode);
2453         if (ret) {
2454                 /*
2455                  * So theoretically we could recover from this, simply set the
2456                  * super cache generation to 0 so we know to invalidate the
2457                  * cache, but then we'd have to keep track of the block groups
2458                  * that fail this way so we know we _have_ to reset this cache
2459                  * before the next commit or risk reading stale cache.  So to
2460                  * limit our exposure to horrible edge cases lets just abort the
2461                  * transaction, this only happens in really bad situations
2462                  * anyway.
2463                  */
2464                 btrfs_abort_transaction(trans, ret);
2465                 goto out_put;
2466         }
2467         WARN_ON(ret);
2468
2469         /* We've already setup this transaction, go ahead and exit */
2470         if (block_group->cache_generation == trans->transid &&
2471             i_size_read(inode)) {
2472                 dcs = BTRFS_DC_SETUP;
2473                 goto out_put;
2474         }
2475
2476         if (i_size_read(inode) > 0) {
2477                 ret = btrfs_check_trunc_cache_free_space(fs_info,
2478                                         &fs_info->global_block_rsv);
2479                 if (ret)
2480                         goto out_put;
2481
2482                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2483                 if (ret)
2484                         goto out_put;
2485         }
2486
2487         spin_lock(&block_group->lock);
2488         if (block_group->cached != BTRFS_CACHE_FINISHED ||
2489             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2490                 /*
2491                  * don't bother trying to write stuff out _if_
2492                  * a) we're not cached,
2493                  * b) we're with nospace_cache mount option,
2494                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
2495                  */
2496                 dcs = BTRFS_DC_WRITTEN;
2497                 spin_unlock(&block_group->lock);
2498                 goto out_put;
2499         }
2500         spin_unlock(&block_group->lock);
2501
2502         /*
2503          * We hit an ENOSPC when setting up the cache in this transaction, just
2504          * skip doing the setup, we've already cleared the cache so we're safe.
2505          */
2506         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2507                 ret = -ENOSPC;
2508                 goto out_put;
2509         }
2510
2511         /*
2512          * Try to preallocate enough space based on how big the block group is.
2513          * Keep in mind this has to include any pinned space which could end up
2514          * taking up quite a bit since it's not folded into the other space
2515          * cache.
2516          */
2517         num_pages = div_u64(block_group->length, SZ_256M);
2518         if (!num_pages)
2519                 num_pages = 1;
2520
2521         num_pages *= 16;
2522         num_pages *= PAGE_SIZE;
2523
2524         ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
2525         if (ret)
2526                 goto out_put;
2527
2528         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2529                                               num_pages, num_pages,
2530                                               &alloc_hint);
2531         /*
2532          * Our cache requires contiguous chunks so that we don't modify a bunch
2533          * of metadata or split extents when writing the cache out, which means
2534          * we can enospc if we are heavily fragmented in addition to just normal
2535          * out of space conditions.  So if we hit this just skip setting up any
2536          * other block groups for this transaction, maybe we'll unpin enough
2537          * space the next time around.
2538          */
2539         if (!ret)
2540                 dcs = BTRFS_DC_SETUP;
2541         else if (ret == -ENOSPC)
2542                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2543
2544 out_put:
2545         iput(inode);
2546 out_free:
2547         btrfs_release_path(path);
2548 out:
2549         spin_lock(&block_group->lock);
2550         if (!ret && dcs == BTRFS_DC_SETUP)
2551                 block_group->cache_generation = trans->transid;
2552         block_group->disk_cache_state = dcs;
2553         spin_unlock(&block_group->lock);
2554
2555         extent_changeset_free(data_reserved);
2556         return ret;
2557 }
2558
2559 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2560 {
2561         struct btrfs_fs_info *fs_info = trans->fs_info;
2562         struct btrfs_block_group *cache, *tmp;
2563         struct btrfs_transaction *cur_trans = trans->transaction;
2564         struct btrfs_path *path;
2565
2566         if (list_empty(&cur_trans->dirty_bgs) ||
2567             !btrfs_test_opt(fs_info, SPACE_CACHE))
2568                 return 0;
2569
2570         path = btrfs_alloc_path();
2571         if (!path)
2572                 return -ENOMEM;
2573
2574         /* Could add new block groups, use _safe just in case */
2575         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2576                                  dirty_list) {
2577                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2578                         cache_save_setup(cache, trans, path);
2579         }
2580
2581         btrfs_free_path(path);
2582         return 0;
2583 }
2584
2585 /*
2586  * Transaction commit does final block group cache writeback during a critical
2587  * section where nothing is allowed to change the FS.  This is required in
2588  * order for the cache to actually match the block group, but can introduce a
2589  * lot of latency into the commit.
2590  *
2591  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2592  * There's a chance we'll have to redo some of it if the block group changes
2593  * again during the commit, but it greatly reduces the commit latency by
2594  * getting rid of the easy block groups while we're still allowing others to
2595  * join the commit.
2596  */
2597 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2598 {
2599         struct btrfs_fs_info *fs_info = trans->fs_info;
2600         struct btrfs_block_group *cache;
2601         struct btrfs_transaction *cur_trans = trans->transaction;
2602         int ret = 0;
2603         int should_put;
2604         struct btrfs_path *path = NULL;
2605         LIST_HEAD(dirty);
2606         struct list_head *io = &cur_trans->io_bgs;
2607         int num_started = 0;
2608         int loops = 0;
2609
2610         spin_lock(&cur_trans->dirty_bgs_lock);
2611         if (list_empty(&cur_trans->dirty_bgs)) {
2612                 spin_unlock(&cur_trans->dirty_bgs_lock);
2613                 return 0;
2614         }
2615         list_splice_init(&cur_trans->dirty_bgs, &dirty);
2616         spin_unlock(&cur_trans->dirty_bgs_lock);
2617
2618 again:
2619         /* Make sure all the block groups on our dirty list actually exist */
2620         btrfs_create_pending_block_groups(trans);
2621
2622         if (!path) {
2623                 path = btrfs_alloc_path();
2624                 if (!path)
2625                         return -ENOMEM;
2626         }
2627
2628         /*
2629          * cache_write_mutex is here only to save us from balance or automatic
2630          * removal of empty block groups deleting this block group while we are
2631          * writing out the cache
2632          */
2633         mutex_lock(&trans->transaction->cache_write_mutex);
2634         while (!list_empty(&dirty)) {
2635                 bool drop_reserve = true;
2636
2637                 cache = list_first_entry(&dirty, struct btrfs_block_group,
2638                                          dirty_list);
2639                 /*
2640                  * This can happen if something re-dirties a block group that
2641                  * is already under IO.  Just wait for it to finish and then do
2642                  * it all again
2643                  */
2644                 if (!list_empty(&cache->io_list)) {
2645                         list_del_init(&cache->io_list);
2646                         btrfs_wait_cache_io(trans, cache, path);
2647                         btrfs_put_block_group(cache);
2648                 }
2649
2650
2651                 /*
2652                  * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2653                  * it should update the cache_state.  Don't delete until after
2654                  * we wait.
2655                  *
2656                  * Since we're not running in the commit critical section
2657                  * we need the dirty_bgs_lock to protect from update_block_group
2658                  */
2659                 spin_lock(&cur_trans->dirty_bgs_lock);
2660                 list_del_init(&cache->dirty_list);
2661                 spin_unlock(&cur_trans->dirty_bgs_lock);
2662
2663                 should_put = 1;
2664
2665                 cache_save_setup(cache, trans, path);
2666
2667                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2668                         cache->io_ctl.inode = NULL;
2669                         ret = btrfs_write_out_cache(trans, cache, path);
2670                         if (ret == 0 && cache->io_ctl.inode) {
2671                                 num_started++;
2672                                 should_put = 0;
2673
2674                                 /*
2675                                  * The cache_write_mutex is protecting the
2676                                  * io_list, also refer to the definition of
2677                                  * btrfs_transaction::io_bgs for more details
2678                                  */
2679                                 list_add_tail(&cache->io_list, io);
2680                         } else {
2681                                 /*
2682                                  * If we failed to write the cache, the
2683                                  * generation will be bad and life goes on
2684                                  */
2685                                 ret = 0;
2686                         }
2687                 }
2688                 if (!ret) {
2689                         ret = update_block_group_item(trans, path, cache);
2690                         /*
2691                          * Our block group might still be attached to the list
2692                          * of new block groups in the transaction handle of some
2693                          * other task (struct btrfs_trans_handle->new_bgs). This
2694                          * means its block group item isn't yet in the extent
2695                          * tree. If this happens ignore the error, as we will
2696                          * try again later in the critical section of the
2697                          * transaction commit.
2698                          */
2699                         if (ret == -ENOENT) {
2700                                 ret = 0;
2701                                 spin_lock(&cur_trans->dirty_bgs_lock);
2702                                 if (list_empty(&cache->dirty_list)) {
2703                                         list_add_tail(&cache->dirty_list,
2704                                                       &cur_trans->dirty_bgs);
2705                                         btrfs_get_block_group(cache);
2706                                         drop_reserve = false;
2707                                 }
2708                                 spin_unlock(&cur_trans->dirty_bgs_lock);
2709                         } else if (ret) {
2710                                 btrfs_abort_transaction(trans, ret);
2711                         }
2712                 }
2713
2714                 /* If it's not on the io list, we need to put the block group */
2715                 if (should_put)
2716                         btrfs_put_block_group(cache);
2717                 if (drop_reserve)
2718                         btrfs_delayed_refs_rsv_release(fs_info, 1);
2719
2720                 if (ret)
2721                         break;
2722
2723                 /*
2724                  * Avoid blocking other tasks for too long. It might even save
2725                  * us from writing caches for block groups that are going to be
2726                  * removed.
2727                  */
2728                 mutex_unlock(&trans->transaction->cache_write_mutex);
2729                 mutex_lock(&trans->transaction->cache_write_mutex);
2730         }
2731         mutex_unlock(&trans->transaction->cache_write_mutex);
2732
2733         /*
2734          * Go through delayed refs for all the stuff we've just kicked off
2735          * and then loop back (just once)
2736          */
2737         ret = btrfs_run_delayed_refs(trans, 0);
2738         if (!ret && loops == 0) {
2739                 loops++;
2740                 spin_lock(&cur_trans->dirty_bgs_lock);
2741                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2742                 /*
2743                  * dirty_bgs_lock protects us from concurrent block group
2744                  * deletes too (not just cache_write_mutex).
2745                  */
2746                 if (!list_empty(&dirty)) {
2747                         spin_unlock(&cur_trans->dirty_bgs_lock);
2748                         goto again;
2749                 }
2750                 spin_unlock(&cur_trans->dirty_bgs_lock);
2751         } else if (ret < 0) {
2752                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2753         }
2754
2755         btrfs_free_path(path);
2756         return ret;
2757 }
2758
2759 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2760 {
2761         struct btrfs_fs_info *fs_info = trans->fs_info;
2762         struct btrfs_block_group *cache;
2763         struct btrfs_transaction *cur_trans = trans->transaction;
2764         int ret = 0;
2765         int should_put;
2766         struct btrfs_path *path;
2767         struct list_head *io = &cur_trans->io_bgs;
2768         int num_started = 0;
2769
2770         path = btrfs_alloc_path();
2771         if (!path)
2772                 return -ENOMEM;
2773
2774         /*
2775          * Even though we are in the critical section of the transaction commit,
2776          * we can still have concurrent tasks adding elements to this
2777          * transaction's list of dirty block groups. These tasks correspond to
2778          * endio free space workers started when writeback finishes for a
2779          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2780          * allocate new block groups as a result of COWing nodes of the root
2781          * tree when updating the free space inode. The writeback for the space
2782          * caches is triggered by an earlier call to
2783          * btrfs_start_dirty_block_groups() and iterations of the following
2784          * loop.
2785          * Also we want to do the cache_save_setup first and then run the
2786          * delayed refs to make sure we have the best chance at doing this all
2787          * in one shot.
2788          */
2789         spin_lock(&cur_trans->dirty_bgs_lock);
2790         while (!list_empty(&cur_trans->dirty_bgs)) {
2791                 cache = list_first_entry(&cur_trans->dirty_bgs,
2792                                          struct btrfs_block_group,
2793                                          dirty_list);
2794
2795                 /*
2796                  * This can happen if cache_save_setup re-dirties a block group
2797                  * that is already under IO.  Just wait for it to finish and
2798                  * then do it all again
2799                  */
2800                 if (!list_empty(&cache->io_list)) {
2801                         spin_unlock(&cur_trans->dirty_bgs_lock);
2802                         list_del_init(&cache->io_list);
2803                         btrfs_wait_cache_io(trans, cache, path);
2804                         btrfs_put_block_group(cache);
2805                         spin_lock(&cur_trans->dirty_bgs_lock);
2806                 }
2807
2808                 /*
2809                  * Don't remove from the dirty list until after we've waited on
2810                  * any pending IO
2811                  */
2812                 list_del_init(&cache->dirty_list);
2813                 spin_unlock(&cur_trans->dirty_bgs_lock);
2814                 should_put = 1;
2815
2816                 cache_save_setup(cache, trans, path);
2817
2818                 if (!ret)
2819                         ret = btrfs_run_delayed_refs(trans,
2820                                                      (unsigned long) -1);
2821
2822                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2823                         cache->io_ctl.inode = NULL;
2824                         ret = btrfs_write_out_cache(trans, cache, path);
2825                         if (ret == 0 && cache->io_ctl.inode) {
2826                                 num_started++;
2827                                 should_put = 0;
2828                                 list_add_tail(&cache->io_list, io);
2829                         } else {
2830                                 /*
2831                                  * If we failed to write the cache, the
2832                                  * generation will be bad and life goes on
2833                                  */
2834                                 ret = 0;
2835                         }
2836                 }
2837                 if (!ret) {
2838                         ret = update_block_group_item(trans, path, cache);
2839                         /*
2840                          * One of the free space endio workers might have
2841                          * created a new block group while updating a free space
2842                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
2843                          * and hasn't released its transaction handle yet, in
2844                          * which case the new block group is still attached to
2845                          * its transaction handle and its creation has not
2846                          * finished yet (no block group item in the extent tree
2847                          * yet, etc). If this is the case, wait for all free
2848                          * space endio workers to finish and retry. This is a
2849                          * a very rare case so no need for a more efficient and
2850                          * complex approach.
2851                          */
2852                         if (ret == -ENOENT) {
2853                                 wait_event(cur_trans->writer_wait,
2854                                    atomic_read(&cur_trans->num_writers) == 1);
2855                                 ret = update_block_group_item(trans, path, cache);
2856                         }
2857                         if (ret)
2858                                 btrfs_abort_transaction(trans, ret);
2859                 }
2860
2861                 /* If its not on the io list, we need to put the block group */
2862                 if (should_put)
2863                         btrfs_put_block_group(cache);
2864                 btrfs_delayed_refs_rsv_release(fs_info, 1);
2865                 spin_lock(&cur_trans->dirty_bgs_lock);
2866         }
2867         spin_unlock(&cur_trans->dirty_bgs_lock);
2868
2869         /*
2870          * Refer to the definition of io_bgs member for details why it's safe
2871          * to use it without any locking
2872          */
2873         while (!list_empty(io)) {
2874                 cache = list_first_entry(io, struct btrfs_block_group,
2875                                          io_list);
2876                 list_del_init(&cache->io_list);
2877                 btrfs_wait_cache_io(trans, cache, path);
2878                 btrfs_put_block_group(cache);
2879         }
2880
2881         btrfs_free_path(path);
2882         return ret;
2883 }
2884
2885 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2886                              u64 bytenr, u64 num_bytes, int alloc)
2887 {
2888         struct btrfs_fs_info *info = trans->fs_info;
2889         struct btrfs_block_group *cache = NULL;
2890         u64 total = num_bytes;
2891         u64 old_val;
2892         u64 byte_in_group;
2893         int factor;
2894         int ret = 0;
2895
2896         /* Block accounting for super block */
2897         spin_lock(&info->delalloc_root_lock);
2898         old_val = btrfs_super_bytes_used(info->super_copy);
2899         if (alloc)
2900                 old_val += num_bytes;
2901         else
2902                 old_val -= num_bytes;
2903         btrfs_set_super_bytes_used(info->super_copy, old_val);
2904         spin_unlock(&info->delalloc_root_lock);
2905
2906         while (total) {
2907                 cache = btrfs_lookup_block_group(info, bytenr);
2908                 if (!cache) {
2909                         ret = -ENOENT;
2910                         break;
2911                 }
2912                 factor = btrfs_bg_type_to_factor(cache->flags);
2913
2914                 /*
2915                  * If this block group has free space cache written out, we
2916                  * need to make sure to load it if we are removing space.  This
2917                  * is because we need the unpinning stage to actually add the
2918                  * space back to the block group, otherwise we will leak space.
2919                  */
2920                 if (!alloc && !btrfs_block_group_done(cache))
2921                         btrfs_cache_block_group(cache, 1);
2922
2923                 byte_in_group = bytenr - cache->start;
2924                 WARN_ON(byte_in_group > cache->length);
2925
2926                 spin_lock(&cache->space_info->lock);
2927                 spin_lock(&cache->lock);
2928
2929                 if (btrfs_test_opt(info, SPACE_CACHE) &&
2930                     cache->disk_cache_state < BTRFS_DC_CLEAR)
2931                         cache->disk_cache_state = BTRFS_DC_CLEAR;
2932
2933                 old_val = cache->used;
2934                 num_bytes = min(total, cache->length - byte_in_group);
2935                 if (alloc) {
2936                         old_val += num_bytes;
2937                         cache->used = old_val;
2938                         cache->reserved -= num_bytes;
2939                         cache->space_info->bytes_reserved -= num_bytes;
2940                         cache->space_info->bytes_used += num_bytes;
2941                         cache->space_info->disk_used += num_bytes * factor;
2942                         spin_unlock(&cache->lock);
2943                         spin_unlock(&cache->space_info->lock);
2944                 } else {
2945                         old_val -= num_bytes;
2946                         cache->used = old_val;
2947                         cache->pinned += num_bytes;
2948                         btrfs_space_info_update_bytes_pinned(info,
2949                                         cache->space_info, num_bytes);
2950                         cache->space_info->bytes_used -= num_bytes;
2951                         cache->space_info->disk_used -= num_bytes * factor;
2952                         spin_unlock(&cache->lock);
2953                         spin_unlock(&cache->space_info->lock);
2954
2955                         percpu_counter_add_batch(
2956                                         &cache->space_info->total_bytes_pinned,
2957                                         num_bytes,
2958                                         BTRFS_TOTAL_BYTES_PINNED_BATCH);
2959                         set_extent_dirty(&trans->transaction->pinned_extents,
2960                                          bytenr, bytenr + num_bytes - 1,
2961                                          GFP_NOFS | __GFP_NOFAIL);
2962                 }
2963
2964                 spin_lock(&trans->transaction->dirty_bgs_lock);
2965                 if (list_empty(&cache->dirty_list)) {
2966                         list_add_tail(&cache->dirty_list,
2967                                       &trans->transaction->dirty_bgs);
2968                         trans->delayed_ref_updates++;
2969                         btrfs_get_block_group(cache);
2970                 }
2971                 spin_unlock(&trans->transaction->dirty_bgs_lock);
2972
2973                 /*
2974                  * No longer have used bytes in this block group, queue it for
2975                  * deletion. We do this after adding the block group to the
2976                  * dirty list to avoid races between cleaner kthread and space
2977                  * cache writeout.
2978                  */
2979                 if (!alloc && old_val == 0) {
2980                         if (!btrfs_test_opt(info, DISCARD_ASYNC))
2981                                 btrfs_mark_bg_unused(cache);
2982                 }
2983
2984                 btrfs_put_block_group(cache);
2985                 total -= num_bytes;
2986                 bytenr += num_bytes;
2987         }
2988
2989         /* Modified block groups are accounted for in the delayed_refs_rsv. */
2990         btrfs_update_delayed_refs_rsv(trans);
2991         return ret;
2992 }
2993
2994 /**
2995  * btrfs_add_reserved_bytes - update the block_group and space info counters
2996  * @cache:      The cache we are manipulating
2997  * @ram_bytes:  The number of bytes of file content, and will be same to
2998  *              @num_bytes except for the compress path.
2999  * @num_bytes:  The number of bytes in question
3000  * @delalloc:   The blocks are allocated for the delalloc write
3001  *
3002  * This is called by the allocator when it reserves space. If this is a
3003  * reservation and the block group has become read only we cannot make the
3004  * reservation and return -EAGAIN, otherwise this function always succeeds.
3005  */
3006 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3007                              u64 ram_bytes, u64 num_bytes, int delalloc)
3008 {
3009         struct btrfs_space_info *space_info = cache->space_info;
3010         int ret = 0;
3011
3012         spin_lock(&space_info->lock);
3013         spin_lock(&cache->lock);
3014         if (cache->ro) {
3015                 ret = -EAGAIN;
3016         } else {
3017                 cache->reserved += num_bytes;
3018                 space_info->bytes_reserved += num_bytes;
3019                 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3020                                               space_info->flags, num_bytes, 1);
3021                 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3022                                                       space_info, -ram_bytes);
3023                 if (delalloc)
3024                         cache->delalloc_bytes += num_bytes;
3025         }
3026         spin_unlock(&cache->lock);
3027         spin_unlock(&space_info->lock);
3028         return ret;
3029 }
3030
3031 /**
3032  * btrfs_free_reserved_bytes - update the block_group and space info counters
3033  * @cache:      The cache we are manipulating
3034  * @num_bytes:  The number of bytes in question
3035  * @delalloc:   The blocks are allocated for the delalloc write
3036  *
3037  * This is called by somebody who is freeing space that was never actually used
3038  * on disk.  For example if you reserve some space for a new leaf in transaction
3039  * A and before transaction A commits you free that leaf, you call this with
3040  * reserve set to 0 in order to clear the reservation.
3041  */
3042 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3043                                u64 num_bytes, int delalloc)
3044 {
3045         struct btrfs_space_info *space_info = cache->space_info;
3046
3047         spin_lock(&space_info->lock);
3048         spin_lock(&cache->lock);
3049         if (cache->ro)
3050                 space_info->bytes_readonly += num_bytes;
3051         cache->reserved -= num_bytes;
3052         space_info->bytes_reserved -= num_bytes;
3053         space_info->max_extent_size = 0;
3054
3055         if (delalloc)
3056                 cache->delalloc_bytes -= num_bytes;
3057         spin_unlock(&cache->lock);
3058         spin_unlock(&space_info->lock);
3059 }
3060
3061 static void force_metadata_allocation(struct btrfs_fs_info *info)
3062 {
3063         struct list_head *head = &info->space_info;
3064         struct btrfs_space_info *found;
3065
3066         rcu_read_lock();
3067         list_for_each_entry_rcu(found, head, list) {
3068                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3069                         found->force_alloc = CHUNK_ALLOC_FORCE;
3070         }
3071         rcu_read_unlock();
3072 }
3073
3074 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3075                               struct btrfs_space_info *sinfo, int force)
3076 {
3077         u64 bytes_used = btrfs_space_info_used(sinfo, false);
3078         u64 thresh;
3079
3080         if (force == CHUNK_ALLOC_FORCE)
3081                 return 1;
3082
3083         /*
3084          * in limited mode, we want to have some free space up to
3085          * about 1% of the FS size.
3086          */
3087         if (force == CHUNK_ALLOC_LIMITED) {
3088                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3089                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3090
3091                 if (sinfo->total_bytes - bytes_used < thresh)
3092                         return 1;
3093         }
3094
3095         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3096                 return 0;
3097         return 1;
3098 }
3099
3100 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3101 {
3102         u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3103
3104         return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3105 }
3106
3107 /*
3108  * If force is CHUNK_ALLOC_FORCE:
3109  *    - return 1 if it successfully allocates a chunk,
3110  *    - return errors including -ENOSPC otherwise.
3111  * If force is NOT CHUNK_ALLOC_FORCE:
3112  *    - return 0 if it doesn't need to allocate a new chunk,
3113  *    - return 1 if it successfully allocates a chunk,
3114  *    - return errors including -ENOSPC otherwise.
3115  */
3116 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3117                       enum btrfs_chunk_alloc_enum force)
3118 {
3119         struct btrfs_fs_info *fs_info = trans->fs_info;
3120         struct btrfs_space_info *space_info;
3121         bool wait_for_alloc = false;
3122         bool should_alloc = false;
3123         int ret = 0;
3124
3125         /* Don't re-enter if we're already allocating a chunk */
3126         if (trans->allocating_chunk)
3127                 return -ENOSPC;
3128
3129         space_info = btrfs_find_space_info(fs_info, flags);
3130         ASSERT(space_info);
3131
3132         do {
3133                 spin_lock(&space_info->lock);
3134                 if (force < space_info->force_alloc)
3135                         force = space_info->force_alloc;
3136                 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3137                 if (space_info->full) {
3138                         /* No more free physical space */
3139                         if (should_alloc)
3140                                 ret = -ENOSPC;
3141                         else
3142                                 ret = 0;
3143                         spin_unlock(&space_info->lock);
3144                         return ret;
3145                 } else if (!should_alloc) {
3146                         spin_unlock(&space_info->lock);
3147                         return 0;
3148                 } else if (space_info->chunk_alloc) {
3149                         /*
3150                          * Someone is already allocating, so we need to block
3151                          * until this someone is finished and then loop to
3152                          * recheck if we should continue with our allocation
3153                          * attempt.
3154                          */
3155                         wait_for_alloc = true;
3156                         spin_unlock(&space_info->lock);
3157                         mutex_lock(&fs_info->chunk_mutex);
3158                         mutex_unlock(&fs_info->chunk_mutex);
3159                 } else {
3160                         /* Proceed with allocation */
3161                         space_info->chunk_alloc = 1;
3162                         wait_for_alloc = false;
3163                         spin_unlock(&space_info->lock);
3164                 }
3165
3166                 cond_resched();
3167         } while (wait_for_alloc);
3168
3169         mutex_lock(&fs_info->chunk_mutex);
3170         trans->allocating_chunk = true;
3171
3172         /*
3173          * If we have mixed data/metadata chunks we want to make sure we keep
3174          * allocating mixed chunks instead of individual chunks.
3175          */
3176         if (btrfs_mixed_space_info(space_info))
3177                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3178
3179         /*
3180          * if we're doing a data chunk, go ahead and make sure that
3181          * we keep a reasonable number of metadata chunks allocated in the
3182          * FS as well.
3183          */
3184         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3185                 fs_info->data_chunk_allocations++;
3186                 if (!(fs_info->data_chunk_allocations %
3187                       fs_info->metadata_ratio))
3188                         force_metadata_allocation(fs_info);
3189         }
3190
3191         /*
3192          * Check if we have enough space in SYSTEM chunk because we may need
3193          * to update devices.
3194          */
3195         check_system_chunk(trans, flags);
3196
3197         ret = btrfs_alloc_chunk(trans, flags);
3198         trans->allocating_chunk = false;
3199
3200         spin_lock(&space_info->lock);
3201         if (ret < 0) {
3202                 if (ret == -ENOSPC)
3203                         space_info->full = 1;
3204                 else
3205                         goto out;
3206         } else {
3207                 ret = 1;
3208                 space_info->max_extent_size = 0;
3209         }
3210
3211         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3212 out:
3213         space_info->chunk_alloc = 0;
3214         spin_unlock(&space_info->lock);
3215         mutex_unlock(&fs_info->chunk_mutex);
3216         /*
3217          * When we allocate a new chunk we reserve space in the chunk block
3218          * reserve to make sure we can COW nodes/leafs in the chunk tree or
3219          * add new nodes/leafs to it if we end up needing to do it when
3220          * inserting the chunk item and updating device items as part of the
3221          * second phase of chunk allocation, performed by
3222          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3223          * large number of new block groups to create in our transaction
3224          * handle's new_bgs list to avoid exhausting the chunk block reserve
3225          * in extreme cases - like having a single transaction create many new
3226          * block groups when starting to write out the free space caches of all
3227          * the block groups that were made dirty during the lifetime of the
3228          * transaction.
3229          */
3230         if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3231                 btrfs_create_pending_block_groups(trans);
3232
3233         return ret;
3234 }
3235
3236 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3237 {
3238         u64 num_dev;
3239
3240         num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3241         if (!num_dev)
3242                 num_dev = fs_info->fs_devices->rw_devices;
3243
3244         return num_dev;
3245 }
3246
3247 /*
3248  * Reserve space in the system space for allocating or removing a chunk
3249  */
3250 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3251 {
3252         struct btrfs_fs_info *fs_info = trans->fs_info;
3253         struct btrfs_space_info *info;
3254         u64 left;
3255         u64 thresh;
3256         int ret = 0;
3257         u64 num_devs;
3258
3259         /*
3260          * Needed because we can end up allocating a system chunk and for an
3261          * atomic and race free space reservation in the chunk block reserve.
3262          */
3263         lockdep_assert_held(&fs_info->chunk_mutex);
3264
3265         info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3266         spin_lock(&info->lock);
3267         left = info->total_bytes - btrfs_space_info_used(info, true);
3268         spin_unlock(&info->lock);
3269
3270         num_devs = get_profile_num_devs(fs_info, type);
3271
3272         /* num_devs device items to update and 1 chunk item to add or remove */
3273         thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3274                 btrfs_calc_insert_metadata_size(fs_info, 1);
3275
3276         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3277                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3278                            left, thresh, type);
3279                 btrfs_dump_space_info(fs_info, info, 0, 0);
3280         }
3281
3282         if (left < thresh) {
3283                 u64 flags = btrfs_system_alloc_profile(fs_info);
3284
3285                 /*
3286                  * Ignore failure to create system chunk. We might end up not
3287                  * needing it, as we might not need to COW all nodes/leafs from
3288                  * the paths we visit in the chunk tree (they were already COWed
3289                  * or created in the current transaction for example).
3290                  */
3291                 ret = btrfs_alloc_chunk(trans, flags);
3292         }
3293
3294         if (!ret) {
3295                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3296                                           &fs_info->chunk_block_rsv,
3297                                           thresh, BTRFS_RESERVE_NO_FLUSH);
3298                 if (!ret)
3299                         trans->chunk_bytes_reserved += thresh;
3300         }
3301 }
3302
3303 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3304 {
3305         struct btrfs_block_group *block_group;
3306         u64 last = 0;
3307
3308         while (1) {
3309                 struct inode *inode;
3310
3311                 block_group = btrfs_lookup_first_block_group(info, last);
3312                 while (block_group) {
3313                         btrfs_wait_block_group_cache_done(block_group);
3314                         spin_lock(&block_group->lock);
3315                         if (block_group->iref)
3316                                 break;
3317                         spin_unlock(&block_group->lock);
3318                         block_group = btrfs_next_block_group(block_group);
3319                 }
3320                 if (!block_group) {
3321                         if (last == 0)
3322                                 break;
3323                         last = 0;
3324                         continue;
3325                 }
3326
3327                 inode = block_group->inode;
3328                 block_group->iref = 0;
3329                 block_group->inode = NULL;
3330                 spin_unlock(&block_group->lock);
3331                 ASSERT(block_group->io_ctl.inode == NULL);
3332                 iput(inode);
3333                 last = block_group->start + block_group->length;
3334                 btrfs_put_block_group(block_group);
3335         }
3336 }
3337
3338 /*
3339  * Must be called only after stopping all workers, since we could have block
3340  * group caching kthreads running, and therefore they could race with us if we
3341  * freed the block groups before stopping them.
3342  */
3343 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3344 {
3345         struct btrfs_block_group *block_group;
3346         struct btrfs_space_info *space_info;
3347         struct btrfs_caching_control *caching_ctl;
3348         struct rb_node *n;
3349
3350         down_write(&info->commit_root_sem);
3351         while (!list_empty(&info->caching_block_groups)) {
3352                 caching_ctl = list_entry(info->caching_block_groups.next,
3353                                          struct btrfs_caching_control, list);
3354                 list_del(&caching_ctl->list);
3355                 btrfs_put_caching_control(caching_ctl);
3356         }
3357         up_write(&info->commit_root_sem);
3358
3359         spin_lock(&info->unused_bgs_lock);
3360         while (!list_empty(&info->unused_bgs)) {
3361                 block_group = list_first_entry(&info->unused_bgs,
3362                                                struct btrfs_block_group,
3363                                                bg_list);
3364                 list_del_init(&block_group->bg_list);
3365                 btrfs_put_block_group(block_group);
3366         }
3367         spin_unlock(&info->unused_bgs_lock);
3368
3369         spin_lock(&info->block_group_cache_lock);
3370         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3371                 block_group = rb_entry(n, struct btrfs_block_group,
3372                                        cache_node);
3373                 rb_erase(&block_group->cache_node,
3374                          &info->block_group_cache_tree);
3375                 RB_CLEAR_NODE(&block_group->cache_node);
3376                 spin_unlock(&info->block_group_cache_lock);
3377
3378                 down_write(&block_group->space_info->groups_sem);
3379                 list_del(&block_group->list);
3380                 up_write(&block_group->space_info->groups_sem);
3381
3382                 /*
3383                  * We haven't cached this block group, which means we could
3384                  * possibly have excluded extents on this block group.
3385                  */
3386                 if (block_group->cached == BTRFS_CACHE_NO ||
3387                     block_group->cached == BTRFS_CACHE_ERROR)
3388                         btrfs_free_excluded_extents(block_group);
3389
3390                 btrfs_remove_free_space_cache(block_group);
3391                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3392                 ASSERT(list_empty(&block_group->dirty_list));
3393                 ASSERT(list_empty(&block_group->io_list));
3394                 ASSERT(list_empty(&block_group->bg_list));
3395                 ASSERT(atomic_read(&block_group->count) == 1);
3396                 btrfs_put_block_group(block_group);
3397
3398                 spin_lock(&info->block_group_cache_lock);
3399         }
3400         spin_unlock(&info->block_group_cache_lock);
3401
3402         /*
3403          * Now that all the block groups are freed, go through and free all the
3404          * space_info structs.  This is only called during the final stages of
3405          * unmount, and so we know nobody is using them.  We call
3406          * synchronize_rcu() once before we start, just to be on the safe side.
3407          */
3408         synchronize_rcu();
3409
3410         btrfs_release_global_block_rsv(info);
3411
3412         while (!list_empty(&info->space_info)) {
3413                 space_info = list_entry(info->space_info.next,
3414                                         struct btrfs_space_info,
3415                                         list);
3416
3417                 /*
3418                  * Do not hide this behind enospc_debug, this is actually
3419                  * important and indicates a real bug if this happens.
3420                  */
3421                 if (WARN_ON(space_info->bytes_pinned > 0 ||
3422                             space_info->bytes_reserved > 0 ||
3423                             space_info->bytes_may_use > 0))
3424                         btrfs_dump_space_info(info, space_info, 0, 0);
3425                 WARN_ON(space_info->reclaim_size > 0);
3426                 list_del(&space_info->list);
3427                 btrfs_sysfs_remove_space_info(space_info);
3428         }
3429         return 0;
3430 }
3431
3432 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3433 {
3434         atomic_inc(&cache->frozen);
3435 }
3436
3437 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3438 {
3439         struct btrfs_fs_info *fs_info = block_group->fs_info;
3440         struct extent_map_tree *em_tree;
3441         struct extent_map *em;
3442         bool cleanup;
3443
3444         spin_lock(&block_group->lock);
3445         cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3446                    block_group->removed);
3447         spin_unlock(&block_group->lock);
3448
3449         if (cleanup) {
3450                 mutex_lock(&fs_info->chunk_mutex);
3451                 em_tree = &fs_info->mapping_tree;
3452                 write_lock(&em_tree->lock);
3453                 em = lookup_extent_mapping(em_tree, block_group->start,
3454                                            1);
3455                 BUG_ON(!em); /* logic error, can't happen */
3456                 remove_extent_mapping(em_tree, em);
3457                 write_unlock(&em_tree->lock);
3458                 mutex_unlock(&fs_info->chunk_mutex);
3459
3460                 /* once for us and once for the tree */
3461                 free_extent_map(em);
3462                 free_extent_map(em);
3463
3464                 /*
3465                  * We may have left one free space entry and other possible
3466                  * tasks trimming this block group have left 1 entry each one.
3467                  * Free them if any.
3468                  */
3469                 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3470         }
3471 }