2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
9 * See ../COPYING for licensing terms.
11 #define pr_fmt(fmt) "%s: " fmt, __func__
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
23 #include <linux/sched/signal.h>
25 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
44 #include <asm/kmap_types.h>
45 #include <linux/uaccess.h>
49 #define AIO_RING_MAGIC 0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES 1
51 #define AIO_RING_INCOMPAT_FEATURES 0
53 unsigned id; /* kernel internal index number */
54 unsigned nr; /* number of io_events */
55 unsigned head; /* Written to by userland or under ring_lock
56 * mutex by aio_read_events_ring(). */
60 unsigned compat_features;
61 unsigned incompat_features;
62 unsigned header_length; /* size of aio_ring */
65 struct io_event io_events[0];
66 }; /* 128 bytes + ring size */
68 #define AIO_RING_PAGES 8
73 struct kioctx __rcu *table[];
77 unsigned reqs_available;
81 struct completion comp;
86 struct percpu_ref users;
89 struct percpu_ref reqs;
91 unsigned long user_id;
93 struct __percpu kioctx_cpu *cpu;
96 * For percpu reqs_available, number of slots we move to/from global
101 * This is what userspace passed to io_setup(), it's not used for
102 * anything but counting against the global max_reqs quota.
104 * The real limit is nr_events - 1, which will be larger (see
109 /* Size of ringbuffer, in units of struct io_event */
112 unsigned long mmap_base;
113 unsigned long mmap_size;
115 struct page **ring_pages;
118 struct rcu_work free_rwork; /* see free_ioctx() */
121 * signals when all in-flight requests are done
123 struct ctx_rq_wait *rq_wait;
127 * This counts the number of available slots in the ringbuffer,
128 * so we avoid overflowing it: it's decremented (if positive)
129 * when allocating a kiocb and incremented when the resulting
130 * io_event is pulled off the ringbuffer.
132 * We batch accesses to it with a percpu version.
134 atomic_t reqs_available;
135 } ____cacheline_aligned_in_smp;
139 struct list_head active_reqs; /* used for cancellation */
140 } ____cacheline_aligned_in_smp;
143 struct mutex ring_lock;
144 wait_queue_head_t wait;
145 } ____cacheline_aligned_in_smp;
149 unsigned completed_events;
150 spinlock_t completion_lock;
151 } ____cacheline_aligned_in_smp;
153 struct page *internal_pages[AIO_RING_PAGES];
154 struct file *aio_ring_file;
160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161 * cancelled or completed (this makes a certain amount of sense because
162 * successful cancellation - io_cancel() - does deliver the completion to
165 * And since most things don't implement kiocb cancellation and we'd really like
166 * kiocb completion to be lockless when possible, we use ki_cancel to
167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
170 #define KIOCB_CANCELLED ((void *) (~0ULL))
175 struct kioctx *ki_ctx;
176 kiocb_cancel_fn *ki_cancel;
178 struct iocb __user *ki_user_iocb; /* user's aiocb */
179 __u64 ki_user_data; /* user's data for completion */
181 struct list_head ki_list; /* the aio core uses this
182 * for cancellation */
185 * If the aio_resfd field of the userspace iocb is not zero,
186 * this is the underlying eventfd context to deliver events to.
188 struct eventfd_ctx *ki_eventfd;
191 /*------ sysctl variables----*/
192 static DEFINE_SPINLOCK(aio_nr_lock);
193 unsigned long aio_nr; /* current system wide number of aio requests */
194 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195 /*----end sysctl variables---*/
197 static struct kmem_cache *kiocb_cachep;
198 static struct kmem_cache *kioctx_cachep;
200 static struct vfsmount *aio_mnt;
202 static const struct file_operations aio_ring_fops;
203 static const struct address_space_operations aio_ctx_aops;
205 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
207 struct qstr this = QSTR_INIT("[aio]", 5);
210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
212 return ERR_CAST(inode);
214 inode->i_mapping->a_ops = &aio_ctx_aops;
215 inode->i_mapping->private_data = ctx;
216 inode->i_size = PAGE_SIZE * nr_pages;
218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
221 return ERR_PTR(-ENOMEM);
223 path.mnt = mntget(aio_mnt);
225 d_instantiate(path.dentry, inode);
226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
232 file->f_flags = O_RDWR;
236 static struct dentry *aio_mount(struct file_system_type *fs_type,
237 int flags, const char *dev_name, void *data)
239 static const struct dentry_operations ops = {
240 .d_dname = simple_dname,
242 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
246 root->d_sb->s_iflags |= SB_I_NOEXEC;
251 * Creates the slab caches used by the aio routines, panic on
252 * failure as this is done early during the boot sequence.
254 static int __init aio_setup(void)
256 static struct file_system_type aio_fs = {
259 .kill_sb = kill_anon_super,
261 aio_mnt = kern_mount(&aio_fs);
263 panic("Failed to create aio fs mount.");
265 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
266 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
269 __initcall(aio_setup);
271 static void put_aio_ring_file(struct kioctx *ctx)
273 struct file *aio_ring_file = ctx->aio_ring_file;
274 struct address_space *i_mapping;
277 truncate_setsize(file_inode(aio_ring_file), 0);
279 /* Prevent further access to the kioctx from migratepages */
280 i_mapping = aio_ring_file->f_mapping;
281 spin_lock(&i_mapping->private_lock);
282 i_mapping->private_data = NULL;
283 ctx->aio_ring_file = NULL;
284 spin_unlock(&i_mapping->private_lock);
290 static void aio_free_ring(struct kioctx *ctx)
294 /* Disconnect the kiotx from the ring file. This prevents future
295 * accesses to the kioctx from page migration.
297 put_aio_ring_file(ctx);
299 for (i = 0; i < ctx->nr_pages; i++) {
301 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
302 page_count(ctx->ring_pages[i]));
303 page = ctx->ring_pages[i];
306 ctx->ring_pages[i] = NULL;
310 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
311 kfree(ctx->ring_pages);
312 ctx->ring_pages = NULL;
316 static int aio_ring_mremap(struct vm_area_struct *vma)
318 struct file *file = vma->vm_file;
319 struct mm_struct *mm = vma->vm_mm;
320 struct kioctx_table *table;
321 int i, res = -EINVAL;
323 spin_lock(&mm->ioctx_lock);
325 table = rcu_dereference(mm->ioctx_table);
326 for (i = 0; i < table->nr; i++) {
329 ctx = rcu_dereference(table->table[i]);
330 if (ctx && ctx->aio_ring_file == file) {
331 if (!atomic_read(&ctx->dead)) {
332 ctx->user_id = ctx->mmap_base = vma->vm_start;
340 spin_unlock(&mm->ioctx_lock);
344 static const struct vm_operations_struct aio_ring_vm_ops = {
345 .mremap = aio_ring_mremap,
346 #if IS_ENABLED(CONFIG_MMU)
347 .fault = filemap_fault,
348 .map_pages = filemap_map_pages,
349 .page_mkwrite = filemap_page_mkwrite,
353 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
355 vma->vm_flags |= VM_DONTEXPAND;
356 vma->vm_ops = &aio_ring_vm_ops;
360 static const struct file_operations aio_ring_fops = {
361 .mmap = aio_ring_mmap,
364 #if IS_ENABLED(CONFIG_MIGRATION)
365 static int aio_migratepage(struct address_space *mapping, struct page *new,
366 struct page *old, enum migrate_mode mode)
374 * We cannot support the _NO_COPY case here, because copy needs to
375 * happen under the ctx->completion_lock. That does not work with the
376 * migration workflow of MIGRATE_SYNC_NO_COPY.
378 if (mode == MIGRATE_SYNC_NO_COPY)
383 /* mapping->private_lock here protects against the kioctx teardown. */
384 spin_lock(&mapping->private_lock);
385 ctx = mapping->private_data;
391 /* The ring_lock mutex. The prevents aio_read_events() from writing
392 * to the ring's head, and prevents page migration from mucking in
393 * a partially initialized kiotx.
395 if (!mutex_trylock(&ctx->ring_lock)) {
401 if (idx < (pgoff_t)ctx->nr_pages) {
402 /* Make sure the old page hasn't already been changed */
403 if (ctx->ring_pages[idx] != old)
411 /* Writeback must be complete */
412 BUG_ON(PageWriteback(old));
415 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
416 if (rc != MIGRATEPAGE_SUCCESS) {
421 /* Take completion_lock to prevent other writes to the ring buffer
422 * while the old page is copied to the new. This prevents new
423 * events from being lost.
425 spin_lock_irqsave(&ctx->completion_lock, flags);
426 migrate_page_copy(new, old);
427 BUG_ON(ctx->ring_pages[idx] != old);
428 ctx->ring_pages[idx] = new;
429 spin_unlock_irqrestore(&ctx->completion_lock, flags);
431 /* The old page is no longer accessible. */
435 mutex_unlock(&ctx->ring_lock);
437 spin_unlock(&mapping->private_lock);
442 static const struct address_space_operations aio_ctx_aops = {
443 .set_page_dirty = __set_page_dirty_no_writeback,
444 #if IS_ENABLED(CONFIG_MIGRATION)
445 .migratepage = aio_migratepage,
449 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
451 struct aio_ring *ring;
452 struct mm_struct *mm = current->mm;
453 unsigned long size, unused;
458 /* Compensate for the ring buffer's head/tail overlap entry */
459 nr_events += 2; /* 1 is required, 2 for good luck */
461 size = sizeof(struct aio_ring);
462 size += sizeof(struct io_event) * nr_events;
464 nr_pages = PFN_UP(size);
468 file = aio_private_file(ctx, nr_pages);
470 ctx->aio_ring_file = NULL;
474 ctx->aio_ring_file = file;
475 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
476 / sizeof(struct io_event);
478 ctx->ring_pages = ctx->internal_pages;
479 if (nr_pages > AIO_RING_PAGES) {
480 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
482 if (!ctx->ring_pages) {
483 put_aio_ring_file(ctx);
488 for (i = 0; i < nr_pages; i++) {
490 page = find_or_create_page(file->f_mapping,
491 i, GFP_HIGHUSER | __GFP_ZERO);
494 pr_debug("pid(%d) page[%d]->count=%d\n",
495 current->pid, i, page_count(page));
496 SetPageUptodate(page);
499 ctx->ring_pages[i] = page;
503 if (unlikely(i != nr_pages)) {
508 ctx->mmap_size = nr_pages * PAGE_SIZE;
509 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
511 if (down_write_killable(&mm->mmap_sem)) {
517 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
518 PROT_READ | PROT_WRITE,
519 MAP_SHARED, 0, &unused, NULL);
520 up_write(&mm->mmap_sem);
521 if (IS_ERR((void *)ctx->mmap_base)) {
527 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
529 ctx->user_id = ctx->mmap_base;
530 ctx->nr_events = nr_events; /* trusted copy */
532 ring = kmap_atomic(ctx->ring_pages[0]);
533 ring->nr = nr_events; /* user copy */
535 ring->head = ring->tail = 0;
536 ring->magic = AIO_RING_MAGIC;
537 ring->compat_features = AIO_RING_COMPAT_FEATURES;
538 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
539 ring->header_length = sizeof(struct aio_ring);
541 flush_dcache_page(ctx->ring_pages[0]);
546 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
547 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
548 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
550 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
552 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
553 struct kioctx *ctx = req->ki_ctx;
556 spin_lock_irqsave(&ctx->ctx_lock, flags);
558 if (!req->ki_list.next)
559 list_add(&req->ki_list, &ctx->active_reqs);
561 req->ki_cancel = cancel;
563 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
565 EXPORT_SYMBOL(kiocb_set_cancel_fn);
567 static int kiocb_cancel(struct aio_kiocb *kiocb)
569 kiocb_cancel_fn *old, *cancel;
572 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
573 * actually has a cancel function, hence the cmpxchg()
576 cancel = READ_ONCE(kiocb->ki_cancel);
578 if (!cancel || cancel == KIOCB_CANCELLED)
582 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
583 } while (cancel != old);
585 return cancel(&kiocb->common);
589 * free_ioctx() should be RCU delayed to synchronize against the RCU
590 * protected lookup_ioctx() and also needs process context to call
591 * aio_free_ring(). Use rcu_work.
593 static void free_ioctx(struct work_struct *work)
595 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
597 pr_debug("freeing %p\n", ctx);
600 free_percpu(ctx->cpu);
601 percpu_ref_exit(&ctx->reqs);
602 percpu_ref_exit(&ctx->users);
603 kmem_cache_free(kioctx_cachep, ctx);
606 static void free_ioctx_reqs(struct percpu_ref *ref)
608 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
610 /* At this point we know that there are no any in-flight requests */
611 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
612 complete(&ctx->rq_wait->comp);
614 /* Synchronize against RCU protected table->table[] dereferences */
615 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
616 queue_rcu_work(system_wq, &ctx->free_rwork);
620 * When this function runs, the kioctx has been removed from the "hash table"
621 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
622 * now it's safe to cancel any that need to be.
624 static void free_ioctx_users(struct percpu_ref *ref)
626 struct kioctx *ctx = container_of(ref, struct kioctx, users);
627 struct aio_kiocb *req;
629 spin_lock_irq(&ctx->ctx_lock);
631 while (!list_empty(&ctx->active_reqs)) {
632 req = list_first_entry(&ctx->active_reqs,
633 struct aio_kiocb, ki_list);
635 list_del_init(&req->ki_list);
639 spin_unlock_irq(&ctx->ctx_lock);
641 percpu_ref_kill(&ctx->reqs);
642 percpu_ref_put(&ctx->reqs);
645 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
648 struct kioctx_table *table, *old;
649 struct aio_ring *ring;
651 spin_lock(&mm->ioctx_lock);
652 table = rcu_dereference_raw(mm->ioctx_table);
656 for (i = 0; i < table->nr; i++)
657 if (!rcu_access_pointer(table->table[i])) {
659 rcu_assign_pointer(table->table[i], ctx);
660 spin_unlock(&mm->ioctx_lock);
662 /* While kioctx setup is in progress,
663 * we are protected from page migration
664 * changes ring_pages by ->ring_lock.
666 ring = kmap_atomic(ctx->ring_pages[0]);
672 new_nr = (table ? table->nr : 1) * 4;
673 spin_unlock(&mm->ioctx_lock);
675 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
682 spin_lock(&mm->ioctx_lock);
683 old = rcu_dereference_raw(mm->ioctx_table);
686 rcu_assign_pointer(mm->ioctx_table, table);
687 } else if (table->nr > old->nr) {
688 memcpy(table->table, old->table,
689 old->nr * sizeof(struct kioctx *));
691 rcu_assign_pointer(mm->ioctx_table, table);
700 static void aio_nr_sub(unsigned nr)
702 spin_lock(&aio_nr_lock);
703 if (WARN_ON(aio_nr - nr > aio_nr))
707 spin_unlock(&aio_nr_lock);
711 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
713 static struct kioctx *ioctx_alloc(unsigned nr_events)
715 struct mm_struct *mm = current->mm;
720 * Store the original nr_events -- what userspace passed to io_setup(),
721 * for counting against the global limit -- before it changes.
723 unsigned int max_reqs = nr_events;
726 * We keep track of the number of available ringbuffer slots, to prevent
727 * overflow (reqs_available), and we also use percpu counters for this.
729 * So since up to half the slots might be on other cpu's percpu counters
730 * and unavailable, double nr_events so userspace sees what they
731 * expected: additionally, we move req_batch slots to/from percpu
732 * counters at a time, so make sure that isn't 0:
734 nr_events = max(nr_events, num_possible_cpus() * 4);
737 /* Prevent overflows */
738 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
739 pr_debug("ENOMEM: nr_events too high\n");
740 return ERR_PTR(-EINVAL);
743 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
744 return ERR_PTR(-EAGAIN);
746 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
748 return ERR_PTR(-ENOMEM);
750 ctx->max_reqs = max_reqs;
752 spin_lock_init(&ctx->ctx_lock);
753 spin_lock_init(&ctx->completion_lock);
754 mutex_init(&ctx->ring_lock);
755 /* Protect against page migration throughout kiotx setup by keeping
756 * the ring_lock mutex held until setup is complete. */
757 mutex_lock(&ctx->ring_lock);
758 init_waitqueue_head(&ctx->wait);
760 INIT_LIST_HEAD(&ctx->active_reqs);
762 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
765 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
768 ctx->cpu = alloc_percpu(struct kioctx_cpu);
772 err = aio_setup_ring(ctx, nr_events);
776 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
777 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
778 if (ctx->req_batch < 1)
781 /* limit the number of system wide aios */
782 spin_lock(&aio_nr_lock);
783 if (aio_nr + ctx->max_reqs > aio_max_nr ||
784 aio_nr + ctx->max_reqs < aio_nr) {
785 spin_unlock(&aio_nr_lock);
789 aio_nr += ctx->max_reqs;
790 spin_unlock(&aio_nr_lock);
792 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
793 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
795 err = ioctx_add_table(ctx, mm);
799 /* Release the ring_lock mutex now that all setup is complete. */
800 mutex_unlock(&ctx->ring_lock);
802 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
803 ctx, ctx->user_id, mm, ctx->nr_events);
807 aio_nr_sub(ctx->max_reqs);
809 atomic_set(&ctx->dead, 1);
811 vm_munmap(ctx->mmap_base, ctx->mmap_size);
814 mutex_unlock(&ctx->ring_lock);
815 free_percpu(ctx->cpu);
816 percpu_ref_exit(&ctx->reqs);
817 percpu_ref_exit(&ctx->users);
818 kmem_cache_free(kioctx_cachep, ctx);
819 pr_debug("error allocating ioctx %d\n", err);
824 * Cancels all outstanding aio requests on an aio context. Used
825 * when the processes owning a context have all exited to encourage
826 * the rapid destruction of the kioctx.
828 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
829 struct ctx_rq_wait *wait)
831 struct kioctx_table *table;
833 spin_lock(&mm->ioctx_lock);
834 if (atomic_xchg(&ctx->dead, 1)) {
835 spin_unlock(&mm->ioctx_lock);
839 table = rcu_dereference_raw(mm->ioctx_table);
840 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
841 RCU_INIT_POINTER(table->table[ctx->id], NULL);
842 spin_unlock(&mm->ioctx_lock);
844 /* free_ioctx_reqs() will do the necessary RCU synchronization */
845 wake_up_all(&ctx->wait);
848 * It'd be more correct to do this in free_ioctx(), after all
849 * the outstanding kiocbs have finished - but by then io_destroy
850 * has already returned, so io_setup() could potentially return
851 * -EAGAIN with no ioctxs actually in use (as far as userspace
854 aio_nr_sub(ctx->max_reqs);
857 vm_munmap(ctx->mmap_base, ctx->mmap_size);
860 percpu_ref_kill(&ctx->users);
865 * exit_aio: called when the last user of mm goes away. At this point, there is
866 * no way for any new requests to be submited or any of the io_* syscalls to be
867 * called on the context.
869 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
872 void exit_aio(struct mm_struct *mm)
874 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
875 struct ctx_rq_wait wait;
881 atomic_set(&wait.count, table->nr);
882 init_completion(&wait.comp);
885 for (i = 0; i < table->nr; ++i) {
887 rcu_dereference_protected(table->table[i], true);
895 * We don't need to bother with munmap() here - exit_mmap(mm)
896 * is coming and it'll unmap everything. And we simply can't,
897 * this is not necessarily our ->mm.
898 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
899 * that it needs to unmap the area, just set it to 0.
902 kill_ioctx(mm, ctx, &wait);
905 if (!atomic_sub_and_test(skipped, &wait.count)) {
906 /* Wait until all IO for the context are done. */
907 wait_for_completion(&wait.comp);
910 RCU_INIT_POINTER(mm->ioctx_table, NULL);
914 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
916 struct kioctx_cpu *kcpu;
919 local_irq_save(flags);
920 kcpu = this_cpu_ptr(ctx->cpu);
921 kcpu->reqs_available += nr;
923 while (kcpu->reqs_available >= ctx->req_batch * 2) {
924 kcpu->reqs_available -= ctx->req_batch;
925 atomic_add(ctx->req_batch, &ctx->reqs_available);
928 local_irq_restore(flags);
931 static bool get_reqs_available(struct kioctx *ctx)
933 struct kioctx_cpu *kcpu;
937 local_irq_save(flags);
938 kcpu = this_cpu_ptr(ctx->cpu);
939 if (!kcpu->reqs_available) {
940 int old, avail = atomic_read(&ctx->reqs_available);
943 if (avail < ctx->req_batch)
947 avail = atomic_cmpxchg(&ctx->reqs_available,
948 avail, avail - ctx->req_batch);
949 } while (avail != old);
951 kcpu->reqs_available += ctx->req_batch;
955 kcpu->reqs_available--;
957 local_irq_restore(flags);
961 /* refill_reqs_available
962 * Updates the reqs_available reference counts used for tracking the
963 * number of free slots in the completion ring. This can be called
964 * from aio_complete() (to optimistically update reqs_available) or
965 * from aio_get_req() (the we're out of events case). It must be
966 * called holding ctx->completion_lock.
968 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
971 unsigned events_in_ring, completed;
973 /* Clamp head since userland can write to it. */
974 head %= ctx->nr_events;
976 events_in_ring = tail - head;
978 events_in_ring = ctx->nr_events - (head - tail);
980 completed = ctx->completed_events;
981 if (events_in_ring < completed)
982 completed -= events_in_ring;
989 ctx->completed_events -= completed;
990 put_reqs_available(ctx, completed);
993 /* user_refill_reqs_available
994 * Called to refill reqs_available when aio_get_req() encounters an
995 * out of space in the completion ring.
997 static void user_refill_reqs_available(struct kioctx *ctx)
999 spin_lock_irq(&ctx->completion_lock);
1000 if (ctx->completed_events) {
1001 struct aio_ring *ring;
1004 /* Access of ring->head may race with aio_read_events_ring()
1005 * here, but that's okay since whether we read the old version
1006 * or the new version, and either will be valid. The important
1007 * part is that head cannot pass tail since we prevent
1008 * aio_complete() from updating tail by holding
1009 * ctx->completion_lock. Even if head is invalid, the check
1010 * against ctx->completed_events below will make sure we do the
1013 ring = kmap_atomic(ctx->ring_pages[0]);
1015 kunmap_atomic(ring);
1017 refill_reqs_available(ctx, head, ctx->tail);
1020 spin_unlock_irq(&ctx->completion_lock);
1024 * Allocate a slot for an aio request.
1025 * Returns NULL if no requests are free.
1027 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1029 struct aio_kiocb *req;
1031 if (!get_reqs_available(ctx)) {
1032 user_refill_reqs_available(ctx);
1033 if (!get_reqs_available(ctx))
1037 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1041 percpu_ref_get(&ctx->reqs);
1046 put_reqs_available(ctx, 1);
1050 static void kiocb_free(struct aio_kiocb *req)
1052 if (req->common.ki_filp)
1053 fput(req->common.ki_filp);
1054 if (req->ki_eventfd != NULL)
1055 eventfd_ctx_put(req->ki_eventfd);
1056 kmem_cache_free(kiocb_cachep, req);
1059 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1061 struct aio_ring __user *ring = (void __user *)ctx_id;
1062 struct mm_struct *mm = current->mm;
1063 struct kioctx *ctx, *ret = NULL;
1064 struct kioctx_table *table;
1067 if (get_user(id, &ring->id))
1071 table = rcu_dereference(mm->ioctx_table);
1073 if (!table || id >= table->nr)
1076 ctx = rcu_dereference(table->table[id]);
1077 if (ctx && ctx->user_id == ctx_id) {
1078 percpu_ref_get(&ctx->users);
1087 * Called when the io request on the given iocb is complete.
1089 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1091 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1092 struct kioctx *ctx = iocb->ki_ctx;
1093 struct aio_ring *ring;
1094 struct io_event *ev_page, *event;
1095 unsigned tail, pos, head;
1096 unsigned long flags;
1098 if (kiocb->ki_flags & IOCB_WRITE) {
1099 struct file *file = kiocb->ki_filp;
1102 * Tell lockdep we inherited freeze protection from submission
1105 if (S_ISREG(file_inode(file)->i_mode))
1106 __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1107 file_end_write(file);
1111 * Special case handling for sync iocbs:
1112 * - events go directly into the iocb for fast handling
1113 * - the sync task with the iocb in its stack holds the single iocb
1114 * ref, no other paths have a way to get another ref
1115 * - the sync task helpfully left a reference to itself in the iocb
1117 BUG_ON(is_sync_kiocb(kiocb));
1119 if (iocb->ki_list.next) {
1120 unsigned long flags;
1122 spin_lock_irqsave(&ctx->ctx_lock, flags);
1123 list_del(&iocb->ki_list);
1124 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1128 * Add a completion event to the ring buffer. Must be done holding
1129 * ctx->completion_lock to prevent other code from messing with the tail
1130 * pointer since we might be called from irq context.
1132 spin_lock_irqsave(&ctx->completion_lock, flags);
1135 pos = tail + AIO_EVENTS_OFFSET;
1137 if (++tail >= ctx->nr_events)
1140 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1141 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1143 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1144 event->data = iocb->ki_user_data;
1148 kunmap_atomic(ev_page);
1149 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1151 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1152 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1155 /* after flagging the request as done, we
1156 * must never even look at it again
1158 smp_wmb(); /* make event visible before updating tail */
1162 ring = kmap_atomic(ctx->ring_pages[0]);
1165 kunmap_atomic(ring);
1166 flush_dcache_page(ctx->ring_pages[0]);
1168 ctx->completed_events++;
1169 if (ctx->completed_events > 1)
1170 refill_reqs_available(ctx, head, tail);
1171 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1173 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1176 * Check if the user asked us to deliver the result through an
1177 * eventfd. The eventfd_signal() function is safe to be called
1180 if (iocb->ki_eventfd != NULL)
1181 eventfd_signal(iocb->ki_eventfd, 1);
1183 /* everything turned out well, dispose of the aiocb. */
1187 * We have to order our ring_info tail store above and test
1188 * of the wait list below outside the wait lock. This is
1189 * like in wake_up_bit() where clearing a bit has to be
1190 * ordered with the unlocked test.
1194 if (waitqueue_active(&ctx->wait))
1195 wake_up(&ctx->wait);
1197 percpu_ref_put(&ctx->reqs);
1200 /* aio_read_events_ring
1201 * Pull an event off of the ioctx's event ring. Returns the number of
1204 static long aio_read_events_ring(struct kioctx *ctx,
1205 struct io_event __user *event, long nr)
1207 struct aio_ring *ring;
1208 unsigned head, tail, pos;
1213 * The mutex can block and wake us up and that will cause
1214 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1215 * and repeat. This should be rare enough that it doesn't cause
1216 * peformance issues. See the comment in read_events() for more detail.
1218 sched_annotate_sleep();
1219 mutex_lock(&ctx->ring_lock);
1221 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1222 ring = kmap_atomic(ctx->ring_pages[0]);
1225 kunmap_atomic(ring);
1228 * Ensure that once we've read the current tail pointer, that
1229 * we also see the events that were stored up to the tail.
1233 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1238 head %= ctx->nr_events;
1239 tail %= ctx->nr_events;
1243 struct io_event *ev;
1246 avail = (head <= tail ? tail : ctx->nr_events) - head;
1250 avail = min(avail, nr - ret);
1251 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1252 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1254 pos = head + AIO_EVENTS_OFFSET;
1255 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1256 pos %= AIO_EVENTS_PER_PAGE;
1259 copy_ret = copy_to_user(event + ret, ev + pos,
1260 sizeof(*ev) * avail);
1263 if (unlikely(copy_ret)) {
1270 head %= ctx->nr_events;
1273 ring = kmap_atomic(ctx->ring_pages[0]);
1275 kunmap_atomic(ring);
1276 flush_dcache_page(ctx->ring_pages[0]);
1278 pr_debug("%li h%u t%u\n", ret, head, tail);
1280 mutex_unlock(&ctx->ring_lock);
1285 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1286 struct io_event __user *event, long *i)
1288 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1293 if (unlikely(atomic_read(&ctx->dead)))
1299 return ret < 0 || *i >= min_nr;
1302 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1303 struct io_event __user *event,
1309 * Note that aio_read_events() is being called as the conditional - i.e.
1310 * we're calling it after prepare_to_wait() has set task state to
1311 * TASK_INTERRUPTIBLE.
1313 * But aio_read_events() can block, and if it blocks it's going to flip
1314 * the task state back to TASK_RUNNING.
1316 * This should be ok, provided it doesn't flip the state back to
1317 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1318 * will only happen if the mutex_lock() call blocks, and we then find
1319 * the ringbuffer empty. So in practice we should be ok, but it's
1320 * something to be aware of when touching this code.
1323 aio_read_events(ctx, min_nr, nr, event, &ret);
1325 wait_event_interruptible_hrtimeout(ctx->wait,
1326 aio_read_events(ctx, min_nr, nr, event, &ret),
1329 if (!ret && signal_pending(current))
1336 * Create an aio_context capable of receiving at least nr_events.
1337 * ctxp must not point to an aio_context that already exists, and
1338 * must be initialized to 0 prior to the call. On successful
1339 * creation of the aio_context, *ctxp is filled in with the resulting
1340 * handle. May fail with -EINVAL if *ctxp is not initialized,
1341 * if the specified nr_events exceeds internal limits. May fail
1342 * with -EAGAIN if the specified nr_events exceeds the user's limit
1343 * of available events. May fail with -ENOMEM if insufficient kernel
1344 * resources are available. May fail with -EFAULT if an invalid
1345 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1348 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1350 struct kioctx *ioctx = NULL;
1354 ret = get_user(ctx, ctxp);
1359 if (unlikely(ctx || nr_events == 0)) {
1360 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1365 ioctx = ioctx_alloc(nr_events);
1366 ret = PTR_ERR(ioctx);
1367 if (!IS_ERR(ioctx)) {
1368 ret = put_user(ioctx->user_id, ctxp);
1370 kill_ioctx(current->mm, ioctx, NULL);
1371 percpu_ref_put(&ioctx->users);
1378 #ifdef CONFIG_COMPAT
1379 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1381 struct kioctx *ioctx = NULL;
1385 ret = get_user(ctx, ctx32p);
1390 if (unlikely(ctx || nr_events == 0)) {
1391 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1396 ioctx = ioctx_alloc(nr_events);
1397 ret = PTR_ERR(ioctx);
1398 if (!IS_ERR(ioctx)) {
1399 /* truncating is ok because it's a user address */
1400 ret = put_user((u32)ioctx->user_id, ctx32p);
1402 kill_ioctx(current->mm, ioctx, NULL);
1403 percpu_ref_put(&ioctx->users);
1412 * Destroy the aio_context specified. May cancel any outstanding
1413 * AIOs and block on completion. Will fail with -ENOSYS if not
1414 * implemented. May fail with -EINVAL if the context pointed to
1417 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1419 struct kioctx *ioctx = lookup_ioctx(ctx);
1420 if (likely(NULL != ioctx)) {
1421 struct ctx_rq_wait wait;
1424 init_completion(&wait.comp);
1425 atomic_set(&wait.count, 1);
1427 /* Pass requests_done to kill_ioctx() where it can be set
1428 * in a thread-safe way. If we try to set it here then we have
1429 * a race condition if two io_destroy() called simultaneously.
1431 ret = kill_ioctx(current->mm, ioctx, &wait);
1432 percpu_ref_put(&ioctx->users);
1434 /* Wait until all IO for the context are done. Otherwise kernel
1435 * keep using user-space buffers even if user thinks the context
1439 wait_for_completion(&wait.comp);
1443 pr_debug("EINVAL: invalid context id\n");
1447 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1448 bool vectored, bool compat, struct iov_iter *iter)
1450 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1451 size_t len = iocb->aio_nbytes;
1454 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1458 #ifdef CONFIG_COMPAT
1460 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1463 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1466 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1472 case -ERESTARTNOINTR:
1473 case -ERESTARTNOHAND:
1474 case -ERESTART_RESTARTBLOCK:
1476 * There's no easy way to restart the syscall since other AIO's
1477 * may be already running. Just fail this IO with EINTR.
1482 aio_complete(req, ret, 0);
1487 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1490 struct file *file = req->ki_filp;
1491 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1492 struct iov_iter iter;
1495 if (unlikely(!(file->f_mode & FMODE_READ)))
1497 if (unlikely(!file->f_op->read_iter))
1500 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1503 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1505 ret = aio_ret(req, call_read_iter(file, req, &iter));
1510 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1513 struct file *file = req->ki_filp;
1514 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1515 struct iov_iter iter;
1518 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1520 if (unlikely(!file->f_op->write_iter))
1523 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1526 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1528 req->ki_flags |= IOCB_WRITE;
1529 file_start_write(file);
1530 ret = aio_ret(req, call_write_iter(file, req, &iter));
1532 * We release freeze protection in aio_complete(). Fool lockdep
1533 * by telling it the lock got released so that it doesn't
1534 * complain about held lock when we return to userspace.
1536 if (S_ISREG(file_inode(file)->i_mode))
1537 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1543 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1544 struct iocb *iocb, bool compat)
1546 struct aio_kiocb *req;
1550 /* enforce forwards compatibility on users */
1551 if (unlikely(iocb->aio_reserved2)) {
1552 pr_debug("EINVAL: reserve field set\n");
1556 /* prevent overflows */
1558 (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1559 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1560 ((ssize_t)iocb->aio_nbytes < 0)
1562 pr_debug("EINVAL: overflow check\n");
1566 req = aio_get_req(ctx);
1570 req->common.ki_filp = file = fget(iocb->aio_fildes);
1571 if (unlikely(!req->common.ki_filp)) {
1575 req->common.ki_pos = iocb->aio_offset;
1576 req->common.ki_complete = aio_complete;
1577 req->common.ki_flags = iocb_flags(req->common.ki_filp);
1578 req->common.ki_hint = file_write_hint(file);
1580 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1582 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1583 * instance of the file* now. The file descriptor must be
1584 * an eventfd() fd, and will be signaled for each completed
1585 * event using the eventfd_signal() function.
1587 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1588 if (IS_ERR(req->ki_eventfd)) {
1589 ret = PTR_ERR(req->ki_eventfd);
1590 req->ki_eventfd = NULL;
1594 req->common.ki_flags |= IOCB_EVENTFD;
1597 ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1598 if (unlikely(ret)) {
1599 pr_debug("EINVAL: aio_rw_flags\n");
1603 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1604 if (unlikely(ret)) {
1605 pr_debug("EFAULT: aio_key\n");
1609 req->ki_user_iocb = user_iocb;
1610 req->ki_user_data = iocb->aio_data;
1613 switch (iocb->aio_lio_opcode) {
1614 case IOCB_CMD_PREAD:
1615 ret = aio_read(&req->common, iocb, false, compat);
1617 case IOCB_CMD_PWRITE:
1618 ret = aio_write(&req->common, iocb, false, compat);
1620 case IOCB_CMD_PREADV:
1621 ret = aio_read(&req->common, iocb, true, compat);
1623 case IOCB_CMD_PWRITEV:
1624 ret = aio_write(&req->common, iocb, true, compat);
1627 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1633 if (ret && ret != -EIOCBQUEUED)
1637 put_reqs_available(ctx, 1);
1638 percpu_ref_put(&ctx->reqs);
1643 static long do_io_submit(aio_context_t ctx_id, long nr,
1644 struct iocb __user *__user *iocbpp, bool compat)
1649 struct blk_plug plug;
1651 if (unlikely(nr < 0))
1654 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1655 nr = LONG_MAX/sizeof(*iocbpp);
1657 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1660 ctx = lookup_ioctx(ctx_id);
1661 if (unlikely(!ctx)) {
1662 pr_debug("EINVAL: invalid context id\n");
1666 blk_start_plug(&plug);
1669 * AKPM: should this return a partial result if some of the IOs were
1670 * successfully submitted?
1672 for (i=0; i<nr; i++) {
1673 struct iocb __user *user_iocb;
1676 if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1681 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1686 ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1690 blk_finish_plug(&plug);
1692 percpu_ref_put(&ctx->users);
1697 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1698 * the number of iocbs queued. May return -EINVAL if the aio_context
1699 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1700 * *iocbpp[0] is not properly initialized, if the operation specified
1701 * is invalid for the file descriptor in the iocb. May fail with
1702 * -EFAULT if any of the data structures point to invalid data. May
1703 * fail with -EBADF if the file descriptor specified in the first
1704 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1705 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1706 * fail with -ENOSYS if not implemented.
1708 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1709 struct iocb __user * __user *, iocbpp)
1711 return do_io_submit(ctx_id, nr, iocbpp, 0);
1714 #ifdef CONFIG_COMPAT
1716 copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1721 for (i = 0; i < nr; ++i) {
1722 if (get_user(uptr, ptr32 + i))
1724 if (put_user(compat_ptr(uptr), ptr64 + i))
1730 #define MAX_AIO_SUBMITS (PAGE_SIZE/sizeof(struct iocb *))
1732 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1733 int, nr, u32 __user *, iocb)
1735 struct iocb __user * __user *iocb64;
1738 if (unlikely(nr < 0))
1741 if (nr > MAX_AIO_SUBMITS)
1742 nr = MAX_AIO_SUBMITS;
1744 iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1745 ret = copy_iocb(nr, iocb, iocb64);
1747 ret = do_io_submit(ctx_id, nr, iocb64, 1);
1753 * Finds a given iocb for cancellation.
1755 static struct aio_kiocb *
1756 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1758 struct aio_kiocb *kiocb;
1760 assert_spin_locked(&ctx->ctx_lock);
1762 if (key != KIOCB_KEY)
1765 /* TODO: use a hash or array, this sucks. */
1766 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1767 if (kiocb->ki_user_iocb == iocb)
1774 * Attempts to cancel an iocb previously passed to io_submit. If
1775 * the operation is successfully cancelled, the resulting event is
1776 * copied into the memory pointed to by result without being placed
1777 * into the completion queue and 0 is returned. May fail with
1778 * -EFAULT if any of the data structures pointed to are invalid.
1779 * May fail with -EINVAL if aio_context specified by ctx_id is
1780 * invalid. May fail with -EAGAIN if the iocb specified was not
1781 * cancelled. Will fail with -ENOSYS if not implemented.
1783 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1784 struct io_event __user *, result)
1787 struct aio_kiocb *kiocb;
1791 ret = get_user(key, &iocb->aio_key);
1795 ctx = lookup_ioctx(ctx_id);
1799 spin_lock_irq(&ctx->ctx_lock);
1801 kiocb = lookup_kiocb(ctx, iocb, key);
1803 ret = kiocb_cancel(kiocb);
1807 spin_unlock_irq(&ctx->ctx_lock);
1811 * The result argument is no longer used - the io_event is
1812 * always delivered via the ring buffer. -EINPROGRESS indicates
1813 * cancellation is progress:
1818 percpu_ref_put(&ctx->users);
1823 static long do_io_getevents(aio_context_t ctx_id,
1826 struct io_event __user *events,
1827 struct timespec64 *ts)
1829 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1830 struct kioctx *ioctx = lookup_ioctx(ctx_id);
1833 if (likely(ioctx)) {
1834 if (likely(min_nr <= nr && min_nr >= 0))
1835 ret = read_events(ioctx, min_nr, nr, events, until);
1836 percpu_ref_put(&ioctx->users);
1843 * Attempts to read at least min_nr events and up to nr events from
1844 * the completion queue for the aio_context specified by ctx_id. If
1845 * it succeeds, the number of read events is returned. May fail with
1846 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1847 * out of range, if timeout is out of range. May fail with -EFAULT
1848 * if any of the memory specified is invalid. May return 0 or
1849 * < min_nr if the timeout specified by timeout has elapsed
1850 * before sufficient events are available, where timeout == NULL
1851 * specifies an infinite timeout. Note that the timeout pointed to by
1852 * timeout is relative. Will fail with -ENOSYS if not implemented.
1854 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1857 struct io_event __user *, events,
1858 struct timespec __user *, timeout)
1860 struct timespec64 ts;
1863 if (unlikely(get_timespec64(&ts, timeout)))
1867 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1870 #ifdef CONFIG_COMPAT
1871 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1872 compat_long_t, min_nr,
1874 struct io_event __user *, events,
1875 struct compat_timespec __user *, timeout)
1877 struct timespec64 t;
1880 if (compat_get_timespec64(&t, timeout))
1885 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);