Linux 6.9-rc1
[linux-2.6-microblaze.git] / fs / afs / rxrpc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16 #define RXRPC_TRACE_ONLY_DEFINE_ENUMS
17 #include <trace/events/rxrpc.h>
18
19 struct workqueue_struct *afs_async_calls;
20
21 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
22 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_process_async_call(struct work_struct *);
24 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
25 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
26 static int afs_deliver_cm_op_id(struct afs_call *);
27
28 /* asynchronous incoming call initial processing */
29 static const struct afs_call_type afs_RXCMxxxx = {
30         .name           = "CB.xxxx",
31         .deliver        = afs_deliver_cm_op_id,
32 };
33
34 /*
35  * open an RxRPC socket and bind it to be a server for callback notifications
36  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
37  */
38 int afs_open_socket(struct afs_net *net)
39 {
40         struct sockaddr_rxrpc srx;
41         struct socket *socket;
42         int ret;
43
44         _enter("");
45
46         ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
47         if (ret < 0)
48                 goto error_1;
49
50         socket->sk->sk_allocation = GFP_NOFS;
51
52         /* bind the callback manager's address to make this a server socket */
53         memset(&srx, 0, sizeof(srx));
54         srx.srx_family                  = AF_RXRPC;
55         srx.srx_service                 = CM_SERVICE;
56         srx.transport_type              = SOCK_DGRAM;
57         srx.transport_len               = sizeof(srx.transport.sin6);
58         srx.transport.sin6.sin6_family  = AF_INET6;
59         srx.transport.sin6.sin6_port    = htons(AFS_CM_PORT);
60
61         ret = rxrpc_sock_set_min_security_level(socket->sk,
62                                                 RXRPC_SECURITY_ENCRYPT);
63         if (ret < 0)
64                 goto error_2;
65
66         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
67         if (ret == -EADDRINUSE) {
68                 srx.transport.sin6.sin6_port = 0;
69                 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
70         }
71         if (ret < 0)
72                 goto error_2;
73
74         srx.srx_service = YFS_CM_SERVICE;
75         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
76         if (ret < 0)
77                 goto error_2;
78
79         /* Ideally, we'd turn on service upgrade here, but we can't because
80          * OpenAFS is buggy and leaks the userStatus field from packet to
81          * packet and between FS packets and CB packets - so if we try to do an
82          * upgrade on an FS packet, OpenAFS will leak that into the CB packet
83          * it sends back to us.
84          */
85
86         rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
87                                            afs_rx_discard_new_call);
88
89         ret = kernel_listen(socket, INT_MAX);
90         if (ret < 0)
91                 goto error_2;
92
93         net->socket = socket;
94         afs_charge_preallocation(&net->charge_preallocation_work);
95         _leave(" = 0");
96         return 0;
97
98 error_2:
99         sock_release(socket);
100 error_1:
101         _leave(" = %d", ret);
102         return ret;
103 }
104
105 /*
106  * close the RxRPC socket AFS was using
107  */
108 void afs_close_socket(struct afs_net *net)
109 {
110         _enter("");
111
112         kernel_listen(net->socket, 0);
113         flush_workqueue(afs_async_calls);
114
115         if (net->spare_incoming_call) {
116                 afs_put_call(net->spare_incoming_call);
117                 net->spare_incoming_call = NULL;
118         }
119
120         _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
121         wait_var_event(&net->nr_outstanding_calls,
122                        !atomic_read(&net->nr_outstanding_calls));
123         _debug("no outstanding calls");
124
125         kernel_sock_shutdown(net->socket, SHUT_RDWR);
126         flush_workqueue(afs_async_calls);
127         sock_release(net->socket);
128
129         _debug("dework");
130         _leave("");
131 }
132
133 /*
134  * Allocate a call.
135  */
136 static struct afs_call *afs_alloc_call(struct afs_net *net,
137                                        const struct afs_call_type *type,
138                                        gfp_t gfp)
139 {
140         struct afs_call *call;
141         int o;
142
143         call = kzalloc(sizeof(*call), gfp);
144         if (!call)
145                 return NULL;
146
147         call->type = type;
148         call->net = net;
149         call->debug_id = atomic_inc_return(&rxrpc_debug_id);
150         refcount_set(&call->ref, 1);
151         INIT_WORK(&call->async_work, afs_process_async_call);
152         init_waitqueue_head(&call->waitq);
153         spin_lock_init(&call->state_lock);
154         call->iter = &call->def_iter;
155
156         o = atomic_inc_return(&net->nr_outstanding_calls);
157         trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o,
158                        __builtin_return_address(0));
159         return call;
160 }
161
162 /*
163  * Dispose of a reference on a call.
164  */
165 void afs_put_call(struct afs_call *call)
166 {
167         struct afs_net *net = call->net;
168         unsigned int debug_id = call->debug_id;
169         bool zero;
170         int r, o;
171
172         zero = __refcount_dec_and_test(&call->ref, &r);
173         o = atomic_read(&net->nr_outstanding_calls);
174         trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
175                        __builtin_return_address(0));
176
177         if (zero) {
178                 ASSERT(!work_pending(&call->async_work));
179                 ASSERT(call->type->name != NULL);
180
181                 rxrpc_kernel_put_peer(call->peer);
182
183                 if (call->rxcall) {
184                         rxrpc_kernel_shutdown_call(net->socket, call->rxcall);
185                         rxrpc_kernel_put_call(net->socket, call->rxcall);
186                         call->rxcall = NULL;
187                 }
188                 if (call->type->destructor)
189                         call->type->destructor(call);
190
191                 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
192                 kfree(call->request);
193
194                 trace_afs_call(call->debug_id, afs_call_trace_free, 0, o,
195                                __builtin_return_address(0));
196                 kfree(call);
197
198                 o = atomic_dec_return(&net->nr_outstanding_calls);
199                 if (o == 0)
200                         wake_up_var(&net->nr_outstanding_calls);
201         }
202 }
203
204 static struct afs_call *afs_get_call(struct afs_call *call,
205                                      enum afs_call_trace why)
206 {
207         int r;
208
209         __refcount_inc(&call->ref, &r);
210
211         trace_afs_call(call->debug_id, why, r + 1,
212                        atomic_read(&call->net->nr_outstanding_calls),
213                        __builtin_return_address(0));
214         return call;
215 }
216
217 /*
218  * Queue the call for actual work.
219  */
220 static void afs_queue_call_work(struct afs_call *call)
221 {
222         if (call->type->work) {
223                 INIT_WORK(&call->work, call->type->work);
224
225                 afs_get_call(call, afs_call_trace_work);
226                 if (!queue_work(afs_wq, &call->work))
227                         afs_put_call(call);
228         }
229 }
230
231 /*
232  * allocate a call with flat request and reply buffers
233  */
234 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
235                                      const struct afs_call_type *type,
236                                      size_t request_size, size_t reply_max)
237 {
238         struct afs_call *call;
239
240         call = afs_alloc_call(net, type, GFP_NOFS);
241         if (!call)
242                 goto nomem_call;
243
244         if (request_size) {
245                 call->request_size = request_size;
246                 call->request = kmalloc(request_size, GFP_NOFS);
247                 if (!call->request)
248                         goto nomem_free;
249         }
250
251         if (reply_max) {
252                 call->reply_max = reply_max;
253                 call->buffer = kmalloc(reply_max, GFP_NOFS);
254                 if (!call->buffer)
255                         goto nomem_free;
256         }
257
258         afs_extract_to_buf(call, call->reply_max);
259         call->operation_ID = type->op;
260         init_waitqueue_head(&call->waitq);
261         return call;
262
263 nomem_free:
264         afs_put_call(call);
265 nomem_call:
266         return NULL;
267 }
268
269 /*
270  * clean up a call with flat buffer
271  */
272 void afs_flat_call_destructor(struct afs_call *call)
273 {
274         _enter("");
275
276         kfree(call->request);
277         call->request = NULL;
278         kfree(call->buffer);
279         call->buffer = NULL;
280 }
281
282 /*
283  * Advance the AFS call state when the RxRPC call ends the transmit phase.
284  */
285 static void afs_notify_end_request_tx(struct sock *sock,
286                                       struct rxrpc_call *rxcall,
287                                       unsigned long call_user_ID)
288 {
289         struct afs_call *call = (struct afs_call *)call_user_ID;
290
291         afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
292 }
293
294 /*
295  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
296  * error is stored into the call struct, which the caller must check for.
297  */
298 void afs_make_call(struct afs_call *call, gfp_t gfp)
299 {
300         struct rxrpc_call *rxcall;
301         struct msghdr msg;
302         struct kvec iov[1];
303         size_t len;
304         s64 tx_total_len;
305         int ret;
306
307         _enter(",{%pISp+%u},", rxrpc_kernel_remote_addr(call->peer), call->service_id);
308
309         ASSERT(call->type != NULL);
310         ASSERT(call->type->name != NULL);
311
312         _debug("____MAKE %p{%s,%x} [%d]____",
313                call, call->type->name, key_serial(call->key),
314                atomic_read(&call->net->nr_outstanding_calls));
315
316         trace_afs_make_call(call);
317
318         /* Work out the length we're going to transmit.  This is awkward for
319          * calls such as FS.StoreData where there's an extra injection of data
320          * after the initial fixed part.
321          */
322         tx_total_len = call->request_size;
323         if (call->write_iter)
324                 tx_total_len += iov_iter_count(call->write_iter);
325
326         /* If the call is going to be asynchronous, we need an extra ref for
327          * the call to hold itself so the caller need not hang on to its ref.
328          */
329         if (call->async) {
330                 afs_get_call(call, afs_call_trace_get);
331                 call->drop_ref = true;
332         }
333
334         /* create a call */
335         rxcall = rxrpc_kernel_begin_call(call->net->socket, call->peer, call->key,
336                                          (unsigned long)call,
337                                          tx_total_len,
338                                          call->max_lifespan,
339                                          gfp,
340                                          (call->async ?
341                                           afs_wake_up_async_call :
342                                           afs_wake_up_call_waiter),
343                                          call->service_id,
344                                          call->upgrade,
345                                          (call->intr ? RXRPC_PREINTERRUPTIBLE :
346                                           RXRPC_UNINTERRUPTIBLE),
347                                          call->debug_id);
348         if (IS_ERR(rxcall)) {
349                 ret = PTR_ERR(rxcall);
350                 call->error = ret;
351                 goto error_kill_call;
352         }
353
354         call->rxcall = rxcall;
355         call->issue_time = ktime_get_real();
356
357         /* send the request */
358         iov[0].iov_base = call->request;
359         iov[0].iov_len  = call->request_size;
360
361         msg.msg_name            = NULL;
362         msg.msg_namelen         = 0;
363         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, call->request_size);
364         msg.msg_control         = NULL;
365         msg.msg_controllen      = 0;
366         msg.msg_flags           = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
367
368         ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
369                                      &msg, call->request_size,
370                                      afs_notify_end_request_tx);
371         if (ret < 0)
372                 goto error_do_abort;
373
374         if (call->write_iter) {
375                 msg.msg_iter = *call->write_iter;
376                 msg.msg_flags &= ~MSG_MORE;
377                 trace_afs_send_data(call, &msg);
378
379                 ret = rxrpc_kernel_send_data(call->net->socket,
380                                              call->rxcall, &msg,
381                                              iov_iter_count(&msg.msg_iter),
382                                              afs_notify_end_request_tx);
383                 *call->write_iter = msg.msg_iter;
384
385                 trace_afs_sent_data(call, &msg, ret);
386                 if (ret < 0)
387                         goto error_do_abort;
388         }
389
390         /* Note that at this point, we may have received the reply or an abort
391          * - and an asynchronous call may already have completed.
392          *
393          * afs_wait_for_call_to_complete(call)
394          * must be called to synchronously clean up.
395          */
396         return;
397
398 error_do_abort:
399         if (ret != -ECONNABORTED) {
400                 rxrpc_kernel_abort_call(call->net->socket, rxcall,
401                                         RX_USER_ABORT, ret,
402                                         afs_abort_send_data_error);
403         } else {
404                 len = 0;
405                 iov_iter_kvec(&msg.msg_iter, ITER_DEST, NULL, 0, 0);
406                 rxrpc_kernel_recv_data(call->net->socket, rxcall,
407                                        &msg.msg_iter, &len, false,
408                                        &call->abort_code, &call->service_id);
409                 call->responded = true;
410         }
411         call->error = ret;
412         trace_afs_call_done(call);
413 error_kill_call:
414         if (call->type->done)
415                 call->type->done(call);
416
417         /* We need to dispose of the extra ref we grabbed for an async call.
418          * The call, however, might be queued on afs_async_calls and we need to
419          * make sure we don't get any more notifications that might requeue it.
420          */
421         if (call->rxcall)
422                 rxrpc_kernel_shutdown_call(call->net->socket, call->rxcall);
423         if (call->async) {
424                 if (cancel_work_sync(&call->async_work))
425                         afs_put_call(call);
426                 afs_set_call_complete(call, ret, 0);
427         }
428
429         call->error = ret;
430         call->state = AFS_CALL_COMPLETE;
431         _leave(" = %d", ret);
432 }
433
434 /*
435  * Log remote abort codes that indicate that we have a protocol disagreement
436  * with the server.
437  */
438 static void afs_log_error(struct afs_call *call, s32 remote_abort)
439 {
440         static int max = 0;
441         const char *msg;
442         int m;
443
444         switch (remote_abort) {
445         case RX_EOF:             msg = "unexpected EOF";        break;
446         case RXGEN_CC_MARSHAL:   msg = "client marshalling";    break;
447         case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling";  break;
448         case RXGEN_SS_MARSHAL:   msg = "server marshalling";    break;
449         case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling";  break;
450         case RXGEN_DECODE:       msg = "opcode decode";         break;
451         case RXGEN_SS_XDRFREE:   msg = "server XDR cleanup";    break;
452         case RXGEN_CC_XDRFREE:   msg = "client XDR cleanup";    break;
453         case -32:                msg = "insufficient data";     break;
454         default:
455                 return;
456         }
457
458         m = max;
459         if (m < 3) {
460                 max = m + 1;
461                 pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
462                           msg, call->type->name,
463                           rxrpc_kernel_remote_addr(call->peer));
464         }
465 }
466
467 /*
468  * deliver messages to a call
469  */
470 static void afs_deliver_to_call(struct afs_call *call)
471 {
472         enum afs_call_state state;
473         size_t len;
474         u32 abort_code, remote_abort = 0;
475         int ret;
476
477         _enter("%s", call->type->name);
478
479         while (state = READ_ONCE(call->state),
480                state == AFS_CALL_CL_AWAIT_REPLY ||
481                state == AFS_CALL_SV_AWAIT_OP_ID ||
482                state == AFS_CALL_SV_AWAIT_REQUEST ||
483                state == AFS_CALL_SV_AWAIT_ACK
484                ) {
485                 if (state == AFS_CALL_SV_AWAIT_ACK) {
486                         len = 0;
487                         iov_iter_kvec(&call->def_iter, ITER_DEST, NULL, 0, 0);
488                         ret = rxrpc_kernel_recv_data(call->net->socket,
489                                                      call->rxcall, &call->def_iter,
490                                                      &len, false, &remote_abort,
491                                                      &call->service_id);
492                         trace_afs_receive_data(call, &call->def_iter, false, ret);
493
494                         if (ret == -EINPROGRESS || ret == -EAGAIN)
495                                 return;
496                         if (ret < 0 || ret == 1) {
497                                 if (ret == 1)
498                                         ret = 0;
499                                 goto call_complete;
500                         }
501                         return;
502                 }
503
504                 ret = call->type->deliver(call);
505                 state = READ_ONCE(call->state);
506                 if (ret == 0 && call->unmarshalling_error)
507                         ret = -EBADMSG;
508                 switch (ret) {
509                 case 0:
510                         call->responded = true;
511                         afs_queue_call_work(call);
512                         if (state == AFS_CALL_CL_PROC_REPLY) {
513                                 if (call->op)
514                                         set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
515                                                 &call->op->server->flags);
516                                 goto call_complete;
517                         }
518                         ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
519                         goto done;
520                 case -EINPROGRESS:
521                 case -EAGAIN:
522                         goto out;
523                 case -ECONNABORTED:
524                         ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
525                         call->responded = true;
526                         afs_log_error(call, call->abort_code);
527                         goto done;
528                 case -ENOTSUPP:
529                         call->responded = true;
530                         abort_code = RXGEN_OPCODE;
531                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
532                                                 abort_code, ret,
533                                                 afs_abort_op_not_supported);
534                         goto local_abort;
535                 case -EIO:
536                         pr_err("kAFS: Call %u in bad state %u\n",
537                                call->debug_id, state);
538                         fallthrough;
539                 case -ENODATA:
540                 case -EBADMSG:
541                 case -EMSGSIZE:
542                 case -ENOMEM:
543                 case -EFAULT:
544                         abort_code = RXGEN_CC_UNMARSHAL;
545                         if (state != AFS_CALL_CL_AWAIT_REPLY)
546                                 abort_code = RXGEN_SS_UNMARSHAL;
547                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
548                                                 abort_code, ret,
549                                                 afs_abort_unmarshal_error);
550                         goto local_abort;
551                 default:
552                         abort_code = RX_CALL_DEAD;
553                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
554                                                 abort_code, ret,
555                                                 afs_abort_general_error);
556                         goto local_abort;
557                 }
558         }
559
560 done:
561         if (call->type->done)
562                 call->type->done(call);
563 out:
564         _leave("");
565         return;
566
567 local_abort:
568         abort_code = 0;
569 call_complete:
570         afs_set_call_complete(call, ret, remote_abort);
571         state = AFS_CALL_COMPLETE;
572         goto done;
573 }
574
575 /*
576  * Wait synchronously for a call to complete.
577  */
578 void afs_wait_for_call_to_complete(struct afs_call *call)
579 {
580         bool rxrpc_complete = false;
581
582         _enter("");
583
584         if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
585                 DECLARE_WAITQUEUE(myself, current);
586
587                 add_wait_queue(&call->waitq, &myself);
588                 for (;;) {
589                         set_current_state(TASK_UNINTERRUPTIBLE);
590
591                         /* deliver any messages that are in the queue */
592                         if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
593                             call->need_attention) {
594                                 call->need_attention = false;
595                                 __set_current_state(TASK_RUNNING);
596                                 afs_deliver_to_call(call);
597                                 continue;
598                         }
599
600                         if (afs_check_call_state(call, AFS_CALL_COMPLETE))
601                                 break;
602
603                         if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
604                                 /* rxrpc terminated the call. */
605                                 rxrpc_complete = true;
606                                 break;
607                         }
608
609                         schedule();
610                 }
611
612                 remove_wait_queue(&call->waitq, &myself);
613                 __set_current_state(TASK_RUNNING);
614         }
615
616         if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
617                 if (rxrpc_complete) {
618                         afs_set_call_complete(call, call->error, call->abort_code);
619                 } else {
620                         /* Kill off the call if it's still live. */
621                         _debug("call interrupted");
622                         if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
623                                                     RX_USER_ABORT, -EINTR,
624                                                     afs_abort_interrupted))
625                                 afs_set_call_complete(call, -EINTR, 0);
626                 }
627         }
628 }
629
630 /*
631  * wake up a waiting call
632  */
633 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
634                                     unsigned long call_user_ID)
635 {
636         struct afs_call *call = (struct afs_call *)call_user_ID;
637
638         call->need_attention = true;
639         wake_up(&call->waitq);
640 }
641
642 /*
643  * wake up an asynchronous call
644  */
645 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
646                                    unsigned long call_user_ID)
647 {
648         struct afs_call *call = (struct afs_call *)call_user_ID;
649         int r;
650
651         trace_afs_notify_call(rxcall, call);
652         call->need_attention = true;
653
654         if (__refcount_inc_not_zero(&call->ref, &r)) {
655                 trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1,
656                                atomic_read(&call->net->nr_outstanding_calls),
657                                __builtin_return_address(0));
658
659                 if (!queue_work(afs_async_calls, &call->async_work))
660                         afs_put_call(call);
661         }
662 }
663
664 /*
665  * Perform I/O processing on an asynchronous call.  The work item carries a ref
666  * to the call struct that we either need to release or to pass on.
667  */
668 static void afs_process_async_call(struct work_struct *work)
669 {
670         struct afs_call *call = container_of(work, struct afs_call, async_work);
671
672         _enter("");
673
674         if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
675                 call->need_attention = false;
676                 afs_deliver_to_call(call);
677         }
678
679         afs_put_call(call);
680         _leave("");
681 }
682
683 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
684 {
685         struct afs_call *call = (struct afs_call *)user_call_ID;
686
687         call->rxcall = rxcall;
688 }
689
690 /*
691  * Charge the incoming call preallocation.
692  */
693 void afs_charge_preallocation(struct work_struct *work)
694 {
695         struct afs_net *net =
696                 container_of(work, struct afs_net, charge_preallocation_work);
697         struct afs_call *call = net->spare_incoming_call;
698
699         for (;;) {
700                 if (!call) {
701                         call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
702                         if (!call)
703                                 break;
704
705                         call->drop_ref = true;
706                         call->async = true;
707                         call->state = AFS_CALL_SV_AWAIT_OP_ID;
708                         init_waitqueue_head(&call->waitq);
709                         afs_extract_to_tmp(call);
710                 }
711
712                 if (rxrpc_kernel_charge_accept(net->socket,
713                                                afs_wake_up_async_call,
714                                                afs_rx_attach,
715                                                (unsigned long)call,
716                                                GFP_KERNEL,
717                                                call->debug_id) < 0)
718                         break;
719                 call = NULL;
720         }
721         net->spare_incoming_call = call;
722 }
723
724 /*
725  * Discard a preallocated call when a socket is shut down.
726  */
727 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
728                                     unsigned long user_call_ID)
729 {
730         struct afs_call *call = (struct afs_call *)user_call_ID;
731
732         call->rxcall = NULL;
733         afs_put_call(call);
734 }
735
736 /*
737  * Notification of an incoming call.
738  */
739 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
740                             unsigned long user_call_ID)
741 {
742         struct afs_net *net = afs_sock2net(sk);
743
744         queue_work(afs_wq, &net->charge_preallocation_work);
745 }
746
747 /*
748  * Grab the operation ID from an incoming cache manager call.  The socket
749  * buffer is discarded on error or if we don't yet have sufficient data.
750  */
751 static int afs_deliver_cm_op_id(struct afs_call *call)
752 {
753         int ret;
754
755         _enter("{%zu}", iov_iter_count(call->iter));
756
757         /* the operation ID forms the first four bytes of the request data */
758         ret = afs_extract_data(call, true);
759         if (ret < 0)
760                 return ret;
761
762         call->operation_ID = ntohl(call->tmp);
763         afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
764
765         /* ask the cache manager to route the call (it'll change the call type
766          * if successful) */
767         if (!afs_cm_incoming_call(call))
768                 return -ENOTSUPP;
769
770         trace_afs_cb_call(call);
771
772         /* pass responsibility for the remainer of this message off to the
773          * cache manager op */
774         return call->type->deliver(call);
775 }
776
777 /*
778  * Advance the AFS call state when an RxRPC service call ends the transmit
779  * phase.
780  */
781 static void afs_notify_end_reply_tx(struct sock *sock,
782                                     struct rxrpc_call *rxcall,
783                                     unsigned long call_user_ID)
784 {
785         struct afs_call *call = (struct afs_call *)call_user_ID;
786
787         afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
788 }
789
790 /*
791  * send an empty reply
792  */
793 void afs_send_empty_reply(struct afs_call *call)
794 {
795         struct afs_net *net = call->net;
796         struct msghdr msg;
797
798         _enter("");
799
800         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
801
802         msg.msg_name            = NULL;
803         msg.msg_namelen         = 0;
804         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, NULL, 0, 0);
805         msg.msg_control         = NULL;
806         msg.msg_controllen      = 0;
807         msg.msg_flags           = 0;
808
809         switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
810                                        afs_notify_end_reply_tx)) {
811         case 0:
812                 _leave(" [replied]");
813                 return;
814
815         case -ENOMEM:
816                 _debug("oom");
817                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
818                                         RXGEN_SS_MARSHAL, -ENOMEM,
819                                         afs_abort_oom);
820                 fallthrough;
821         default:
822                 _leave(" [error]");
823                 return;
824         }
825 }
826
827 /*
828  * send a simple reply
829  */
830 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
831 {
832         struct afs_net *net = call->net;
833         struct msghdr msg;
834         struct kvec iov[1];
835         int n;
836
837         _enter("");
838
839         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
840
841         iov[0].iov_base         = (void *) buf;
842         iov[0].iov_len          = len;
843         msg.msg_name            = NULL;
844         msg.msg_namelen         = 0;
845         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, len);
846         msg.msg_control         = NULL;
847         msg.msg_controllen      = 0;
848         msg.msg_flags           = 0;
849
850         n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
851                                    afs_notify_end_reply_tx);
852         if (n >= 0) {
853                 /* Success */
854                 _leave(" [replied]");
855                 return;
856         }
857
858         if (n == -ENOMEM) {
859                 _debug("oom");
860                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
861                                         RXGEN_SS_MARSHAL, -ENOMEM,
862                                         afs_abort_oom);
863         }
864         _leave(" [error]");
865 }
866
867 /*
868  * Extract a piece of data from the received data socket buffers.
869  */
870 int afs_extract_data(struct afs_call *call, bool want_more)
871 {
872         struct afs_net *net = call->net;
873         struct iov_iter *iter = call->iter;
874         enum afs_call_state state;
875         u32 remote_abort = 0;
876         int ret;
877
878         _enter("{%s,%zu,%zu},%d",
879                call->type->name, call->iov_len, iov_iter_count(iter), want_more);
880
881         ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
882                                      &call->iov_len, want_more, &remote_abort,
883                                      &call->service_id);
884         trace_afs_receive_data(call, call->iter, want_more, ret);
885         if (ret == 0 || ret == -EAGAIN)
886                 return ret;
887
888         state = READ_ONCE(call->state);
889         if (ret == 1) {
890                 switch (state) {
891                 case AFS_CALL_CL_AWAIT_REPLY:
892                         afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
893                         break;
894                 case AFS_CALL_SV_AWAIT_REQUEST:
895                         afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
896                         break;
897                 case AFS_CALL_COMPLETE:
898                         kdebug("prem complete %d", call->error);
899                         return afs_io_error(call, afs_io_error_extract);
900                 default:
901                         break;
902                 }
903                 return 0;
904         }
905
906         afs_set_call_complete(call, ret, remote_abort);
907         return ret;
908 }
909
910 /*
911  * Log protocol error production.
912  */
913 noinline int afs_protocol_error(struct afs_call *call,
914                                 enum afs_eproto_cause cause)
915 {
916         trace_afs_protocol_error(call, cause);
917         if (call)
918                 call->unmarshalling_error = true;
919         return -EBADMSG;
920 }