vsock/virtio: Fix unsigned integer wrap around in virtio_transport_has_space()
[linux-2.6-microblaze.git] / fs / afs / rxrpc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16 #define RXRPC_TRACE_ONLY_DEFINE_ENUMS
17 #include <trace/events/rxrpc.h>
18
19 struct workqueue_struct *afs_async_calls;
20
21 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
22 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_process_async_call(struct work_struct *);
24 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
25 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
26 static int afs_deliver_cm_op_id(struct afs_call *);
27
28 /* asynchronous incoming call initial processing */
29 static const struct afs_call_type afs_RXCMxxxx = {
30         .name           = "CB.xxxx",
31         .deliver        = afs_deliver_cm_op_id,
32 };
33
34 /*
35  * open an RxRPC socket and bind it to be a server for callback notifications
36  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
37  */
38 int afs_open_socket(struct afs_net *net)
39 {
40         struct sockaddr_rxrpc srx;
41         struct socket *socket;
42         int ret;
43
44         _enter("");
45
46         ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
47         if (ret < 0)
48                 goto error_1;
49
50         socket->sk->sk_allocation = GFP_NOFS;
51
52         /* bind the callback manager's address to make this a server socket */
53         memset(&srx, 0, sizeof(srx));
54         srx.srx_family                  = AF_RXRPC;
55         srx.srx_service                 = CM_SERVICE;
56         srx.transport_type              = SOCK_DGRAM;
57         srx.transport_len               = sizeof(srx.transport.sin6);
58         srx.transport.sin6.sin6_family  = AF_INET6;
59         srx.transport.sin6.sin6_port    = htons(AFS_CM_PORT);
60
61         ret = rxrpc_sock_set_min_security_level(socket->sk,
62                                                 RXRPC_SECURITY_ENCRYPT);
63         if (ret < 0)
64                 goto error_2;
65
66         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
67         if (ret == -EADDRINUSE) {
68                 srx.transport.sin6.sin6_port = 0;
69                 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
70         }
71         if (ret < 0)
72                 goto error_2;
73
74         srx.srx_service = YFS_CM_SERVICE;
75         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
76         if (ret < 0)
77                 goto error_2;
78
79         /* Ideally, we'd turn on service upgrade here, but we can't because
80          * OpenAFS is buggy and leaks the userStatus field from packet to
81          * packet and between FS packets and CB packets - so if we try to do an
82          * upgrade on an FS packet, OpenAFS will leak that into the CB packet
83          * it sends back to us.
84          */
85
86         rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
87                                            afs_rx_discard_new_call);
88
89         ret = kernel_listen(socket, INT_MAX);
90         if (ret < 0)
91                 goto error_2;
92
93         net->socket = socket;
94         afs_charge_preallocation(&net->charge_preallocation_work);
95         _leave(" = 0");
96         return 0;
97
98 error_2:
99         sock_release(socket);
100 error_1:
101         _leave(" = %d", ret);
102         return ret;
103 }
104
105 /*
106  * close the RxRPC socket AFS was using
107  */
108 void afs_close_socket(struct afs_net *net)
109 {
110         _enter("");
111
112         kernel_listen(net->socket, 0);
113         flush_workqueue(afs_async_calls);
114
115         if (net->spare_incoming_call) {
116                 afs_put_call(net->spare_incoming_call);
117                 net->spare_incoming_call = NULL;
118         }
119
120         _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
121         wait_var_event(&net->nr_outstanding_calls,
122                        !atomic_read(&net->nr_outstanding_calls));
123         _debug("no outstanding calls");
124
125         kernel_sock_shutdown(net->socket, SHUT_RDWR);
126         flush_workqueue(afs_async_calls);
127         sock_release(net->socket);
128
129         _debug("dework");
130         _leave("");
131 }
132
133 /*
134  * Allocate a call.
135  */
136 static struct afs_call *afs_alloc_call(struct afs_net *net,
137                                        const struct afs_call_type *type,
138                                        gfp_t gfp)
139 {
140         struct afs_call *call;
141         int o;
142
143         call = kzalloc(sizeof(*call), gfp);
144         if (!call)
145                 return NULL;
146
147         call->type = type;
148         call->net = net;
149         call->debug_id = atomic_inc_return(&rxrpc_debug_id);
150         refcount_set(&call->ref, 1);
151         INIT_WORK(&call->async_work, afs_process_async_call);
152         init_waitqueue_head(&call->waitq);
153         spin_lock_init(&call->state_lock);
154         call->iter = &call->def_iter;
155
156         o = atomic_inc_return(&net->nr_outstanding_calls);
157         trace_afs_call(call->debug_id, afs_call_trace_alloc, 1, o,
158                        __builtin_return_address(0));
159         return call;
160 }
161
162 /*
163  * Dispose of a reference on a call.
164  */
165 void afs_put_call(struct afs_call *call)
166 {
167         struct afs_net *net = call->net;
168         unsigned int debug_id = call->debug_id;
169         bool zero;
170         int r, o;
171
172         zero = __refcount_dec_and_test(&call->ref, &r);
173         o = atomic_read(&net->nr_outstanding_calls);
174         trace_afs_call(debug_id, afs_call_trace_put, r - 1, o,
175                        __builtin_return_address(0));
176
177         if (zero) {
178                 ASSERT(!work_pending(&call->async_work));
179                 ASSERT(call->type->name != NULL);
180
181                 if (call->rxcall) {
182                         rxrpc_kernel_shutdown_call(net->socket, call->rxcall);
183                         rxrpc_kernel_put_call(net->socket, call->rxcall);
184                         call->rxcall = NULL;
185                 }
186                 if (call->type->destructor)
187                         call->type->destructor(call);
188
189                 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
190                 afs_put_addrlist(call->alist);
191                 kfree(call->request);
192
193                 trace_afs_call(call->debug_id, afs_call_trace_free, 0, o,
194                                __builtin_return_address(0));
195                 kfree(call);
196
197                 o = atomic_dec_return(&net->nr_outstanding_calls);
198                 if (o == 0)
199                         wake_up_var(&net->nr_outstanding_calls);
200         }
201 }
202
203 static struct afs_call *afs_get_call(struct afs_call *call,
204                                      enum afs_call_trace why)
205 {
206         int r;
207
208         __refcount_inc(&call->ref, &r);
209
210         trace_afs_call(call->debug_id, why, r + 1,
211                        atomic_read(&call->net->nr_outstanding_calls),
212                        __builtin_return_address(0));
213         return call;
214 }
215
216 /*
217  * Queue the call for actual work.
218  */
219 static void afs_queue_call_work(struct afs_call *call)
220 {
221         if (call->type->work) {
222                 INIT_WORK(&call->work, call->type->work);
223
224                 afs_get_call(call, afs_call_trace_work);
225                 if (!queue_work(afs_wq, &call->work))
226                         afs_put_call(call);
227         }
228 }
229
230 /*
231  * allocate a call with flat request and reply buffers
232  */
233 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
234                                      const struct afs_call_type *type,
235                                      size_t request_size, size_t reply_max)
236 {
237         struct afs_call *call;
238
239         call = afs_alloc_call(net, type, GFP_NOFS);
240         if (!call)
241                 goto nomem_call;
242
243         if (request_size) {
244                 call->request_size = request_size;
245                 call->request = kmalloc(request_size, GFP_NOFS);
246                 if (!call->request)
247                         goto nomem_free;
248         }
249
250         if (reply_max) {
251                 call->reply_max = reply_max;
252                 call->buffer = kmalloc(reply_max, GFP_NOFS);
253                 if (!call->buffer)
254                         goto nomem_free;
255         }
256
257         afs_extract_to_buf(call, call->reply_max);
258         call->operation_ID = type->op;
259         init_waitqueue_head(&call->waitq);
260         return call;
261
262 nomem_free:
263         afs_put_call(call);
264 nomem_call:
265         return NULL;
266 }
267
268 /*
269  * clean up a call with flat buffer
270  */
271 void afs_flat_call_destructor(struct afs_call *call)
272 {
273         _enter("");
274
275         kfree(call->request);
276         call->request = NULL;
277         kfree(call->buffer);
278         call->buffer = NULL;
279 }
280
281 /*
282  * Advance the AFS call state when the RxRPC call ends the transmit phase.
283  */
284 static void afs_notify_end_request_tx(struct sock *sock,
285                                       struct rxrpc_call *rxcall,
286                                       unsigned long call_user_ID)
287 {
288         struct afs_call *call = (struct afs_call *)call_user_ID;
289
290         afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
291 }
292
293 /*
294  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
295  * error is stored into the call struct, which the caller must check for.
296  */
297 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
298 {
299         struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
300         struct rxrpc_call *rxcall;
301         struct msghdr msg;
302         struct kvec iov[1];
303         size_t len;
304         s64 tx_total_len;
305         int ret;
306
307         _enter(",{%pISp},", &srx->transport);
308
309         ASSERT(call->type != NULL);
310         ASSERT(call->type->name != NULL);
311
312         _debug("____MAKE %p{%s,%x} [%d]____",
313                call, call->type->name, key_serial(call->key),
314                atomic_read(&call->net->nr_outstanding_calls));
315
316         call->addr_ix = ac->index;
317         call->alist = afs_get_addrlist(ac->alist);
318
319         /* Work out the length we're going to transmit.  This is awkward for
320          * calls such as FS.StoreData where there's an extra injection of data
321          * after the initial fixed part.
322          */
323         tx_total_len = call->request_size;
324         if (call->write_iter)
325                 tx_total_len += iov_iter_count(call->write_iter);
326
327         /* If the call is going to be asynchronous, we need an extra ref for
328          * the call to hold itself so the caller need not hang on to its ref.
329          */
330         if (call->async) {
331                 afs_get_call(call, afs_call_trace_get);
332                 call->drop_ref = true;
333         }
334
335         /* create a call */
336         rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
337                                          (unsigned long)call,
338                                          tx_total_len,
339                                          call->max_lifespan,
340                                          gfp,
341                                          (call->async ?
342                                           afs_wake_up_async_call :
343                                           afs_wake_up_call_waiter),
344                                          call->upgrade,
345                                          (call->intr ? RXRPC_PREINTERRUPTIBLE :
346                                           RXRPC_UNINTERRUPTIBLE),
347                                          call->debug_id);
348         if (IS_ERR(rxcall)) {
349                 ret = PTR_ERR(rxcall);
350                 call->error = ret;
351                 goto error_kill_call;
352         }
353
354         call->rxcall = rxcall;
355         call->issue_time = ktime_get_real();
356
357         /* send the request */
358         iov[0].iov_base = call->request;
359         iov[0].iov_len  = call->request_size;
360
361         msg.msg_name            = NULL;
362         msg.msg_namelen         = 0;
363         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, call->request_size);
364         msg.msg_control         = NULL;
365         msg.msg_controllen      = 0;
366         msg.msg_flags           = MSG_WAITALL | (call->write_iter ? MSG_MORE : 0);
367
368         ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
369                                      &msg, call->request_size,
370                                      afs_notify_end_request_tx);
371         if (ret < 0)
372                 goto error_do_abort;
373
374         if (call->write_iter) {
375                 msg.msg_iter = *call->write_iter;
376                 msg.msg_flags &= ~MSG_MORE;
377                 trace_afs_send_data(call, &msg);
378
379                 ret = rxrpc_kernel_send_data(call->net->socket,
380                                              call->rxcall, &msg,
381                                              iov_iter_count(&msg.msg_iter),
382                                              afs_notify_end_request_tx);
383                 *call->write_iter = msg.msg_iter;
384
385                 trace_afs_sent_data(call, &msg, ret);
386                 if (ret < 0)
387                         goto error_do_abort;
388         }
389
390         /* Note that at this point, we may have received the reply or an abort
391          * - and an asynchronous call may already have completed.
392          *
393          * afs_wait_for_call_to_complete(call, ac)
394          * must be called to synchronously clean up.
395          */
396         return;
397
398 error_do_abort:
399         if (ret != -ECONNABORTED) {
400                 rxrpc_kernel_abort_call(call->net->socket, rxcall,
401                                         RX_USER_ABORT, ret,
402                                         afs_abort_send_data_error);
403         } else {
404                 len = 0;
405                 iov_iter_kvec(&msg.msg_iter, ITER_DEST, NULL, 0, 0);
406                 rxrpc_kernel_recv_data(call->net->socket, rxcall,
407                                        &msg.msg_iter, &len, false,
408                                        &call->abort_code, &call->service_id);
409                 ac->abort_code = call->abort_code;
410                 ac->responded = true;
411         }
412         call->error = ret;
413         trace_afs_call_done(call);
414 error_kill_call:
415         if (call->type->done)
416                 call->type->done(call);
417
418         /* We need to dispose of the extra ref we grabbed for an async call.
419          * The call, however, might be queued on afs_async_calls and we need to
420          * make sure we don't get any more notifications that might requeue it.
421          */
422         if (call->rxcall)
423                 rxrpc_kernel_shutdown_call(call->net->socket, call->rxcall);
424         if (call->async) {
425                 if (cancel_work_sync(&call->async_work))
426                         afs_put_call(call);
427                 afs_put_call(call);
428         }
429
430         ac->error = ret;
431         call->state = AFS_CALL_COMPLETE;
432         _leave(" = %d", ret);
433 }
434
435 /*
436  * Log remote abort codes that indicate that we have a protocol disagreement
437  * with the server.
438  */
439 static void afs_log_error(struct afs_call *call, s32 remote_abort)
440 {
441         static int max = 0;
442         const char *msg;
443         int m;
444
445         switch (remote_abort) {
446         case RX_EOF:             msg = "unexpected EOF";        break;
447         case RXGEN_CC_MARSHAL:   msg = "client marshalling";    break;
448         case RXGEN_CC_UNMARSHAL: msg = "client unmarshalling";  break;
449         case RXGEN_SS_MARSHAL:   msg = "server marshalling";    break;
450         case RXGEN_SS_UNMARSHAL: msg = "server unmarshalling";  break;
451         case RXGEN_DECODE:       msg = "opcode decode";         break;
452         case RXGEN_SS_XDRFREE:   msg = "server XDR cleanup";    break;
453         case RXGEN_CC_XDRFREE:   msg = "client XDR cleanup";    break;
454         case -32:                msg = "insufficient data";     break;
455         default:
456                 return;
457         }
458
459         m = max;
460         if (m < 3) {
461                 max = m + 1;
462                 pr_notice("kAFS: Peer reported %s failure on %s [%pISp]\n",
463                           msg, call->type->name,
464                           &call->alist->addrs[call->addr_ix].transport);
465         }
466 }
467
468 /*
469  * deliver messages to a call
470  */
471 static void afs_deliver_to_call(struct afs_call *call)
472 {
473         enum afs_call_state state;
474         size_t len;
475         u32 abort_code, remote_abort = 0;
476         int ret;
477
478         _enter("%s", call->type->name);
479
480         while (state = READ_ONCE(call->state),
481                state == AFS_CALL_CL_AWAIT_REPLY ||
482                state == AFS_CALL_SV_AWAIT_OP_ID ||
483                state == AFS_CALL_SV_AWAIT_REQUEST ||
484                state == AFS_CALL_SV_AWAIT_ACK
485                ) {
486                 if (state == AFS_CALL_SV_AWAIT_ACK) {
487                         len = 0;
488                         iov_iter_kvec(&call->def_iter, ITER_DEST, NULL, 0, 0);
489                         ret = rxrpc_kernel_recv_data(call->net->socket,
490                                                      call->rxcall, &call->def_iter,
491                                                      &len, false, &remote_abort,
492                                                      &call->service_id);
493                         trace_afs_receive_data(call, &call->def_iter, false, ret);
494
495                         if (ret == -EINPROGRESS || ret == -EAGAIN)
496                                 return;
497                         if (ret < 0 || ret == 1) {
498                                 if (ret == 1)
499                                         ret = 0;
500                                 goto call_complete;
501                         }
502                         return;
503                 }
504
505                 ret = call->type->deliver(call);
506                 state = READ_ONCE(call->state);
507                 if (ret == 0 && call->unmarshalling_error)
508                         ret = -EBADMSG;
509                 switch (ret) {
510                 case 0:
511                         afs_queue_call_work(call);
512                         if (state == AFS_CALL_CL_PROC_REPLY) {
513                                 if (call->op)
514                                         set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
515                                                 &call->op->server->flags);
516                                 goto call_complete;
517                         }
518                         ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
519                         goto done;
520                 case -EINPROGRESS:
521                 case -EAGAIN:
522                         goto out;
523                 case -ECONNABORTED:
524                         ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
525                         afs_log_error(call, call->abort_code);
526                         goto done;
527                 case -ENOTSUPP:
528                         abort_code = RXGEN_OPCODE;
529                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
530                                                 abort_code, ret,
531                                                 afs_abort_op_not_supported);
532                         goto local_abort;
533                 case -EIO:
534                         pr_err("kAFS: Call %u in bad state %u\n",
535                                call->debug_id, state);
536                         fallthrough;
537                 case -ENODATA:
538                 case -EBADMSG:
539                 case -EMSGSIZE:
540                 case -ENOMEM:
541                 case -EFAULT:
542                         abort_code = RXGEN_CC_UNMARSHAL;
543                         if (state != AFS_CALL_CL_AWAIT_REPLY)
544                                 abort_code = RXGEN_SS_UNMARSHAL;
545                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
546                                                 abort_code, ret,
547                                                 afs_abort_unmarshal_error);
548                         goto local_abort;
549                 default:
550                         abort_code = RX_CALL_DEAD;
551                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
552                                                 abort_code, ret,
553                                                 afs_abort_general_error);
554                         goto local_abort;
555                 }
556         }
557
558 done:
559         if (call->type->done)
560                 call->type->done(call);
561 out:
562         _leave("");
563         return;
564
565 local_abort:
566         abort_code = 0;
567 call_complete:
568         afs_set_call_complete(call, ret, remote_abort);
569         state = AFS_CALL_COMPLETE;
570         goto done;
571 }
572
573 /*
574  * Wait synchronously for a call to complete and clean up the call struct.
575  */
576 long afs_wait_for_call_to_complete(struct afs_call *call,
577                                    struct afs_addr_cursor *ac)
578 {
579         long ret;
580         bool rxrpc_complete = false;
581
582         DECLARE_WAITQUEUE(myself, current);
583
584         _enter("");
585
586         ret = call->error;
587         if (ret < 0)
588                 goto out;
589
590         add_wait_queue(&call->waitq, &myself);
591         for (;;) {
592                 set_current_state(TASK_UNINTERRUPTIBLE);
593
594                 /* deliver any messages that are in the queue */
595                 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
596                     call->need_attention) {
597                         call->need_attention = false;
598                         __set_current_state(TASK_RUNNING);
599                         afs_deliver_to_call(call);
600                         continue;
601                 }
602
603                 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
604                         break;
605
606                 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
607                         /* rxrpc terminated the call. */
608                         rxrpc_complete = true;
609                         break;
610                 }
611
612                 schedule();
613         }
614
615         remove_wait_queue(&call->waitq, &myself);
616         __set_current_state(TASK_RUNNING);
617
618         if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
619                 if (rxrpc_complete) {
620                         afs_set_call_complete(call, call->error, call->abort_code);
621                 } else {
622                         /* Kill off the call if it's still live. */
623                         _debug("call interrupted");
624                         if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
625                                                     RX_USER_ABORT, -EINTR,
626                                                     afs_abort_interrupted))
627                                 afs_set_call_complete(call, -EINTR, 0);
628                 }
629         }
630
631         spin_lock_bh(&call->state_lock);
632         ac->abort_code = call->abort_code;
633         ac->error = call->error;
634         spin_unlock_bh(&call->state_lock);
635
636         ret = ac->error;
637         switch (ret) {
638         case 0:
639                 ret = call->ret0;
640                 call->ret0 = 0;
641
642                 fallthrough;
643         case -ECONNABORTED:
644                 ac->responded = true;
645                 break;
646         }
647
648 out:
649         _debug("call complete");
650         afs_put_call(call);
651         _leave(" = %p", (void *)ret);
652         return ret;
653 }
654
655 /*
656  * wake up a waiting call
657  */
658 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
659                                     unsigned long call_user_ID)
660 {
661         struct afs_call *call = (struct afs_call *)call_user_ID;
662
663         call->need_attention = true;
664         wake_up(&call->waitq);
665 }
666
667 /*
668  * wake up an asynchronous call
669  */
670 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
671                                    unsigned long call_user_ID)
672 {
673         struct afs_call *call = (struct afs_call *)call_user_ID;
674         int r;
675
676         trace_afs_notify_call(rxcall, call);
677         call->need_attention = true;
678
679         if (__refcount_inc_not_zero(&call->ref, &r)) {
680                 trace_afs_call(call->debug_id, afs_call_trace_wake, r + 1,
681                                atomic_read(&call->net->nr_outstanding_calls),
682                                __builtin_return_address(0));
683
684                 if (!queue_work(afs_async_calls, &call->async_work))
685                         afs_put_call(call);
686         }
687 }
688
689 /*
690  * Perform I/O processing on an asynchronous call.  The work item carries a ref
691  * to the call struct that we either need to release or to pass on.
692  */
693 static void afs_process_async_call(struct work_struct *work)
694 {
695         struct afs_call *call = container_of(work, struct afs_call, async_work);
696
697         _enter("");
698
699         if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
700                 call->need_attention = false;
701                 afs_deliver_to_call(call);
702         }
703
704         afs_put_call(call);
705         _leave("");
706 }
707
708 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
709 {
710         struct afs_call *call = (struct afs_call *)user_call_ID;
711
712         call->rxcall = rxcall;
713 }
714
715 /*
716  * Charge the incoming call preallocation.
717  */
718 void afs_charge_preallocation(struct work_struct *work)
719 {
720         struct afs_net *net =
721                 container_of(work, struct afs_net, charge_preallocation_work);
722         struct afs_call *call = net->spare_incoming_call;
723
724         for (;;) {
725                 if (!call) {
726                         call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
727                         if (!call)
728                                 break;
729
730                         call->drop_ref = true;
731                         call->async = true;
732                         call->state = AFS_CALL_SV_AWAIT_OP_ID;
733                         init_waitqueue_head(&call->waitq);
734                         afs_extract_to_tmp(call);
735                 }
736
737                 if (rxrpc_kernel_charge_accept(net->socket,
738                                                afs_wake_up_async_call,
739                                                afs_rx_attach,
740                                                (unsigned long)call,
741                                                GFP_KERNEL,
742                                                call->debug_id) < 0)
743                         break;
744                 call = NULL;
745         }
746         net->spare_incoming_call = call;
747 }
748
749 /*
750  * Discard a preallocated call when a socket is shut down.
751  */
752 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
753                                     unsigned long user_call_ID)
754 {
755         struct afs_call *call = (struct afs_call *)user_call_ID;
756
757         call->rxcall = NULL;
758         afs_put_call(call);
759 }
760
761 /*
762  * Notification of an incoming call.
763  */
764 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
765                             unsigned long user_call_ID)
766 {
767         struct afs_net *net = afs_sock2net(sk);
768
769         queue_work(afs_wq, &net->charge_preallocation_work);
770 }
771
772 /*
773  * Grab the operation ID from an incoming cache manager call.  The socket
774  * buffer is discarded on error or if we don't yet have sufficient data.
775  */
776 static int afs_deliver_cm_op_id(struct afs_call *call)
777 {
778         int ret;
779
780         _enter("{%zu}", iov_iter_count(call->iter));
781
782         /* the operation ID forms the first four bytes of the request data */
783         ret = afs_extract_data(call, true);
784         if (ret < 0)
785                 return ret;
786
787         call->operation_ID = ntohl(call->tmp);
788         afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
789
790         /* ask the cache manager to route the call (it'll change the call type
791          * if successful) */
792         if (!afs_cm_incoming_call(call))
793                 return -ENOTSUPP;
794
795         trace_afs_cb_call(call);
796
797         /* pass responsibility for the remainer of this message off to the
798          * cache manager op */
799         return call->type->deliver(call);
800 }
801
802 /*
803  * Advance the AFS call state when an RxRPC service call ends the transmit
804  * phase.
805  */
806 static void afs_notify_end_reply_tx(struct sock *sock,
807                                     struct rxrpc_call *rxcall,
808                                     unsigned long call_user_ID)
809 {
810         struct afs_call *call = (struct afs_call *)call_user_ID;
811
812         afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
813 }
814
815 /*
816  * send an empty reply
817  */
818 void afs_send_empty_reply(struct afs_call *call)
819 {
820         struct afs_net *net = call->net;
821         struct msghdr msg;
822
823         _enter("");
824
825         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
826
827         msg.msg_name            = NULL;
828         msg.msg_namelen         = 0;
829         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, NULL, 0, 0);
830         msg.msg_control         = NULL;
831         msg.msg_controllen      = 0;
832         msg.msg_flags           = 0;
833
834         switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
835                                        afs_notify_end_reply_tx)) {
836         case 0:
837                 _leave(" [replied]");
838                 return;
839
840         case -ENOMEM:
841                 _debug("oom");
842                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
843                                         RXGEN_SS_MARSHAL, -ENOMEM,
844                                         afs_abort_oom);
845                 fallthrough;
846         default:
847                 _leave(" [error]");
848                 return;
849         }
850 }
851
852 /*
853  * send a simple reply
854  */
855 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
856 {
857         struct afs_net *net = call->net;
858         struct msghdr msg;
859         struct kvec iov[1];
860         int n;
861
862         _enter("");
863
864         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
865
866         iov[0].iov_base         = (void *) buf;
867         iov[0].iov_len          = len;
868         msg.msg_name            = NULL;
869         msg.msg_namelen         = 0;
870         iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, iov, 1, len);
871         msg.msg_control         = NULL;
872         msg.msg_controllen      = 0;
873         msg.msg_flags           = 0;
874
875         n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
876                                    afs_notify_end_reply_tx);
877         if (n >= 0) {
878                 /* Success */
879                 _leave(" [replied]");
880                 return;
881         }
882
883         if (n == -ENOMEM) {
884                 _debug("oom");
885                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
886                                         RXGEN_SS_MARSHAL, -ENOMEM,
887                                         afs_abort_oom);
888         }
889         _leave(" [error]");
890 }
891
892 /*
893  * Extract a piece of data from the received data socket buffers.
894  */
895 int afs_extract_data(struct afs_call *call, bool want_more)
896 {
897         struct afs_net *net = call->net;
898         struct iov_iter *iter = call->iter;
899         enum afs_call_state state;
900         u32 remote_abort = 0;
901         int ret;
902
903         _enter("{%s,%zu,%zu},%d",
904                call->type->name, call->iov_len, iov_iter_count(iter), want_more);
905
906         ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
907                                      &call->iov_len, want_more, &remote_abort,
908                                      &call->service_id);
909         trace_afs_receive_data(call, call->iter, want_more, ret);
910         if (ret == 0 || ret == -EAGAIN)
911                 return ret;
912
913         state = READ_ONCE(call->state);
914         if (ret == 1) {
915                 switch (state) {
916                 case AFS_CALL_CL_AWAIT_REPLY:
917                         afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
918                         break;
919                 case AFS_CALL_SV_AWAIT_REQUEST:
920                         afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
921                         break;
922                 case AFS_CALL_COMPLETE:
923                         kdebug("prem complete %d", call->error);
924                         return afs_io_error(call, afs_io_error_extract);
925                 default:
926                         break;
927                 }
928                 return 0;
929         }
930
931         afs_set_call_complete(call, ret, remote_abort);
932         return ret;
933 }
934
935 /*
936  * Log protocol error production.
937  */
938 noinline int afs_protocol_error(struct afs_call *call,
939                                 enum afs_eproto_cause cause)
940 {
941         trace_afs_protocol_error(call, cause);
942         if (call)
943                 call->unmarshalling_error = true;
944         return -EBADMSG;
945 }