virtio-mem: simplify high-level unplug handling in Sub Block Mode
[linux-2.6-microblaze.git] / drivers / watchdog / octeon-wdt-main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Octeon Watchdog driver
4  *
5  * Copyright (C) 2007-2017 Cavium, Inc.
6  *
7  * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
8  *
9  * Some parts derived from wdt.c
10  *
11  *      (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
12  *                                              All Rights Reserved.
13  *
14  *      Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
15  *      warranty for any of this software. This material is provided
16  *      "AS-IS" and at no charge.
17  *
18  *      (c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
19  *
20  * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
21  * For most systems this is less than 10 seconds, so to allow for
22  * software to request longer watchdog heartbeats, we maintain software
23  * counters to count multiples of the base rate.  If the system locks
24  * up in such a manner that we can not run the software counters, the
25  * only result is a watchdog reset sooner than was requested.  But
26  * that is OK, because in this case userspace would likely not be able
27  * to do anything anyhow.
28  *
29  * The hardware watchdog interval we call the period.  The OCTEON
30  * watchdog goes through several stages, after the first period an
31  * irq is asserted, then if it is not reset, after the next period NMI
32  * is asserted, then after an additional period a chip wide soft reset.
33  * So for the software counters, we reset watchdog after each period
34  * and decrement the counter.  But for the last two periods we need to
35  * let the watchdog progress to the NMI stage so we disable the irq
36  * and let it proceed.  Once in the NMI, we print the register state
37  * to the serial port and then wait for the reset.
38  *
39  * A watchdog is maintained for each CPU in the system, that way if
40  * one CPU suffers a lockup, we also get a register dump and reset.
41  * The userspace ping resets the watchdog on all CPUs.
42  *
43  * Before userspace opens the watchdog device, we still run the
44  * watchdogs to catch any lockups that may be kernel related.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/interrupt.h>
51 #include <linux/watchdog.h>
52 #include <linux/cpumask.h>
53 #include <linux/module.h>
54 #include <linux/delay.h>
55 #include <linux/cpu.h>
56 #include <linux/irq.h>
57 #include <linux/irqdomain.h>
58
59 #include <asm/mipsregs.h>
60 #include <asm/uasm.h>
61
62 #include <asm/octeon/octeon.h>
63 #include <asm/octeon/cvmx-boot-vector.h>
64 #include <asm/octeon/cvmx-ciu2-defs.h>
65 #include <asm/octeon/cvmx-rst-defs.h>
66
67 /* Watchdog interrupt major block number (8 MSBs of intsn) */
68 #define WD_BLOCK_NUMBER         0x01
69
70 static int divisor;
71
72 /* The count needed to achieve timeout_sec. */
73 static unsigned int timeout_cnt;
74
75 /* The maximum period supported. */
76 static unsigned int max_timeout_sec;
77
78 /* The current period.  */
79 static unsigned int timeout_sec;
80
81 /* Set to non-zero when userspace countdown mode active */
82 static bool do_countdown;
83 static unsigned int countdown_reset;
84 static unsigned int per_cpu_countdown[NR_CPUS];
85
86 static cpumask_t irq_enabled_cpus;
87
88 #define WD_TIMO 60                      /* Default heartbeat = 60 seconds */
89
90 #define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)
91
92 static int heartbeat = WD_TIMO;
93 module_param(heartbeat, int, 0444);
94 MODULE_PARM_DESC(heartbeat,
95         "Watchdog heartbeat in seconds. (0 < heartbeat, default="
96                                 __MODULE_STRING(WD_TIMO) ")");
97
98 static bool nowayout = WATCHDOG_NOWAYOUT;
99 module_param(nowayout, bool, 0444);
100 MODULE_PARM_DESC(nowayout,
101         "Watchdog cannot be stopped once started (default="
102                                 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
103
104 static int disable;
105 module_param(disable, int, 0444);
106 MODULE_PARM_DESC(disable,
107         "Disable the watchdog entirely (default=0)");
108
109 static struct cvmx_boot_vector_element *octeon_wdt_bootvector;
110
111 void octeon_wdt_nmi_stage2(void);
112
113 static int cpu2core(int cpu)
114 {
115 #ifdef CONFIG_SMP
116         return cpu_logical_map(cpu) & 0x3f;
117 #else
118         return cvmx_get_core_num();
119 #endif
120 }
121
122 /**
123  * Poke the watchdog when an interrupt is received
124  *
125  * @cpl:
126  * @dev_id:
127  *
128  * Returns
129  */
130 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
131 {
132         int cpu = raw_smp_processor_id();
133         unsigned int core = cpu2core(cpu);
134         int node = cpu_to_node(cpu);
135
136         if (do_countdown) {
137                 if (per_cpu_countdown[cpu] > 0) {
138                         /* We're alive, poke the watchdog */
139                         cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
140                         per_cpu_countdown[cpu]--;
141                 } else {
142                         /* Bad news, you are about to reboot. */
143                         disable_irq_nosync(cpl);
144                         cpumask_clear_cpu(cpu, &irq_enabled_cpus);
145                 }
146         } else {
147                 /* Not open, just ping away... */
148                 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
149         }
150         return IRQ_HANDLED;
151 }
152
153 /* From setup.c */
154 extern int prom_putchar(char c);
155
156 /**
157  * Write a string to the uart
158  *
159  * @str:        String to write
160  */
161 static void octeon_wdt_write_string(const char *str)
162 {
163         /* Just loop writing one byte at a time */
164         while (*str)
165                 prom_putchar(*str++);
166 }
167
168 /**
169  * Write a hex number out of the uart
170  *
171  * @value:      Number to display
172  * @digits:     Number of digits to print (1 to 16)
173  */
174 static void octeon_wdt_write_hex(u64 value, int digits)
175 {
176         int d;
177         int v;
178
179         for (d = 0; d < digits; d++) {
180                 v = (value >> ((digits - d - 1) * 4)) & 0xf;
181                 if (v >= 10)
182                         prom_putchar('a' + v - 10);
183                 else
184                         prom_putchar('0' + v);
185         }
186 }
187
188 static const char reg_name[][3] = {
189         "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
190         "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
191         "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
192         "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
193 };
194
195 /**
196  * NMI stage 3 handler. NMIs are handled in the following manner:
197  * 1) The first NMI handler enables CVMSEG and transfers from
198  * the bootbus region into normal memory. It is careful to not
199  * destroy any registers.
200  * 2) The second stage handler uses CVMSEG to save the registers
201  * and create a stack for C code. It then calls the third level
202  * handler with one argument, a pointer to the register values.
203  * 3) The third, and final, level handler is the following C
204  * function that prints out some useful infomration.
205  *
206  * @reg:    Pointer to register state before the NMI
207  */
208 void octeon_wdt_nmi_stage3(u64 reg[32])
209 {
210         u64 i;
211
212         unsigned int coreid = cvmx_get_core_num();
213         /*
214          * Save status and cause early to get them before any changes
215          * might happen.
216          */
217         u64 cp0_cause = read_c0_cause();
218         u64 cp0_status = read_c0_status();
219         u64 cp0_error_epc = read_c0_errorepc();
220         u64 cp0_epc = read_c0_epc();
221
222         /* Delay so output from all cores output is not jumbled together. */
223         udelay(85000 * coreid);
224
225         octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
226         octeon_wdt_write_hex(coreid, 2);
227         octeon_wdt_write_string(" ***\r\n");
228         for (i = 0; i < 32; i++) {
229                 octeon_wdt_write_string("\t");
230                 octeon_wdt_write_string(reg_name[i]);
231                 octeon_wdt_write_string("\t0x");
232                 octeon_wdt_write_hex(reg[i], 16);
233                 if (i & 1)
234                         octeon_wdt_write_string("\r\n");
235         }
236         octeon_wdt_write_string("\terr_epc\t0x");
237         octeon_wdt_write_hex(cp0_error_epc, 16);
238
239         octeon_wdt_write_string("\tepc\t0x");
240         octeon_wdt_write_hex(cp0_epc, 16);
241         octeon_wdt_write_string("\r\n");
242
243         octeon_wdt_write_string("\tstatus\t0x");
244         octeon_wdt_write_hex(cp0_status, 16);
245         octeon_wdt_write_string("\tcause\t0x");
246         octeon_wdt_write_hex(cp0_cause, 16);
247         octeon_wdt_write_string("\r\n");
248
249         /* The CIU register is different for each Octeon model. */
250         if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
251                 octeon_wdt_write_string("\tsrc_wd\t0x");
252                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid)), 16);
253                 octeon_wdt_write_string("\ten_wd\t0x");
254                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid)), 16);
255                 octeon_wdt_write_string("\r\n");
256                 octeon_wdt_write_string("\tsrc_rml\t0x");
257                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid)), 16);
258                 octeon_wdt_write_string("\ten_rml\t0x");
259                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid)), 16);
260                 octeon_wdt_write_string("\r\n");
261                 octeon_wdt_write_string("\tsum\t0x");
262                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid)), 16);
263                 octeon_wdt_write_string("\r\n");
264         } else if (!octeon_has_feature(OCTEON_FEATURE_CIU3)) {
265                 octeon_wdt_write_string("\tsum0\t0x");
266                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
267                 octeon_wdt_write_string("\ten0\t0x");
268                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
269                 octeon_wdt_write_string("\r\n");
270         }
271
272         octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
273
274         /*
275          * G-30204: We must trigger a soft reset before watchdog
276          * does an incomplete job of doing it.
277          */
278         if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) {
279                 u64 scr;
280                 unsigned int node = cvmx_get_node_num();
281                 unsigned int lcore = cvmx_get_local_core_num();
282                 union cvmx_ciu_wdogx ciu_wdog;
283
284                 /*
285                  * Wait for other cores to print out information, but
286                  * not too long.  Do the soft reset before watchdog
287                  * can trigger it.
288                  */
289                 do {
290                         ciu_wdog.u64 = cvmx_read_csr_node(node, CVMX_CIU_WDOGX(lcore));
291                 } while (ciu_wdog.s.cnt > 0x10000);
292
293                 scr = cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
294                 scr |= 1 << 11; /* Indicate watchdog in bit 11 */
295                 cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr);
296                 cvmx_write_csr_node(0, CVMX_RST_SOFT_RST, 1);
297         }
298 }
299
300 static int octeon_wdt_cpu_to_irq(int cpu)
301 {
302         unsigned int coreid;
303         int node;
304         int irq;
305
306         coreid = cpu2core(cpu);
307         node = cpu_to_node(cpu);
308
309         if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
310                 struct irq_domain *domain;
311                 int hwirq;
312
313                 domain = octeon_irq_get_block_domain(node,
314                                                      WD_BLOCK_NUMBER);
315                 hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | coreid;
316                 irq = irq_find_mapping(domain, hwirq);
317         } else {
318                 irq = OCTEON_IRQ_WDOG0 + coreid;
319         }
320         return irq;
321 }
322
323 static int octeon_wdt_cpu_pre_down(unsigned int cpu)
324 {
325         unsigned int core;
326         int node;
327         union cvmx_ciu_wdogx ciu_wdog;
328
329         core = cpu2core(cpu);
330
331         node = cpu_to_node(cpu);
332
333         /* Poke the watchdog to clear out its state */
334         cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
335
336         /* Disable the hardware. */
337         ciu_wdog.u64 = 0;
338         cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
339
340         free_irq(octeon_wdt_cpu_to_irq(cpu), octeon_wdt_poke_irq);
341         return 0;
342 }
343
344 static int octeon_wdt_cpu_online(unsigned int cpu)
345 {
346         unsigned int core;
347         unsigned int irq;
348         union cvmx_ciu_wdogx ciu_wdog;
349         int node;
350         struct irq_domain *domain;
351         int hwirq;
352
353         core = cpu2core(cpu);
354         node = cpu_to_node(cpu);
355
356         octeon_wdt_bootvector[core].target_ptr = (u64)octeon_wdt_nmi_stage2;
357
358         /* Disable it before doing anything with the interrupts. */
359         ciu_wdog.u64 = 0;
360         cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
361
362         per_cpu_countdown[cpu] = countdown_reset;
363
364         if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
365                 /* Must get the domain for the watchdog block */
366                 domain = octeon_irq_get_block_domain(node, WD_BLOCK_NUMBER);
367
368                 /* Get a irq for the wd intsn (hardware interrupt) */
369                 hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | core;
370                 irq = irq_create_mapping(domain, hwirq);
371                 irqd_set_trigger_type(irq_get_irq_data(irq),
372                                       IRQ_TYPE_EDGE_RISING);
373         } else
374                 irq = OCTEON_IRQ_WDOG0 + core;
375
376         if (request_irq(irq, octeon_wdt_poke_irq,
377                         IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
378                 panic("octeon_wdt: Couldn't obtain irq %d", irq);
379
380         /* Must set the irq affinity here */
381         if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
382                 cpumask_t mask;
383
384                 cpumask_clear(&mask);
385                 cpumask_set_cpu(cpu, &mask);
386                 irq_set_affinity(irq, &mask);
387         }
388
389         cpumask_set_cpu(cpu, &irq_enabled_cpus);
390
391         /* Poke the watchdog to clear out its state */
392         cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
393
394         /* Finally enable the watchdog now that all handlers are installed */
395         ciu_wdog.u64 = 0;
396         ciu_wdog.s.len = timeout_cnt;
397         ciu_wdog.s.mode = 3;    /* 3 = Interrupt + NMI + Soft-Reset */
398         cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
399
400         return 0;
401 }
402
403 static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
404 {
405         int cpu;
406         int coreid;
407         int node;
408
409         if (disable)
410                 return 0;
411
412         for_each_online_cpu(cpu) {
413                 coreid = cpu2core(cpu);
414                 node = cpu_to_node(cpu);
415                 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
416                 per_cpu_countdown[cpu] = countdown_reset;
417                 if ((countdown_reset || !do_countdown) &&
418                     !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
419                         /* We have to enable the irq */
420                         enable_irq(octeon_wdt_cpu_to_irq(cpu));
421                         cpumask_set_cpu(cpu, &irq_enabled_cpus);
422                 }
423         }
424         return 0;
425 }
426
427 static void octeon_wdt_calc_parameters(int t)
428 {
429         unsigned int periods;
430
431         timeout_sec = max_timeout_sec;
432
433
434         /*
435          * Find the largest interrupt period, that can evenly divide
436          * the requested heartbeat time.
437          */
438         while ((t % timeout_sec) != 0)
439                 timeout_sec--;
440
441         periods = t / timeout_sec;
442
443         /*
444          * The last two periods are after the irq is disabled, and
445          * then to the nmi, so we subtract them off.
446          */
447
448         countdown_reset = periods > 2 ? periods - 2 : 0;
449         heartbeat = t;
450         timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * timeout_sec) >> 8;
451 }
452
453 static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
454                                   unsigned int t)
455 {
456         int cpu;
457         int coreid;
458         union cvmx_ciu_wdogx ciu_wdog;
459         int node;
460
461         if (t <= 0)
462                 return -1;
463
464         octeon_wdt_calc_parameters(t);
465
466         if (disable)
467                 return 0;
468
469         for_each_online_cpu(cpu) {
470                 coreid = cpu2core(cpu);
471                 node = cpu_to_node(cpu);
472                 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
473                 ciu_wdog.u64 = 0;
474                 ciu_wdog.s.len = timeout_cnt;
475                 ciu_wdog.s.mode = 3;    /* 3 = Interrupt + NMI + Soft-Reset */
476                 cvmx_write_csr_node(node, CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
477                 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
478         }
479         octeon_wdt_ping(wdog); /* Get the irqs back on. */
480         return 0;
481 }
482
483 static int octeon_wdt_start(struct watchdog_device *wdog)
484 {
485         octeon_wdt_ping(wdog);
486         do_countdown = 1;
487         return 0;
488 }
489
490 static int octeon_wdt_stop(struct watchdog_device *wdog)
491 {
492         do_countdown = 0;
493         octeon_wdt_ping(wdog);
494         return 0;
495 }
496
497 static const struct watchdog_info octeon_wdt_info = {
498         .options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
499         .identity = "OCTEON",
500 };
501
502 static const struct watchdog_ops octeon_wdt_ops = {
503         .owner          = THIS_MODULE,
504         .start          = octeon_wdt_start,
505         .stop           = octeon_wdt_stop,
506         .ping           = octeon_wdt_ping,
507         .set_timeout    = octeon_wdt_set_timeout,
508 };
509
510 static struct watchdog_device octeon_wdt = {
511         .info   = &octeon_wdt_info,
512         .ops    = &octeon_wdt_ops,
513 };
514
515 static enum cpuhp_state octeon_wdt_online;
516 /**
517  * Module/ driver initialization.
518  *
519  * Returns Zero on success
520  */
521 static int __init octeon_wdt_init(void)
522 {
523         int ret;
524
525         octeon_wdt_bootvector = cvmx_boot_vector_get();
526         if (!octeon_wdt_bootvector) {
527                 pr_err("Error: Cannot allocate boot vector.\n");
528                 return -ENOMEM;
529         }
530
531         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
532                 divisor = 0x200;
533         else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
534                 divisor = 0x400;
535         else
536                 divisor = 0x100;
537
538         /*
539          * Watchdog time expiration length = The 16 bits of LEN
540          * represent the most significant bits of a 24 bit decrementer
541          * that decrements every divisor cycle.
542          *
543          * Try for a timeout of 5 sec, if that fails a smaller number
544          * of even seconds,
545          */
546         max_timeout_sec = 6;
547         do {
548                 max_timeout_sec--;
549                 timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * max_timeout_sec) >> 8;
550         } while (timeout_cnt > 65535);
551
552         BUG_ON(timeout_cnt == 0);
553
554         octeon_wdt_calc_parameters(heartbeat);
555
556         pr_info("Initial granularity %d Sec\n", timeout_sec);
557
558         octeon_wdt.timeout      = timeout_sec;
559         octeon_wdt.max_timeout  = UINT_MAX;
560
561         watchdog_set_nowayout(&octeon_wdt, nowayout);
562
563         ret = watchdog_register_device(&octeon_wdt);
564         if (ret) {
565                 pr_err("watchdog_register_device() failed: %d\n", ret);
566                 return ret;
567         }
568
569         if (disable) {
570                 pr_notice("disabled\n");
571                 return 0;
572         }
573
574         cpumask_clear(&irq_enabled_cpus);
575
576         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
577                                 octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
578         if (ret < 0)
579                 goto err;
580         octeon_wdt_online = ret;
581         return 0;
582 err:
583         cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
584         watchdog_unregister_device(&octeon_wdt);
585         return ret;
586 }
587
588 /**
589  * Module / driver shutdown
590  */
591 static void __exit octeon_wdt_cleanup(void)
592 {
593         watchdog_unregister_device(&octeon_wdt);
594
595         if (disable)
596                 return;
597
598         cpuhp_remove_state(octeon_wdt_online);
599
600         /*
601          * Disable the boot-bus memory, the code it points to is soon
602          * to go missing.
603          */
604         cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
605 }
606
607 MODULE_LICENSE("GPL");
608 MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
609 MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
610 module_init(octeon_wdt_init);
611 module_exit(octeon_wdt_cleanup);