vme: move tsi148 error handling into VME subsystem
[linux-2.6-microblaze.git] / drivers / vme / vme.c
1 /*
2  * VME Bridge Framework
3  *
4  * Author: Martyn Welch <martyn.welch@ge.com>
5  * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
6  *
7  * Based on work by Tom Armistead and Ajit Prem
8  * Copyright 2004 Motorola Inc.
9  *
10  * This program is free software; you can redistribute  it and/or modify it
11  * under  the terms of  the GNU General  Public License as published by the
12  * Free Software Foundation;  either version 2 of the  License, or (at your
13  * option) any later version.
14  */
15
16 #include <linux/module.h>
17 #include <linux/moduleparam.h>
18 #include <linux/mm.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/pci.h>
23 #include <linux/poll.h>
24 #include <linux/highmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/pagemap.h>
27 #include <linux/device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/syscalls.h>
30 #include <linux/mutex.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/vme.h>
34
35 #include "vme_bridge.h"
36
37 /* Bitmask and list of registered buses both protected by common mutex */
38 static unsigned int vme_bus_numbers;
39 static LIST_HEAD(vme_bus_list);
40 static DEFINE_MUTEX(vme_buses_lock);
41
42 static void __exit vme_exit(void);
43 static int __init vme_init(void);
44
45 static struct vme_dev *dev_to_vme_dev(struct device *dev)
46 {
47         return container_of(dev, struct vme_dev, dev);
48 }
49
50 /*
51  * Find the bridge that the resource is associated with.
52  */
53 static struct vme_bridge *find_bridge(struct vme_resource *resource)
54 {
55         /* Get list to search */
56         switch (resource->type) {
57         case VME_MASTER:
58                 return list_entry(resource->entry, struct vme_master_resource,
59                         list)->parent;
60                 break;
61         case VME_SLAVE:
62                 return list_entry(resource->entry, struct vme_slave_resource,
63                         list)->parent;
64                 break;
65         case VME_DMA:
66                 return list_entry(resource->entry, struct vme_dma_resource,
67                         list)->parent;
68                 break;
69         case VME_LM:
70                 return list_entry(resource->entry, struct vme_lm_resource,
71                         list)->parent;
72                 break;
73         default:
74                 printk(KERN_ERR "Unknown resource type\n");
75                 return NULL;
76                 break;
77         }
78 }
79
80 /*
81  * Allocate a contiguous block of memory for use by the driver. This is used to
82  * create the buffers for the slave windows.
83  */
84 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
85         dma_addr_t *dma)
86 {
87         struct vme_bridge *bridge;
88
89         if (resource == NULL) {
90                 printk(KERN_ERR "No resource\n");
91                 return NULL;
92         }
93
94         bridge = find_bridge(resource);
95         if (bridge == NULL) {
96                 printk(KERN_ERR "Can't find bridge\n");
97                 return NULL;
98         }
99
100         if (bridge->parent == NULL) {
101                 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
102                 return NULL;
103         }
104
105         if (bridge->alloc_consistent == NULL) {
106                 printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
107                        bridge->name);
108                 return NULL;
109         }
110
111         return bridge->alloc_consistent(bridge->parent, size, dma);
112 }
113 EXPORT_SYMBOL(vme_alloc_consistent);
114
115 /*
116  * Free previously allocated contiguous block of memory.
117  */
118 void vme_free_consistent(struct vme_resource *resource, size_t size,
119         void *vaddr, dma_addr_t dma)
120 {
121         struct vme_bridge *bridge;
122
123         if (resource == NULL) {
124                 printk(KERN_ERR "No resource\n");
125                 return;
126         }
127
128         bridge = find_bridge(resource);
129         if (bridge == NULL) {
130                 printk(KERN_ERR "Can't find bridge\n");
131                 return;
132         }
133
134         if (bridge->parent == NULL) {
135                 printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
136                 return;
137         }
138
139         if (bridge->free_consistent == NULL) {
140                 printk(KERN_ERR "free_consistent not supported by bridge %s\n",
141                        bridge->name);
142                 return;
143         }
144
145         bridge->free_consistent(bridge->parent, size, vaddr, dma);
146 }
147 EXPORT_SYMBOL(vme_free_consistent);
148
149 size_t vme_get_size(struct vme_resource *resource)
150 {
151         int enabled, retval;
152         unsigned long long base, size;
153         dma_addr_t buf_base;
154         u32 aspace, cycle, dwidth;
155
156         switch (resource->type) {
157         case VME_MASTER:
158                 retval = vme_master_get(resource, &enabled, &base, &size,
159                         &aspace, &cycle, &dwidth);
160
161                 return size;
162                 break;
163         case VME_SLAVE:
164                 retval = vme_slave_get(resource, &enabled, &base, &size,
165                         &buf_base, &aspace, &cycle);
166
167                 return size;
168                 break;
169         case VME_DMA:
170                 return 0;
171                 break;
172         default:
173                 printk(KERN_ERR "Unknown resource type\n");
174                 return 0;
175                 break;
176         }
177 }
178 EXPORT_SYMBOL(vme_get_size);
179
180 int vme_check_window(u32 aspace, unsigned long long vme_base,
181                      unsigned long long size)
182 {
183         int retval = 0;
184
185         switch (aspace) {
186         case VME_A16:
187                 if (((vme_base + size) > VME_A16_MAX) ||
188                                 (vme_base > VME_A16_MAX))
189                         retval = -EFAULT;
190                 break;
191         case VME_A24:
192                 if (((vme_base + size) > VME_A24_MAX) ||
193                                 (vme_base > VME_A24_MAX))
194                         retval = -EFAULT;
195                 break;
196         case VME_A32:
197                 if (((vme_base + size) > VME_A32_MAX) ||
198                                 (vme_base > VME_A32_MAX))
199                         retval = -EFAULT;
200                 break;
201         case VME_A64:
202                 if ((size != 0) && (vme_base > U64_MAX + 1 - size))
203                         retval = -EFAULT;
204                 break;
205         case VME_CRCSR:
206                 if (((vme_base + size) > VME_CRCSR_MAX) ||
207                                 (vme_base > VME_CRCSR_MAX))
208                         retval = -EFAULT;
209                 break;
210         case VME_USER1:
211         case VME_USER2:
212         case VME_USER3:
213         case VME_USER4:
214                 /* User Defined */
215                 break;
216         default:
217                 printk(KERN_ERR "Invalid address space\n");
218                 retval = -EINVAL;
219                 break;
220         }
221
222         return retval;
223 }
224 EXPORT_SYMBOL(vme_check_window);
225
226 /*
227  * Request a slave image with specific attributes, return some unique
228  * identifier.
229  */
230 struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
231         u32 cycle)
232 {
233         struct vme_bridge *bridge;
234         struct list_head *slave_pos = NULL;
235         struct vme_slave_resource *allocated_image = NULL;
236         struct vme_slave_resource *slave_image = NULL;
237         struct vme_resource *resource = NULL;
238
239         bridge = vdev->bridge;
240         if (bridge == NULL) {
241                 printk(KERN_ERR "Can't find VME bus\n");
242                 goto err_bus;
243         }
244
245         /* Loop through slave resources */
246         list_for_each(slave_pos, &bridge->slave_resources) {
247                 slave_image = list_entry(slave_pos,
248                         struct vme_slave_resource, list);
249
250                 if (slave_image == NULL) {
251                         printk(KERN_ERR "Registered NULL Slave resource\n");
252                         continue;
253                 }
254
255                 /* Find an unlocked and compatible image */
256                 mutex_lock(&slave_image->mtx);
257                 if (((slave_image->address_attr & address) == address) &&
258                         ((slave_image->cycle_attr & cycle) == cycle) &&
259                         (slave_image->locked == 0)) {
260
261                         slave_image->locked = 1;
262                         mutex_unlock(&slave_image->mtx);
263                         allocated_image = slave_image;
264                         break;
265                 }
266                 mutex_unlock(&slave_image->mtx);
267         }
268
269         /* No free image */
270         if (allocated_image == NULL)
271                 goto err_image;
272
273         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
274         if (resource == NULL) {
275                 printk(KERN_WARNING "Unable to allocate resource structure\n");
276                 goto err_alloc;
277         }
278         resource->type = VME_SLAVE;
279         resource->entry = &allocated_image->list;
280
281         return resource;
282
283 err_alloc:
284         /* Unlock image */
285         mutex_lock(&slave_image->mtx);
286         slave_image->locked = 0;
287         mutex_unlock(&slave_image->mtx);
288 err_image:
289 err_bus:
290         return NULL;
291 }
292 EXPORT_SYMBOL(vme_slave_request);
293
294 int vme_slave_set(struct vme_resource *resource, int enabled,
295         unsigned long long vme_base, unsigned long long size,
296         dma_addr_t buf_base, u32 aspace, u32 cycle)
297 {
298         struct vme_bridge *bridge = find_bridge(resource);
299         struct vme_slave_resource *image;
300         int retval;
301
302         if (resource->type != VME_SLAVE) {
303                 printk(KERN_ERR "Not a slave resource\n");
304                 return -EINVAL;
305         }
306
307         image = list_entry(resource->entry, struct vme_slave_resource, list);
308
309         if (bridge->slave_set == NULL) {
310                 printk(KERN_ERR "Function not supported\n");
311                 return -ENOSYS;
312         }
313
314         if (!(((image->address_attr & aspace) == aspace) &&
315                 ((image->cycle_attr & cycle) == cycle))) {
316                 printk(KERN_ERR "Invalid attributes\n");
317                 return -EINVAL;
318         }
319
320         retval = vme_check_window(aspace, vme_base, size);
321         if (retval)
322                 return retval;
323
324         return bridge->slave_set(image, enabled, vme_base, size, buf_base,
325                 aspace, cycle);
326 }
327 EXPORT_SYMBOL(vme_slave_set);
328
329 int vme_slave_get(struct vme_resource *resource, int *enabled,
330         unsigned long long *vme_base, unsigned long long *size,
331         dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
332 {
333         struct vme_bridge *bridge = find_bridge(resource);
334         struct vme_slave_resource *image;
335
336         if (resource->type != VME_SLAVE) {
337                 printk(KERN_ERR "Not a slave resource\n");
338                 return -EINVAL;
339         }
340
341         image = list_entry(resource->entry, struct vme_slave_resource, list);
342
343         if (bridge->slave_get == NULL) {
344                 printk(KERN_ERR "vme_slave_get not supported\n");
345                 return -EINVAL;
346         }
347
348         return bridge->slave_get(image, enabled, vme_base, size, buf_base,
349                 aspace, cycle);
350 }
351 EXPORT_SYMBOL(vme_slave_get);
352
353 void vme_slave_free(struct vme_resource *resource)
354 {
355         struct vme_slave_resource *slave_image;
356
357         if (resource->type != VME_SLAVE) {
358                 printk(KERN_ERR "Not a slave resource\n");
359                 return;
360         }
361
362         slave_image = list_entry(resource->entry, struct vme_slave_resource,
363                 list);
364         if (slave_image == NULL) {
365                 printk(KERN_ERR "Can't find slave resource\n");
366                 return;
367         }
368
369         /* Unlock image */
370         mutex_lock(&slave_image->mtx);
371         if (slave_image->locked == 0)
372                 printk(KERN_ERR "Image is already free\n");
373
374         slave_image->locked = 0;
375         mutex_unlock(&slave_image->mtx);
376
377         /* Free up resource memory */
378         kfree(resource);
379 }
380 EXPORT_SYMBOL(vme_slave_free);
381
382 /*
383  * Request a master image with specific attributes, return some unique
384  * identifier.
385  */
386 struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
387         u32 cycle, u32 dwidth)
388 {
389         struct vme_bridge *bridge;
390         struct list_head *master_pos = NULL;
391         struct vme_master_resource *allocated_image = NULL;
392         struct vme_master_resource *master_image = NULL;
393         struct vme_resource *resource = NULL;
394
395         bridge = vdev->bridge;
396         if (bridge == NULL) {
397                 printk(KERN_ERR "Can't find VME bus\n");
398                 goto err_bus;
399         }
400
401         /* Loop through master resources */
402         list_for_each(master_pos, &bridge->master_resources) {
403                 master_image = list_entry(master_pos,
404                         struct vme_master_resource, list);
405
406                 if (master_image == NULL) {
407                         printk(KERN_WARNING "Registered NULL master resource\n");
408                         continue;
409                 }
410
411                 /* Find an unlocked and compatible image */
412                 spin_lock(&master_image->lock);
413                 if (((master_image->address_attr & address) == address) &&
414                         ((master_image->cycle_attr & cycle) == cycle) &&
415                         ((master_image->width_attr & dwidth) == dwidth) &&
416                         (master_image->locked == 0)) {
417
418                         master_image->locked = 1;
419                         spin_unlock(&master_image->lock);
420                         allocated_image = master_image;
421                         break;
422                 }
423                 spin_unlock(&master_image->lock);
424         }
425
426         /* Check to see if we found a resource */
427         if (allocated_image == NULL) {
428                 printk(KERN_ERR "Can't find a suitable resource\n");
429                 goto err_image;
430         }
431
432         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
433         if (resource == NULL) {
434                 printk(KERN_ERR "Unable to allocate resource structure\n");
435                 goto err_alloc;
436         }
437         resource->type = VME_MASTER;
438         resource->entry = &allocated_image->list;
439
440         return resource;
441
442 err_alloc:
443         /* Unlock image */
444         spin_lock(&master_image->lock);
445         master_image->locked = 0;
446         spin_unlock(&master_image->lock);
447 err_image:
448 err_bus:
449         return NULL;
450 }
451 EXPORT_SYMBOL(vme_master_request);
452
453 int vme_master_set(struct vme_resource *resource, int enabled,
454         unsigned long long vme_base, unsigned long long size, u32 aspace,
455         u32 cycle, u32 dwidth)
456 {
457         struct vme_bridge *bridge = find_bridge(resource);
458         struct vme_master_resource *image;
459         int retval;
460
461         if (resource->type != VME_MASTER) {
462                 printk(KERN_ERR "Not a master resource\n");
463                 return -EINVAL;
464         }
465
466         image = list_entry(resource->entry, struct vme_master_resource, list);
467
468         if (bridge->master_set == NULL) {
469                 printk(KERN_WARNING "vme_master_set not supported\n");
470                 return -EINVAL;
471         }
472
473         if (!(((image->address_attr & aspace) == aspace) &&
474                 ((image->cycle_attr & cycle) == cycle) &&
475                 ((image->width_attr & dwidth) == dwidth))) {
476                 printk(KERN_WARNING "Invalid attributes\n");
477                 return -EINVAL;
478         }
479
480         retval = vme_check_window(aspace, vme_base, size);
481         if (retval)
482                 return retval;
483
484         return bridge->master_set(image, enabled, vme_base, size, aspace,
485                 cycle, dwidth);
486 }
487 EXPORT_SYMBOL(vme_master_set);
488
489 int vme_master_get(struct vme_resource *resource, int *enabled,
490         unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
491         u32 *cycle, u32 *dwidth)
492 {
493         struct vme_bridge *bridge = find_bridge(resource);
494         struct vme_master_resource *image;
495
496         if (resource->type != VME_MASTER) {
497                 printk(KERN_ERR "Not a master resource\n");
498                 return -EINVAL;
499         }
500
501         image = list_entry(resource->entry, struct vme_master_resource, list);
502
503         if (bridge->master_get == NULL) {
504                 printk(KERN_WARNING "%s not supported\n", __func__);
505                 return -EINVAL;
506         }
507
508         return bridge->master_get(image, enabled, vme_base, size, aspace,
509                 cycle, dwidth);
510 }
511 EXPORT_SYMBOL(vme_master_get);
512
513 /*
514  * Read data out of VME space into a buffer.
515  */
516 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
517         loff_t offset)
518 {
519         struct vme_bridge *bridge = find_bridge(resource);
520         struct vme_master_resource *image;
521         size_t length;
522
523         if (bridge->master_read == NULL) {
524                 printk(KERN_WARNING "Reading from resource not supported\n");
525                 return -EINVAL;
526         }
527
528         if (resource->type != VME_MASTER) {
529                 printk(KERN_ERR "Not a master resource\n");
530                 return -EINVAL;
531         }
532
533         image = list_entry(resource->entry, struct vme_master_resource, list);
534
535         length = vme_get_size(resource);
536
537         if (offset > length) {
538                 printk(KERN_WARNING "Invalid Offset\n");
539                 return -EFAULT;
540         }
541
542         if ((offset + count) > length)
543                 count = length - offset;
544
545         return bridge->master_read(image, buf, count, offset);
546
547 }
548 EXPORT_SYMBOL(vme_master_read);
549
550 /*
551  * Write data out to VME space from a buffer.
552  */
553 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
554         size_t count, loff_t offset)
555 {
556         struct vme_bridge *bridge = find_bridge(resource);
557         struct vme_master_resource *image;
558         size_t length;
559
560         if (bridge->master_write == NULL) {
561                 printk(KERN_WARNING "Writing to resource not supported\n");
562                 return -EINVAL;
563         }
564
565         if (resource->type != VME_MASTER) {
566                 printk(KERN_ERR "Not a master resource\n");
567                 return -EINVAL;
568         }
569
570         image = list_entry(resource->entry, struct vme_master_resource, list);
571
572         length = vme_get_size(resource);
573
574         if (offset > length) {
575                 printk(KERN_WARNING "Invalid Offset\n");
576                 return -EFAULT;
577         }
578
579         if ((offset + count) > length)
580                 count = length - offset;
581
582         return bridge->master_write(image, buf, count, offset);
583 }
584 EXPORT_SYMBOL(vme_master_write);
585
586 /*
587  * Perform RMW cycle to provided location.
588  */
589 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
590         unsigned int compare, unsigned int swap, loff_t offset)
591 {
592         struct vme_bridge *bridge = find_bridge(resource);
593         struct vme_master_resource *image;
594
595         if (bridge->master_rmw == NULL) {
596                 printk(KERN_WARNING "Writing to resource not supported\n");
597                 return -EINVAL;
598         }
599
600         if (resource->type != VME_MASTER) {
601                 printk(KERN_ERR "Not a master resource\n");
602                 return -EINVAL;
603         }
604
605         image = list_entry(resource->entry, struct vme_master_resource, list);
606
607         return bridge->master_rmw(image, mask, compare, swap, offset);
608 }
609 EXPORT_SYMBOL(vme_master_rmw);
610
611 int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
612 {
613         struct vme_master_resource *image;
614         phys_addr_t phys_addr;
615         unsigned long vma_size;
616
617         if (resource->type != VME_MASTER) {
618                 pr_err("Not a master resource\n");
619                 return -EINVAL;
620         }
621
622         image = list_entry(resource->entry, struct vme_master_resource, list);
623         phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
624         vma_size = vma->vm_end - vma->vm_start;
625
626         if (phys_addr + vma_size > image->bus_resource.end + 1) {
627                 pr_err("Map size cannot exceed the window size\n");
628                 return -EFAULT;
629         }
630
631         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
632
633         return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
634 }
635 EXPORT_SYMBOL(vme_master_mmap);
636
637 void vme_master_free(struct vme_resource *resource)
638 {
639         struct vme_master_resource *master_image;
640
641         if (resource->type != VME_MASTER) {
642                 printk(KERN_ERR "Not a master resource\n");
643                 return;
644         }
645
646         master_image = list_entry(resource->entry, struct vme_master_resource,
647                 list);
648         if (master_image == NULL) {
649                 printk(KERN_ERR "Can't find master resource\n");
650                 return;
651         }
652
653         /* Unlock image */
654         spin_lock(&master_image->lock);
655         if (master_image->locked == 0)
656                 printk(KERN_ERR "Image is already free\n");
657
658         master_image->locked = 0;
659         spin_unlock(&master_image->lock);
660
661         /* Free up resource memory */
662         kfree(resource);
663 }
664 EXPORT_SYMBOL(vme_master_free);
665
666 /*
667  * Request a DMA controller with specific attributes, return some unique
668  * identifier.
669  */
670 struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
671 {
672         struct vme_bridge *bridge;
673         struct list_head *dma_pos = NULL;
674         struct vme_dma_resource *allocated_ctrlr = NULL;
675         struct vme_dma_resource *dma_ctrlr = NULL;
676         struct vme_resource *resource = NULL;
677
678         /* XXX Not checking resource attributes */
679         printk(KERN_ERR "No VME resource Attribute tests done\n");
680
681         bridge = vdev->bridge;
682         if (bridge == NULL) {
683                 printk(KERN_ERR "Can't find VME bus\n");
684                 goto err_bus;
685         }
686
687         /* Loop through DMA resources */
688         list_for_each(dma_pos, &bridge->dma_resources) {
689                 dma_ctrlr = list_entry(dma_pos,
690                         struct vme_dma_resource, list);
691
692                 if (dma_ctrlr == NULL) {
693                         printk(KERN_ERR "Registered NULL DMA resource\n");
694                         continue;
695                 }
696
697                 /* Find an unlocked and compatible controller */
698                 mutex_lock(&dma_ctrlr->mtx);
699                 if (((dma_ctrlr->route_attr & route) == route) &&
700                         (dma_ctrlr->locked == 0)) {
701
702                         dma_ctrlr->locked = 1;
703                         mutex_unlock(&dma_ctrlr->mtx);
704                         allocated_ctrlr = dma_ctrlr;
705                         break;
706                 }
707                 mutex_unlock(&dma_ctrlr->mtx);
708         }
709
710         /* Check to see if we found a resource */
711         if (allocated_ctrlr == NULL)
712                 goto err_ctrlr;
713
714         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
715         if (resource == NULL) {
716                 printk(KERN_WARNING "Unable to allocate resource structure\n");
717                 goto err_alloc;
718         }
719         resource->type = VME_DMA;
720         resource->entry = &allocated_ctrlr->list;
721
722         return resource;
723
724 err_alloc:
725         /* Unlock image */
726         mutex_lock(&dma_ctrlr->mtx);
727         dma_ctrlr->locked = 0;
728         mutex_unlock(&dma_ctrlr->mtx);
729 err_ctrlr:
730 err_bus:
731         return NULL;
732 }
733 EXPORT_SYMBOL(vme_dma_request);
734
735 /*
736  * Start new list
737  */
738 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
739 {
740         struct vme_dma_resource *ctrlr;
741         struct vme_dma_list *dma_list;
742
743         if (resource->type != VME_DMA) {
744                 printk(KERN_ERR "Not a DMA resource\n");
745                 return NULL;
746         }
747
748         ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
749
750         dma_list = kmalloc(sizeof(struct vme_dma_list), GFP_KERNEL);
751         if (dma_list == NULL) {
752                 printk(KERN_ERR "Unable to allocate memory for new dma list\n");
753                 return NULL;
754         }
755         INIT_LIST_HEAD(&dma_list->entries);
756         dma_list->parent = ctrlr;
757         mutex_init(&dma_list->mtx);
758
759         return dma_list;
760 }
761 EXPORT_SYMBOL(vme_new_dma_list);
762
763 /*
764  * Create "Pattern" type attributes
765  */
766 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
767 {
768         struct vme_dma_attr *attributes;
769         struct vme_dma_pattern *pattern_attr;
770
771         attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
772         if (attributes == NULL) {
773                 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
774                 goto err_attr;
775         }
776
777         pattern_attr = kmalloc(sizeof(struct vme_dma_pattern), GFP_KERNEL);
778         if (pattern_attr == NULL) {
779                 printk(KERN_ERR "Unable to allocate memory for pattern attributes\n");
780                 goto err_pat;
781         }
782
783         attributes->type = VME_DMA_PATTERN;
784         attributes->private = (void *)pattern_attr;
785
786         pattern_attr->pattern = pattern;
787         pattern_attr->type = type;
788
789         return attributes;
790
791 err_pat:
792         kfree(attributes);
793 err_attr:
794         return NULL;
795 }
796 EXPORT_SYMBOL(vme_dma_pattern_attribute);
797
798 /*
799  * Create "PCI" type attributes
800  */
801 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
802 {
803         struct vme_dma_attr *attributes;
804         struct vme_dma_pci *pci_attr;
805
806         /* XXX Run some sanity checks here */
807
808         attributes = kmalloc(sizeof(struct vme_dma_attr), GFP_KERNEL);
809         if (attributes == NULL) {
810                 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
811                 goto err_attr;
812         }
813
814         pci_attr = kmalloc(sizeof(struct vme_dma_pci), GFP_KERNEL);
815         if (pci_attr == NULL) {
816                 printk(KERN_ERR "Unable to allocate memory for pci attributes\n");
817                 goto err_pci;
818         }
819
820
821
822         attributes->type = VME_DMA_PCI;
823         attributes->private = (void *)pci_attr;
824
825         pci_attr->address = address;
826
827         return attributes;
828
829 err_pci:
830         kfree(attributes);
831 err_attr:
832         return NULL;
833 }
834 EXPORT_SYMBOL(vme_dma_pci_attribute);
835
836 /*
837  * Create "VME" type attributes
838  */
839 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
840         u32 aspace, u32 cycle, u32 dwidth)
841 {
842         struct vme_dma_attr *attributes;
843         struct vme_dma_vme *vme_attr;
844
845         attributes = kmalloc(
846                 sizeof(struct vme_dma_attr), GFP_KERNEL);
847         if (attributes == NULL) {
848                 printk(KERN_ERR "Unable to allocate memory for attributes structure\n");
849                 goto err_attr;
850         }
851
852         vme_attr = kmalloc(sizeof(struct vme_dma_vme), GFP_KERNEL);
853         if (vme_attr == NULL) {
854                 printk(KERN_ERR "Unable to allocate memory for vme attributes\n");
855                 goto err_vme;
856         }
857
858         attributes->type = VME_DMA_VME;
859         attributes->private = (void *)vme_attr;
860
861         vme_attr->address = address;
862         vme_attr->aspace = aspace;
863         vme_attr->cycle = cycle;
864         vme_attr->dwidth = dwidth;
865
866         return attributes;
867
868 err_vme:
869         kfree(attributes);
870 err_attr:
871         return NULL;
872 }
873 EXPORT_SYMBOL(vme_dma_vme_attribute);
874
875 /*
876  * Free attribute
877  */
878 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
879 {
880         kfree(attributes->private);
881         kfree(attributes);
882 }
883 EXPORT_SYMBOL(vme_dma_free_attribute);
884
885 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
886         struct vme_dma_attr *dest, size_t count)
887 {
888         struct vme_bridge *bridge = list->parent->parent;
889         int retval;
890
891         if (bridge->dma_list_add == NULL) {
892                 printk(KERN_WARNING "Link List DMA generation not supported\n");
893                 return -EINVAL;
894         }
895
896         if (!mutex_trylock(&list->mtx)) {
897                 printk(KERN_ERR "Link List already submitted\n");
898                 return -EINVAL;
899         }
900
901         retval = bridge->dma_list_add(list, src, dest, count);
902
903         mutex_unlock(&list->mtx);
904
905         return retval;
906 }
907 EXPORT_SYMBOL(vme_dma_list_add);
908
909 int vme_dma_list_exec(struct vme_dma_list *list)
910 {
911         struct vme_bridge *bridge = list->parent->parent;
912         int retval;
913
914         if (bridge->dma_list_exec == NULL) {
915                 printk(KERN_ERR "Link List DMA execution not supported\n");
916                 return -EINVAL;
917         }
918
919         mutex_lock(&list->mtx);
920
921         retval = bridge->dma_list_exec(list);
922
923         mutex_unlock(&list->mtx);
924
925         return retval;
926 }
927 EXPORT_SYMBOL(vme_dma_list_exec);
928
929 int vme_dma_list_free(struct vme_dma_list *list)
930 {
931         struct vme_bridge *bridge = list->parent->parent;
932         int retval;
933
934         if (bridge->dma_list_empty == NULL) {
935                 printk(KERN_WARNING "Emptying of Link Lists not supported\n");
936                 return -EINVAL;
937         }
938
939         if (!mutex_trylock(&list->mtx)) {
940                 printk(KERN_ERR "Link List in use\n");
941                 return -EINVAL;
942         }
943
944         /*
945          * Empty out all of the entries from the dma list. We need to go to the
946          * low level driver as dma entries are driver specific.
947          */
948         retval = bridge->dma_list_empty(list);
949         if (retval) {
950                 printk(KERN_ERR "Unable to empty link-list entries\n");
951                 mutex_unlock(&list->mtx);
952                 return retval;
953         }
954         mutex_unlock(&list->mtx);
955         kfree(list);
956
957         return retval;
958 }
959 EXPORT_SYMBOL(vme_dma_list_free);
960
961 int vme_dma_free(struct vme_resource *resource)
962 {
963         struct vme_dma_resource *ctrlr;
964
965         if (resource->type != VME_DMA) {
966                 printk(KERN_ERR "Not a DMA resource\n");
967                 return -EINVAL;
968         }
969
970         ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
971
972         if (!mutex_trylock(&ctrlr->mtx)) {
973                 printk(KERN_ERR "Resource busy, can't free\n");
974                 return -EBUSY;
975         }
976
977         if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
978                 printk(KERN_WARNING "Resource still processing transfers\n");
979                 mutex_unlock(&ctrlr->mtx);
980                 return -EBUSY;
981         }
982
983         ctrlr->locked = 0;
984
985         mutex_unlock(&ctrlr->mtx);
986
987         kfree(resource);
988
989         return 0;
990 }
991 EXPORT_SYMBOL(vme_dma_free);
992
993 void vme_bus_error_handler(struct vme_bridge *bridge,
994                            unsigned long long address, u32 attributes)
995 {
996         struct vme_bus_error *error;
997
998         error = kmalloc(sizeof(struct vme_bus_error), GFP_ATOMIC);
999         if (error) {
1000                 error->address = address;
1001                 error->attributes = attributes;
1002                 list_add_tail(&error->list, &bridge->vme_errors);
1003         } else {
1004                 dev_err(bridge->parent,
1005                         "Unable to alloc memory for VMEbus Error reporting\n");
1006         }
1007 }
1008 EXPORT_SYMBOL(vme_bus_error_handler);
1009
1010 /*
1011  * Find the first error in this address range
1012  */
1013 struct vme_bus_error *vme_find_error(struct vme_bridge *bridge, u32 aspace,
1014                                      unsigned long long address, size_t count)
1015 {
1016         struct list_head *err_pos;
1017         struct vme_bus_error *vme_err, *valid = NULL;
1018         unsigned long long bound;
1019
1020         bound = address + count;
1021
1022         /*
1023          * XXX We are currently not looking at the address space when parsing
1024          *     for errors. This is because parsing the Address Modifier Codes
1025          *     is going to be quite resource intensive to do properly. We
1026          *     should be OK just looking at the addresses and this is certainly
1027          *     much better than what we had before.
1028          */
1029         err_pos = NULL;
1030         /* Iterate through errors */
1031         list_for_each(err_pos, &bridge->vme_errors) {
1032                 vme_err = list_entry(err_pos, struct vme_bus_error, list);
1033                 if ((vme_err->address >= address) &&
1034                         (vme_err->address < bound)) {
1035
1036                         valid = vme_err;
1037                         break;
1038                 }
1039         }
1040
1041         return valid;
1042 }
1043 EXPORT_SYMBOL(vme_find_error);
1044
1045 /*
1046  * Clear errors in the provided address range.
1047  */
1048 void vme_clear_errors(struct vme_bridge *bridge, u32 aspace,
1049                       unsigned long long address, size_t count)
1050 {
1051         struct list_head *err_pos, *temp;
1052         struct vme_bus_error *vme_err;
1053         unsigned long long bound;
1054
1055         bound = address + count;
1056
1057         /*
1058          * XXX We are currently not looking at the address space when parsing
1059          *     for errors. This is because parsing the Address Modifier Codes
1060          *     is going to be quite resource intensive to do properly. We
1061          *     should be OK just looking at the addresses and this is certainly
1062          *     much better than what we had before.
1063          */
1064         err_pos = NULL;
1065         /* Iterate through errors */
1066         list_for_each_safe(err_pos, temp, &bridge->vme_errors) {
1067                 vme_err = list_entry(err_pos, struct vme_bus_error, list);
1068
1069                 if ((vme_err->address >= address) &&
1070                         (vme_err->address < bound)) {
1071
1072                         list_del(err_pos);
1073                         kfree(vme_err);
1074                 }
1075         }
1076 }
1077 EXPORT_SYMBOL(vme_clear_errors);
1078
1079 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
1080 {
1081         void (*call)(int, int, void *);
1082         void *priv_data;
1083
1084         call = bridge->irq[level - 1].callback[statid].func;
1085         priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1086
1087         if (call != NULL)
1088                 call(level, statid, priv_data);
1089         else
1090                 printk(KERN_WARNING "Spurilous VME interrupt, level:%x, vector:%x\n",
1091                        level, statid);
1092 }
1093 EXPORT_SYMBOL(vme_irq_handler);
1094
1095 int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1096         void (*callback)(int, int, void *),
1097         void *priv_data)
1098 {
1099         struct vme_bridge *bridge;
1100
1101         bridge = vdev->bridge;
1102         if (bridge == NULL) {
1103                 printk(KERN_ERR "Can't find VME bus\n");
1104                 return -EINVAL;
1105         }
1106
1107         if ((level < 1) || (level > 7)) {
1108                 printk(KERN_ERR "Invalid interrupt level\n");
1109                 return -EINVAL;
1110         }
1111
1112         if (bridge->irq_set == NULL) {
1113                 printk(KERN_ERR "Configuring interrupts not supported\n");
1114                 return -EINVAL;
1115         }
1116
1117         mutex_lock(&bridge->irq_mtx);
1118
1119         if (bridge->irq[level - 1].callback[statid].func) {
1120                 mutex_unlock(&bridge->irq_mtx);
1121                 printk(KERN_WARNING "VME Interrupt already taken\n");
1122                 return -EBUSY;
1123         }
1124
1125         bridge->irq[level - 1].count++;
1126         bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1127         bridge->irq[level - 1].callback[statid].func = callback;
1128
1129         /* Enable IRQ level */
1130         bridge->irq_set(bridge, level, 1, 1);
1131
1132         mutex_unlock(&bridge->irq_mtx);
1133
1134         return 0;
1135 }
1136 EXPORT_SYMBOL(vme_irq_request);
1137
1138 void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1139 {
1140         struct vme_bridge *bridge;
1141
1142         bridge = vdev->bridge;
1143         if (bridge == NULL) {
1144                 printk(KERN_ERR "Can't find VME bus\n");
1145                 return;
1146         }
1147
1148         if ((level < 1) || (level > 7)) {
1149                 printk(KERN_ERR "Invalid interrupt level\n");
1150                 return;
1151         }
1152
1153         if (bridge->irq_set == NULL) {
1154                 printk(KERN_ERR "Configuring interrupts not supported\n");
1155                 return;
1156         }
1157
1158         mutex_lock(&bridge->irq_mtx);
1159
1160         bridge->irq[level - 1].count--;
1161
1162         /* Disable IRQ level if no more interrupts attached at this level*/
1163         if (bridge->irq[level - 1].count == 0)
1164                 bridge->irq_set(bridge, level, 0, 1);
1165
1166         bridge->irq[level - 1].callback[statid].func = NULL;
1167         bridge->irq[level - 1].callback[statid].priv_data = NULL;
1168
1169         mutex_unlock(&bridge->irq_mtx);
1170 }
1171 EXPORT_SYMBOL(vme_irq_free);
1172
1173 int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1174 {
1175         struct vme_bridge *bridge;
1176
1177         bridge = vdev->bridge;
1178         if (bridge == NULL) {
1179                 printk(KERN_ERR "Can't find VME bus\n");
1180                 return -EINVAL;
1181         }
1182
1183         if ((level < 1) || (level > 7)) {
1184                 printk(KERN_WARNING "Invalid interrupt level\n");
1185                 return -EINVAL;
1186         }
1187
1188         if (bridge->irq_generate == NULL) {
1189                 printk(KERN_WARNING "Interrupt generation not supported\n");
1190                 return -EINVAL;
1191         }
1192
1193         return bridge->irq_generate(bridge, level, statid);
1194 }
1195 EXPORT_SYMBOL(vme_irq_generate);
1196
1197 /*
1198  * Request the location monitor, return resource or NULL
1199  */
1200 struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1201 {
1202         struct vme_bridge *bridge;
1203         struct list_head *lm_pos = NULL;
1204         struct vme_lm_resource *allocated_lm = NULL;
1205         struct vme_lm_resource *lm = NULL;
1206         struct vme_resource *resource = NULL;
1207
1208         bridge = vdev->bridge;
1209         if (bridge == NULL) {
1210                 printk(KERN_ERR "Can't find VME bus\n");
1211                 goto err_bus;
1212         }
1213
1214         /* Loop through DMA resources */
1215         list_for_each(lm_pos, &bridge->lm_resources) {
1216                 lm = list_entry(lm_pos,
1217                         struct vme_lm_resource, list);
1218
1219                 if (lm == NULL) {
1220                         printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1221                         continue;
1222                 }
1223
1224                 /* Find an unlocked controller */
1225                 mutex_lock(&lm->mtx);
1226                 if (lm->locked == 0) {
1227                         lm->locked = 1;
1228                         mutex_unlock(&lm->mtx);
1229                         allocated_lm = lm;
1230                         break;
1231                 }
1232                 mutex_unlock(&lm->mtx);
1233         }
1234
1235         /* Check to see if we found a resource */
1236         if (allocated_lm == NULL)
1237                 goto err_lm;
1238
1239         resource = kmalloc(sizeof(struct vme_resource), GFP_KERNEL);
1240         if (resource == NULL) {
1241                 printk(KERN_ERR "Unable to allocate resource structure\n");
1242                 goto err_alloc;
1243         }
1244         resource->type = VME_LM;
1245         resource->entry = &allocated_lm->list;
1246
1247         return resource;
1248
1249 err_alloc:
1250         /* Unlock image */
1251         mutex_lock(&lm->mtx);
1252         lm->locked = 0;
1253         mutex_unlock(&lm->mtx);
1254 err_lm:
1255 err_bus:
1256         return NULL;
1257 }
1258 EXPORT_SYMBOL(vme_lm_request);
1259
1260 int vme_lm_count(struct vme_resource *resource)
1261 {
1262         struct vme_lm_resource *lm;
1263
1264         if (resource->type != VME_LM) {
1265                 printk(KERN_ERR "Not a Location Monitor resource\n");
1266                 return -EINVAL;
1267         }
1268
1269         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1270
1271         return lm->monitors;
1272 }
1273 EXPORT_SYMBOL(vme_lm_count);
1274
1275 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1276         u32 aspace, u32 cycle)
1277 {
1278         struct vme_bridge *bridge = find_bridge(resource);
1279         struct vme_lm_resource *lm;
1280
1281         if (resource->type != VME_LM) {
1282                 printk(KERN_ERR "Not a Location Monitor resource\n");
1283                 return -EINVAL;
1284         }
1285
1286         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1287
1288         if (bridge->lm_set == NULL) {
1289                 printk(KERN_ERR "vme_lm_set not supported\n");
1290                 return -EINVAL;
1291         }
1292
1293         return bridge->lm_set(lm, lm_base, aspace, cycle);
1294 }
1295 EXPORT_SYMBOL(vme_lm_set);
1296
1297 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1298         u32 *aspace, u32 *cycle)
1299 {
1300         struct vme_bridge *bridge = find_bridge(resource);
1301         struct vme_lm_resource *lm;
1302
1303         if (resource->type != VME_LM) {
1304                 printk(KERN_ERR "Not a Location Monitor resource\n");
1305                 return -EINVAL;
1306         }
1307
1308         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1309
1310         if (bridge->lm_get == NULL) {
1311                 printk(KERN_ERR "vme_lm_get not supported\n");
1312                 return -EINVAL;
1313         }
1314
1315         return bridge->lm_get(lm, lm_base, aspace, cycle);
1316 }
1317 EXPORT_SYMBOL(vme_lm_get);
1318
1319 int vme_lm_attach(struct vme_resource *resource, int monitor,
1320         void (*callback)(int))
1321 {
1322         struct vme_bridge *bridge = find_bridge(resource);
1323         struct vme_lm_resource *lm;
1324
1325         if (resource->type != VME_LM) {
1326                 printk(KERN_ERR "Not a Location Monitor resource\n");
1327                 return -EINVAL;
1328         }
1329
1330         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1331
1332         if (bridge->lm_attach == NULL) {
1333                 printk(KERN_ERR "vme_lm_attach not supported\n");
1334                 return -EINVAL;
1335         }
1336
1337         return bridge->lm_attach(lm, monitor, callback);
1338 }
1339 EXPORT_SYMBOL(vme_lm_attach);
1340
1341 int vme_lm_detach(struct vme_resource *resource, int monitor)
1342 {
1343         struct vme_bridge *bridge = find_bridge(resource);
1344         struct vme_lm_resource *lm;
1345
1346         if (resource->type != VME_LM) {
1347                 printk(KERN_ERR "Not a Location Monitor resource\n");
1348                 return -EINVAL;
1349         }
1350
1351         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1352
1353         if (bridge->lm_detach == NULL) {
1354                 printk(KERN_ERR "vme_lm_detach not supported\n");
1355                 return -EINVAL;
1356         }
1357
1358         return bridge->lm_detach(lm, monitor);
1359 }
1360 EXPORT_SYMBOL(vme_lm_detach);
1361
1362 void vme_lm_free(struct vme_resource *resource)
1363 {
1364         struct vme_lm_resource *lm;
1365
1366         if (resource->type != VME_LM) {
1367                 printk(KERN_ERR "Not a Location Monitor resource\n");
1368                 return;
1369         }
1370
1371         lm = list_entry(resource->entry, struct vme_lm_resource, list);
1372
1373         mutex_lock(&lm->mtx);
1374
1375         /* XXX
1376          * Check to see that there aren't any callbacks still attached, if
1377          * there are we should probably be detaching them!
1378          */
1379
1380         lm->locked = 0;
1381
1382         mutex_unlock(&lm->mtx);
1383
1384         kfree(resource);
1385 }
1386 EXPORT_SYMBOL(vme_lm_free);
1387
1388 int vme_slot_num(struct vme_dev *vdev)
1389 {
1390         struct vme_bridge *bridge;
1391
1392         bridge = vdev->bridge;
1393         if (bridge == NULL) {
1394                 printk(KERN_ERR "Can't find VME bus\n");
1395                 return -EINVAL;
1396         }
1397
1398         if (bridge->slot_get == NULL) {
1399                 printk(KERN_WARNING "vme_slot_num not supported\n");
1400                 return -EINVAL;
1401         }
1402
1403         return bridge->slot_get(bridge);
1404 }
1405 EXPORT_SYMBOL(vme_slot_num);
1406
1407 int vme_bus_num(struct vme_dev *vdev)
1408 {
1409         struct vme_bridge *bridge;
1410
1411         bridge = vdev->bridge;
1412         if (bridge == NULL) {
1413                 pr_err("Can't find VME bus\n");
1414                 return -EINVAL;
1415         }
1416
1417         return bridge->num;
1418 }
1419 EXPORT_SYMBOL(vme_bus_num);
1420
1421 /* - Bridge Registration --------------------------------------------------- */
1422
1423 static void vme_dev_release(struct device *dev)
1424 {
1425         kfree(dev_to_vme_dev(dev));
1426 }
1427
1428 int vme_register_bridge(struct vme_bridge *bridge)
1429 {
1430         int i;
1431         int ret = -1;
1432
1433         mutex_lock(&vme_buses_lock);
1434         for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1435                 if ((vme_bus_numbers & (1 << i)) == 0) {
1436                         vme_bus_numbers |= (1 << i);
1437                         bridge->num = i;
1438                         INIT_LIST_HEAD(&bridge->devices);
1439                         list_add_tail(&bridge->bus_list, &vme_bus_list);
1440                         ret = 0;
1441                         break;
1442                 }
1443         }
1444         mutex_unlock(&vme_buses_lock);
1445
1446         return ret;
1447 }
1448 EXPORT_SYMBOL(vme_register_bridge);
1449
1450 void vme_unregister_bridge(struct vme_bridge *bridge)
1451 {
1452         struct vme_dev *vdev;
1453         struct vme_dev *tmp;
1454
1455         mutex_lock(&vme_buses_lock);
1456         vme_bus_numbers &= ~(1 << bridge->num);
1457         list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1458                 list_del(&vdev->drv_list);
1459                 list_del(&vdev->bridge_list);
1460                 device_unregister(&vdev->dev);
1461         }
1462         list_del(&bridge->bus_list);
1463         mutex_unlock(&vme_buses_lock);
1464 }
1465 EXPORT_SYMBOL(vme_unregister_bridge);
1466
1467 /* - Driver Registration --------------------------------------------------- */
1468
1469 static int __vme_register_driver_bus(struct vme_driver *drv,
1470         struct vme_bridge *bridge, unsigned int ndevs)
1471 {
1472         int err;
1473         unsigned int i;
1474         struct vme_dev *vdev;
1475         struct vme_dev *tmp;
1476
1477         for (i = 0; i < ndevs; i++) {
1478                 vdev = kzalloc(sizeof(struct vme_dev), GFP_KERNEL);
1479                 if (!vdev) {
1480                         err = -ENOMEM;
1481                         goto err_devalloc;
1482                 }
1483                 vdev->num = i;
1484                 vdev->bridge = bridge;
1485                 vdev->dev.platform_data = drv;
1486                 vdev->dev.release = vme_dev_release;
1487                 vdev->dev.parent = bridge->parent;
1488                 vdev->dev.bus = &vme_bus_type;
1489                 dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1490                         vdev->num);
1491
1492                 err = device_register(&vdev->dev);
1493                 if (err)
1494                         goto err_reg;
1495
1496                 if (vdev->dev.platform_data) {
1497                         list_add_tail(&vdev->drv_list, &drv->devices);
1498                         list_add_tail(&vdev->bridge_list, &bridge->devices);
1499                 } else
1500                         device_unregister(&vdev->dev);
1501         }
1502         return 0;
1503
1504 err_reg:
1505         put_device(&vdev->dev);
1506         kfree(vdev);
1507 err_devalloc:
1508         list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1509                 list_del(&vdev->drv_list);
1510                 list_del(&vdev->bridge_list);
1511                 device_unregister(&vdev->dev);
1512         }
1513         return err;
1514 }
1515
1516 static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1517 {
1518         struct vme_bridge *bridge;
1519         int err = 0;
1520
1521         mutex_lock(&vme_buses_lock);
1522         list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1523                 /*
1524                  * This cannot cause trouble as we already have vme_buses_lock
1525                  * and if the bridge is removed, it will have to go through
1526                  * vme_unregister_bridge() to do it (which calls remove() on
1527                  * the bridge which in turn tries to acquire vme_buses_lock and
1528                  * will have to wait).
1529                  */
1530                 err = __vme_register_driver_bus(drv, bridge, ndevs);
1531                 if (err)
1532                         break;
1533         }
1534         mutex_unlock(&vme_buses_lock);
1535         return err;
1536 }
1537
1538 int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1539 {
1540         int err;
1541
1542         drv->driver.name = drv->name;
1543         drv->driver.bus = &vme_bus_type;
1544         INIT_LIST_HEAD(&drv->devices);
1545
1546         err = driver_register(&drv->driver);
1547         if (err)
1548                 return err;
1549
1550         err = __vme_register_driver(drv, ndevs);
1551         if (err)
1552                 driver_unregister(&drv->driver);
1553
1554         return err;
1555 }
1556 EXPORT_SYMBOL(vme_register_driver);
1557
1558 void vme_unregister_driver(struct vme_driver *drv)
1559 {
1560         struct vme_dev *dev, *dev_tmp;
1561
1562         mutex_lock(&vme_buses_lock);
1563         list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1564                 list_del(&dev->drv_list);
1565                 list_del(&dev->bridge_list);
1566                 device_unregister(&dev->dev);
1567         }
1568         mutex_unlock(&vme_buses_lock);
1569
1570         driver_unregister(&drv->driver);
1571 }
1572 EXPORT_SYMBOL(vme_unregister_driver);
1573
1574 /* - Bus Registration ------------------------------------------------------ */
1575
1576 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1577 {
1578         struct vme_driver *vme_drv;
1579
1580         vme_drv = container_of(drv, struct vme_driver, driver);
1581
1582         if (dev->platform_data == vme_drv) {
1583                 struct vme_dev *vdev = dev_to_vme_dev(dev);
1584
1585                 if (vme_drv->match && vme_drv->match(vdev))
1586                         return 1;
1587
1588                 dev->platform_data = NULL;
1589         }
1590         return 0;
1591 }
1592
1593 static int vme_bus_probe(struct device *dev)
1594 {
1595         int retval = -ENODEV;
1596         struct vme_driver *driver;
1597         struct vme_dev *vdev = dev_to_vme_dev(dev);
1598
1599         driver = dev->platform_data;
1600
1601         if (driver->probe != NULL)
1602                 retval = driver->probe(vdev);
1603
1604         return retval;
1605 }
1606
1607 static int vme_bus_remove(struct device *dev)
1608 {
1609         int retval = -ENODEV;
1610         struct vme_driver *driver;
1611         struct vme_dev *vdev = dev_to_vme_dev(dev);
1612
1613         driver = dev->platform_data;
1614
1615         if (driver->remove != NULL)
1616                 retval = driver->remove(vdev);
1617
1618         return retval;
1619 }
1620
1621 struct bus_type vme_bus_type = {
1622         .name = "vme",
1623         .match = vme_bus_match,
1624         .probe = vme_bus_probe,
1625         .remove = vme_bus_remove,
1626 };
1627 EXPORT_SYMBOL(vme_bus_type);
1628
1629 static int __init vme_init(void)
1630 {
1631         return bus_register(&vme_bus_type);
1632 }
1633
1634 static void __exit vme_exit(void)
1635 {
1636         bus_unregister(&vme_bus_type);
1637 }
1638
1639 subsys_initcall(vme_init);
1640 module_exit(vme_exit);