usb: xhci: Add debugfs interface for xHCI driver
[linux-2.6-microblaze.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35 #include "xhci-debugfs.h"
36
37 #define DRIVER_AUTHOR "Sarah Sharp"
38 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
39
40 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
41
42 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
43 static int link_quirk;
44 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
45 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
46
47 static unsigned int quirks;
48 module_param(quirks, uint, S_IRUGO);
49 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
50
51 /* TODO: copied from ehci-hcd.c - can this be refactored? */
52 /*
53  * xhci_handshake - spin reading hc until handshake completes or fails
54  * @ptr: address of hc register to be read
55  * @mask: bits to look at in result of read
56  * @done: value of those bits when handshake succeeds
57  * @usec: timeout in microseconds
58  *
59  * Returns negative errno, or zero on success
60  *
61  * Success happens when the "mask" bits have the specified value (hardware
62  * handshake done).  There are two failure modes:  "usec" have passed (major
63  * hardware flakeout), or the register reads as all-ones (hardware removed).
64  */
65 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
66 {
67         u32     result;
68
69         do {
70                 result = readl(ptr);
71                 if (result == ~(u32)0)          /* card removed */
72                         return -ENODEV;
73                 result &= mask;
74                 if (result == done)
75                         return 0;
76                 udelay(1);
77                 usec--;
78         } while (usec > 0);
79         return -ETIMEDOUT;
80 }
81
82 /*
83  * Disable interrupts and begin the xHCI halting process.
84  */
85 void xhci_quiesce(struct xhci_hcd *xhci)
86 {
87         u32 halted;
88         u32 cmd;
89         u32 mask;
90
91         mask = ~(XHCI_IRQS);
92         halted = readl(&xhci->op_regs->status) & STS_HALT;
93         if (!halted)
94                 mask &= ~CMD_RUN;
95
96         cmd = readl(&xhci->op_regs->command);
97         cmd &= mask;
98         writel(cmd, &xhci->op_regs->command);
99 }
100
101 /*
102  * Force HC into halt state.
103  *
104  * Disable any IRQs and clear the run/stop bit.
105  * HC will complete any current and actively pipelined transactions, and
106  * should halt within 16 ms of the run/stop bit being cleared.
107  * Read HC Halted bit in the status register to see when the HC is finished.
108  */
109 int xhci_halt(struct xhci_hcd *xhci)
110 {
111         int ret;
112         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
113         xhci_quiesce(xhci);
114
115         ret = xhci_handshake(&xhci->op_regs->status,
116                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
117         if (ret) {
118                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
119                 return ret;
120         }
121         xhci->xhc_state |= XHCI_STATE_HALTED;
122         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
123         return ret;
124 }
125
126 /*
127  * Set the run bit and wait for the host to be running.
128  */
129 int xhci_start(struct xhci_hcd *xhci)
130 {
131         u32 temp;
132         int ret;
133
134         temp = readl(&xhci->op_regs->command);
135         temp |= (CMD_RUN);
136         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
137                         temp);
138         writel(temp, &xhci->op_regs->command);
139
140         /*
141          * Wait for the HCHalted Status bit to be 0 to indicate the host is
142          * running.
143          */
144         ret = xhci_handshake(&xhci->op_regs->status,
145                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
146         if (ret == -ETIMEDOUT)
147                 xhci_err(xhci, "Host took too long to start, "
148                                 "waited %u microseconds.\n",
149                                 XHCI_MAX_HALT_USEC);
150         if (!ret)
151                 /* clear state flags. Including dying, halted or removing */
152                 xhci->xhc_state = 0;
153
154         return ret;
155 }
156
157 /*
158  * Reset a halted HC.
159  *
160  * This resets pipelines, timers, counters, state machines, etc.
161  * Transactions will be terminated immediately, and operational registers
162  * will be set to their defaults.
163  */
164 int xhci_reset(struct xhci_hcd *xhci)
165 {
166         u32 command;
167         u32 state;
168         int ret, i;
169
170         state = readl(&xhci->op_regs->status);
171
172         if (state == ~(u32)0) {
173                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
174                 return -ENODEV;
175         }
176
177         if ((state & STS_HALT) == 0) {
178                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
179                 return 0;
180         }
181
182         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
183         command = readl(&xhci->op_regs->command);
184         command |= CMD_RESET;
185         writel(command, &xhci->op_regs->command);
186
187         /* Existing Intel xHCI controllers require a delay of 1 mS,
188          * after setting the CMD_RESET bit, and before accessing any
189          * HC registers. This allows the HC to complete the
190          * reset operation and be ready for HC register access.
191          * Without this delay, the subsequent HC register access,
192          * may result in a system hang very rarely.
193          */
194         if (xhci->quirks & XHCI_INTEL_HOST)
195                 udelay(1000);
196
197         ret = xhci_handshake(&xhci->op_regs->command,
198                         CMD_RESET, 0, 10 * 1000 * 1000);
199         if (ret)
200                 return ret;
201
202         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
203                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
204
205         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
206                          "Wait for controller to be ready for doorbell rings");
207         /*
208          * xHCI cannot write to any doorbells or operational registers other
209          * than status until the "Controller Not Ready" flag is cleared.
210          */
211         ret = xhci_handshake(&xhci->op_regs->status,
212                         STS_CNR, 0, 10 * 1000 * 1000);
213
214         for (i = 0; i < 2; i++) {
215                 xhci->bus_state[i].port_c_suspend = 0;
216                 xhci->bus_state[i].suspended_ports = 0;
217                 xhci->bus_state[i].resuming_ports = 0;
218         }
219
220         return ret;
221 }
222
223
224 #ifdef CONFIG_USB_PCI
225 /*
226  * Set up MSI
227  */
228 static int xhci_setup_msi(struct xhci_hcd *xhci)
229 {
230         int ret;
231         /*
232          * TODO:Check with MSI Soc for sysdev
233          */
234         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235
236         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
237         if (ret < 0) {
238                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
239                                 "failed to allocate MSI entry");
240                 return ret;
241         }
242
243         ret = request_irq(pdev->irq, xhci_msi_irq,
244                                 0, "xhci_hcd", xhci_to_hcd(xhci));
245         if (ret) {
246                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
247                                 "disable MSI interrupt");
248                 pci_free_irq_vectors(pdev);
249         }
250
251         return ret;
252 }
253
254 /*
255  * Set up MSI-X
256  */
257 static int xhci_setup_msix(struct xhci_hcd *xhci)
258 {
259         int i, ret = 0;
260         struct usb_hcd *hcd = xhci_to_hcd(xhci);
261         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
262
263         /*
264          * calculate number of msi-x vectors supported.
265          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
266          *   with max number of interrupters based on the xhci HCSPARAMS1.
267          * - num_online_cpus: maximum msi-x vectors per CPUs core.
268          *   Add additional 1 vector to ensure always available interrupt.
269          */
270         xhci->msix_count = min(num_online_cpus() + 1,
271                                 HCS_MAX_INTRS(xhci->hcs_params1));
272
273         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
274                         PCI_IRQ_MSIX);
275         if (ret < 0) {
276                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
277                                 "Failed to enable MSI-X");
278                 return ret;
279         }
280
281         for (i = 0; i < xhci->msix_count; i++) {
282                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
283                                 "xhci_hcd", xhci_to_hcd(xhci));
284                 if (ret)
285                         goto disable_msix;
286         }
287
288         hcd->msix_enabled = 1;
289         return ret;
290
291 disable_msix:
292         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
293         while (--i >= 0)
294                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
295         pci_free_irq_vectors(pdev);
296         return ret;
297 }
298
299 /* Free any IRQs and disable MSI-X */
300 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
301 {
302         struct usb_hcd *hcd = xhci_to_hcd(xhci);
303         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
304
305         if (xhci->quirks & XHCI_PLAT)
306                 return;
307
308         /* return if using legacy interrupt */
309         if (hcd->irq > 0)
310                 return;
311
312         if (hcd->msix_enabled) {
313                 int i;
314
315                 for (i = 0; i < xhci->msix_count; i++)
316                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
317         } else {
318                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
319         }
320
321         pci_free_irq_vectors(pdev);
322         hcd->msix_enabled = 0;
323 }
324
325 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
326 {
327         struct usb_hcd *hcd = xhci_to_hcd(xhci);
328
329         if (hcd->msix_enabled) {
330                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
331                 int i;
332
333                 for (i = 0; i < xhci->msix_count; i++)
334                         synchronize_irq(pci_irq_vector(pdev, i));
335         }
336 }
337
338 static int xhci_try_enable_msi(struct usb_hcd *hcd)
339 {
340         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
341         struct pci_dev  *pdev;
342         int ret;
343
344         /* The xhci platform device has set up IRQs through usb_add_hcd. */
345         if (xhci->quirks & XHCI_PLAT)
346                 return 0;
347
348         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
349         /*
350          * Some Fresco Logic host controllers advertise MSI, but fail to
351          * generate interrupts.  Don't even try to enable MSI.
352          */
353         if (xhci->quirks & XHCI_BROKEN_MSI)
354                 goto legacy_irq;
355
356         /* unregister the legacy interrupt */
357         if (hcd->irq)
358                 free_irq(hcd->irq, hcd);
359         hcd->irq = 0;
360
361         ret = xhci_setup_msix(xhci);
362         if (ret)
363                 /* fall back to msi*/
364                 ret = xhci_setup_msi(xhci);
365
366         if (!ret) {
367                 hcd->msi_enabled = 1;
368                 return 0;
369         }
370
371         if (!pdev->irq) {
372                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
373                 return -EINVAL;
374         }
375
376  legacy_irq:
377         if (!strlen(hcd->irq_descr))
378                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
379                          hcd->driver->description, hcd->self.busnum);
380
381         /* fall back to legacy interrupt*/
382         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
383                         hcd->irq_descr, hcd);
384         if (ret) {
385                 xhci_err(xhci, "request interrupt %d failed\n",
386                                 pdev->irq);
387                 return ret;
388         }
389         hcd->irq = pdev->irq;
390         return 0;
391 }
392
393 #else
394
395 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
396 {
397         return 0;
398 }
399
400 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
401 {
402 }
403
404 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
405 {
406 }
407
408 #endif
409
410 static void compliance_mode_recovery(unsigned long arg)
411 {
412         struct xhci_hcd *xhci;
413         struct usb_hcd *hcd;
414         u32 temp;
415         int i;
416
417         xhci = (struct xhci_hcd *)arg;
418
419         for (i = 0; i < xhci->num_usb3_ports; i++) {
420                 temp = readl(xhci->usb3_ports[i]);
421                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
422                         /*
423                          * Compliance Mode Detected. Letting USB Core
424                          * handle the Warm Reset
425                          */
426                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
427                                         "Compliance mode detected->port %d",
428                                         i + 1);
429                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
430                                         "Attempting compliance mode recovery");
431                         hcd = xhci->shared_hcd;
432
433                         if (hcd->state == HC_STATE_SUSPENDED)
434                                 usb_hcd_resume_root_hub(hcd);
435
436                         usb_hcd_poll_rh_status(hcd);
437                 }
438         }
439
440         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
441                 mod_timer(&xhci->comp_mode_recovery_timer,
442                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
443 }
444
445 /*
446  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
447  * that causes ports behind that hardware to enter compliance mode sometimes.
448  * The quirk creates a timer that polls every 2 seconds the link state of
449  * each host controller's port and recovers it by issuing a Warm reset
450  * if Compliance mode is detected, otherwise the port will become "dead" (no
451  * device connections or disconnections will be detected anymore). Becasue no
452  * status event is generated when entering compliance mode (per xhci spec),
453  * this quirk is needed on systems that have the failing hardware installed.
454  */
455 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
456 {
457         xhci->port_status_u0 = 0;
458         setup_timer(&xhci->comp_mode_recovery_timer,
459                     compliance_mode_recovery, (unsigned long)xhci);
460         xhci->comp_mode_recovery_timer.expires = jiffies +
461                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
462
463         add_timer(&xhci->comp_mode_recovery_timer);
464         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
465                         "Compliance mode recovery timer initialized");
466 }
467
468 /*
469  * This function identifies the systems that have installed the SN65LVPE502CP
470  * USB3.0 re-driver and that need the Compliance Mode Quirk.
471  * Systems:
472  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
473  */
474 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
475 {
476         const char *dmi_product_name, *dmi_sys_vendor;
477
478         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
479         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
480         if (!dmi_product_name || !dmi_sys_vendor)
481                 return false;
482
483         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
484                 return false;
485
486         if (strstr(dmi_product_name, "Z420") ||
487                         strstr(dmi_product_name, "Z620") ||
488                         strstr(dmi_product_name, "Z820") ||
489                         strstr(dmi_product_name, "Z1 Workstation"))
490                 return true;
491
492         return false;
493 }
494
495 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
496 {
497         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
498 }
499
500
501 /*
502  * Initialize memory for HCD and xHC (one-time init).
503  *
504  * Program the PAGESIZE register, initialize the device context array, create
505  * device contexts (?), set up a command ring segment (or two?), create event
506  * ring (one for now).
507  */
508 static int xhci_init(struct usb_hcd *hcd)
509 {
510         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
511         int retval = 0;
512
513         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
514         spin_lock_init(&xhci->lock);
515         if (xhci->hci_version == 0x95 && link_quirk) {
516                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
517                                 "QUIRK: Not clearing Link TRB chain bits.");
518                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
519         } else {
520                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
521                                 "xHCI doesn't need link TRB QUIRK");
522         }
523         retval = xhci_mem_init(xhci, GFP_KERNEL);
524         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
525
526         /* Initializing Compliance Mode Recovery Data If Needed */
527         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
528                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
529                 compliance_mode_recovery_timer_init(xhci);
530         }
531
532         return retval;
533 }
534
535 /*-------------------------------------------------------------------------*/
536
537
538 static int xhci_run_finished(struct xhci_hcd *xhci)
539 {
540         if (xhci_start(xhci)) {
541                 xhci_halt(xhci);
542                 return -ENODEV;
543         }
544         xhci->shared_hcd->state = HC_STATE_RUNNING;
545         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
546
547         if (xhci->quirks & XHCI_NEC_HOST)
548                 xhci_ring_cmd_db(xhci);
549
550         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
551                         "Finished xhci_run for USB3 roothub");
552         return 0;
553 }
554
555 /*
556  * Start the HC after it was halted.
557  *
558  * This function is called by the USB core when the HC driver is added.
559  * Its opposite is xhci_stop().
560  *
561  * xhci_init() must be called once before this function can be called.
562  * Reset the HC, enable device slot contexts, program DCBAAP, and
563  * set command ring pointer and event ring pointer.
564  *
565  * Setup MSI-X vectors and enable interrupts.
566  */
567 int xhci_run(struct usb_hcd *hcd)
568 {
569         u32 temp;
570         u64 temp_64;
571         int ret;
572         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
573
574         /* Start the xHCI host controller running only after the USB 2.0 roothub
575          * is setup.
576          */
577
578         hcd->uses_new_polling = 1;
579         if (!usb_hcd_is_primary_hcd(hcd))
580                 return xhci_run_finished(xhci);
581
582         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
583
584         ret = xhci_try_enable_msi(hcd);
585         if (ret)
586                 return ret;
587
588         xhci_dbg_cmd_ptrs(xhci);
589
590         xhci_dbg(xhci, "ERST memory map follows:\n");
591         xhci_dbg_erst(xhci, &xhci->erst);
592         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
593         temp_64 &= ~ERST_PTR_MASK;
594         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
595                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
596
597         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
598                         "// Set the interrupt modulation register");
599         temp = readl(&xhci->ir_set->irq_control);
600         temp &= ~ER_IRQ_INTERVAL_MASK;
601         /*
602          * the increment interval is 8 times as much as that defined
603          * in xHCI spec on MTK's controller
604          */
605         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
606         writel(temp, &xhci->ir_set->irq_control);
607
608         /* Set the HCD state before we enable the irqs */
609         temp = readl(&xhci->op_regs->command);
610         temp |= (CMD_EIE);
611         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
612                         "// Enable interrupts, cmd = 0x%x.", temp);
613         writel(temp, &xhci->op_regs->command);
614
615         temp = readl(&xhci->ir_set->irq_pending);
616         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
617                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
618                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
619         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
620         xhci_print_ir_set(xhci, 0);
621
622         if (xhci->quirks & XHCI_NEC_HOST) {
623                 struct xhci_command *command;
624
625                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
626                 if (!command)
627                         return -ENOMEM;
628
629                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
630                                 TRB_TYPE(TRB_NEC_GET_FW));
631                 if (ret)
632                         xhci_free_command(xhci, command);
633         }
634         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635                         "Finished xhci_run for USB2 roothub");
636
637         xhci_debugfs_init(xhci);
638
639         return 0;
640 }
641 EXPORT_SYMBOL_GPL(xhci_run);
642
643 /*
644  * Stop xHCI driver.
645  *
646  * This function is called by the USB core when the HC driver is removed.
647  * Its opposite is xhci_run().
648  *
649  * Disable device contexts, disable IRQs, and quiesce the HC.
650  * Reset the HC, finish any completed transactions, and cleanup memory.
651  */
652 static void xhci_stop(struct usb_hcd *hcd)
653 {
654         u32 temp;
655         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
656
657         mutex_lock(&xhci->mutex);
658
659         /* Only halt host and free memory after both hcds are removed */
660         if (!usb_hcd_is_primary_hcd(hcd)) {
661                 /* usb core will free this hcd shortly, unset pointer */
662                 xhci->shared_hcd = NULL;
663                 mutex_unlock(&xhci->mutex);
664                 return;
665         }
666
667         xhci_debugfs_exit(xhci);
668
669         spin_lock_irq(&xhci->lock);
670         xhci->xhc_state |= XHCI_STATE_HALTED;
671         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
672         xhci_halt(xhci);
673         xhci_reset(xhci);
674         spin_unlock_irq(&xhci->lock);
675
676         xhci_cleanup_msix(xhci);
677
678         /* Deleting Compliance Mode Recovery Timer */
679         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
680                         (!(xhci_all_ports_seen_u0(xhci)))) {
681                 del_timer_sync(&xhci->comp_mode_recovery_timer);
682                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
683                                 "%s: compliance mode recovery timer deleted",
684                                 __func__);
685         }
686
687         if (xhci->quirks & XHCI_AMD_PLL_FIX)
688                 usb_amd_dev_put();
689
690         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
691                         "// Disabling event ring interrupts");
692         temp = readl(&xhci->op_regs->status);
693         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
694         temp = readl(&xhci->ir_set->irq_pending);
695         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
696         xhci_print_ir_set(xhci, 0);
697
698         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
699         xhci_mem_cleanup(xhci);
700         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
701                         "xhci_stop completed - status = %x",
702                         readl(&xhci->op_regs->status));
703         mutex_unlock(&xhci->mutex);
704 }
705
706 /*
707  * Shutdown HC (not bus-specific)
708  *
709  * This is called when the machine is rebooting or halting.  We assume that the
710  * machine will be powered off, and the HC's internal state will be reset.
711  * Don't bother to free memory.
712  *
713  * This will only ever be called with the main usb_hcd (the USB3 roothub).
714  */
715 static void xhci_shutdown(struct usb_hcd *hcd)
716 {
717         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
718
719         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
720                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
721
722         spin_lock_irq(&xhci->lock);
723         xhci_halt(xhci);
724         /* Workaround for spurious wakeups at shutdown with HSW */
725         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
726                 xhci_reset(xhci);
727         spin_unlock_irq(&xhci->lock);
728
729         xhci_cleanup_msix(xhci);
730
731         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
732                         "xhci_shutdown completed - status = %x",
733                         readl(&xhci->op_regs->status));
734
735         /* Yet another workaround for spurious wakeups at shutdown with HSW */
736         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
737                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
738 }
739
740 #ifdef CONFIG_PM
741 static void xhci_save_registers(struct xhci_hcd *xhci)
742 {
743         xhci->s3.command = readl(&xhci->op_regs->command);
744         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
745         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
746         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
747         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
748         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
749         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
750         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
751         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
752 }
753
754 static void xhci_restore_registers(struct xhci_hcd *xhci)
755 {
756         writel(xhci->s3.command, &xhci->op_regs->command);
757         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
758         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
759         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
760         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
761         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
762         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
763         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
764         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
765 }
766
767 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
768 {
769         u64     val_64;
770
771         /* step 2: initialize command ring buffer */
772         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
773         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
774                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
775                                       xhci->cmd_ring->dequeue) &
776                  (u64) ~CMD_RING_RSVD_BITS) |
777                 xhci->cmd_ring->cycle_state;
778         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
779                         "// Setting command ring address to 0x%llx",
780                         (long unsigned long) val_64);
781         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
782 }
783
784 /*
785  * The whole command ring must be cleared to zero when we suspend the host.
786  *
787  * The host doesn't save the command ring pointer in the suspend well, so we
788  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
789  * aligned, because of the reserved bits in the command ring dequeue pointer
790  * register.  Therefore, we can't just set the dequeue pointer back in the
791  * middle of the ring (TRBs are 16-byte aligned).
792  */
793 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
794 {
795         struct xhci_ring *ring;
796         struct xhci_segment *seg;
797
798         ring = xhci->cmd_ring;
799         seg = ring->deq_seg;
800         do {
801                 memset(seg->trbs, 0,
802                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
803                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
804                         cpu_to_le32(~TRB_CYCLE);
805                 seg = seg->next;
806         } while (seg != ring->deq_seg);
807
808         /* Reset the software enqueue and dequeue pointers */
809         ring->deq_seg = ring->first_seg;
810         ring->dequeue = ring->first_seg->trbs;
811         ring->enq_seg = ring->deq_seg;
812         ring->enqueue = ring->dequeue;
813
814         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
815         /*
816          * Ring is now zeroed, so the HW should look for change of ownership
817          * when the cycle bit is set to 1.
818          */
819         ring->cycle_state = 1;
820
821         /*
822          * Reset the hardware dequeue pointer.
823          * Yes, this will need to be re-written after resume, but we're paranoid
824          * and want to make sure the hardware doesn't access bogus memory
825          * because, say, the BIOS or an SMI started the host without changing
826          * the command ring pointers.
827          */
828         xhci_set_cmd_ring_deq(xhci);
829 }
830
831 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
832 {
833         int port_index;
834         __le32 __iomem **port_array;
835         unsigned long flags;
836         u32 t1, t2;
837
838         spin_lock_irqsave(&xhci->lock, flags);
839
840         /* disable usb3 ports Wake bits */
841         port_index = xhci->num_usb3_ports;
842         port_array = xhci->usb3_ports;
843         while (port_index--) {
844                 t1 = readl(port_array[port_index]);
845                 t1 = xhci_port_state_to_neutral(t1);
846                 t2 = t1 & ~PORT_WAKE_BITS;
847                 if (t1 != t2)
848                         writel(t2, port_array[port_index]);
849         }
850
851         /* disable usb2 ports Wake bits */
852         port_index = xhci->num_usb2_ports;
853         port_array = xhci->usb2_ports;
854         while (port_index--) {
855                 t1 = readl(port_array[port_index]);
856                 t1 = xhci_port_state_to_neutral(t1);
857                 t2 = t1 & ~PORT_WAKE_BITS;
858                 if (t1 != t2)
859                         writel(t2, port_array[port_index]);
860         }
861
862         spin_unlock_irqrestore(&xhci->lock, flags);
863 }
864
865 /*
866  * Stop HC (not bus-specific)
867  *
868  * This is called when the machine transition into S3/S4 mode.
869  *
870  */
871 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
872 {
873         int                     rc = 0;
874         unsigned int            delay = XHCI_MAX_HALT_USEC;
875         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
876         u32                     command;
877
878         if (!hcd->state)
879                 return 0;
880
881         if (hcd->state != HC_STATE_SUSPENDED ||
882                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
883                 return -EINVAL;
884
885         /* Clear root port wake on bits if wakeup not allowed. */
886         if (!do_wakeup)
887                 xhci_disable_port_wake_on_bits(xhci);
888
889         /* Don't poll the roothubs on bus suspend. */
890         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
891         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
892         del_timer_sync(&hcd->rh_timer);
893         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
894         del_timer_sync(&xhci->shared_hcd->rh_timer);
895
896         spin_lock_irq(&xhci->lock);
897         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
898         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
899         /* step 1: stop endpoint */
900         /* skipped assuming that port suspend has done */
901
902         /* step 2: clear Run/Stop bit */
903         command = readl(&xhci->op_regs->command);
904         command &= ~CMD_RUN;
905         writel(command, &xhci->op_regs->command);
906
907         /* Some chips from Fresco Logic need an extraordinary delay */
908         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
909
910         if (xhci_handshake(&xhci->op_regs->status,
911                       STS_HALT, STS_HALT, delay)) {
912                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
913                 spin_unlock_irq(&xhci->lock);
914                 return -ETIMEDOUT;
915         }
916         xhci_clear_command_ring(xhci);
917
918         /* step 3: save registers */
919         xhci_save_registers(xhci);
920
921         /* step 4: set CSS flag */
922         command = readl(&xhci->op_regs->command);
923         command |= CMD_CSS;
924         writel(command, &xhci->op_regs->command);
925         if (xhci_handshake(&xhci->op_regs->status,
926                                 STS_SAVE, 0, 10 * 1000)) {
927                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
928                 spin_unlock_irq(&xhci->lock);
929                 return -ETIMEDOUT;
930         }
931         spin_unlock_irq(&xhci->lock);
932
933         /*
934          * Deleting Compliance Mode Recovery Timer because the xHCI Host
935          * is about to be suspended.
936          */
937         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
938                         (!(xhci_all_ports_seen_u0(xhci)))) {
939                 del_timer_sync(&xhci->comp_mode_recovery_timer);
940                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
941                                 "%s: compliance mode recovery timer deleted",
942                                 __func__);
943         }
944
945         /* step 5: remove core well power */
946         /* synchronize irq when using MSI-X */
947         xhci_msix_sync_irqs(xhci);
948
949         return rc;
950 }
951 EXPORT_SYMBOL_GPL(xhci_suspend);
952
953 /*
954  * start xHC (not bus-specific)
955  *
956  * This is called when the machine transition from S3/S4 mode.
957  *
958  */
959 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
960 {
961         u32                     command, temp = 0, status;
962         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
963         struct usb_hcd          *secondary_hcd;
964         int                     retval = 0;
965         bool                    comp_timer_running = false;
966
967         if (!hcd->state)
968                 return 0;
969
970         /* Wait a bit if either of the roothubs need to settle from the
971          * transition into bus suspend.
972          */
973         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
974                         time_before(jiffies,
975                                 xhci->bus_state[1].next_statechange))
976                 msleep(100);
977
978         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
979         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
980
981         spin_lock_irq(&xhci->lock);
982         if (xhci->quirks & XHCI_RESET_ON_RESUME)
983                 hibernated = true;
984
985         if (!hibernated) {
986                 /* step 1: restore register */
987                 xhci_restore_registers(xhci);
988                 /* step 2: initialize command ring buffer */
989                 xhci_set_cmd_ring_deq(xhci);
990                 /* step 3: restore state and start state*/
991                 /* step 3: set CRS flag */
992                 command = readl(&xhci->op_regs->command);
993                 command |= CMD_CRS;
994                 writel(command, &xhci->op_regs->command);
995                 if (xhci_handshake(&xhci->op_regs->status,
996                               STS_RESTORE, 0, 10 * 1000)) {
997                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
998                         spin_unlock_irq(&xhci->lock);
999                         return -ETIMEDOUT;
1000                 }
1001                 temp = readl(&xhci->op_regs->status);
1002         }
1003
1004         /* If restore operation fails, re-initialize the HC during resume */
1005         if ((temp & STS_SRE) || hibernated) {
1006
1007                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1008                                 !(xhci_all_ports_seen_u0(xhci))) {
1009                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1010                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1011                                 "Compliance Mode Recovery Timer deleted!");
1012                 }
1013
1014                 /* Let the USB core know _both_ roothubs lost power. */
1015                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1016                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1017
1018                 xhci_dbg(xhci, "Stop HCD\n");
1019                 xhci_halt(xhci);
1020                 xhci_reset(xhci);
1021                 spin_unlock_irq(&xhci->lock);
1022                 xhci_cleanup_msix(xhci);
1023
1024                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1025                 temp = readl(&xhci->op_regs->status);
1026                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1027                 temp = readl(&xhci->ir_set->irq_pending);
1028                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1029                 xhci_print_ir_set(xhci, 0);
1030
1031                 xhci_dbg(xhci, "cleaning up memory\n");
1032                 xhci_mem_cleanup(xhci);
1033                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1034                             readl(&xhci->op_regs->status));
1035
1036                 /* USB core calls the PCI reinit and start functions twice:
1037                  * first with the primary HCD, and then with the secondary HCD.
1038                  * If we don't do the same, the host will never be started.
1039                  */
1040                 if (!usb_hcd_is_primary_hcd(hcd))
1041                         secondary_hcd = hcd;
1042                 else
1043                         secondary_hcd = xhci->shared_hcd;
1044
1045                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1046                 retval = xhci_init(hcd->primary_hcd);
1047                 if (retval)
1048                         return retval;
1049                 comp_timer_running = true;
1050
1051                 xhci_dbg(xhci, "Start the primary HCD\n");
1052                 retval = xhci_run(hcd->primary_hcd);
1053                 if (!retval) {
1054                         xhci_dbg(xhci, "Start the secondary HCD\n");
1055                         retval = xhci_run(secondary_hcd);
1056                 }
1057                 hcd->state = HC_STATE_SUSPENDED;
1058                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1059                 goto done;
1060         }
1061
1062         /* step 4: set Run/Stop bit */
1063         command = readl(&xhci->op_regs->command);
1064         command |= CMD_RUN;
1065         writel(command, &xhci->op_regs->command);
1066         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1067                   0, 250 * 1000);
1068
1069         /* step 5: walk topology and initialize portsc,
1070          * portpmsc and portli
1071          */
1072         /* this is done in bus_resume */
1073
1074         /* step 6: restart each of the previously
1075          * Running endpoints by ringing their doorbells
1076          */
1077
1078         spin_unlock_irq(&xhci->lock);
1079
1080  done:
1081         if (retval == 0) {
1082                 /* Resume root hubs only when have pending events. */
1083                 status = readl(&xhci->op_regs->status);
1084                 if (status & STS_EINT) {
1085                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1086                         usb_hcd_resume_root_hub(hcd);
1087                 }
1088         }
1089
1090         /*
1091          * If system is subject to the Quirk, Compliance Mode Timer needs to
1092          * be re-initialized Always after a system resume. Ports are subject
1093          * to suffer the Compliance Mode issue again. It doesn't matter if
1094          * ports have entered previously to U0 before system's suspension.
1095          */
1096         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1097                 compliance_mode_recovery_timer_init(xhci);
1098
1099         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1100                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1101
1102         /* Re-enable port polling. */
1103         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1104         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1105         usb_hcd_poll_rh_status(xhci->shared_hcd);
1106         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1107         usb_hcd_poll_rh_status(hcd);
1108
1109         return retval;
1110 }
1111 EXPORT_SYMBOL_GPL(xhci_resume);
1112 #endif  /* CONFIG_PM */
1113
1114 /*-------------------------------------------------------------------------*/
1115
1116 /**
1117  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1118  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1119  * value to right shift 1 for the bitmask.
1120  *
1121  * Index  = (epnum * 2) + direction - 1,
1122  * where direction = 0 for OUT, 1 for IN.
1123  * For control endpoints, the IN index is used (OUT index is unused), so
1124  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1125  */
1126 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1127 {
1128         unsigned int index;
1129         if (usb_endpoint_xfer_control(desc))
1130                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1131         else
1132                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1133                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1134         return index;
1135 }
1136
1137 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1138  * address from the XHCI endpoint index.
1139  */
1140 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1141 {
1142         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1143         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1144         return direction | number;
1145 }
1146
1147 /* Find the flag for this endpoint (for use in the control context).  Use the
1148  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1149  * bit 1, etc.
1150  */
1151 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1152 {
1153         return 1 << (xhci_get_endpoint_index(desc) + 1);
1154 }
1155
1156 /* Find the flag for this endpoint (for use in the control context).  Use the
1157  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1158  * bit 1, etc.
1159  */
1160 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1161 {
1162         return 1 << (ep_index + 1);
1163 }
1164
1165 /* Compute the last valid endpoint context index.  Basically, this is the
1166  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1167  * we find the most significant bit set in the added contexts flags.
1168  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1169  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1170  */
1171 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1172 {
1173         return fls(added_ctxs) - 1;
1174 }
1175
1176 /* Returns 1 if the arguments are OK;
1177  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1178  */
1179 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1180                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1181                 const char *func) {
1182         struct xhci_hcd *xhci;
1183         struct xhci_virt_device *virt_dev;
1184
1185         if (!hcd || (check_ep && !ep) || !udev) {
1186                 pr_debug("xHCI %s called with invalid args\n", func);
1187                 return -EINVAL;
1188         }
1189         if (!udev->parent) {
1190                 pr_debug("xHCI %s called for root hub\n", func);
1191                 return 0;
1192         }
1193
1194         xhci = hcd_to_xhci(hcd);
1195         if (check_virt_dev) {
1196                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1197                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1198                                         func);
1199                         return -EINVAL;
1200                 }
1201
1202                 virt_dev = xhci->devs[udev->slot_id];
1203                 if (virt_dev->udev != udev) {
1204                         xhci_dbg(xhci, "xHCI %s called with udev and "
1205                                           "virt_dev does not match\n", func);
1206                         return -EINVAL;
1207                 }
1208         }
1209
1210         if (xhci->xhc_state & XHCI_STATE_HALTED)
1211                 return -ENODEV;
1212
1213         return 1;
1214 }
1215
1216 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1217                 struct usb_device *udev, struct xhci_command *command,
1218                 bool ctx_change, bool must_succeed);
1219
1220 /*
1221  * Full speed devices may have a max packet size greater than 8 bytes, but the
1222  * USB core doesn't know that until it reads the first 8 bytes of the
1223  * descriptor.  If the usb_device's max packet size changes after that point,
1224  * we need to issue an evaluate context command and wait on it.
1225  */
1226 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1227                 unsigned int ep_index, struct urb *urb)
1228 {
1229         struct xhci_container_ctx *out_ctx;
1230         struct xhci_input_control_ctx *ctrl_ctx;
1231         struct xhci_ep_ctx *ep_ctx;
1232         struct xhci_command *command;
1233         int max_packet_size;
1234         int hw_max_packet_size;
1235         int ret = 0;
1236
1237         out_ctx = xhci->devs[slot_id]->out_ctx;
1238         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1239         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1240         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1241         if (hw_max_packet_size != max_packet_size) {
1242                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1243                                 "Max Packet Size for ep 0 changed.");
1244                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1245                                 "Max packet size in usb_device = %d",
1246                                 max_packet_size);
1247                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1248                                 "Max packet size in xHCI HW = %d",
1249                                 hw_max_packet_size);
1250                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1251                                 "Issuing evaluate context command.");
1252
1253                 /* Set up the input context flags for the command */
1254                 /* FIXME: This won't work if a non-default control endpoint
1255                  * changes max packet sizes.
1256                  */
1257
1258                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1259                 if (!command)
1260                         return -ENOMEM;
1261
1262                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1263                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1264                 if (!ctrl_ctx) {
1265                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1266                                         __func__);
1267                         ret = -ENOMEM;
1268                         goto command_cleanup;
1269                 }
1270                 /* Set up the modified control endpoint 0 */
1271                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1272                                 xhci->devs[slot_id]->out_ctx, ep_index);
1273
1274                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1275                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1276                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1277
1278                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1279                 ctrl_ctx->drop_flags = 0;
1280
1281                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1282                                 true, false);
1283
1284                 /* Clean up the input context for later use by bandwidth
1285                  * functions.
1286                  */
1287                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1288 command_cleanup:
1289                 kfree(command->completion);
1290                 kfree(command);
1291         }
1292         return ret;
1293 }
1294
1295 /*
1296  * non-error returns are a promise to giveback() the urb later
1297  * we drop ownership so next owner (or urb unlink) can get it
1298  */
1299 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1300 {
1301         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1302         unsigned long flags;
1303         int ret = 0;
1304         unsigned int slot_id, ep_index, ep_state;
1305         struct urb_priv *urb_priv;
1306         int num_tds;
1307
1308         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1309                                         true, true, __func__) <= 0)
1310                 return -EINVAL;
1311
1312         slot_id = urb->dev->slot_id;
1313         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1314
1315         if (!HCD_HW_ACCESSIBLE(hcd)) {
1316                 if (!in_interrupt())
1317                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1318                 return -ESHUTDOWN;
1319         }
1320
1321         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1322                 num_tds = urb->number_of_packets;
1323         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1324             urb->transfer_buffer_length > 0 &&
1325             urb->transfer_flags & URB_ZERO_PACKET &&
1326             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1327                 num_tds = 2;
1328         else
1329                 num_tds = 1;
1330
1331         urb_priv = kzalloc(sizeof(struct urb_priv) +
1332                            num_tds * sizeof(struct xhci_td), mem_flags);
1333         if (!urb_priv)
1334                 return -ENOMEM;
1335
1336         urb_priv->num_tds = num_tds;
1337         urb_priv->num_tds_done = 0;
1338         urb->hcpriv = urb_priv;
1339
1340         trace_xhci_urb_enqueue(urb);
1341
1342         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1343                 /* Check to see if the max packet size for the default control
1344                  * endpoint changed during FS device enumeration
1345                  */
1346                 if (urb->dev->speed == USB_SPEED_FULL) {
1347                         ret = xhci_check_maxpacket(xhci, slot_id,
1348                                         ep_index, urb);
1349                         if (ret < 0) {
1350                                 xhci_urb_free_priv(urb_priv);
1351                                 urb->hcpriv = NULL;
1352                                 return ret;
1353                         }
1354                 }
1355         }
1356
1357         spin_lock_irqsave(&xhci->lock, flags);
1358
1359         if (xhci->xhc_state & XHCI_STATE_DYING) {
1360                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1361                          urb->ep->desc.bEndpointAddress, urb);
1362                 ret = -ESHUTDOWN;
1363                 goto free_priv;
1364         }
1365
1366         switch (usb_endpoint_type(&urb->ep->desc)) {
1367
1368         case USB_ENDPOINT_XFER_CONTROL:
1369                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1370                                          slot_id, ep_index);
1371                 break;
1372         case USB_ENDPOINT_XFER_BULK:
1373                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1374                 if (ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1375                         xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1376                                   ep_state);
1377                         ret = -EINVAL;
1378                         break;
1379                 }
1380                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1381                                          slot_id, ep_index);
1382                 break;
1383
1384
1385         case USB_ENDPOINT_XFER_INT:
1386                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1387                                 slot_id, ep_index);
1388                 break;
1389
1390         case USB_ENDPOINT_XFER_ISOC:
1391                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1392                                 slot_id, ep_index);
1393         }
1394
1395         if (ret) {
1396 free_priv:
1397                 xhci_urb_free_priv(urb_priv);
1398                 urb->hcpriv = NULL;
1399         }
1400         spin_unlock_irqrestore(&xhci->lock, flags);
1401         return ret;
1402 }
1403
1404 /*
1405  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1406  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1407  * should pick up where it left off in the TD, unless a Set Transfer Ring
1408  * Dequeue Pointer is issued.
1409  *
1410  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1411  * the ring.  Since the ring is a contiguous structure, they can't be physically
1412  * removed.  Instead, there are two options:
1413  *
1414  *  1) If the HC is in the middle of processing the URB to be canceled, we
1415  *     simply move the ring's dequeue pointer past those TRBs using the Set
1416  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1417  *     when drivers timeout on the last submitted URB and attempt to cancel.
1418  *
1419  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1420  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1421  *     HC will need to invalidate the any TRBs it has cached after the stop
1422  *     endpoint command, as noted in the xHCI 0.95 errata.
1423  *
1424  *  3) The TD may have completed by the time the Stop Endpoint Command
1425  *     completes, so software needs to handle that case too.
1426  *
1427  * This function should protect against the TD enqueueing code ringing the
1428  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1429  * It also needs to account for multiple cancellations on happening at the same
1430  * time for the same endpoint.
1431  *
1432  * Note that this function can be called in any context, or so says
1433  * usb_hcd_unlink_urb()
1434  */
1435 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1436 {
1437         unsigned long flags;
1438         int ret, i;
1439         u32 temp;
1440         struct xhci_hcd *xhci;
1441         struct urb_priv *urb_priv;
1442         struct xhci_td *td;
1443         unsigned int ep_index;
1444         struct xhci_ring *ep_ring;
1445         struct xhci_virt_ep *ep;
1446         struct xhci_command *command;
1447         struct xhci_virt_device *vdev;
1448
1449         xhci = hcd_to_xhci(hcd);
1450         spin_lock_irqsave(&xhci->lock, flags);
1451
1452         trace_xhci_urb_dequeue(urb);
1453
1454         /* Make sure the URB hasn't completed or been unlinked already */
1455         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1456         if (ret)
1457                 goto done;
1458
1459         /* give back URB now if we can't queue it for cancel */
1460         vdev = xhci->devs[urb->dev->slot_id];
1461         urb_priv = urb->hcpriv;
1462         if (!vdev || !urb_priv)
1463                 goto err_giveback;
1464
1465         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1466         ep = &vdev->eps[ep_index];
1467         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1468         if (!ep || !ep_ring)
1469                 goto err_giveback;
1470
1471         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1472         temp = readl(&xhci->op_regs->status);
1473         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1474                 xhci_hc_died(xhci);
1475                 goto done;
1476         }
1477
1478         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1479                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1480                                 "HC halted, freeing TD manually.");
1481                 for (i = urb_priv->num_tds_done;
1482                      i < urb_priv->num_tds;
1483                      i++) {
1484                         td = &urb_priv->td[i];
1485                         if (!list_empty(&td->td_list))
1486                                 list_del_init(&td->td_list);
1487                         if (!list_empty(&td->cancelled_td_list))
1488                                 list_del_init(&td->cancelled_td_list);
1489                 }
1490                 goto err_giveback;
1491         }
1492
1493         i = urb_priv->num_tds_done;
1494         if (i < urb_priv->num_tds)
1495                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1496                                 "Cancel URB %p, dev %s, ep 0x%x, "
1497                                 "starting at offset 0x%llx",
1498                                 urb, urb->dev->devpath,
1499                                 urb->ep->desc.bEndpointAddress,
1500                                 (unsigned long long) xhci_trb_virt_to_dma(
1501                                         urb_priv->td[i].start_seg,
1502                                         urb_priv->td[i].first_trb));
1503
1504         for (; i < urb_priv->num_tds; i++) {
1505                 td = &urb_priv->td[i];
1506                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1507         }
1508
1509         /* Queue a stop endpoint command, but only if this is
1510          * the first cancellation to be handled.
1511          */
1512         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1513                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1514                 if (!command) {
1515                         ret = -ENOMEM;
1516                         goto done;
1517                 }
1518                 ep->ep_state |= EP_STOP_CMD_PENDING;
1519                 ep->stop_cmd_timer.expires = jiffies +
1520                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1521                 add_timer(&ep->stop_cmd_timer);
1522                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1523                                          ep_index, 0);
1524                 xhci_ring_cmd_db(xhci);
1525         }
1526 done:
1527         spin_unlock_irqrestore(&xhci->lock, flags);
1528         return ret;
1529
1530 err_giveback:
1531         if (urb_priv)
1532                 xhci_urb_free_priv(urb_priv);
1533         usb_hcd_unlink_urb_from_ep(hcd, urb);
1534         spin_unlock_irqrestore(&xhci->lock, flags);
1535         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1536         return ret;
1537 }
1538
1539 /* Drop an endpoint from a new bandwidth configuration for this device.
1540  * Only one call to this function is allowed per endpoint before
1541  * check_bandwidth() or reset_bandwidth() must be called.
1542  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1543  * add the endpoint to the schedule with possibly new parameters denoted by a
1544  * different endpoint descriptor in usb_host_endpoint.
1545  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1546  * not allowed.
1547  *
1548  * The USB core will not allow URBs to be queued to an endpoint that is being
1549  * disabled, so there's no need for mutual exclusion to protect
1550  * the xhci->devs[slot_id] structure.
1551  */
1552 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1553                 struct usb_host_endpoint *ep)
1554 {
1555         struct xhci_hcd *xhci;
1556         struct xhci_container_ctx *in_ctx, *out_ctx;
1557         struct xhci_input_control_ctx *ctrl_ctx;
1558         unsigned int ep_index;
1559         struct xhci_ep_ctx *ep_ctx;
1560         u32 drop_flag;
1561         u32 new_add_flags, new_drop_flags;
1562         int ret;
1563
1564         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1565         if (ret <= 0)
1566                 return ret;
1567         xhci = hcd_to_xhci(hcd);
1568         if (xhci->xhc_state & XHCI_STATE_DYING)
1569                 return -ENODEV;
1570
1571         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1572         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1573         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1574                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1575                                 __func__, drop_flag);
1576                 return 0;
1577         }
1578
1579         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1580         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1581         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1582         if (!ctrl_ctx) {
1583                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1584                                 __func__);
1585                 return 0;
1586         }
1587
1588         ep_index = xhci_get_endpoint_index(&ep->desc);
1589         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1590         /* If the HC already knows the endpoint is disabled,
1591          * or the HCD has noted it is disabled, ignore this request
1592          */
1593         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1594             le32_to_cpu(ctrl_ctx->drop_flags) &
1595             xhci_get_endpoint_flag(&ep->desc)) {
1596                 /* Do not warn when called after a usb_device_reset */
1597                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1598                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1599                                   __func__, ep);
1600                 return 0;
1601         }
1602
1603         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1604         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1605
1606         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1607         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1608
1609         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1610
1611         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1612
1613         if (xhci->quirks & XHCI_MTK_HOST)
1614                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1615
1616         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1617                         (unsigned int) ep->desc.bEndpointAddress,
1618                         udev->slot_id,
1619                         (unsigned int) new_drop_flags,
1620                         (unsigned int) new_add_flags);
1621         return 0;
1622 }
1623
1624 /* Add an endpoint to a new possible bandwidth configuration for this device.
1625  * Only one call to this function is allowed per endpoint before
1626  * check_bandwidth() or reset_bandwidth() must be called.
1627  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1628  * add the endpoint to the schedule with possibly new parameters denoted by a
1629  * different endpoint descriptor in usb_host_endpoint.
1630  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1631  * not allowed.
1632  *
1633  * The USB core will not allow URBs to be queued to an endpoint until the
1634  * configuration or alt setting is installed in the device, so there's no need
1635  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1636  */
1637 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1638                 struct usb_host_endpoint *ep)
1639 {
1640         struct xhci_hcd *xhci;
1641         struct xhci_container_ctx *in_ctx;
1642         unsigned int ep_index;
1643         struct xhci_input_control_ctx *ctrl_ctx;
1644         u32 added_ctxs;
1645         u32 new_add_flags, new_drop_flags;
1646         struct xhci_virt_device *virt_dev;
1647         int ret = 0;
1648
1649         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1650         if (ret <= 0) {
1651                 /* So we won't queue a reset ep command for a root hub */
1652                 ep->hcpriv = NULL;
1653                 return ret;
1654         }
1655         xhci = hcd_to_xhci(hcd);
1656         if (xhci->xhc_state & XHCI_STATE_DYING)
1657                 return -ENODEV;
1658
1659         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1660         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1661                 /* FIXME when we have to issue an evaluate endpoint command to
1662                  * deal with ep0 max packet size changing once we get the
1663                  * descriptors
1664                  */
1665                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1666                                 __func__, added_ctxs);
1667                 return 0;
1668         }
1669
1670         virt_dev = xhci->devs[udev->slot_id];
1671         in_ctx = virt_dev->in_ctx;
1672         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1673         if (!ctrl_ctx) {
1674                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1675                                 __func__);
1676                 return 0;
1677         }
1678
1679         ep_index = xhci_get_endpoint_index(&ep->desc);
1680         /* If this endpoint is already in use, and the upper layers are trying
1681          * to add it again without dropping it, reject the addition.
1682          */
1683         if (virt_dev->eps[ep_index].ring &&
1684                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1685                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1686                                 "without dropping it.\n",
1687                                 (unsigned int) ep->desc.bEndpointAddress);
1688                 return -EINVAL;
1689         }
1690
1691         /* If the HCD has already noted the endpoint is enabled,
1692          * ignore this request.
1693          */
1694         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1695                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1696                                 __func__, ep);
1697                 return 0;
1698         }
1699
1700         /*
1701          * Configuration and alternate setting changes must be done in
1702          * process context, not interrupt context (or so documenation
1703          * for usb_set_interface() and usb_set_configuration() claim).
1704          */
1705         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1706                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1707                                 __func__, ep->desc.bEndpointAddress);
1708                 return -ENOMEM;
1709         }
1710
1711         if (xhci->quirks & XHCI_MTK_HOST) {
1712                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1713                 if (ret < 0) {
1714                         xhci_free_endpoint_ring(xhci, virt_dev, ep_index);
1715                         return ret;
1716                 }
1717         }
1718
1719         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1720         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1721
1722         /* If xhci_endpoint_disable() was called for this endpoint, but the
1723          * xHC hasn't been notified yet through the check_bandwidth() call,
1724          * this re-adds a new state for the endpoint from the new endpoint
1725          * descriptors.  We must drop and re-add this endpoint, so we leave the
1726          * drop flags alone.
1727          */
1728         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1729
1730         /* Store the usb_device pointer for later use */
1731         ep->hcpriv = udev;
1732
1733         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1734
1735         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1736                         (unsigned int) ep->desc.bEndpointAddress,
1737                         udev->slot_id,
1738                         (unsigned int) new_drop_flags,
1739                         (unsigned int) new_add_flags);
1740         return 0;
1741 }
1742
1743 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1744 {
1745         struct xhci_input_control_ctx *ctrl_ctx;
1746         struct xhci_ep_ctx *ep_ctx;
1747         struct xhci_slot_ctx *slot_ctx;
1748         int i;
1749
1750         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1751         if (!ctrl_ctx) {
1752                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1753                                 __func__);
1754                 return;
1755         }
1756
1757         /* When a device's add flag and drop flag are zero, any subsequent
1758          * configure endpoint command will leave that endpoint's state
1759          * untouched.  Make sure we don't leave any old state in the input
1760          * endpoint contexts.
1761          */
1762         ctrl_ctx->drop_flags = 0;
1763         ctrl_ctx->add_flags = 0;
1764         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1765         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1766         /* Endpoint 0 is always valid */
1767         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1768         for (i = 1; i < 31; i++) {
1769                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1770                 ep_ctx->ep_info = 0;
1771                 ep_ctx->ep_info2 = 0;
1772                 ep_ctx->deq = 0;
1773                 ep_ctx->tx_info = 0;
1774         }
1775 }
1776
1777 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1778                 struct usb_device *udev, u32 *cmd_status)
1779 {
1780         int ret;
1781
1782         switch (*cmd_status) {
1783         case COMP_COMMAND_ABORTED:
1784         case COMP_COMMAND_RING_STOPPED:
1785                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1786                 ret = -ETIME;
1787                 break;
1788         case COMP_RESOURCE_ERROR:
1789                 dev_warn(&udev->dev,
1790                          "Not enough host controller resources for new device state.\n");
1791                 ret = -ENOMEM;
1792                 /* FIXME: can we allocate more resources for the HC? */
1793                 break;
1794         case COMP_BANDWIDTH_ERROR:
1795         case COMP_SECONDARY_BANDWIDTH_ERROR:
1796                 dev_warn(&udev->dev,
1797                          "Not enough bandwidth for new device state.\n");
1798                 ret = -ENOSPC;
1799                 /* FIXME: can we go back to the old state? */
1800                 break;
1801         case COMP_TRB_ERROR:
1802                 /* the HCD set up something wrong */
1803                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1804                                 "add flag = 1, "
1805                                 "and endpoint is not disabled.\n");
1806                 ret = -EINVAL;
1807                 break;
1808         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1809                 dev_warn(&udev->dev,
1810                          "ERROR: Incompatible device for endpoint configure command.\n");
1811                 ret = -ENODEV;
1812                 break;
1813         case COMP_SUCCESS:
1814                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1815                                 "Successful Endpoint Configure command");
1816                 ret = 0;
1817                 break;
1818         default:
1819                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1820                                 *cmd_status);
1821                 ret = -EINVAL;
1822                 break;
1823         }
1824         return ret;
1825 }
1826
1827 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1828                 struct usb_device *udev, u32 *cmd_status)
1829 {
1830         int ret;
1831
1832         switch (*cmd_status) {
1833         case COMP_COMMAND_ABORTED:
1834         case COMP_COMMAND_RING_STOPPED:
1835                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1836                 ret = -ETIME;
1837                 break;
1838         case COMP_PARAMETER_ERROR:
1839                 dev_warn(&udev->dev,
1840                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1841                 ret = -EINVAL;
1842                 break;
1843         case COMP_SLOT_NOT_ENABLED_ERROR:
1844                 dev_warn(&udev->dev,
1845                         "WARN: slot not enabled for evaluate context command.\n");
1846                 ret = -EINVAL;
1847                 break;
1848         case COMP_CONTEXT_STATE_ERROR:
1849                 dev_warn(&udev->dev,
1850                         "WARN: invalid context state for evaluate context command.\n");
1851                 ret = -EINVAL;
1852                 break;
1853         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1854                 dev_warn(&udev->dev,
1855                         "ERROR: Incompatible device for evaluate context command.\n");
1856                 ret = -ENODEV;
1857                 break;
1858         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1859                 /* Max Exit Latency too large error */
1860                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1861                 ret = -EINVAL;
1862                 break;
1863         case COMP_SUCCESS:
1864                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1865                                 "Successful evaluate context command");
1866                 ret = 0;
1867                 break;
1868         default:
1869                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1870                         *cmd_status);
1871                 ret = -EINVAL;
1872                 break;
1873         }
1874         return ret;
1875 }
1876
1877 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1878                 struct xhci_input_control_ctx *ctrl_ctx)
1879 {
1880         u32 valid_add_flags;
1881         u32 valid_drop_flags;
1882
1883         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1884          * (bit 1).  The default control endpoint is added during the Address
1885          * Device command and is never removed until the slot is disabled.
1886          */
1887         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1888         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1889
1890         /* Use hweight32 to count the number of ones in the add flags, or
1891          * number of endpoints added.  Don't count endpoints that are changed
1892          * (both added and dropped).
1893          */
1894         return hweight32(valid_add_flags) -
1895                 hweight32(valid_add_flags & valid_drop_flags);
1896 }
1897
1898 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1899                 struct xhci_input_control_ctx *ctrl_ctx)
1900 {
1901         u32 valid_add_flags;
1902         u32 valid_drop_flags;
1903
1904         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1905         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1906
1907         return hweight32(valid_drop_flags) -
1908                 hweight32(valid_add_flags & valid_drop_flags);
1909 }
1910
1911 /*
1912  * We need to reserve the new number of endpoints before the configure endpoint
1913  * command completes.  We can't subtract the dropped endpoints from the number
1914  * of active endpoints until the command completes because we can oversubscribe
1915  * the host in this case:
1916  *
1917  *  - the first configure endpoint command drops more endpoints than it adds
1918  *  - a second configure endpoint command that adds more endpoints is queued
1919  *  - the first configure endpoint command fails, so the config is unchanged
1920  *  - the second command may succeed, even though there isn't enough resources
1921  *
1922  * Must be called with xhci->lock held.
1923  */
1924 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1925                 struct xhci_input_control_ctx *ctrl_ctx)
1926 {
1927         u32 added_eps;
1928
1929         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1930         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1931                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1932                                 "Not enough ep ctxs: "
1933                                 "%u active, need to add %u, limit is %u.",
1934                                 xhci->num_active_eps, added_eps,
1935                                 xhci->limit_active_eps);
1936                 return -ENOMEM;
1937         }
1938         xhci->num_active_eps += added_eps;
1939         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1940                         "Adding %u ep ctxs, %u now active.", added_eps,
1941                         xhci->num_active_eps);
1942         return 0;
1943 }
1944
1945 /*
1946  * The configure endpoint was failed by the xHC for some other reason, so we
1947  * need to revert the resources that failed configuration would have used.
1948  *
1949  * Must be called with xhci->lock held.
1950  */
1951 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1952                 struct xhci_input_control_ctx *ctrl_ctx)
1953 {
1954         u32 num_failed_eps;
1955
1956         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1957         xhci->num_active_eps -= num_failed_eps;
1958         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1959                         "Removing %u failed ep ctxs, %u now active.",
1960                         num_failed_eps,
1961                         xhci->num_active_eps);
1962 }
1963
1964 /*
1965  * Now that the command has completed, clean up the active endpoint count by
1966  * subtracting out the endpoints that were dropped (but not changed).
1967  *
1968  * Must be called with xhci->lock held.
1969  */
1970 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1971                 struct xhci_input_control_ctx *ctrl_ctx)
1972 {
1973         u32 num_dropped_eps;
1974
1975         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1976         xhci->num_active_eps -= num_dropped_eps;
1977         if (num_dropped_eps)
1978                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1979                                 "Removing %u dropped ep ctxs, %u now active.",
1980                                 num_dropped_eps,
1981                                 xhci->num_active_eps);
1982 }
1983
1984 static unsigned int xhci_get_block_size(struct usb_device *udev)
1985 {
1986         switch (udev->speed) {
1987         case USB_SPEED_LOW:
1988         case USB_SPEED_FULL:
1989                 return FS_BLOCK;
1990         case USB_SPEED_HIGH:
1991                 return HS_BLOCK;
1992         case USB_SPEED_SUPER:
1993         case USB_SPEED_SUPER_PLUS:
1994                 return SS_BLOCK;
1995         case USB_SPEED_UNKNOWN:
1996         case USB_SPEED_WIRELESS:
1997         default:
1998                 /* Should never happen */
1999                 return 1;
2000         }
2001 }
2002
2003 static unsigned int
2004 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2005 {
2006         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2007                 return LS_OVERHEAD;
2008         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2009                 return FS_OVERHEAD;
2010         return HS_OVERHEAD;
2011 }
2012
2013 /* If we are changing a LS/FS device under a HS hub,
2014  * make sure (if we are activating a new TT) that the HS bus has enough
2015  * bandwidth for this new TT.
2016  */
2017 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2018                 struct xhci_virt_device *virt_dev,
2019                 int old_active_eps)
2020 {
2021         struct xhci_interval_bw_table *bw_table;
2022         struct xhci_tt_bw_info *tt_info;
2023
2024         /* Find the bandwidth table for the root port this TT is attached to. */
2025         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2026         tt_info = virt_dev->tt_info;
2027         /* If this TT already had active endpoints, the bandwidth for this TT
2028          * has already been added.  Removing all periodic endpoints (and thus
2029          * making the TT enactive) will only decrease the bandwidth used.
2030          */
2031         if (old_active_eps)
2032                 return 0;
2033         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2034                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2035                         return -ENOMEM;
2036                 return 0;
2037         }
2038         /* Not sure why we would have no new active endpoints...
2039          *
2040          * Maybe because of an Evaluate Context change for a hub update or a
2041          * control endpoint 0 max packet size change?
2042          * FIXME: skip the bandwidth calculation in that case.
2043          */
2044         return 0;
2045 }
2046
2047 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2048                 struct xhci_virt_device *virt_dev)
2049 {
2050         unsigned int bw_reserved;
2051
2052         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2053         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2054                 return -ENOMEM;
2055
2056         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2057         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2058                 return -ENOMEM;
2059
2060         return 0;
2061 }
2062
2063 /*
2064  * This algorithm is a very conservative estimate of the worst-case scheduling
2065  * scenario for any one interval.  The hardware dynamically schedules the
2066  * packets, so we can't tell which microframe could be the limiting factor in
2067  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2068  *
2069  * Obviously, we can't solve an NP complete problem to find the minimum worst
2070  * case scenario.  Instead, we come up with an estimate that is no less than
2071  * the worst case bandwidth used for any one microframe, but may be an
2072  * over-estimate.
2073  *
2074  * We walk the requirements for each endpoint by interval, starting with the
2075  * smallest interval, and place packets in the schedule where there is only one
2076  * possible way to schedule packets for that interval.  In order to simplify
2077  * this algorithm, we record the largest max packet size for each interval, and
2078  * assume all packets will be that size.
2079  *
2080  * For interval 0, we obviously must schedule all packets for each interval.
2081  * The bandwidth for interval 0 is just the amount of data to be transmitted
2082  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2083  * the number of packets).
2084  *
2085  * For interval 1, we have two possible microframes to schedule those packets
2086  * in.  For this algorithm, if we can schedule the same number of packets for
2087  * each possible scheduling opportunity (each microframe), we will do so.  The
2088  * remaining number of packets will be saved to be transmitted in the gaps in
2089  * the next interval's scheduling sequence.
2090  *
2091  * As we move those remaining packets to be scheduled with interval 2 packets,
2092  * we have to double the number of remaining packets to transmit.  This is
2093  * because the intervals are actually powers of 2, and we would be transmitting
2094  * the previous interval's packets twice in this interval.  We also have to be
2095  * sure that when we look at the largest max packet size for this interval, we
2096  * also look at the largest max packet size for the remaining packets and take
2097  * the greater of the two.
2098  *
2099  * The algorithm continues to evenly distribute packets in each scheduling
2100  * opportunity, and push the remaining packets out, until we get to the last
2101  * interval.  Then those packets and their associated overhead are just added
2102  * to the bandwidth used.
2103  */
2104 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2105                 struct xhci_virt_device *virt_dev,
2106                 int old_active_eps)
2107 {
2108         unsigned int bw_reserved;
2109         unsigned int max_bandwidth;
2110         unsigned int bw_used;
2111         unsigned int block_size;
2112         struct xhci_interval_bw_table *bw_table;
2113         unsigned int packet_size = 0;
2114         unsigned int overhead = 0;
2115         unsigned int packets_transmitted = 0;
2116         unsigned int packets_remaining = 0;
2117         unsigned int i;
2118
2119         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2120                 return xhci_check_ss_bw(xhci, virt_dev);
2121
2122         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2123                 max_bandwidth = HS_BW_LIMIT;
2124                 /* Convert percent of bus BW reserved to blocks reserved */
2125                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2126         } else {
2127                 max_bandwidth = FS_BW_LIMIT;
2128                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2129         }
2130
2131         bw_table = virt_dev->bw_table;
2132         /* We need to translate the max packet size and max ESIT payloads into
2133          * the units the hardware uses.
2134          */
2135         block_size = xhci_get_block_size(virt_dev->udev);
2136
2137         /* If we are manipulating a LS/FS device under a HS hub, double check
2138          * that the HS bus has enough bandwidth if we are activing a new TT.
2139          */
2140         if (virt_dev->tt_info) {
2141                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2142                                 "Recalculating BW for rootport %u",
2143                                 virt_dev->real_port);
2144                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2145                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2146                                         "newly activated TT.\n");
2147                         return -ENOMEM;
2148                 }
2149                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2150                                 "Recalculating BW for TT slot %u port %u",
2151                                 virt_dev->tt_info->slot_id,
2152                                 virt_dev->tt_info->ttport);
2153         } else {
2154                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2155                                 "Recalculating BW for rootport %u",
2156                                 virt_dev->real_port);
2157         }
2158
2159         /* Add in how much bandwidth will be used for interval zero, or the
2160          * rounded max ESIT payload + number of packets * largest overhead.
2161          */
2162         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2163                 bw_table->interval_bw[0].num_packets *
2164                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2165
2166         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2167                 unsigned int bw_added;
2168                 unsigned int largest_mps;
2169                 unsigned int interval_overhead;
2170
2171                 /*
2172                  * How many packets could we transmit in this interval?
2173                  * If packets didn't fit in the previous interval, we will need
2174                  * to transmit that many packets twice within this interval.
2175                  */
2176                 packets_remaining = 2 * packets_remaining +
2177                         bw_table->interval_bw[i].num_packets;
2178
2179                 /* Find the largest max packet size of this or the previous
2180                  * interval.
2181                  */
2182                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2183                         largest_mps = 0;
2184                 else {
2185                         struct xhci_virt_ep *virt_ep;
2186                         struct list_head *ep_entry;
2187
2188                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2189                         virt_ep = list_entry(ep_entry,
2190                                         struct xhci_virt_ep, bw_endpoint_list);
2191                         /* Convert to blocks, rounding up */
2192                         largest_mps = DIV_ROUND_UP(
2193                                         virt_ep->bw_info.max_packet_size,
2194                                         block_size);
2195                 }
2196                 if (largest_mps > packet_size)
2197                         packet_size = largest_mps;
2198
2199                 /* Use the larger overhead of this or the previous interval. */
2200                 interval_overhead = xhci_get_largest_overhead(
2201                                 &bw_table->interval_bw[i]);
2202                 if (interval_overhead > overhead)
2203                         overhead = interval_overhead;
2204
2205                 /* How many packets can we evenly distribute across
2206                  * (1 << (i + 1)) possible scheduling opportunities?
2207                  */
2208                 packets_transmitted = packets_remaining >> (i + 1);
2209
2210                 /* Add in the bandwidth used for those scheduled packets */
2211                 bw_added = packets_transmitted * (overhead + packet_size);
2212
2213                 /* How many packets do we have remaining to transmit? */
2214                 packets_remaining = packets_remaining % (1 << (i + 1));
2215
2216                 /* What largest max packet size should those packets have? */
2217                 /* If we've transmitted all packets, don't carry over the
2218                  * largest packet size.
2219                  */
2220                 if (packets_remaining == 0) {
2221                         packet_size = 0;
2222                         overhead = 0;
2223                 } else if (packets_transmitted > 0) {
2224                         /* Otherwise if we do have remaining packets, and we've
2225                          * scheduled some packets in this interval, take the
2226                          * largest max packet size from endpoints with this
2227                          * interval.
2228                          */
2229                         packet_size = largest_mps;
2230                         overhead = interval_overhead;
2231                 }
2232                 /* Otherwise carry over packet_size and overhead from the last
2233                  * time we had a remainder.
2234                  */
2235                 bw_used += bw_added;
2236                 if (bw_used > max_bandwidth) {
2237                         xhci_warn(xhci, "Not enough bandwidth. "
2238                                         "Proposed: %u, Max: %u\n",
2239                                 bw_used, max_bandwidth);
2240                         return -ENOMEM;
2241                 }
2242         }
2243         /*
2244          * Ok, we know we have some packets left over after even-handedly
2245          * scheduling interval 15.  We don't know which microframes they will
2246          * fit into, so we over-schedule and say they will be scheduled every
2247          * microframe.
2248          */
2249         if (packets_remaining > 0)
2250                 bw_used += overhead + packet_size;
2251
2252         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2253                 unsigned int port_index = virt_dev->real_port - 1;
2254
2255                 /* OK, we're manipulating a HS device attached to a
2256                  * root port bandwidth domain.  Include the number of active TTs
2257                  * in the bandwidth used.
2258                  */
2259                 bw_used += TT_HS_OVERHEAD *
2260                         xhci->rh_bw[port_index].num_active_tts;
2261         }
2262
2263         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2264                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2265                 "Available: %u " "percent",
2266                 bw_used, max_bandwidth, bw_reserved,
2267                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2268                 max_bandwidth);
2269
2270         bw_used += bw_reserved;
2271         if (bw_used > max_bandwidth) {
2272                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2273                                 bw_used, max_bandwidth);
2274                 return -ENOMEM;
2275         }
2276
2277         bw_table->bw_used = bw_used;
2278         return 0;
2279 }
2280
2281 static bool xhci_is_async_ep(unsigned int ep_type)
2282 {
2283         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2284                                         ep_type != ISOC_IN_EP &&
2285                                         ep_type != INT_IN_EP);
2286 }
2287
2288 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2289 {
2290         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2291 }
2292
2293 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2294 {
2295         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2296
2297         if (ep_bw->ep_interval == 0)
2298                 return SS_OVERHEAD_BURST +
2299                         (ep_bw->mult * ep_bw->num_packets *
2300                                         (SS_OVERHEAD + mps));
2301         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2302                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2303                                 1 << ep_bw->ep_interval);
2304
2305 }
2306
2307 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2308                 struct xhci_bw_info *ep_bw,
2309                 struct xhci_interval_bw_table *bw_table,
2310                 struct usb_device *udev,
2311                 struct xhci_virt_ep *virt_ep,
2312                 struct xhci_tt_bw_info *tt_info)
2313 {
2314         struct xhci_interval_bw *interval_bw;
2315         int normalized_interval;
2316
2317         if (xhci_is_async_ep(ep_bw->type))
2318                 return;
2319
2320         if (udev->speed >= USB_SPEED_SUPER) {
2321                 if (xhci_is_sync_in_ep(ep_bw->type))
2322                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2323                                 xhci_get_ss_bw_consumed(ep_bw);
2324                 else
2325                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2326                                 xhci_get_ss_bw_consumed(ep_bw);
2327                 return;
2328         }
2329
2330         /* SuperSpeed endpoints never get added to intervals in the table, so
2331          * this check is only valid for HS/FS/LS devices.
2332          */
2333         if (list_empty(&virt_ep->bw_endpoint_list))
2334                 return;
2335         /* For LS/FS devices, we need to translate the interval expressed in
2336          * microframes to frames.
2337          */
2338         if (udev->speed == USB_SPEED_HIGH)
2339                 normalized_interval = ep_bw->ep_interval;
2340         else
2341                 normalized_interval = ep_bw->ep_interval - 3;
2342
2343         if (normalized_interval == 0)
2344                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2345         interval_bw = &bw_table->interval_bw[normalized_interval];
2346         interval_bw->num_packets -= ep_bw->num_packets;
2347         switch (udev->speed) {
2348         case USB_SPEED_LOW:
2349                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2350                 break;
2351         case USB_SPEED_FULL:
2352                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2353                 break;
2354         case USB_SPEED_HIGH:
2355                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2356                 break;
2357         case USB_SPEED_SUPER:
2358         case USB_SPEED_SUPER_PLUS:
2359         case USB_SPEED_UNKNOWN:
2360         case USB_SPEED_WIRELESS:
2361                 /* Should never happen because only LS/FS/HS endpoints will get
2362                  * added to the endpoint list.
2363                  */
2364                 return;
2365         }
2366         if (tt_info)
2367                 tt_info->active_eps -= 1;
2368         list_del_init(&virt_ep->bw_endpoint_list);
2369 }
2370
2371 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2372                 struct xhci_bw_info *ep_bw,
2373                 struct xhci_interval_bw_table *bw_table,
2374                 struct usb_device *udev,
2375                 struct xhci_virt_ep *virt_ep,
2376                 struct xhci_tt_bw_info *tt_info)
2377 {
2378         struct xhci_interval_bw *interval_bw;
2379         struct xhci_virt_ep *smaller_ep;
2380         int normalized_interval;
2381
2382         if (xhci_is_async_ep(ep_bw->type))
2383                 return;
2384
2385         if (udev->speed == USB_SPEED_SUPER) {
2386                 if (xhci_is_sync_in_ep(ep_bw->type))
2387                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2388                                 xhci_get_ss_bw_consumed(ep_bw);
2389                 else
2390                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2391                                 xhci_get_ss_bw_consumed(ep_bw);
2392                 return;
2393         }
2394
2395         /* For LS/FS devices, we need to translate the interval expressed in
2396          * microframes to frames.
2397          */
2398         if (udev->speed == USB_SPEED_HIGH)
2399                 normalized_interval = ep_bw->ep_interval;
2400         else
2401                 normalized_interval = ep_bw->ep_interval - 3;
2402
2403         if (normalized_interval == 0)
2404                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2405         interval_bw = &bw_table->interval_bw[normalized_interval];
2406         interval_bw->num_packets += ep_bw->num_packets;
2407         switch (udev->speed) {
2408         case USB_SPEED_LOW:
2409                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2410                 break;
2411         case USB_SPEED_FULL:
2412                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2413                 break;
2414         case USB_SPEED_HIGH:
2415                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2416                 break;
2417         case USB_SPEED_SUPER:
2418         case USB_SPEED_SUPER_PLUS:
2419         case USB_SPEED_UNKNOWN:
2420         case USB_SPEED_WIRELESS:
2421                 /* Should never happen because only LS/FS/HS endpoints will get
2422                  * added to the endpoint list.
2423                  */
2424                 return;
2425         }
2426
2427         if (tt_info)
2428                 tt_info->active_eps += 1;
2429         /* Insert the endpoint into the list, largest max packet size first. */
2430         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2431                         bw_endpoint_list) {
2432                 if (ep_bw->max_packet_size >=
2433                                 smaller_ep->bw_info.max_packet_size) {
2434                         /* Add the new ep before the smaller endpoint */
2435                         list_add_tail(&virt_ep->bw_endpoint_list,
2436                                         &smaller_ep->bw_endpoint_list);
2437                         return;
2438                 }
2439         }
2440         /* Add the new endpoint at the end of the list. */
2441         list_add_tail(&virt_ep->bw_endpoint_list,
2442                         &interval_bw->endpoints);
2443 }
2444
2445 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2446                 struct xhci_virt_device *virt_dev,
2447                 int old_active_eps)
2448 {
2449         struct xhci_root_port_bw_info *rh_bw_info;
2450         if (!virt_dev->tt_info)
2451                 return;
2452
2453         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2454         if (old_active_eps == 0 &&
2455                                 virt_dev->tt_info->active_eps != 0) {
2456                 rh_bw_info->num_active_tts += 1;
2457                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2458         } else if (old_active_eps != 0 &&
2459                                 virt_dev->tt_info->active_eps == 0) {
2460                 rh_bw_info->num_active_tts -= 1;
2461                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2462         }
2463 }
2464
2465 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2466                 struct xhci_virt_device *virt_dev,
2467                 struct xhci_container_ctx *in_ctx)
2468 {
2469         struct xhci_bw_info ep_bw_info[31];
2470         int i;
2471         struct xhci_input_control_ctx *ctrl_ctx;
2472         int old_active_eps = 0;
2473
2474         if (virt_dev->tt_info)
2475                 old_active_eps = virt_dev->tt_info->active_eps;
2476
2477         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2478         if (!ctrl_ctx) {
2479                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2480                                 __func__);
2481                 return -ENOMEM;
2482         }
2483
2484         for (i = 0; i < 31; i++) {
2485                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2486                         continue;
2487
2488                 /* Make a copy of the BW info in case we need to revert this */
2489                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2490                                 sizeof(ep_bw_info[i]));
2491                 /* Drop the endpoint from the interval table if the endpoint is
2492                  * being dropped or changed.
2493                  */
2494                 if (EP_IS_DROPPED(ctrl_ctx, i))
2495                         xhci_drop_ep_from_interval_table(xhci,
2496                                         &virt_dev->eps[i].bw_info,
2497                                         virt_dev->bw_table,
2498                                         virt_dev->udev,
2499                                         &virt_dev->eps[i],
2500                                         virt_dev->tt_info);
2501         }
2502         /* Overwrite the information stored in the endpoints' bw_info */
2503         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2504         for (i = 0; i < 31; i++) {
2505                 /* Add any changed or added endpoints to the interval table */
2506                 if (EP_IS_ADDED(ctrl_ctx, i))
2507                         xhci_add_ep_to_interval_table(xhci,
2508                                         &virt_dev->eps[i].bw_info,
2509                                         virt_dev->bw_table,
2510                                         virt_dev->udev,
2511                                         &virt_dev->eps[i],
2512                                         virt_dev->tt_info);
2513         }
2514
2515         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2516                 /* Ok, this fits in the bandwidth we have.
2517                  * Update the number of active TTs.
2518                  */
2519                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2520                 return 0;
2521         }
2522
2523         /* We don't have enough bandwidth for this, revert the stored info. */
2524         for (i = 0; i < 31; i++) {
2525                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2526                         continue;
2527
2528                 /* Drop the new copies of any added or changed endpoints from
2529                  * the interval table.
2530                  */
2531                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2532                         xhci_drop_ep_from_interval_table(xhci,
2533                                         &virt_dev->eps[i].bw_info,
2534                                         virt_dev->bw_table,
2535                                         virt_dev->udev,
2536                                         &virt_dev->eps[i],
2537                                         virt_dev->tt_info);
2538                 }
2539                 /* Revert the endpoint back to its old information */
2540                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2541                                 sizeof(ep_bw_info[i]));
2542                 /* Add any changed or dropped endpoints back into the table */
2543                 if (EP_IS_DROPPED(ctrl_ctx, i))
2544                         xhci_add_ep_to_interval_table(xhci,
2545                                         &virt_dev->eps[i].bw_info,
2546                                         virt_dev->bw_table,
2547                                         virt_dev->udev,
2548                                         &virt_dev->eps[i],
2549                                         virt_dev->tt_info);
2550         }
2551         return -ENOMEM;
2552 }
2553
2554
2555 /* Issue a configure endpoint command or evaluate context command
2556  * and wait for it to finish.
2557  */
2558 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2559                 struct usb_device *udev,
2560                 struct xhci_command *command,
2561                 bool ctx_change, bool must_succeed)
2562 {
2563         int ret;
2564         unsigned long flags;
2565         struct xhci_input_control_ctx *ctrl_ctx;
2566         struct xhci_virt_device *virt_dev;
2567
2568         if (!command)
2569                 return -EINVAL;
2570
2571         spin_lock_irqsave(&xhci->lock, flags);
2572
2573         if (xhci->xhc_state & XHCI_STATE_DYING) {
2574                 spin_unlock_irqrestore(&xhci->lock, flags);
2575                 return -ESHUTDOWN;
2576         }
2577
2578         virt_dev = xhci->devs[udev->slot_id];
2579
2580         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2581         if (!ctrl_ctx) {
2582                 spin_unlock_irqrestore(&xhci->lock, flags);
2583                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2584                                 __func__);
2585                 return -ENOMEM;
2586         }
2587
2588         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2589                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2590                 spin_unlock_irqrestore(&xhci->lock, flags);
2591                 xhci_warn(xhci, "Not enough host resources, "
2592                                 "active endpoint contexts = %u\n",
2593                                 xhci->num_active_eps);
2594                 return -ENOMEM;
2595         }
2596         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2597             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2598                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2599                         xhci_free_host_resources(xhci, ctrl_ctx);
2600                 spin_unlock_irqrestore(&xhci->lock, flags);
2601                 xhci_warn(xhci, "Not enough bandwidth\n");
2602                 return -ENOMEM;
2603         }
2604
2605         if (!ctx_change)
2606                 ret = xhci_queue_configure_endpoint(xhci, command,
2607                                 command->in_ctx->dma,
2608                                 udev->slot_id, must_succeed);
2609         else
2610                 ret = xhci_queue_evaluate_context(xhci, command,
2611                                 command->in_ctx->dma,
2612                                 udev->slot_id, must_succeed);
2613         if (ret < 0) {
2614                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2615                         xhci_free_host_resources(xhci, ctrl_ctx);
2616                 spin_unlock_irqrestore(&xhci->lock, flags);
2617                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2618                                 "FIXME allocate a new ring segment");
2619                 return -ENOMEM;
2620         }
2621         xhci_ring_cmd_db(xhci);
2622         spin_unlock_irqrestore(&xhci->lock, flags);
2623
2624         /* Wait for the configure endpoint command to complete */
2625         wait_for_completion(command->completion);
2626
2627         if (!ctx_change)
2628                 ret = xhci_configure_endpoint_result(xhci, udev,
2629                                                      &command->status);
2630         else
2631                 ret = xhci_evaluate_context_result(xhci, udev,
2632                                                    &command->status);
2633
2634         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2635                 spin_lock_irqsave(&xhci->lock, flags);
2636                 /* If the command failed, remove the reserved resources.
2637                  * Otherwise, clean up the estimate to include dropped eps.
2638                  */
2639                 if (ret)
2640                         xhci_free_host_resources(xhci, ctrl_ctx);
2641                 else
2642                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2643                 spin_unlock_irqrestore(&xhci->lock, flags);
2644         }
2645         return ret;
2646 }
2647
2648 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2649         struct xhci_virt_device *vdev, int i)
2650 {
2651         struct xhci_virt_ep *ep = &vdev->eps[i];
2652
2653         if (ep->ep_state & EP_HAS_STREAMS) {
2654                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2655                                 xhci_get_endpoint_address(i));
2656                 xhci_free_stream_info(xhci, ep->stream_info);
2657                 ep->stream_info = NULL;
2658                 ep->ep_state &= ~EP_HAS_STREAMS;
2659         }
2660 }
2661
2662 /* Called after one or more calls to xhci_add_endpoint() or
2663  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2664  * to call xhci_reset_bandwidth().
2665  *
2666  * Since we are in the middle of changing either configuration or
2667  * installing a new alt setting, the USB core won't allow URBs to be
2668  * enqueued for any endpoint on the old config or interface.  Nothing
2669  * else should be touching the xhci->devs[slot_id] structure, so we
2670  * don't need to take the xhci->lock for manipulating that.
2671  */
2672 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2673 {
2674         int i;
2675         int ret = 0;
2676         struct xhci_hcd *xhci;
2677         struct xhci_virt_device *virt_dev;
2678         struct xhci_input_control_ctx *ctrl_ctx;
2679         struct xhci_slot_ctx *slot_ctx;
2680         struct xhci_command *command;
2681
2682         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2683         if (ret <= 0)
2684                 return ret;
2685         xhci = hcd_to_xhci(hcd);
2686         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2687                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2688                 return -ENODEV;
2689
2690         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2691         virt_dev = xhci->devs[udev->slot_id];
2692
2693         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2694         if (!command)
2695                 return -ENOMEM;
2696
2697         command->in_ctx = virt_dev->in_ctx;
2698
2699         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2700         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2701         if (!ctrl_ctx) {
2702                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2703                                 __func__);
2704                 ret = -ENOMEM;
2705                 goto command_cleanup;
2706         }
2707         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2708         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2709         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2710
2711         /* Don't issue the command if there's no endpoints to update. */
2712         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2713             ctrl_ctx->drop_flags == 0) {
2714                 ret = 0;
2715                 goto command_cleanup;
2716         }
2717         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2718         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2719         for (i = 31; i >= 1; i--) {
2720                 __le32 le32 = cpu_to_le32(BIT(i));
2721
2722                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2723                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2724                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2725                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2726                         break;
2727                 }
2728         }
2729
2730         ret = xhci_configure_endpoint(xhci, udev, command,
2731                         false, false);
2732         if (ret)
2733                 /* Callee should call reset_bandwidth() */
2734                 goto command_cleanup;
2735
2736         /* Free any rings that were dropped, but not changed. */
2737         for (i = 1; i < 31; i++) {
2738                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2739                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2740                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2741                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2742                 }
2743         }
2744         xhci_zero_in_ctx(xhci, virt_dev);
2745         /*
2746          * Install any rings for completely new endpoints or changed endpoints,
2747          * and free any old rings from changed endpoints.
2748          */
2749         for (i = 1; i < 31; i++) {
2750                 if (!virt_dev->eps[i].new_ring)
2751                         continue;
2752                 /* Only free the old ring if it exists.
2753                  * It may not if this is the first add of an endpoint.
2754                  */
2755                 if (virt_dev->eps[i].ring) {
2756                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2757                 }
2758                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2759                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2760                 virt_dev->eps[i].new_ring = NULL;
2761         }
2762 command_cleanup:
2763         kfree(command->completion);
2764         kfree(command);
2765
2766         return ret;
2767 }
2768
2769 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2770 {
2771         struct xhci_hcd *xhci;
2772         struct xhci_virt_device *virt_dev;
2773         int i, ret;
2774
2775         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2776         if (ret <= 0)
2777                 return;
2778         xhci = hcd_to_xhci(hcd);
2779
2780         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2781         virt_dev = xhci->devs[udev->slot_id];
2782         /* Free any rings allocated for added endpoints */
2783         for (i = 0; i < 31; i++) {
2784                 if (virt_dev->eps[i].new_ring) {
2785                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2786                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2787                         virt_dev->eps[i].new_ring = NULL;
2788                 }
2789         }
2790         xhci_zero_in_ctx(xhci, virt_dev);
2791 }
2792
2793 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2794                 struct xhci_container_ctx *in_ctx,
2795                 struct xhci_container_ctx *out_ctx,
2796                 struct xhci_input_control_ctx *ctrl_ctx,
2797                 u32 add_flags, u32 drop_flags)
2798 {
2799         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2800         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2801         xhci_slot_copy(xhci, in_ctx, out_ctx);
2802         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2803 }
2804
2805 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2806                 unsigned int slot_id, unsigned int ep_index,
2807                 struct xhci_dequeue_state *deq_state)
2808 {
2809         struct xhci_input_control_ctx *ctrl_ctx;
2810         struct xhci_container_ctx *in_ctx;
2811         struct xhci_ep_ctx *ep_ctx;
2812         u32 added_ctxs;
2813         dma_addr_t addr;
2814
2815         in_ctx = xhci->devs[slot_id]->in_ctx;
2816         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2817         if (!ctrl_ctx) {
2818                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2819                                 __func__);
2820                 return;
2821         }
2822
2823         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2824                         xhci->devs[slot_id]->out_ctx, ep_index);
2825         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2826         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2827                         deq_state->new_deq_ptr);
2828         if (addr == 0) {
2829                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2830                                 "reset ep command\n");
2831                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2832                                 deq_state->new_deq_seg,
2833                                 deq_state->new_deq_ptr);
2834                 return;
2835         }
2836         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2837
2838         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2839         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2840                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2841                         added_ctxs, added_ctxs);
2842 }
2843
2844 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2845                                unsigned int stream_id, struct xhci_td *td)
2846 {
2847         struct xhci_dequeue_state deq_state;
2848         struct xhci_virt_ep *ep;
2849         struct usb_device *udev = td->urb->dev;
2850
2851         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2852                         "Cleaning up stalled endpoint ring");
2853         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2854         /* We need to move the HW's dequeue pointer past this TD,
2855          * or it will attempt to resend it on the next doorbell ring.
2856          */
2857         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2858                         ep_index, stream_id, td, &deq_state);
2859
2860         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2861                 return;
2862
2863         /* HW with the reset endpoint quirk will use the saved dequeue state to
2864          * issue a configure endpoint command later.
2865          */
2866         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2867                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2868                                 "Queueing new dequeue state");
2869                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2870                                 ep_index, &deq_state);
2871         } else {
2872                 /* Better hope no one uses the input context between now and the
2873                  * reset endpoint completion!
2874                  * XXX: No idea how this hardware will react when stream rings
2875                  * are enabled.
2876                  */
2877                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2878                                 "Setting up input context for "
2879                                 "configure endpoint command");
2880                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2881                                 ep_index, &deq_state);
2882         }
2883 }
2884
2885 /* Called when clearing halted device. The core should have sent the control
2886  * message to clear the device halt condition. The host side of the halt should
2887  * already be cleared with a reset endpoint command issued when the STALL tx
2888  * event was received.
2889  *
2890  * Context: in_interrupt
2891  */
2892
2893 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2894                 struct usb_host_endpoint *ep)
2895 {
2896         struct xhci_hcd *xhci;
2897
2898         xhci = hcd_to_xhci(hcd);
2899
2900         /*
2901          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2902          * The Reset Endpoint Command may only be issued to endpoints in the
2903          * Halted state. If software wishes reset the Data Toggle or Sequence
2904          * Number of an endpoint that isn't in the Halted state, then software
2905          * may issue a Configure Endpoint Command with the Drop and Add bits set
2906          * for the target endpoint. that is in the Stopped state.
2907          */
2908
2909         /* For now just print debug to follow the situation */
2910         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2911                  ep->desc.bEndpointAddress);
2912 }
2913
2914 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2915                 struct usb_device *udev, struct usb_host_endpoint *ep,
2916                 unsigned int slot_id)
2917 {
2918         int ret;
2919         unsigned int ep_index;
2920         unsigned int ep_state;
2921
2922         if (!ep)
2923                 return -EINVAL;
2924         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2925         if (ret <= 0)
2926                 return -EINVAL;
2927         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2928                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2929                                 " descriptor for ep 0x%x does not support streams\n",
2930                                 ep->desc.bEndpointAddress);
2931                 return -EINVAL;
2932         }
2933
2934         ep_index = xhci_get_endpoint_index(&ep->desc);
2935         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2936         if (ep_state & EP_HAS_STREAMS ||
2937                         ep_state & EP_GETTING_STREAMS) {
2938                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2939                                 "already has streams set up.\n",
2940                                 ep->desc.bEndpointAddress);
2941                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2942                                 "dynamic stream context array reallocation.\n");
2943                 return -EINVAL;
2944         }
2945         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2946                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2947                                 "endpoint 0x%x; URBs are pending.\n",
2948                                 ep->desc.bEndpointAddress);
2949                 return -EINVAL;
2950         }
2951         return 0;
2952 }
2953
2954 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2955                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
2956 {
2957         unsigned int max_streams;
2958
2959         /* The stream context array size must be a power of two */
2960         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2961         /*
2962          * Find out how many primary stream array entries the host controller
2963          * supports.  Later we may use secondary stream arrays (similar to 2nd
2964          * level page entries), but that's an optional feature for xHCI host
2965          * controllers. xHCs must support at least 4 stream IDs.
2966          */
2967         max_streams = HCC_MAX_PSA(xhci->hcc_params);
2968         if (*num_stream_ctxs > max_streams) {
2969                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2970                                 max_streams);
2971                 *num_stream_ctxs = max_streams;
2972                 *num_streams = max_streams;
2973         }
2974 }
2975
2976 /* Returns an error code if one of the endpoint already has streams.
2977  * This does not change any data structures, it only checks and gathers
2978  * information.
2979  */
2980 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2981                 struct usb_device *udev,
2982                 struct usb_host_endpoint **eps, unsigned int num_eps,
2983                 unsigned int *num_streams, u32 *changed_ep_bitmask)
2984 {
2985         unsigned int max_streams;
2986         unsigned int endpoint_flag;
2987         int i;
2988         int ret;
2989
2990         for (i = 0; i < num_eps; i++) {
2991                 ret = xhci_check_streams_endpoint(xhci, udev,
2992                                 eps[i], udev->slot_id);
2993                 if (ret < 0)
2994                         return ret;
2995
2996                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2997                 if (max_streams < (*num_streams - 1)) {
2998                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2999                                         eps[i]->desc.bEndpointAddress,
3000                                         max_streams);
3001                         *num_streams = max_streams+1;
3002                 }
3003
3004                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3005                 if (*changed_ep_bitmask & endpoint_flag)
3006                         return -EINVAL;
3007                 *changed_ep_bitmask |= endpoint_flag;
3008         }
3009         return 0;
3010 }
3011
3012 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3013                 struct usb_device *udev,
3014                 struct usb_host_endpoint **eps, unsigned int num_eps)
3015 {
3016         u32 changed_ep_bitmask = 0;
3017         unsigned int slot_id;
3018         unsigned int ep_index;
3019         unsigned int ep_state;
3020         int i;
3021
3022         slot_id = udev->slot_id;
3023         if (!xhci->devs[slot_id])
3024                 return 0;
3025
3026         for (i = 0; i < num_eps; i++) {
3027                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3028                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3029                 /* Are streams already being freed for the endpoint? */
3030                 if (ep_state & EP_GETTING_NO_STREAMS) {
3031                         xhci_warn(xhci, "WARN Can't disable streams for "
3032                                         "endpoint 0x%x, "
3033                                         "streams are being disabled already\n",
3034                                         eps[i]->desc.bEndpointAddress);
3035                         return 0;
3036                 }
3037                 /* Are there actually any streams to free? */
3038                 if (!(ep_state & EP_HAS_STREAMS) &&
3039                                 !(ep_state & EP_GETTING_STREAMS)) {
3040                         xhci_warn(xhci, "WARN Can't disable streams for "
3041                                         "endpoint 0x%x, "
3042                                         "streams are already disabled!\n",
3043                                         eps[i]->desc.bEndpointAddress);
3044                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3045                                         "with non-streams endpoint\n");
3046                         return 0;
3047                 }
3048                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3049         }
3050         return changed_ep_bitmask;
3051 }
3052
3053 /*
3054  * The USB device drivers use this function (through the HCD interface in USB
3055  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3056  * coordinate mass storage command queueing across multiple endpoints (basically
3057  * a stream ID == a task ID).
3058  *
3059  * Setting up streams involves allocating the same size stream context array
3060  * for each endpoint and issuing a configure endpoint command for all endpoints.
3061  *
3062  * Don't allow the call to succeed if one endpoint only supports one stream
3063  * (which means it doesn't support streams at all).
3064  *
3065  * Drivers may get less stream IDs than they asked for, if the host controller
3066  * hardware or endpoints claim they can't support the number of requested
3067  * stream IDs.
3068  */
3069 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3070                 struct usb_host_endpoint **eps, unsigned int num_eps,
3071                 unsigned int num_streams, gfp_t mem_flags)
3072 {
3073         int i, ret;
3074         struct xhci_hcd *xhci;
3075         struct xhci_virt_device *vdev;
3076         struct xhci_command *config_cmd;
3077         struct xhci_input_control_ctx *ctrl_ctx;
3078         unsigned int ep_index;
3079         unsigned int num_stream_ctxs;
3080         unsigned int max_packet;
3081         unsigned long flags;
3082         u32 changed_ep_bitmask = 0;
3083
3084         if (!eps)
3085                 return -EINVAL;
3086
3087         /* Add one to the number of streams requested to account for
3088          * stream 0 that is reserved for xHCI usage.
3089          */
3090         num_streams += 1;
3091         xhci = hcd_to_xhci(hcd);
3092         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3093                         num_streams);
3094
3095         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3096         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3097                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3098                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3099                 return -ENOSYS;
3100         }
3101
3102         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3103         if (!config_cmd)
3104                 return -ENOMEM;
3105
3106         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3107         if (!ctrl_ctx) {
3108                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3109                                 __func__);
3110                 xhci_free_command(xhci, config_cmd);
3111                 return -ENOMEM;
3112         }
3113
3114         /* Check to make sure all endpoints are not already configured for
3115          * streams.  While we're at it, find the maximum number of streams that
3116          * all the endpoints will support and check for duplicate endpoints.
3117          */
3118         spin_lock_irqsave(&xhci->lock, flags);
3119         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3120                         num_eps, &num_streams, &changed_ep_bitmask);
3121         if (ret < 0) {
3122                 xhci_free_command(xhci, config_cmd);
3123                 spin_unlock_irqrestore(&xhci->lock, flags);
3124                 return ret;
3125         }
3126         if (num_streams <= 1) {
3127                 xhci_warn(xhci, "WARN: endpoints can't handle "
3128                                 "more than one stream.\n");
3129                 xhci_free_command(xhci, config_cmd);
3130                 spin_unlock_irqrestore(&xhci->lock, flags);
3131                 return -EINVAL;
3132         }
3133         vdev = xhci->devs[udev->slot_id];
3134         /* Mark each endpoint as being in transition, so
3135          * xhci_urb_enqueue() will reject all URBs.
3136          */
3137         for (i = 0; i < num_eps; i++) {
3138                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3139                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3140         }
3141         spin_unlock_irqrestore(&xhci->lock, flags);
3142
3143         /* Setup internal data structures and allocate HW data structures for
3144          * streams (but don't install the HW structures in the input context
3145          * until we're sure all memory allocation succeeded).
3146          */
3147         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3148         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3149                         num_stream_ctxs, num_streams);
3150
3151         for (i = 0; i < num_eps; i++) {
3152                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3153                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3154                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3155                                 num_stream_ctxs,
3156                                 num_streams,
3157                                 max_packet, mem_flags);
3158                 if (!vdev->eps[ep_index].stream_info)
3159                         goto cleanup;
3160                 /* Set maxPstreams in endpoint context and update deq ptr to
3161                  * point to stream context array. FIXME
3162                  */
3163         }
3164
3165         /* Set up the input context for a configure endpoint command. */
3166         for (i = 0; i < num_eps; i++) {
3167                 struct xhci_ep_ctx *ep_ctx;
3168
3169                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3170                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3171
3172                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3173                                 vdev->out_ctx, ep_index);
3174                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3175                                 vdev->eps[ep_index].stream_info);
3176         }
3177         /* Tell the HW to drop its old copy of the endpoint context info
3178          * and add the updated copy from the input context.
3179          */
3180         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3181                         vdev->out_ctx, ctrl_ctx,
3182                         changed_ep_bitmask, changed_ep_bitmask);
3183
3184         /* Issue and wait for the configure endpoint command */
3185         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3186                         false, false);
3187
3188         /* xHC rejected the configure endpoint command for some reason, so we
3189          * leave the old ring intact and free our internal streams data
3190          * structure.
3191          */
3192         if (ret < 0)
3193                 goto cleanup;
3194
3195         spin_lock_irqsave(&xhci->lock, flags);
3196         for (i = 0; i < num_eps; i++) {
3197                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3198                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3199                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3200                          udev->slot_id, ep_index);
3201                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3202         }
3203         xhci_free_command(xhci, config_cmd);
3204         spin_unlock_irqrestore(&xhci->lock, flags);
3205
3206         /* Subtract 1 for stream 0, which drivers can't use */
3207         return num_streams - 1;
3208
3209 cleanup:
3210         /* If it didn't work, free the streams! */
3211         for (i = 0; i < num_eps; i++) {
3212                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3213                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3214                 vdev->eps[ep_index].stream_info = NULL;
3215                 /* FIXME Unset maxPstreams in endpoint context and
3216                  * update deq ptr to point to normal string ring.
3217                  */
3218                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3219                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3220                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3221         }
3222         xhci_free_command(xhci, config_cmd);
3223         return -ENOMEM;
3224 }
3225
3226 /* Transition the endpoint from using streams to being a "normal" endpoint
3227  * without streams.
3228  *
3229  * Modify the endpoint context state, submit a configure endpoint command,
3230  * and free all endpoint rings for streams if that completes successfully.
3231  */
3232 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3233                 struct usb_host_endpoint **eps, unsigned int num_eps,
3234                 gfp_t mem_flags)
3235 {
3236         int i, ret;
3237         struct xhci_hcd *xhci;
3238         struct xhci_virt_device *vdev;
3239         struct xhci_command *command;
3240         struct xhci_input_control_ctx *ctrl_ctx;
3241         unsigned int ep_index;
3242         unsigned long flags;
3243         u32 changed_ep_bitmask;
3244
3245         xhci = hcd_to_xhci(hcd);
3246         vdev = xhci->devs[udev->slot_id];
3247
3248         /* Set up a configure endpoint command to remove the streams rings */
3249         spin_lock_irqsave(&xhci->lock, flags);
3250         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3251                         udev, eps, num_eps);
3252         if (changed_ep_bitmask == 0) {
3253                 spin_unlock_irqrestore(&xhci->lock, flags);
3254                 return -EINVAL;
3255         }
3256
3257         /* Use the xhci_command structure from the first endpoint.  We may have
3258          * allocated too many, but the driver may call xhci_free_streams() for
3259          * each endpoint it grouped into one call to xhci_alloc_streams().
3260          */
3261         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3262         command = vdev->eps[ep_index].stream_info->free_streams_command;
3263         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3264         if (!ctrl_ctx) {
3265                 spin_unlock_irqrestore(&xhci->lock, flags);
3266                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3267                                 __func__);
3268                 return -EINVAL;
3269         }
3270
3271         for (i = 0; i < num_eps; i++) {
3272                 struct xhci_ep_ctx *ep_ctx;
3273
3274                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3275                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3276                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3277                         EP_GETTING_NO_STREAMS;
3278
3279                 xhci_endpoint_copy(xhci, command->in_ctx,
3280                                 vdev->out_ctx, ep_index);
3281                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3282                                 &vdev->eps[ep_index]);
3283         }
3284         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3285                         vdev->out_ctx, ctrl_ctx,
3286                         changed_ep_bitmask, changed_ep_bitmask);
3287         spin_unlock_irqrestore(&xhci->lock, flags);
3288
3289         /* Issue and wait for the configure endpoint command,
3290          * which must succeed.
3291          */
3292         ret = xhci_configure_endpoint(xhci, udev, command,
3293                         false, true);
3294
3295         /* xHC rejected the configure endpoint command for some reason, so we
3296          * leave the streams rings intact.
3297          */
3298         if (ret < 0)
3299                 return ret;
3300
3301         spin_lock_irqsave(&xhci->lock, flags);
3302         for (i = 0; i < num_eps; i++) {
3303                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3304                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3305                 vdev->eps[ep_index].stream_info = NULL;
3306                 /* FIXME Unset maxPstreams in endpoint context and
3307                  * update deq ptr to point to normal string ring.
3308                  */
3309                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3310                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3311         }
3312         spin_unlock_irqrestore(&xhci->lock, flags);
3313
3314         return 0;
3315 }
3316
3317 /*
3318  * Deletes endpoint resources for endpoints that were active before a Reset
3319  * Device command, or a Disable Slot command.  The Reset Device command leaves
3320  * the control endpoint intact, whereas the Disable Slot command deletes it.
3321  *
3322  * Must be called with xhci->lock held.
3323  */
3324 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3325         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3326 {
3327         int i;
3328         unsigned int num_dropped_eps = 0;
3329         unsigned int drop_flags = 0;
3330
3331         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3332                 if (virt_dev->eps[i].ring) {
3333                         drop_flags |= 1 << i;
3334                         num_dropped_eps++;
3335                 }
3336         }
3337         xhci->num_active_eps -= num_dropped_eps;
3338         if (num_dropped_eps)
3339                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3340                                 "Dropped %u ep ctxs, flags = 0x%x, "
3341                                 "%u now active.",
3342                                 num_dropped_eps, drop_flags,
3343                                 xhci->num_active_eps);
3344 }
3345
3346 /*
3347  * This submits a Reset Device Command, which will set the device state to 0,
3348  * set the device address to 0, and disable all the endpoints except the default
3349  * control endpoint.  The USB core should come back and call
3350  * xhci_address_device(), and then re-set up the configuration.  If this is
3351  * called because of a usb_reset_and_verify_device(), then the old alternate
3352  * settings will be re-installed through the normal bandwidth allocation
3353  * functions.
3354  *
3355  * Wait for the Reset Device command to finish.  Remove all structures
3356  * associated with the endpoints that were disabled.  Clear the input device
3357  * structure? Reset the control endpoint 0 max packet size?
3358  *
3359  * If the virt_dev to be reset does not exist or does not match the udev,
3360  * it means the device is lost, possibly due to the xHC restore error and
3361  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3362  * re-allocate the device.
3363  */
3364 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3365                 struct usb_device *udev)
3366 {
3367         int ret, i;
3368         unsigned long flags;
3369         struct xhci_hcd *xhci;
3370         unsigned int slot_id;
3371         struct xhci_virt_device *virt_dev;
3372         struct xhci_command *reset_device_cmd;
3373         int last_freed_endpoint;
3374         struct xhci_slot_ctx *slot_ctx;
3375         int old_active_eps = 0;
3376
3377         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3378         if (ret <= 0)
3379                 return ret;
3380         xhci = hcd_to_xhci(hcd);
3381         slot_id = udev->slot_id;
3382         virt_dev = xhci->devs[slot_id];
3383         if (!virt_dev) {
3384                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3385                                 "not exist. Re-allocate the device\n", slot_id);
3386                 ret = xhci_alloc_dev(hcd, udev);
3387                 if (ret == 1)
3388                         return 0;
3389                 else
3390                         return -EINVAL;
3391         }
3392
3393         if (virt_dev->tt_info)
3394                 old_active_eps = virt_dev->tt_info->active_eps;
3395
3396         if (virt_dev->udev != udev) {
3397                 /* If the virt_dev and the udev does not match, this virt_dev
3398                  * may belong to another udev.
3399                  * Re-allocate the device.
3400                  */
3401                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3402                                 "not match the udev. Re-allocate the device\n",
3403                                 slot_id);
3404                 ret = xhci_alloc_dev(hcd, udev);
3405                 if (ret == 1)
3406                         return 0;
3407                 else
3408                         return -EINVAL;
3409         }
3410
3411         /* If device is not setup, there is no point in resetting it */
3412         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3413         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3414                                                 SLOT_STATE_DISABLED)
3415                 return 0;
3416
3417         trace_xhci_discover_or_reset_device(slot_ctx);
3418
3419         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3420         /* Allocate the command structure that holds the struct completion.
3421          * Assume we're in process context, since the normal device reset
3422          * process has to wait for the device anyway.  Storage devices are
3423          * reset as part of error handling, so use GFP_NOIO instead of
3424          * GFP_KERNEL.
3425          */
3426         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3427         if (!reset_device_cmd) {
3428                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3429                 return -ENOMEM;
3430         }
3431
3432         /* Attempt to submit the Reset Device command to the command ring */
3433         spin_lock_irqsave(&xhci->lock, flags);
3434
3435         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3436         if (ret) {
3437                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3438                 spin_unlock_irqrestore(&xhci->lock, flags);
3439                 goto command_cleanup;
3440         }
3441         xhci_ring_cmd_db(xhci);
3442         spin_unlock_irqrestore(&xhci->lock, flags);
3443
3444         /* Wait for the Reset Device command to finish */
3445         wait_for_completion(reset_device_cmd->completion);
3446
3447         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3448          * unless we tried to reset a slot ID that wasn't enabled,
3449          * or the device wasn't in the addressed or configured state.
3450          */
3451         ret = reset_device_cmd->status;
3452         switch (ret) {
3453         case COMP_COMMAND_ABORTED:
3454         case COMP_COMMAND_RING_STOPPED:
3455                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3456                 ret = -ETIME;
3457                 goto command_cleanup;
3458         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3459         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3460                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3461                                 slot_id,
3462                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3463                 xhci_dbg(xhci, "Not freeing device rings.\n");
3464                 /* Don't treat this as an error.  May change my mind later. */
3465                 ret = 0;
3466                 goto command_cleanup;
3467         case COMP_SUCCESS:
3468                 xhci_dbg(xhci, "Successful reset device command.\n");
3469                 break;
3470         default:
3471                 if (xhci_is_vendor_info_code(xhci, ret))
3472                         break;
3473                 xhci_warn(xhci, "Unknown completion code %u for "
3474                                 "reset device command.\n", ret);
3475                 ret = -EINVAL;
3476                 goto command_cleanup;
3477         }
3478
3479         /* Free up host controller endpoint resources */
3480         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3481                 spin_lock_irqsave(&xhci->lock, flags);
3482                 /* Don't delete the default control endpoint resources */
3483                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3484                 spin_unlock_irqrestore(&xhci->lock, flags);
3485         }
3486
3487         /* Everything but endpoint 0 is disabled, so free the rings. */
3488         last_freed_endpoint = 1;
3489         for (i = 1; i < 31; i++) {
3490                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3491
3492                 if (ep->ep_state & EP_HAS_STREAMS) {
3493                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3494                                         xhci_get_endpoint_address(i));
3495                         xhci_free_stream_info(xhci, ep->stream_info);
3496                         ep->stream_info = NULL;
3497                         ep->ep_state &= ~EP_HAS_STREAMS;
3498                 }
3499
3500                 if (ep->ring) {
3501                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3502                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3503                         last_freed_endpoint = i;
3504                 }
3505                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3506                         xhci_drop_ep_from_interval_table(xhci,
3507                                         &virt_dev->eps[i].bw_info,
3508                                         virt_dev->bw_table,
3509                                         udev,
3510                                         &virt_dev->eps[i],
3511                                         virt_dev->tt_info);
3512                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3513         }
3514         /* If necessary, update the number of active TTs on this root port */
3515         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3516         ret = 0;
3517
3518 command_cleanup:
3519         xhci_free_command(xhci, reset_device_cmd);
3520         return ret;
3521 }
3522
3523 /*
3524  * At this point, the struct usb_device is about to go away, the device has
3525  * disconnected, and all traffic has been stopped and the endpoints have been
3526  * disabled.  Free any HC data structures associated with that device.
3527  */
3528 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3529 {
3530         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3531         struct xhci_virt_device *virt_dev;
3532         struct xhci_slot_ctx *slot_ctx;
3533         int i, ret;
3534         struct xhci_command *command;
3535
3536         xhci_debugfs_remove_slot(xhci, udev->slot_id);
3537
3538         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3539         if (!command)
3540                 return;
3541
3542 #ifndef CONFIG_USB_DEFAULT_PERSIST
3543         /*
3544          * We called pm_runtime_get_noresume when the device was attached.
3545          * Decrement the counter here to allow controller to runtime suspend
3546          * if no devices remain.
3547          */
3548         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3549                 pm_runtime_put_noidle(hcd->self.controller);
3550 #endif
3551
3552         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3553         /* If the host is halted due to driver unload, we still need to free the
3554          * device.
3555          */
3556         if (ret <= 0 && ret != -ENODEV) {
3557                 kfree(command);
3558                 return;
3559         }
3560
3561         virt_dev = xhci->devs[udev->slot_id];
3562         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3563         trace_xhci_free_dev(slot_ctx);
3564
3565         /* Stop any wayward timer functions (which may grab the lock) */
3566         for (i = 0; i < 31; i++) {
3567                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3568                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3569         }
3570
3571         xhci_disable_slot(xhci, command, udev->slot_id);
3572         /*
3573          * Event command completion handler will free any data structures
3574          * associated with the slot.  XXX Can free sleep?
3575          */
3576 }
3577
3578 int xhci_disable_slot(struct xhci_hcd *xhci, struct xhci_command *command,
3579                         u32 slot_id)
3580 {
3581         unsigned long flags;
3582         u32 state;
3583         int ret = 0;
3584         struct xhci_virt_device *virt_dev;
3585
3586         virt_dev = xhci->devs[slot_id];
3587         if (!virt_dev)
3588                 return -EINVAL;
3589         if (!command)
3590                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3591         if (!command)
3592                 return -ENOMEM;
3593
3594         spin_lock_irqsave(&xhci->lock, flags);
3595         /* Don't disable the slot if the host controller is dead. */
3596         state = readl(&xhci->op_regs->status);
3597         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3598                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3599                 xhci_free_virt_device(xhci, slot_id);
3600                 spin_unlock_irqrestore(&xhci->lock, flags);
3601                 kfree(command);
3602                 return ret;
3603         }
3604
3605         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3606                                 slot_id);
3607         if (ret) {
3608                 spin_unlock_irqrestore(&xhci->lock, flags);
3609                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3610                 return ret;
3611         }
3612         xhci_ring_cmd_db(xhci);
3613         spin_unlock_irqrestore(&xhci->lock, flags);
3614         return ret;
3615 }
3616
3617 /*
3618  * Checks if we have enough host controller resources for the default control
3619  * endpoint.
3620  *
3621  * Must be called with xhci->lock held.
3622  */
3623 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3624 {
3625         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3626                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3627                                 "Not enough ep ctxs: "
3628                                 "%u active, need to add 1, limit is %u.",
3629                                 xhci->num_active_eps, xhci->limit_active_eps);
3630                 return -ENOMEM;
3631         }
3632         xhci->num_active_eps += 1;
3633         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3634                         "Adding 1 ep ctx, %u now active.",
3635                         xhci->num_active_eps);
3636         return 0;
3637 }
3638
3639
3640 /*
3641  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3642  * timed out, or allocating memory failed.  Returns 1 on success.
3643  */
3644 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3645 {
3646         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3647         struct xhci_virt_device *vdev;
3648         struct xhci_slot_ctx *slot_ctx;
3649         unsigned long flags;
3650         int ret, slot_id;
3651         struct xhci_command *command;
3652
3653         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3654         if (!command)
3655                 return 0;
3656
3657         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3658         mutex_lock(&xhci->mutex);
3659         spin_lock_irqsave(&xhci->lock, flags);
3660         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3661         if (ret) {
3662                 spin_unlock_irqrestore(&xhci->lock, flags);
3663                 mutex_unlock(&xhci->mutex);
3664                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3665                 xhci_free_command(xhci, command);
3666                 return 0;
3667         }
3668         xhci_ring_cmd_db(xhci);
3669         spin_unlock_irqrestore(&xhci->lock, flags);
3670
3671         wait_for_completion(command->completion);
3672         slot_id = command->slot_id;
3673         mutex_unlock(&xhci->mutex);
3674
3675         if (!slot_id || command->status != COMP_SUCCESS) {
3676                 xhci_err(xhci, "Error while assigning device slot ID\n");
3677                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3678                                 HCS_MAX_SLOTS(
3679                                         readl(&xhci->cap_regs->hcs_params1)));
3680                 xhci_free_command(xhci, command);
3681                 return 0;
3682         }
3683
3684         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3685                 spin_lock_irqsave(&xhci->lock, flags);
3686                 ret = xhci_reserve_host_control_ep_resources(xhci);
3687                 if (ret) {
3688                         spin_unlock_irqrestore(&xhci->lock, flags);
3689                         xhci_warn(xhci, "Not enough host resources, "
3690                                         "active endpoint contexts = %u\n",
3691                                         xhci->num_active_eps);
3692                         goto disable_slot;
3693                 }
3694                 spin_unlock_irqrestore(&xhci->lock, flags);
3695         }
3696         /* Use GFP_NOIO, since this function can be called from
3697          * xhci_discover_or_reset_device(), which may be called as part of
3698          * mass storage driver error handling.
3699          */
3700         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3701                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3702                 goto disable_slot;
3703         }
3704         vdev = xhci->devs[slot_id];
3705         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3706         trace_xhci_alloc_dev(slot_ctx);
3707
3708         udev->slot_id = slot_id;
3709
3710         xhci_debugfs_create_slot(xhci, slot_id);
3711
3712 #ifndef CONFIG_USB_DEFAULT_PERSIST
3713         /*
3714          * If resetting upon resume, we can't put the controller into runtime
3715          * suspend if there is a device attached.
3716          */
3717         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3718                 pm_runtime_get_noresume(hcd->self.controller);
3719 #endif
3720
3721
3722         xhci_free_command(xhci, command);
3723         /* Is this a LS or FS device under a HS hub? */
3724         /* Hub or peripherial? */
3725         return 1;
3726
3727 disable_slot:
3728         /* Disable slot, if we can do it without mem alloc */
3729         kfree(command->completion);
3730         command->completion = NULL;
3731         command->status = 0;
3732         return xhci_disable_slot(xhci, command, udev->slot_id);
3733 }
3734
3735 /*
3736  * Issue an Address Device command and optionally send a corresponding
3737  * SetAddress request to the device.
3738  */
3739 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3740                              enum xhci_setup_dev setup)
3741 {
3742         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3743         unsigned long flags;
3744         struct xhci_virt_device *virt_dev;
3745         int ret = 0;
3746         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3747         struct xhci_slot_ctx *slot_ctx;
3748         struct xhci_input_control_ctx *ctrl_ctx;
3749         u64 temp_64;
3750         struct xhci_command *command = NULL;
3751
3752         mutex_lock(&xhci->mutex);
3753
3754         if (xhci->xhc_state) {  /* dying, removing or halted */
3755                 ret = -ESHUTDOWN;
3756                 goto out;
3757         }
3758
3759         if (!udev->slot_id) {
3760                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3761                                 "Bad Slot ID %d", udev->slot_id);
3762                 ret = -EINVAL;
3763                 goto out;
3764         }
3765
3766         virt_dev = xhci->devs[udev->slot_id];
3767
3768         if (WARN_ON(!virt_dev)) {
3769                 /*
3770                  * In plug/unplug torture test with an NEC controller,
3771                  * a zero-dereference was observed once due to virt_dev = 0.
3772                  * Print useful debug rather than crash if it is observed again!
3773                  */
3774                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3775                         udev->slot_id);
3776                 ret = -EINVAL;
3777                 goto out;
3778         }
3779         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3780         trace_xhci_setup_device_slot(slot_ctx);
3781
3782         if (setup == SETUP_CONTEXT_ONLY) {
3783                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3784                     SLOT_STATE_DEFAULT) {
3785                         xhci_dbg(xhci, "Slot already in default state\n");
3786                         goto out;
3787                 }
3788         }
3789
3790         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
3791         if (!command) {
3792                 ret = -ENOMEM;
3793                 goto out;
3794         }
3795
3796         command->in_ctx = virt_dev->in_ctx;
3797
3798         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3799         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3800         if (!ctrl_ctx) {
3801                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3802                                 __func__);
3803                 ret = -EINVAL;
3804                 goto out;
3805         }
3806         /*
3807          * If this is the first Set Address since device plug-in or
3808          * virt_device realloaction after a resume with an xHCI power loss,
3809          * then set up the slot context.
3810          */
3811         if (!slot_ctx->dev_info)
3812                 xhci_setup_addressable_virt_dev(xhci, udev);
3813         /* Otherwise, update the control endpoint ring enqueue pointer. */
3814         else
3815                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3816         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3817         ctrl_ctx->drop_flags = 0;
3818
3819         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3820                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3821
3822         spin_lock_irqsave(&xhci->lock, flags);
3823         trace_xhci_setup_device(virt_dev);
3824         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3825                                         udev->slot_id, setup);
3826         if (ret) {
3827                 spin_unlock_irqrestore(&xhci->lock, flags);
3828                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3829                                 "FIXME: allocate a command ring segment");
3830                 goto out;
3831         }
3832         xhci_ring_cmd_db(xhci);
3833         spin_unlock_irqrestore(&xhci->lock, flags);
3834
3835         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3836         wait_for_completion(command->completion);
3837
3838         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3839          * the SetAddress() "recovery interval" required by USB and aborting the
3840          * command on a timeout.
3841          */
3842         switch (command->status) {
3843         case COMP_COMMAND_ABORTED:
3844         case COMP_COMMAND_RING_STOPPED:
3845                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3846                 ret = -ETIME;
3847                 break;
3848         case COMP_CONTEXT_STATE_ERROR:
3849         case COMP_SLOT_NOT_ENABLED_ERROR:
3850                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3851                          act, udev->slot_id);
3852                 ret = -EINVAL;
3853                 break;
3854         case COMP_USB_TRANSACTION_ERROR:
3855                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3856                 ret = -EPROTO;
3857                 break;
3858         case COMP_INCOMPATIBLE_DEVICE_ERROR:
3859                 dev_warn(&udev->dev,
3860                          "ERROR: Incompatible device for setup %s command\n", act);
3861                 ret = -ENODEV;
3862                 break;
3863         case COMP_SUCCESS:
3864                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3865                                "Successful setup %s command", act);
3866                 break;
3867         default:
3868                 xhci_err(xhci,
3869                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3870                          act, command->status);
3871                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3872                 ret = -EINVAL;
3873                 break;
3874         }
3875         if (ret)
3876                 goto out;
3877         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3878         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3879                         "Op regs DCBAA ptr = %#016llx", temp_64);
3880         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3881                 "Slot ID %d dcbaa entry @%p = %#016llx",
3882                 udev->slot_id,
3883                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3884                 (unsigned long long)
3885                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3886         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3887                         "Output Context DMA address = %#08llx",
3888                         (unsigned long long)virt_dev->out_ctx->dma);
3889         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3890                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3891         /*
3892          * USB core uses address 1 for the roothubs, so we add one to the
3893          * address given back to us by the HC.
3894          */
3895         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3896                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3897         /* Zero the input context control for later use */
3898         ctrl_ctx->add_flags = 0;
3899         ctrl_ctx->drop_flags = 0;
3900
3901         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3902                        "Internal device address = %d",
3903                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3904 out:
3905         mutex_unlock(&xhci->mutex);
3906         if (command) {
3907                 kfree(command->completion);
3908                 kfree(command);
3909         }
3910         return ret;
3911 }
3912
3913 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3914 {
3915         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3916 }
3917
3918 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3919 {
3920         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3921 }
3922
3923 /*
3924  * Transfer the port index into real index in the HW port status
3925  * registers. Caculate offset between the port's PORTSC register
3926  * and port status base. Divide the number of per port register
3927  * to get the real index. The raw port number bases 1.
3928  */
3929 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3930 {
3931         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3932         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3933         __le32 __iomem *addr;
3934         int raw_port;
3935
3936         if (hcd->speed < HCD_USB3)
3937                 addr = xhci->usb2_ports[port1 - 1];
3938         else
3939                 addr = xhci->usb3_ports[port1 - 1];
3940
3941         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3942         return raw_port;
3943 }
3944
3945 /*
3946  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3947  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3948  */
3949 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3950                         struct usb_device *udev, u16 max_exit_latency)
3951 {
3952         struct xhci_virt_device *virt_dev;
3953         struct xhci_command *command;
3954         struct xhci_input_control_ctx *ctrl_ctx;
3955         struct xhci_slot_ctx *slot_ctx;
3956         unsigned long flags;
3957         int ret;
3958
3959         spin_lock_irqsave(&xhci->lock, flags);
3960
3961         virt_dev = xhci->devs[udev->slot_id];
3962
3963         /*
3964          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
3965          * xHC was re-initialized. Exit latency will be set later after
3966          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
3967          */
3968
3969         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
3970                 spin_unlock_irqrestore(&xhci->lock, flags);
3971                 return 0;
3972         }
3973
3974         /* Attempt to issue an Evaluate Context command to change the MEL. */
3975         command = xhci->lpm_command;
3976         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3977         if (!ctrl_ctx) {
3978                 spin_unlock_irqrestore(&xhci->lock, flags);
3979                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3980                                 __func__);
3981                 return -ENOMEM;
3982         }
3983
3984         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
3985         spin_unlock_irqrestore(&xhci->lock, flags);
3986
3987         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3988         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
3989         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
3990         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
3991         slot_ctx->dev_state = 0;
3992
3993         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
3994                         "Set up evaluate context for LPM MEL change.");
3995
3996         /* Issue and wait for the evaluate context command. */
3997         ret = xhci_configure_endpoint(xhci, udev, command,
3998                         true, true);
3999
4000         if (!ret) {
4001                 spin_lock_irqsave(&xhci->lock, flags);
4002                 virt_dev->current_mel = max_exit_latency;
4003                 spin_unlock_irqrestore(&xhci->lock, flags);
4004         }
4005         return ret;
4006 }
4007
4008 #ifdef CONFIG_PM
4009
4010 /* BESL to HIRD Encoding array for USB2 LPM */
4011 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4012         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4013
4014 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4015 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4016                                         struct usb_device *udev)
4017 {
4018         int u2del, besl, besl_host;
4019         int besl_device = 0;
4020         u32 field;
4021
4022         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4023         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4024
4025         if (field & USB_BESL_SUPPORT) {
4026                 for (besl_host = 0; besl_host < 16; besl_host++) {
4027                         if (xhci_besl_encoding[besl_host] >= u2del)
4028                                 break;
4029                 }
4030                 /* Use baseline BESL value as default */
4031                 if (field & USB_BESL_BASELINE_VALID)
4032                         besl_device = USB_GET_BESL_BASELINE(field);
4033                 else if (field & USB_BESL_DEEP_VALID)
4034                         besl_device = USB_GET_BESL_DEEP(field);
4035         } else {
4036                 if (u2del <= 50)
4037                         besl_host = 0;
4038                 else
4039                         besl_host = (u2del - 51) / 75 + 1;
4040         }
4041
4042         besl = besl_host + besl_device;
4043         if (besl > 15)
4044                 besl = 15;
4045
4046         return besl;
4047 }
4048
4049 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4050 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4051 {
4052         u32 field;
4053         int l1;
4054         int besld = 0;
4055         int hirdm = 0;
4056
4057         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4058
4059         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4060         l1 = udev->l1_params.timeout / 256;
4061
4062         /* device has preferred BESLD */
4063         if (field & USB_BESL_DEEP_VALID) {
4064                 besld = USB_GET_BESL_DEEP(field);
4065                 hirdm = 1;
4066         }
4067
4068         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4069 }
4070
4071 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4072                         struct usb_device *udev, int enable)
4073 {
4074         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4075         __le32 __iomem  **port_array;
4076         __le32 __iomem  *pm_addr, *hlpm_addr;
4077         u32             pm_val, hlpm_val, field;
4078         unsigned int    port_num;
4079         unsigned long   flags;
4080         int             hird, exit_latency;
4081         int             ret;
4082
4083         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4084                         !udev->lpm_capable)
4085                 return -EPERM;
4086
4087         if (!udev->parent || udev->parent->parent ||
4088                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4089                 return -EPERM;
4090
4091         if (udev->usb2_hw_lpm_capable != 1)
4092                 return -EPERM;
4093
4094         spin_lock_irqsave(&xhci->lock, flags);
4095
4096         port_array = xhci->usb2_ports;
4097         port_num = udev->portnum - 1;
4098         pm_addr = port_array[port_num] + PORTPMSC;
4099         pm_val = readl(pm_addr);
4100         hlpm_addr = port_array[port_num] + PORTHLPMC;
4101         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4102
4103         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4104                         enable ? "enable" : "disable", port_num + 1);
4105
4106         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4107                 /* Host supports BESL timeout instead of HIRD */
4108                 if (udev->usb2_hw_lpm_besl_capable) {
4109                         /* if device doesn't have a preferred BESL value use a
4110                          * default one which works with mixed HIRD and BESL
4111                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4112                          */
4113                         if ((field & USB_BESL_SUPPORT) &&
4114                             (field & USB_BESL_BASELINE_VALID))
4115                                 hird = USB_GET_BESL_BASELINE(field);
4116                         else
4117                                 hird = udev->l1_params.besl;
4118
4119                         exit_latency = xhci_besl_encoding[hird];
4120                         spin_unlock_irqrestore(&xhci->lock, flags);
4121
4122                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4123                          * input context for link powermanagement evaluate
4124                          * context commands. It is protected by hcd->bandwidth
4125                          * mutex and is shared by all devices. We need to set
4126                          * the max ext latency in USB 2 BESL LPM as well, so
4127                          * use the same mutex and xhci_change_max_exit_latency()
4128                          */
4129                         mutex_lock(hcd->bandwidth_mutex);
4130                         ret = xhci_change_max_exit_latency(xhci, udev,
4131                                                            exit_latency);
4132                         mutex_unlock(hcd->bandwidth_mutex);
4133
4134                         if (ret < 0)
4135                                 return ret;
4136                         spin_lock_irqsave(&xhci->lock, flags);
4137
4138                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4139                         writel(hlpm_val, hlpm_addr);
4140                         /* flush write */
4141                         readl(hlpm_addr);
4142                 } else {
4143                         hird = xhci_calculate_hird_besl(xhci, udev);
4144                 }
4145
4146                 pm_val &= ~PORT_HIRD_MASK;
4147                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4148                 writel(pm_val, pm_addr);
4149                 pm_val = readl(pm_addr);
4150                 pm_val |= PORT_HLE;
4151                 writel(pm_val, pm_addr);
4152                 /* flush write */
4153                 readl(pm_addr);
4154         } else {
4155                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4156                 writel(pm_val, pm_addr);
4157                 /* flush write */
4158                 readl(pm_addr);
4159                 if (udev->usb2_hw_lpm_besl_capable) {
4160                         spin_unlock_irqrestore(&xhci->lock, flags);
4161                         mutex_lock(hcd->bandwidth_mutex);
4162                         xhci_change_max_exit_latency(xhci, udev, 0);
4163                         mutex_unlock(hcd->bandwidth_mutex);
4164                         return 0;
4165                 }
4166         }
4167
4168         spin_unlock_irqrestore(&xhci->lock, flags);
4169         return 0;
4170 }
4171
4172 /* check if a usb2 port supports a given extened capability protocol
4173  * only USB2 ports extended protocol capability values are cached.
4174  * Return 1 if capability is supported
4175  */
4176 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4177                                            unsigned capability)
4178 {
4179         u32 port_offset, port_count;
4180         int i;
4181
4182         for (i = 0; i < xhci->num_ext_caps; i++) {
4183                 if (xhci->ext_caps[i] & capability) {
4184                         /* port offsets starts at 1 */
4185                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4186                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4187                         if (port >= port_offset &&
4188                             port < port_offset + port_count)
4189                                 return 1;
4190                 }
4191         }
4192         return 0;
4193 }
4194
4195 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4196 {
4197         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4198         int             portnum = udev->portnum - 1;
4199
4200         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4201                         !udev->lpm_capable)
4202                 return 0;
4203
4204         /* we only support lpm for non-hub device connected to root hub yet */
4205         if (!udev->parent || udev->parent->parent ||
4206                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4207                 return 0;
4208
4209         if (xhci->hw_lpm_support == 1 &&
4210                         xhci_check_usb2_port_capability(
4211                                 xhci, portnum, XHCI_HLC)) {
4212                 udev->usb2_hw_lpm_capable = 1;
4213                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4214                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4215                 if (xhci_check_usb2_port_capability(xhci, portnum,
4216                                         XHCI_BLC))
4217                         udev->usb2_hw_lpm_besl_capable = 1;
4218         }
4219
4220         return 0;
4221 }
4222
4223 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4224
4225 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4226 static unsigned long long xhci_service_interval_to_ns(
4227                 struct usb_endpoint_descriptor *desc)
4228 {
4229         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4230 }
4231
4232 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4233                 enum usb3_link_state state)
4234 {
4235         unsigned long long sel;
4236         unsigned long long pel;
4237         unsigned int max_sel_pel;
4238         char *state_name;
4239
4240         switch (state) {
4241         case USB3_LPM_U1:
4242                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4243                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4244                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4245                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4246                 state_name = "U1";
4247                 break;
4248         case USB3_LPM_U2:
4249                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4250                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4251                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4252                 state_name = "U2";
4253                 break;
4254         default:
4255                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4256                                 __func__);
4257                 return USB3_LPM_DISABLED;
4258         }
4259
4260         if (sel <= max_sel_pel && pel <= max_sel_pel)
4261                 return USB3_LPM_DEVICE_INITIATED;
4262
4263         if (sel > max_sel_pel)
4264                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4265                                 "due to long SEL %llu ms\n",
4266                                 state_name, sel);
4267         else
4268                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4269                                 "due to long PEL %llu ms\n",
4270                                 state_name, pel);
4271         return USB3_LPM_DISABLED;
4272 }
4273
4274 /* The U1 timeout should be the maximum of the following values:
4275  *  - For control endpoints, U1 system exit latency (SEL) * 3
4276  *  - For bulk endpoints, U1 SEL * 5
4277  *  - For interrupt endpoints:
4278  *    - Notification EPs, U1 SEL * 3
4279  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4280  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4281  */
4282 static unsigned long long xhci_calculate_intel_u1_timeout(
4283                 struct usb_device *udev,
4284                 struct usb_endpoint_descriptor *desc)
4285 {
4286         unsigned long long timeout_ns;
4287         int ep_type;
4288         int intr_type;
4289
4290         ep_type = usb_endpoint_type(desc);
4291         switch (ep_type) {
4292         case USB_ENDPOINT_XFER_CONTROL:
4293                 timeout_ns = udev->u1_params.sel * 3;
4294                 break;
4295         case USB_ENDPOINT_XFER_BULK:
4296                 timeout_ns = udev->u1_params.sel * 5;
4297                 break;
4298         case USB_ENDPOINT_XFER_INT:
4299                 intr_type = usb_endpoint_interrupt_type(desc);
4300                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4301                         timeout_ns = udev->u1_params.sel * 3;
4302                         break;
4303                 }
4304                 /* Otherwise the calculation is the same as isoc eps */
4305         case USB_ENDPOINT_XFER_ISOC:
4306                 timeout_ns = xhci_service_interval_to_ns(desc);
4307                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4308                 if (timeout_ns < udev->u1_params.sel * 2)
4309                         timeout_ns = udev->u1_params.sel * 2;
4310                 break;
4311         default:
4312                 return 0;
4313         }
4314
4315         return timeout_ns;
4316 }
4317
4318 /* Returns the hub-encoded U1 timeout value. */
4319 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4320                 struct usb_device *udev,
4321                 struct usb_endpoint_descriptor *desc)
4322 {
4323         unsigned long long timeout_ns;
4324
4325         if (xhci->quirks & XHCI_INTEL_HOST)
4326                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4327         else
4328                 timeout_ns = udev->u1_params.sel;
4329
4330         /* The U1 timeout is encoded in 1us intervals.
4331          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4332          */
4333         if (timeout_ns == USB3_LPM_DISABLED)
4334                 timeout_ns = 1;
4335         else
4336                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4337
4338         /* If the necessary timeout value is bigger than what we can set in the
4339          * USB 3.0 hub, we have to disable hub-initiated U1.
4340          */
4341         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4342                 return timeout_ns;
4343         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4344                         "due to long timeout %llu ms\n", timeout_ns);
4345         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4346 }
4347
4348 /* The U2 timeout should be the maximum of:
4349  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4350  *  - largest bInterval of any active periodic endpoint (to avoid going
4351  *    into lower power link states between intervals).
4352  *  - the U2 Exit Latency of the device
4353  */
4354 static unsigned long long xhci_calculate_intel_u2_timeout(
4355                 struct usb_device *udev,
4356                 struct usb_endpoint_descriptor *desc)
4357 {
4358         unsigned long long timeout_ns;
4359         unsigned long long u2_del_ns;
4360
4361         timeout_ns = 10 * 1000 * 1000;
4362
4363         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4364                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4365                 timeout_ns = xhci_service_interval_to_ns(desc);
4366
4367         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4368         if (u2_del_ns > timeout_ns)
4369                 timeout_ns = u2_del_ns;
4370
4371         return timeout_ns;
4372 }
4373
4374 /* Returns the hub-encoded U2 timeout value. */
4375 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4376                 struct usb_device *udev,
4377                 struct usb_endpoint_descriptor *desc)
4378 {
4379         unsigned long long timeout_ns;
4380
4381         if (xhci->quirks & XHCI_INTEL_HOST)
4382                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4383         else
4384                 timeout_ns = udev->u2_params.sel;
4385
4386         /* The U2 timeout is encoded in 256us intervals */
4387         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4388         /* If the necessary timeout value is bigger than what we can set in the
4389          * USB 3.0 hub, we have to disable hub-initiated U2.
4390          */
4391         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4392                 return timeout_ns;
4393         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4394                         "due to long timeout %llu ms\n", timeout_ns);
4395         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4396 }
4397
4398 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4399                 struct usb_device *udev,
4400                 struct usb_endpoint_descriptor *desc,
4401                 enum usb3_link_state state,
4402                 u16 *timeout)
4403 {
4404         if (state == USB3_LPM_U1)
4405                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4406         else if (state == USB3_LPM_U2)
4407                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4408
4409         return USB3_LPM_DISABLED;
4410 }
4411
4412 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4413                 struct usb_device *udev,
4414                 struct usb_endpoint_descriptor *desc,
4415                 enum usb3_link_state state,
4416                 u16 *timeout)
4417 {
4418         u16 alt_timeout;
4419
4420         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4421                 desc, state, timeout);
4422
4423         /* If we found we can't enable hub-initiated LPM, or
4424          * the U1 or U2 exit latency was too high to allow
4425          * device-initiated LPM as well, just stop searching.
4426          */
4427         if (alt_timeout == USB3_LPM_DISABLED ||
4428                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4429                 *timeout = alt_timeout;
4430                 return -E2BIG;
4431         }
4432         if (alt_timeout > *timeout)
4433                 *timeout = alt_timeout;
4434         return 0;
4435 }
4436
4437 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4438                 struct usb_device *udev,
4439                 struct usb_host_interface *alt,
4440                 enum usb3_link_state state,
4441                 u16 *timeout)
4442 {
4443         int j;
4444
4445         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4446                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4447                                         &alt->endpoint[j].desc, state, timeout))
4448                         return -E2BIG;
4449                 continue;
4450         }
4451         return 0;
4452 }
4453
4454 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4455                 enum usb3_link_state state)
4456 {
4457         struct usb_device *parent;
4458         unsigned int num_hubs;
4459
4460         if (state == USB3_LPM_U2)
4461                 return 0;
4462
4463         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4464         for (parent = udev->parent, num_hubs = 0; parent->parent;
4465                         parent = parent->parent)
4466                 num_hubs++;
4467
4468         if (num_hubs < 2)
4469                 return 0;
4470
4471         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4472                         " below second-tier hub.\n");
4473         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4474                         "to decrease power consumption.\n");
4475         return -E2BIG;
4476 }
4477
4478 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4479                 struct usb_device *udev,
4480                 enum usb3_link_state state)
4481 {
4482         if (xhci->quirks & XHCI_INTEL_HOST)
4483                 return xhci_check_intel_tier_policy(udev, state);
4484         else
4485                 return 0;
4486 }
4487
4488 /* Returns the U1 or U2 timeout that should be enabled.
4489  * If the tier check or timeout setting functions return with a non-zero exit
4490  * code, that means the timeout value has been finalized and we shouldn't look
4491  * at any more endpoints.
4492  */
4493 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4494                         struct usb_device *udev, enum usb3_link_state state)
4495 {
4496         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4497         struct usb_host_config *config;
4498         char *state_name;
4499         int i;
4500         u16 timeout = USB3_LPM_DISABLED;
4501
4502         if (state == USB3_LPM_U1)
4503                 state_name = "U1";
4504         else if (state == USB3_LPM_U2)
4505                 state_name = "U2";
4506         else {
4507                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4508                                 state);
4509                 return timeout;
4510         }
4511
4512         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4513                 return timeout;
4514
4515         /* Gather some information about the currently installed configuration
4516          * and alternate interface settings.
4517          */
4518         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4519                         state, &timeout))
4520                 return timeout;
4521
4522         config = udev->actconfig;
4523         if (!config)
4524                 return timeout;
4525
4526         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4527                 struct usb_driver *driver;
4528                 struct usb_interface *intf = config->interface[i];
4529
4530                 if (!intf)
4531                         continue;
4532
4533                 /* Check if any currently bound drivers want hub-initiated LPM
4534                  * disabled.
4535                  */
4536                 if (intf->dev.driver) {
4537                         driver = to_usb_driver(intf->dev.driver);
4538                         if (driver && driver->disable_hub_initiated_lpm) {
4539                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4540                                                 "at request of driver %s\n",
4541                                                 state_name, driver->name);
4542                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4543                         }
4544                 }
4545
4546                 /* Not sure how this could happen... */
4547                 if (!intf->cur_altsetting)
4548                         continue;
4549
4550                 if (xhci_update_timeout_for_interface(xhci, udev,
4551                                         intf->cur_altsetting,
4552                                         state, &timeout))
4553                         return timeout;
4554         }
4555         return timeout;
4556 }
4557
4558 static int calculate_max_exit_latency(struct usb_device *udev,
4559                 enum usb3_link_state state_changed,
4560                 u16 hub_encoded_timeout)
4561 {
4562         unsigned long long u1_mel_us = 0;
4563         unsigned long long u2_mel_us = 0;
4564         unsigned long long mel_us = 0;
4565         bool disabling_u1;
4566         bool disabling_u2;
4567         bool enabling_u1;
4568         bool enabling_u2;
4569
4570         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4571                         hub_encoded_timeout == USB3_LPM_DISABLED);
4572         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4573                         hub_encoded_timeout == USB3_LPM_DISABLED);
4574
4575         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4576                         hub_encoded_timeout != USB3_LPM_DISABLED);
4577         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4578                         hub_encoded_timeout != USB3_LPM_DISABLED);
4579
4580         /* If U1 was already enabled and we're not disabling it,
4581          * or we're going to enable U1, account for the U1 max exit latency.
4582          */
4583         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4584                         enabling_u1)
4585                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4586         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4587                         enabling_u2)
4588                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4589
4590         if (u1_mel_us > u2_mel_us)
4591                 mel_us = u1_mel_us;
4592         else
4593                 mel_us = u2_mel_us;
4594         /* xHCI host controller max exit latency field is only 16 bits wide. */
4595         if (mel_us > MAX_EXIT) {
4596                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4597                                 "is too big.\n", mel_us);
4598                 return -E2BIG;
4599         }
4600         return mel_us;
4601 }
4602
4603 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4604 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4605                         struct usb_device *udev, enum usb3_link_state state)
4606 {
4607         struct xhci_hcd *xhci;
4608         u16 hub_encoded_timeout;
4609         int mel;
4610         int ret;
4611
4612         xhci = hcd_to_xhci(hcd);
4613         /* The LPM timeout values are pretty host-controller specific, so don't
4614          * enable hub-initiated timeouts unless the vendor has provided
4615          * information about their timeout algorithm.
4616          */
4617         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4618                         !xhci->devs[udev->slot_id])
4619                 return USB3_LPM_DISABLED;
4620
4621         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4622         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4623         if (mel < 0) {
4624                 /* Max Exit Latency is too big, disable LPM. */
4625                 hub_encoded_timeout = USB3_LPM_DISABLED;
4626                 mel = 0;
4627         }
4628
4629         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4630         if (ret)
4631                 return ret;
4632         return hub_encoded_timeout;
4633 }
4634
4635 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4636                         struct usb_device *udev, enum usb3_link_state state)
4637 {
4638         struct xhci_hcd *xhci;
4639         u16 mel;
4640
4641         xhci = hcd_to_xhci(hcd);
4642         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4643                         !xhci->devs[udev->slot_id])
4644                 return 0;
4645
4646         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4647         return xhci_change_max_exit_latency(xhci, udev, mel);
4648 }
4649 #else /* CONFIG_PM */
4650
4651 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4652                                 struct usb_device *udev, int enable)
4653 {
4654         return 0;
4655 }
4656
4657 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4658 {
4659         return 0;
4660 }
4661
4662 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4663                         struct usb_device *udev, enum usb3_link_state state)
4664 {
4665         return USB3_LPM_DISABLED;
4666 }
4667
4668 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4669                         struct usb_device *udev, enum usb3_link_state state)
4670 {
4671         return 0;
4672 }
4673 #endif  /* CONFIG_PM */
4674
4675 /*-------------------------------------------------------------------------*/
4676
4677 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4678  * internal data structures for the device.
4679  */
4680 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4681                         struct usb_tt *tt, gfp_t mem_flags)
4682 {
4683         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4684         struct xhci_virt_device *vdev;
4685         struct xhci_command *config_cmd;
4686         struct xhci_input_control_ctx *ctrl_ctx;
4687         struct xhci_slot_ctx *slot_ctx;
4688         unsigned long flags;
4689         unsigned think_time;
4690         int ret;
4691
4692         /* Ignore root hubs */
4693         if (!hdev->parent)
4694                 return 0;
4695
4696         vdev = xhci->devs[hdev->slot_id];
4697         if (!vdev) {
4698                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4699                 return -EINVAL;
4700         }
4701
4702         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4703         if (!config_cmd)
4704                 return -ENOMEM;
4705
4706         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4707         if (!ctrl_ctx) {
4708                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4709                                 __func__);
4710                 xhci_free_command(xhci, config_cmd);
4711                 return -ENOMEM;
4712         }
4713
4714         spin_lock_irqsave(&xhci->lock, flags);
4715         if (hdev->speed == USB_SPEED_HIGH &&
4716                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4717                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4718                 xhci_free_command(xhci, config_cmd);
4719                 spin_unlock_irqrestore(&xhci->lock, flags);
4720                 return -ENOMEM;
4721         }
4722
4723         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4724         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4725         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4726         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4727         /*
4728          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4729          * but it may be already set to 1 when setup an xHCI virtual
4730          * device, so clear it anyway.
4731          */
4732         if (tt->multi)
4733                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4734         else if (hdev->speed == USB_SPEED_FULL)
4735                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4736
4737         if (xhci->hci_version > 0x95) {
4738                 xhci_dbg(xhci, "xHCI version %x needs hub "
4739                                 "TT think time and number of ports\n",
4740                                 (unsigned int) xhci->hci_version);
4741                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4742                 /* Set TT think time - convert from ns to FS bit times.
4743                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4744                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4745                  *
4746                  * xHCI 1.0: this field shall be 0 if the device is not a
4747                  * High-spped hub.
4748                  */
4749                 think_time = tt->think_time;
4750                 if (think_time != 0)
4751                         think_time = (think_time / 666) - 1;
4752                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4753                         slot_ctx->tt_info |=
4754                                 cpu_to_le32(TT_THINK_TIME(think_time));
4755         } else {
4756                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4757                                 "TT think time or number of ports\n",
4758                                 (unsigned int) xhci->hci_version);
4759         }
4760         slot_ctx->dev_state = 0;
4761         spin_unlock_irqrestore(&xhci->lock, flags);
4762
4763         xhci_dbg(xhci, "Set up %s for hub device.\n",
4764                         (xhci->hci_version > 0x95) ?
4765                         "configure endpoint" : "evaluate context");
4766
4767         /* Issue and wait for the configure endpoint or
4768          * evaluate context command.
4769          */
4770         if (xhci->hci_version > 0x95)
4771                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4772                                 false, false);
4773         else
4774                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4775                                 true, false);
4776
4777         xhci_free_command(xhci, config_cmd);
4778         return ret;
4779 }
4780
4781 static int xhci_get_frame(struct usb_hcd *hcd)
4782 {
4783         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4784         /* EHCI mods by the periodic size.  Why? */
4785         return readl(&xhci->run_regs->microframe_index) >> 3;
4786 }
4787
4788 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4789 {
4790         struct xhci_hcd         *xhci;
4791         /*
4792          * TODO: Check with DWC3 clients for sysdev according to
4793          * quirks
4794          */
4795         struct device           *dev = hcd->self.sysdev;
4796         int                     retval;
4797
4798         /* Accept arbitrarily long scatter-gather lists */
4799         hcd->self.sg_tablesize = ~0;
4800
4801         /* support to build packet from discontinuous buffers */
4802         hcd->self.no_sg_constraint = 1;
4803
4804         /* XHCI controllers don't stop the ep queue on short packets :| */
4805         hcd->self.no_stop_on_short = 1;
4806
4807         xhci = hcd_to_xhci(hcd);
4808
4809         if (usb_hcd_is_primary_hcd(hcd)) {
4810                 xhci->main_hcd = hcd;
4811                 /* Mark the first roothub as being USB 2.0.
4812                  * The xHCI driver will register the USB 3.0 roothub.
4813                  */
4814                 hcd->speed = HCD_USB2;
4815                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4816                 /*
4817                  * USB 2.0 roothub under xHCI has an integrated TT,
4818                  * (rate matching hub) as opposed to having an OHCI/UHCI
4819                  * companion controller.
4820                  */
4821                 hcd->has_tt = 1;
4822         } else {
4823                 if (xhci->sbrn == 0x31) {
4824                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4825                         hcd->speed = HCD_USB31;
4826                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4827                 }
4828                 /* xHCI private pointer was set in xhci_pci_probe for the second
4829                  * registered roothub.
4830                  */
4831                 return 0;
4832         }
4833
4834         mutex_init(&xhci->mutex);
4835         xhci->cap_regs = hcd->regs;
4836         xhci->op_regs = hcd->regs +
4837                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4838         xhci->run_regs = hcd->regs +
4839                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4840         /* Cache read-only capability registers */
4841         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4842         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4843         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4844         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4845         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4846         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4847         if (xhci->hci_version > 0x100)
4848                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4849         xhci_print_registers(xhci);
4850
4851         xhci->quirks |= quirks;
4852
4853         get_quirks(dev, xhci);
4854
4855         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4856          * success event after a short transfer. This quirk will ignore such
4857          * spurious event.
4858          */
4859         if (xhci->hci_version > 0x96)
4860                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4861
4862         /* Make sure the HC is halted. */
4863         retval = xhci_halt(xhci);
4864         if (retval)
4865                 return retval;
4866
4867         xhci_dbg(xhci, "Resetting HCD\n");
4868         /* Reset the internal HC memory state and registers. */
4869         retval = xhci_reset(xhci);
4870         if (retval)
4871                 return retval;
4872         xhci_dbg(xhci, "Reset complete\n");
4873
4874         /*
4875          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4876          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4877          * address memory pointers actually. So, this driver clears the AC64
4878          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4879          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4880          */
4881         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4882                 xhci->hcc_params &= ~BIT(0);
4883
4884         /* Set dma_mask and coherent_dma_mask to 64-bits,
4885          * if xHC supports 64-bit addressing */
4886         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4887                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4888                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4889                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4890         } else {
4891                 /*
4892                  * This is to avoid error in cases where a 32-bit USB
4893                  * controller is used on a 64-bit capable system.
4894                  */
4895                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4896                 if (retval)
4897                         return retval;
4898                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4899                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4900         }
4901
4902         xhci_dbg(xhci, "Calling HCD init\n");
4903         /* Initialize HCD and host controller data structures. */
4904         retval = xhci_init(hcd);
4905         if (retval)
4906                 return retval;
4907         xhci_dbg(xhci, "Called HCD init\n");
4908
4909         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4910                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4911
4912         return 0;
4913 }
4914 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4915
4916 static const struct hc_driver xhci_hc_driver = {
4917         .description =          "xhci-hcd",
4918         .product_desc =         "xHCI Host Controller",
4919         .hcd_priv_size =        sizeof(struct xhci_hcd),
4920
4921         /*
4922          * generic hardware linkage
4923          */
4924         .irq =                  xhci_irq,
4925         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4926
4927         /*
4928          * basic lifecycle operations
4929          */
4930         .reset =                NULL, /* set in xhci_init_driver() */
4931         .start =                xhci_run,
4932         .stop =                 xhci_stop,
4933         .shutdown =             xhci_shutdown,
4934
4935         /*
4936          * managing i/o requests and associated device resources
4937          */
4938         .urb_enqueue =          xhci_urb_enqueue,
4939         .urb_dequeue =          xhci_urb_dequeue,
4940         .alloc_dev =            xhci_alloc_dev,
4941         .free_dev =             xhci_free_dev,
4942         .alloc_streams =        xhci_alloc_streams,
4943         .free_streams =         xhci_free_streams,
4944         .add_endpoint =         xhci_add_endpoint,
4945         .drop_endpoint =        xhci_drop_endpoint,
4946         .endpoint_reset =       xhci_endpoint_reset,
4947         .check_bandwidth =      xhci_check_bandwidth,
4948         .reset_bandwidth =      xhci_reset_bandwidth,
4949         .address_device =       xhci_address_device,
4950         .enable_device =        xhci_enable_device,
4951         .update_hub_device =    xhci_update_hub_device,
4952         .reset_device =         xhci_discover_or_reset_device,
4953
4954         /*
4955          * scheduling support
4956          */
4957         .get_frame_number =     xhci_get_frame,
4958
4959         /*
4960          * root hub support
4961          */
4962         .hub_control =          xhci_hub_control,
4963         .hub_status_data =      xhci_hub_status_data,
4964         .bus_suspend =          xhci_bus_suspend,
4965         .bus_resume =           xhci_bus_resume,
4966
4967         /*
4968          * call back when device connected and addressed
4969          */
4970         .update_device =        xhci_update_device,
4971         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
4972         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
4973         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
4974         .find_raw_port_number = xhci_find_raw_port_number,
4975 };
4976
4977 void xhci_init_driver(struct hc_driver *drv,
4978                       const struct xhci_driver_overrides *over)
4979 {
4980         BUG_ON(!over);
4981
4982         /* Copy the generic table to drv then apply the overrides */
4983         *drv = xhci_hc_driver;
4984
4985         if (over) {
4986                 drv->hcd_priv_size += over->extra_priv_size;
4987                 if (over->reset)
4988                         drv->reset = over->reset;
4989                 if (over->start)
4990                         drv->start = over->start;
4991         }
4992 }
4993 EXPORT_SYMBOL_GPL(xhci_init_driver);
4994
4995 MODULE_DESCRIPTION(DRIVER_DESC);
4996 MODULE_AUTHOR(DRIVER_AUTHOR);
4997 MODULE_LICENSE("GPL");
4998
4999 static int __init xhci_hcd_init(void)
5000 {
5001         /*
5002          * Check the compiler generated sizes of structures that must be laid
5003          * out in specific ways for hardware access.
5004          */
5005         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5006         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5007         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5008         /* xhci_device_control has eight fields, and also
5009          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5010          */
5011         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5012         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5013         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5014         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5015         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5016         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5017         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5018
5019         if (usb_disabled())
5020                 return -ENODEV;
5021
5022         xhci_debugfs_create_root();
5023
5024         return 0;
5025 }
5026
5027 /*
5028  * If an init function is provided, an exit function must also be provided
5029  * to allow module unload.
5030  */
5031 static void __exit xhci_hcd_fini(void)
5032 {
5033         xhci_debugfs_remove_root();
5034 }
5035
5036 module_init(xhci_hcd_init);
5037 module_exit(xhci_hcd_fini);