ca9385d22f68d424f7b31f1176e9683b740fe3c9
[linux-2.6-microblaze.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
69 {
70         u32     result;
71         int     ret;
72
73         ret = readl_poll_timeout_atomic(ptr, result,
74                                         (result & mask) == done ||
75                                         result == U32_MAX,
76                                         1, usec);
77         if (result == U32_MAX)          /* card removed */
78                 return -ENODEV;
79
80         return ret;
81 }
82
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88         u32 halted;
89         u32 cmd;
90         u32 mask;
91
92         mask = ~(XHCI_IRQS);
93         halted = readl(&xhci->op_regs->status) & STS_HALT;
94         if (!halted)
95                 mask &= ~CMD_RUN;
96
97         cmd = readl(&xhci->op_regs->command);
98         cmd &= mask;
99         writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112         int ret;
113         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114         xhci_quiesce(xhci);
115
116         ret = xhci_handshake(&xhci->op_regs->status,
117                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118         if (ret) {
119                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
120                 return ret;
121         }
122         xhci->xhc_state |= XHCI_STATE_HALTED;
123         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124         return ret;
125 }
126
127 /*
128  * Set the run bit and wait for the host to be running.
129  */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132         u32 temp;
133         int ret;
134
135         temp = readl(&xhci->op_regs->command);
136         temp |= (CMD_RUN);
137         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138                         temp);
139         writel(temp, &xhci->op_regs->command);
140
141         /*
142          * Wait for the HCHalted Status bit to be 0 to indicate the host is
143          * running.
144          */
145         ret = xhci_handshake(&xhci->op_regs->status,
146                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
147         if (ret == -ETIMEDOUT)
148                 xhci_err(xhci, "Host took too long to start, "
149                                 "waited %u microseconds.\n",
150                                 XHCI_MAX_HALT_USEC);
151         if (!ret)
152                 /* clear state flags. Including dying, halted or removing */
153                 xhci->xhc_state = 0;
154
155         return ret;
156 }
157
158 /*
159  * Reset a halted HC.
160  *
161  * This resets pipelines, timers, counters, state machines, etc.
162  * Transactions will be terminated immediately, and operational registers
163  * will be set to their defaults.
164  */
165 int xhci_reset(struct xhci_hcd *xhci)
166 {
167         u32 command;
168         u32 state;
169         int ret;
170
171         state = readl(&xhci->op_regs->status);
172
173         if (state == ~(u32)0) {
174                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
175                 return -ENODEV;
176         }
177
178         if ((state & STS_HALT) == 0) {
179                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180                 return 0;
181         }
182
183         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184         command = readl(&xhci->op_regs->command);
185         command |= CMD_RESET;
186         writel(command, &xhci->op_regs->command);
187
188         /* Existing Intel xHCI controllers require a delay of 1 mS,
189          * after setting the CMD_RESET bit, and before accessing any
190          * HC registers. This allows the HC to complete the
191          * reset operation and be ready for HC register access.
192          * Without this delay, the subsequent HC register access,
193          * may result in a system hang very rarely.
194          */
195         if (xhci->quirks & XHCI_INTEL_HOST)
196                 udelay(1000);
197
198         ret = xhci_handshake(&xhci->op_regs->command,
199                         CMD_RESET, 0, 10 * 1000 * 1000);
200         if (ret)
201                 return ret;
202
203         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205
206         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207                          "Wait for controller to be ready for doorbell rings");
208         /*
209          * xHCI cannot write to any doorbells or operational registers other
210          * than status until the "Controller Not Ready" flag is cleared.
211          */
212         ret = xhci_handshake(&xhci->op_regs->status,
213                         STS_CNR, 0, 10 * 1000 * 1000);
214
215         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216         xhci->usb2_rhub.bus_state.suspended_ports = 0;
217         xhci->usb2_rhub.bus_state.resuming_ports = 0;
218         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219         xhci->usb3_rhub.bus_state.suspended_ports = 0;
220         xhci->usb3_rhub.bus_state.resuming_ports = 0;
221
222         return ret;
223 }
224
225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
226 {
227         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
228         int err, i;
229         u64 val;
230         u32 intrs;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270                       ARRAY_SIZE(xhci->run_regs->ir_set));
271
272         for (i = 0; i < intrs; i++) {
273                 struct xhci_intr_reg __iomem *ir;
274
275                 ir = &xhci->run_regs->ir_set[i];
276                 val = xhci_read_64(xhci, &ir->erst_base);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_base);
279                 val= xhci_read_64(xhci, &ir->erst_dequeue);
280                 if (upper_32_bits(val))
281                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
282         }
283
284         /* Wait for the fault to appear. It will be cleared on reset */
285         err = xhci_handshake(&xhci->op_regs->status,
286                              STS_FATAL, STS_FATAL,
287                              XHCI_MAX_HALT_USEC);
288         if (!err)
289                 xhci_info(xhci, "Fault detected\n");
290 }
291
292 #ifdef CONFIG_USB_PCI
293 /*
294  * Set up MSI
295  */
296 static int xhci_setup_msi(struct xhci_hcd *xhci)
297 {
298         int ret;
299         /*
300          * TODO:Check with MSI Soc for sysdev
301          */
302         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303
304         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
305         if (ret < 0) {
306                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307                                 "failed to allocate MSI entry");
308                 return ret;
309         }
310
311         ret = request_irq(pdev->irq, xhci_msi_irq,
312                                 0, "xhci_hcd", xhci_to_hcd(xhci));
313         if (ret) {
314                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315                                 "disable MSI interrupt");
316                 pci_free_irq_vectors(pdev);
317         }
318
319         return ret;
320 }
321
322 /*
323  * Set up MSI-X
324  */
325 static int xhci_setup_msix(struct xhci_hcd *xhci)
326 {
327         int i, ret = 0;
328         struct usb_hcd *hcd = xhci_to_hcd(xhci);
329         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330
331         /*
332          * calculate number of msi-x vectors supported.
333          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334          *   with max number of interrupters based on the xhci HCSPARAMS1.
335          * - num_online_cpus: maximum msi-x vectors per CPUs core.
336          *   Add additional 1 vector to ensure always available interrupt.
337          */
338         xhci->msix_count = min(num_online_cpus() + 1,
339                                 HCS_MAX_INTRS(xhci->hcs_params1));
340
341         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
342                         PCI_IRQ_MSIX);
343         if (ret < 0) {
344                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345                                 "Failed to enable MSI-X");
346                 return ret;
347         }
348
349         for (i = 0; i < xhci->msix_count; i++) {
350                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351                                 "xhci_hcd", xhci_to_hcd(xhci));
352                 if (ret)
353                         goto disable_msix;
354         }
355
356         hcd->msix_enabled = 1;
357         return ret;
358
359 disable_msix:
360         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
361         while (--i >= 0)
362                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363         pci_free_irq_vectors(pdev);
364         return ret;
365 }
366
367 /* Free any IRQs and disable MSI-X */
368 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369 {
370         struct usb_hcd *hcd = xhci_to_hcd(xhci);
371         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372
373         if (xhci->quirks & XHCI_PLAT)
374                 return;
375
376         /* return if using legacy interrupt */
377         if (hcd->irq > 0)
378                 return;
379
380         if (hcd->msix_enabled) {
381                 int i;
382
383                 for (i = 0; i < xhci->msix_count; i++)
384                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
385         } else {
386                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387         }
388
389         pci_free_irq_vectors(pdev);
390         hcd->msix_enabled = 0;
391 }
392
393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395         struct usb_hcd *hcd = xhci_to_hcd(xhci);
396
397         if (hcd->msix_enabled) {
398                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
399                 int i;
400
401                 for (i = 0; i < xhci->msix_count; i++)
402                         synchronize_irq(pci_irq_vector(pdev, i));
403         }
404 }
405
406 static int xhci_try_enable_msi(struct usb_hcd *hcd)
407 {
408         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409         struct pci_dev  *pdev;
410         int ret;
411
412         /* The xhci platform device has set up IRQs through usb_add_hcd. */
413         if (xhci->quirks & XHCI_PLAT)
414                 return 0;
415
416         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417         /*
418          * Some Fresco Logic host controllers advertise MSI, but fail to
419          * generate interrupts.  Don't even try to enable MSI.
420          */
421         if (xhci->quirks & XHCI_BROKEN_MSI)
422                 goto legacy_irq;
423
424         /* unregister the legacy interrupt */
425         if (hcd->irq)
426                 free_irq(hcd->irq, hcd);
427         hcd->irq = 0;
428
429         ret = xhci_setup_msix(xhci);
430         if (ret)
431                 /* fall back to msi*/
432                 ret = xhci_setup_msi(xhci);
433
434         if (!ret) {
435                 hcd->msi_enabled = 1;
436                 return 0;
437         }
438
439         if (!pdev->irq) {
440                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
441                 return -EINVAL;
442         }
443
444  legacy_irq:
445         if (!strlen(hcd->irq_descr))
446                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447                          hcd->driver->description, hcd->self.busnum);
448
449         /* fall back to legacy interrupt*/
450         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451                         hcd->irq_descr, hcd);
452         if (ret) {
453                 xhci_err(xhci, "request interrupt %d failed\n",
454                                 pdev->irq);
455                 return ret;
456         }
457         hcd->irq = pdev->irq;
458         return 0;
459 }
460
461 #else
462
463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464 {
465         return 0;
466 }
467
468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469 {
470 }
471
472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473 {
474 }
475
476 #endif
477
478 static void compliance_mode_recovery(struct timer_list *t)
479 {
480         struct xhci_hcd *xhci;
481         struct usb_hcd *hcd;
482         struct xhci_hub *rhub;
483         u32 temp;
484         int i;
485
486         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487         rhub = &xhci->usb3_rhub;
488
489         for (i = 0; i < rhub->num_ports; i++) {
490                 temp = readl(rhub->ports[i]->addr);
491                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492                         /*
493                          * Compliance Mode Detected. Letting USB Core
494                          * handle the Warm Reset
495                          */
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Compliance mode detected->port %d",
498                                         i + 1);
499                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500                                         "Attempting compliance mode recovery");
501                         hcd = xhci->shared_hcd;
502
503                         if (hcd->state == HC_STATE_SUSPENDED)
504                                 usb_hcd_resume_root_hub(hcd);
505
506                         usb_hcd_poll_rh_status(hcd);
507                 }
508         }
509
510         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511                 mod_timer(&xhci->comp_mode_recovery_timer,
512                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513 }
514
515 /*
516  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517  * that causes ports behind that hardware to enter compliance mode sometimes.
518  * The quirk creates a timer that polls every 2 seconds the link state of
519  * each host controller's port and recovers it by issuing a Warm reset
520  * if Compliance mode is detected, otherwise the port will become "dead" (no
521  * device connections or disconnections will be detected anymore). Becasue no
522  * status event is generated when entering compliance mode (per xhci spec),
523  * this quirk is needed on systems that have the failing hardware installed.
524  */
525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526 {
527         xhci->port_status_u0 = 0;
528         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529                     0);
530         xhci->comp_mode_recovery_timer.expires = jiffies +
531                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532
533         add_timer(&xhci->comp_mode_recovery_timer);
534         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535                         "Compliance mode recovery timer initialized");
536 }
537
538 /*
539  * This function identifies the systems that have installed the SN65LVPE502CP
540  * USB3.0 re-driver and that need the Compliance Mode Quirk.
541  * Systems:
542  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543  */
544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545 {
546         const char *dmi_product_name, *dmi_sys_vendor;
547
548         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550         if (!dmi_product_name || !dmi_sys_vendor)
551                 return false;
552
553         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
554                 return false;
555
556         if (strstr(dmi_product_name, "Z420") ||
557                         strstr(dmi_product_name, "Z620") ||
558                         strstr(dmi_product_name, "Z820") ||
559                         strstr(dmi_product_name, "Z1 Workstation"))
560                 return true;
561
562         return false;
563 }
564
565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566 {
567         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
568 }
569
570
571 /*
572  * Initialize memory for HCD and xHC (one-time init).
573  *
574  * Program the PAGESIZE register, initialize the device context array, create
575  * device contexts (?), set up a command ring segment (or two?), create event
576  * ring (one for now).
577  */
578 static int xhci_init(struct usb_hcd *hcd)
579 {
580         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
581         int retval = 0;
582
583         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584         spin_lock_init(&xhci->lock);
585         if (xhci->hci_version == 0x95 && link_quirk) {
586                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587                                 "QUIRK: Not clearing Link TRB chain bits.");
588                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
589         } else {
590                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591                                 "xHCI doesn't need link TRB QUIRK");
592         }
593         retval = xhci_mem_init(xhci, GFP_KERNEL);
594         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595
596         /* Initializing Compliance Mode Recovery Data If Needed */
597         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599                 compliance_mode_recovery_timer_init(xhci);
600         }
601
602         return retval;
603 }
604
605 /*-------------------------------------------------------------------------*/
606
607
608 static int xhci_run_finished(struct xhci_hcd *xhci)
609 {
610         if (xhci_start(xhci)) {
611                 xhci_halt(xhci);
612                 return -ENODEV;
613         }
614         xhci->shared_hcd->state = HC_STATE_RUNNING;
615         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616
617         if (xhci->quirks & XHCI_NEC_HOST)
618                 xhci_ring_cmd_db(xhci);
619
620         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621                         "Finished xhci_run for USB3 roothub");
622         return 0;
623 }
624
625 /*
626  * Start the HC after it was halted.
627  *
628  * This function is called by the USB core when the HC driver is added.
629  * Its opposite is xhci_stop().
630  *
631  * xhci_init() must be called once before this function can be called.
632  * Reset the HC, enable device slot contexts, program DCBAAP, and
633  * set command ring pointer and event ring pointer.
634  *
635  * Setup MSI-X vectors and enable interrupts.
636  */
637 int xhci_run(struct usb_hcd *hcd)
638 {
639         u32 temp;
640         u64 temp_64;
641         int ret;
642         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643
644         /* Start the xHCI host controller running only after the USB 2.0 roothub
645          * is setup.
646          */
647
648         hcd->uses_new_polling = 1;
649         if (!usb_hcd_is_primary_hcd(hcd))
650                 return xhci_run_finished(xhci);
651
652         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653
654         ret = xhci_try_enable_msi(hcd);
655         if (ret)
656                 return ret;
657
658         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659         temp_64 &= ~ERST_PTR_MASK;
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662
663         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664                         "// Set the interrupt modulation register");
665         temp = readl(&xhci->ir_set->irq_control);
666         temp &= ~ER_IRQ_INTERVAL_MASK;
667         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668         writel(temp, &xhci->ir_set->irq_control);
669
670         /* Set the HCD state before we enable the irqs */
671         temp = readl(&xhci->op_regs->command);
672         temp |= (CMD_EIE);
673         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674                         "// Enable interrupts, cmd = 0x%x.", temp);
675         writel(temp, &xhci->op_regs->command);
676
677         temp = readl(&xhci->ir_set->irq_pending);
678         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682
683         if (xhci->quirks & XHCI_NEC_HOST) {
684                 struct xhci_command *command;
685
686                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
687                 if (!command)
688                         return -ENOMEM;
689
690                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691                                 TRB_TYPE(TRB_NEC_GET_FW));
692                 if (ret)
693                         xhci_free_command(xhci, command);
694         }
695         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696                         "Finished xhci_run for USB2 roothub");
697
698         xhci_dbc_init(xhci);
699
700         xhci_debugfs_init(xhci);
701
702         return 0;
703 }
704 EXPORT_SYMBOL_GPL(xhci_run);
705
706 /*
707  * Stop xHCI driver.
708  *
709  * This function is called by the USB core when the HC driver is removed.
710  * Its opposite is xhci_run().
711  *
712  * Disable device contexts, disable IRQs, and quiesce the HC.
713  * Reset the HC, finish any completed transactions, and cleanup memory.
714  */
715 static void xhci_stop(struct usb_hcd *hcd)
716 {
717         u32 temp;
718         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
719
720         mutex_lock(&xhci->mutex);
721
722         /* Only halt host and free memory after both hcds are removed */
723         if (!usb_hcd_is_primary_hcd(hcd)) {
724                 mutex_unlock(&xhci->mutex);
725                 return;
726         }
727
728         xhci_dbc_exit(xhci);
729
730         spin_lock_irq(&xhci->lock);
731         xhci->xhc_state |= XHCI_STATE_HALTED;
732         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
733         xhci_halt(xhci);
734         xhci_reset(xhci);
735         spin_unlock_irq(&xhci->lock);
736
737         xhci_cleanup_msix(xhci);
738
739         /* Deleting Compliance Mode Recovery Timer */
740         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741                         (!(xhci_all_ports_seen_u0(xhci)))) {
742                 del_timer_sync(&xhci->comp_mode_recovery_timer);
743                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
744                                 "%s: compliance mode recovery timer deleted",
745                                 __func__);
746         }
747
748         if (xhci->quirks & XHCI_AMD_PLL_FIX)
749                 usb_amd_dev_put();
750
751         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
752                         "// Disabling event ring interrupts");
753         temp = readl(&xhci->op_regs->status);
754         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
755         temp = readl(&xhci->ir_set->irq_pending);
756         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
757
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
759         xhci_mem_cleanup(xhci);
760         xhci_debugfs_exit(xhci);
761         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762                         "xhci_stop completed - status = %x",
763                         readl(&xhci->op_regs->status));
764         mutex_unlock(&xhci->mutex);
765 }
766
767 /*
768  * Shutdown HC (not bus-specific)
769  *
770  * This is called when the machine is rebooting or halting.  We assume that the
771  * machine will be powered off, and the HC's internal state will be reset.
772  * Don't bother to free memory.
773  *
774  * This will only ever be called with the main usb_hcd (the USB3 roothub).
775  */
776 void xhci_shutdown(struct usb_hcd *hcd)
777 {
778         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
779
780         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
782
783         spin_lock_irq(&xhci->lock);
784         xhci_halt(xhci);
785         /* Workaround for spurious wakeups at shutdown with HSW */
786         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
787                 xhci_reset(xhci);
788         spin_unlock_irq(&xhci->lock);
789
790         xhci_cleanup_msix(xhci);
791
792         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793                         "xhci_shutdown completed - status = %x",
794                         readl(&xhci->op_regs->status));
795 }
796 EXPORT_SYMBOL_GPL(xhci_shutdown);
797
798 #ifdef CONFIG_PM
799 static void xhci_save_registers(struct xhci_hcd *xhci)
800 {
801         xhci->s3.command = readl(&xhci->op_regs->command);
802         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
810 }
811
812 static void xhci_restore_registers(struct xhci_hcd *xhci)
813 {
814         writel(xhci->s3.command, &xhci->op_regs->command);
815         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
823 }
824
825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
826 {
827         u64     val_64;
828
829         /* step 2: initialize command ring buffer */
830         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833                                       xhci->cmd_ring->dequeue) &
834                  (u64) ~CMD_RING_RSVD_BITS) |
835                 xhci->cmd_ring->cycle_state;
836         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837                         "// Setting command ring address to 0x%llx",
838                         (long unsigned long) val_64);
839         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840 }
841
842 /*
843  * The whole command ring must be cleared to zero when we suspend the host.
844  *
845  * The host doesn't save the command ring pointer in the suspend well, so we
846  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
847  * aligned, because of the reserved bits in the command ring dequeue pointer
848  * register.  Therefore, we can't just set the dequeue pointer back in the
849  * middle of the ring (TRBs are 16-byte aligned).
850  */
851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853         struct xhci_ring *ring;
854         struct xhci_segment *seg;
855
856         ring = xhci->cmd_ring;
857         seg = ring->deq_seg;
858         do {
859                 memset(seg->trbs, 0,
860                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862                         cpu_to_le32(~TRB_CYCLE);
863                 seg = seg->next;
864         } while (seg != ring->deq_seg);
865
866         /* Reset the software enqueue and dequeue pointers */
867         ring->deq_seg = ring->first_seg;
868         ring->dequeue = ring->first_seg->trbs;
869         ring->enq_seg = ring->deq_seg;
870         ring->enqueue = ring->dequeue;
871
872         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
873         /*
874          * Ring is now zeroed, so the HW should look for change of ownership
875          * when the cycle bit is set to 1.
876          */
877         ring->cycle_state = 1;
878
879         /*
880          * Reset the hardware dequeue pointer.
881          * Yes, this will need to be re-written after resume, but we're paranoid
882          * and want to make sure the hardware doesn't access bogus memory
883          * because, say, the BIOS or an SMI started the host without changing
884          * the command ring pointers.
885          */
886         xhci_set_cmd_ring_deq(xhci);
887 }
888
889 /*
890  * Disable port wake bits if do_wakeup is not set.
891  *
892  * Also clear a possible internal port wake state left hanging for ports that
893  * detected termination but never successfully enumerated (trained to 0U).
894  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
895  * at enumeration clears this wake, force one here as well for unconnected ports
896  */
897
898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
899                                        struct xhci_hub *rhub,
900                                        bool do_wakeup)
901 {
902         unsigned long flags;
903         u32 t1, t2, portsc;
904         int i;
905
906         spin_lock_irqsave(&xhci->lock, flags);
907
908         for (i = 0; i < rhub->num_ports; i++) {
909                 portsc = readl(rhub->ports[i]->addr);
910                 t1 = xhci_port_state_to_neutral(portsc);
911                 t2 = t1;
912
913                 /* clear wake bits if do_wake is not set */
914                 if (!do_wakeup)
915                         t2 &= ~PORT_WAKE_BITS;
916
917                 /* Don't touch csc bit if connected or connect change is set */
918                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
919                         t2 |= PORT_CSC;
920
921                 if (t1 != t2) {
922                         writel(t2, rhub->ports[i]->addr);
923                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
924                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
925                 }
926         }
927         spin_unlock_irqrestore(&xhci->lock, flags);
928 }
929
930 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
931 {
932         struct xhci_port        **ports;
933         int                     port_index;
934         u32                     status;
935         u32                     portsc;
936
937         status = readl(&xhci->op_regs->status);
938         if (status & STS_EINT)
939                 return true;
940         /*
941          * Checking STS_EINT is not enough as there is a lag between a change
942          * bit being set and the Port Status Change Event that it generated
943          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
944          */
945
946         port_index = xhci->usb2_rhub.num_ports;
947         ports = xhci->usb2_rhub.ports;
948         while (port_index--) {
949                 portsc = readl(ports[port_index]->addr);
950                 if (portsc & PORT_CHANGE_MASK ||
951                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
952                         return true;
953         }
954         port_index = xhci->usb3_rhub.num_ports;
955         ports = xhci->usb3_rhub.ports;
956         while (port_index--) {
957                 portsc = readl(ports[port_index]->addr);
958                 if (portsc & PORT_CHANGE_MASK ||
959                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
960                         return true;
961         }
962         return false;
963 }
964
965 /*
966  * Stop HC (not bus-specific)
967  *
968  * This is called when the machine transition into S3/S4 mode.
969  *
970  */
971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
972 {
973         int                     rc = 0;
974         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
975         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
976         u32                     command;
977         u32                     res;
978
979         if (!hcd->state)
980                 return 0;
981
982         if (hcd->state != HC_STATE_SUSPENDED ||
983                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
984                 return -EINVAL;
985
986         /* Clear root port wake on bits if wakeup not allowed. */
987         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
988         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
989
990         if (!HCD_HW_ACCESSIBLE(hcd))
991                 return 0;
992
993         xhci_dbc_suspend(xhci);
994
995         /* Don't poll the roothubs on bus suspend. */
996         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
997         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
998         del_timer_sync(&hcd->rh_timer);
999         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1000         del_timer_sync(&xhci->shared_hcd->rh_timer);
1001
1002         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1003                 usleep_range(1000, 1500);
1004
1005         spin_lock_irq(&xhci->lock);
1006         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1007         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1008         /* step 1: stop endpoint */
1009         /* skipped assuming that port suspend has done */
1010
1011         /* step 2: clear Run/Stop bit */
1012         command = readl(&xhci->op_regs->command);
1013         command &= ~CMD_RUN;
1014         writel(command, &xhci->op_regs->command);
1015
1016         /* Some chips from Fresco Logic need an extraordinary delay */
1017         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1018
1019         if (xhci_handshake(&xhci->op_regs->status,
1020                       STS_HALT, STS_HALT, delay)) {
1021                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1022                 spin_unlock_irq(&xhci->lock);
1023                 return -ETIMEDOUT;
1024         }
1025         xhci_clear_command_ring(xhci);
1026
1027         /* step 3: save registers */
1028         xhci_save_registers(xhci);
1029
1030         /* step 4: set CSS flag */
1031         command = readl(&xhci->op_regs->command);
1032         command |= CMD_CSS;
1033         writel(command, &xhci->op_regs->command);
1034         xhci->broken_suspend = 0;
1035         if (xhci_handshake(&xhci->op_regs->status,
1036                                 STS_SAVE, 0, 20 * 1000)) {
1037         /*
1038          * AMD SNPS xHC 3.0 occasionally does not clear the
1039          * SSS bit of USBSTS and when driver tries to poll
1040          * to see if the xHC clears BIT(8) which never happens
1041          * and driver assumes that controller is not responding
1042          * and times out. To workaround this, its good to check
1043          * if SRE and HCE bits are not set (as per xhci
1044          * Section 5.4.2) and bypass the timeout.
1045          */
1046                 res = readl(&xhci->op_regs->status);
1047                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1048                     (((res & STS_SRE) == 0) &&
1049                                 ((res & STS_HCE) == 0))) {
1050                         xhci->broken_suspend = 1;
1051                 } else {
1052                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1053                         spin_unlock_irq(&xhci->lock);
1054                         return -ETIMEDOUT;
1055                 }
1056         }
1057         spin_unlock_irq(&xhci->lock);
1058
1059         /*
1060          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1061          * is about to be suspended.
1062          */
1063         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1064                         (!(xhci_all_ports_seen_u0(xhci)))) {
1065                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1066                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1067                                 "%s: compliance mode recovery timer deleted",
1068                                 __func__);
1069         }
1070
1071         /* step 5: remove core well power */
1072         /* synchronize irq when using MSI-X */
1073         xhci_msix_sync_irqs(xhci);
1074
1075         return rc;
1076 }
1077 EXPORT_SYMBOL_GPL(xhci_suspend);
1078
1079 /*
1080  * start xHC (not bus-specific)
1081  *
1082  * This is called when the machine transition from S3/S4 mode.
1083  *
1084  */
1085 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1086 {
1087         u32                     command, temp = 0;
1088         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1089         struct usb_hcd          *secondary_hcd;
1090         int                     retval = 0;
1091         bool                    comp_timer_running = false;
1092         bool                    pending_portevent = false;
1093
1094         if (!hcd->state)
1095                 return 0;
1096
1097         /* Wait a bit if either of the roothubs need to settle from the
1098          * transition into bus suspend.
1099          */
1100
1101         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1102             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1103                 msleep(100);
1104
1105         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1106         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1107
1108         spin_lock_irq(&xhci->lock);
1109         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1110                 hibernated = true;
1111
1112         if (!hibernated) {
1113                 /*
1114                  * Some controllers might lose power during suspend, so wait
1115                  * for controller not ready bit to clear, just as in xHC init.
1116                  */
1117                 retval = xhci_handshake(&xhci->op_regs->status,
1118                                         STS_CNR, 0, 10 * 1000 * 1000);
1119                 if (retval) {
1120                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1121                                   retval);
1122                         spin_unlock_irq(&xhci->lock);
1123                         return retval;
1124                 }
1125                 /* step 1: restore register */
1126                 xhci_restore_registers(xhci);
1127                 /* step 2: initialize command ring buffer */
1128                 xhci_set_cmd_ring_deq(xhci);
1129                 /* step 3: restore state and start state*/
1130                 /* step 3: set CRS flag */
1131                 command = readl(&xhci->op_regs->command);
1132                 command |= CMD_CRS;
1133                 writel(command, &xhci->op_regs->command);
1134                 /*
1135                  * Some controllers take up to 55+ ms to complete the controller
1136                  * restore so setting the timeout to 100ms. Xhci specification
1137                  * doesn't mention any timeout value.
1138                  */
1139                 if (xhci_handshake(&xhci->op_regs->status,
1140                               STS_RESTORE, 0, 100 * 1000)) {
1141                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1142                         spin_unlock_irq(&xhci->lock);
1143                         return -ETIMEDOUT;
1144                 }
1145                 temp = readl(&xhci->op_regs->status);
1146         }
1147
1148         /* If restore operation fails, re-initialize the HC during resume */
1149         if ((temp & STS_SRE) || hibernated) {
1150
1151                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1152                                 !(xhci_all_ports_seen_u0(xhci))) {
1153                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1154                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1155                                 "Compliance Mode Recovery Timer deleted!");
1156                 }
1157
1158                 /* Let the USB core know _both_ roothubs lost power. */
1159                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1160                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1161
1162                 xhci_dbg(xhci, "Stop HCD\n");
1163                 xhci_halt(xhci);
1164                 xhci_zero_64b_regs(xhci);
1165                 retval = xhci_reset(xhci);
1166                 spin_unlock_irq(&xhci->lock);
1167                 if (retval)
1168                         return retval;
1169                 xhci_cleanup_msix(xhci);
1170
1171                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1172                 temp = readl(&xhci->op_regs->status);
1173                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1174                 temp = readl(&xhci->ir_set->irq_pending);
1175                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1176
1177                 xhci_dbg(xhci, "cleaning up memory\n");
1178                 xhci_mem_cleanup(xhci);
1179                 xhci_debugfs_exit(xhci);
1180                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1181                             readl(&xhci->op_regs->status));
1182
1183                 /* USB core calls the PCI reinit and start functions twice:
1184                  * first with the primary HCD, and then with the secondary HCD.
1185                  * If we don't do the same, the host will never be started.
1186                  */
1187                 if (!usb_hcd_is_primary_hcd(hcd))
1188                         secondary_hcd = hcd;
1189                 else
1190                         secondary_hcd = xhci->shared_hcd;
1191
1192                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1193                 retval = xhci_init(hcd->primary_hcd);
1194                 if (retval)
1195                         return retval;
1196                 comp_timer_running = true;
1197
1198                 xhci_dbg(xhci, "Start the primary HCD\n");
1199                 retval = xhci_run(hcd->primary_hcd);
1200                 if (!retval) {
1201                         xhci_dbg(xhci, "Start the secondary HCD\n");
1202                         retval = xhci_run(secondary_hcd);
1203                 }
1204                 hcd->state = HC_STATE_SUSPENDED;
1205                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1206                 goto done;
1207         }
1208
1209         /* step 4: set Run/Stop bit */
1210         command = readl(&xhci->op_regs->command);
1211         command |= CMD_RUN;
1212         writel(command, &xhci->op_regs->command);
1213         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1214                   0, 250 * 1000);
1215
1216         /* step 5: walk topology and initialize portsc,
1217          * portpmsc and portli
1218          */
1219         /* this is done in bus_resume */
1220
1221         /* step 6: restart each of the previously
1222          * Running endpoints by ringing their doorbells
1223          */
1224
1225         spin_unlock_irq(&xhci->lock);
1226
1227         xhci_dbc_resume(xhci);
1228
1229  done:
1230         if (retval == 0) {
1231                 /*
1232                  * Resume roothubs only if there are pending events.
1233                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1234                  * the first wake signalling failed, give it that chance.
1235                  */
1236                 pending_portevent = xhci_pending_portevent(xhci);
1237                 if (!pending_portevent) {
1238                         msleep(120);
1239                         pending_portevent = xhci_pending_portevent(xhci);
1240                 }
1241
1242                 if (pending_portevent) {
1243                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1244                         usb_hcd_resume_root_hub(hcd);
1245                 }
1246         }
1247         /*
1248          * If system is subject to the Quirk, Compliance Mode Timer needs to
1249          * be re-initialized Always after a system resume. Ports are subject
1250          * to suffer the Compliance Mode issue again. It doesn't matter if
1251          * ports have entered previously to U0 before system's suspension.
1252          */
1253         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1254                 compliance_mode_recovery_timer_init(xhci);
1255
1256         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1257                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1258
1259         /* Re-enable port polling. */
1260         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1261         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1262         usb_hcd_poll_rh_status(xhci->shared_hcd);
1263         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1264         usb_hcd_poll_rh_status(hcd);
1265
1266         return retval;
1267 }
1268 EXPORT_SYMBOL_GPL(xhci_resume);
1269 #endif  /* CONFIG_PM */
1270
1271 /*-------------------------------------------------------------------------*/
1272
1273 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1274 {
1275         void *temp;
1276         int ret = 0;
1277         unsigned int buf_len;
1278         enum dma_data_direction dir;
1279
1280         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1281         buf_len = urb->transfer_buffer_length;
1282
1283         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1284                             dev_to_node(hcd->self.sysdev));
1285
1286         if (usb_urb_dir_out(urb))
1287                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1288                                    temp, buf_len, 0);
1289
1290         urb->transfer_buffer = temp;
1291         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1292                                            urb->transfer_buffer,
1293                                            urb->transfer_buffer_length,
1294                                            dir);
1295
1296         if (dma_mapping_error(hcd->self.sysdev,
1297                               urb->transfer_dma)) {
1298                 ret = -EAGAIN;
1299                 kfree(temp);
1300         } else {
1301                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1302         }
1303
1304         return ret;
1305 }
1306
1307 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1308                                           struct urb *urb)
1309 {
1310         bool ret = false;
1311         unsigned int i;
1312         unsigned int len = 0;
1313         unsigned int trb_size;
1314         unsigned int max_pkt;
1315         struct scatterlist *sg;
1316         struct scatterlist *tail_sg;
1317
1318         tail_sg = urb->sg;
1319         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1320
1321         if (!urb->num_sgs)
1322                 return ret;
1323
1324         if (urb->dev->speed >= USB_SPEED_SUPER)
1325                 trb_size = TRB_CACHE_SIZE_SS;
1326         else
1327                 trb_size = TRB_CACHE_SIZE_HS;
1328
1329         if (urb->transfer_buffer_length != 0 &&
1330             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1331                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1332                         len = len + sg->length;
1333                         if (i > trb_size - 2) {
1334                                 len = len - tail_sg->length;
1335                                 if (len < max_pkt) {
1336                                         ret = true;
1337                                         break;
1338                                 }
1339
1340                                 tail_sg = sg_next(tail_sg);
1341                         }
1342                 }
1343         }
1344         return ret;
1345 }
1346
1347 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1348 {
1349         unsigned int len;
1350         unsigned int buf_len;
1351         enum dma_data_direction dir;
1352
1353         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1354
1355         buf_len = urb->transfer_buffer_length;
1356
1357         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1358             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1359                 dma_unmap_single(hcd->self.sysdev,
1360                                  urb->transfer_dma,
1361                                  urb->transfer_buffer_length,
1362                                  dir);
1363
1364         if (usb_urb_dir_in(urb))
1365                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1366                                            urb->transfer_buffer,
1367                                            buf_len,
1368                                            0);
1369
1370         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1371         kfree(urb->transfer_buffer);
1372         urb->transfer_buffer = NULL;
1373 }
1374
1375 /*
1376  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1377  * we'll copy the actual data into the TRB address register. This is limited to
1378  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1379  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1380  */
1381 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1382                                 gfp_t mem_flags)
1383 {
1384         struct xhci_hcd *xhci;
1385
1386         xhci = hcd_to_xhci(hcd);
1387
1388         if (xhci_urb_suitable_for_idt(urb))
1389                 return 0;
1390
1391         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1392                 if (xhci_urb_temp_buffer_required(hcd, urb))
1393                         return xhci_map_temp_buffer(hcd, urb);
1394         }
1395         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1396 }
1397
1398 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1399 {
1400         struct xhci_hcd *xhci;
1401         bool unmap_temp_buf = false;
1402
1403         xhci = hcd_to_xhci(hcd);
1404
1405         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1406                 unmap_temp_buf = true;
1407
1408         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1409                 xhci_unmap_temp_buf(hcd, urb);
1410         else
1411                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1412 }
1413
1414 /**
1415  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1416  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1417  * value to right shift 1 for the bitmask.
1418  *
1419  * Index  = (epnum * 2) + direction - 1,
1420  * where direction = 0 for OUT, 1 for IN.
1421  * For control endpoints, the IN index is used (OUT index is unused), so
1422  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1423  */
1424 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1425 {
1426         unsigned int index;
1427         if (usb_endpoint_xfer_control(desc))
1428                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1429         else
1430                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1431                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1432         return index;
1433 }
1434 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1435
1436 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1437  * address from the XHCI endpoint index.
1438  */
1439 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1440 {
1441         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1442         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1443         return direction | number;
1444 }
1445
1446 /* Find the flag for this endpoint (for use in the control context).  Use the
1447  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1448  * bit 1, etc.
1449  */
1450 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1451 {
1452         return 1 << (xhci_get_endpoint_index(desc) + 1);
1453 }
1454
1455 /* Compute the last valid endpoint context index.  Basically, this is the
1456  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1457  * we find the most significant bit set in the added contexts flags.
1458  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1459  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1460  */
1461 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1462 {
1463         return fls(added_ctxs) - 1;
1464 }
1465
1466 /* Returns 1 if the arguments are OK;
1467  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1468  */
1469 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1470                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1471                 const char *func) {
1472         struct xhci_hcd *xhci;
1473         struct xhci_virt_device *virt_dev;
1474
1475         if (!hcd || (check_ep && !ep) || !udev) {
1476                 pr_debug("xHCI %s called with invalid args\n", func);
1477                 return -EINVAL;
1478         }
1479         if (!udev->parent) {
1480                 pr_debug("xHCI %s called for root hub\n", func);
1481                 return 0;
1482         }
1483
1484         xhci = hcd_to_xhci(hcd);
1485         if (check_virt_dev) {
1486                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1487                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1488                                         func);
1489                         return -EINVAL;
1490                 }
1491
1492                 virt_dev = xhci->devs[udev->slot_id];
1493                 if (virt_dev->udev != udev) {
1494                         xhci_dbg(xhci, "xHCI %s called with udev and "
1495                                           "virt_dev does not match\n", func);
1496                         return -EINVAL;
1497                 }
1498         }
1499
1500         if (xhci->xhc_state & XHCI_STATE_HALTED)
1501                 return -ENODEV;
1502
1503         return 1;
1504 }
1505
1506 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1507                 struct usb_device *udev, struct xhci_command *command,
1508                 bool ctx_change, bool must_succeed);
1509
1510 /*
1511  * Full speed devices may have a max packet size greater than 8 bytes, but the
1512  * USB core doesn't know that until it reads the first 8 bytes of the
1513  * descriptor.  If the usb_device's max packet size changes after that point,
1514  * we need to issue an evaluate context command and wait on it.
1515  */
1516 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1517                 unsigned int ep_index, struct urb *urb)
1518 {
1519         struct xhci_container_ctx *out_ctx;
1520         struct xhci_input_control_ctx *ctrl_ctx;
1521         struct xhci_ep_ctx *ep_ctx;
1522         struct xhci_command *command;
1523         int max_packet_size;
1524         int hw_max_packet_size;
1525         int ret = 0;
1526
1527         out_ctx = xhci->devs[slot_id]->out_ctx;
1528         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1529         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1530         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1531         if (hw_max_packet_size != max_packet_size) {
1532                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1533                                 "Max Packet Size for ep 0 changed.");
1534                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1535                                 "Max packet size in usb_device = %d",
1536                                 max_packet_size);
1537                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1538                                 "Max packet size in xHCI HW = %d",
1539                                 hw_max_packet_size);
1540                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1541                                 "Issuing evaluate context command.");
1542
1543                 /* Set up the input context flags for the command */
1544                 /* FIXME: This won't work if a non-default control endpoint
1545                  * changes max packet sizes.
1546                  */
1547
1548                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1549                 if (!command)
1550                         return -ENOMEM;
1551
1552                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1553                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1554                 if (!ctrl_ctx) {
1555                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1556                                         __func__);
1557                         ret = -ENOMEM;
1558                         goto command_cleanup;
1559                 }
1560                 /* Set up the modified control endpoint 0 */
1561                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1562                                 xhci->devs[slot_id]->out_ctx, ep_index);
1563
1564                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1565                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1566                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1567                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1568
1569                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1570                 ctrl_ctx->drop_flags = 0;
1571
1572                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1573                                 true, false);
1574
1575                 /* Clean up the input context for later use by bandwidth
1576                  * functions.
1577                  */
1578                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1579 command_cleanup:
1580                 kfree(command->completion);
1581                 kfree(command);
1582         }
1583         return ret;
1584 }
1585
1586 /*
1587  * non-error returns are a promise to giveback() the urb later
1588  * we drop ownership so next owner (or urb unlink) can get it
1589  */
1590 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1591 {
1592         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1593         unsigned long flags;
1594         int ret = 0;
1595         unsigned int slot_id, ep_index;
1596         unsigned int *ep_state;
1597         struct urb_priv *urb_priv;
1598         int num_tds;
1599
1600         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1601                                         true, true, __func__) <= 0)
1602                 return -EINVAL;
1603
1604         slot_id = urb->dev->slot_id;
1605         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1606         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1607
1608         if (!HCD_HW_ACCESSIBLE(hcd))
1609                 return -ESHUTDOWN;
1610
1611         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1612                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1613                 return -ENODEV;
1614         }
1615
1616         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1617                 num_tds = urb->number_of_packets;
1618         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1619             urb->transfer_buffer_length > 0 &&
1620             urb->transfer_flags & URB_ZERO_PACKET &&
1621             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1622                 num_tds = 2;
1623         else
1624                 num_tds = 1;
1625
1626         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1627         if (!urb_priv)
1628                 return -ENOMEM;
1629
1630         urb_priv->num_tds = num_tds;
1631         urb_priv->num_tds_done = 0;
1632         urb->hcpriv = urb_priv;
1633
1634         trace_xhci_urb_enqueue(urb);
1635
1636         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1637                 /* Check to see if the max packet size for the default control
1638                  * endpoint changed during FS device enumeration
1639                  */
1640                 if (urb->dev->speed == USB_SPEED_FULL) {
1641                         ret = xhci_check_maxpacket(xhci, slot_id,
1642                                         ep_index, urb);
1643                         if (ret < 0) {
1644                                 xhci_urb_free_priv(urb_priv);
1645                                 urb->hcpriv = NULL;
1646                                 return ret;
1647                         }
1648                 }
1649         }
1650
1651         spin_lock_irqsave(&xhci->lock, flags);
1652
1653         if (xhci->xhc_state & XHCI_STATE_DYING) {
1654                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1655                          urb->ep->desc.bEndpointAddress, urb);
1656                 ret = -ESHUTDOWN;
1657                 goto free_priv;
1658         }
1659         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1660                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1661                           *ep_state);
1662                 ret = -EINVAL;
1663                 goto free_priv;
1664         }
1665         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1666                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1667                 ret = -EINVAL;
1668                 goto free_priv;
1669         }
1670
1671         switch (usb_endpoint_type(&urb->ep->desc)) {
1672
1673         case USB_ENDPOINT_XFER_CONTROL:
1674                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1675                                          slot_id, ep_index);
1676                 break;
1677         case USB_ENDPOINT_XFER_BULK:
1678                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1679                                          slot_id, ep_index);
1680                 break;
1681         case USB_ENDPOINT_XFER_INT:
1682                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1683                                 slot_id, ep_index);
1684                 break;
1685         case USB_ENDPOINT_XFER_ISOC:
1686                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1687                                 slot_id, ep_index);
1688         }
1689
1690         if (ret) {
1691 free_priv:
1692                 xhci_urb_free_priv(urb_priv);
1693                 urb->hcpriv = NULL;
1694         }
1695         spin_unlock_irqrestore(&xhci->lock, flags);
1696         return ret;
1697 }
1698
1699 /*
1700  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1701  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1702  * should pick up where it left off in the TD, unless a Set Transfer Ring
1703  * Dequeue Pointer is issued.
1704  *
1705  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1706  * the ring.  Since the ring is a contiguous structure, they can't be physically
1707  * removed.  Instead, there are two options:
1708  *
1709  *  1) If the HC is in the middle of processing the URB to be canceled, we
1710  *     simply move the ring's dequeue pointer past those TRBs using the Set
1711  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1712  *     when drivers timeout on the last submitted URB and attempt to cancel.
1713  *
1714  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1715  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1716  *     HC will need to invalidate the any TRBs it has cached after the stop
1717  *     endpoint command, as noted in the xHCI 0.95 errata.
1718  *
1719  *  3) The TD may have completed by the time the Stop Endpoint Command
1720  *     completes, so software needs to handle that case too.
1721  *
1722  * This function should protect against the TD enqueueing code ringing the
1723  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1724  * It also needs to account for multiple cancellations on happening at the same
1725  * time for the same endpoint.
1726  *
1727  * Note that this function can be called in any context, or so says
1728  * usb_hcd_unlink_urb()
1729  */
1730 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1731 {
1732         unsigned long flags;
1733         int ret, i;
1734         u32 temp;
1735         struct xhci_hcd *xhci;
1736         struct urb_priv *urb_priv;
1737         struct xhci_td *td;
1738         unsigned int ep_index;
1739         struct xhci_ring *ep_ring;
1740         struct xhci_virt_ep *ep;
1741         struct xhci_command *command;
1742         struct xhci_virt_device *vdev;
1743
1744         xhci = hcd_to_xhci(hcd);
1745         spin_lock_irqsave(&xhci->lock, flags);
1746
1747         trace_xhci_urb_dequeue(urb);
1748
1749         /* Make sure the URB hasn't completed or been unlinked already */
1750         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1751         if (ret)
1752                 goto done;
1753
1754         /* give back URB now if we can't queue it for cancel */
1755         vdev = xhci->devs[urb->dev->slot_id];
1756         urb_priv = urb->hcpriv;
1757         if (!vdev || !urb_priv)
1758                 goto err_giveback;
1759
1760         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1761         ep = &vdev->eps[ep_index];
1762         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1763         if (!ep || !ep_ring)
1764                 goto err_giveback;
1765
1766         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1767         temp = readl(&xhci->op_regs->status);
1768         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1769                 xhci_hc_died(xhci);
1770                 goto done;
1771         }
1772
1773         /*
1774          * check ring is not re-allocated since URB was enqueued. If it is, then
1775          * make sure none of the ring related pointers in this URB private data
1776          * are touched, such as td_list, otherwise we overwrite freed data
1777          */
1778         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1779                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1780                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1781                         td = &urb_priv->td[i];
1782                         if (!list_empty(&td->cancelled_td_list))
1783                                 list_del_init(&td->cancelled_td_list);
1784                 }
1785                 goto err_giveback;
1786         }
1787
1788         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1789                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1790                                 "HC halted, freeing TD manually.");
1791                 for (i = urb_priv->num_tds_done;
1792                      i < urb_priv->num_tds;
1793                      i++) {
1794                         td = &urb_priv->td[i];
1795                         if (!list_empty(&td->td_list))
1796                                 list_del_init(&td->td_list);
1797                         if (!list_empty(&td->cancelled_td_list))
1798                                 list_del_init(&td->cancelled_td_list);
1799                 }
1800                 goto err_giveback;
1801         }
1802
1803         i = urb_priv->num_tds_done;
1804         if (i < urb_priv->num_tds)
1805                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1806                                 "Cancel URB %p, dev %s, ep 0x%x, "
1807                                 "starting at offset 0x%llx",
1808                                 urb, urb->dev->devpath,
1809                                 urb->ep->desc.bEndpointAddress,
1810                                 (unsigned long long) xhci_trb_virt_to_dma(
1811                                         urb_priv->td[i].start_seg,
1812                                         urb_priv->td[i].first_trb));
1813
1814         for (; i < urb_priv->num_tds; i++) {
1815                 td = &urb_priv->td[i];
1816                 /* TD can already be on cancelled list if ep halted on it */
1817                 if (list_empty(&td->cancelled_td_list)) {
1818                         td->cancel_status = TD_DIRTY;
1819                         list_add_tail(&td->cancelled_td_list,
1820                                       &ep->cancelled_td_list);
1821                 }
1822         }
1823
1824         /* Queue a stop endpoint command, but only if this is
1825          * the first cancellation to be handled.
1826          */
1827         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1828                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1829                 if (!command) {
1830                         ret = -ENOMEM;
1831                         goto done;
1832                 }
1833                 ep->ep_state |= EP_STOP_CMD_PENDING;
1834                 ep->stop_cmd_timer.expires = jiffies +
1835                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1836                 add_timer(&ep->stop_cmd_timer);
1837                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1838                                          ep_index, 0);
1839                 xhci_ring_cmd_db(xhci);
1840         }
1841 done:
1842         spin_unlock_irqrestore(&xhci->lock, flags);
1843         return ret;
1844
1845 err_giveback:
1846         if (urb_priv)
1847                 xhci_urb_free_priv(urb_priv);
1848         usb_hcd_unlink_urb_from_ep(hcd, urb);
1849         spin_unlock_irqrestore(&xhci->lock, flags);
1850         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1851         return ret;
1852 }
1853
1854 /* Drop an endpoint from a new bandwidth configuration for this device.
1855  * Only one call to this function is allowed per endpoint before
1856  * check_bandwidth() or reset_bandwidth() must be called.
1857  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1858  * add the endpoint to the schedule with possibly new parameters denoted by a
1859  * different endpoint descriptor in usb_host_endpoint.
1860  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1861  * not allowed.
1862  *
1863  * The USB core will not allow URBs to be queued to an endpoint that is being
1864  * disabled, so there's no need for mutual exclusion to protect
1865  * the xhci->devs[slot_id] structure.
1866  */
1867 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1868                        struct usb_host_endpoint *ep)
1869 {
1870         struct xhci_hcd *xhci;
1871         struct xhci_container_ctx *in_ctx, *out_ctx;
1872         struct xhci_input_control_ctx *ctrl_ctx;
1873         unsigned int ep_index;
1874         struct xhci_ep_ctx *ep_ctx;
1875         u32 drop_flag;
1876         u32 new_add_flags, new_drop_flags;
1877         int ret;
1878
1879         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1880         if (ret <= 0)
1881                 return ret;
1882         xhci = hcd_to_xhci(hcd);
1883         if (xhci->xhc_state & XHCI_STATE_DYING)
1884                 return -ENODEV;
1885
1886         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1887         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1888         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1889                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1890                                 __func__, drop_flag);
1891                 return 0;
1892         }
1893
1894         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1895         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1896         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1897         if (!ctrl_ctx) {
1898                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1899                                 __func__);
1900                 return 0;
1901         }
1902
1903         ep_index = xhci_get_endpoint_index(&ep->desc);
1904         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1905         /* If the HC already knows the endpoint is disabled,
1906          * or the HCD has noted it is disabled, ignore this request
1907          */
1908         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1909             le32_to_cpu(ctrl_ctx->drop_flags) &
1910             xhci_get_endpoint_flag(&ep->desc)) {
1911                 /* Do not warn when called after a usb_device_reset */
1912                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1913                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1914                                   __func__, ep);
1915                 return 0;
1916         }
1917
1918         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1919         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1920
1921         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1922         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1923
1924         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1925
1926         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1927
1928         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1929                         (unsigned int) ep->desc.bEndpointAddress,
1930                         udev->slot_id,
1931                         (unsigned int) new_drop_flags,
1932                         (unsigned int) new_add_flags);
1933         return 0;
1934 }
1935 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1936
1937 /* Add an endpoint to a new possible bandwidth configuration for this device.
1938  * Only one call to this function is allowed per endpoint before
1939  * check_bandwidth() or reset_bandwidth() must be called.
1940  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1941  * add the endpoint to the schedule with possibly new parameters denoted by a
1942  * different endpoint descriptor in usb_host_endpoint.
1943  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1944  * not allowed.
1945  *
1946  * The USB core will not allow URBs to be queued to an endpoint until the
1947  * configuration or alt setting is installed in the device, so there's no need
1948  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1949  */
1950 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1951                       struct usb_host_endpoint *ep)
1952 {
1953         struct xhci_hcd *xhci;
1954         struct xhci_container_ctx *in_ctx;
1955         unsigned int ep_index;
1956         struct xhci_input_control_ctx *ctrl_ctx;
1957         struct xhci_ep_ctx *ep_ctx;
1958         u32 added_ctxs;
1959         u32 new_add_flags, new_drop_flags;
1960         struct xhci_virt_device *virt_dev;
1961         int ret = 0;
1962
1963         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1964         if (ret <= 0) {
1965                 /* So we won't queue a reset ep command for a root hub */
1966                 ep->hcpriv = NULL;
1967                 return ret;
1968         }
1969         xhci = hcd_to_xhci(hcd);
1970         if (xhci->xhc_state & XHCI_STATE_DYING)
1971                 return -ENODEV;
1972
1973         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1974         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1975                 /* FIXME when we have to issue an evaluate endpoint command to
1976                  * deal with ep0 max packet size changing once we get the
1977                  * descriptors
1978                  */
1979                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1980                                 __func__, added_ctxs);
1981                 return 0;
1982         }
1983
1984         virt_dev = xhci->devs[udev->slot_id];
1985         in_ctx = virt_dev->in_ctx;
1986         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1987         if (!ctrl_ctx) {
1988                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1989                                 __func__);
1990                 return 0;
1991         }
1992
1993         ep_index = xhci_get_endpoint_index(&ep->desc);
1994         /* If this endpoint is already in use, and the upper layers are trying
1995          * to add it again without dropping it, reject the addition.
1996          */
1997         if (virt_dev->eps[ep_index].ring &&
1998                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1999                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2000                                 "without dropping it.\n",
2001                                 (unsigned int) ep->desc.bEndpointAddress);
2002                 return -EINVAL;
2003         }
2004
2005         /* If the HCD has already noted the endpoint is enabled,
2006          * ignore this request.
2007          */
2008         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2009                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2010                                 __func__, ep);
2011                 return 0;
2012         }
2013
2014         /*
2015          * Configuration and alternate setting changes must be done in
2016          * process context, not interrupt context (or so documenation
2017          * for usb_set_interface() and usb_set_configuration() claim).
2018          */
2019         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2020                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2021                                 __func__, ep->desc.bEndpointAddress);
2022                 return -ENOMEM;
2023         }
2024
2025         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2026         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2027
2028         /* If xhci_endpoint_disable() was called for this endpoint, but the
2029          * xHC hasn't been notified yet through the check_bandwidth() call,
2030          * this re-adds a new state for the endpoint from the new endpoint
2031          * descriptors.  We must drop and re-add this endpoint, so we leave the
2032          * drop flags alone.
2033          */
2034         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2035
2036         /* Store the usb_device pointer for later use */
2037         ep->hcpriv = udev;
2038
2039         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2040         trace_xhci_add_endpoint(ep_ctx);
2041
2042         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2043                         (unsigned int) ep->desc.bEndpointAddress,
2044                         udev->slot_id,
2045                         (unsigned int) new_drop_flags,
2046                         (unsigned int) new_add_flags);
2047         return 0;
2048 }
2049 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2050
2051 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2052 {
2053         struct xhci_input_control_ctx *ctrl_ctx;
2054         struct xhci_ep_ctx *ep_ctx;
2055         struct xhci_slot_ctx *slot_ctx;
2056         int i;
2057
2058         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2059         if (!ctrl_ctx) {
2060                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2061                                 __func__);
2062                 return;
2063         }
2064
2065         /* When a device's add flag and drop flag are zero, any subsequent
2066          * configure endpoint command will leave that endpoint's state
2067          * untouched.  Make sure we don't leave any old state in the input
2068          * endpoint contexts.
2069          */
2070         ctrl_ctx->drop_flags = 0;
2071         ctrl_ctx->add_flags = 0;
2072         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2073         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2074         /* Endpoint 0 is always valid */
2075         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2076         for (i = 1; i < 31; i++) {
2077                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2078                 ep_ctx->ep_info = 0;
2079                 ep_ctx->ep_info2 = 0;
2080                 ep_ctx->deq = 0;
2081                 ep_ctx->tx_info = 0;
2082         }
2083 }
2084
2085 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2086                 struct usb_device *udev, u32 *cmd_status)
2087 {
2088         int ret;
2089
2090         switch (*cmd_status) {
2091         case COMP_COMMAND_ABORTED:
2092         case COMP_COMMAND_RING_STOPPED:
2093                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2094                 ret = -ETIME;
2095                 break;
2096         case COMP_RESOURCE_ERROR:
2097                 dev_warn(&udev->dev,
2098                          "Not enough host controller resources for new device state.\n");
2099                 ret = -ENOMEM;
2100                 /* FIXME: can we allocate more resources for the HC? */
2101                 break;
2102         case COMP_BANDWIDTH_ERROR:
2103         case COMP_SECONDARY_BANDWIDTH_ERROR:
2104                 dev_warn(&udev->dev,
2105                          "Not enough bandwidth for new device state.\n");
2106                 ret = -ENOSPC;
2107                 /* FIXME: can we go back to the old state? */
2108                 break;
2109         case COMP_TRB_ERROR:
2110                 /* the HCD set up something wrong */
2111                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2112                                 "add flag = 1, "
2113                                 "and endpoint is not disabled.\n");
2114                 ret = -EINVAL;
2115                 break;
2116         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2117                 dev_warn(&udev->dev,
2118                          "ERROR: Incompatible device for endpoint configure command.\n");
2119                 ret = -ENODEV;
2120                 break;
2121         case COMP_SUCCESS:
2122                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2123                                 "Successful Endpoint Configure command");
2124                 ret = 0;
2125                 break;
2126         default:
2127                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2128                                 *cmd_status);
2129                 ret = -EINVAL;
2130                 break;
2131         }
2132         return ret;
2133 }
2134
2135 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2136                 struct usb_device *udev, u32 *cmd_status)
2137 {
2138         int ret;
2139
2140         switch (*cmd_status) {
2141         case COMP_COMMAND_ABORTED:
2142         case COMP_COMMAND_RING_STOPPED:
2143                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2144                 ret = -ETIME;
2145                 break;
2146         case COMP_PARAMETER_ERROR:
2147                 dev_warn(&udev->dev,
2148                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2149                 ret = -EINVAL;
2150                 break;
2151         case COMP_SLOT_NOT_ENABLED_ERROR:
2152                 dev_warn(&udev->dev,
2153                         "WARN: slot not enabled for evaluate context command.\n");
2154                 ret = -EINVAL;
2155                 break;
2156         case COMP_CONTEXT_STATE_ERROR:
2157                 dev_warn(&udev->dev,
2158                         "WARN: invalid context state for evaluate context command.\n");
2159                 ret = -EINVAL;
2160                 break;
2161         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2162                 dev_warn(&udev->dev,
2163                         "ERROR: Incompatible device for evaluate context command.\n");
2164                 ret = -ENODEV;
2165                 break;
2166         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2167                 /* Max Exit Latency too large error */
2168                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2169                 ret = -EINVAL;
2170                 break;
2171         case COMP_SUCCESS:
2172                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2173                                 "Successful evaluate context command");
2174                 ret = 0;
2175                 break;
2176         default:
2177                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2178                         *cmd_status);
2179                 ret = -EINVAL;
2180                 break;
2181         }
2182         return ret;
2183 }
2184
2185 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2186                 struct xhci_input_control_ctx *ctrl_ctx)
2187 {
2188         u32 valid_add_flags;
2189         u32 valid_drop_flags;
2190
2191         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2192          * (bit 1).  The default control endpoint is added during the Address
2193          * Device command and is never removed until the slot is disabled.
2194          */
2195         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2196         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2197
2198         /* Use hweight32 to count the number of ones in the add flags, or
2199          * number of endpoints added.  Don't count endpoints that are changed
2200          * (both added and dropped).
2201          */
2202         return hweight32(valid_add_flags) -
2203                 hweight32(valid_add_flags & valid_drop_flags);
2204 }
2205
2206 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2207                 struct xhci_input_control_ctx *ctrl_ctx)
2208 {
2209         u32 valid_add_flags;
2210         u32 valid_drop_flags;
2211
2212         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2213         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2214
2215         return hweight32(valid_drop_flags) -
2216                 hweight32(valid_add_flags & valid_drop_flags);
2217 }
2218
2219 /*
2220  * We need to reserve the new number of endpoints before the configure endpoint
2221  * command completes.  We can't subtract the dropped endpoints from the number
2222  * of active endpoints until the command completes because we can oversubscribe
2223  * the host in this case:
2224  *
2225  *  - the first configure endpoint command drops more endpoints than it adds
2226  *  - a second configure endpoint command that adds more endpoints is queued
2227  *  - the first configure endpoint command fails, so the config is unchanged
2228  *  - the second command may succeed, even though there isn't enough resources
2229  *
2230  * Must be called with xhci->lock held.
2231  */
2232 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2233                 struct xhci_input_control_ctx *ctrl_ctx)
2234 {
2235         u32 added_eps;
2236
2237         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2238         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2239                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2240                                 "Not enough ep ctxs: "
2241                                 "%u active, need to add %u, limit is %u.",
2242                                 xhci->num_active_eps, added_eps,
2243                                 xhci->limit_active_eps);
2244                 return -ENOMEM;
2245         }
2246         xhci->num_active_eps += added_eps;
2247         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2248                         "Adding %u ep ctxs, %u now active.", added_eps,
2249                         xhci->num_active_eps);
2250         return 0;
2251 }
2252
2253 /*
2254  * The configure endpoint was failed by the xHC for some other reason, so we
2255  * need to revert the resources that failed configuration would have used.
2256  *
2257  * Must be called with xhci->lock held.
2258  */
2259 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2260                 struct xhci_input_control_ctx *ctrl_ctx)
2261 {
2262         u32 num_failed_eps;
2263
2264         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2265         xhci->num_active_eps -= num_failed_eps;
2266         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2267                         "Removing %u failed ep ctxs, %u now active.",
2268                         num_failed_eps,
2269                         xhci->num_active_eps);
2270 }
2271
2272 /*
2273  * Now that the command has completed, clean up the active endpoint count by
2274  * subtracting out the endpoints that were dropped (but not changed).
2275  *
2276  * Must be called with xhci->lock held.
2277  */
2278 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2279                 struct xhci_input_control_ctx *ctrl_ctx)
2280 {
2281         u32 num_dropped_eps;
2282
2283         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2284         xhci->num_active_eps -= num_dropped_eps;
2285         if (num_dropped_eps)
2286                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2287                                 "Removing %u dropped ep ctxs, %u now active.",
2288                                 num_dropped_eps,
2289                                 xhci->num_active_eps);
2290 }
2291
2292 static unsigned int xhci_get_block_size(struct usb_device *udev)
2293 {
2294         switch (udev->speed) {
2295         case USB_SPEED_LOW:
2296         case USB_SPEED_FULL:
2297                 return FS_BLOCK;
2298         case USB_SPEED_HIGH:
2299                 return HS_BLOCK;
2300         case USB_SPEED_SUPER:
2301         case USB_SPEED_SUPER_PLUS:
2302                 return SS_BLOCK;
2303         case USB_SPEED_UNKNOWN:
2304         case USB_SPEED_WIRELESS:
2305         default:
2306                 /* Should never happen */
2307                 return 1;
2308         }
2309 }
2310
2311 static unsigned int
2312 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2313 {
2314         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2315                 return LS_OVERHEAD;
2316         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2317                 return FS_OVERHEAD;
2318         return HS_OVERHEAD;
2319 }
2320
2321 /* If we are changing a LS/FS device under a HS hub,
2322  * make sure (if we are activating a new TT) that the HS bus has enough
2323  * bandwidth for this new TT.
2324  */
2325 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2326                 struct xhci_virt_device *virt_dev,
2327                 int old_active_eps)
2328 {
2329         struct xhci_interval_bw_table *bw_table;
2330         struct xhci_tt_bw_info *tt_info;
2331
2332         /* Find the bandwidth table for the root port this TT is attached to. */
2333         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2334         tt_info = virt_dev->tt_info;
2335         /* If this TT already had active endpoints, the bandwidth for this TT
2336          * has already been added.  Removing all periodic endpoints (and thus
2337          * making the TT enactive) will only decrease the bandwidth used.
2338          */
2339         if (old_active_eps)
2340                 return 0;
2341         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2342                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2343                         return -ENOMEM;
2344                 return 0;
2345         }
2346         /* Not sure why we would have no new active endpoints...
2347          *
2348          * Maybe because of an Evaluate Context change for a hub update or a
2349          * control endpoint 0 max packet size change?
2350          * FIXME: skip the bandwidth calculation in that case.
2351          */
2352         return 0;
2353 }
2354
2355 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2356                 struct xhci_virt_device *virt_dev)
2357 {
2358         unsigned int bw_reserved;
2359
2360         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2361         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2362                 return -ENOMEM;
2363
2364         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2365         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2366                 return -ENOMEM;
2367
2368         return 0;
2369 }
2370
2371 /*
2372  * This algorithm is a very conservative estimate of the worst-case scheduling
2373  * scenario for any one interval.  The hardware dynamically schedules the
2374  * packets, so we can't tell which microframe could be the limiting factor in
2375  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2376  *
2377  * Obviously, we can't solve an NP complete problem to find the minimum worst
2378  * case scenario.  Instead, we come up with an estimate that is no less than
2379  * the worst case bandwidth used for any one microframe, but may be an
2380  * over-estimate.
2381  *
2382  * We walk the requirements for each endpoint by interval, starting with the
2383  * smallest interval, and place packets in the schedule where there is only one
2384  * possible way to schedule packets for that interval.  In order to simplify
2385  * this algorithm, we record the largest max packet size for each interval, and
2386  * assume all packets will be that size.
2387  *
2388  * For interval 0, we obviously must schedule all packets for each interval.
2389  * The bandwidth for interval 0 is just the amount of data to be transmitted
2390  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2391  * the number of packets).
2392  *
2393  * For interval 1, we have two possible microframes to schedule those packets
2394  * in.  For this algorithm, if we can schedule the same number of packets for
2395  * each possible scheduling opportunity (each microframe), we will do so.  The
2396  * remaining number of packets will be saved to be transmitted in the gaps in
2397  * the next interval's scheduling sequence.
2398  *
2399  * As we move those remaining packets to be scheduled with interval 2 packets,
2400  * we have to double the number of remaining packets to transmit.  This is
2401  * because the intervals are actually powers of 2, and we would be transmitting
2402  * the previous interval's packets twice in this interval.  We also have to be
2403  * sure that when we look at the largest max packet size for this interval, we
2404  * also look at the largest max packet size for the remaining packets and take
2405  * the greater of the two.
2406  *
2407  * The algorithm continues to evenly distribute packets in each scheduling
2408  * opportunity, and push the remaining packets out, until we get to the last
2409  * interval.  Then those packets and their associated overhead are just added
2410  * to the bandwidth used.
2411  */
2412 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2413                 struct xhci_virt_device *virt_dev,
2414                 int old_active_eps)
2415 {
2416         unsigned int bw_reserved;
2417         unsigned int max_bandwidth;
2418         unsigned int bw_used;
2419         unsigned int block_size;
2420         struct xhci_interval_bw_table *bw_table;
2421         unsigned int packet_size = 0;
2422         unsigned int overhead = 0;
2423         unsigned int packets_transmitted = 0;
2424         unsigned int packets_remaining = 0;
2425         unsigned int i;
2426
2427         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2428                 return xhci_check_ss_bw(xhci, virt_dev);
2429
2430         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2431                 max_bandwidth = HS_BW_LIMIT;
2432                 /* Convert percent of bus BW reserved to blocks reserved */
2433                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2434         } else {
2435                 max_bandwidth = FS_BW_LIMIT;
2436                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2437         }
2438
2439         bw_table = virt_dev->bw_table;
2440         /* We need to translate the max packet size and max ESIT payloads into
2441          * the units the hardware uses.
2442          */
2443         block_size = xhci_get_block_size(virt_dev->udev);
2444
2445         /* If we are manipulating a LS/FS device under a HS hub, double check
2446          * that the HS bus has enough bandwidth if we are activing a new TT.
2447          */
2448         if (virt_dev->tt_info) {
2449                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2450                                 "Recalculating BW for rootport %u",
2451                                 virt_dev->real_port);
2452                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2453                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2454                                         "newly activated TT.\n");
2455                         return -ENOMEM;
2456                 }
2457                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2458                                 "Recalculating BW for TT slot %u port %u",
2459                                 virt_dev->tt_info->slot_id,
2460                                 virt_dev->tt_info->ttport);
2461         } else {
2462                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2463                                 "Recalculating BW for rootport %u",
2464                                 virt_dev->real_port);
2465         }
2466
2467         /* Add in how much bandwidth will be used for interval zero, or the
2468          * rounded max ESIT payload + number of packets * largest overhead.
2469          */
2470         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2471                 bw_table->interval_bw[0].num_packets *
2472                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2473
2474         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2475                 unsigned int bw_added;
2476                 unsigned int largest_mps;
2477                 unsigned int interval_overhead;
2478
2479                 /*
2480                  * How many packets could we transmit in this interval?
2481                  * If packets didn't fit in the previous interval, we will need
2482                  * to transmit that many packets twice within this interval.
2483                  */
2484                 packets_remaining = 2 * packets_remaining +
2485                         bw_table->interval_bw[i].num_packets;
2486
2487                 /* Find the largest max packet size of this or the previous
2488                  * interval.
2489                  */
2490                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2491                         largest_mps = 0;
2492                 else {
2493                         struct xhci_virt_ep *virt_ep;
2494                         struct list_head *ep_entry;
2495
2496                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2497                         virt_ep = list_entry(ep_entry,
2498                                         struct xhci_virt_ep, bw_endpoint_list);
2499                         /* Convert to blocks, rounding up */
2500                         largest_mps = DIV_ROUND_UP(
2501                                         virt_ep->bw_info.max_packet_size,
2502                                         block_size);
2503                 }
2504                 if (largest_mps > packet_size)
2505                         packet_size = largest_mps;
2506
2507                 /* Use the larger overhead of this or the previous interval. */
2508                 interval_overhead = xhci_get_largest_overhead(
2509                                 &bw_table->interval_bw[i]);
2510                 if (interval_overhead > overhead)
2511                         overhead = interval_overhead;
2512
2513                 /* How many packets can we evenly distribute across
2514                  * (1 << (i + 1)) possible scheduling opportunities?
2515                  */
2516                 packets_transmitted = packets_remaining >> (i + 1);
2517
2518                 /* Add in the bandwidth used for those scheduled packets */
2519                 bw_added = packets_transmitted * (overhead + packet_size);
2520
2521                 /* How many packets do we have remaining to transmit? */
2522                 packets_remaining = packets_remaining % (1 << (i + 1));
2523
2524                 /* What largest max packet size should those packets have? */
2525                 /* If we've transmitted all packets, don't carry over the
2526                  * largest packet size.
2527                  */
2528                 if (packets_remaining == 0) {
2529                         packet_size = 0;
2530                         overhead = 0;
2531                 } else if (packets_transmitted > 0) {
2532                         /* Otherwise if we do have remaining packets, and we've
2533                          * scheduled some packets in this interval, take the
2534                          * largest max packet size from endpoints with this
2535                          * interval.
2536                          */
2537                         packet_size = largest_mps;
2538                         overhead = interval_overhead;
2539                 }
2540                 /* Otherwise carry over packet_size and overhead from the last
2541                  * time we had a remainder.
2542                  */
2543                 bw_used += bw_added;
2544                 if (bw_used > max_bandwidth) {
2545                         xhci_warn(xhci, "Not enough bandwidth. "
2546                                         "Proposed: %u, Max: %u\n",
2547                                 bw_used, max_bandwidth);
2548                         return -ENOMEM;
2549                 }
2550         }
2551         /*
2552          * Ok, we know we have some packets left over after even-handedly
2553          * scheduling interval 15.  We don't know which microframes they will
2554          * fit into, so we over-schedule and say they will be scheduled every
2555          * microframe.
2556          */
2557         if (packets_remaining > 0)
2558                 bw_used += overhead + packet_size;
2559
2560         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2561                 unsigned int port_index = virt_dev->real_port - 1;
2562
2563                 /* OK, we're manipulating a HS device attached to a
2564                  * root port bandwidth domain.  Include the number of active TTs
2565                  * in the bandwidth used.
2566                  */
2567                 bw_used += TT_HS_OVERHEAD *
2568                         xhci->rh_bw[port_index].num_active_tts;
2569         }
2570
2571         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2572                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2573                 "Available: %u " "percent",
2574                 bw_used, max_bandwidth, bw_reserved,
2575                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2576                 max_bandwidth);
2577
2578         bw_used += bw_reserved;
2579         if (bw_used > max_bandwidth) {
2580                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2581                                 bw_used, max_bandwidth);
2582                 return -ENOMEM;
2583         }
2584
2585         bw_table->bw_used = bw_used;
2586         return 0;
2587 }
2588
2589 static bool xhci_is_async_ep(unsigned int ep_type)
2590 {
2591         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2592                                         ep_type != ISOC_IN_EP &&
2593                                         ep_type != INT_IN_EP);
2594 }
2595
2596 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2597 {
2598         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2599 }
2600
2601 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2602 {
2603         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2604
2605         if (ep_bw->ep_interval == 0)
2606                 return SS_OVERHEAD_BURST +
2607                         (ep_bw->mult * ep_bw->num_packets *
2608                                         (SS_OVERHEAD + mps));
2609         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2610                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2611                                 1 << ep_bw->ep_interval);
2612
2613 }
2614
2615 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2616                 struct xhci_bw_info *ep_bw,
2617                 struct xhci_interval_bw_table *bw_table,
2618                 struct usb_device *udev,
2619                 struct xhci_virt_ep *virt_ep,
2620                 struct xhci_tt_bw_info *tt_info)
2621 {
2622         struct xhci_interval_bw *interval_bw;
2623         int normalized_interval;
2624
2625         if (xhci_is_async_ep(ep_bw->type))
2626                 return;
2627
2628         if (udev->speed >= USB_SPEED_SUPER) {
2629                 if (xhci_is_sync_in_ep(ep_bw->type))
2630                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2631                                 xhci_get_ss_bw_consumed(ep_bw);
2632                 else
2633                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2634                                 xhci_get_ss_bw_consumed(ep_bw);
2635                 return;
2636         }
2637
2638         /* SuperSpeed endpoints never get added to intervals in the table, so
2639          * this check is only valid for HS/FS/LS devices.
2640          */
2641         if (list_empty(&virt_ep->bw_endpoint_list))
2642                 return;
2643         /* For LS/FS devices, we need to translate the interval expressed in
2644          * microframes to frames.
2645          */
2646         if (udev->speed == USB_SPEED_HIGH)
2647                 normalized_interval = ep_bw->ep_interval;
2648         else
2649                 normalized_interval = ep_bw->ep_interval - 3;
2650
2651         if (normalized_interval == 0)
2652                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2653         interval_bw = &bw_table->interval_bw[normalized_interval];
2654         interval_bw->num_packets -= ep_bw->num_packets;
2655         switch (udev->speed) {
2656         case USB_SPEED_LOW:
2657                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2658                 break;
2659         case USB_SPEED_FULL:
2660                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2661                 break;
2662         case USB_SPEED_HIGH:
2663                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2664                 break;
2665         case USB_SPEED_SUPER:
2666         case USB_SPEED_SUPER_PLUS:
2667         case USB_SPEED_UNKNOWN:
2668         case USB_SPEED_WIRELESS:
2669                 /* Should never happen because only LS/FS/HS endpoints will get
2670                  * added to the endpoint list.
2671                  */
2672                 return;
2673         }
2674         if (tt_info)
2675                 tt_info->active_eps -= 1;
2676         list_del_init(&virt_ep->bw_endpoint_list);
2677 }
2678
2679 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2680                 struct xhci_bw_info *ep_bw,
2681                 struct xhci_interval_bw_table *bw_table,
2682                 struct usb_device *udev,
2683                 struct xhci_virt_ep *virt_ep,
2684                 struct xhci_tt_bw_info *tt_info)
2685 {
2686         struct xhci_interval_bw *interval_bw;
2687         struct xhci_virt_ep *smaller_ep;
2688         int normalized_interval;
2689
2690         if (xhci_is_async_ep(ep_bw->type))
2691                 return;
2692
2693         if (udev->speed == USB_SPEED_SUPER) {
2694                 if (xhci_is_sync_in_ep(ep_bw->type))
2695                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2696                                 xhci_get_ss_bw_consumed(ep_bw);
2697                 else
2698                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2699                                 xhci_get_ss_bw_consumed(ep_bw);
2700                 return;
2701         }
2702
2703         /* For LS/FS devices, we need to translate the interval expressed in
2704          * microframes to frames.
2705          */
2706         if (udev->speed == USB_SPEED_HIGH)
2707                 normalized_interval = ep_bw->ep_interval;
2708         else
2709                 normalized_interval = ep_bw->ep_interval - 3;
2710
2711         if (normalized_interval == 0)
2712                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2713         interval_bw = &bw_table->interval_bw[normalized_interval];
2714         interval_bw->num_packets += ep_bw->num_packets;
2715         switch (udev->speed) {
2716         case USB_SPEED_LOW:
2717                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2718                 break;
2719         case USB_SPEED_FULL:
2720                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2721                 break;
2722         case USB_SPEED_HIGH:
2723                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2724                 break;
2725         case USB_SPEED_SUPER:
2726         case USB_SPEED_SUPER_PLUS:
2727         case USB_SPEED_UNKNOWN:
2728         case USB_SPEED_WIRELESS:
2729                 /* Should never happen because only LS/FS/HS endpoints will get
2730                  * added to the endpoint list.
2731                  */
2732                 return;
2733         }
2734
2735         if (tt_info)
2736                 tt_info->active_eps += 1;
2737         /* Insert the endpoint into the list, largest max packet size first. */
2738         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2739                         bw_endpoint_list) {
2740                 if (ep_bw->max_packet_size >=
2741                                 smaller_ep->bw_info.max_packet_size) {
2742                         /* Add the new ep before the smaller endpoint */
2743                         list_add_tail(&virt_ep->bw_endpoint_list,
2744                                         &smaller_ep->bw_endpoint_list);
2745                         return;
2746                 }
2747         }
2748         /* Add the new endpoint at the end of the list. */
2749         list_add_tail(&virt_ep->bw_endpoint_list,
2750                         &interval_bw->endpoints);
2751 }
2752
2753 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2754                 struct xhci_virt_device *virt_dev,
2755                 int old_active_eps)
2756 {
2757         struct xhci_root_port_bw_info *rh_bw_info;
2758         if (!virt_dev->tt_info)
2759                 return;
2760
2761         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2762         if (old_active_eps == 0 &&
2763                                 virt_dev->tt_info->active_eps != 0) {
2764                 rh_bw_info->num_active_tts += 1;
2765                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2766         } else if (old_active_eps != 0 &&
2767                                 virt_dev->tt_info->active_eps == 0) {
2768                 rh_bw_info->num_active_tts -= 1;
2769                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2770         }
2771 }
2772
2773 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2774                 struct xhci_virt_device *virt_dev,
2775                 struct xhci_container_ctx *in_ctx)
2776 {
2777         struct xhci_bw_info ep_bw_info[31];
2778         int i;
2779         struct xhci_input_control_ctx *ctrl_ctx;
2780         int old_active_eps = 0;
2781
2782         if (virt_dev->tt_info)
2783                 old_active_eps = virt_dev->tt_info->active_eps;
2784
2785         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2786         if (!ctrl_ctx) {
2787                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2788                                 __func__);
2789                 return -ENOMEM;
2790         }
2791
2792         for (i = 0; i < 31; i++) {
2793                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2794                         continue;
2795
2796                 /* Make a copy of the BW info in case we need to revert this */
2797                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2798                                 sizeof(ep_bw_info[i]));
2799                 /* Drop the endpoint from the interval table if the endpoint is
2800                  * being dropped or changed.
2801                  */
2802                 if (EP_IS_DROPPED(ctrl_ctx, i))
2803                         xhci_drop_ep_from_interval_table(xhci,
2804                                         &virt_dev->eps[i].bw_info,
2805                                         virt_dev->bw_table,
2806                                         virt_dev->udev,
2807                                         &virt_dev->eps[i],
2808                                         virt_dev->tt_info);
2809         }
2810         /* Overwrite the information stored in the endpoints' bw_info */
2811         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2812         for (i = 0; i < 31; i++) {
2813                 /* Add any changed or added endpoints to the interval table */
2814                 if (EP_IS_ADDED(ctrl_ctx, i))
2815                         xhci_add_ep_to_interval_table(xhci,
2816                                         &virt_dev->eps[i].bw_info,
2817                                         virt_dev->bw_table,
2818                                         virt_dev->udev,
2819                                         &virt_dev->eps[i],
2820                                         virt_dev->tt_info);
2821         }
2822
2823         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2824                 /* Ok, this fits in the bandwidth we have.
2825                  * Update the number of active TTs.
2826                  */
2827                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2828                 return 0;
2829         }
2830
2831         /* We don't have enough bandwidth for this, revert the stored info. */
2832         for (i = 0; i < 31; i++) {
2833                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2834                         continue;
2835
2836                 /* Drop the new copies of any added or changed endpoints from
2837                  * the interval table.
2838                  */
2839                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2840                         xhci_drop_ep_from_interval_table(xhci,
2841                                         &virt_dev->eps[i].bw_info,
2842                                         virt_dev->bw_table,
2843                                         virt_dev->udev,
2844                                         &virt_dev->eps[i],
2845                                         virt_dev->tt_info);
2846                 }
2847                 /* Revert the endpoint back to its old information */
2848                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2849                                 sizeof(ep_bw_info[i]));
2850                 /* Add any changed or dropped endpoints back into the table */
2851                 if (EP_IS_DROPPED(ctrl_ctx, i))
2852                         xhci_add_ep_to_interval_table(xhci,
2853                                         &virt_dev->eps[i].bw_info,
2854                                         virt_dev->bw_table,
2855                                         virt_dev->udev,
2856                                         &virt_dev->eps[i],
2857                                         virt_dev->tt_info);
2858         }
2859         return -ENOMEM;
2860 }
2861
2862
2863 /* Issue a configure endpoint command or evaluate context command
2864  * and wait for it to finish.
2865  */
2866 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2867                 struct usb_device *udev,
2868                 struct xhci_command *command,
2869                 bool ctx_change, bool must_succeed)
2870 {
2871         int ret;
2872         unsigned long flags;
2873         struct xhci_input_control_ctx *ctrl_ctx;
2874         struct xhci_virt_device *virt_dev;
2875         struct xhci_slot_ctx *slot_ctx;
2876
2877         if (!command)
2878                 return -EINVAL;
2879
2880         spin_lock_irqsave(&xhci->lock, flags);
2881
2882         if (xhci->xhc_state & XHCI_STATE_DYING) {
2883                 spin_unlock_irqrestore(&xhci->lock, flags);
2884                 return -ESHUTDOWN;
2885         }
2886
2887         virt_dev = xhci->devs[udev->slot_id];
2888
2889         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2890         if (!ctrl_ctx) {
2891                 spin_unlock_irqrestore(&xhci->lock, flags);
2892                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2893                                 __func__);
2894                 return -ENOMEM;
2895         }
2896
2897         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2898                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2899                 spin_unlock_irqrestore(&xhci->lock, flags);
2900                 xhci_warn(xhci, "Not enough host resources, "
2901                                 "active endpoint contexts = %u\n",
2902                                 xhci->num_active_eps);
2903                 return -ENOMEM;
2904         }
2905         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2906             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2907                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2908                         xhci_free_host_resources(xhci, ctrl_ctx);
2909                 spin_unlock_irqrestore(&xhci->lock, flags);
2910                 xhci_warn(xhci, "Not enough bandwidth\n");
2911                 return -ENOMEM;
2912         }
2913
2914         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2915
2916         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2917         trace_xhci_configure_endpoint(slot_ctx);
2918
2919         if (!ctx_change)
2920                 ret = xhci_queue_configure_endpoint(xhci, command,
2921                                 command->in_ctx->dma,
2922                                 udev->slot_id, must_succeed);
2923         else
2924                 ret = xhci_queue_evaluate_context(xhci, command,
2925                                 command->in_ctx->dma,
2926                                 udev->slot_id, must_succeed);
2927         if (ret < 0) {
2928                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2929                         xhci_free_host_resources(xhci, ctrl_ctx);
2930                 spin_unlock_irqrestore(&xhci->lock, flags);
2931                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2932                                 "FIXME allocate a new ring segment");
2933                 return -ENOMEM;
2934         }
2935         xhci_ring_cmd_db(xhci);
2936         spin_unlock_irqrestore(&xhci->lock, flags);
2937
2938         /* Wait for the configure endpoint command to complete */
2939         wait_for_completion(command->completion);
2940
2941         if (!ctx_change)
2942                 ret = xhci_configure_endpoint_result(xhci, udev,
2943                                                      &command->status);
2944         else
2945                 ret = xhci_evaluate_context_result(xhci, udev,
2946                                                    &command->status);
2947
2948         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2949                 spin_lock_irqsave(&xhci->lock, flags);
2950                 /* If the command failed, remove the reserved resources.
2951                  * Otherwise, clean up the estimate to include dropped eps.
2952                  */
2953                 if (ret)
2954                         xhci_free_host_resources(xhci, ctrl_ctx);
2955                 else
2956                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2957                 spin_unlock_irqrestore(&xhci->lock, flags);
2958         }
2959         return ret;
2960 }
2961
2962 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2963         struct xhci_virt_device *vdev, int i)
2964 {
2965         struct xhci_virt_ep *ep = &vdev->eps[i];
2966
2967         if (ep->ep_state & EP_HAS_STREAMS) {
2968                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2969                                 xhci_get_endpoint_address(i));
2970                 xhci_free_stream_info(xhci, ep->stream_info);
2971                 ep->stream_info = NULL;
2972                 ep->ep_state &= ~EP_HAS_STREAMS;
2973         }
2974 }
2975
2976 /* Called after one or more calls to xhci_add_endpoint() or
2977  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2978  * to call xhci_reset_bandwidth().
2979  *
2980  * Since we are in the middle of changing either configuration or
2981  * installing a new alt setting, the USB core won't allow URBs to be
2982  * enqueued for any endpoint on the old config or interface.  Nothing
2983  * else should be touching the xhci->devs[slot_id] structure, so we
2984  * don't need to take the xhci->lock for manipulating that.
2985  */
2986 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2987 {
2988         int i;
2989         int ret = 0;
2990         struct xhci_hcd *xhci;
2991         struct xhci_virt_device *virt_dev;
2992         struct xhci_input_control_ctx *ctrl_ctx;
2993         struct xhci_slot_ctx *slot_ctx;
2994         struct xhci_command *command;
2995
2996         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2997         if (ret <= 0)
2998                 return ret;
2999         xhci = hcd_to_xhci(hcd);
3000         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3001                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3002                 return -ENODEV;
3003
3004         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3005         virt_dev = xhci->devs[udev->slot_id];
3006
3007         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3008         if (!command)
3009                 return -ENOMEM;
3010
3011         command->in_ctx = virt_dev->in_ctx;
3012
3013         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3014         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3015         if (!ctrl_ctx) {
3016                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3017                                 __func__);
3018                 ret = -ENOMEM;
3019                 goto command_cleanup;
3020         }
3021         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3022         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3023         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3024
3025         /* Don't issue the command if there's no endpoints to update. */
3026         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3027             ctrl_ctx->drop_flags == 0) {
3028                 ret = 0;
3029                 goto command_cleanup;
3030         }
3031         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3032         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3033         for (i = 31; i >= 1; i--) {
3034                 __le32 le32 = cpu_to_le32(BIT(i));
3035
3036                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3037                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3038                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3039                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3040                         break;
3041                 }
3042         }
3043
3044         ret = xhci_configure_endpoint(xhci, udev, command,
3045                         false, false);
3046         if (ret)
3047                 /* Callee should call reset_bandwidth() */
3048                 goto command_cleanup;
3049
3050         /* Free any rings that were dropped, but not changed. */
3051         for (i = 1; i < 31; i++) {
3052                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3053                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3054                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3055                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3056                 }
3057         }
3058         xhci_zero_in_ctx(xhci, virt_dev);
3059         /*
3060          * Install any rings for completely new endpoints or changed endpoints,
3061          * and free any old rings from changed endpoints.
3062          */
3063         for (i = 1; i < 31; i++) {
3064                 if (!virt_dev->eps[i].new_ring)
3065                         continue;
3066                 /* Only free the old ring if it exists.
3067                  * It may not if this is the first add of an endpoint.
3068                  */
3069                 if (virt_dev->eps[i].ring) {
3070                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3071                 }
3072                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3073                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3074                 virt_dev->eps[i].new_ring = NULL;
3075                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3076         }
3077 command_cleanup:
3078         kfree(command->completion);
3079         kfree(command);
3080
3081         return ret;
3082 }
3083 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3084
3085 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3086 {
3087         struct xhci_hcd *xhci;
3088         struct xhci_virt_device *virt_dev;
3089         int i, ret;
3090
3091         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3092         if (ret <= 0)
3093                 return;
3094         xhci = hcd_to_xhci(hcd);
3095
3096         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3097         virt_dev = xhci->devs[udev->slot_id];
3098         /* Free any rings allocated for added endpoints */
3099         for (i = 0; i < 31; i++) {
3100                 if (virt_dev->eps[i].new_ring) {
3101                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3102                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3103                         virt_dev->eps[i].new_ring = NULL;
3104                 }
3105         }
3106         xhci_zero_in_ctx(xhci, virt_dev);
3107 }
3108 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3109
3110 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3111                 struct xhci_container_ctx *in_ctx,
3112                 struct xhci_container_ctx *out_ctx,
3113                 struct xhci_input_control_ctx *ctrl_ctx,
3114                 u32 add_flags, u32 drop_flags)
3115 {
3116         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3117         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3118         xhci_slot_copy(xhci, in_ctx, out_ctx);
3119         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3120 }
3121
3122 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3123                                   struct usb_host_endpoint *host_ep)
3124 {
3125         struct xhci_hcd         *xhci;
3126         struct xhci_virt_device *vdev;
3127         struct xhci_virt_ep     *ep;
3128         struct usb_device       *udev;
3129         unsigned long           flags;
3130         unsigned int            ep_index;
3131
3132         xhci = hcd_to_xhci(hcd);
3133 rescan:
3134         spin_lock_irqsave(&xhci->lock, flags);
3135
3136         udev = (struct usb_device *)host_ep->hcpriv;
3137         if (!udev || !udev->slot_id)
3138                 goto done;
3139
3140         vdev = xhci->devs[udev->slot_id];
3141         if (!vdev)
3142                 goto done;
3143
3144         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3145         ep = &vdev->eps[ep_index];
3146         if (!ep)
3147                 goto done;
3148
3149         /* wait for hub_tt_work to finish clearing hub TT */
3150         if (ep->ep_state & EP_CLEARING_TT) {
3151                 spin_unlock_irqrestore(&xhci->lock, flags);
3152                 schedule_timeout_uninterruptible(1);
3153                 goto rescan;
3154         }
3155
3156         if (ep->ep_state)
3157                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3158                          ep->ep_state);
3159 done:
3160         host_ep->hcpriv = NULL;
3161         spin_unlock_irqrestore(&xhci->lock, flags);
3162 }
3163
3164 /*
3165  * Called after usb core issues a clear halt control message.
3166  * The host side of the halt should already be cleared by a reset endpoint
3167  * command issued when the STALL event was received.
3168  *
3169  * The reset endpoint command may only be issued to endpoints in the halted
3170  * state. For software that wishes to reset the data toggle or sequence number
3171  * of an endpoint that isn't in the halted state this function will issue a
3172  * configure endpoint command with the Drop and Add bits set for the target
3173  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3174  */
3175
3176 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3177                 struct usb_host_endpoint *host_ep)
3178 {
3179         struct xhci_hcd *xhci;
3180         struct usb_device *udev;
3181         struct xhci_virt_device *vdev;
3182         struct xhci_virt_ep *ep;
3183         struct xhci_input_control_ctx *ctrl_ctx;
3184         struct xhci_command *stop_cmd, *cfg_cmd;
3185         unsigned int ep_index;
3186         unsigned long flags;
3187         u32 ep_flag;
3188         int err;
3189
3190         xhci = hcd_to_xhci(hcd);
3191         if (!host_ep->hcpriv)
3192                 return;
3193         udev = (struct usb_device *) host_ep->hcpriv;
3194         vdev = xhci->devs[udev->slot_id];
3195
3196         /*
3197          * vdev may be lost due to xHC restore error and re-initialization
3198          * during S3/S4 resume. A new vdev will be allocated later by
3199          * xhci_discover_or_reset_device()
3200          */
3201         if (!udev->slot_id || !vdev)
3202                 return;
3203         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3204         ep = &vdev->eps[ep_index];
3205         if (!ep)
3206                 return;
3207
3208         /* Bail out if toggle is already being cleared by a endpoint reset */
3209         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3210                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3211                 return;
3212         }
3213         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3214         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3215             usb_endpoint_xfer_isoc(&host_ep->desc))
3216                 return;
3217
3218         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3219
3220         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3221                 return;
3222
3223         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3224         if (!stop_cmd)
3225                 return;
3226
3227         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3228         if (!cfg_cmd)
3229                 goto cleanup;
3230
3231         spin_lock_irqsave(&xhci->lock, flags);
3232
3233         /* block queuing new trbs and ringing ep doorbell */
3234         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3235
3236         /*
3237          * Make sure endpoint ring is empty before resetting the toggle/seq.
3238          * Driver is required to synchronously cancel all transfer request.
3239          * Stop the endpoint to force xHC to update the output context
3240          */
3241
3242         if (!list_empty(&ep->ring->td_list)) {
3243                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3244                 spin_unlock_irqrestore(&xhci->lock, flags);
3245                 xhci_free_command(xhci, cfg_cmd);
3246                 goto cleanup;
3247         }
3248
3249         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3250                                         ep_index, 0);
3251         if (err < 0) {
3252                 spin_unlock_irqrestore(&xhci->lock, flags);
3253                 xhci_free_command(xhci, cfg_cmd);
3254                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3255                                 __func__, err);
3256                 goto cleanup;
3257         }
3258
3259         xhci_ring_cmd_db(xhci);
3260         spin_unlock_irqrestore(&xhci->lock, flags);
3261
3262         wait_for_completion(stop_cmd->completion);
3263
3264         spin_lock_irqsave(&xhci->lock, flags);
3265
3266         /* config ep command clears toggle if add and drop ep flags are set */
3267         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3268         if (!ctrl_ctx) {
3269                 spin_unlock_irqrestore(&xhci->lock, flags);
3270                 xhci_free_command(xhci, cfg_cmd);
3271                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3272                                 __func__);
3273                 goto cleanup;
3274         }
3275
3276         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3277                                            ctrl_ctx, ep_flag, ep_flag);
3278         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3279
3280         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3281                                       udev->slot_id, false);
3282         if (err < 0) {
3283                 spin_unlock_irqrestore(&xhci->lock, flags);
3284                 xhci_free_command(xhci, cfg_cmd);
3285                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3286                                 __func__, err);
3287                 goto cleanup;
3288         }
3289
3290         xhci_ring_cmd_db(xhci);
3291         spin_unlock_irqrestore(&xhci->lock, flags);
3292
3293         wait_for_completion(cfg_cmd->completion);
3294
3295         xhci_free_command(xhci, cfg_cmd);
3296 cleanup:
3297         xhci_free_command(xhci, stop_cmd);
3298         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3299                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3300 }
3301
3302 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3303                 struct usb_device *udev, struct usb_host_endpoint *ep,
3304                 unsigned int slot_id)
3305 {
3306         int ret;
3307         unsigned int ep_index;
3308         unsigned int ep_state;
3309
3310         if (!ep)
3311                 return -EINVAL;
3312         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3313         if (ret <= 0)
3314                 return -EINVAL;
3315         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3316                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3317                                 " descriptor for ep 0x%x does not support streams\n",
3318                                 ep->desc.bEndpointAddress);
3319                 return -EINVAL;
3320         }
3321
3322         ep_index = xhci_get_endpoint_index(&ep->desc);
3323         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3324         if (ep_state & EP_HAS_STREAMS ||
3325                         ep_state & EP_GETTING_STREAMS) {
3326                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3327                                 "already has streams set up.\n",
3328                                 ep->desc.bEndpointAddress);
3329                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3330                                 "dynamic stream context array reallocation.\n");
3331                 return -EINVAL;
3332         }
3333         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3334                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3335                                 "endpoint 0x%x; URBs are pending.\n",
3336                                 ep->desc.bEndpointAddress);
3337                 return -EINVAL;
3338         }
3339         return 0;
3340 }
3341
3342 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3343                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3344 {
3345         unsigned int max_streams;
3346
3347         /* The stream context array size must be a power of two */
3348         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3349         /*
3350          * Find out how many primary stream array entries the host controller
3351          * supports.  Later we may use secondary stream arrays (similar to 2nd
3352          * level page entries), but that's an optional feature for xHCI host
3353          * controllers. xHCs must support at least 4 stream IDs.
3354          */
3355         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3356         if (*num_stream_ctxs > max_streams) {
3357                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3358                                 max_streams);
3359                 *num_stream_ctxs = max_streams;
3360                 *num_streams = max_streams;
3361         }
3362 }
3363
3364 /* Returns an error code if one of the endpoint already has streams.
3365  * This does not change any data structures, it only checks and gathers
3366  * information.
3367  */
3368 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3369                 struct usb_device *udev,
3370                 struct usb_host_endpoint **eps, unsigned int num_eps,
3371                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3372 {
3373         unsigned int max_streams;
3374         unsigned int endpoint_flag;
3375         int i;
3376         int ret;
3377
3378         for (i = 0; i < num_eps; i++) {
3379                 ret = xhci_check_streams_endpoint(xhci, udev,
3380                                 eps[i], udev->slot_id);
3381                 if (ret < 0)
3382                         return ret;
3383
3384                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3385                 if (max_streams < (*num_streams - 1)) {
3386                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3387                                         eps[i]->desc.bEndpointAddress,
3388                                         max_streams);
3389                         *num_streams = max_streams+1;
3390                 }
3391
3392                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3393                 if (*changed_ep_bitmask & endpoint_flag)
3394                         return -EINVAL;
3395                 *changed_ep_bitmask |= endpoint_flag;
3396         }
3397         return 0;
3398 }
3399
3400 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3401                 struct usb_device *udev,
3402                 struct usb_host_endpoint **eps, unsigned int num_eps)
3403 {
3404         u32 changed_ep_bitmask = 0;
3405         unsigned int slot_id;
3406         unsigned int ep_index;
3407         unsigned int ep_state;
3408         int i;
3409
3410         slot_id = udev->slot_id;
3411         if (!xhci->devs[slot_id])
3412                 return 0;
3413
3414         for (i = 0; i < num_eps; i++) {
3415                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3416                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3417                 /* Are streams already being freed for the endpoint? */
3418                 if (ep_state & EP_GETTING_NO_STREAMS) {
3419                         xhci_warn(xhci, "WARN Can't disable streams for "
3420                                         "endpoint 0x%x, "
3421                                         "streams are being disabled already\n",
3422                                         eps[i]->desc.bEndpointAddress);
3423                         return 0;
3424                 }
3425                 /* Are there actually any streams to free? */
3426                 if (!(ep_state & EP_HAS_STREAMS) &&
3427                                 !(ep_state & EP_GETTING_STREAMS)) {
3428                         xhci_warn(xhci, "WARN Can't disable streams for "
3429                                         "endpoint 0x%x, "
3430                                         "streams are already disabled!\n",
3431                                         eps[i]->desc.bEndpointAddress);
3432                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3433                                         "with non-streams endpoint\n");
3434                         return 0;
3435                 }
3436                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3437         }
3438         return changed_ep_bitmask;
3439 }
3440
3441 /*
3442  * The USB device drivers use this function (through the HCD interface in USB
3443  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3444  * coordinate mass storage command queueing across multiple endpoints (basically
3445  * a stream ID == a task ID).
3446  *
3447  * Setting up streams involves allocating the same size stream context array
3448  * for each endpoint and issuing a configure endpoint command for all endpoints.
3449  *
3450  * Don't allow the call to succeed if one endpoint only supports one stream
3451  * (which means it doesn't support streams at all).
3452  *
3453  * Drivers may get less stream IDs than they asked for, if the host controller
3454  * hardware or endpoints claim they can't support the number of requested
3455  * stream IDs.
3456  */
3457 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3458                 struct usb_host_endpoint **eps, unsigned int num_eps,
3459                 unsigned int num_streams, gfp_t mem_flags)
3460 {
3461         int i, ret;
3462         struct xhci_hcd *xhci;
3463         struct xhci_virt_device *vdev;
3464         struct xhci_command *config_cmd;
3465         struct xhci_input_control_ctx *ctrl_ctx;
3466         unsigned int ep_index;
3467         unsigned int num_stream_ctxs;
3468         unsigned int max_packet;
3469         unsigned long flags;
3470         u32 changed_ep_bitmask = 0;
3471
3472         if (!eps)
3473                 return -EINVAL;
3474
3475         /* Add one to the number of streams requested to account for
3476          * stream 0 that is reserved for xHCI usage.
3477          */
3478         num_streams += 1;
3479         xhci = hcd_to_xhci(hcd);
3480         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3481                         num_streams);
3482
3483         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3484         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3485                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3486                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3487                 return -ENOSYS;
3488         }
3489
3490         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3491         if (!config_cmd)
3492                 return -ENOMEM;
3493
3494         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3495         if (!ctrl_ctx) {
3496                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3497                                 __func__);
3498                 xhci_free_command(xhci, config_cmd);
3499                 return -ENOMEM;
3500         }
3501
3502         /* Check to make sure all endpoints are not already configured for
3503          * streams.  While we're at it, find the maximum number of streams that
3504          * all the endpoints will support and check for duplicate endpoints.
3505          */
3506         spin_lock_irqsave(&xhci->lock, flags);
3507         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3508                         num_eps, &num_streams, &changed_ep_bitmask);
3509         if (ret < 0) {
3510                 xhci_free_command(xhci, config_cmd);
3511                 spin_unlock_irqrestore(&xhci->lock, flags);
3512                 return ret;
3513         }
3514         if (num_streams <= 1) {
3515                 xhci_warn(xhci, "WARN: endpoints can't handle "
3516                                 "more than one stream.\n");
3517                 xhci_free_command(xhci, config_cmd);
3518                 spin_unlock_irqrestore(&xhci->lock, flags);
3519                 return -EINVAL;
3520         }
3521         vdev = xhci->devs[udev->slot_id];
3522         /* Mark each endpoint as being in transition, so
3523          * xhci_urb_enqueue() will reject all URBs.
3524          */
3525         for (i = 0; i < num_eps; i++) {
3526                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3527                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3528         }
3529         spin_unlock_irqrestore(&xhci->lock, flags);
3530
3531         /* Setup internal data structures and allocate HW data structures for
3532          * streams (but don't install the HW structures in the input context
3533          * until we're sure all memory allocation succeeded).
3534          */
3535         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3536         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3537                         num_stream_ctxs, num_streams);
3538
3539         for (i = 0; i < num_eps; i++) {
3540                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3541                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3542                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3543                                 num_stream_ctxs,
3544                                 num_streams,
3545                                 max_packet, mem_flags);
3546                 if (!vdev->eps[ep_index].stream_info)
3547                         goto cleanup;
3548                 /* Set maxPstreams in endpoint context and update deq ptr to
3549                  * point to stream context array. FIXME
3550                  */
3551         }
3552
3553         /* Set up the input context for a configure endpoint command. */
3554         for (i = 0; i < num_eps; i++) {
3555                 struct xhci_ep_ctx *ep_ctx;
3556
3557                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3558                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3559
3560                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3561                                 vdev->out_ctx, ep_index);
3562                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3563                                 vdev->eps[ep_index].stream_info);
3564         }
3565         /* Tell the HW to drop its old copy of the endpoint context info
3566          * and add the updated copy from the input context.
3567          */
3568         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3569                         vdev->out_ctx, ctrl_ctx,
3570                         changed_ep_bitmask, changed_ep_bitmask);
3571
3572         /* Issue and wait for the configure endpoint command */
3573         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3574                         false, false);
3575
3576         /* xHC rejected the configure endpoint command for some reason, so we
3577          * leave the old ring intact and free our internal streams data
3578          * structure.
3579          */
3580         if (ret < 0)
3581                 goto cleanup;
3582
3583         spin_lock_irqsave(&xhci->lock, flags);
3584         for (i = 0; i < num_eps; i++) {
3585                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3586                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3587                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3588                          udev->slot_id, ep_index);
3589                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3590         }
3591         xhci_free_command(xhci, config_cmd);
3592         spin_unlock_irqrestore(&xhci->lock, flags);
3593
3594         for (i = 0; i < num_eps; i++) {
3595                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3596                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3597         }
3598         /* Subtract 1 for stream 0, which drivers can't use */
3599         return num_streams - 1;
3600
3601 cleanup:
3602         /* If it didn't work, free the streams! */
3603         for (i = 0; i < num_eps; i++) {
3604                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3605                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3606                 vdev->eps[ep_index].stream_info = NULL;
3607                 /* FIXME Unset maxPstreams in endpoint context and
3608                  * update deq ptr to point to normal string ring.
3609                  */
3610                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3611                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3612                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3613         }
3614         xhci_free_command(xhci, config_cmd);
3615         return -ENOMEM;
3616 }
3617
3618 /* Transition the endpoint from using streams to being a "normal" endpoint
3619  * without streams.
3620  *
3621  * Modify the endpoint context state, submit a configure endpoint command,
3622  * and free all endpoint rings for streams if that completes successfully.
3623  */
3624 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3625                 struct usb_host_endpoint **eps, unsigned int num_eps,
3626                 gfp_t mem_flags)
3627 {
3628         int i, ret;
3629         struct xhci_hcd *xhci;
3630         struct xhci_virt_device *vdev;
3631         struct xhci_command *command;
3632         struct xhci_input_control_ctx *ctrl_ctx;
3633         unsigned int ep_index;
3634         unsigned long flags;
3635         u32 changed_ep_bitmask;
3636
3637         xhci = hcd_to_xhci(hcd);
3638         vdev = xhci->devs[udev->slot_id];
3639
3640         /* Set up a configure endpoint command to remove the streams rings */
3641         spin_lock_irqsave(&xhci->lock, flags);
3642         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3643                         udev, eps, num_eps);
3644         if (changed_ep_bitmask == 0) {
3645                 spin_unlock_irqrestore(&xhci->lock, flags);
3646                 return -EINVAL;
3647         }
3648
3649         /* Use the xhci_command structure from the first endpoint.  We may have
3650          * allocated too many, but the driver may call xhci_free_streams() for
3651          * each endpoint it grouped into one call to xhci_alloc_streams().
3652          */
3653         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3654         command = vdev->eps[ep_index].stream_info->free_streams_command;
3655         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3656         if (!ctrl_ctx) {
3657                 spin_unlock_irqrestore(&xhci->lock, flags);
3658                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3659                                 __func__);
3660                 return -EINVAL;
3661         }
3662
3663         for (i = 0; i < num_eps; i++) {
3664                 struct xhci_ep_ctx *ep_ctx;
3665
3666                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3667                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3668                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3669                         EP_GETTING_NO_STREAMS;
3670
3671                 xhci_endpoint_copy(xhci, command->in_ctx,
3672                                 vdev->out_ctx, ep_index);
3673                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3674                                 &vdev->eps[ep_index]);
3675         }
3676         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3677                         vdev->out_ctx, ctrl_ctx,
3678                         changed_ep_bitmask, changed_ep_bitmask);
3679         spin_unlock_irqrestore(&xhci->lock, flags);
3680
3681         /* Issue and wait for the configure endpoint command,
3682          * which must succeed.
3683          */
3684         ret = xhci_configure_endpoint(xhci, udev, command,
3685                         false, true);
3686
3687         /* xHC rejected the configure endpoint command for some reason, so we
3688          * leave the streams rings intact.
3689          */
3690         if (ret < 0)
3691                 return ret;
3692
3693         spin_lock_irqsave(&xhci->lock, flags);
3694         for (i = 0; i < num_eps; i++) {
3695                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3696                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3697                 vdev->eps[ep_index].stream_info = NULL;
3698                 /* FIXME Unset maxPstreams in endpoint context and
3699                  * update deq ptr to point to normal string ring.
3700                  */
3701                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3702                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3703         }
3704         spin_unlock_irqrestore(&xhci->lock, flags);
3705
3706         return 0;
3707 }
3708
3709 /*
3710  * Deletes endpoint resources for endpoints that were active before a Reset
3711  * Device command, or a Disable Slot command.  The Reset Device command leaves
3712  * the control endpoint intact, whereas the Disable Slot command deletes it.
3713  *
3714  * Must be called with xhci->lock held.
3715  */
3716 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3717         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3718 {
3719         int i;
3720         unsigned int num_dropped_eps = 0;
3721         unsigned int drop_flags = 0;
3722
3723         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3724                 if (virt_dev->eps[i].ring) {
3725                         drop_flags |= 1 << i;
3726                         num_dropped_eps++;
3727                 }
3728         }
3729         xhci->num_active_eps -= num_dropped_eps;
3730         if (num_dropped_eps)
3731                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3732                                 "Dropped %u ep ctxs, flags = 0x%x, "
3733                                 "%u now active.",
3734                                 num_dropped_eps, drop_flags,
3735                                 xhci->num_active_eps);
3736 }
3737
3738 /*
3739  * This submits a Reset Device Command, which will set the device state to 0,
3740  * set the device address to 0, and disable all the endpoints except the default
3741  * control endpoint.  The USB core should come back and call
3742  * xhci_address_device(), and then re-set up the configuration.  If this is
3743  * called because of a usb_reset_and_verify_device(), then the old alternate
3744  * settings will be re-installed through the normal bandwidth allocation
3745  * functions.
3746  *
3747  * Wait for the Reset Device command to finish.  Remove all structures
3748  * associated with the endpoints that were disabled.  Clear the input device
3749  * structure? Reset the control endpoint 0 max packet size?
3750  *
3751  * If the virt_dev to be reset does not exist or does not match the udev,
3752  * it means the device is lost, possibly due to the xHC restore error and
3753  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3754  * re-allocate the device.
3755  */
3756 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3757                 struct usb_device *udev)
3758 {
3759         int ret, i;
3760         unsigned long flags;
3761         struct xhci_hcd *xhci;
3762         unsigned int slot_id;
3763         struct xhci_virt_device *virt_dev;
3764         struct xhci_command *reset_device_cmd;
3765         struct xhci_slot_ctx *slot_ctx;
3766         int old_active_eps = 0;
3767
3768         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3769         if (ret <= 0)
3770                 return ret;
3771         xhci = hcd_to_xhci(hcd);
3772         slot_id = udev->slot_id;
3773         virt_dev = xhci->devs[slot_id];
3774         if (!virt_dev) {
3775                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3776                                 "not exist. Re-allocate the device\n", slot_id);
3777                 ret = xhci_alloc_dev(hcd, udev);
3778                 if (ret == 1)
3779                         return 0;
3780                 else
3781                         return -EINVAL;
3782         }
3783
3784         if (virt_dev->tt_info)
3785                 old_active_eps = virt_dev->tt_info->active_eps;
3786
3787         if (virt_dev->udev != udev) {
3788                 /* If the virt_dev and the udev does not match, this virt_dev
3789                  * may belong to another udev.
3790                  * Re-allocate the device.
3791                  */
3792                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3793                                 "not match the udev. Re-allocate the device\n",
3794                                 slot_id);
3795                 ret = xhci_alloc_dev(hcd, udev);
3796                 if (ret == 1)
3797                         return 0;
3798                 else
3799                         return -EINVAL;
3800         }
3801
3802         /* If device is not setup, there is no point in resetting it */
3803         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3804         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3805                                                 SLOT_STATE_DISABLED)
3806                 return 0;
3807
3808         trace_xhci_discover_or_reset_device(slot_ctx);
3809
3810         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3811         /* Allocate the command structure that holds the struct completion.
3812          * Assume we're in process context, since the normal device reset
3813          * process has to wait for the device anyway.  Storage devices are
3814          * reset as part of error handling, so use GFP_NOIO instead of
3815          * GFP_KERNEL.
3816          */
3817         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3818         if (!reset_device_cmd) {
3819                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3820                 return -ENOMEM;
3821         }
3822
3823         /* Attempt to submit the Reset Device command to the command ring */
3824         spin_lock_irqsave(&xhci->lock, flags);
3825
3826         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3827         if (ret) {
3828                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3829                 spin_unlock_irqrestore(&xhci->lock, flags);
3830                 goto command_cleanup;
3831         }
3832         xhci_ring_cmd_db(xhci);
3833         spin_unlock_irqrestore(&xhci->lock, flags);
3834
3835         /* Wait for the Reset Device command to finish */
3836         wait_for_completion(reset_device_cmd->completion);
3837
3838         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3839          * unless we tried to reset a slot ID that wasn't enabled,
3840          * or the device wasn't in the addressed or configured state.
3841          */
3842         ret = reset_device_cmd->status;
3843         switch (ret) {
3844         case COMP_COMMAND_ABORTED:
3845         case COMP_COMMAND_RING_STOPPED:
3846                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3847                 ret = -ETIME;
3848                 goto command_cleanup;
3849         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3850         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3851                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3852                                 slot_id,
3853                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3854                 xhci_dbg(xhci, "Not freeing device rings.\n");
3855                 /* Don't treat this as an error.  May change my mind later. */
3856                 ret = 0;
3857                 goto command_cleanup;
3858         case COMP_SUCCESS:
3859                 xhci_dbg(xhci, "Successful reset device command.\n");
3860                 break;
3861         default:
3862                 if (xhci_is_vendor_info_code(xhci, ret))
3863                         break;
3864                 xhci_warn(xhci, "Unknown completion code %u for "
3865                                 "reset device command.\n", ret);
3866                 ret = -EINVAL;
3867                 goto command_cleanup;
3868         }
3869
3870         /* Free up host controller endpoint resources */
3871         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3872                 spin_lock_irqsave(&xhci->lock, flags);
3873                 /* Don't delete the default control endpoint resources */
3874                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3875                 spin_unlock_irqrestore(&xhci->lock, flags);
3876         }
3877
3878         /* Everything but endpoint 0 is disabled, so free the rings. */
3879         for (i = 1; i < 31; i++) {
3880                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3881
3882                 if (ep->ep_state & EP_HAS_STREAMS) {
3883                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3884                                         xhci_get_endpoint_address(i));
3885                         xhci_free_stream_info(xhci, ep->stream_info);
3886                         ep->stream_info = NULL;
3887                         ep->ep_state &= ~EP_HAS_STREAMS;
3888                 }
3889
3890                 if (ep->ring) {
3891                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3892                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3893                 }
3894                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3895                         xhci_drop_ep_from_interval_table(xhci,
3896                                         &virt_dev->eps[i].bw_info,
3897                                         virt_dev->bw_table,
3898                                         udev,
3899                                         &virt_dev->eps[i],
3900                                         virt_dev->tt_info);
3901                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3902         }
3903         /* If necessary, update the number of active TTs on this root port */
3904         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3905         virt_dev->flags = 0;
3906         ret = 0;
3907
3908 command_cleanup:
3909         xhci_free_command(xhci, reset_device_cmd);
3910         return ret;
3911 }
3912
3913 /*
3914  * At this point, the struct usb_device is about to go away, the device has
3915  * disconnected, and all traffic has been stopped and the endpoints have been
3916  * disabled.  Free any HC data structures associated with that device.
3917  */
3918 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3919 {
3920         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3921         struct xhci_virt_device *virt_dev;
3922         struct xhci_slot_ctx *slot_ctx;
3923         int i, ret;
3924
3925 #ifndef CONFIG_USB_DEFAULT_PERSIST
3926         /*
3927          * We called pm_runtime_get_noresume when the device was attached.
3928          * Decrement the counter here to allow controller to runtime suspend
3929          * if no devices remain.
3930          */
3931         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3932                 pm_runtime_put_noidle(hcd->self.controller);
3933 #endif
3934
3935         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3936         /* If the host is halted due to driver unload, we still need to free the
3937          * device.
3938          */
3939         if (ret <= 0 && ret != -ENODEV)
3940                 return;
3941
3942         virt_dev = xhci->devs[udev->slot_id];
3943         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3944         trace_xhci_free_dev(slot_ctx);
3945
3946         /* Stop any wayward timer functions (which may grab the lock) */
3947         for (i = 0; i < 31; i++) {
3948                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3949                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3950         }
3951         virt_dev->udev = NULL;
3952         ret = xhci_disable_slot(xhci, udev->slot_id);
3953         if (ret)
3954                 xhci_free_virt_device(xhci, udev->slot_id);
3955 }
3956
3957 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3958 {
3959         struct xhci_command *command;
3960         unsigned long flags;
3961         u32 state;
3962         int ret = 0;
3963
3964         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3965         if (!command)
3966                 return -ENOMEM;
3967
3968         xhci_debugfs_remove_slot(xhci, slot_id);
3969
3970         spin_lock_irqsave(&xhci->lock, flags);
3971         /* Don't disable the slot if the host controller is dead. */
3972         state = readl(&xhci->op_regs->status);
3973         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3974                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3975                 spin_unlock_irqrestore(&xhci->lock, flags);
3976                 kfree(command);
3977                 return -ENODEV;
3978         }
3979
3980         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3981                                 slot_id);
3982         if (ret) {
3983                 spin_unlock_irqrestore(&xhci->lock, flags);
3984                 kfree(command);
3985                 return ret;
3986         }
3987         xhci_ring_cmd_db(xhci);
3988         spin_unlock_irqrestore(&xhci->lock, flags);
3989         return ret;
3990 }
3991
3992 /*
3993  * Checks if we have enough host controller resources for the default control
3994  * endpoint.
3995  *
3996  * Must be called with xhci->lock held.
3997  */
3998 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3999 {
4000         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4001                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4002                                 "Not enough ep ctxs: "
4003                                 "%u active, need to add 1, limit is %u.",
4004                                 xhci->num_active_eps, xhci->limit_active_eps);
4005                 return -ENOMEM;
4006         }
4007         xhci->num_active_eps += 1;
4008         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4009                         "Adding 1 ep ctx, %u now active.",
4010                         xhci->num_active_eps);
4011         return 0;
4012 }
4013
4014
4015 /*
4016  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4017  * timed out, or allocating memory failed.  Returns 1 on success.
4018  */
4019 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4020 {
4021         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4022         struct xhci_virt_device *vdev;
4023         struct xhci_slot_ctx *slot_ctx;
4024         unsigned long flags;
4025         int ret, slot_id;
4026         struct xhci_command *command;
4027
4028         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4029         if (!command)
4030                 return 0;
4031
4032         spin_lock_irqsave(&xhci->lock, flags);
4033         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4034         if (ret) {
4035                 spin_unlock_irqrestore(&xhci->lock, flags);
4036                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4037                 xhci_free_command(xhci, command);
4038                 return 0;
4039         }
4040         xhci_ring_cmd_db(xhci);
4041         spin_unlock_irqrestore(&xhci->lock, flags);
4042
4043         wait_for_completion(command->completion);
4044         slot_id = command->slot_id;
4045
4046         if (!slot_id || command->status != COMP_SUCCESS) {
4047                 xhci_err(xhci, "Error while assigning device slot ID\n");
4048                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4049                                 HCS_MAX_SLOTS(
4050                                         readl(&xhci->cap_regs->hcs_params1)));
4051                 xhci_free_command(xhci, command);
4052                 return 0;
4053         }
4054
4055         xhci_free_command(xhci, command);
4056
4057         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4058                 spin_lock_irqsave(&xhci->lock, flags);
4059                 ret = xhci_reserve_host_control_ep_resources(xhci);
4060                 if (ret) {
4061                         spin_unlock_irqrestore(&xhci->lock, flags);
4062                         xhci_warn(xhci, "Not enough host resources, "
4063                                         "active endpoint contexts = %u\n",
4064                                         xhci->num_active_eps);
4065                         goto disable_slot;
4066                 }
4067                 spin_unlock_irqrestore(&xhci->lock, flags);
4068         }
4069         /* Use GFP_NOIO, since this function can be called from
4070          * xhci_discover_or_reset_device(), which may be called as part of
4071          * mass storage driver error handling.
4072          */
4073         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4074                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4075                 goto disable_slot;
4076         }
4077         vdev = xhci->devs[slot_id];
4078         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4079         trace_xhci_alloc_dev(slot_ctx);
4080
4081         udev->slot_id = slot_id;
4082
4083         xhci_debugfs_create_slot(xhci, slot_id);
4084
4085 #ifndef CONFIG_USB_DEFAULT_PERSIST
4086         /*
4087          * If resetting upon resume, we can't put the controller into runtime
4088          * suspend if there is a device attached.
4089          */
4090         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4091                 pm_runtime_get_noresume(hcd->self.controller);
4092 #endif
4093
4094         /* Is this a LS or FS device under a HS hub? */
4095         /* Hub or peripherial? */
4096         return 1;
4097
4098 disable_slot:
4099         ret = xhci_disable_slot(xhci, udev->slot_id);
4100         if (ret)
4101                 xhci_free_virt_device(xhci, udev->slot_id);
4102
4103         return 0;
4104 }
4105
4106 /*
4107  * Issue an Address Device command and optionally send a corresponding
4108  * SetAddress request to the device.
4109  */
4110 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4111                              enum xhci_setup_dev setup)
4112 {
4113         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4114         unsigned long flags;
4115         struct xhci_virt_device *virt_dev;
4116         int ret = 0;
4117         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4118         struct xhci_slot_ctx *slot_ctx;
4119         struct xhci_input_control_ctx *ctrl_ctx;
4120         u64 temp_64;
4121         struct xhci_command *command = NULL;
4122
4123         mutex_lock(&xhci->mutex);
4124
4125         if (xhci->xhc_state) {  /* dying, removing or halted */
4126                 ret = -ESHUTDOWN;
4127                 goto out;
4128         }
4129
4130         if (!udev->slot_id) {
4131                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4132                                 "Bad Slot ID %d", udev->slot_id);
4133                 ret = -EINVAL;
4134                 goto out;
4135         }
4136
4137         virt_dev = xhci->devs[udev->slot_id];
4138
4139         if (WARN_ON(!virt_dev)) {
4140                 /*
4141                  * In plug/unplug torture test with an NEC controller,
4142                  * a zero-dereference was observed once due to virt_dev = 0.
4143                  * Print useful debug rather than crash if it is observed again!
4144                  */
4145                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4146                         udev->slot_id);
4147                 ret = -EINVAL;
4148                 goto out;
4149         }
4150         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4151         trace_xhci_setup_device_slot(slot_ctx);
4152
4153         if (setup == SETUP_CONTEXT_ONLY) {
4154                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4155                     SLOT_STATE_DEFAULT) {
4156                         xhci_dbg(xhci, "Slot already in default state\n");
4157                         goto out;
4158                 }
4159         }
4160
4161         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4162         if (!command) {
4163                 ret = -ENOMEM;
4164                 goto out;
4165         }
4166
4167         command->in_ctx = virt_dev->in_ctx;
4168
4169         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4170         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4171         if (!ctrl_ctx) {
4172                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4173                                 __func__);
4174                 ret = -EINVAL;
4175                 goto out;
4176         }
4177         /*
4178          * If this is the first Set Address since device plug-in or
4179          * virt_device realloaction after a resume with an xHCI power loss,
4180          * then set up the slot context.
4181          */
4182         if (!slot_ctx->dev_info)
4183                 xhci_setup_addressable_virt_dev(xhci, udev);
4184         /* Otherwise, update the control endpoint ring enqueue pointer. */
4185         else
4186                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4187         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4188         ctrl_ctx->drop_flags = 0;
4189
4190         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4191                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4192
4193         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4194         spin_lock_irqsave(&xhci->lock, flags);
4195         trace_xhci_setup_device(virt_dev);
4196         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4197                                         udev->slot_id, setup);
4198         if (ret) {
4199                 spin_unlock_irqrestore(&xhci->lock, flags);
4200                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4201                                 "FIXME: allocate a command ring segment");
4202                 goto out;
4203         }
4204         xhci_ring_cmd_db(xhci);
4205         spin_unlock_irqrestore(&xhci->lock, flags);
4206
4207         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4208         wait_for_completion(command->completion);
4209
4210         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4211          * the SetAddress() "recovery interval" required by USB and aborting the
4212          * command on a timeout.
4213          */
4214         switch (command->status) {
4215         case COMP_COMMAND_ABORTED:
4216         case COMP_COMMAND_RING_STOPPED:
4217                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4218                 ret = -ETIME;
4219                 break;
4220         case COMP_CONTEXT_STATE_ERROR:
4221         case COMP_SLOT_NOT_ENABLED_ERROR:
4222                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4223                          act, udev->slot_id);
4224                 ret = -EINVAL;
4225                 break;
4226         case COMP_USB_TRANSACTION_ERROR:
4227                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4228
4229                 mutex_unlock(&xhci->mutex);
4230                 ret = xhci_disable_slot(xhci, udev->slot_id);
4231                 if (!ret)
4232                         xhci_alloc_dev(hcd, udev);
4233                 kfree(command->completion);
4234                 kfree(command);
4235                 return -EPROTO;
4236         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4237                 dev_warn(&udev->dev,
4238                          "ERROR: Incompatible device for setup %s command\n", act);
4239                 ret = -ENODEV;
4240                 break;
4241         case COMP_SUCCESS:
4242                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4243                                "Successful setup %s command", act);
4244                 break;
4245         default:
4246                 xhci_err(xhci,
4247                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4248                          act, command->status);
4249                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4250                 ret = -EINVAL;
4251                 break;
4252         }
4253         if (ret)
4254                 goto out;
4255         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4256         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4257                         "Op regs DCBAA ptr = %#016llx", temp_64);
4258         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4259                 "Slot ID %d dcbaa entry @%p = %#016llx",
4260                 udev->slot_id,
4261                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4262                 (unsigned long long)
4263                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4264         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4265                         "Output Context DMA address = %#08llx",
4266                         (unsigned long long)virt_dev->out_ctx->dma);
4267         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4268                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4269         /*
4270          * USB core uses address 1 for the roothubs, so we add one to the
4271          * address given back to us by the HC.
4272          */
4273         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4274                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4275         /* Zero the input context control for later use */
4276         ctrl_ctx->add_flags = 0;
4277         ctrl_ctx->drop_flags = 0;
4278         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4279         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4280
4281         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4282                        "Internal device address = %d",
4283                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4284 out:
4285         mutex_unlock(&xhci->mutex);
4286         if (command) {
4287                 kfree(command->completion);
4288                 kfree(command);
4289         }
4290         return ret;
4291 }
4292
4293 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4294 {
4295         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4296 }
4297
4298 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4299 {
4300         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4301 }
4302
4303 /*
4304  * Transfer the port index into real index in the HW port status
4305  * registers. Caculate offset between the port's PORTSC register
4306  * and port status base. Divide the number of per port register
4307  * to get the real index. The raw port number bases 1.
4308  */
4309 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4310 {
4311         struct xhci_hub *rhub;
4312
4313         rhub = xhci_get_rhub(hcd);
4314         return rhub->ports[port1 - 1]->hw_portnum + 1;
4315 }
4316
4317 /*
4318  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4319  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4320  */
4321 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4322                         struct usb_device *udev, u16 max_exit_latency)
4323 {
4324         struct xhci_virt_device *virt_dev;
4325         struct xhci_command *command;
4326         struct xhci_input_control_ctx *ctrl_ctx;
4327         struct xhci_slot_ctx *slot_ctx;
4328         unsigned long flags;
4329         int ret;
4330
4331         spin_lock_irqsave(&xhci->lock, flags);
4332
4333         virt_dev = xhci->devs[udev->slot_id];
4334
4335         /*
4336          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4337          * xHC was re-initialized. Exit latency will be set later after
4338          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4339          */
4340
4341         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4342                 spin_unlock_irqrestore(&xhci->lock, flags);
4343                 return 0;
4344         }
4345
4346         /* Attempt to issue an Evaluate Context command to change the MEL. */
4347         command = xhci->lpm_command;
4348         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4349         if (!ctrl_ctx) {
4350                 spin_unlock_irqrestore(&xhci->lock, flags);
4351                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4352                                 __func__);
4353                 return -ENOMEM;
4354         }
4355
4356         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4357         spin_unlock_irqrestore(&xhci->lock, flags);
4358
4359         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4360         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4361         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4362         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4363         slot_ctx->dev_state = 0;
4364
4365         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4366                         "Set up evaluate context for LPM MEL change.");
4367
4368         /* Issue and wait for the evaluate context command. */
4369         ret = xhci_configure_endpoint(xhci, udev, command,
4370                         true, true);
4371
4372         if (!ret) {
4373                 spin_lock_irqsave(&xhci->lock, flags);
4374                 virt_dev->current_mel = max_exit_latency;
4375                 spin_unlock_irqrestore(&xhci->lock, flags);
4376         }
4377         return ret;
4378 }
4379
4380 #ifdef CONFIG_PM
4381
4382 /* BESL to HIRD Encoding array for USB2 LPM */
4383 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4384         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4385
4386 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4387 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4388                                         struct usb_device *udev)
4389 {
4390         int u2del, besl, besl_host;
4391         int besl_device = 0;
4392         u32 field;
4393
4394         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4395         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4396
4397         if (field & USB_BESL_SUPPORT) {
4398                 for (besl_host = 0; besl_host < 16; besl_host++) {
4399                         if (xhci_besl_encoding[besl_host] >= u2del)
4400                                 break;
4401                 }
4402                 /* Use baseline BESL value as default */
4403                 if (field & USB_BESL_BASELINE_VALID)
4404                         besl_device = USB_GET_BESL_BASELINE(field);
4405                 else if (field & USB_BESL_DEEP_VALID)
4406                         besl_device = USB_GET_BESL_DEEP(field);
4407         } else {
4408                 if (u2del <= 50)
4409                         besl_host = 0;
4410                 else
4411                         besl_host = (u2del - 51) / 75 + 1;
4412         }
4413
4414         besl = besl_host + besl_device;
4415         if (besl > 15)
4416                 besl = 15;
4417
4418         return besl;
4419 }
4420
4421 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4422 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4423 {
4424         u32 field;
4425         int l1;
4426         int besld = 0;
4427         int hirdm = 0;
4428
4429         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4430
4431         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4432         l1 = udev->l1_params.timeout / 256;
4433
4434         /* device has preferred BESLD */
4435         if (field & USB_BESL_DEEP_VALID) {
4436                 besld = USB_GET_BESL_DEEP(field);
4437                 hirdm = 1;
4438         }
4439
4440         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4441 }
4442
4443 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4444                         struct usb_device *udev, int enable)
4445 {
4446         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4447         struct xhci_port **ports;
4448         __le32 __iomem  *pm_addr, *hlpm_addr;
4449         u32             pm_val, hlpm_val, field;
4450         unsigned int    port_num;
4451         unsigned long   flags;
4452         int             hird, exit_latency;
4453         int             ret;
4454
4455         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4456                 return -EPERM;
4457
4458         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4459                         !udev->lpm_capable)
4460                 return -EPERM;
4461
4462         if (!udev->parent || udev->parent->parent ||
4463                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4464                 return -EPERM;
4465
4466         if (udev->usb2_hw_lpm_capable != 1)
4467                 return -EPERM;
4468
4469         spin_lock_irqsave(&xhci->lock, flags);
4470
4471         ports = xhci->usb2_rhub.ports;
4472         port_num = udev->portnum - 1;
4473         pm_addr = ports[port_num]->addr + PORTPMSC;
4474         pm_val = readl(pm_addr);
4475         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4476
4477         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4478                         enable ? "enable" : "disable", port_num + 1);
4479
4480         if (enable) {
4481                 /* Host supports BESL timeout instead of HIRD */
4482                 if (udev->usb2_hw_lpm_besl_capable) {
4483                         /* if device doesn't have a preferred BESL value use a
4484                          * default one which works with mixed HIRD and BESL
4485                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4486                          */
4487                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4488                         if ((field & USB_BESL_SUPPORT) &&
4489                             (field & USB_BESL_BASELINE_VALID))
4490                                 hird = USB_GET_BESL_BASELINE(field);
4491                         else
4492                                 hird = udev->l1_params.besl;
4493
4494                         exit_latency = xhci_besl_encoding[hird];
4495                         spin_unlock_irqrestore(&xhci->lock, flags);
4496
4497                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4498                          * input context for link powermanagement evaluate
4499                          * context commands. It is protected by hcd->bandwidth
4500                          * mutex and is shared by all devices. We need to set
4501                          * the max ext latency in USB 2 BESL LPM as well, so
4502                          * use the same mutex and xhci_change_max_exit_latency()
4503                          */
4504                         mutex_lock(hcd->bandwidth_mutex);
4505                         ret = xhci_change_max_exit_latency(xhci, udev,
4506                                                            exit_latency);
4507                         mutex_unlock(hcd->bandwidth_mutex);
4508
4509                         if (ret < 0)
4510                                 return ret;
4511                         spin_lock_irqsave(&xhci->lock, flags);
4512
4513                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4514                         writel(hlpm_val, hlpm_addr);
4515                         /* flush write */
4516                         readl(hlpm_addr);
4517                 } else {
4518                         hird = xhci_calculate_hird_besl(xhci, udev);
4519                 }
4520
4521                 pm_val &= ~PORT_HIRD_MASK;
4522                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4523                 writel(pm_val, pm_addr);
4524                 pm_val = readl(pm_addr);
4525                 pm_val |= PORT_HLE;
4526                 writel(pm_val, pm_addr);
4527                 /* flush write */
4528                 readl(pm_addr);
4529         } else {
4530                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4531                 writel(pm_val, pm_addr);
4532                 /* flush write */
4533                 readl(pm_addr);
4534                 if (udev->usb2_hw_lpm_besl_capable) {
4535                         spin_unlock_irqrestore(&xhci->lock, flags);
4536                         mutex_lock(hcd->bandwidth_mutex);
4537                         xhci_change_max_exit_latency(xhci, udev, 0);
4538                         mutex_unlock(hcd->bandwidth_mutex);
4539                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4540                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4541                                            100, 10000);
4542                         return 0;
4543                 }
4544         }
4545
4546         spin_unlock_irqrestore(&xhci->lock, flags);
4547         return 0;
4548 }
4549
4550 /* check if a usb2 port supports a given extened capability protocol
4551  * only USB2 ports extended protocol capability values are cached.
4552  * Return 1 if capability is supported
4553  */
4554 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4555                                            unsigned capability)
4556 {
4557         u32 port_offset, port_count;
4558         int i;
4559
4560         for (i = 0; i < xhci->num_ext_caps; i++) {
4561                 if (xhci->ext_caps[i] & capability) {
4562                         /* port offsets starts at 1 */
4563                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4564                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4565                         if (port >= port_offset &&
4566                             port < port_offset + port_count)
4567                                 return 1;
4568                 }
4569         }
4570         return 0;
4571 }
4572
4573 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4574 {
4575         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4576         int             portnum = udev->portnum - 1;
4577
4578         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4579                 return 0;
4580
4581         /* we only support lpm for non-hub device connected to root hub yet */
4582         if (!udev->parent || udev->parent->parent ||
4583                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4584                 return 0;
4585
4586         if (xhci->hw_lpm_support == 1 &&
4587                         xhci_check_usb2_port_capability(
4588                                 xhci, portnum, XHCI_HLC)) {
4589                 udev->usb2_hw_lpm_capable = 1;
4590                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4591                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4592                 if (xhci_check_usb2_port_capability(xhci, portnum,
4593                                         XHCI_BLC))
4594                         udev->usb2_hw_lpm_besl_capable = 1;
4595         }
4596
4597         return 0;
4598 }
4599
4600 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4601
4602 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4603 static unsigned long long xhci_service_interval_to_ns(
4604                 struct usb_endpoint_descriptor *desc)
4605 {
4606         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4607 }
4608
4609 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4610                 enum usb3_link_state state)
4611 {
4612         unsigned long long sel;
4613         unsigned long long pel;
4614         unsigned int max_sel_pel;
4615         char *state_name;
4616
4617         switch (state) {
4618         case USB3_LPM_U1:
4619                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4620                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4621                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4622                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4623                 state_name = "U1";
4624                 break;
4625         case USB3_LPM_U2:
4626                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4627                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4628                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4629                 state_name = "U2";
4630                 break;
4631         default:
4632                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4633                                 __func__);
4634                 return USB3_LPM_DISABLED;
4635         }
4636
4637         if (sel <= max_sel_pel && pel <= max_sel_pel)
4638                 return USB3_LPM_DEVICE_INITIATED;
4639
4640         if (sel > max_sel_pel)
4641                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4642                                 "due to long SEL %llu ms\n",
4643                                 state_name, sel);
4644         else
4645                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4646                                 "due to long PEL %llu ms\n",
4647                                 state_name, pel);
4648         return USB3_LPM_DISABLED;
4649 }
4650
4651 /* The U1 timeout should be the maximum of the following values:
4652  *  - For control endpoints, U1 system exit latency (SEL) * 3
4653  *  - For bulk endpoints, U1 SEL * 5
4654  *  - For interrupt endpoints:
4655  *    - Notification EPs, U1 SEL * 3
4656  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4657  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4658  */
4659 static unsigned long long xhci_calculate_intel_u1_timeout(
4660                 struct usb_device *udev,
4661                 struct usb_endpoint_descriptor *desc)
4662 {
4663         unsigned long long timeout_ns;
4664         int ep_type;
4665         int intr_type;
4666
4667         ep_type = usb_endpoint_type(desc);
4668         switch (ep_type) {
4669         case USB_ENDPOINT_XFER_CONTROL:
4670                 timeout_ns = udev->u1_params.sel * 3;
4671                 break;
4672         case USB_ENDPOINT_XFER_BULK:
4673                 timeout_ns = udev->u1_params.sel * 5;
4674                 break;
4675         case USB_ENDPOINT_XFER_INT:
4676                 intr_type = usb_endpoint_interrupt_type(desc);
4677                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4678                         timeout_ns = udev->u1_params.sel * 3;
4679                         break;
4680                 }
4681                 /* Otherwise the calculation is the same as isoc eps */
4682                 fallthrough;
4683         case USB_ENDPOINT_XFER_ISOC:
4684                 timeout_ns = xhci_service_interval_to_ns(desc);
4685                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4686                 if (timeout_ns < udev->u1_params.sel * 2)
4687                         timeout_ns = udev->u1_params.sel * 2;
4688                 break;
4689         default:
4690                 return 0;
4691         }
4692
4693         return timeout_ns;
4694 }
4695
4696 /* Returns the hub-encoded U1 timeout value. */
4697 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4698                 struct usb_device *udev,
4699                 struct usb_endpoint_descriptor *desc)
4700 {
4701         unsigned long long timeout_ns;
4702
4703         if (xhci->quirks & XHCI_INTEL_HOST)
4704                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4705         else
4706                 timeout_ns = udev->u1_params.sel;
4707
4708         /* Prevent U1 if service interval is shorter than U1 exit latency */
4709         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4710                 if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4711                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4712                         return USB3_LPM_DISABLED;
4713                 }
4714         }
4715
4716         /* The U1 timeout is encoded in 1us intervals.
4717          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4718          */
4719         if (timeout_ns == USB3_LPM_DISABLED)
4720                 timeout_ns = 1;
4721         else
4722                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4723
4724         /* If the necessary timeout value is bigger than what we can set in the
4725          * USB 3.0 hub, we have to disable hub-initiated U1.
4726          */
4727         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4728                 return timeout_ns;
4729         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4730                         "due to long timeout %llu ms\n", timeout_ns);
4731         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4732 }
4733
4734 /* The U2 timeout should be the maximum of:
4735  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4736  *  - largest bInterval of any active periodic endpoint (to avoid going
4737  *    into lower power link states between intervals).
4738  *  - the U2 Exit Latency of the device
4739  */
4740 static unsigned long long xhci_calculate_intel_u2_timeout(
4741                 struct usb_device *udev,
4742                 struct usb_endpoint_descriptor *desc)
4743 {
4744         unsigned long long timeout_ns;
4745         unsigned long long u2_del_ns;
4746
4747         timeout_ns = 10 * 1000 * 1000;
4748
4749         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4750                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4751                 timeout_ns = xhci_service_interval_to_ns(desc);
4752
4753         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4754         if (u2_del_ns > timeout_ns)
4755                 timeout_ns = u2_del_ns;
4756
4757         return timeout_ns;
4758 }
4759
4760 /* Returns the hub-encoded U2 timeout value. */
4761 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4762                 struct usb_device *udev,
4763                 struct usb_endpoint_descriptor *desc)
4764 {
4765         unsigned long long timeout_ns;
4766
4767         if (xhci->quirks & XHCI_INTEL_HOST)
4768                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4769         else
4770                 timeout_ns = udev->u2_params.sel;
4771
4772         /* Prevent U2 if service interval is shorter than U2 exit latency */
4773         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4774                 if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4775                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4776                         return USB3_LPM_DISABLED;
4777                 }
4778         }
4779
4780         /* The U2 timeout is encoded in 256us intervals */
4781         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4782         /* If the necessary timeout value is bigger than what we can set in the
4783          * USB 3.0 hub, we have to disable hub-initiated U2.
4784          */
4785         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4786                 return timeout_ns;
4787         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4788                         "due to long timeout %llu ms\n", timeout_ns);
4789         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4790 }
4791
4792 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4793                 struct usb_device *udev,
4794                 struct usb_endpoint_descriptor *desc,
4795                 enum usb3_link_state state,
4796                 u16 *timeout)
4797 {
4798         if (state == USB3_LPM_U1)
4799                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4800         else if (state == USB3_LPM_U2)
4801                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4802
4803         return USB3_LPM_DISABLED;
4804 }
4805
4806 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4807                 struct usb_device *udev,
4808                 struct usb_endpoint_descriptor *desc,
4809                 enum usb3_link_state state,
4810                 u16 *timeout)
4811 {
4812         u16 alt_timeout;
4813
4814         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4815                 desc, state, timeout);
4816
4817         /* If we found we can't enable hub-initiated LPM, and
4818          * the U1 or U2 exit latency was too high to allow
4819          * device-initiated LPM as well, then we will disable LPM
4820          * for this device, so stop searching any further.
4821          */
4822         if (alt_timeout == USB3_LPM_DISABLED) {
4823                 *timeout = alt_timeout;
4824                 return -E2BIG;
4825         }
4826         if (alt_timeout > *timeout)
4827                 *timeout = alt_timeout;
4828         return 0;
4829 }
4830
4831 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4832                 struct usb_device *udev,
4833                 struct usb_host_interface *alt,
4834                 enum usb3_link_state state,
4835                 u16 *timeout)
4836 {
4837         int j;
4838
4839         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4840                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4841                                         &alt->endpoint[j].desc, state, timeout))
4842                         return -E2BIG;
4843                 continue;
4844         }
4845         return 0;
4846 }
4847
4848 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4849                 enum usb3_link_state state)
4850 {
4851         struct usb_device *parent;
4852         unsigned int num_hubs;
4853
4854         if (state == USB3_LPM_U2)
4855                 return 0;
4856
4857         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4858         for (parent = udev->parent, num_hubs = 0; parent->parent;
4859                         parent = parent->parent)
4860                 num_hubs++;
4861
4862         if (num_hubs < 2)
4863                 return 0;
4864
4865         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4866                         " below second-tier hub.\n");
4867         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4868                         "to decrease power consumption.\n");
4869         return -E2BIG;
4870 }
4871
4872 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4873                 struct usb_device *udev,
4874                 enum usb3_link_state state)
4875 {
4876         if (xhci->quirks & XHCI_INTEL_HOST)
4877                 return xhci_check_intel_tier_policy(udev, state);
4878         else
4879                 return 0;
4880 }
4881
4882 /* Returns the U1 or U2 timeout that should be enabled.
4883  * If the tier check or timeout setting functions return with a non-zero exit
4884  * code, that means the timeout value has been finalized and we shouldn't look
4885  * at any more endpoints.
4886  */
4887 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4888                         struct usb_device *udev, enum usb3_link_state state)
4889 {
4890         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4891         struct usb_host_config *config;
4892         char *state_name;
4893         int i;
4894         u16 timeout = USB3_LPM_DISABLED;
4895
4896         if (state == USB3_LPM_U1)
4897                 state_name = "U1";
4898         else if (state == USB3_LPM_U2)
4899                 state_name = "U2";
4900         else {
4901                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4902                                 state);
4903                 return timeout;
4904         }
4905
4906         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4907                 return timeout;
4908
4909         /* Gather some information about the currently installed configuration
4910          * and alternate interface settings.
4911          */
4912         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4913                         state, &timeout))
4914                 return timeout;
4915
4916         config = udev->actconfig;
4917         if (!config)
4918                 return timeout;
4919
4920         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4921                 struct usb_driver *driver;
4922                 struct usb_interface *intf = config->interface[i];
4923
4924                 if (!intf)
4925                         continue;
4926
4927                 /* Check if any currently bound drivers want hub-initiated LPM
4928                  * disabled.
4929                  */
4930                 if (intf->dev.driver) {
4931                         driver = to_usb_driver(intf->dev.driver);
4932                         if (driver && driver->disable_hub_initiated_lpm) {
4933                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4934                                         state_name, driver->name);
4935                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4936                                                                       state);
4937                                 if (timeout == USB3_LPM_DISABLED)
4938                                         return timeout;
4939                         }
4940                 }
4941
4942                 /* Not sure how this could happen... */
4943                 if (!intf->cur_altsetting)
4944                         continue;
4945
4946                 if (xhci_update_timeout_for_interface(xhci, udev,
4947                                         intf->cur_altsetting,
4948                                         state, &timeout))
4949                         return timeout;
4950         }
4951         return timeout;
4952 }
4953
4954 static int calculate_max_exit_latency(struct usb_device *udev,
4955                 enum usb3_link_state state_changed,
4956                 u16 hub_encoded_timeout)
4957 {
4958         unsigned long long u1_mel_us = 0;
4959         unsigned long long u2_mel_us = 0;
4960         unsigned long long mel_us = 0;
4961         bool disabling_u1;
4962         bool disabling_u2;
4963         bool enabling_u1;
4964         bool enabling_u2;
4965
4966         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4967                         hub_encoded_timeout == USB3_LPM_DISABLED);
4968         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4969                         hub_encoded_timeout == USB3_LPM_DISABLED);
4970
4971         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4972                         hub_encoded_timeout != USB3_LPM_DISABLED);
4973         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4974                         hub_encoded_timeout != USB3_LPM_DISABLED);
4975
4976         /* If U1 was already enabled and we're not disabling it,
4977          * or we're going to enable U1, account for the U1 max exit latency.
4978          */
4979         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4980                         enabling_u1)
4981                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4982         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4983                         enabling_u2)
4984                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4985
4986         if (u1_mel_us > u2_mel_us)
4987                 mel_us = u1_mel_us;
4988         else
4989                 mel_us = u2_mel_us;
4990         /* xHCI host controller max exit latency field is only 16 bits wide. */
4991         if (mel_us > MAX_EXIT) {
4992                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4993                                 "is too big.\n", mel_us);
4994                 return -E2BIG;
4995         }
4996         return mel_us;
4997 }
4998
4999 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5000 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5001                         struct usb_device *udev, enum usb3_link_state state)
5002 {
5003         struct xhci_hcd *xhci;
5004         u16 hub_encoded_timeout;
5005         int mel;
5006         int ret;
5007
5008         xhci = hcd_to_xhci(hcd);
5009         /* The LPM timeout values are pretty host-controller specific, so don't
5010          * enable hub-initiated timeouts unless the vendor has provided
5011          * information about their timeout algorithm.
5012          */
5013         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5014                         !xhci->devs[udev->slot_id])
5015                 return USB3_LPM_DISABLED;
5016
5017         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5018         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5019         if (mel < 0) {
5020                 /* Max Exit Latency is too big, disable LPM. */
5021                 hub_encoded_timeout = USB3_LPM_DISABLED;
5022                 mel = 0;
5023         }
5024
5025         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5026         if (ret)
5027                 return ret;
5028         return hub_encoded_timeout;
5029 }
5030
5031 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5032                         struct usb_device *udev, enum usb3_link_state state)
5033 {
5034         struct xhci_hcd *xhci;
5035         u16 mel;
5036
5037         xhci = hcd_to_xhci(hcd);
5038         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5039                         !xhci->devs[udev->slot_id])
5040                 return 0;
5041
5042         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5043         return xhci_change_max_exit_latency(xhci, udev, mel);
5044 }
5045 #else /* CONFIG_PM */
5046
5047 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5048                                 struct usb_device *udev, int enable)
5049 {
5050         return 0;
5051 }
5052
5053 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5054 {
5055         return 0;
5056 }
5057
5058 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5059                         struct usb_device *udev, enum usb3_link_state state)
5060 {
5061         return USB3_LPM_DISABLED;
5062 }
5063
5064 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5065                         struct usb_device *udev, enum usb3_link_state state)
5066 {
5067         return 0;
5068 }
5069 #endif  /* CONFIG_PM */
5070
5071 /*-------------------------------------------------------------------------*/
5072
5073 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5074  * internal data structures for the device.
5075  */
5076 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5077                         struct usb_tt *tt, gfp_t mem_flags)
5078 {
5079         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5080         struct xhci_virt_device *vdev;
5081         struct xhci_command *config_cmd;
5082         struct xhci_input_control_ctx *ctrl_ctx;
5083         struct xhci_slot_ctx *slot_ctx;
5084         unsigned long flags;
5085         unsigned think_time;
5086         int ret;
5087
5088         /* Ignore root hubs */
5089         if (!hdev->parent)
5090                 return 0;
5091
5092         vdev = xhci->devs[hdev->slot_id];
5093         if (!vdev) {
5094                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5095                 return -EINVAL;
5096         }
5097
5098         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5099         if (!config_cmd)
5100                 return -ENOMEM;
5101
5102         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5103         if (!ctrl_ctx) {
5104                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5105                                 __func__);
5106                 xhci_free_command(xhci, config_cmd);
5107                 return -ENOMEM;
5108         }
5109
5110         spin_lock_irqsave(&xhci->lock, flags);
5111         if (hdev->speed == USB_SPEED_HIGH &&
5112                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5113                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5114                 xhci_free_command(xhci, config_cmd);
5115                 spin_unlock_irqrestore(&xhci->lock, flags);
5116                 return -ENOMEM;
5117         }
5118
5119         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5120         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5121         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5122         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5123         /*
5124          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5125          * but it may be already set to 1 when setup an xHCI virtual
5126          * device, so clear it anyway.
5127          */
5128         if (tt->multi)
5129                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5130         else if (hdev->speed == USB_SPEED_FULL)
5131                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5132
5133         if (xhci->hci_version > 0x95) {
5134                 xhci_dbg(xhci, "xHCI version %x needs hub "
5135                                 "TT think time and number of ports\n",
5136                                 (unsigned int) xhci->hci_version);
5137                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5138                 /* Set TT think time - convert from ns to FS bit times.
5139                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5140                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5141                  *
5142                  * xHCI 1.0: this field shall be 0 if the device is not a
5143                  * High-spped hub.
5144                  */
5145                 think_time = tt->think_time;
5146                 if (think_time != 0)
5147                         think_time = (think_time / 666) - 1;
5148                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5149                         slot_ctx->tt_info |=
5150                                 cpu_to_le32(TT_THINK_TIME(think_time));
5151         } else {
5152                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5153                                 "TT think time or number of ports\n",
5154                                 (unsigned int) xhci->hci_version);
5155         }
5156         slot_ctx->dev_state = 0;
5157         spin_unlock_irqrestore(&xhci->lock, flags);
5158
5159         xhci_dbg(xhci, "Set up %s for hub device.\n",
5160                         (xhci->hci_version > 0x95) ?
5161                         "configure endpoint" : "evaluate context");
5162
5163         /* Issue and wait for the configure endpoint or
5164          * evaluate context command.
5165          */
5166         if (xhci->hci_version > 0x95)
5167                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5168                                 false, false);
5169         else
5170                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5171                                 true, false);
5172
5173         xhci_free_command(xhci, config_cmd);
5174         return ret;
5175 }
5176
5177 static int xhci_get_frame(struct usb_hcd *hcd)
5178 {
5179         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5180         /* EHCI mods by the periodic size.  Why? */
5181         return readl(&xhci->run_regs->microframe_index) >> 3;
5182 }
5183
5184 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5185 {
5186         struct xhci_hcd         *xhci;
5187         /*
5188          * TODO: Check with DWC3 clients for sysdev according to
5189          * quirks
5190          */
5191         struct device           *dev = hcd->self.sysdev;
5192         unsigned int            minor_rev;
5193         int                     retval;
5194
5195         /* Accept arbitrarily long scatter-gather lists */
5196         hcd->self.sg_tablesize = ~0;
5197
5198         /* support to build packet from discontinuous buffers */
5199         hcd->self.no_sg_constraint = 1;
5200
5201         /* XHCI controllers don't stop the ep queue on short packets :| */
5202         hcd->self.no_stop_on_short = 1;
5203
5204         xhci = hcd_to_xhci(hcd);
5205
5206         if (usb_hcd_is_primary_hcd(hcd)) {
5207                 xhci->main_hcd = hcd;
5208                 xhci->usb2_rhub.hcd = hcd;
5209                 /* Mark the first roothub as being USB 2.0.
5210                  * The xHCI driver will register the USB 3.0 roothub.
5211                  */
5212                 hcd->speed = HCD_USB2;
5213                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5214                 /*
5215                  * USB 2.0 roothub under xHCI has an integrated TT,
5216                  * (rate matching hub) as opposed to having an OHCI/UHCI
5217                  * companion controller.
5218                  */
5219                 hcd->has_tt = 1;
5220         } else {
5221                 /*
5222                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5223                  * should return 0x31 for sbrn, or that the minor revision
5224                  * is a two digit BCD containig minor and sub-minor numbers.
5225                  * This was later clarified in xHCI 1.2.
5226                  *
5227                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5228                  * minor revision set to 0x1 instead of 0x10.
5229                  */
5230                 if (xhci->usb3_rhub.min_rev == 0x1)
5231                         minor_rev = 1;
5232                 else
5233                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5234
5235                 switch (minor_rev) {
5236                 case 2:
5237                         hcd->speed = HCD_USB32;
5238                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5239                         hcd->self.root_hub->rx_lanes = 2;
5240                         hcd->self.root_hub->tx_lanes = 2;
5241                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5242                         break;
5243                 case 1:
5244                         hcd->speed = HCD_USB31;
5245                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5246                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5247                         break;
5248                 }
5249                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5250                           minor_rev,
5251                           minor_rev ? "Enhanced " : "");
5252
5253                 xhci->usb3_rhub.hcd = hcd;
5254                 /* xHCI private pointer was set in xhci_pci_probe for the second
5255                  * registered roothub.
5256                  */
5257                 return 0;
5258         }
5259
5260         mutex_init(&xhci->mutex);
5261         xhci->cap_regs = hcd->regs;
5262         xhci->op_regs = hcd->regs +
5263                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5264         xhci->run_regs = hcd->regs +
5265                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5266         /* Cache read-only capability registers */
5267         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5268         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5269         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5270         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5271         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5272         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5273         if (xhci->hci_version > 0x100)
5274                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5275
5276         xhci->quirks |= quirks;
5277
5278         get_quirks(dev, xhci);
5279
5280         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5281          * success event after a short transfer. This quirk will ignore such
5282          * spurious event.
5283          */
5284         if (xhci->hci_version > 0x96)
5285                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5286
5287         /* Make sure the HC is halted. */
5288         retval = xhci_halt(xhci);
5289         if (retval)
5290                 return retval;
5291
5292         xhci_zero_64b_regs(xhci);
5293
5294         xhci_dbg(xhci, "Resetting HCD\n");
5295         /* Reset the internal HC memory state and registers. */
5296         retval = xhci_reset(xhci);
5297         if (retval)
5298                 return retval;
5299         xhci_dbg(xhci, "Reset complete\n");
5300
5301         /*
5302          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5303          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5304          * address memory pointers actually. So, this driver clears the AC64
5305          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5306          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5307          */
5308         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5309                 xhci->hcc_params &= ~BIT(0);
5310
5311         /* Set dma_mask and coherent_dma_mask to 64-bits,
5312          * if xHC supports 64-bit addressing */
5313         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5314                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5315                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5316                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5317         } else {
5318                 /*
5319                  * This is to avoid error in cases where a 32-bit USB
5320                  * controller is used on a 64-bit capable system.
5321                  */
5322                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5323                 if (retval)
5324                         return retval;
5325                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5326                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5327         }
5328
5329         xhci_dbg(xhci, "Calling HCD init\n");
5330         /* Initialize HCD and host controller data structures. */
5331         retval = xhci_init(hcd);
5332         if (retval)
5333                 return retval;
5334         xhci_dbg(xhci, "Called HCD init\n");
5335
5336         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5337                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5338
5339         return 0;
5340 }
5341 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5342
5343 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5344                 struct usb_host_endpoint *ep)
5345 {
5346         struct xhci_hcd *xhci;
5347         struct usb_device *udev;
5348         unsigned int slot_id;
5349         unsigned int ep_index;
5350         unsigned long flags;
5351
5352         xhci = hcd_to_xhci(hcd);
5353
5354         spin_lock_irqsave(&xhci->lock, flags);
5355         udev = (struct usb_device *)ep->hcpriv;
5356         slot_id = udev->slot_id;
5357         ep_index = xhci_get_endpoint_index(&ep->desc);
5358
5359         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5360         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5361         spin_unlock_irqrestore(&xhci->lock, flags);
5362 }
5363
5364 static const struct hc_driver xhci_hc_driver = {
5365         .description =          "xhci-hcd",
5366         .product_desc =         "xHCI Host Controller",
5367         .hcd_priv_size =        sizeof(struct xhci_hcd),
5368
5369         /*
5370          * generic hardware linkage
5371          */
5372         .irq =                  xhci_irq,
5373         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5374                                 HCD_BH,
5375
5376         /*
5377          * basic lifecycle operations
5378          */
5379         .reset =                NULL, /* set in xhci_init_driver() */
5380         .start =                xhci_run,
5381         .stop =                 xhci_stop,
5382         .shutdown =             xhci_shutdown,
5383
5384         /*
5385          * managing i/o requests and associated device resources
5386          */
5387         .map_urb_for_dma =      xhci_map_urb_for_dma,
5388         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5389         .urb_enqueue =          xhci_urb_enqueue,
5390         .urb_dequeue =          xhci_urb_dequeue,
5391         .alloc_dev =            xhci_alloc_dev,
5392         .free_dev =             xhci_free_dev,
5393         .alloc_streams =        xhci_alloc_streams,
5394         .free_streams =         xhci_free_streams,
5395         .add_endpoint =         xhci_add_endpoint,
5396         .drop_endpoint =        xhci_drop_endpoint,
5397         .endpoint_disable =     xhci_endpoint_disable,
5398         .endpoint_reset =       xhci_endpoint_reset,
5399         .check_bandwidth =      xhci_check_bandwidth,
5400         .reset_bandwidth =      xhci_reset_bandwidth,
5401         .address_device =       xhci_address_device,
5402         .enable_device =        xhci_enable_device,
5403         .update_hub_device =    xhci_update_hub_device,
5404         .reset_device =         xhci_discover_or_reset_device,
5405
5406         /*
5407          * scheduling support
5408          */
5409         .get_frame_number =     xhci_get_frame,
5410
5411         /*
5412          * root hub support
5413          */
5414         .hub_control =          xhci_hub_control,
5415         .hub_status_data =      xhci_hub_status_data,
5416         .bus_suspend =          xhci_bus_suspend,
5417         .bus_resume =           xhci_bus_resume,
5418         .get_resuming_ports =   xhci_get_resuming_ports,
5419
5420         /*
5421          * call back when device connected and addressed
5422          */
5423         .update_device =        xhci_update_device,
5424         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5425         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5426         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5427         .find_raw_port_number = xhci_find_raw_port_number,
5428         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5429 };
5430
5431 void xhci_init_driver(struct hc_driver *drv,
5432                       const struct xhci_driver_overrides *over)
5433 {
5434         BUG_ON(!over);
5435
5436         /* Copy the generic table to drv then apply the overrides */
5437         *drv = xhci_hc_driver;
5438
5439         if (over) {
5440                 drv->hcd_priv_size += over->extra_priv_size;
5441                 if (over->reset)
5442                         drv->reset = over->reset;
5443                 if (over->start)
5444                         drv->start = over->start;
5445                 if (over->add_endpoint)
5446                         drv->add_endpoint = over->add_endpoint;
5447                 if (over->drop_endpoint)
5448                         drv->drop_endpoint = over->drop_endpoint;
5449                 if (over->check_bandwidth)
5450                         drv->check_bandwidth = over->check_bandwidth;
5451                 if (over->reset_bandwidth)
5452                         drv->reset_bandwidth = over->reset_bandwidth;
5453         }
5454 }
5455 EXPORT_SYMBOL_GPL(xhci_init_driver);
5456
5457 MODULE_DESCRIPTION(DRIVER_DESC);
5458 MODULE_AUTHOR(DRIVER_AUTHOR);
5459 MODULE_LICENSE("GPL");
5460
5461 static int __init xhci_hcd_init(void)
5462 {
5463         /*
5464          * Check the compiler generated sizes of structures that must be laid
5465          * out in specific ways for hardware access.
5466          */
5467         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5468         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5469         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5470         /* xhci_device_control has eight fields, and also
5471          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5472          */
5473         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5474         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5475         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5476         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5477         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5478         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5479         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5480
5481         if (usb_disabled())
5482                 return -ENODEV;
5483
5484         xhci_debugfs_create_root();
5485
5486         return 0;
5487 }
5488
5489 /*
5490  * If an init function is provided, an exit function must also be provided
5491  * to allow module unload.
5492  */
5493 static void __exit xhci_hcd_fini(void)
5494 {
5495         xhci_debugfs_remove_root();
5496 }
5497
5498 module_init(xhci_hcd_init);
5499 module_exit(xhci_hcd_fini);