Merge 5.11-rc7 into usb-next
[linux-2.6-microblaze.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43         struct xhci_segment *seg = ring->first_seg;
44
45         if (!td || !td->start_seg)
46                 return false;
47         do {
48                 if (seg == td->start_seg)
49                         return true;
50                 seg = seg->next;
51         } while (seg && seg != ring->first_seg);
52
53         return false;
54 }
55
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72         int     ret;
73
74         ret = readl_poll_timeout_atomic(ptr, result,
75                                         (result & mask) == done ||
76                                         result == U32_MAX,
77                                         1, usec);
78         if (result == U32_MAX)          /* card removed */
79                 return -ENODEV;
80
81         return ret;
82 }
83
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89         u32 halted;
90         u32 cmd;
91         u32 mask;
92
93         mask = ~(XHCI_IRQS);
94         halted = readl(&xhci->op_regs->status) & STS_HALT;
95         if (!halted)
96                 mask &= ~CMD_RUN;
97
98         cmd = readl(&xhci->op_regs->command);
99         cmd &= mask;
100         writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113         int ret;
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123         xhci->xhc_state |= XHCI_STATE_HALTED;
124         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125         return ret;
126 }
127
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133         u32 temp;
134         int ret;
135
136         temp = readl(&xhci->op_regs->command);
137         temp |= (CMD_RUN);
138         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139                         temp);
140         writel(temp, &xhci->op_regs->command);
141
142         /*
143          * Wait for the HCHalted Status bit to be 0 to indicate the host is
144          * running.
145          */
146         ret = xhci_handshake(&xhci->op_regs->status,
147                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
148         if (ret == -ETIMEDOUT)
149                 xhci_err(xhci, "Host took too long to start, "
150                                 "waited %u microseconds.\n",
151                                 XHCI_MAX_HALT_USEC);
152         if (!ret)
153                 /* clear state flags. Including dying, halted or removing */
154                 xhci->xhc_state = 0;
155
156         return ret;
157 }
158
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168         u32 command;
169         u32 state;
170         int ret;
171
172         state = readl(&xhci->op_regs->status);
173
174         if (state == ~(u32)0) {
175                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176                 return -ENODEV;
177         }
178
179         if ((state & STS_HALT) == 0) {
180                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181                 return 0;
182         }
183
184         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185         command = readl(&xhci->op_regs->command);
186         command |= CMD_RESET;
187         writel(command, &xhci->op_regs->command);
188
189         /* Existing Intel xHCI controllers require a delay of 1 mS,
190          * after setting the CMD_RESET bit, and before accessing any
191          * HC registers. This allows the HC to complete the
192          * reset operation and be ready for HC register access.
193          * Without this delay, the subsequent HC register access,
194          * may result in a system hang very rarely.
195          */
196         if (xhci->quirks & XHCI_INTEL_HOST)
197                 udelay(1000);
198
199         ret = xhci_handshake(&xhci->op_regs->command,
200                         CMD_RESET, 0, 10 * 1000 * 1000);
201         if (ret)
202                 return ret;
203
204         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206
207         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208                          "Wait for controller to be ready for doorbell rings");
209         /*
210          * xHCI cannot write to any doorbells or operational registers other
211          * than status until the "Controller Not Ready" flag is cleared.
212          */
213         ret = xhci_handshake(&xhci->op_regs->status,
214                         STS_CNR, 0, 10 * 1000 * 1000);
215
216         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217         xhci->usb2_rhub.bus_state.suspended_ports = 0;
218         xhci->usb2_rhub.bus_state.resuming_ports = 0;
219         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220         xhci->usb3_rhub.bus_state.suspended_ports = 0;
221         xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223         return ret;
224 }
225
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229         int err, i;
230         u64 val;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270                 struct xhci_intr_reg __iomem *ir;
271
272                 ir = &xhci->run_regs->ir_set[i];
273                 val = xhci_read_64(xhci, &ir->erst_base);
274                 if (upper_32_bits(val))
275                         xhci_write_64(xhci, 0, &ir->erst_base);
276                 val= xhci_read_64(xhci, &ir->erst_dequeue);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
279         }
280
281         /* Wait for the fault to appear. It will be cleared on reset */
282         err = xhci_handshake(&xhci->op_regs->status,
283                              STS_FATAL, STS_FATAL,
284                              XHCI_MAX_HALT_USEC);
285         if (!err)
286                 xhci_info(xhci, "Fault detected\n");
287 }
288
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295         int ret;
296         /*
297          * TODO:Check with MSI Soc for sysdev
298          */
299         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300
301         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302         if (ret < 0) {
303                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304                                 "failed to allocate MSI entry");
305                 return ret;
306         }
307
308         ret = request_irq(pdev->irq, xhci_msi_irq,
309                                 0, "xhci_hcd", xhci_to_hcd(xhci));
310         if (ret) {
311                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312                                 "disable MSI interrupt");
313                 pci_free_irq_vectors(pdev);
314         }
315
316         return ret;
317 }
318
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324         int i, ret = 0;
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         /*
329          * calculate number of msi-x vectors supported.
330          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331          *   with max number of interrupters based on the xhci HCSPARAMS1.
332          * - num_online_cpus: maximum msi-x vectors per CPUs core.
333          *   Add additional 1 vector to ensure always available interrupt.
334          */
335         xhci->msix_count = min(num_online_cpus() + 1,
336                                 HCS_MAX_INTRS(xhci->hcs_params1));
337
338         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339                         PCI_IRQ_MSIX);
340         if (ret < 0) {
341                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342                                 "Failed to enable MSI-X");
343                 return ret;
344         }
345
346         for (i = 0; i < xhci->msix_count; i++) {
347                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348                                 "xhci_hcd", xhci_to_hcd(xhci));
349                 if (ret)
350                         goto disable_msix;
351         }
352
353         hcd->msix_enabled = 1;
354         return ret;
355
356 disable_msix:
357         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358         while (--i >= 0)
359                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360         pci_free_irq_vectors(pdev);
361         return ret;
362 }
363
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367         struct usb_hcd *hcd = xhci_to_hcd(xhci);
368         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369
370         if (xhci->quirks & XHCI_PLAT)
371                 return;
372
373         /* return if using legacy interrupt */
374         if (hcd->irq > 0)
375                 return;
376
377         if (hcd->msix_enabled) {
378                 int i;
379
380                 for (i = 0; i < xhci->msix_count; i++)
381                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382         } else {
383                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384         }
385
386         pci_free_irq_vectors(pdev);
387         hcd->msix_enabled = 0;
388 }
389
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392         struct usb_hcd *hcd = xhci_to_hcd(xhci);
393
394         if (hcd->msix_enabled) {
395                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396                 int i;
397
398                 for (i = 0; i < xhci->msix_count; i++)
399                         synchronize_irq(pci_irq_vector(pdev, i));
400         }
401 }
402
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406         struct pci_dev  *pdev;
407         int ret;
408
409         /* The xhci platform device has set up IRQs through usb_add_hcd. */
410         if (xhci->quirks & XHCI_PLAT)
411                 return 0;
412
413         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414         /*
415          * Some Fresco Logic host controllers advertise MSI, but fail to
416          * generate interrupts.  Don't even try to enable MSI.
417          */
418         if (xhci->quirks & XHCI_BROKEN_MSI)
419                 goto legacy_irq;
420
421         /* unregister the legacy interrupt */
422         if (hcd->irq)
423                 free_irq(hcd->irq, hcd);
424         hcd->irq = 0;
425
426         ret = xhci_setup_msix(xhci);
427         if (ret)
428                 /* fall back to msi*/
429                 ret = xhci_setup_msi(xhci);
430
431         if (!ret) {
432                 hcd->msi_enabled = 1;
433                 return 0;
434         }
435
436         if (!pdev->irq) {
437                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438                 return -EINVAL;
439         }
440
441  legacy_irq:
442         if (!strlen(hcd->irq_descr))
443                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444                          hcd->driver->description, hcd->self.busnum);
445
446         /* fall back to legacy interrupt*/
447         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448                         hcd->irq_descr, hcd);
449         if (ret) {
450                 xhci_err(xhci, "request interrupt %d failed\n",
451                                 pdev->irq);
452                 return ret;
453         }
454         hcd->irq = pdev->irq;
455         return 0;
456 }
457
458 #else
459
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462         return 0;
463 }
464
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472
473 #endif
474
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477         struct xhci_hcd *xhci;
478         struct usb_hcd *hcd;
479         struct xhci_hub *rhub;
480         u32 temp;
481         int i;
482
483         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484         rhub = &xhci->usb3_rhub;
485
486         for (i = 0; i < rhub->num_ports; i++) {
487                 temp = readl(rhub->ports[i]->addr);
488                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489                         /*
490                          * Compliance Mode Detected. Letting USB Core
491                          * handle the Warm Reset
492                          */
493                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494                                         "Compliance mode detected->port %d",
495                                         i + 1);
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Attempting compliance mode recovery");
498                         hcd = xhci->shared_hcd;
499
500                         if (hcd->state == HC_STATE_SUSPENDED)
501                                 usb_hcd_resume_root_hub(hcd);
502
503                         usb_hcd_poll_rh_status(hcd);
504                 }
505         }
506
507         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508                 mod_timer(&xhci->comp_mode_recovery_timer,
509                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524         xhci->port_status_u0 = 0;
525         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526                     0);
527         xhci->comp_mode_recovery_timer.expires = jiffies +
528                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529
530         add_timer(&xhci->comp_mode_recovery_timer);
531         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532                         "Compliance mode recovery timer initialized");
533 }
534
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543         const char *dmi_product_name, *dmi_sys_vendor;
544
545         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547         if (!dmi_product_name || !dmi_sys_vendor)
548                 return false;
549
550         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551                 return false;
552
553         if (strstr(dmi_product_name, "Z420") ||
554                         strstr(dmi_product_name, "Z620") ||
555                         strstr(dmi_product_name, "Z820") ||
556                         strstr(dmi_product_name, "Z1 Workstation"))
557                 return true;
558
559         return false;
560 }
561
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566
567
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578         int retval = 0;
579
580         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581         spin_lock_init(&xhci->lock);
582         if (xhci->hci_version == 0x95 && link_quirk) {
583                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584                                 "QUIRK: Not clearing Link TRB chain bits.");
585                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586         } else {
587                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588                                 "xHCI doesn't need link TRB QUIRK");
589         }
590         retval = xhci_mem_init(xhci, GFP_KERNEL);
591         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592
593         /* Initializing Compliance Mode Recovery Data If Needed */
594         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596                 compliance_mode_recovery_timer_init(xhci);
597         }
598
599         return retval;
600 }
601
602 /*-------------------------------------------------------------------------*/
603
604
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607         if (xhci_start(xhci)) {
608                 xhci_halt(xhci);
609                 return -ENODEV;
610         }
611         xhci->shared_hcd->state = HC_STATE_RUNNING;
612         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613
614         if (xhci->quirks & XHCI_NEC_HOST)
615                 xhci_ring_cmd_db(xhci);
616
617         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618                         "Finished xhci_run for USB3 roothub");
619         return 0;
620 }
621
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636         u32 temp;
637         u64 temp_64;
638         int ret;
639         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640
641         /* Start the xHCI host controller running only after the USB 2.0 roothub
642          * is setup.
643          */
644
645         hcd->uses_new_polling = 1;
646         if (!usb_hcd_is_primary_hcd(hcd))
647                 return xhci_run_finished(xhci);
648
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650
651         ret = xhci_try_enable_msi(hcd);
652         if (ret)
653                 return ret;
654
655         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656         temp_64 &= ~ERST_PTR_MASK;
657         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "// Set the interrupt modulation register");
662         temp = readl(&xhci->ir_set->irq_control);
663         temp &= ~ER_IRQ_INTERVAL_MASK;
664         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665         writel(temp, &xhci->ir_set->irq_control);
666
667         /* Set the HCD state before we enable the irqs */
668         temp = readl(&xhci->op_regs->command);
669         temp |= (CMD_EIE);
670         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671                         "// Enable interrupts, cmd = 0x%x.", temp);
672         writel(temp, &xhci->op_regs->command);
673
674         temp = readl(&xhci->ir_set->irq_pending);
675         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679
680         if (xhci->quirks & XHCI_NEC_HOST) {
681                 struct xhci_command *command;
682
683                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684                 if (!command)
685                         return -ENOMEM;
686
687                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688                                 TRB_TYPE(TRB_NEC_GET_FW));
689                 if (ret)
690                         xhci_free_command(xhci, command);
691         }
692         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693                         "Finished xhci_run for USB2 roothub");
694
695         xhci_dbc_init(xhci);
696
697         xhci_debugfs_init(xhci);
698
699         return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714         u32 temp;
715         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716
717         mutex_lock(&xhci->mutex);
718
719         /* Only halt host and free memory after both hcds are removed */
720         if (!usb_hcd_is_primary_hcd(hcd)) {
721                 mutex_unlock(&xhci->mutex);
722                 return;
723         }
724
725         xhci_dbc_exit(xhci);
726
727         spin_lock_irq(&xhci->lock);
728         xhci->xhc_state |= XHCI_STATE_HALTED;
729         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730         xhci_halt(xhci);
731         xhci_reset(xhci);
732         spin_unlock_irq(&xhci->lock);
733
734         xhci_cleanup_msix(xhci);
735
736         /* Deleting Compliance Mode Recovery Timer */
737         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738                         (!(xhci_all_ports_seen_u0(xhci)))) {
739                 del_timer_sync(&xhci->comp_mode_recovery_timer);
740                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741                                 "%s: compliance mode recovery timer deleted",
742                                 __func__);
743         }
744
745         if (xhci->quirks & XHCI_AMD_PLL_FIX)
746                 usb_amd_dev_put();
747
748         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749                         "// Disabling event ring interrupts");
750         temp = readl(&xhci->op_regs->status);
751         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752         temp = readl(&xhci->ir_set->irq_pending);
753         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754
755         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756         xhci_mem_cleanup(xhci);
757         xhci_debugfs_exit(xhci);
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "xhci_stop completed - status = %x",
760                         readl(&xhci->op_regs->status));
761         mutex_unlock(&xhci->mutex);
762 }
763
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779
780         spin_lock_irq(&xhci->lock);
781         xhci_halt(xhci);
782         /* Workaround for spurious wakeups at shutdown with HSW */
783         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784                 xhci_reset(xhci);
785         spin_unlock_irq(&xhci->lock);
786
787         xhci_cleanup_msix(xhci);
788
789         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790                         "xhci_shutdown completed - status = %x",
791                         readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798         xhci->s3.command = readl(&xhci->op_regs->command);
799         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811         writel(xhci->s3.command, &xhci->op_regs->command);
812         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824         u64     val_64;
825
826         /* step 2: initialize command ring buffer */
827         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830                                       xhci->cmd_ring->dequeue) &
831                  (u64) ~CMD_RING_RSVD_BITS) |
832                 xhci->cmd_ring->cycle_state;
833         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834                         "// Setting command ring address to 0x%llx",
835                         (long unsigned long) val_64);
836         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850         struct xhci_ring *ring;
851         struct xhci_segment *seg;
852
853         ring = xhci->cmd_ring;
854         seg = ring->deq_seg;
855         do {
856                 memset(seg->trbs, 0,
857                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859                         cpu_to_le32(~TRB_CYCLE);
860                 seg = seg->next;
861         } while (seg != ring->deq_seg);
862
863         /* Reset the software enqueue and dequeue pointers */
864         ring->deq_seg = ring->first_seg;
865         ring->dequeue = ring->first_seg->trbs;
866         ring->enq_seg = ring->deq_seg;
867         ring->enqueue = ring->dequeue;
868
869         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870         /*
871          * Ring is now zeroed, so the HW should look for change of ownership
872          * when the cycle bit is set to 1.
873          */
874         ring->cycle_state = 1;
875
876         /*
877          * Reset the hardware dequeue pointer.
878          * Yes, this will need to be re-written after resume, but we're paranoid
879          * and want to make sure the hardware doesn't access bogus memory
880          * because, say, the BIOS or an SMI started the host without changing
881          * the command ring pointers.
882          */
883         xhci_set_cmd_ring_deq(xhci);
884 }
885
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888         struct xhci_port **ports;
889         int port_index;
890         unsigned long flags;
891         u32 t1, t2, portsc;
892
893         spin_lock_irqsave(&xhci->lock, flags);
894
895         /* disable usb3 ports Wake bits */
896         port_index = xhci->usb3_rhub.num_ports;
897         ports = xhci->usb3_rhub.ports;
898         while (port_index--) {
899                 t1 = readl(ports[port_index]->addr);
900                 portsc = t1;
901                 t1 = xhci_port_state_to_neutral(t1);
902                 t2 = t1 & ~PORT_WAKE_BITS;
903                 if (t1 != t2) {
904                         writel(t2, ports[port_index]->addr);
905                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906                                  xhci->usb3_rhub.hcd->self.busnum,
907                                  port_index + 1, portsc, t2);
908                 }
909         }
910
911         /* disable usb2 ports Wake bits */
912         port_index = xhci->usb2_rhub.num_ports;
913         ports = xhci->usb2_rhub.ports;
914         while (port_index--) {
915                 t1 = readl(ports[port_index]->addr);
916                 portsc = t1;
917                 t1 = xhci_port_state_to_neutral(t1);
918                 t2 = t1 & ~PORT_WAKE_BITS;
919                 if (t1 != t2) {
920                         writel(t2, ports[port_index]->addr);
921                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922                                  xhci->usb2_rhub.hcd->self.busnum,
923                                  port_index + 1, portsc, t2);
924                 }
925         }
926         spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931         struct xhci_port        **ports;
932         int                     port_index;
933         u32                     status;
934         u32                     portsc;
935
936         status = readl(&xhci->op_regs->status);
937         if (status & STS_EINT)
938                 return true;
939         /*
940          * Checking STS_EINT is not enough as there is a lag between a change
941          * bit being set and the Port Status Change Event that it generated
942          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943          */
944
945         port_index = xhci->usb2_rhub.num_ports;
946         ports = xhci->usb2_rhub.ports;
947         while (port_index--) {
948                 portsc = readl(ports[port_index]->addr);
949                 if (portsc & PORT_CHANGE_MASK ||
950                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951                         return true;
952         }
953         port_index = xhci->usb3_rhub.num_ports;
954         ports = xhci->usb3_rhub.ports;
955         while (port_index--) {
956                 portsc = readl(ports[port_index]->addr);
957                 if (portsc & PORT_CHANGE_MASK ||
958                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959                         return true;
960         }
961         return false;
962 }
963
964 /*
965  * Stop HC (not bus-specific)
966  *
967  * This is called when the machine transition into S3/S4 mode.
968  *
969  */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972         int                     rc = 0;
973         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
974         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
975         u32                     command;
976         u32                     res;
977
978         if (!hcd->state)
979                 return 0;
980
981         if (hcd->state != HC_STATE_SUSPENDED ||
982                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983                 return -EINVAL;
984
985         /* Clear root port wake on bits if wakeup not allowed. */
986         if (!do_wakeup)
987                 xhci_disable_port_wake_on_bits(xhci);
988
989         if (!HCD_HW_ACCESSIBLE(hcd))
990                 return 0;
991
992         xhci_dbc_suspend(xhci);
993
994         /* Don't poll the roothubs on bus suspend. */
995         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
996         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997         del_timer_sync(&hcd->rh_timer);
998         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999         del_timer_sync(&xhci->shared_hcd->rh_timer);
1000
1001         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002                 usleep_range(1000, 1500);
1003
1004         spin_lock_irq(&xhci->lock);
1005         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007         /* step 1: stop endpoint */
1008         /* skipped assuming that port suspend has done */
1009
1010         /* step 2: clear Run/Stop bit */
1011         command = readl(&xhci->op_regs->command);
1012         command &= ~CMD_RUN;
1013         writel(command, &xhci->op_regs->command);
1014
1015         /* Some chips from Fresco Logic need an extraordinary delay */
1016         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017
1018         if (xhci_handshake(&xhci->op_regs->status,
1019                       STS_HALT, STS_HALT, delay)) {
1020                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021                 spin_unlock_irq(&xhci->lock);
1022                 return -ETIMEDOUT;
1023         }
1024         xhci_clear_command_ring(xhci);
1025
1026         /* step 3: save registers */
1027         xhci_save_registers(xhci);
1028
1029         /* step 4: set CSS flag */
1030         command = readl(&xhci->op_regs->command);
1031         command |= CMD_CSS;
1032         writel(command, &xhci->op_regs->command);
1033         xhci->broken_suspend = 0;
1034         if (xhci_handshake(&xhci->op_regs->status,
1035                                 STS_SAVE, 0, 20 * 1000)) {
1036         /*
1037          * AMD SNPS xHC 3.0 occasionally does not clear the
1038          * SSS bit of USBSTS and when driver tries to poll
1039          * to see if the xHC clears BIT(8) which never happens
1040          * and driver assumes that controller is not responding
1041          * and times out. To workaround this, its good to check
1042          * if SRE and HCE bits are not set (as per xhci
1043          * Section 5.4.2) and bypass the timeout.
1044          */
1045                 res = readl(&xhci->op_regs->status);
1046                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047                     (((res & STS_SRE) == 0) &&
1048                                 ((res & STS_HCE) == 0))) {
1049                         xhci->broken_suspend = 1;
1050                 } else {
1051                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052                         spin_unlock_irq(&xhci->lock);
1053                         return -ETIMEDOUT;
1054                 }
1055         }
1056         spin_unlock_irq(&xhci->lock);
1057
1058         /*
1059          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060          * is about to be suspended.
1061          */
1062         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063                         (!(xhci_all_ports_seen_u0(xhci)))) {
1064                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1065                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066                                 "%s: compliance mode recovery timer deleted",
1067                                 __func__);
1068         }
1069
1070         /* step 5: remove core well power */
1071         /* synchronize irq when using MSI-X */
1072         xhci_msix_sync_irqs(xhci);
1073
1074         return rc;
1075 }
1076 EXPORT_SYMBOL_GPL(xhci_suspend);
1077
1078 /*
1079  * start xHC (not bus-specific)
1080  *
1081  * This is called when the machine transition from S3/S4 mode.
1082  *
1083  */
1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085 {
1086         u32                     command, temp = 0;
1087         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1088         struct usb_hcd          *secondary_hcd;
1089         int                     retval = 0;
1090         bool                    comp_timer_running = false;
1091
1092         if (!hcd->state)
1093                 return 0;
1094
1095         /* Wait a bit if either of the roothubs need to settle from the
1096          * transition into bus suspend.
1097          */
1098
1099         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101                 msleep(100);
1102
1103         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105
1106         spin_lock_irq(&xhci->lock);
1107         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108                 hibernated = true;
1109
1110         if (!hibernated) {
1111                 /*
1112                  * Some controllers might lose power during suspend, so wait
1113                  * for controller not ready bit to clear, just as in xHC init.
1114                  */
1115                 retval = xhci_handshake(&xhci->op_regs->status,
1116                                         STS_CNR, 0, 10 * 1000 * 1000);
1117                 if (retval) {
1118                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1119                                   retval);
1120                         spin_unlock_irq(&xhci->lock);
1121                         return retval;
1122                 }
1123                 /* step 1: restore register */
1124                 xhci_restore_registers(xhci);
1125                 /* step 2: initialize command ring buffer */
1126                 xhci_set_cmd_ring_deq(xhci);
1127                 /* step 3: restore state and start state*/
1128                 /* step 3: set CRS flag */
1129                 command = readl(&xhci->op_regs->command);
1130                 command |= CMD_CRS;
1131                 writel(command, &xhci->op_regs->command);
1132                 /*
1133                  * Some controllers take up to 55+ ms to complete the controller
1134                  * restore so setting the timeout to 100ms. Xhci specification
1135                  * doesn't mention any timeout value.
1136                  */
1137                 if (xhci_handshake(&xhci->op_regs->status,
1138                               STS_RESTORE, 0, 100 * 1000)) {
1139                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1140                         spin_unlock_irq(&xhci->lock);
1141                         return -ETIMEDOUT;
1142                 }
1143                 temp = readl(&xhci->op_regs->status);
1144         }
1145
1146         /* If restore operation fails, re-initialize the HC during resume */
1147         if ((temp & STS_SRE) || hibernated) {
1148
1149                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1150                                 !(xhci_all_ports_seen_u0(xhci))) {
1151                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1152                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1153                                 "Compliance Mode Recovery Timer deleted!");
1154                 }
1155
1156                 /* Let the USB core know _both_ roothubs lost power. */
1157                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1158                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1159
1160                 xhci_dbg(xhci, "Stop HCD\n");
1161                 xhci_halt(xhci);
1162                 xhci_zero_64b_regs(xhci);
1163                 retval = xhci_reset(xhci);
1164                 spin_unlock_irq(&xhci->lock);
1165                 if (retval)
1166                         return retval;
1167                 xhci_cleanup_msix(xhci);
1168
1169                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1170                 temp = readl(&xhci->op_regs->status);
1171                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1172                 temp = readl(&xhci->ir_set->irq_pending);
1173                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1174
1175                 xhci_dbg(xhci, "cleaning up memory\n");
1176                 xhci_mem_cleanup(xhci);
1177                 xhci_debugfs_exit(xhci);
1178                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1179                             readl(&xhci->op_regs->status));
1180
1181                 /* USB core calls the PCI reinit and start functions twice:
1182                  * first with the primary HCD, and then with the secondary HCD.
1183                  * If we don't do the same, the host will never be started.
1184                  */
1185                 if (!usb_hcd_is_primary_hcd(hcd))
1186                         secondary_hcd = hcd;
1187                 else
1188                         secondary_hcd = xhci->shared_hcd;
1189
1190                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1191                 retval = xhci_init(hcd->primary_hcd);
1192                 if (retval)
1193                         return retval;
1194                 comp_timer_running = true;
1195
1196                 xhci_dbg(xhci, "Start the primary HCD\n");
1197                 retval = xhci_run(hcd->primary_hcd);
1198                 if (!retval) {
1199                         xhci_dbg(xhci, "Start the secondary HCD\n");
1200                         retval = xhci_run(secondary_hcd);
1201                 }
1202                 hcd->state = HC_STATE_SUSPENDED;
1203                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1204                 goto done;
1205         }
1206
1207         /* step 4: set Run/Stop bit */
1208         command = readl(&xhci->op_regs->command);
1209         command |= CMD_RUN;
1210         writel(command, &xhci->op_regs->command);
1211         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1212                   0, 250 * 1000);
1213
1214         /* step 5: walk topology and initialize portsc,
1215          * portpmsc and portli
1216          */
1217         /* this is done in bus_resume */
1218
1219         /* step 6: restart each of the previously
1220          * Running endpoints by ringing their doorbells
1221          */
1222
1223         spin_unlock_irq(&xhci->lock);
1224
1225         xhci_dbc_resume(xhci);
1226
1227  done:
1228         if (retval == 0) {
1229                 /* Resume root hubs only when have pending events. */
1230                 if (xhci_pending_portevent(xhci)) {
1231                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1232                         usb_hcd_resume_root_hub(hcd);
1233                 }
1234         }
1235
1236         /*
1237          * If system is subject to the Quirk, Compliance Mode Timer needs to
1238          * be re-initialized Always after a system resume. Ports are subject
1239          * to suffer the Compliance Mode issue again. It doesn't matter if
1240          * ports have entered previously to U0 before system's suspension.
1241          */
1242         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1243                 compliance_mode_recovery_timer_init(xhci);
1244
1245         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1246                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1247
1248         /* Re-enable port polling. */
1249         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1250         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1251         usb_hcd_poll_rh_status(xhci->shared_hcd);
1252         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1253         usb_hcd_poll_rh_status(hcd);
1254
1255         return retval;
1256 }
1257 EXPORT_SYMBOL_GPL(xhci_resume);
1258 #endif  /* CONFIG_PM */
1259
1260 /*-------------------------------------------------------------------------*/
1261
1262 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1263 {
1264         void *temp;
1265         int ret = 0;
1266         unsigned int buf_len;
1267         enum dma_data_direction dir;
1268
1269         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1270         buf_len = urb->transfer_buffer_length;
1271
1272         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1273                             dev_to_node(hcd->self.sysdev));
1274
1275         if (usb_urb_dir_out(urb))
1276                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1277                                    temp, buf_len, 0);
1278
1279         urb->transfer_buffer = temp;
1280         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1281                                            urb->transfer_buffer,
1282                                            urb->transfer_buffer_length,
1283                                            dir);
1284
1285         if (dma_mapping_error(hcd->self.sysdev,
1286                               urb->transfer_dma)) {
1287                 ret = -EAGAIN;
1288                 kfree(temp);
1289         } else {
1290                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1291         }
1292
1293         return ret;
1294 }
1295
1296 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1297                                           struct urb *urb)
1298 {
1299         bool ret = false;
1300         unsigned int i;
1301         unsigned int len = 0;
1302         unsigned int trb_size;
1303         unsigned int max_pkt;
1304         struct scatterlist *sg;
1305         struct scatterlist *tail_sg;
1306
1307         tail_sg = urb->sg;
1308         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1309
1310         if (!urb->num_sgs)
1311                 return ret;
1312
1313         if (urb->dev->speed >= USB_SPEED_SUPER)
1314                 trb_size = TRB_CACHE_SIZE_SS;
1315         else
1316                 trb_size = TRB_CACHE_SIZE_HS;
1317
1318         if (urb->transfer_buffer_length != 0 &&
1319             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1320                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1321                         len = len + sg->length;
1322                         if (i > trb_size - 2) {
1323                                 len = len - tail_sg->length;
1324                                 if (len < max_pkt) {
1325                                         ret = true;
1326                                         break;
1327                                 }
1328
1329                                 tail_sg = sg_next(tail_sg);
1330                         }
1331                 }
1332         }
1333         return ret;
1334 }
1335
1336 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1337 {
1338         unsigned int len;
1339         unsigned int buf_len;
1340         enum dma_data_direction dir;
1341
1342         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1343
1344         buf_len = urb->transfer_buffer_length;
1345
1346         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1347             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1348                 dma_unmap_single(hcd->self.sysdev,
1349                                  urb->transfer_dma,
1350                                  urb->transfer_buffer_length,
1351                                  dir);
1352
1353         if (usb_urb_dir_in(urb))
1354                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1355                                            urb->transfer_buffer,
1356                                            buf_len,
1357                                            0);
1358
1359         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1360         kfree(urb->transfer_buffer);
1361         urb->transfer_buffer = NULL;
1362 }
1363
1364 /*
1365  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1366  * we'll copy the actual data into the TRB address register. This is limited to
1367  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1368  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1369  */
1370 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1371                                 gfp_t mem_flags)
1372 {
1373         struct xhci_hcd *xhci;
1374
1375         xhci = hcd_to_xhci(hcd);
1376
1377         if (xhci_urb_suitable_for_idt(urb))
1378                 return 0;
1379
1380         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1381                 if (xhci_urb_temp_buffer_required(hcd, urb))
1382                         return xhci_map_temp_buffer(hcd, urb);
1383         }
1384         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1385 }
1386
1387 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1388 {
1389         struct xhci_hcd *xhci;
1390         bool unmap_temp_buf = false;
1391
1392         xhci = hcd_to_xhci(hcd);
1393
1394         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1395                 unmap_temp_buf = true;
1396
1397         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1398                 xhci_unmap_temp_buf(hcd, urb);
1399         else
1400                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1401 }
1402
1403 /**
1404  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1405  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1406  * value to right shift 1 for the bitmask.
1407  *
1408  * Index  = (epnum * 2) + direction - 1,
1409  * where direction = 0 for OUT, 1 for IN.
1410  * For control endpoints, the IN index is used (OUT index is unused), so
1411  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1412  */
1413 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1414 {
1415         unsigned int index;
1416         if (usb_endpoint_xfer_control(desc))
1417                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1418         else
1419                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1420                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1421         return index;
1422 }
1423
1424 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1425  * address from the XHCI endpoint index.
1426  */
1427 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1428 {
1429         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1430         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1431         return direction | number;
1432 }
1433
1434 /* Find the flag for this endpoint (for use in the control context).  Use the
1435  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1436  * bit 1, etc.
1437  */
1438 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1439 {
1440         return 1 << (xhci_get_endpoint_index(desc) + 1);
1441 }
1442
1443 /* Compute the last valid endpoint context index.  Basically, this is the
1444  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1445  * we find the most significant bit set in the added contexts flags.
1446  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1447  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1448  */
1449 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1450 {
1451         return fls(added_ctxs) - 1;
1452 }
1453
1454 /* Returns 1 if the arguments are OK;
1455  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1456  */
1457 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1458                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1459                 const char *func) {
1460         struct xhci_hcd *xhci;
1461         struct xhci_virt_device *virt_dev;
1462
1463         if (!hcd || (check_ep && !ep) || !udev) {
1464                 pr_debug("xHCI %s called with invalid args\n", func);
1465                 return -EINVAL;
1466         }
1467         if (!udev->parent) {
1468                 pr_debug("xHCI %s called for root hub\n", func);
1469                 return 0;
1470         }
1471
1472         xhci = hcd_to_xhci(hcd);
1473         if (check_virt_dev) {
1474                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1475                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1476                                         func);
1477                         return -EINVAL;
1478                 }
1479
1480                 virt_dev = xhci->devs[udev->slot_id];
1481                 if (virt_dev->udev != udev) {
1482                         xhci_dbg(xhci, "xHCI %s called with udev and "
1483                                           "virt_dev does not match\n", func);
1484                         return -EINVAL;
1485                 }
1486         }
1487
1488         if (xhci->xhc_state & XHCI_STATE_HALTED)
1489                 return -ENODEV;
1490
1491         return 1;
1492 }
1493
1494 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1495                 struct usb_device *udev, struct xhci_command *command,
1496                 bool ctx_change, bool must_succeed);
1497
1498 /*
1499  * Full speed devices may have a max packet size greater than 8 bytes, but the
1500  * USB core doesn't know that until it reads the first 8 bytes of the
1501  * descriptor.  If the usb_device's max packet size changes after that point,
1502  * we need to issue an evaluate context command and wait on it.
1503  */
1504 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1505                 unsigned int ep_index, struct urb *urb)
1506 {
1507         struct xhci_container_ctx *out_ctx;
1508         struct xhci_input_control_ctx *ctrl_ctx;
1509         struct xhci_ep_ctx *ep_ctx;
1510         struct xhci_command *command;
1511         int max_packet_size;
1512         int hw_max_packet_size;
1513         int ret = 0;
1514
1515         out_ctx = xhci->devs[slot_id]->out_ctx;
1516         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1517         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1518         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1519         if (hw_max_packet_size != max_packet_size) {
1520                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1521                                 "Max Packet Size for ep 0 changed.");
1522                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1523                                 "Max packet size in usb_device = %d",
1524                                 max_packet_size);
1525                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1526                                 "Max packet size in xHCI HW = %d",
1527                                 hw_max_packet_size);
1528                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1529                                 "Issuing evaluate context command.");
1530
1531                 /* Set up the input context flags for the command */
1532                 /* FIXME: This won't work if a non-default control endpoint
1533                  * changes max packet sizes.
1534                  */
1535
1536                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1537                 if (!command)
1538                         return -ENOMEM;
1539
1540                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1541                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1542                 if (!ctrl_ctx) {
1543                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1544                                         __func__);
1545                         ret = -ENOMEM;
1546                         goto command_cleanup;
1547                 }
1548                 /* Set up the modified control endpoint 0 */
1549                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1550                                 xhci->devs[slot_id]->out_ctx, ep_index);
1551
1552                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1553                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1554                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1555                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1556
1557                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1558                 ctrl_ctx->drop_flags = 0;
1559
1560                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1561                                 true, false);
1562
1563                 /* Clean up the input context for later use by bandwidth
1564                  * functions.
1565                  */
1566                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1567 command_cleanup:
1568                 kfree(command->completion);
1569                 kfree(command);
1570         }
1571         return ret;
1572 }
1573
1574 /*
1575  * non-error returns are a promise to giveback() the urb later
1576  * we drop ownership so next owner (or urb unlink) can get it
1577  */
1578 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1579 {
1580         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1581         unsigned long flags;
1582         int ret = 0;
1583         unsigned int slot_id, ep_index;
1584         unsigned int *ep_state;
1585         struct urb_priv *urb_priv;
1586         int num_tds;
1587
1588         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1589                                         true, true, __func__) <= 0)
1590                 return -EINVAL;
1591
1592         slot_id = urb->dev->slot_id;
1593         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1594         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1595
1596         if (!HCD_HW_ACCESSIBLE(hcd))
1597                 return -ESHUTDOWN;
1598
1599         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1600                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1601                 return -ENODEV;
1602         }
1603
1604         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1605                 num_tds = urb->number_of_packets;
1606         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1607             urb->transfer_buffer_length > 0 &&
1608             urb->transfer_flags & URB_ZERO_PACKET &&
1609             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1610                 num_tds = 2;
1611         else
1612                 num_tds = 1;
1613
1614         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1615         if (!urb_priv)
1616                 return -ENOMEM;
1617
1618         urb_priv->num_tds = num_tds;
1619         urb_priv->num_tds_done = 0;
1620         urb->hcpriv = urb_priv;
1621
1622         trace_xhci_urb_enqueue(urb);
1623
1624         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1625                 /* Check to see if the max packet size for the default control
1626                  * endpoint changed during FS device enumeration
1627                  */
1628                 if (urb->dev->speed == USB_SPEED_FULL) {
1629                         ret = xhci_check_maxpacket(xhci, slot_id,
1630                                         ep_index, urb);
1631                         if (ret < 0) {
1632                                 xhci_urb_free_priv(urb_priv);
1633                                 urb->hcpriv = NULL;
1634                                 return ret;
1635                         }
1636                 }
1637         }
1638
1639         spin_lock_irqsave(&xhci->lock, flags);
1640
1641         if (xhci->xhc_state & XHCI_STATE_DYING) {
1642                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1643                          urb->ep->desc.bEndpointAddress, urb);
1644                 ret = -ESHUTDOWN;
1645                 goto free_priv;
1646         }
1647         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1648                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1649                           *ep_state);
1650                 ret = -EINVAL;
1651                 goto free_priv;
1652         }
1653         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1654                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1655                 ret = -EINVAL;
1656                 goto free_priv;
1657         }
1658
1659         switch (usb_endpoint_type(&urb->ep->desc)) {
1660
1661         case USB_ENDPOINT_XFER_CONTROL:
1662                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1663                                          slot_id, ep_index);
1664                 break;
1665         case USB_ENDPOINT_XFER_BULK:
1666                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1667                                          slot_id, ep_index);
1668                 break;
1669         case USB_ENDPOINT_XFER_INT:
1670                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1671                                 slot_id, ep_index);
1672                 break;
1673         case USB_ENDPOINT_XFER_ISOC:
1674                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1675                                 slot_id, ep_index);
1676         }
1677
1678         if (ret) {
1679 free_priv:
1680                 xhci_urb_free_priv(urb_priv);
1681                 urb->hcpriv = NULL;
1682         }
1683         spin_unlock_irqrestore(&xhci->lock, flags);
1684         return ret;
1685 }
1686
1687 /*
1688  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1689  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1690  * should pick up where it left off in the TD, unless a Set Transfer Ring
1691  * Dequeue Pointer is issued.
1692  *
1693  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1694  * the ring.  Since the ring is a contiguous structure, they can't be physically
1695  * removed.  Instead, there are two options:
1696  *
1697  *  1) If the HC is in the middle of processing the URB to be canceled, we
1698  *     simply move the ring's dequeue pointer past those TRBs using the Set
1699  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1700  *     when drivers timeout on the last submitted URB and attempt to cancel.
1701  *
1702  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1703  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1704  *     HC will need to invalidate the any TRBs it has cached after the stop
1705  *     endpoint command, as noted in the xHCI 0.95 errata.
1706  *
1707  *  3) The TD may have completed by the time the Stop Endpoint Command
1708  *     completes, so software needs to handle that case too.
1709  *
1710  * This function should protect against the TD enqueueing code ringing the
1711  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1712  * It also needs to account for multiple cancellations on happening at the same
1713  * time for the same endpoint.
1714  *
1715  * Note that this function can be called in any context, or so says
1716  * usb_hcd_unlink_urb()
1717  */
1718 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1719 {
1720         unsigned long flags;
1721         int ret, i;
1722         u32 temp;
1723         struct xhci_hcd *xhci;
1724         struct urb_priv *urb_priv;
1725         struct xhci_td *td;
1726         unsigned int ep_index;
1727         struct xhci_ring *ep_ring;
1728         struct xhci_virt_ep *ep;
1729         struct xhci_command *command;
1730         struct xhci_virt_device *vdev;
1731
1732         xhci = hcd_to_xhci(hcd);
1733         spin_lock_irqsave(&xhci->lock, flags);
1734
1735         trace_xhci_urb_dequeue(urb);
1736
1737         /* Make sure the URB hasn't completed or been unlinked already */
1738         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1739         if (ret)
1740                 goto done;
1741
1742         /* give back URB now if we can't queue it for cancel */
1743         vdev = xhci->devs[urb->dev->slot_id];
1744         urb_priv = urb->hcpriv;
1745         if (!vdev || !urb_priv)
1746                 goto err_giveback;
1747
1748         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1749         ep = &vdev->eps[ep_index];
1750         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1751         if (!ep || !ep_ring)
1752                 goto err_giveback;
1753
1754         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1755         temp = readl(&xhci->op_regs->status);
1756         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1757                 xhci_hc_died(xhci);
1758                 goto done;
1759         }
1760
1761         /*
1762          * check ring is not re-allocated since URB was enqueued. If it is, then
1763          * make sure none of the ring related pointers in this URB private data
1764          * are touched, such as td_list, otherwise we overwrite freed data
1765          */
1766         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1767                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1768                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1769                         td = &urb_priv->td[i];
1770                         if (!list_empty(&td->cancelled_td_list))
1771                                 list_del_init(&td->cancelled_td_list);
1772                 }
1773                 goto err_giveback;
1774         }
1775
1776         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1777                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1778                                 "HC halted, freeing TD manually.");
1779                 for (i = urb_priv->num_tds_done;
1780                      i < urb_priv->num_tds;
1781                      i++) {
1782                         td = &urb_priv->td[i];
1783                         if (!list_empty(&td->td_list))
1784                                 list_del_init(&td->td_list);
1785                         if (!list_empty(&td->cancelled_td_list))
1786                                 list_del_init(&td->cancelled_td_list);
1787                 }
1788                 goto err_giveback;
1789         }
1790
1791         i = urb_priv->num_tds_done;
1792         if (i < urb_priv->num_tds)
1793                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1794                                 "Cancel URB %p, dev %s, ep 0x%x, "
1795                                 "starting at offset 0x%llx",
1796                                 urb, urb->dev->devpath,
1797                                 urb->ep->desc.bEndpointAddress,
1798                                 (unsigned long long) xhci_trb_virt_to_dma(
1799                                         urb_priv->td[i].start_seg,
1800                                         urb_priv->td[i].first_trb));
1801
1802         for (; i < urb_priv->num_tds; i++) {
1803                 td = &urb_priv->td[i];
1804                 /* TD can already be on cancelled list if ep halted on it */
1805                 if (list_empty(&td->cancelled_td_list)) {
1806                         td->cancel_status = TD_DIRTY;
1807                         list_add_tail(&td->cancelled_td_list,
1808                                       &ep->cancelled_td_list);
1809                 }
1810         }
1811
1812         /* Queue a stop endpoint command, but only if this is
1813          * the first cancellation to be handled.
1814          */
1815         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1816                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1817                 if (!command) {
1818                         ret = -ENOMEM;
1819                         goto done;
1820                 }
1821                 ep->ep_state |= EP_STOP_CMD_PENDING;
1822                 ep->stop_cmd_timer.expires = jiffies +
1823                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1824                 add_timer(&ep->stop_cmd_timer);
1825                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1826                                          ep_index, 0);
1827                 xhci_ring_cmd_db(xhci);
1828         }
1829 done:
1830         spin_unlock_irqrestore(&xhci->lock, flags);
1831         return ret;
1832
1833 err_giveback:
1834         if (urb_priv)
1835                 xhci_urb_free_priv(urb_priv);
1836         usb_hcd_unlink_urb_from_ep(hcd, urb);
1837         spin_unlock_irqrestore(&xhci->lock, flags);
1838         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1839         return ret;
1840 }
1841
1842 /* Drop an endpoint from a new bandwidth configuration for this device.
1843  * Only one call to this function is allowed per endpoint before
1844  * check_bandwidth() or reset_bandwidth() must be called.
1845  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1846  * add the endpoint to the schedule with possibly new parameters denoted by a
1847  * different endpoint descriptor in usb_host_endpoint.
1848  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1849  * not allowed.
1850  *
1851  * The USB core will not allow URBs to be queued to an endpoint that is being
1852  * disabled, so there's no need for mutual exclusion to protect
1853  * the xhci->devs[slot_id] structure.
1854  */
1855 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1856                 struct usb_host_endpoint *ep)
1857 {
1858         struct xhci_hcd *xhci;
1859         struct xhci_container_ctx *in_ctx, *out_ctx;
1860         struct xhci_input_control_ctx *ctrl_ctx;
1861         unsigned int ep_index;
1862         struct xhci_ep_ctx *ep_ctx;
1863         u32 drop_flag;
1864         u32 new_add_flags, new_drop_flags;
1865         int ret;
1866
1867         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1868         if (ret <= 0)
1869                 return ret;
1870         xhci = hcd_to_xhci(hcd);
1871         if (xhci->xhc_state & XHCI_STATE_DYING)
1872                 return -ENODEV;
1873
1874         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1875         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1876         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1877                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1878                                 __func__, drop_flag);
1879                 return 0;
1880         }
1881
1882         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1883         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1884         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1885         if (!ctrl_ctx) {
1886                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1887                                 __func__);
1888                 return 0;
1889         }
1890
1891         ep_index = xhci_get_endpoint_index(&ep->desc);
1892         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1893         /* If the HC already knows the endpoint is disabled,
1894          * or the HCD has noted it is disabled, ignore this request
1895          */
1896         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1897             le32_to_cpu(ctrl_ctx->drop_flags) &
1898             xhci_get_endpoint_flag(&ep->desc)) {
1899                 /* Do not warn when called after a usb_device_reset */
1900                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1901                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1902                                   __func__, ep);
1903                 return 0;
1904         }
1905
1906         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1907         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1908
1909         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1910         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1911
1912         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1913
1914         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1915
1916         if (xhci->quirks & XHCI_MTK_HOST)
1917                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1918
1919         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1920                         (unsigned int) ep->desc.bEndpointAddress,
1921                         udev->slot_id,
1922                         (unsigned int) new_drop_flags,
1923                         (unsigned int) new_add_flags);
1924         return 0;
1925 }
1926
1927 /* Add an endpoint to a new possible bandwidth configuration for this device.
1928  * Only one call to this function is allowed per endpoint before
1929  * check_bandwidth() or reset_bandwidth() must be called.
1930  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1931  * add the endpoint to the schedule with possibly new parameters denoted by a
1932  * different endpoint descriptor in usb_host_endpoint.
1933  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1934  * not allowed.
1935  *
1936  * The USB core will not allow URBs to be queued to an endpoint until the
1937  * configuration or alt setting is installed in the device, so there's no need
1938  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1939  */
1940 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1941                 struct usb_host_endpoint *ep)
1942 {
1943         struct xhci_hcd *xhci;
1944         struct xhci_container_ctx *in_ctx;
1945         unsigned int ep_index;
1946         struct xhci_input_control_ctx *ctrl_ctx;
1947         struct xhci_ep_ctx *ep_ctx;
1948         u32 added_ctxs;
1949         u32 new_add_flags, new_drop_flags;
1950         struct xhci_virt_device *virt_dev;
1951         int ret = 0;
1952
1953         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1954         if (ret <= 0) {
1955                 /* So we won't queue a reset ep command for a root hub */
1956                 ep->hcpriv = NULL;
1957                 return ret;
1958         }
1959         xhci = hcd_to_xhci(hcd);
1960         if (xhci->xhc_state & XHCI_STATE_DYING)
1961                 return -ENODEV;
1962
1963         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1964         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1965                 /* FIXME when we have to issue an evaluate endpoint command to
1966                  * deal with ep0 max packet size changing once we get the
1967                  * descriptors
1968                  */
1969                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1970                                 __func__, added_ctxs);
1971                 return 0;
1972         }
1973
1974         virt_dev = xhci->devs[udev->slot_id];
1975         in_ctx = virt_dev->in_ctx;
1976         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1977         if (!ctrl_ctx) {
1978                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1979                                 __func__);
1980                 return 0;
1981         }
1982
1983         ep_index = xhci_get_endpoint_index(&ep->desc);
1984         /* If this endpoint is already in use, and the upper layers are trying
1985          * to add it again without dropping it, reject the addition.
1986          */
1987         if (virt_dev->eps[ep_index].ring &&
1988                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1989                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1990                                 "without dropping it.\n",
1991                                 (unsigned int) ep->desc.bEndpointAddress);
1992                 return -EINVAL;
1993         }
1994
1995         /* If the HCD has already noted the endpoint is enabled,
1996          * ignore this request.
1997          */
1998         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1999                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2000                                 __func__, ep);
2001                 return 0;
2002         }
2003
2004         /*
2005          * Configuration and alternate setting changes must be done in
2006          * process context, not interrupt context (or so documenation
2007          * for usb_set_interface() and usb_set_configuration() claim).
2008          */
2009         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2010                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2011                                 __func__, ep->desc.bEndpointAddress);
2012                 return -ENOMEM;
2013         }
2014
2015         if (xhci->quirks & XHCI_MTK_HOST) {
2016                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
2017                 if (ret < 0) {
2018                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
2019                         virt_dev->eps[ep_index].new_ring = NULL;
2020                         return ret;
2021                 }
2022         }
2023
2024         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2025         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2026
2027         /* If xhci_endpoint_disable() was called for this endpoint, but the
2028          * xHC hasn't been notified yet through the check_bandwidth() call,
2029          * this re-adds a new state for the endpoint from the new endpoint
2030          * descriptors.  We must drop and re-add this endpoint, so we leave the
2031          * drop flags alone.
2032          */
2033         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2034
2035         /* Store the usb_device pointer for later use */
2036         ep->hcpriv = udev;
2037
2038         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2039         trace_xhci_add_endpoint(ep_ctx);
2040
2041         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2042                         (unsigned int) ep->desc.bEndpointAddress,
2043                         udev->slot_id,
2044                         (unsigned int) new_drop_flags,
2045                         (unsigned int) new_add_flags);
2046         return 0;
2047 }
2048
2049 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2050 {
2051         struct xhci_input_control_ctx *ctrl_ctx;
2052         struct xhci_ep_ctx *ep_ctx;
2053         struct xhci_slot_ctx *slot_ctx;
2054         int i;
2055
2056         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2057         if (!ctrl_ctx) {
2058                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2059                                 __func__);
2060                 return;
2061         }
2062
2063         /* When a device's add flag and drop flag are zero, any subsequent
2064          * configure endpoint command will leave that endpoint's state
2065          * untouched.  Make sure we don't leave any old state in the input
2066          * endpoint contexts.
2067          */
2068         ctrl_ctx->drop_flags = 0;
2069         ctrl_ctx->add_flags = 0;
2070         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2071         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2072         /* Endpoint 0 is always valid */
2073         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2074         for (i = 1; i < 31; i++) {
2075                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2076                 ep_ctx->ep_info = 0;
2077                 ep_ctx->ep_info2 = 0;
2078                 ep_ctx->deq = 0;
2079                 ep_ctx->tx_info = 0;
2080         }
2081 }
2082
2083 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2084                 struct usb_device *udev, u32 *cmd_status)
2085 {
2086         int ret;
2087
2088         switch (*cmd_status) {
2089         case COMP_COMMAND_ABORTED:
2090         case COMP_COMMAND_RING_STOPPED:
2091                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2092                 ret = -ETIME;
2093                 break;
2094         case COMP_RESOURCE_ERROR:
2095                 dev_warn(&udev->dev,
2096                          "Not enough host controller resources for new device state.\n");
2097                 ret = -ENOMEM;
2098                 /* FIXME: can we allocate more resources for the HC? */
2099                 break;
2100         case COMP_BANDWIDTH_ERROR:
2101         case COMP_SECONDARY_BANDWIDTH_ERROR:
2102                 dev_warn(&udev->dev,
2103                          "Not enough bandwidth for new device state.\n");
2104                 ret = -ENOSPC;
2105                 /* FIXME: can we go back to the old state? */
2106                 break;
2107         case COMP_TRB_ERROR:
2108                 /* the HCD set up something wrong */
2109                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2110                                 "add flag = 1, "
2111                                 "and endpoint is not disabled.\n");
2112                 ret = -EINVAL;
2113                 break;
2114         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2115                 dev_warn(&udev->dev,
2116                          "ERROR: Incompatible device for endpoint configure command.\n");
2117                 ret = -ENODEV;
2118                 break;
2119         case COMP_SUCCESS:
2120                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2121                                 "Successful Endpoint Configure command");
2122                 ret = 0;
2123                 break;
2124         default:
2125                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2126                                 *cmd_status);
2127                 ret = -EINVAL;
2128                 break;
2129         }
2130         return ret;
2131 }
2132
2133 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2134                 struct usb_device *udev, u32 *cmd_status)
2135 {
2136         int ret;
2137
2138         switch (*cmd_status) {
2139         case COMP_COMMAND_ABORTED:
2140         case COMP_COMMAND_RING_STOPPED:
2141                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2142                 ret = -ETIME;
2143                 break;
2144         case COMP_PARAMETER_ERROR:
2145                 dev_warn(&udev->dev,
2146                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2147                 ret = -EINVAL;
2148                 break;
2149         case COMP_SLOT_NOT_ENABLED_ERROR:
2150                 dev_warn(&udev->dev,
2151                         "WARN: slot not enabled for evaluate context command.\n");
2152                 ret = -EINVAL;
2153                 break;
2154         case COMP_CONTEXT_STATE_ERROR:
2155                 dev_warn(&udev->dev,
2156                         "WARN: invalid context state for evaluate context command.\n");
2157                 ret = -EINVAL;
2158                 break;
2159         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2160                 dev_warn(&udev->dev,
2161                         "ERROR: Incompatible device for evaluate context command.\n");
2162                 ret = -ENODEV;
2163                 break;
2164         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2165                 /* Max Exit Latency too large error */
2166                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2167                 ret = -EINVAL;
2168                 break;
2169         case COMP_SUCCESS:
2170                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2171                                 "Successful evaluate context command");
2172                 ret = 0;
2173                 break;
2174         default:
2175                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2176                         *cmd_status);
2177                 ret = -EINVAL;
2178                 break;
2179         }
2180         return ret;
2181 }
2182
2183 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2184                 struct xhci_input_control_ctx *ctrl_ctx)
2185 {
2186         u32 valid_add_flags;
2187         u32 valid_drop_flags;
2188
2189         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2190          * (bit 1).  The default control endpoint is added during the Address
2191          * Device command and is never removed until the slot is disabled.
2192          */
2193         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2194         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2195
2196         /* Use hweight32 to count the number of ones in the add flags, or
2197          * number of endpoints added.  Don't count endpoints that are changed
2198          * (both added and dropped).
2199          */
2200         return hweight32(valid_add_flags) -
2201                 hweight32(valid_add_flags & valid_drop_flags);
2202 }
2203
2204 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2205                 struct xhci_input_control_ctx *ctrl_ctx)
2206 {
2207         u32 valid_add_flags;
2208         u32 valid_drop_flags;
2209
2210         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2211         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2212
2213         return hweight32(valid_drop_flags) -
2214                 hweight32(valid_add_flags & valid_drop_flags);
2215 }
2216
2217 /*
2218  * We need to reserve the new number of endpoints before the configure endpoint
2219  * command completes.  We can't subtract the dropped endpoints from the number
2220  * of active endpoints until the command completes because we can oversubscribe
2221  * the host in this case:
2222  *
2223  *  - the first configure endpoint command drops more endpoints than it adds
2224  *  - a second configure endpoint command that adds more endpoints is queued
2225  *  - the first configure endpoint command fails, so the config is unchanged
2226  *  - the second command may succeed, even though there isn't enough resources
2227  *
2228  * Must be called with xhci->lock held.
2229  */
2230 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2231                 struct xhci_input_control_ctx *ctrl_ctx)
2232 {
2233         u32 added_eps;
2234
2235         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2236         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2237                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2238                                 "Not enough ep ctxs: "
2239                                 "%u active, need to add %u, limit is %u.",
2240                                 xhci->num_active_eps, added_eps,
2241                                 xhci->limit_active_eps);
2242                 return -ENOMEM;
2243         }
2244         xhci->num_active_eps += added_eps;
2245         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2246                         "Adding %u ep ctxs, %u now active.", added_eps,
2247                         xhci->num_active_eps);
2248         return 0;
2249 }
2250
2251 /*
2252  * The configure endpoint was failed by the xHC for some other reason, so we
2253  * need to revert the resources that failed configuration would have used.
2254  *
2255  * Must be called with xhci->lock held.
2256  */
2257 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2258                 struct xhci_input_control_ctx *ctrl_ctx)
2259 {
2260         u32 num_failed_eps;
2261
2262         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2263         xhci->num_active_eps -= num_failed_eps;
2264         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2265                         "Removing %u failed ep ctxs, %u now active.",
2266                         num_failed_eps,
2267                         xhci->num_active_eps);
2268 }
2269
2270 /*
2271  * Now that the command has completed, clean up the active endpoint count by
2272  * subtracting out the endpoints that were dropped (but not changed).
2273  *
2274  * Must be called with xhci->lock held.
2275  */
2276 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2277                 struct xhci_input_control_ctx *ctrl_ctx)
2278 {
2279         u32 num_dropped_eps;
2280
2281         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2282         xhci->num_active_eps -= num_dropped_eps;
2283         if (num_dropped_eps)
2284                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2285                                 "Removing %u dropped ep ctxs, %u now active.",
2286                                 num_dropped_eps,
2287                                 xhci->num_active_eps);
2288 }
2289
2290 static unsigned int xhci_get_block_size(struct usb_device *udev)
2291 {
2292         switch (udev->speed) {
2293         case USB_SPEED_LOW:
2294         case USB_SPEED_FULL:
2295                 return FS_BLOCK;
2296         case USB_SPEED_HIGH:
2297                 return HS_BLOCK;
2298         case USB_SPEED_SUPER:
2299         case USB_SPEED_SUPER_PLUS:
2300                 return SS_BLOCK;
2301         case USB_SPEED_UNKNOWN:
2302         case USB_SPEED_WIRELESS:
2303         default:
2304                 /* Should never happen */
2305                 return 1;
2306         }
2307 }
2308
2309 static unsigned int
2310 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2311 {
2312         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2313                 return LS_OVERHEAD;
2314         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2315                 return FS_OVERHEAD;
2316         return HS_OVERHEAD;
2317 }
2318
2319 /* If we are changing a LS/FS device under a HS hub,
2320  * make sure (if we are activating a new TT) that the HS bus has enough
2321  * bandwidth for this new TT.
2322  */
2323 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2324                 struct xhci_virt_device *virt_dev,
2325                 int old_active_eps)
2326 {
2327         struct xhci_interval_bw_table *bw_table;
2328         struct xhci_tt_bw_info *tt_info;
2329
2330         /* Find the bandwidth table for the root port this TT is attached to. */
2331         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2332         tt_info = virt_dev->tt_info;
2333         /* If this TT already had active endpoints, the bandwidth for this TT
2334          * has already been added.  Removing all periodic endpoints (and thus
2335          * making the TT enactive) will only decrease the bandwidth used.
2336          */
2337         if (old_active_eps)
2338                 return 0;
2339         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2340                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2341                         return -ENOMEM;
2342                 return 0;
2343         }
2344         /* Not sure why we would have no new active endpoints...
2345          *
2346          * Maybe because of an Evaluate Context change for a hub update or a
2347          * control endpoint 0 max packet size change?
2348          * FIXME: skip the bandwidth calculation in that case.
2349          */
2350         return 0;
2351 }
2352
2353 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2354                 struct xhci_virt_device *virt_dev)
2355 {
2356         unsigned int bw_reserved;
2357
2358         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2359         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2360                 return -ENOMEM;
2361
2362         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2363         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2364                 return -ENOMEM;
2365
2366         return 0;
2367 }
2368
2369 /*
2370  * This algorithm is a very conservative estimate of the worst-case scheduling
2371  * scenario for any one interval.  The hardware dynamically schedules the
2372  * packets, so we can't tell which microframe could be the limiting factor in
2373  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2374  *
2375  * Obviously, we can't solve an NP complete problem to find the minimum worst
2376  * case scenario.  Instead, we come up with an estimate that is no less than
2377  * the worst case bandwidth used for any one microframe, but may be an
2378  * over-estimate.
2379  *
2380  * We walk the requirements for each endpoint by interval, starting with the
2381  * smallest interval, and place packets in the schedule where there is only one
2382  * possible way to schedule packets for that interval.  In order to simplify
2383  * this algorithm, we record the largest max packet size for each interval, and
2384  * assume all packets will be that size.
2385  *
2386  * For interval 0, we obviously must schedule all packets for each interval.
2387  * The bandwidth for interval 0 is just the amount of data to be transmitted
2388  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2389  * the number of packets).
2390  *
2391  * For interval 1, we have two possible microframes to schedule those packets
2392  * in.  For this algorithm, if we can schedule the same number of packets for
2393  * each possible scheduling opportunity (each microframe), we will do so.  The
2394  * remaining number of packets will be saved to be transmitted in the gaps in
2395  * the next interval's scheduling sequence.
2396  *
2397  * As we move those remaining packets to be scheduled with interval 2 packets,
2398  * we have to double the number of remaining packets to transmit.  This is
2399  * because the intervals are actually powers of 2, and we would be transmitting
2400  * the previous interval's packets twice in this interval.  We also have to be
2401  * sure that when we look at the largest max packet size for this interval, we
2402  * also look at the largest max packet size for the remaining packets and take
2403  * the greater of the two.
2404  *
2405  * The algorithm continues to evenly distribute packets in each scheduling
2406  * opportunity, and push the remaining packets out, until we get to the last
2407  * interval.  Then those packets and their associated overhead are just added
2408  * to the bandwidth used.
2409  */
2410 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2411                 struct xhci_virt_device *virt_dev,
2412                 int old_active_eps)
2413 {
2414         unsigned int bw_reserved;
2415         unsigned int max_bandwidth;
2416         unsigned int bw_used;
2417         unsigned int block_size;
2418         struct xhci_interval_bw_table *bw_table;
2419         unsigned int packet_size = 0;
2420         unsigned int overhead = 0;
2421         unsigned int packets_transmitted = 0;
2422         unsigned int packets_remaining = 0;
2423         unsigned int i;
2424
2425         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2426                 return xhci_check_ss_bw(xhci, virt_dev);
2427
2428         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2429                 max_bandwidth = HS_BW_LIMIT;
2430                 /* Convert percent of bus BW reserved to blocks reserved */
2431                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2432         } else {
2433                 max_bandwidth = FS_BW_LIMIT;
2434                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2435         }
2436
2437         bw_table = virt_dev->bw_table;
2438         /* We need to translate the max packet size and max ESIT payloads into
2439          * the units the hardware uses.
2440          */
2441         block_size = xhci_get_block_size(virt_dev->udev);
2442
2443         /* If we are manipulating a LS/FS device under a HS hub, double check
2444          * that the HS bus has enough bandwidth if we are activing a new TT.
2445          */
2446         if (virt_dev->tt_info) {
2447                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2448                                 "Recalculating BW for rootport %u",
2449                                 virt_dev->real_port);
2450                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2451                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2452                                         "newly activated TT.\n");
2453                         return -ENOMEM;
2454                 }
2455                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2456                                 "Recalculating BW for TT slot %u port %u",
2457                                 virt_dev->tt_info->slot_id,
2458                                 virt_dev->tt_info->ttport);
2459         } else {
2460                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2461                                 "Recalculating BW for rootport %u",
2462                                 virt_dev->real_port);
2463         }
2464
2465         /* Add in how much bandwidth will be used for interval zero, or the
2466          * rounded max ESIT payload + number of packets * largest overhead.
2467          */
2468         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2469                 bw_table->interval_bw[0].num_packets *
2470                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2471
2472         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2473                 unsigned int bw_added;
2474                 unsigned int largest_mps;
2475                 unsigned int interval_overhead;
2476
2477                 /*
2478                  * How many packets could we transmit in this interval?
2479                  * If packets didn't fit in the previous interval, we will need
2480                  * to transmit that many packets twice within this interval.
2481                  */
2482                 packets_remaining = 2 * packets_remaining +
2483                         bw_table->interval_bw[i].num_packets;
2484
2485                 /* Find the largest max packet size of this or the previous
2486                  * interval.
2487                  */
2488                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2489                         largest_mps = 0;
2490                 else {
2491                         struct xhci_virt_ep *virt_ep;
2492                         struct list_head *ep_entry;
2493
2494                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2495                         virt_ep = list_entry(ep_entry,
2496                                         struct xhci_virt_ep, bw_endpoint_list);
2497                         /* Convert to blocks, rounding up */
2498                         largest_mps = DIV_ROUND_UP(
2499                                         virt_ep->bw_info.max_packet_size,
2500                                         block_size);
2501                 }
2502                 if (largest_mps > packet_size)
2503                         packet_size = largest_mps;
2504
2505                 /* Use the larger overhead of this or the previous interval. */
2506                 interval_overhead = xhci_get_largest_overhead(
2507                                 &bw_table->interval_bw[i]);
2508                 if (interval_overhead > overhead)
2509                         overhead = interval_overhead;
2510
2511                 /* How many packets can we evenly distribute across
2512                  * (1 << (i + 1)) possible scheduling opportunities?
2513                  */
2514                 packets_transmitted = packets_remaining >> (i + 1);
2515
2516                 /* Add in the bandwidth used for those scheduled packets */
2517                 bw_added = packets_transmitted * (overhead + packet_size);
2518
2519                 /* How many packets do we have remaining to transmit? */
2520                 packets_remaining = packets_remaining % (1 << (i + 1));
2521
2522                 /* What largest max packet size should those packets have? */
2523                 /* If we've transmitted all packets, don't carry over the
2524                  * largest packet size.
2525                  */
2526                 if (packets_remaining == 0) {
2527                         packet_size = 0;
2528                         overhead = 0;
2529                 } else if (packets_transmitted > 0) {
2530                         /* Otherwise if we do have remaining packets, and we've
2531                          * scheduled some packets in this interval, take the
2532                          * largest max packet size from endpoints with this
2533                          * interval.
2534                          */
2535                         packet_size = largest_mps;
2536                         overhead = interval_overhead;
2537                 }
2538                 /* Otherwise carry over packet_size and overhead from the last
2539                  * time we had a remainder.
2540                  */
2541                 bw_used += bw_added;
2542                 if (bw_used > max_bandwidth) {
2543                         xhci_warn(xhci, "Not enough bandwidth. "
2544                                         "Proposed: %u, Max: %u\n",
2545                                 bw_used, max_bandwidth);
2546                         return -ENOMEM;
2547                 }
2548         }
2549         /*
2550          * Ok, we know we have some packets left over after even-handedly
2551          * scheduling interval 15.  We don't know which microframes they will
2552          * fit into, so we over-schedule and say they will be scheduled every
2553          * microframe.
2554          */
2555         if (packets_remaining > 0)
2556                 bw_used += overhead + packet_size;
2557
2558         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2559                 unsigned int port_index = virt_dev->real_port - 1;
2560
2561                 /* OK, we're manipulating a HS device attached to a
2562                  * root port bandwidth domain.  Include the number of active TTs
2563                  * in the bandwidth used.
2564                  */
2565                 bw_used += TT_HS_OVERHEAD *
2566                         xhci->rh_bw[port_index].num_active_tts;
2567         }
2568
2569         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2570                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2571                 "Available: %u " "percent",
2572                 bw_used, max_bandwidth, bw_reserved,
2573                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2574                 max_bandwidth);
2575
2576         bw_used += bw_reserved;
2577         if (bw_used > max_bandwidth) {
2578                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2579                                 bw_used, max_bandwidth);
2580                 return -ENOMEM;
2581         }
2582
2583         bw_table->bw_used = bw_used;
2584         return 0;
2585 }
2586
2587 static bool xhci_is_async_ep(unsigned int ep_type)
2588 {
2589         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2590                                         ep_type != ISOC_IN_EP &&
2591                                         ep_type != INT_IN_EP);
2592 }
2593
2594 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2595 {
2596         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2597 }
2598
2599 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2600 {
2601         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2602
2603         if (ep_bw->ep_interval == 0)
2604                 return SS_OVERHEAD_BURST +
2605                         (ep_bw->mult * ep_bw->num_packets *
2606                                         (SS_OVERHEAD + mps));
2607         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2608                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2609                                 1 << ep_bw->ep_interval);
2610
2611 }
2612
2613 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2614                 struct xhci_bw_info *ep_bw,
2615                 struct xhci_interval_bw_table *bw_table,
2616                 struct usb_device *udev,
2617                 struct xhci_virt_ep *virt_ep,
2618                 struct xhci_tt_bw_info *tt_info)
2619 {
2620         struct xhci_interval_bw *interval_bw;
2621         int normalized_interval;
2622
2623         if (xhci_is_async_ep(ep_bw->type))
2624                 return;
2625
2626         if (udev->speed >= USB_SPEED_SUPER) {
2627                 if (xhci_is_sync_in_ep(ep_bw->type))
2628                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2629                                 xhci_get_ss_bw_consumed(ep_bw);
2630                 else
2631                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2632                                 xhci_get_ss_bw_consumed(ep_bw);
2633                 return;
2634         }
2635
2636         /* SuperSpeed endpoints never get added to intervals in the table, so
2637          * this check is only valid for HS/FS/LS devices.
2638          */
2639         if (list_empty(&virt_ep->bw_endpoint_list))
2640                 return;
2641         /* For LS/FS devices, we need to translate the interval expressed in
2642          * microframes to frames.
2643          */
2644         if (udev->speed == USB_SPEED_HIGH)
2645                 normalized_interval = ep_bw->ep_interval;
2646         else
2647                 normalized_interval = ep_bw->ep_interval - 3;
2648
2649         if (normalized_interval == 0)
2650                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2651         interval_bw = &bw_table->interval_bw[normalized_interval];
2652         interval_bw->num_packets -= ep_bw->num_packets;
2653         switch (udev->speed) {
2654         case USB_SPEED_LOW:
2655                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2656                 break;
2657         case USB_SPEED_FULL:
2658                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2659                 break;
2660         case USB_SPEED_HIGH:
2661                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2662                 break;
2663         case USB_SPEED_SUPER:
2664         case USB_SPEED_SUPER_PLUS:
2665         case USB_SPEED_UNKNOWN:
2666         case USB_SPEED_WIRELESS:
2667                 /* Should never happen because only LS/FS/HS endpoints will get
2668                  * added to the endpoint list.
2669                  */
2670                 return;
2671         }
2672         if (tt_info)
2673                 tt_info->active_eps -= 1;
2674         list_del_init(&virt_ep->bw_endpoint_list);
2675 }
2676
2677 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2678                 struct xhci_bw_info *ep_bw,
2679                 struct xhci_interval_bw_table *bw_table,
2680                 struct usb_device *udev,
2681                 struct xhci_virt_ep *virt_ep,
2682                 struct xhci_tt_bw_info *tt_info)
2683 {
2684         struct xhci_interval_bw *interval_bw;
2685         struct xhci_virt_ep *smaller_ep;
2686         int normalized_interval;
2687
2688         if (xhci_is_async_ep(ep_bw->type))
2689                 return;
2690
2691         if (udev->speed == USB_SPEED_SUPER) {
2692                 if (xhci_is_sync_in_ep(ep_bw->type))
2693                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2694                                 xhci_get_ss_bw_consumed(ep_bw);
2695                 else
2696                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2697                                 xhci_get_ss_bw_consumed(ep_bw);
2698                 return;
2699         }
2700
2701         /* For LS/FS devices, we need to translate the interval expressed in
2702          * microframes to frames.
2703          */
2704         if (udev->speed == USB_SPEED_HIGH)
2705                 normalized_interval = ep_bw->ep_interval;
2706         else
2707                 normalized_interval = ep_bw->ep_interval - 3;
2708
2709         if (normalized_interval == 0)
2710                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2711         interval_bw = &bw_table->interval_bw[normalized_interval];
2712         interval_bw->num_packets += ep_bw->num_packets;
2713         switch (udev->speed) {
2714         case USB_SPEED_LOW:
2715                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2716                 break;
2717         case USB_SPEED_FULL:
2718                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2719                 break;
2720         case USB_SPEED_HIGH:
2721                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2722                 break;
2723         case USB_SPEED_SUPER:
2724         case USB_SPEED_SUPER_PLUS:
2725         case USB_SPEED_UNKNOWN:
2726         case USB_SPEED_WIRELESS:
2727                 /* Should never happen because only LS/FS/HS endpoints will get
2728                  * added to the endpoint list.
2729                  */
2730                 return;
2731         }
2732
2733         if (tt_info)
2734                 tt_info->active_eps += 1;
2735         /* Insert the endpoint into the list, largest max packet size first. */
2736         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2737                         bw_endpoint_list) {
2738                 if (ep_bw->max_packet_size >=
2739                                 smaller_ep->bw_info.max_packet_size) {
2740                         /* Add the new ep before the smaller endpoint */
2741                         list_add_tail(&virt_ep->bw_endpoint_list,
2742                                         &smaller_ep->bw_endpoint_list);
2743                         return;
2744                 }
2745         }
2746         /* Add the new endpoint at the end of the list. */
2747         list_add_tail(&virt_ep->bw_endpoint_list,
2748                         &interval_bw->endpoints);
2749 }
2750
2751 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2752                 struct xhci_virt_device *virt_dev,
2753                 int old_active_eps)
2754 {
2755         struct xhci_root_port_bw_info *rh_bw_info;
2756         if (!virt_dev->tt_info)
2757                 return;
2758
2759         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2760         if (old_active_eps == 0 &&
2761                                 virt_dev->tt_info->active_eps != 0) {
2762                 rh_bw_info->num_active_tts += 1;
2763                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2764         } else if (old_active_eps != 0 &&
2765                                 virt_dev->tt_info->active_eps == 0) {
2766                 rh_bw_info->num_active_tts -= 1;
2767                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2768         }
2769 }
2770
2771 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2772                 struct xhci_virt_device *virt_dev,
2773                 struct xhci_container_ctx *in_ctx)
2774 {
2775         struct xhci_bw_info ep_bw_info[31];
2776         int i;
2777         struct xhci_input_control_ctx *ctrl_ctx;
2778         int old_active_eps = 0;
2779
2780         if (virt_dev->tt_info)
2781                 old_active_eps = virt_dev->tt_info->active_eps;
2782
2783         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2784         if (!ctrl_ctx) {
2785                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2786                                 __func__);
2787                 return -ENOMEM;
2788         }
2789
2790         for (i = 0; i < 31; i++) {
2791                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2792                         continue;
2793
2794                 /* Make a copy of the BW info in case we need to revert this */
2795                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2796                                 sizeof(ep_bw_info[i]));
2797                 /* Drop the endpoint from the interval table if the endpoint is
2798                  * being dropped or changed.
2799                  */
2800                 if (EP_IS_DROPPED(ctrl_ctx, i))
2801                         xhci_drop_ep_from_interval_table(xhci,
2802                                         &virt_dev->eps[i].bw_info,
2803                                         virt_dev->bw_table,
2804                                         virt_dev->udev,
2805                                         &virt_dev->eps[i],
2806                                         virt_dev->tt_info);
2807         }
2808         /* Overwrite the information stored in the endpoints' bw_info */
2809         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2810         for (i = 0; i < 31; i++) {
2811                 /* Add any changed or added endpoints to the interval table */
2812                 if (EP_IS_ADDED(ctrl_ctx, i))
2813                         xhci_add_ep_to_interval_table(xhci,
2814                                         &virt_dev->eps[i].bw_info,
2815                                         virt_dev->bw_table,
2816                                         virt_dev->udev,
2817                                         &virt_dev->eps[i],
2818                                         virt_dev->tt_info);
2819         }
2820
2821         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2822                 /* Ok, this fits in the bandwidth we have.
2823                  * Update the number of active TTs.
2824                  */
2825                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2826                 return 0;
2827         }
2828
2829         /* We don't have enough bandwidth for this, revert the stored info. */
2830         for (i = 0; i < 31; i++) {
2831                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2832                         continue;
2833
2834                 /* Drop the new copies of any added or changed endpoints from
2835                  * the interval table.
2836                  */
2837                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2838                         xhci_drop_ep_from_interval_table(xhci,
2839                                         &virt_dev->eps[i].bw_info,
2840                                         virt_dev->bw_table,
2841                                         virt_dev->udev,
2842                                         &virt_dev->eps[i],
2843                                         virt_dev->tt_info);
2844                 }
2845                 /* Revert the endpoint back to its old information */
2846                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2847                                 sizeof(ep_bw_info[i]));
2848                 /* Add any changed or dropped endpoints back into the table */
2849                 if (EP_IS_DROPPED(ctrl_ctx, i))
2850                         xhci_add_ep_to_interval_table(xhci,
2851                                         &virt_dev->eps[i].bw_info,
2852                                         virt_dev->bw_table,
2853                                         virt_dev->udev,
2854                                         &virt_dev->eps[i],
2855                                         virt_dev->tt_info);
2856         }
2857         return -ENOMEM;
2858 }
2859
2860
2861 /* Issue a configure endpoint command or evaluate context command
2862  * and wait for it to finish.
2863  */
2864 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2865                 struct usb_device *udev,
2866                 struct xhci_command *command,
2867                 bool ctx_change, bool must_succeed)
2868 {
2869         int ret;
2870         unsigned long flags;
2871         struct xhci_input_control_ctx *ctrl_ctx;
2872         struct xhci_virt_device *virt_dev;
2873         struct xhci_slot_ctx *slot_ctx;
2874
2875         if (!command)
2876                 return -EINVAL;
2877
2878         spin_lock_irqsave(&xhci->lock, flags);
2879
2880         if (xhci->xhc_state & XHCI_STATE_DYING) {
2881                 spin_unlock_irqrestore(&xhci->lock, flags);
2882                 return -ESHUTDOWN;
2883         }
2884
2885         virt_dev = xhci->devs[udev->slot_id];
2886
2887         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2888         if (!ctrl_ctx) {
2889                 spin_unlock_irqrestore(&xhci->lock, flags);
2890                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2891                                 __func__);
2892                 return -ENOMEM;
2893         }
2894
2895         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2896                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2897                 spin_unlock_irqrestore(&xhci->lock, flags);
2898                 xhci_warn(xhci, "Not enough host resources, "
2899                                 "active endpoint contexts = %u\n",
2900                                 xhci->num_active_eps);
2901                 return -ENOMEM;
2902         }
2903         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2904             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2905                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2906                         xhci_free_host_resources(xhci, ctrl_ctx);
2907                 spin_unlock_irqrestore(&xhci->lock, flags);
2908                 xhci_warn(xhci, "Not enough bandwidth\n");
2909                 return -ENOMEM;
2910         }
2911
2912         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2913
2914         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2915         trace_xhci_configure_endpoint(slot_ctx);
2916
2917         if (!ctx_change)
2918                 ret = xhci_queue_configure_endpoint(xhci, command,
2919                                 command->in_ctx->dma,
2920                                 udev->slot_id, must_succeed);
2921         else
2922                 ret = xhci_queue_evaluate_context(xhci, command,
2923                                 command->in_ctx->dma,
2924                                 udev->slot_id, must_succeed);
2925         if (ret < 0) {
2926                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2927                         xhci_free_host_resources(xhci, ctrl_ctx);
2928                 spin_unlock_irqrestore(&xhci->lock, flags);
2929                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2930                                 "FIXME allocate a new ring segment");
2931                 return -ENOMEM;
2932         }
2933         xhci_ring_cmd_db(xhci);
2934         spin_unlock_irqrestore(&xhci->lock, flags);
2935
2936         /* Wait for the configure endpoint command to complete */
2937         wait_for_completion(command->completion);
2938
2939         if (!ctx_change)
2940                 ret = xhci_configure_endpoint_result(xhci, udev,
2941                                                      &command->status);
2942         else
2943                 ret = xhci_evaluate_context_result(xhci, udev,
2944                                                    &command->status);
2945
2946         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2947                 spin_lock_irqsave(&xhci->lock, flags);
2948                 /* If the command failed, remove the reserved resources.
2949                  * Otherwise, clean up the estimate to include dropped eps.
2950                  */
2951                 if (ret)
2952                         xhci_free_host_resources(xhci, ctrl_ctx);
2953                 else
2954                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2955                 spin_unlock_irqrestore(&xhci->lock, flags);
2956         }
2957         return ret;
2958 }
2959
2960 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2961         struct xhci_virt_device *vdev, int i)
2962 {
2963         struct xhci_virt_ep *ep = &vdev->eps[i];
2964
2965         if (ep->ep_state & EP_HAS_STREAMS) {
2966                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2967                                 xhci_get_endpoint_address(i));
2968                 xhci_free_stream_info(xhci, ep->stream_info);
2969                 ep->stream_info = NULL;
2970                 ep->ep_state &= ~EP_HAS_STREAMS;
2971         }
2972 }
2973
2974 /* Called after one or more calls to xhci_add_endpoint() or
2975  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2976  * to call xhci_reset_bandwidth().
2977  *
2978  * Since we are in the middle of changing either configuration or
2979  * installing a new alt setting, the USB core won't allow URBs to be
2980  * enqueued for any endpoint on the old config or interface.  Nothing
2981  * else should be touching the xhci->devs[slot_id] structure, so we
2982  * don't need to take the xhci->lock for manipulating that.
2983  */
2984 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2985 {
2986         int i;
2987         int ret = 0;
2988         struct xhci_hcd *xhci;
2989         struct xhci_virt_device *virt_dev;
2990         struct xhci_input_control_ctx *ctrl_ctx;
2991         struct xhci_slot_ctx *slot_ctx;
2992         struct xhci_command *command;
2993
2994         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2995         if (ret <= 0)
2996                 return ret;
2997         xhci = hcd_to_xhci(hcd);
2998         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2999                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3000                 return -ENODEV;
3001
3002         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3003         virt_dev = xhci->devs[udev->slot_id];
3004
3005         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3006         if (!command)
3007                 return -ENOMEM;
3008
3009         command->in_ctx = virt_dev->in_ctx;
3010
3011         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3012         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3013         if (!ctrl_ctx) {
3014                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3015                                 __func__);
3016                 ret = -ENOMEM;
3017                 goto command_cleanup;
3018         }
3019         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3020         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3021         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3022
3023         /* Don't issue the command if there's no endpoints to update. */
3024         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3025             ctrl_ctx->drop_flags == 0) {
3026                 ret = 0;
3027                 goto command_cleanup;
3028         }
3029         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3030         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3031         for (i = 31; i >= 1; i--) {
3032                 __le32 le32 = cpu_to_le32(BIT(i));
3033
3034                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3035                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3036                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3037                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3038                         break;
3039                 }
3040         }
3041
3042         ret = xhci_configure_endpoint(xhci, udev, command,
3043                         false, false);
3044         if (ret)
3045                 /* Callee should call reset_bandwidth() */
3046                 goto command_cleanup;
3047
3048         /* Free any rings that were dropped, but not changed. */
3049         for (i = 1; i < 31; i++) {
3050                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3051                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3052                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3053                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3054                 }
3055         }
3056         xhci_zero_in_ctx(xhci, virt_dev);
3057         /*
3058          * Install any rings for completely new endpoints or changed endpoints,
3059          * and free any old rings from changed endpoints.
3060          */
3061         for (i = 1; i < 31; i++) {
3062                 if (!virt_dev->eps[i].new_ring)
3063                         continue;
3064                 /* Only free the old ring if it exists.
3065                  * It may not if this is the first add of an endpoint.
3066                  */
3067                 if (virt_dev->eps[i].ring) {
3068                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3069                 }
3070                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3071                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3072                 virt_dev->eps[i].new_ring = NULL;
3073                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3074         }
3075 command_cleanup:
3076         kfree(command->completion);
3077         kfree(command);
3078
3079         return ret;
3080 }
3081
3082 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3083 {
3084         struct xhci_hcd *xhci;
3085         struct xhci_virt_device *virt_dev;
3086         int i, ret;
3087
3088         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3089         if (ret <= 0)
3090                 return;
3091         xhci = hcd_to_xhci(hcd);
3092
3093         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3094         virt_dev = xhci->devs[udev->slot_id];
3095         /* Free any rings allocated for added endpoints */
3096         for (i = 0; i < 31; i++) {
3097                 if (virt_dev->eps[i].new_ring) {
3098                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3099                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3100                         virt_dev->eps[i].new_ring = NULL;
3101                 }
3102         }
3103         xhci_zero_in_ctx(xhci, virt_dev);
3104 }
3105
3106 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3107                 struct xhci_container_ctx *in_ctx,
3108                 struct xhci_container_ctx *out_ctx,
3109                 struct xhci_input_control_ctx *ctrl_ctx,
3110                 u32 add_flags, u32 drop_flags)
3111 {
3112         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3113         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3114         xhci_slot_copy(xhci, in_ctx, out_ctx);
3115         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3116 }
3117
3118 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3119                                   struct usb_host_endpoint *host_ep)
3120 {
3121         struct xhci_hcd         *xhci;
3122         struct xhci_virt_device *vdev;
3123         struct xhci_virt_ep     *ep;
3124         struct usb_device       *udev;
3125         unsigned long           flags;
3126         unsigned int            ep_index;
3127
3128         xhci = hcd_to_xhci(hcd);
3129 rescan:
3130         spin_lock_irqsave(&xhci->lock, flags);
3131
3132         udev = (struct usb_device *)host_ep->hcpriv;
3133         if (!udev || !udev->slot_id)
3134                 goto done;
3135
3136         vdev = xhci->devs[udev->slot_id];
3137         if (!vdev)
3138                 goto done;
3139
3140         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3141         ep = &vdev->eps[ep_index];
3142         if (!ep)
3143                 goto done;
3144
3145         /* wait for hub_tt_work to finish clearing hub TT */
3146         if (ep->ep_state & EP_CLEARING_TT) {
3147                 spin_unlock_irqrestore(&xhci->lock, flags);
3148                 schedule_timeout_uninterruptible(1);
3149                 goto rescan;
3150         }
3151
3152         if (ep->ep_state)
3153                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3154                          ep->ep_state);
3155 done:
3156         host_ep->hcpriv = NULL;
3157         spin_unlock_irqrestore(&xhci->lock, flags);
3158 }
3159
3160 /*
3161  * Called after usb core issues a clear halt control message.
3162  * The host side of the halt should already be cleared by a reset endpoint
3163  * command issued when the STALL event was received.
3164  *
3165  * The reset endpoint command may only be issued to endpoints in the halted
3166  * state. For software that wishes to reset the data toggle or sequence number
3167  * of an endpoint that isn't in the halted state this function will issue a
3168  * configure endpoint command with the Drop and Add bits set for the target
3169  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3170  */
3171
3172 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3173                 struct usb_host_endpoint *host_ep)
3174 {
3175         struct xhci_hcd *xhci;
3176         struct usb_device *udev;
3177         struct xhci_virt_device *vdev;
3178         struct xhci_virt_ep *ep;
3179         struct xhci_input_control_ctx *ctrl_ctx;
3180         struct xhci_command *stop_cmd, *cfg_cmd;
3181         unsigned int ep_index;
3182         unsigned long flags;
3183         u32 ep_flag;
3184         int err;
3185
3186         xhci = hcd_to_xhci(hcd);
3187         if (!host_ep->hcpriv)
3188                 return;
3189         udev = (struct usb_device *) host_ep->hcpriv;
3190         vdev = xhci->devs[udev->slot_id];
3191
3192         /*
3193          * vdev may be lost due to xHC restore error and re-initialization
3194          * during S3/S4 resume. A new vdev will be allocated later by
3195          * xhci_discover_or_reset_device()
3196          */
3197         if (!udev->slot_id || !vdev)
3198                 return;
3199         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3200         ep = &vdev->eps[ep_index];
3201         if (!ep)
3202                 return;
3203
3204         /* Bail out if toggle is already being cleared by a endpoint reset */
3205         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3206                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3207                 return;
3208         }
3209         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3210         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3211             usb_endpoint_xfer_isoc(&host_ep->desc))
3212                 return;
3213
3214         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3215
3216         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3217                 return;
3218
3219         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3220         if (!stop_cmd)
3221                 return;
3222
3223         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3224         if (!cfg_cmd)
3225                 goto cleanup;
3226
3227         spin_lock_irqsave(&xhci->lock, flags);
3228
3229         /* block queuing new trbs and ringing ep doorbell */
3230         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3231
3232         /*
3233          * Make sure endpoint ring is empty before resetting the toggle/seq.
3234          * Driver is required to synchronously cancel all transfer request.
3235          * Stop the endpoint to force xHC to update the output context
3236          */
3237
3238         if (!list_empty(&ep->ring->td_list)) {
3239                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3240                 spin_unlock_irqrestore(&xhci->lock, flags);
3241                 xhci_free_command(xhci, cfg_cmd);
3242                 goto cleanup;
3243         }
3244
3245         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3246                                         ep_index, 0);
3247         if (err < 0) {
3248                 spin_unlock_irqrestore(&xhci->lock, flags);
3249                 xhci_free_command(xhci, cfg_cmd);
3250                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3251                                 __func__, err);
3252                 goto cleanup;
3253         }
3254
3255         xhci_ring_cmd_db(xhci);
3256         spin_unlock_irqrestore(&xhci->lock, flags);
3257
3258         wait_for_completion(stop_cmd->completion);
3259
3260         spin_lock_irqsave(&xhci->lock, flags);
3261
3262         /* config ep command clears toggle if add and drop ep flags are set */
3263         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3264         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3265                                            ctrl_ctx, ep_flag, ep_flag);
3266         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3267
3268         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3269                                       udev->slot_id, false);
3270         if (err < 0) {
3271                 spin_unlock_irqrestore(&xhci->lock, flags);
3272                 xhci_free_command(xhci, cfg_cmd);
3273                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3274                                 __func__, err);
3275                 goto cleanup;
3276         }
3277
3278         xhci_ring_cmd_db(xhci);
3279         spin_unlock_irqrestore(&xhci->lock, flags);
3280
3281         wait_for_completion(cfg_cmd->completion);
3282
3283         xhci_free_command(xhci, cfg_cmd);
3284 cleanup:
3285         xhci_free_command(xhci, stop_cmd);
3286         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3287                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3288 }
3289
3290 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3291                 struct usb_device *udev, struct usb_host_endpoint *ep,
3292                 unsigned int slot_id)
3293 {
3294         int ret;
3295         unsigned int ep_index;
3296         unsigned int ep_state;
3297
3298         if (!ep)
3299                 return -EINVAL;
3300         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3301         if (ret <= 0)
3302                 return -EINVAL;
3303         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3304                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3305                                 " descriptor for ep 0x%x does not support streams\n",
3306                                 ep->desc.bEndpointAddress);
3307                 return -EINVAL;
3308         }
3309
3310         ep_index = xhci_get_endpoint_index(&ep->desc);
3311         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3312         if (ep_state & EP_HAS_STREAMS ||
3313                         ep_state & EP_GETTING_STREAMS) {
3314                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3315                                 "already has streams set up.\n",
3316                                 ep->desc.bEndpointAddress);
3317                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3318                                 "dynamic stream context array reallocation.\n");
3319                 return -EINVAL;
3320         }
3321         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3322                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3323                                 "endpoint 0x%x; URBs are pending.\n",
3324                                 ep->desc.bEndpointAddress);
3325                 return -EINVAL;
3326         }
3327         return 0;
3328 }
3329
3330 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3331                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3332 {
3333         unsigned int max_streams;
3334
3335         /* The stream context array size must be a power of two */
3336         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3337         /*
3338          * Find out how many primary stream array entries the host controller
3339          * supports.  Later we may use secondary stream arrays (similar to 2nd
3340          * level page entries), but that's an optional feature for xHCI host
3341          * controllers. xHCs must support at least 4 stream IDs.
3342          */
3343         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3344         if (*num_stream_ctxs > max_streams) {
3345                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3346                                 max_streams);
3347                 *num_stream_ctxs = max_streams;
3348                 *num_streams = max_streams;
3349         }
3350 }
3351
3352 /* Returns an error code if one of the endpoint already has streams.
3353  * This does not change any data structures, it only checks and gathers
3354  * information.
3355  */
3356 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3357                 struct usb_device *udev,
3358                 struct usb_host_endpoint **eps, unsigned int num_eps,
3359                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3360 {
3361         unsigned int max_streams;
3362         unsigned int endpoint_flag;
3363         int i;
3364         int ret;
3365
3366         for (i = 0; i < num_eps; i++) {
3367                 ret = xhci_check_streams_endpoint(xhci, udev,
3368                                 eps[i], udev->slot_id);
3369                 if (ret < 0)
3370                         return ret;
3371
3372                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3373                 if (max_streams < (*num_streams - 1)) {
3374                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3375                                         eps[i]->desc.bEndpointAddress,
3376                                         max_streams);
3377                         *num_streams = max_streams+1;
3378                 }
3379
3380                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3381                 if (*changed_ep_bitmask & endpoint_flag)
3382                         return -EINVAL;
3383                 *changed_ep_bitmask |= endpoint_flag;
3384         }
3385         return 0;
3386 }
3387
3388 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3389                 struct usb_device *udev,
3390                 struct usb_host_endpoint **eps, unsigned int num_eps)
3391 {
3392         u32 changed_ep_bitmask = 0;
3393         unsigned int slot_id;
3394         unsigned int ep_index;
3395         unsigned int ep_state;
3396         int i;
3397
3398         slot_id = udev->slot_id;
3399         if (!xhci->devs[slot_id])
3400                 return 0;
3401
3402         for (i = 0; i < num_eps; i++) {
3403                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3404                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3405                 /* Are streams already being freed for the endpoint? */
3406                 if (ep_state & EP_GETTING_NO_STREAMS) {
3407                         xhci_warn(xhci, "WARN Can't disable streams for "
3408                                         "endpoint 0x%x, "
3409                                         "streams are being disabled already\n",
3410                                         eps[i]->desc.bEndpointAddress);
3411                         return 0;
3412                 }
3413                 /* Are there actually any streams to free? */
3414                 if (!(ep_state & EP_HAS_STREAMS) &&
3415                                 !(ep_state & EP_GETTING_STREAMS)) {
3416                         xhci_warn(xhci, "WARN Can't disable streams for "
3417                                         "endpoint 0x%x, "
3418                                         "streams are already disabled!\n",
3419                                         eps[i]->desc.bEndpointAddress);
3420                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3421                                         "with non-streams endpoint\n");
3422                         return 0;
3423                 }
3424                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3425         }
3426         return changed_ep_bitmask;
3427 }
3428
3429 /*
3430  * The USB device drivers use this function (through the HCD interface in USB
3431  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3432  * coordinate mass storage command queueing across multiple endpoints (basically
3433  * a stream ID == a task ID).
3434  *
3435  * Setting up streams involves allocating the same size stream context array
3436  * for each endpoint and issuing a configure endpoint command for all endpoints.
3437  *
3438  * Don't allow the call to succeed if one endpoint only supports one stream
3439  * (which means it doesn't support streams at all).
3440  *
3441  * Drivers may get less stream IDs than they asked for, if the host controller
3442  * hardware or endpoints claim they can't support the number of requested
3443  * stream IDs.
3444  */
3445 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3446                 struct usb_host_endpoint **eps, unsigned int num_eps,
3447                 unsigned int num_streams, gfp_t mem_flags)
3448 {
3449         int i, ret;
3450         struct xhci_hcd *xhci;
3451         struct xhci_virt_device *vdev;
3452         struct xhci_command *config_cmd;
3453         struct xhci_input_control_ctx *ctrl_ctx;
3454         unsigned int ep_index;
3455         unsigned int num_stream_ctxs;
3456         unsigned int max_packet;
3457         unsigned long flags;
3458         u32 changed_ep_bitmask = 0;
3459
3460         if (!eps)
3461                 return -EINVAL;
3462
3463         /* Add one to the number of streams requested to account for
3464          * stream 0 that is reserved for xHCI usage.
3465          */
3466         num_streams += 1;
3467         xhci = hcd_to_xhci(hcd);
3468         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3469                         num_streams);
3470
3471         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3472         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3473                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3474                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3475                 return -ENOSYS;
3476         }
3477
3478         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3479         if (!config_cmd)
3480                 return -ENOMEM;
3481
3482         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3483         if (!ctrl_ctx) {
3484                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3485                                 __func__);
3486                 xhci_free_command(xhci, config_cmd);
3487                 return -ENOMEM;
3488         }
3489
3490         /* Check to make sure all endpoints are not already configured for
3491          * streams.  While we're at it, find the maximum number of streams that
3492          * all the endpoints will support and check for duplicate endpoints.
3493          */
3494         spin_lock_irqsave(&xhci->lock, flags);
3495         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3496                         num_eps, &num_streams, &changed_ep_bitmask);
3497         if (ret < 0) {
3498                 xhci_free_command(xhci, config_cmd);
3499                 spin_unlock_irqrestore(&xhci->lock, flags);
3500                 return ret;
3501         }
3502         if (num_streams <= 1) {
3503                 xhci_warn(xhci, "WARN: endpoints can't handle "
3504                                 "more than one stream.\n");
3505                 xhci_free_command(xhci, config_cmd);
3506                 spin_unlock_irqrestore(&xhci->lock, flags);
3507                 return -EINVAL;
3508         }
3509         vdev = xhci->devs[udev->slot_id];
3510         /* Mark each endpoint as being in transition, so
3511          * xhci_urb_enqueue() will reject all URBs.
3512          */
3513         for (i = 0; i < num_eps; i++) {
3514                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3515                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3516         }
3517         spin_unlock_irqrestore(&xhci->lock, flags);
3518
3519         /* Setup internal data structures and allocate HW data structures for
3520          * streams (but don't install the HW structures in the input context
3521          * until we're sure all memory allocation succeeded).
3522          */
3523         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3524         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3525                         num_stream_ctxs, num_streams);
3526
3527         for (i = 0; i < num_eps; i++) {
3528                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3529                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3530                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3531                                 num_stream_ctxs,
3532                                 num_streams,
3533                                 max_packet, mem_flags);
3534                 if (!vdev->eps[ep_index].stream_info)
3535                         goto cleanup;
3536                 /* Set maxPstreams in endpoint context and update deq ptr to
3537                  * point to stream context array. FIXME
3538                  */
3539         }
3540
3541         /* Set up the input context for a configure endpoint command. */
3542         for (i = 0; i < num_eps; i++) {
3543                 struct xhci_ep_ctx *ep_ctx;
3544
3545                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3546                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3547
3548                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3549                                 vdev->out_ctx, ep_index);
3550                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3551                                 vdev->eps[ep_index].stream_info);
3552         }
3553         /* Tell the HW to drop its old copy of the endpoint context info
3554          * and add the updated copy from the input context.
3555          */
3556         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3557                         vdev->out_ctx, ctrl_ctx,
3558                         changed_ep_bitmask, changed_ep_bitmask);
3559
3560         /* Issue and wait for the configure endpoint command */
3561         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3562                         false, false);
3563
3564         /* xHC rejected the configure endpoint command for some reason, so we
3565          * leave the old ring intact and free our internal streams data
3566          * structure.
3567          */
3568         if (ret < 0)
3569                 goto cleanup;
3570
3571         spin_lock_irqsave(&xhci->lock, flags);
3572         for (i = 0; i < num_eps; i++) {
3573                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3574                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3575                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3576                          udev->slot_id, ep_index);
3577                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3578         }
3579         xhci_free_command(xhci, config_cmd);
3580         spin_unlock_irqrestore(&xhci->lock, flags);
3581
3582         for (i = 0; i < num_eps; i++) {
3583                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3584                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3585         }
3586         /* Subtract 1 for stream 0, which drivers can't use */
3587         return num_streams - 1;
3588
3589 cleanup:
3590         /* If it didn't work, free the streams! */
3591         for (i = 0; i < num_eps; i++) {
3592                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3593                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3594                 vdev->eps[ep_index].stream_info = NULL;
3595                 /* FIXME Unset maxPstreams in endpoint context and
3596                  * update deq ptr to point to normal string ring.
3597                  */
3598                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3599                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3600                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3601         }
3602         xhci_free_command(xhci, config_cmd);
3603         return -ENOMEM;
3604 }
3605
3606 /* Transition the endpoint from using streams to being a "normal" endpoint
3607  * without streams.
3608  *
3609  * Modify the endpoint context state, submit a configure endpoint command,
3610  * and free all endpoint rings for streams if that completes successfully.
3611  */
3612 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3613                 struct usb_host_endpoint **eps, unsigned int num_eps,
3614                 gfp_t mem_flags)
3615 {
3616         int i, ret;
3617         struct xhci_hcd *xhci;
3618         struct xhci_virt_device *vdev;
3619         struct xhci_command *command;
3620         struct xhci_input_control_ctx *ctrl_ctx;
3621         unsigned int ep_index;
3622         unsigned long flags;
3623         u32 changed_ep_bitmask;
3624
3625         xhci = hcd_to_xhci(hcd);
3626         vdev = xhci->devs[udev->slot_id];
3627
3628         /* Set up a configure endpoint command to remove the streams rings */
3629         spin_lock_irqsave(&xhci->lock, flags);
3630         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3631                         udev, eps, num_eps);
3632         if (changed_ep_bitmask == 0) {
3633                 spin_unlock_irqrestore(&xhci->lock, flags);
3634                 return -EINVAL;
3635         }
3636
3637         /* Use the xhci_command structure from the first endpoint.  We may have
3638          * allocated too many, but the driver may call xhci_free_streams() for
3639          * each endpoint it grouped into one call to xhci_alloc_streams().
3640          */
3641         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3642         command = vdev->eps[ep_index].stream_info->free_streams_command;
3643         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3644         if (!ctrl_ctx) {
3645                 spin_unlock_irqrestore(&xhci->lock, flags);
3646                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3647                                 __func__);
3648                 return -EINVAL;
3649         }
3650
3651         for (i = 0; i < num_eps; i++) {
3652                 struct xhci_ep_ctx *ep_ctx;
3653
3654                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3655                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3656                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3657                         EP_GETTING_NO_STREAMS;
3658
3659                 xhci_endpoint_copy(xhci, command->in_ctx,
3660                                 vdev->out_ctx, ep_index);
3661                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3662                                 &vdev->eps[ep_index]);
3663         }
3664         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3665                         vdev->out_ctx, ctrl_ctx,
3666                         changed_ep_bitmask, changed_ep_bitmask);
3667         spin_unlock_irqrestore(&xhci->lock, flags);
3668
3669         /* Issue and wait for the configure endpoint command,
3670          * which must succeed.
3671          */
3672         ret = xhci_configure_endpoint(xhci, udev, command,
3673                         false, true);
3674
3675         /* xHC rejected the configure endpoint command for some reason, so we
3676          * leave the streams rings intact.
3677          */
3678         if (ret < 0)
3679                 return ret;
3680
3681         spin_lock_irqsave(&xhci->lock, flags);
3682         for (i = 0; i < num_eps; i++) {
3683                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3684                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3685                 vdev->eps[ep_index].stream_info = NULL;
3686                 /* FIXME Unset maxPstreams in endpoint context and
3687                  * update deq ptr to point to normal string ring.
3688                  */
3689                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3690                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3691         }
3692         spin_unlock_irqrestore(&xhci->lock, flags);
3693
3694         return 0;
3695 }
3696
3697 /*
3698  * Deletes endpoint resources for endpoints that were active before a Reset
3699  * Device command, or a Disable Slot command.  The Reset Device command leaves
3700  * the control endpoint intact, whereas the Disable Slot command deletes it.
3701  *
3702  * Must be called with xhci->lock held.
3703  */
3704 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3705         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3706 {
3707         int i;
3708         unsigned int num_dropped_eps = 0;
3709         unsigned int drop_flags = 0;
3710
3711         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3712                 if (virt_dev->eps[i].ring) {
3713                         drop_flags |= 1 << i;
3714                         num_dropped_eps++;
3715                 }
3716         }
3717         xhci->num_active_eps -= num_dropped_eps;
3718         if (num_dropped_eps)
3719                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3720                                 "Dropped %u ep ctxs, flags = 0x%x, "
3721                                 "%u now active.",
3722                                 num_dropped_eps, drop_flags,
3723                                 xhci->num_active_eps);
3724 }
3725
3726 /*
3727  * This submits a Reset Device Command, which will set the device state to 0,
3728  * set the device address to 0, and disable all the endpoints except the default
3729  * control endpoint.  The USB core should come back and call
3730  * xhci_address_device(), and then re-set up the configuration.  If this is
3731  * called because of a usb_reset_and_verify_device(), then the old alternate
3732  * settings will be re-installed through the normal bandwidth allocation
3733  * functions.
3734  *
3735  * Wait for the Reset Device command to finish.  Remove all structures
3736  * associated with the endpoints that were disabled.  Clear the input device
3737  * structure? Reset the control endpoint 0 max packet size?
3738  *
3739  * If the virt_dev to be reset does not exist or does not match the udev,
3740  * it means the device is lost, possibly due to the xHC restore error and
3741  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3742  * re-allocate the device.
3743  */
3744 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3745                 struct usb_device *udev)
3746 {
3747         int ret, i;
3748         unsigned long flags;
3749         struct xhci_hcd *xhci;
3750         unsigned int slot_id;
3751         struct xhci_virt_device *virt_dev;
3752         struct xhci_command *reset_device_cmd;
3753         struct xhci_slot_ctx *slot_ctx;
3754         int old_active_eps = 0;
3755
3756         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3757         if (ret <= 0)
3758                 return ret;
3759         xhci = hcd_to_xhci(hcd);
3760         slot_id = udev->slot_id;
3761         virt_dev = xhci->devs[slot_id];
3762         if (!virt_dev) {
3763                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3764                                 "not exist. Re-allocate the device\n", slot_id);
3765                 ret = xhci_alloc_dev(hcd, udev);
3766                 if (ret == 1)
3767                         return 0;
3768                 else
3769                         return -EINVAL;
3770         }
3771
3772         if (virt_dev->tt_info)
3773                 old_active_eps = virt_dev->tt_info->active_eps;
3774
3775         if (virt_dev->udev != udev) {
3776                 /* If the virt_dev and the udev does not match, this virt_dev
3777                  * may belong to another udev.
3778                  * Re-allocate the device.
3779                  */
3780                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3781                                 "not match the udev. Re-allocate the device\n",
3782                                 slot_id);
3783                 ret = xhci_alloc_dev(hcd, udev);
3784                 if (ret == 1)
3785                         return 0;
3786                 else
3787                         return -EINVAL;
3788         }
3789
3790         /* If device is not setup, there is no point in resetting it */
3791         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3792         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3793                                                 SLOT_STATE_DISABLED)
3794                 return 0;
3795
3796         trace_xhci_discover_or_reset_device(slot_ctx);
3797
3798         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3799         /* Allocate the command structure that holds the struct completion.
3800          * Assume we're in process context, since the normal device reset
3801          * process has to wait for the device anyway.  Storage devices are
3802          * reset as part of error handling, so use GFP_NOIO instead of
3803          * GFP_KERNEL.
3804          */
3805         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3806         if (!reset_device_cmd) {
3807                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3808                 return -ENOMEM;
3809         }
3810
3811         /* Attempt to submit the Reset Device command to the command ring */
3812         spin_lock_irqsave(&xhci->lock, flags);
3813
3814         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3815         if (ret) {
3816                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3817                 spin_unlock_irqrestore(&xhci->lock, flags);
3818                 goto command_cleanup;
3819         }
3820         xhci_ring_cmd_db(xhci);
3821         spin_unlock_irqrestore(&xhci->lock, flags);
3822
3823         /* Wait for the Reset Device command to finish */
3824         wait_for_completion(reset_device_cmd->completion);
3825
3826         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3827          * unless we tried to reset a slot ID that wasn't enabled,
3828          * or the device wasn't in the addressed or configured state.
3829          */
3830         ret = reset_device_cmd->status;
3831         switch (ret) {
3832         case COMP_COMMAND_ABORTED:
3833         case COMP_COMMAND_RING_STOPPED:
3834                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3835                 ret = -ETIME;
3836                 goto command_cleanup;
3837         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3838         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3839                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3840                                 slot_id,
3841                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3842                 xhci_dbg(xhci, "Not freeing device rings.\n");
3843                 /* Don't treat this as an error.  May change my mind later. */
3844                 ret = 0;
3845                 goto command_cleanup;
3846         case COMP_SUCCESS:
3847                 xhci_dbg(xhci, "Successful reset device command.\n");
3848                 break;
3849         default:
3850                 if (xhci_is_vendor_info_code(xhci, ret))
3851                         break;
3852                 xhci_warn(xhci, "Unknown completion code %u for "
3853                                 "reset device command.\n", ret);
3854                 ret = -EINVAL;
3855                 goto command_cleanup;
3856         }
3857
3858         /* Free up host controller endpoint resources */
3859         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3860                 spin_lock_irqsave(&xhci->lock, flags);
3861                 /* Don't delete the default control endpoint resources */
3862                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3863                 spin_unlock_irqrestore(&xhci->lock, flags);
3864         }
3865
3866         /* Everything but endpoint 0 is disabled, so free the rings. */
3867         for (i = 1; i < 31; i++) {
3868                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3869
3870                 if (ep->ep_state & EP_HAS_STREAMS) {
3871                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3872                                         xhci_get_endpoint_address(i));
3873                         xhci_free_stream_info(xhci, ep->stream_info);
3874                         ep->stream_info = NULL;
3875                         ep->ep_state &= ~EP_HAS_STREAMS;
3876                 }
3877
3878                 if (ep->ring) {
3879                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3880                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3881                 }
3882                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3883                         xhci_drop_ep_from_interval_table(xhci,
3884                                         &virt_dev->eps[i].bw_info,
3885                                         virt_dev->bw_table,
3886                                         udev,
3887                                         &virt_dev->eps[i],
3888                                         virt_dev->tt_info);
3889                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3890         }
3891         /* If necessary, update the number of active TTs on this root port */
3892         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3893         virt_dev->flags = 0;
3894         ret = 0;
3895
3896 command_cleanup:
3897         xhci_free_command(xhci, reset_device_cmd);
3898         return ret;
3899 }
3900
3901 /*
3902  * At this point, the struct usb_device is about to go away, the device has
3903  * disconnected, and all traffic has been stopped and the endpoints have been
3904  * disabled.  Free any HC data structures associated with that device.
3905  */
3906 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3907 {
3908         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3909         struct xhci_virt_device *virt_dev;
3910         struct xhci_slot_ctx *slot_ctx;
3911         int i, ret;
3912
3913 #ifndef CONFIG_USB_DEFAULT_PERSIST
3914         /*
3915          * We called pm_runtime_get_noresume when the device was attached.
3916          * Decrement the counter here to allow controller to runtime suspend
3917          * if no devices remain.
3918          */
3919         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3920                 pm_runtime_put_noidle(hcd->self.controller);
3921 #endif
3922
3923         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3924         /* If the host is halted due to driver unload, we still need to free the
3925          * device.
3926          */
3927         if (ret <= 0 && ret != -ENODEV)
3928                 return;
3929
3930         virt_dev = xhci->devs[udev->slot_id];
3931         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3932         trace_xhci_free_dev(slot_ctx);
3933
3934         /* Stop any wayward timer functions (which may grab the lock) */
3935         for (i = 0; i < 31; i++) {
3936                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3937                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3938         }
3939         virt_dev->udev = NULL;
3940         ret = xhci_disable_slot(xhci, udev->slot_id);
3941         if (ret)
3942                 xhci_free_virt_device(xhci, udev->slot_id);
3943 }
3944
3945 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3946 {
3947         struct xhci_command *command;
3948         unsigned long flags;
3949         u32 state;
3950         int ret = 0;
3951
3952         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3953         if (!command)
3954                 return -ENOMEM;
3955
3956         xhci_debugfs_remove_slot(xhci, slot_id);
3957
3958         spin_lock_irqsave(&xhci->lock, flags);
3959         /* Don't disable the slot if the host controller is dead. */
3960         state = readl(&xhci->op_regs->status);
3961         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3962                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3963                 spin_unlock_irqrestore(&xhci->lock, flags);
3964                 kfree(command);
3965                 return -ENODEV;
3966         }
3967
3968         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3969                                 slot_id);
3970         if (ret) {
3971                 spin_unlock_irqrestore(&xhci->lock, flags);
3972                 kfree(command);
3973                 return ret;
3974         }
3975         xhci_ring_cmd_db(xhci);
3976         spin_unlock_irqrestore(&xhci->lock, flags);
3977         return ret;
3978 }
3979
3980 /*
3981  * Checks if we have enough host controller resources for the default control
3982  * endpoint.
3983  *
3984  * Must be called with xhci->lock held.
3985  */
3986 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3987 {
3988         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3989                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3990                                 "Not enough ep ctxs: "
3991                                 "%u active, need to add 1, limit is %u.",
3992                                 xhci->num_active_eps, xhci->limit_active_eps);
3993                 return -ENOMEM;
3994         }
3995         xhci->num_active_eps += 1;
3996         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3997                         "Adding 1 ep ctx, %u now active.",
3998                         xhci->num_active_eps);
3999         return 0;
4000 }
4001
4002
4003 /*
4004  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4005  * timed out, or allocating memory failed.  Returns 1 on success.
4006  */
4007 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4008 {
4009         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4010         struct xhci_virt_device *vdev;
4011         struct xhci_slot_ctx *slot_ctx;
4012         unsigned long flags;
4013         int ret, slot_id;
4014         struct xhci_command *command;
4015
4016         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4017         if (!command)
4018                 return 0;
4019
4020         spin_lock_irqsave(&xhci->lock, flags);
4021         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4022         if (ret) {
4023                 spin_unlock_irqrestore(&xhci->lock, flags);
4024                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4025                 xhci_free_command(xhci, command);
4026                 return 0;
4027         }
4028         xhci_ring_cmd_db(xhci);
4029         spin_unlock_irqrestore(&xhci->lock, flags);
4030
4031         wait_for_completion(command->completion);
4032         slot_id = command->slot_id;
4033
4034         if (!slot_id || command->status != COMP_SUCCESS) {
4035                 xhci_err(xhci, "Error while assigning device slot ID\n");
4036                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4037                                 HCS_MAX_SLOTS(
4038                                         readl(&xhci->cap_regs->hcs_params1)));
4039                 xhci_free_command(xhci, command);
4040                 return 0;
4041         }
4042
4043         xhci_free_command(xhci, command);
4044
4045         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4046                 spin_lock_irqsave(&xhci->lock, flags);
4047                 ret = xhci_reserve_host_control_ep_resources(xhci);
4048                 if (ret) {
4049                         spin_unlock_irqrestore(&xhci->lock, flags);
4050                         xhci_warn(xhci, "Not enough host resources, "
4051                                         "active endpoint contexts = %u\n",
4052                                         xhci->num_active_eps);
4053                         goto disable_slot;
4054                 }
4055                 spin_unlock_irqrestore(&xhci->lock, flags);
4056         }
4057         /* Use GFP_NOIO, since this function can be called from
4058          * xhci_discover_or_reset_device(), which may be called as part of
4059          * mass storage driver error handling.
4060          */
4061         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4062                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4063                 goto disable_slot;
4064         }
4065         vdev = xhci->devs[slot_id];
4066         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4067         trace_xhci_alloc_dev(slot_ctx);
4068
4069         udev->slot_id = slot_id;
4070
4071         xhci_debugfs_create_slot(xhci, slot_id);
4072
4073 #ifndef CONFIG_USB_DEFAULT_PERSIST
4074         /*
4075          * If resetting upon resume, we can't put the controller into runtime
4076          * suspend if there is a device attached.
4077          */
4078         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4079                 pm_runtime_get_noresume(hcd->self.controller);
4080 #endif
4081
4082         /* Is this a LS or FS device under a HS hub? */
4083         /* Hub or peripherial? */
4084         return 1;
4085
4086 disable_slot:
4087         ret = xhci_disable_slot(xhci, udev->slot_id);
4088         if (ret)
4089                 xhci_free_virt_device(xhci, udev->slot_id);
4090
4091         return 0;
4092 }
4093
4094 /*
4095  * Issue an Address Device command and optionally send a corresponding
4096  * SetAddress request to the device.
4097  */
4098 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4099                              enum xhci_setup_dev setup)
4100 {
4101         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4102         unsigned long flags;
4103         struct xhci_virt_device *virt_dev;
4104         int ret = 0;
4105         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4106         struct xhci_slot_ctx *slot_ctx;
4107         struct xhci_input_control_ctx *ctrl_ctx;
4108         u64 temp_64;
4109         struct xhci_command *command = NULL;
4110
4111         mutex_lock(&xhci->mutex);
4112
4113         if (xhci->xhc_state) {  /* dying, removing or halted */
4114                 ret = -ESHUTDOWN;
4115                 goto out;
4116         }
4117
4118         if (!udev->slot_id) {
4119                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4120                                 "Bad Slot ID %d", udev->slot_id);
4121                 ret = -EINVAL;
4122                 goto out;
4123         }
4124
4125         virt_dev = xhci->devs[udev->slot_id];
4126
4127         if (WARN_ON(!virt_dev)) {
4128                 /*
4129                  * In plug/unplug torture test with an NEC controller,
4130                  * a zero-dereference was observed once due to virt_dev = 0.
4131                  * Print useful debug rather than crash if it is observed again!
4132                  */
4133                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4134                         udev->slot_id);
4135                 ret = -EINVAL;
4136                 goto out;
4137         }
4138         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4139         trace_xhci_setup_device_slot(slot_ctx);
4140
4141         if (setup == SETUP_CONTEXT_ONLY) {
4142                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4143                     SLOT_STATE_DEFAULT) {
4144                         xhci_dbg(xhci, "Slot already in default state\n");
4145                         goto out;
4146                 }
4147         }
4148
4149         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4150         if (!command) {
4151                 ret = -ENOMEM;
4152                 goto out;
4153         }
4154
4155         command->in_ctx = virt_dev->in_ctx;
4156
4157         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4158         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4159         if (!ctrl_ctx) {
4160                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4161                                 __func__);
4162                 ret = -EINVAL;
4163                 goto out;
4164         }
4165         /*
4166          * If this is the first Set Address since device plug-in or
4167          * virt_device realloaction after a resume with an xHCI power loss,
4168          * then set up the slot context.
4169          */
4170         if (!slot_ctx->dev_info)
4171                 xhci_setup_addressable_virt_dev(xhci, udev);
4172         /* Otherwise, update the control endpoint ring enqueue pointer. */
4173         else
4174                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4175         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4176         ctrl_ctx->drop_flags = 0;
4177
4178         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4179                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4180
4181         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4182         spin_lock_irqsave(&xhci->lock, flags);
4183         trace_xhci_setup_device(virt_dev);
4184         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4185                                         udev->slot_id, setup);
4186         if (ret) {
4187                 spin_unlock_irqrestore(&xhci->lock, flags);
4188                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4189                                 "FIXME: allocate a command ring segment");
4190                 goto out;
4191         }
4192         xhci_ring_cmd_db(xhci);
4193         spin_unlock_irqrestore(&xhci->lock, flags);
4194
4195         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4196         wait_for_completion(command->completion);
4197
4198         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4199          * the SetAddress() "recovery interval" required by USB and aborting the
4200          * command on a timeout.
4201          */
4202         switch (command->status) {
4203         case COMP_COMMAND_ABORTED:
4204         case COMP_COMMAND_RING_STOPPED:
4205                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4206                 ret = -ETIME;
4207                 break;
4208         case COMP_CONTEXT_STATE_ERROR:
4209         case COMP_SLOT_NOT_ENABLED_ERROR:
4210                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4211                          act, udev->slot_id);
4212                 ret = -EINVAL;
4213                 break;
4214         case COMP_USB_TRANSACTION_ERROR:
4215                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4216
4217                 mutex_unlock(&xhci->mutex);
4218                 ret = xhci_disable_slot(xhci, udev->slot_id);
4219                 if (!ret)
4220                         xhci_alloc_dev(hcd, udev);
4221                 kfree(command->completion);
4222                 kfree(command);
4223                 return -EPROTO;
4224         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4225                 dev_warn(&udev->dev,
4226                          "ERROR: Incompatible device for setup %s command\n", act);
4227                 ret = -ENODEV;
4228                 break;
4229         case COMP_SUCCESS:
4230                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4231                                "Successful setup %s command", act);
4232                 break;
4233         default:
4234                 xhci_err(xhci,
4235                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4236                          act, command->status);
4237                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4238                 ret = -EINVAL;
4239                 break;
4240         }
4241         if (ret)
4242                 goto out;
4243         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4244         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4245                         "Op regs DCBAA ptr = %#016llx", temp_64);
4246         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4247                 "Slot ID %d dcbaa entry @%p = %#016llx",
4248                 udev->slot_id,
4249                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4250                 (unsigned long long)
4251                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4252         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4253                         "Output Context DMA address = %#08llx",
4254                         (unsigned long long)virt_dev->out_ctx->dma);
4255         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4256                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4257         /*
4258          * USB core uses address 1 for the roothubs, so we add one to the
4259          * address given back to us by the HC.
4260          */
4261         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4262                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4263         /* Zero the input context control for later use */
4264         ctrl_ctx->add_flags = 0;
4265         ctrl_ctx->drop_flags = 0;
4266         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4267         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4268
4269         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4270                        "Internal device address = %d",
4271                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4272 out:
4273         mutex_unlock(&xhci->mutex);
4274         if (command) {
4275                 kfree(command->completion);
4276                 kfree(command);
4277         }
4278         return ret;
4279 }
4280
4281 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4282 {
4283         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4284 }
4285
4286 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4287 {
4288         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4289 }
4290
4291 /*
4292  * Transfer the port index into real index in the HW port status
4293  * registers. Caculate offset between the port's PORTSC register
4294  * and port status base. Divide the number of per port register
4295  * to get the real index. The raw port number bases 1.
4296  */
4297 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4298 {
4299         struct xhci_hub *rhub;
4300
4301         rhub = xhci_get_rhub(hcd);
4302         return rhub->ports[port1 - 1]->hw_portnum + 1;
4303 }
4304
4305 /*
4306  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4307  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4308  */
4309 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4310                         struct usb_device *udev, u16 max_exit_latency)
4311 {
4312         struct xhci_virt_device *virt_dev;
4313         struct xhci_command *command;
4314         struct xhci_input_control_ctx *ctrl_ctx;
4315         struct xhci_slot_ctx *slot_ctx;
4316         unsigned long flags;
4317         int ret;
4318
4319         spin_lock_irqsave(&xhci->lock, flags);
4320
4321         virt_dev = xhci->devs[udev->slot_id];
4322
4323         /*
4324          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4325          * xHC was re-initialized. Exit latency will be set later after
4326          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4327          */
4328
4329         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4330                 spin_unlock_irqrestore(&xhci->lock, flags);
4331                 return 0;
4332         }
4333
4334         /* Attempt to issue an Evaluate Context command to change the MEL. */
4335         command = xhci->lpm_command;
4336         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4337         if (!ctrl_ctx) {
4338                 spin_unlock_irqrestore(&xhci->lock, flags);
4339                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4340                                 __func__);
4341                 return -ENOMEM;
4342         }
4343
4344         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4345         spin_unlock_irqrestore(&xhci->lock, flags);
4346
4347         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4348         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4349         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4350         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4351         slot_ctx->dev_state = 0;
4352
4353         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4354                         "Set up evaluate context for LPM MEL change.");
4355
4356         /* Issue and wait for the evaluate context command. */
4357         ret = xhci_configure_endpoint(xhci, udev, command,
4358                         true, true);
4359
4360         if (!ret) {
4361                 spin_lock_irqsave(&xhci->lock, flags);
4362                 virt_dev->current_mel = max_exit_latency;
4363                 spin_unlock_irqrestore(&xhci->lock, flags);
4364         }
4365         return ret;
4366 }
4367
4368 #ifdef CONFIG_PM
4369
4370 /* BESL to HIRD Encoding array for USB2 LPM */
4371 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4372         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4373
4374 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4375 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4376                                         struct usb_device *udev)
4377 {
4378         int u2del, besl, besl_host;
4379         int besl_device = 0;
4380         u32 field;
4381
4382         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4383         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4384
4385         if (field & USB_BESL_SUPPORT) {
4386                 for (besl_host = 0; besl_host < 16; besl_host++) {
4387                         if (xhci_besl_encoding[besl_host] >= u2del)
4388                                 break;
4389                 }
4390                 /* Use baseline BESL value as default */
4391                 if (field & USB_BESL_BASELINE_VALID)
4392                         besl_device = USB_GET_BESL_BASELINE(field);
4393                 else if (field & USB_BESL_DEEP_VALID)
4394                         besl_device = USB_GET_BESL_DEEP(field);
4395         } else {
4396                 if (u2del <= 50)
4397                         besl_host = 0;
4398                 else
4399                         besl_host = (u2del - 51) / 75 + 1;
4400         }
4401
4402         besl = besl_host + besl_device;
4403         if (besl > 15)
4404                 besl = 15;
4405
4406         return besl;
4407 }
4408
4409 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4410 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4411 {
4412         u32 field;
4413         int l1;
4414         int besld = 0;
4415         int hirdm = 0;
4416
4417         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4418
4419         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4420         l1 = udev->l1_params.timeout / 256;
4421
4422         /* device has preferred BESLD */
4423         if (field & USB_BESL_DEEP_VALID) {
4424                 besld = USB_GET_BESL_DEEP(field);
4425                 hirdm = 1;
4426         }
4427
4428         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4429 }
4430
4431 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4432                         struct usb_device *udev, int enable)
4433 {
4434         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4435         struct xhci_port **ports;
4436         __le32 __iomem  *pm_addr, *hlpm_addr;
4437         u32             pm_val, hlpm_val, field;
4438         unsigned int    port_num;
4439         unsigned long   flags;
4440         int             hird, exit_latency;
4441         int             ret;
4442
4443         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4444                 return -EPERM;
4445
4446         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4447                         !udev->lpm_capable)
4448                 return -EPERM;
4449
4450         if (!udev->parent || udev->parent->parent ||
4451                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4452                 return -EPERM;
4453
4454         if (udev->usb2_hw_lpm_capable != 1)
4455                 return -EPERM;
4456
4457         spin_lock_irqsave(&xhci->lock, flags);
4458
4459         ports = xhci->usb2_rhub.ports;
4460         port_num = udev->portnum - 1;
4461         pm_addr = ports[port_num]->addr + PORTPMSC;
4462         pm_val = readl(pm_addr);
4463         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4464
4465         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4466                         enable ? "enable" : "disable", port_num + 1);
4467
4468         if (enable) {
4469                 /* Host supports BESL timeout instead of HIRD */
4470                 if (udev->usb2_hw_lpm_besl_capable) {
4471                         /* if device doesn't have a preferred BESL value use a
4472                          * default one which works with mixed HIRD and BESL
4473                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4474                          */
4475                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4476                         if ((field & USB_BESL_SUPPORT) &&
4477                             (field & USB_BESL_BASELINE_VALID))
4478                                 hird = USB_GET_BESL_BASELINE(field);
4479                         else
4480                                 hird = udev->l1_params.besl;
4481
4482                         exit_latency = xhci_besl_encoding[hird];
4483                         spin_unlock_irqrestore(&xhci->lock, flags);
4484
4485                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4486                          * input context for link powermanagement evaluate
4487                          * context commands. It is protected by hcd->bandwidth
4488                          * mutex and is shared by all devices. We need to set
4489                          * the max ext latency in USB 2 BESL LPM as well, so
4490                          * use the same mutex and xhci_change_max_exit_latency()
4491                          */
4492                         mutex_lock(hcd->bandwidth_mutex);
4493                         ret = xhci_change_max_exit_latency(xhci, udev,
4494                                                            exit_latency);
4495                         mutex_unlock(hcd->bandwidth_mutex);
4496
4497                         if (ret < 0)
4498                                 return ret;
4499                         spin_lock_irqsave(&xhci->lock, flags);
4500
4501                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4502                         writel(hlpm_val, hlpm_addr);
4503                         /* flush write */
4504                         readl(hlpm_addr);
4505                 } else {
4506                         hird = xhci_calculate_hird_besl(xhci, udev);
4507                 }
4508
4509                 pm_val &= ~PORT_HIRD_MASK;
4510                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4511                 writel(pm_val, pm_addr);
4512                 pm_val = readl(pm_addr);
4513                 pm_val |= PORT_HLE;
4514                 writel(pm_val, pm_addr);
4515                 /* flush write */
4516                 readl(pm_addr);
4517         } else {
4518                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4519                 writel(pm_val, pm_addr);
4520                 /* flush write */
4521                 readl(pm_addr);
4522                 if (udev->usb2_hw_lpm_besl_capable) {
4523                         spin_unlock_irqrestore(&xhci->lock, flags);
4524                         mutex_lock(hcd->bandwidth_mutex);
4525                         xhci_change_max_exit_latency(xhci, udev, 0);
4526                         mutex_unlock(hcd->bandwidth_mutex);
4527                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4528                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4529                                            100, 10000);
4530                         return 0;
4531                 }
4532         }
4533
4534         spin_unlock_irqrestore(&xhci->lock, flags);
4535         return 0;
4536 }
4537
4538 /* check if a usb2 port supports a given extened capability protocol
4539  * only USB2 ports extended protocol capability values are cached.
4540  * Return 1 if capability is supported
4541  */
4542 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4543                                            unsigned capability)
4544 {
4545         u32 port_offset, port_count;
4546         int i;
4547
4548         for (i = 0; i < xhci->num_ext_caps; i++) {
4549                 if (xhci->ext_caps[i] & capability) {
4550                         /* port offsets starts at 1 */
4551                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4552                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4553                         if (port >= port_offset &&
4554                             port < port_offset + port_count)
4555                                 return 1;
4556                 }
4557         }
4558         return 0;
4559 }
4560
4561 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4562 {
4563         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4564         int             portnum = udev->portnum - 1;
4565
4566         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4567                 return 0;
4568
4569         /* we only support lpm for non-hub device connected to root hub yet */
4570         if (!udev->parent || udev->parent->parent ||
4571                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4572                 return 0;
4573
4574         if (xhci->hw_lpm_support == 1 &&
4575                         xhci_check_usb2_port_capability(
4576                                 xhci, portnum, XHCI_HLC)) {
4577                 udev->usb2_hw_lpm_capable = 1;
4578                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4579                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4580                 if (xhci_check_usb2_port_capability(xhci, portnum,
4581                                         XHCI_BLC))
4582                         udev->usb2_hw_lpm_besl_capable = 1;
4583         }
4584
4585         return 0;
4586 }
4587
4588 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4589
4590 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4591 static unsigned long long xhci_service_interval_to_ns(
4592                 struct usb_endpoint_descriptor *desc)
4593 {
4594         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4595 }
4596
4597 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4598                 enum usb3_link_state state)
4599 {
4600         unsigned long long sel;
4601         unsigned long long pel;
4602         unsigned int max_sel_pel;
4603         char *state_name;
4604
4605         switch (state) {
4606         case USB3_LPM_U1:
4607                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4608                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4609                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4610                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4611                 state_name = "U1";
4612                 break;
4613         case USB3_LPM_U2:
4614                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4615                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4616                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4617                 state_name = "U2";
4618                 break;
4619         default:
4620                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4621                                 __func__);
4622                 return USB3_LPM_DISABLED;
4623         }
4624
4625         if (sel <= max_sel_pel && pel <= max_sel_pel)
4626                 return USB3_LPM_DEVICE_INITIATED;
4627
4628         if (sel > max_sel_pel)
4629                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4630                                 "due to long SEL %llu ms\n",
4631                                 state_name, sel);
4632         else
4633                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4634                                 "due to long PEL %llu ms\n",
4635                                 state_name, pel);
4636         return USB3_LPM_DISABLED;
4637 }
4638
4639 /* The U1 timeout should be the maximum of the following values:
4640  *  - For control endpoints, U1 system exit latency (SEL) * 3
4641  *  - For bulk endpoints, U1 SEL * 5
4642  *  - For interrupt endpoints:
4643  *    - Notification EPs, U1 SEL * 3
4644  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4645  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4646  */
4647 static unsigned long long xhci_calculate_intel_u1_timeout(
4648                 struct usb_device *udev,
4649                 struct usb_endpoint_descriptor *desc)
4650 {
4651         unsigned long long timeout_ns;
4652         int ep_type;
4653         int intr_type;
4654
4655         ep_type = usb_endpoint_type(desc);
4656         switch (ep_type) {
4657         case USB_ENDPOINT_XFER_CONTROL:
4658                 timeout_ns = udev->u1_params.sel * 3;
4659                 break;
4660         case USB_ENDPOINT_XFER_BULK:
4661                 timeout_ns = udev->u1_params.sel * 5;
4662                 break;
4663         case USB_ENDPOINT_XFER_INT:
4664                 intr_type = usb_endpoint_interrupt_type(desc);
4665                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4666                         timeout_ns = udev->u1_params.sel * 3;
4667                         break;
4668                 }
4669                 /* Otherwise the calculation is the same as isoc eps */
4670                 fallthrough;
4671         case USB_ENDPOINT_XFER_ISOC:
4672                 timeout_ns = xhci_service_interval_to_ns(desc);
4673                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4674                 if (timeout_ns < udev->u1_params.sel * 2)
4675                         timeout_ns = udev->u1_params.sel * 2;
4676                 break;
4677         default:
4678                 return 0;
4679         }
4680
4681         return timeout_ns;
4682 }
4683
4684 /* Returns the hub-encoded U1 timeout value. */
4685 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4686                 struct usb_device *udev,
4687                 struct usb_endpoint_descriptor *desc)
4688 {
4689         unsigned long long timeout_ns;
4690
4691         if (xhci->quirks & XHCI_INTEL_HOST)
4692                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4693         else
4694                 timeout_ns = udev->u1_params.sel;
4695
4696         /* Prevent U1 if service interval is shorter than U1 exit latency */
4697         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4698                 if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4699                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4700                         return USB3_LPM_DISABLED;
4701                 }
4702         }
4703
4704         /* The U1 timeout is encoded in 1us intervals.
4705          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4706          */
4707         if (timeout_ns == USB3_LPM_DISABLED)
4708                 timeout_ns = 1;
4709         else
4710                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4711
4712         /* If the necessary timeout value is bigger than what we can set in the
4713          * USB 3.0 hub, we have to disable hub-initiated U1.
4714          */
4715         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4716                 return timeout_ns;
4717         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4718                         "due to long timeout %llu ms\n", timeout_ns);
4719         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4720 }
4721
4722 /* The U2 timeout should be the maximum of:
4723  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4724  *  - largest bInterval of any active periodic endpoint (to avoid going
4725  *    into lower power link states between intervals).
4726  *  - the U2 Exit Latency of the device
4727  */
4728 static unsigned long long xhci_calculate_intel_u2_timeout(
4729                 struct usb_device *udev,
4730                 struct usb_endpoint_descriptor *desc)
4731 {
4732         unsigned long long timeout_ns;
4733         unsigned long long u2_del_ns;
4734
4735         timeout_ns = 10 * 1000 * 1000;
4736
4737         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4738                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4739                 timeout_ns = xhci_service_interval_to_ns(desc);
4740
4741         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4742         if (u2_del_ns > timeout_ns)
4743                 timeout_ns = u2_del_ns;
4744
4745         return timeout_ns;
4746 }
4747
4748 /* Returns the hub-encoded U2 timeout value. */
4749 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4750                 struct usb_device *udev,
4751                 struct usb_endpoint_descriptor *desc)
4752 {
4753         unsigned long long timeout_ns;
4754
4755         if (xhci->quirks & XHCI_INTEL_HOST)
4756                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4757         else
4758                 timeout_ns = udev->u2_params.sel;
4759
4760         /* Prevent U2 if service interval is shorter than U2 exit latency */
4761         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4762                 if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4763                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4764                         return USB3_LPM_DISABLED;
4765                 }
4766         }
4767
4768         /* The U2 timeout is encoded in 256us intervals */
4769         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4770         /* If the necessary timeout value is bigger than what we can set in the
4771          * USB 3.0 hub, we have to disable hub-initiated U2.
4772          */
4773         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4774                 return timeout_ns;
4775         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4776                         "due to long timeout %llu ms\n", timeout_ns);
4777         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4778 }
4779
4780 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4781                 struct usb_device *udev,
4782                 struct usb_endpoint_descriptor *desc,
4783                 enum usb3_link_state state,
4784                 u16 *timeout)
4785 {
4786         if (state == USB3_LPM_U1)
4787                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4788         else if (state == USB3_LPM_U2)
4789                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4790
4791         return USB3_LPM_DISABLED;
4792 }
4793
4794 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4795                 struct usb_device *udev,
4796                 struct usb_endpoint_descriptor *desc,
4797                 enum usb3_link_state state,
4798                 u16 *timeout)
4799 {
4800         u16 alt_timeout;
4801
4802         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4803                 desc, state, timeout);
4804
4805         /* If we found we can't enable hub-initiated LPM, and
4806          * the U1 or U2 exit latency was too high to allow
4807          * device-initiated LPM as well, then we will disable LPM
4808          * for this device, so stop searching any further.
4809          */
4810         if (alt_timeout == USB3_LPM_DISABLED) {
4811                 *timeout = alt_timeout;
4812                 return -E2BIG;
4813         }
4814         if (alt_timeout > *timeout)
4815                 *timeout = alt_timeout;
4816         return 0;
4817 }
4818
4819 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4820                 struct usb_device *udev,
4821                 struct usb_host_interface *alt,
4822                 enum usb3_link_state state,
4823                 u16 *timeout)
4824 {
4825         int j;
4826
4827         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4828                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4829                                         &alt->endpoint[j].desc, state, timeout))
4830                         return -E2BIG;
4831                 continue;
4832         }
4833         return 0;
4834 }
4835
4836 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4837                 enum usb3_link_state state)
4838 {
4839         struct usb_device *parent;
4840         unsigned int num_hubs;
4841
4842         if (state == USB3_LPM_U2)
4843                 return 0;
4844
4845         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4846         for (parent = udev->parent, num_hubs = 0; parent->parent;
4847                         parent = parent->parent)
4848                 num_hubs++;
4849
4850         if (num_hubs < 2)
4851                 return 0;
4852
4853         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4854                         " below second-tier hub.\n");
4855         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4856                         "to decrease power consumption.\n");
4857         return -E2BIG;
4858 }
4859
4860 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4861                 struct usb_device *udev,
4862                 enum usb3_link_state state)
4863 {
4864         if (xhci->quirks & XHCI_INTEL_HOST)
4865                 return xhci_check_intel_tier_policy(udev, state);
4866         else
4867                 return 0;
4868 }
4869
4870 /* Returns the U1 or U2 timeout that should be enabled.
4871  * If the tier check or timeout setting functions return with a non-zero exit
4872  * code, that means the timeout value has been finalized and we shouldn't look
4873  * at any more endpoints.
4874  */
4875 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4876                         struct usb_device *udev, enum usb3_link_state state)
4877 {
4878         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4879         struct usb_host_config *config;
4880         char *state_name;
4881         int i;
4882         u16 timeout = USB3_LPM_DISABLED;
4883
4884         if (state == USB3_LPM_U1)
4885                 state_name = "U1";
4886         else if (state == USB3_LPM_U2)
4887                 state_name = "U2";
4888         else {
4889                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4890                                 state);
4891                 return timeout;
4892         }
4893
4894         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4895                 return timeout;
4896
4897         /* Gather some information about the currently installed configuration
4898          * and alternate interface settings.
4899          */
4900         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4901                         state, &timeout))
4902                 return timeout;
4903
4904         config = udev->actconfig;
4905         if (!config)
4906                 return timeout;
4907
4908         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4909                 struct usb_driver *driver;
4910                 struct usb_interface *intf = config->interface[i];
4911
4912                 if (!intf)
4913                         continue;
4914
4915                 /* Check if any currently bound drivers want hub-initiated LPM
4916                  * disabled.
4917                  */
4918                 if (intf->dev.driver) {
4919                         driver = to_usb_driver(intf->dev.driver);
4920                         if (driver && driver->disable_hub_initiated_lpm) {
4921                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4922                                         state_name, driver->name);
4923                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4924                                                                       state);
4925                                 if (timeout == USB3_LPM_DISABLED)
4926                                         return timeout;
4927                         }
4928                 }
4929
4930                 /* Not sure how this could happen... */
4931                 if (!intf->cur_altsetting)
4932                         continue;
4933
4934                 if (xhci_update_timeout_for_interface(xhci, udev,
4935                                         intf->cur_altsetting,
4936                                         state, &timeout))
4937                         return timeout;
4938         }
4939         return timeout;
4940 }
4941
4942 static int calculate_max_exit_latency(struct usb_device *udev,
4943                 enum usb3_link_state state_changed,
4944                 u16 hub_encoded_timeout)
4945 {
4946         unsigned long long u1_mel_us = 0;
4947         unsigned long long u2_mel_us = 0;
4948         unsigned long long mel_us = 0;
4949         bool disabling_u1;
4950         bool disabling_u2;
4951         bool enabling_u1;
4952         bool enabling_u2;
4953
4954         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4955                         hub_encoded_timeout == USB3_LPM_DISABLED);
4956         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4957                         hub_encoded_timeout == USB3_LPM_DISABLED);
4958
4959         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4960                         hub_encoded_timeout != USB3_LPM_DISABLED);
4961         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4962                         hub_encoded_timeout != USB3_LPM_DISABLED);
4963
4964         /* If U1 was already enabled and we're not disabling it,
4965          * or we're going to enable U1, account for the U1 max exit latency.
4966          */
4967         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4968                         enabling_u1)
4969                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4970         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4971                         enabling_u2)
4972                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4973
4974         if (u1_mel_us > u2_mel_us)
4975                 mel_us = u1_mel_us;
4976         else
4977                 mel_us = u2_mel_us;
4978         /* xHCI host controller max exit latency field is only 16 bits wide. */
4979         if (mel_us > MAX_EXIT) {
4980                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4981                                 "is too big.\n", mel_us);
4982                 return -E2BIG;
4983         }
4984         return mel_us;
4985 }
4986
4987 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4988 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4989                         struct usb_device *udev, enum usb3_link_state state)
4990 {
4991         struct xhci_hcd *xhci;
4992         u16 hub_encoded_timeout;
4993         int mel;
4994         int ret;
4995
4996         xhci = hcd_to_xhci(hcd);
4997         /* The LPM timeout values are pretty host-controller specific, so don't
4998          * enable hub-initiated timeouts unless the vendor has provided
4999          * information about their timeout algorithm.
5000          */
5001         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5002                         !xhci->devs[udev->slot_id])
5003                 return USB3_LPM_DISABLED;
5004
5005         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5006         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5007         if (mel < 0) {
5008                 /* Max Exit Latency is too big, disable LPM. */
5009                 hub_encoded_timeout = USB3_LPM_DISABLED;
5010                 mel = 0;
5011         }
5012
5013         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5014         if (ret)
5015                 return ret;
5016         return hub_encoded_timeout;
5017 }
5018
5019 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5020                         struct usb_device *udev, enum usb3_link_state state)
5021 {
5022         struct xhci_hcd *xhci;
5023         u16 mel;
5024
5025         xhci = hcd_to_xhci(hcd);
5026         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5027                         !xhci->devs[udev->slot_id])
5028                 return 0;
5029
5030         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5031         return xhci_change_max_exit_latency(xhci, udev, mel);
5032 }
5033 #else /* CONFIG_PM */
5034
5035 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5036                                 struct usb_device *udev, int enable)
5037 {
5038         return 0;
5039 }
5040
5041 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5042 {
5043         return 0;
5044 }
5045
5046 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5047                         struct usb_device *udev, enum usb3_link_state state)
5048 {
5049         return USB3_LPM_DISABLED;
5050 }
5051
5052 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5053                         struct usb_device *udev, enum usb3_link_state state)
5054 {
5055         return 0;
5056 }
5057 #endif  /* CONFIG_PM */
5058
5059 /*-------------------------------------------------------------------------*/
5060
5061 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5062  * internal data structures for the device.
5063  */
5064 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5065                         struct usb_tt *tt, gfp_t mem_flags)
5066 {
5067         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5068         struct xhci_virt_device *vdev;
5069         struct xhci_command *config_cmd;
5070         struct xhci_input_control_ctx *ctrl_ctx;
5071         struct xhci_slot_ctx *slot_ctx;
5072         unsigned long flags;
5073         unsigned think_time;
5074         int ret;
5075
5076         /* Ignore root hubs */
5077         if (!hdev->parent)
5078                 return 0;
5079
5080         vdev = xhci->devs[hdev->slot_id];
5081         if (!vdev) {
5082                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5083                 return -EINVAL;
5084         }
5085
5086         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5087         if (!config_cmd)
5088                 return -ENOMEM;
5089
5090         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5091         if (!ctrl_ctx) {
5092                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5093                                 __func__);
5094                 xhci_free_command(xhci, config_cmd);
5095                 return -ENOMEM;
5096         }
5097
5098         spin_lock_irqsave(&xhci->lock, flags);
5099         if (hdev->speed == USB_SPEED_HIGH &&
5100                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5101                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5102                 xhci_free_command(xhci, config_cmd);
5103                 spin_unlock_irqrestore(&xhci->lock, flags);
5104                 return -ENOMEM;
5105         }
5106
5107         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5108         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5109         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5110         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5111         /*
5112          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5113          * but it may be already set to 1 when setup an xHCI virtual
5114          * device, so clear it anyway.
5115          */
5116         if (tt->multi)
5117                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5118         else if (hdev->speed == USB_SPEED_FULL)
5119                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5120
5121         if (xhci->hci_version > 0x95) {
5122                 xhci_dbg(xhci, "xHCI version %x needs hub "
5123                                 "TT think time and number of ports\n",
5124                                 (unsigned int) xhci->hci_version);
5125                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5126                 /* Set TT think time - convert from ns to FS bit times.
5127                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5128                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5129                  *
5130                  * xHCI 1.0: this field shall be 0 if the device is not a
5131                  * High-spped hub.
5132                  */
5133                 think_time = tt->think_time;
5134                 if (think_time != 0)
5135                         think_time = (think_time / 666) - 1;
5136                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5137                         slot_ctx->tt_info |=
5138                                 cpu_to_le32(TT_THINK_TIME(think_time));
5139         } else {
5140                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5141                                 "TT think time or number of ports\n",
5142                                 (unsigned int) xhci->hci_version);
5143         }
5144         slot_ctx->dev_state = 0;
5145         spin_unlock_irqrestore(&xhci->lock, flags);
5146
5147         xhci_dbg(xhci, "Set up %s for hub device.\n",
5148                         (xhci->hci_version > 0x95) ?
5149                         "configure endpoint" : "evaluate context");
5150
5151         /* Issue and wait for the configure endpoint or
5152          * evaluate context command.
5153          */
5154         if (xhci->hci_version > 0x95)
5155                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5156                                 false, false);
5157         else
5158                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5159                                 true, false);
5160
5161         xhci_free_command(xhci, config_cmd);
5162         return ret;
5163 }
5164
5165 static int xhci_get_frame(struct usb_hcd *hcd)
5166 {
5167         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5168         /* EHCI mods by the periodic size.  Why? */
5169         return readl(&xhci->run_regs->microframe_index) >> 3;
5170 }
5171
5172 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5173 {
5174         struct xhci_hcd         *xhci;
5175         /*
5176          * TODO: Check with DWC3 clients for sysdev according to
5177          * quirks
5178          */
5179         struct device           *dev = hcd->self.sysdev;
5180         unsigned int            minor_rev;
5181         int                     retval;
5182
5183         /* Accept arbitrarily long scatter-gather lists */
5184         hcd->self.sg_tablesize = ~0;
5185
5186         /* support to build packet from discontinuous buffers */
5187         hcd->self.no_sg_constraint = 1;
5188
5189         /* XHCI controllers don't stop the ep queue on short packets :| */
5190         hcd->self.no_stop_on_short = 1;
5191
5192         xhci = hcd_to_xhci(hcd);
5193
5194         if (usb_hcd_is_primary_hcd(hcd)) {
5195                 xhci->main_hcd = hcd;
5196                 xhci->usb2_rhub.hcd = hcd;
5197                 /* Mark the first roothub as being USB 2.0.
5198                  * The xHCI driver will register the USB 3.0 roothub.
5199                  */
5200                 hcd->speed = HCD_USB2;
5201                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5202                 /*
5203                  * USB 2.0 roothub under xHCI has an integrated TT,
5204                  * (rate matching hub) as opposed to having an OHCI/UHCI
5205                  * companion controller.
5206                  */
5207                 hcd->has_tt = 1;
5208         } else {
5209                 /*
5210                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5211                  * should return 0x31 for sbrn, or that the minor revision
5212                  * is a two digit BCD containig minor and sub-minor numbers.
5213                  * This was later clarified in xHCI 1.2.
5214                  *
5215                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5216                  * minor revision set to 0x1 instead of 0x10.
5217                  */
5218                 if (xhci->usb3_rhub.min_rev == 0x1)
5219                         minor_rev = 1;
5220                 else
5221                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5222
5223                 switch (minor_rev) {
5224                 case 2:
5225                         hcd->speed = HCD_USB32;
5226                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5227                         hcd->self.root_hub->rx_lanes = 2;
5228                         hcd->self.root_hub->tx_lanes = 2;
5229                         break;
5230                 case 1:
5231                         hcd->speed = HCD_USB31;
5232                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5233                         break;
5234                 }
5235                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5236                           minor_rev,
5237                           minor_rev ? "Enhanced " : "");
5238
5239                 xhci->usb3_rhub.hcd = hcd;
5240                 /* xHCI private pointer was set in xhci_pci_probe for the second
5241                  * registered roothub.
5242                  */
5243                 return 0;
5244         }
5245
5246         mutex_init(&xhci->mutex);
5247         xhci->cap_regs = hcd->regs;
5248         xhci->op_regs = hcd->regs +
5249                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5250         xhci->run_regs = hcd->regs +
5251                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5252         /* Cache read-only capability registers */
5253         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5254         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5255         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5256         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5257         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5258         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5259         if (xhci->hci_version > 0x100)
5260                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5261
5262         xhci->quirks |= quirks;
5263
5264         get_quirks(dev, xhci);
5265
5266         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5267          * success event after a short transfer. This quirk will ignore such
5268          * spurious event.
5269          */
5270         if (xhci->hci_version > 0x96)
5271                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5272
5273         /* Make sure the HC is halted. */
5274         retval = xhci_halt(xhci);
5275         if (retval)
5276                 return retval;
5277
5278         xhci_zero_64b_regs(xhci);
5279
5280         xhci_dbg(xhci, "Resetting HCD\n");
5281         /* Reset the internal HC memory state and registers. */
5282         retval = xhci_reset(xhci);
5283         if (retval)
5284                 return retval;
5285         xhci_dbg(xhci, "Reset complete\n");
5286
5287         /*
5288          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5289          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5290          * address memory pointers actually. So, this driver clears the AC64
5291          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5292          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5293          */
5294         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5295                 xhci->hcc_params &= ~BIT(0);
5296
5297         /* Set dma_mask and coherent_dma_mask to 64-bits,
5298          * if xHC supports 64-bit addressing */
5299         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5300                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5301                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5302                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5303         } else {
5304                 /*
5305                  * This is to avoid error in cases where a 32-bit USB
5306                  * controller is used on a 64-bit capable system.
5307                  */
5308                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5309                 if (retval)
5310                         return retval;
5311                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5312                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5313         }
5314
5315         xhci_dbg(xhci, "Calling HCD init\n");
5316         /* Initialize HCD and host controller data structures. */
5317         retval = xhci_init(hcd);
5318         if (retval)
5319                 return retval;
5320         xhci_dbg(xhci, "Called HCD init\n");
5321
5322         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5323                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5324
5325         return 0;
5326 }
5327 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5328
5329 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5330                 struct usb_host_endpoint *ep)
5331 {
5332         struct xhci_hcd *xhci;
5333         struct usb_device *udev;
5334         unsigned int slot_id;
5335         unsigned int ep_index;
5336         unsigned long flags;
5337
5338         xhci = hcd_to_xhci(hcd);
5339
5340         spin_lock_irqsave(&xhci->lock, flags);
5341         udev = (struct usb_device *)ep->hcpriv;
5342         slot_id = udev->slot_id;
5343         ep_index = xhci_get_endpoint_index(&ep->desc);
5344
5345         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5346         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5347         spin_unlock_irqrestore(&xhci->lock, flags);
5348 }
5349
5350 static const struct hc_driver xhci_hc_driver = {
5351         .description =          "xhci-hcd",
5352         .product_desc =         "xHCI Host Controller",
5353         .hcd_priv_size =        sizeof(struct xhci_hcd),
5354
5355         /*
5356          * generic hardware linkage
5357          */
5358         .irq =                  xhci_irq,
5359         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5360                                 HCD_BH,
5361
5362         /*
5363          * basic lifecycle operations
5364          */
5365         .reset =                NULL, /* set in xhci_init_driver() */
5366         .start =                xhci_run,
5367         .stop =                 xhci_stop,
5368         .shutdown =             xhci_shutdown,
5369
5370         /*
5371          * managing i/o requests and associated device resources
5372          */
5373         .map_urb_for_dma =      xhci_map_urb_for_dma,
5374         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5375         .urb_enqueue =          xhci_urb_enqueue,
5376         .urb_dequeue =          xhci_urb_dequeue,
5377         .alloc_dev =            xhci_alloc_dev,
5378         .free_dev =             xhci_free_dev,
5379         .alloc_streams =        xhci_alloc_streams,
5380         .free_streams =         xhci_free_streams,
5381         .add_endpoint =         xhci_add_endpoint,
5382         .drop_endpoint =        xhci_drop_endpoint,
5383         .endpoint_disable =     xhci_endpoint_disable,
5384         .endpoint_reset =       xhci_endpoint_reset,
5385         .check_bandwidth =      xhci_check_bandwidth,
5386         .reset_bandwidth =      xhci_reset_bandwidth,
5387         .address_device =       xhci_address_device,
5388         .enable_device =        xhci_enable_device,
5389         .update_hub_device =    xhci_update_hub_device,
5390         .reset_device =         xhci_discover_or_reset_device,
5391
5392         /*
5393          * scheduling support
5394          */
5395         .get_frame_number =     xhci_get_frame,
5396
5397         /*
5398          * root hub support
5399          */
5400         .hub_control =          xhci_hub_control,
5401         .hub_status_data =      xhci_hub_status_data,
5402         .bus_suspend =          xhci_bus_suspend,
5403         .bus_resume =           xhci_bus_resume,
5404         .get_resuming_ports =   xhci_get_resuming_ports,
5405
5406         /*
5407          * call back when device connected and addressed
5408          */
5409         .update_device =        xhci_update_device,
5410         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5411         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5412         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5413         .find_raw_port_number = xhci_find_raw_port_number,
5414         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5415 };
5416
5417 void xhci_init_driver(struct hc_driver *drv,
5418                       const struct xhci_driver_overrides *over)
5419 {
5420         BUG_ON(!over);
5421
5422         /* Copy the generic table to drv then apply the overrides */
5423         *drv = xhci_hc_driver;
5424
5425         if (over) {
5426                 drv->hcd_priv_size += over->extra_priv_size;
5427                 if (over->reset)
5428                         drv->reset = over->reset;
5429                 if (over->start)
5430                         drv->start = over->start;
5431                 if (over->check_bandwidth)
5432                         drv->check_bandwidth = over->check_bandwidth;
5433                 if (over->reset_bandwidth)
5434                         drv->reset_bandwidth = over->reset_bandwidth;
5435         }
5436 }
5437 EXPORT_SYMBOL_GPL(xhci_init_driver);
5438
5439 MODULE_DESCRIPTION(DRIVER_DESC);
5440 MODULE_AUTHOR(DRIVER_AUTHOR);
5441 MODULE_LICENSE("GPL");
5442
5443 static int __init xhci_hcd_init(void)
5444 {
5445         /*
5446          * Check the compiler generated sizes of structures that must be laid
5447          * out in specific ways for hardware access.
5448          */
5449         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5450         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5451         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5452         /* xhci_device_control has eight fields, and also
5453          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5454          */
5455         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5456         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5457         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5458         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5459         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5460         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5461         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5462
5463         if (usb_disabled())
5464                 return -ENODEV;
5465
5466         xhci_debugfs_create_root();
5467
5468         return 0;
5469 }
5470
5471 /*
5472  * If an init function is provided, an exit function must also be provided
5473  * to allow module unload.
5474  */
5475 static void __exit xhci_hcd_fini(void)
5476 {
5477         xhci_debugfs_remove_root();
5478 }
5479
5480 module_init(xhci_hcd_init);
5481 module_exit(xhci_hcd_fini);