xhci: TD-fragment, align the unsplittable case with a bounce buffer
[linux-2.6-microblaze.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67
68         do {
69                 result = readl(ptr);
70                 if (result == ~(u32)0)          /* card removed */
71                         return -ENODEV;
72                 result &= mask;
73                 if (result == done)
74                         return 0;
75                 udelay(1);
76                 usec--;
77         } while (usec > 0);
78         return -ETIMEDOUT;
79 }
80
81 /*
82  * Disable interrupts and begin the xHCI halting process.
83  */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86         u32 halted;
87         u32 cmd;
88         u32 mask;
89
90         mask = ~(XHCI_IRQS);
91         halted = readl(&xhci->op_regs->status) & STS_HALT;
92         if (!halted)
93                 mask &= ~CMD_RUN;
94
95         cmd = readl(&xhci->op_regs->command);
96         cmd &= mask;
97         writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101  * Force HC into halt state.
102  *
103  * Disable any IRQs and clear the run/stop bit.
104  * HC will complete any current and actively pipelined transactions, and
105  * should halt within 16 ms of the run/stop bit being cleared.
106  * Read HC Halted bit in the status register to see when the HC is finished.
107  */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110         int ret;
111         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112         xhci_quiesce(xhci);
113
114         ret = xhci_handshake(&xhci->op_regs->status,
115                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116         if (!ret) {
117                 xhci->xhc_state |= XHCI_STATE_HALTED;
118                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119         } else
120                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121                                 XHCI_MAX_HALT_USEC);
122         return ret;
123 }
124
125 /*
126  * Set the run bit and wait for the host to be running.
127  */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130         u32 temp;
131         int ret;
132
133         temp = readl(&xhci->op_regs->command);
134         temp |= (CMD_RUN);
135         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136                         temp);
137         writel(temp, &xhci->op_regs->command);
138
139         /*
140          * Wait for the HCHalted Status bit to be 0 to indicate the host is
141          * running.
142          */
143         ret = xhci_handshake(&xhci->op_regs->status,
144                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
145         if (ret == -ETIMEDOUT)
146                 xhci_err(xhci, "Host took too long to start, "
147                                 "waited %u microseconds.\n",
148                                 XHCI_MAX_HALT_USEC);
149         if (!ret)
150                 /* clear state flags. Including dying, halted or removing */
151                 xhci->xhc_state = 0;
152
153         return ret;
154 }
155
156 /*
157  * Reset a halted HC.
158  *
159  * This resets pipelines, timers, counters, state machines, etc.
160  * Transactions will be terminated immediately, and operational registers
161  * will be set to their defaults.
162  */
163 int xhci_reset(struct xhci_hcd *xhci)
164 {
165         u32 command;
166         u32 state;
167         int ret, i;
168
169         state = readl(&xhci->op_regs->status);
170         if ((state & STS_HALT) == 0) {
171                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
172                 return 0;
173         }
174
175         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
176         command = readl(&xhci->op_regs->command);
177         command |= CMD_RESET;
178         writel(command, &xhci->op_regs->command);
179
180         /* Existing Intel xHCI controllers require a delay of 1 mS,
181          * after setting the CMD_RESET bit, and before accessing any
182          * HC registers. This allows the HC to complete the
183          * reset operation and be ready for HC register access.
184          * Without this delay, the subsequent HC register access,
185          * may result in a system hang very rarely.
186          */
187         if (xhci->quirks & XHCI_INTEL_HOST)
188                 udelay(1000);
189
190         ret = xhci_handshake(&xhci->op_regs->command,
191                         CMD_RESET, 0, 10 * 1000 * 1000);
192         if (ret)
193                 return ret;
194
195         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
196                          "Wait for controller to be ready for doorbell rings");
197         /*
198          * xHCI cannot write to any doorbells or operational registers other
199          * than status until the "Controller Not Ready" flag is cleared.
200          */
201         ret = xhci_handshake(&xhci->op_regs->status,
202                         STS_CNR, 0, 10 * 1000 * 1000);
203
204         for (i = 0; i < 2; ++i) {
205                 xhci->bus_state[i].port_c_suspend = 0;
206                 xhci->bus_state[i].suspended_ports = 0;
207                 xhci->bus_state[i].resuming_ports = 0;
208         }
209
210         return ret;
211 }
212
213 #ifdef CONFIG_PCI
214 static int xhci_free_msi(struct xhci_hcd *xhci)
215 {
216         int i;
217
218         if (!xhci->msix_entries)
219                 return -EINVAL;
220
221         for (i = 0; i < xhci->msix_count; i++)
222                 if (xhci->msix_entries[i].vector)
223                         free_irq(xhci->msix_entries[i].vector,
224                                         xhci_to_hcd(xhci));
225         return 0;
226 }
227
228 /*
229  * Set up MSI
230  */
231 static int xhci_setup_msi(struct xhci_hcd *xhci)
232 {
233         int ret;
234         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
235
236         ret = pci_enable_msi(pdev);
237         if (ret) {
238                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
239                                 "failed to allocate MSI entry");
240                 return ret;
241         }
242
243         ret = request_irq(pdev->irq, xhci_msi_irq,
244                                 0, "xhci_hcd", xhci_to_hcd(xhci));
245         if (ret) {
246                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
247                                 "disable MSI interrupt");
248                 pci_disable_msi(pdev);
249         }
250
251         return ret;
252 }
253
254 /*
255  * Free IRQs
256  * free all IRQs request
257  */
258 static void xhci_free_irq(struct xhci_hcd *xhci)
259 {
260         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
261         int ret;
262
263         /* return if using legacy interrupt */
264         if (xhci_to_hcd(xhci)->irq > 0)
265                 return;
266
267         ret = xhci_free_msi(xhci);
268         if (!ret)
269                 return;
270         if (pdev->irq > 0)
271                 free_irq(pdev->irq, xhci_to_hcd(xhci));
272
273         return;
274 }
275
276 /*
277  * Set up MSI-X
278  */
279 static int xhci_setup_msix(struct xhci_hcd *xhci)
280 {
281         int i, ret = 0;
282         struct usb_hcd *hcd = xhci_to_hcd(xhci);
283         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
284
285         /*
286          * calculate number of msi-x vectors supported.
287          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
288          *   with max number of interrupters based on the xhci HCSPARAMS1.
289          * - num_online_cpus: maximum msi-x vectors per CPUs core.
290          *   Add additional 1 vector to ensure always available interrupt.
291          */
292         xhci->msix_count = min(num_online_cpus() + 1,
293                                 HCS_MAX_INTRS(xhci->hcs_params1));
294
295         xhci->msix_entries =
296                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
297                                 GFP_KERNEL);
298         if (!xhci->msix_entries) {
299                 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
300                 return -ENOMEM;
301         }
302
303         for (i = 0; i < xhci->msix_count; i++) {
304                 xhci->msix_entries[i].entry = i;
305                 xhci->msix_entries[i].vector = 0;
306         }
307
308         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
309         if (ret) {
310                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
311                                 "Failed to enable MSI-X");
312                 goto free_entries;
313         }
314
315         for (i = 0; i < xhci->msix_count; i++) {
316                 ret = request_irq(xhci->msix_entries[i].vector,
317                                 xhci_msi_irq,
318                                 0, "xhci_hcd", xhci_to_hcd(xhci));
319                 if (ret)
320                         goto disable_msix;
321         }
322
323         hcd->msix_enabled = 1;
324         return ret;
325
326 disable_msix:
327         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
328         xhci_free_irq(xhci);
329         pci_disable_msix(pdev);
330 free_entries:
331         kfree(xhci->msix_entries);
332         xhci->msix_entries = NULL;
333         return ret;
334 }
335
336 /* Free any IRQs and disable MSI-X */
337 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
338 {
339         struct usb_hcd *hcd = xhci_to_hcd(xhci);
340         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
341
342         if (xhci->quirks & XHCI_PLAT)
343                 return;
344
345         xhci_free_irq(xhci);
346
347         if (xhci->msix_entries) {
348                 pci_disable_msix(pdev);
349                 kfree(xhci->msix_entries);
350                 xhci->msix_entries = NULL;
351         } else {
352                 pci_disable_msi(pdev);
353         }
354
355         hcd->msix_enabled = 0;
356         return;
357 }
358
359 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
360 {
361         int i;
362
363         if (xhci->msix_entries) {
364                 for (i = 0; i < xhci->msix_count; i++)
365                         synchronize_irq(xhci->msix_entries[i].vector);
366         }
367 }
368
369 static int xhci_try_enable_msi(struct usb_hcd *hcd)
370 {
371         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
372         struct pci_dev  *pdev;
373         int ret;
374
375         /* The xhci platform device has set up IRQs through usb_add_hcd. */
376         if (xhci->quirks & XHCI_PLAT)
377                 return 0;
378
379         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
380         /*
381          * Some Fresco Logic host controllers advertise MSI, but fail to
382          * generate interrupts.  Don't even try to enable MSI.
383          */
384         if (xhci->quirks & XHCI_BROKEN_MSI)
385                 goto legacy_irq;
386
387         /* unregister the legacy interrupt */
388         if (hcd->irq)
389                 free_irq(hcd->irq, hcd);
390         hcd->irq = 0;
391
392         ret = xhci_setup_msix(xhci);
393         if (ret)
394                 /* fall back to msi*/
395                 ret = xhci_setup_msi(xhci);
396
397         if (!ret)
398                 /* hcd->irq is 0, we have MSI */
399                 return 0;
400
401         if (!pdev->irq) {
402                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
403                 return -EINVAL;
404         }
405
406  legacy_irq:
407         if (!strlen(hcd->irq_descr))
408                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
409                          hcd->driver->description, hcd->self.busnum);
410
411         /* fall back to legacy interrupt*/
412         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
413                         hcd->irq_descr, hcd);
414         if (ret) {
415                 xhci_err(xhci, "request interrupt %d failed\n",
416                                 pdev->irq);
417                 return ret;
418         }
419         hcd->irq = pdev->irq;
420         return 0;
421 }
422
423 #else
424
425 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
426 {
427         return 0;
428 }
429
430 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
431 {
432 }
433
434 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
435 {
436 }
437
438 #endif
439
440 static void compliance_mode_recovery(unsigned long arg)
441 {
442         struct xhci_hcd *xhci;
443         struct usb_hcd *hcd;
444         u32 temp;
445         int i;
446
447         xhci = (struct xhci_hcd *)arg;
448
449         for (i = 0; i < xhci->num_usb3_ports; i++) {
450                 temp = readl(xhci->usb3_ports[i]);
451                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
452                         /*
453                          * Compliance Mode Detected. Letting USB Core
454                          * handle the Warm Reset
455                          */
456                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
457                                         "Compliance mode detected->port %d",
458                                         i + 1);
459                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
460                                         "Attempting compliance mode recovery");
461                         hcd = xhci->shared_hcd;
462
463                         if (hcd->state == HC_STATE_SUSPENDED)
464                                 usb_hcd_resume_root_hub(hcd);
465
466                         usb_hcd_poll_rh_status(hcd);
467                 }
468         }
469
470         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
471                 mod_timer(&xhci->comp_mode_recovery_timer,
472                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
473 }
474
475 /*
476  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
477  * that causes ports behind that hardware to enter compliance mode sometimes.
478  * The quirk creates a timer that polls every 2 seconds the link state of
479  * each host controller's port and recovers it by issuing a Warm reset
480  * if Compliance mode is detected, otherwise the port will become "dead" (no
481  * device connections or disconnections will be detected anymore). Becasue no
482  * status event is generated when entering compliance mode (per xhci spec),
483  * this quirk is needed on systems that have the failing hardware installed.
484  */
485 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
486 {
487         xhci->port_status_u0 = 0;
488         setup_timer(&xhci->comp_mode_recovery_timer,
489                     compliance_mode_recovery, (unsigned long)xhci);
490         xhci->comp_mode_recovery_timer.expires = jiffies +
491                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
492
493         set_timer_slack(&xhci->comp_mode_recovery_timer,
494                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
495         add_timer(&xhci->comp_mode_recovery_timer);
496         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                         "Compliance mode recovery timer initialized");
498 }
499
500 /*
501  * This function identifies the systems that have installed the SN65LVPE502CP
502  * USB3.0 re-driver and that need the Compliance Mode Quirk.
503  * Systems:
504  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
505  */
506 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
507 {
508         const char *dmi_product_name, *dmi_sys_vendor;
509
510         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
511         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
512         if (!dmi_product_name || !dmi_sys_vendor)
513                 return false;
514
515         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
516                 return false;
517
518         if (strstr(dmi_product_name, "Z420") ||
519                         strstr(dmi_product_name, "Z620") ||
520                         strstr(dmi_product_name, "Z820") ||
521                         strstr(dmi_product_name, "Z1 Workstation"))
522                 return true;
523
524         return false;
525 }
526
527 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
528 {
529         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
530 }
531
532
533 /*
534  * Initialize memory for HCD and xHC (one-time init).
535  *
536  * Program the PAGESIZE register, initialize the device context array, create
537  * device contexts (?), set up a command ring segment (or two?), create event
538  * ring (one for now).
539  */
540 int xhci_init(struct usb_hcd *hcd)
541 {
542         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
543         int retval = 0;
544
545         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
546         spin_lock_init(&xhci->lock);
547         if (xhci->hci_version == 0x95 && link_quirk) {
548                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
549                                 "QUIRK: Not clearing Link TRB chain bits.");
550                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
551         } else {
552                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
553                                 "xHCI doesn't need link TRB QUIRK");
554         }
555         retval = xhci_mem_init(xhci, GFP_KERNEL);
556         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
557
558         /* Initializing Compliance Mode Recovery Data If Needed */
559         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
560                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
561                 compliance_mode_recovery_timer_init(xhci);
562         }
563
564         return retval;
565 }
566
567 /*-------------------------------------------------------------------------*/
568
569
570 static int xhci_run_finished(struct xhci_hcd *xhci)
571 {
572         if (xhci_start(xhci)) {
573                 xhci_halt(xhci);
574                 return -ENODEV;
575         }
576         xhci->shared_hcd->state = HC_STATE_RUNNING;
577         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
578
579         if (xhci->quirks & XHCI_NEC_HOST)
580                 xhci_ring_cmd_db(xhci);
581
582         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583                         "Finished xhci_run for USB3 roothub");
584         return 0;
585 }
586
587 /*
588  * Start the HC after it was halted.
589  *
590  * This function is called by the USB core when the HC driver is added.
591  * Its opposite is xhci_stop().
592  *
593  * xhci_init() must be called once before this function can be called.
594  * Reset the HC, enable device slot contexts, program DCBAAP, and
595  * set command ring pointer and event ring pointer.
596  *
597  * Setup MSI-X vectors and enable interrupts.
598  */
599 int xhci_run(struct usb_hcd *hcd)
600 {
601         u32 temp;
602         u64 temp_64;
603         int ret;
604         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
605
606         /* Start the xHCI host controller running only after the USB 2.0 roothub
607          * is setup.
608          */
609
610         hcd->uses_new_polling = 1;
611         if (!usb_hcd_is_primary_hcd(hcd))
612                 return xhci_run_finished(xhci);
613
614         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
615
616         ret = xhci_try_enable_msi(hcd);
617         if (ret)
618                 return ret;
619
620         xhci_dbg(xhci, "Command ring memory map follows:\n");
621         xhci_debug_ring(xhci, xhci->cmd_ring);
622         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
623         xhci_dbg_cmd_ptrs(xhci);
624
625         xhci_dbg(xhci, "ERST memory map follows:\n");
626         xhci_dbg_erst(xhci, &xhci->erst);
627         xhci_dbg(xhci, "Event ring:\n");
628         xhci_debug_ring(xhci, xhci->event_ring);
629         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
630         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
631         temp_64 &= ~ERST_PTR_MASK;
632         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
634
635         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
636                         "// Set the interrupt modulation register");
637         temp = readl(&xhci->ir_set->irq_control);
638         temp &= ~ER_IRQ_INTERVAL_MASK;
639         /*
640          * the increment interval is 8 times as much as that defined
641          * in xHCI spec on MTK's controller
642          */
643         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
644         writel(temp, &xhci->ir_set->irq_control);
645
646         /* Set the HCD state before we enable the irqs */
647         temp = readl(&xhci->op_regs->command);
648         temp |= (CMD_EIE);
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
650                         "// Enable interrupts, cmd = 0x%x.", temp);
651         writel(temp, &xhci->op_regs->command);
652
653         temp = readl(&xhci->ir_set->irq_pending);
654         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
655                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
656                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
657         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
658         xhci_print_ir_set(xhci, 0);
659
660         if (xhci->quirks & XHCI_NEC_HOST) {
661                 struct xhci_command *command;
662                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
663                 if (!command)
664                         return -ENOMEM;
665                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
666                                 TRB_TYPE(TRB_NEC_GET_FW));
667         }
668         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
669                         "Finished xhci_run for USB2 roothub");
670         return 0;
671 }
672 EXPORT_SYMBOL_GPL(xhci_run);
673
674 /*
675  * Stop xHCI driver.
676  *
677  * This function is called by the USB core when the HC driver is removed.
678  * Its opposite is xhci_run().
679  *
680  * Disable device contexts, disable IRQs, and quiesce the HC.
681  * Reset the HC, finish any completed transactions, and cleanup memory.
682  */
683 void xhci_stop(struct usb_hcd *hcd)
684 {
685         u32 temp;
686         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
687
688         mutex_lock(&xhci->mutex);
689
690         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
691                 spin_lock_irq(&xhci->lock);
692
693                 xhci->xhc_state |= XHCI_STATE_HALTED;
694                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
695                 xhci_halt(xhci);
696                 xhci_reset(xhci);
697
698                 spin_unlock_irq(&xhci->lock);
699         }
700
701         if (!usb_hcd_is_primary_hcd(hcd)) {
702                 mutex_unlock(&xhci->mutex);
703                 return;
704         }
705
706         xhci_cleanup_msix(xhci);
707
708         /* Deleting Compliance Mode Recovery Timer */
709         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
710                         (!(xhci_all_ports_seen_u0(xhci)))) {
711                 del_timer_sync(&xhci->comp_mode_recovery_timer);
712                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
713                                 "%s: compliance mode recovery timer deleted",
714                                 __func__);
715         }
716
717         if (xhci->quirks & XHCI_AMD_PLL_FIX)
718                 usb_amd_dev_put();
719
720         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
721                         "// Disabling event ring interrupts");
722         temp = readl(&xhci->op_regs->status);
723         writel(temp & ~STS_EINT, &xhci->op_regs->status);
724         temp = readl(&xhci->ir_set->irq_pending);
725         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
726         xhci_print_ir_set(xhci, 0);
727
728         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
729         xhci_mem_cleanup(xhci);
730         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
731                         "xhci_stop completed - status = %x",
732                         readl(&xhci->op_regs->status));
733         mutex_unlock(&xhci->mutex);
734 }
735
736 /*
737  * Shutdown HC (not bus-specific)
738  *
739  * This is called when the machine is rebooting or halting.  We assume that the
740  * machine will be powered off, and the HC's internal state will be reset.
741  * Don't bother to free memory.
742  *
743  * This will only ever be called with the main usb_hcd (the USB3 roothub).
744  */
745 void xhci_shutdown(struct usb_hcd *hcd)
746 {
747         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
748
749         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
750                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
751
752         spin_lock_irq(&xhci->lock);
753         xhci_halt(xhci);
754         /* Workaround for spurious wakeups at shutdown with HSW */
755         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
756                 xhci_reset(xhci);
757         spin_unlock_irq(&xhci->lock);
758
759         xhci_cleanup_msix(xhci);
760
761         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762                         "xhci_shutdown completed - status = %x",
763                         readl(&xhci->op_regs->status));
764
765         /* Yet another workaround for spurious wakeups at shutdown with HSW */
766         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
767                 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
768 }
769
770 #ifdef CONFIG_PM
771 static void xhci_save_registers(struct xhci_hcd *xhci)
772 {
773         xhci->s3.command = readl(&xhci->op_regs->command);
774         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
775         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
776         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
777         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
778         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
779         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
780         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
781         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
782 }
783
784 static void xhci_restore_registers(struct xhci_hcd *xhci)
785 {
786         writel(xhci->s3.command, &xhci->op_regs->command);
787         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
788         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
789         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
790         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
791         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
792         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
793         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
794         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
795 }
796
797 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
798 {
799         u64     val_64;
800
801         /* step 2: initialize command ring buffer */
802         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
803         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
804                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
805                                       xhci->cmd_ring->dequeue) &
806                  (u64) ~CMD_RING_RSVD_BITS) |
807                 xhci->cmd_ring->cycle_state;
808         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
809                         "// Setting command ring address to 0x%llx",
810                         (long unsigned long) val_64);
811         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
812 }
813
814 /*
815  * The whole command ring must be cleared to zero when we suspend the host.
816  *
817  * The host doesn't save the command ring pointer in the suspend well, so we
818  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
819  * aligned, because of the reserved bits in the command ring dequeue pointer
820  * register.  Therefore, we can't just set the dequeue pointer back in the
821  * middle of the ring (TRBs are 16-byte aligned).
822  */
823 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
824 {
825         struct xhci_ring *ring;
826         struct xhci_segment *seg;
827
828         ring = xhci->cmd_ring;
829         seg = ring->deq_seg;
830         do {
831                 memset(seg->trbs, 0,
832                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
833                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
834                         cpu_to_le32(~TRB_CYCLE);
835                 seg = seg->next;
836         } while (seg != ring->deq_seg);
837
838         /* Reset the software enqueue and dequeue pointers */
839         ring->deq_seg = ring->first_seg;
840         ring->dequeue = ring->first_seg->trbs;
841         ring->enq_seg = ring->deq_seg;
842         ring->enqueue = ring->dequeue;
843
844         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
845         /*
846          * Ring is now zeroed, so the HW should look for change of ownership
847          * when the cycle bit is set to 1.
848          */
849         ring->cycle_state = 1;
850
851         /*
852          * Reset the hardware dequeue pointer.
853          * Yes, this will need to be re-written after resume, but we're paranoid
854          * and want to make sure the hardware doesn't access bogus memory
855          * because, say, the BIOS or an SMI started the host without changing
856          * the command ring pointers.
857          */
858         xhci_set_cmd_ring_deq(xhci);
859 }
860
861 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
862 {
863         int port_index;
864         __le32 __iomem **port_array;
865         unsigned long flags;
866         u32 t1, t2;
867
868         spin_lock_irqsave(&xhci->lock, flags);
869
870         /* disble usb3 ports Wake bits*/
871         port_index = xhci->num_usb3_ports;
872         port_array = xhci->usb3_ports;
873         while (port_index--) {
874                 t1 = readl(port_array[port_index]);
875                 t1 = xhci_port_state_to_neutral(t1);
876                 t2 = t1 & ~PORT_WAKE_BITS;
877                 if (t1 != t2)
878                         writel(t2, port_array[port_index]);
879         }
880
881         /* disble usb2 ports Wake bits*/
882         port_index = xhci->num_usb2_ports;
883         port_array = xhci->usb2_ports;
884         while (port_index--) {
885                 t1 = readl(port_array[port_index]);
886                 t1 = xhci_port_state_to_neutral(t1);
887                 t2 = t1 & ~PORT_WAKE_BITS;
888                 if (t1 != t2)
889                         writel(t2, port_array[port_index]);
890         }
891
892         spin_unlock_irqrestore(&xhci->lock, flags);
893 }
894
895 /*
896  * Stop HC (not bus-specific)
897  *
898  * This is called when the machine transition into S3/S4 mode.
899  *
900  */
901 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
902 {
903         int                     rc = 0;
904         unsigned int            delay = XHCI_MAX_HALT_USEC;
905         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
906         u32                     command;
907
908         if (!hcd->state)
909                 return 0;
910
911         if (hcd->state != HC_STATE_SUSPENDED ||
912                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
913                 return -EINVAL;
914
915         /* Clear root port wake on bits if wakeup not allowed. */
916         if (!do_wakeup)
917                 xhci_disable_port_wake_on_bits(xhci);
918
919         /* Don't poll the roothubs on bus suspend. */
920         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
921         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
922         del_timer_sync(&hcd->rh_timer);
923         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
924         del_timer_sync(&xhci->shared_hcd->rh_timer);
925
926         spin_lock_irq(&xhci->lock);
927         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
928         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
929         /* step 1: stop endpoint */
930         /* skipped assuming that port suspend has done */
931
932         /* step 2: clear Run/Stop bit */
933         command = readl(&xhci->op_regs->command);
934         command &= ~CMD_RUN;
935         writel(command, &xhci->op_regs->command);
936
937         /* Some chips from Fresco Logic need an extraordinary delay */
938         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
939
940         if (xhci_handshake(&xhci->op_regs->status,
941                       STS_HALT, STS_HALT, delay)) {
942                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
943                 spin_unlock_irq(&xhci->lock);
944                 return -ETIMEDOUT;
945         }
946         xhci_clear_command_ring(xhci);
947
948         /* step 3: save registers */
949         xhci_save_registers(xhci);
950
951         /* step 4: set CSS flag */
952         command = readl(&xhci->op_regs->command);
953         command |= CMD_CSS;
954         writel(command, &xhci->op_regs->command);
955         if (xhci_handshake(&xhci->op_regs->status,
956                                 STS_SAVE, 0, 10 * 1000)) {
957                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
958                 spin_unlock_irq(&xhci->lock);
959                 return -ETIMEDOUT;
960         }
961         spin_unlock_irq(&xhci->lock);
962
963         /*
964          * Deleting Compliance Mode Recovery Timer because the xHCI Host
965          * is about to be suspended.
966          */
967         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
968                         (!(xhci_all_ports_seen_u0(xhci)))) {
969                 del_timer_sync(&xhci->comp_mode_recovery_timer);
970                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
971                                 "%s: compliance mode recovery timer deleted",
972                                 __func__);
973         }
974
975         /* step 5: remove core well power */
976         /* synchronize irq when using MSI-X */
977         xhci_msix_sync_irqs(xhci);
978
979         return rc;
980 }
981 EXPORT_SYMBOL_GPL(xhci_suspend);
982
983 /*
984  * start xHC (not bus-specific)
985  *
986  * This is called when the machine transition from S3/S4 mode.
987  *
988  */
989 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
990 {
991         u32                     command, temp = 0, status;
992         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
993         struct usb_hcd          *secondary_hcd;
994         int                     retval = 0;
995         bool                    comp_timer_running = false;
996
997         if (!hcd->state)
998                 return 0;
999
1000         /* Wait a bit if either of the roothubs need to settle from the
1001          * transition into bus suspend.
1002          */
1003         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1004                         time_before(jiffies,
1005                                 xhci->bus_state[1].next_statechange))
1006                 msleep(100);
1007
1008         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1009         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1010
1011         spin_lock_irq(&xhci->lock);
1012         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1013                 hibernated = true;
1014
1015         if (!hibernated) {
1016                 /* step 1: restore register */
1017                 xhci_restore_registers(xhci);
1018                 /* step 2: initialize command ring buffer */
1019                 xhci_set_cmd_ring_deq(xhci);
1020                 /* step 3: restore state and start state*/
1021                 /* step 3: set CRS flag */
1022                 command = readl(&xhci->op_regs->command);
1023                 command |= CMD_CRS;
1024                 writel(command, &xhci->op_regs->command);
1025                 if (xhci_handshake(&xhci->op_regs->status,
1026                               STS_RESTORE, 0, 10 * 1000)) {
1027                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1028                         spin_unlock_irq(&xhci->lock);
1029                         return -ETIMEDOUT;
1030                 }
1031                 temp = readl(&xhci->op_regs->status);
1032         }
1033
1034         /* If restore operation fails, re-initialize the HC during resume */
1035         if ((temp & STS_SRE) || hibernated) {
1036
1037                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1038                                 !(xhci_all_ports_seen_u0(xhci))) {
1039                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1040                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1041                                 "Compliance Mode Recovery Timer deleted!");
1042                 }
1043
1044                 /* Let the USB core know _both_ roothubs lost power. */
1045                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1046                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1047
1048                 xhci_dbg(xhci, "Stop HCD\n");
1049                 xhci_halt(xhci);
1050                 xhci_reset(xhci);
1051                 spin_unlock_irq(&xhci->lock);
1052                 xhci_cleanup_msix(xhci);
1053
1054                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1055                 temp = readl(&xhci->op_regs->status);
1056                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1057                 temp = readl(&xhci->ir_set->irq_pending);
1058                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1059                 xhci_print_ir_set(xhci, 0);
1060
1061                 xhci_dbg(xhci, "cleaning up memory\n");
1062                 xhci_mem_cleanup(xhci);
1063                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1064                             readl(&xhci->op_regs->status));
1065
1066                 /* USB core calls the PCI reinit and start functions twice:
1067                  * first with the primary HCD, and then with the secondary HCD.
1068                  * If we don't do the same, the host will never be started.
1069                  */
1070                 if (!usb_hcd_is_primary_hcd(hcd))
1071                         secondary_hcd = hcd;
1072                 else
1073                         secondary_hcd = xhci->shared_hcd;
1074
1075                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1076                 retval = xhci_init(hcd->primary_hcd);
1077                 if (retval)
1078                         return retval;
1079                 comp_timer_running = true;
1080
1081                 xhci_dbg(xhci, "Start the primary HCD\n");
1082                 retval = xhci_run(hcd->primary_hcd);
1083                 if (!retval) {
1084                         xhci_dbg(xhci, "Start the secondary HCD\n");
1085                         retval = xhci_run(secondary_hcd);
1086                 }
1087                 hcd->state = HC_STATE_SUSPENDED;
1088                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1089                 goto done;
1090         }
1091
1092         /* step 4: set Run/Stop bit */
1093         command = readl(&xhci->op_regs->command);
1094         command |= CMD_RUN;
1095         writel(command, &xhci->op_regs->command);
1096         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1097                   0, 250 * 1000);
1098
1099         /* step 5: walk topology and initialize portsc,
1100          * portpmsc and portli
1101          */
1102         /* this is done in bus_resume */
1103
1104         /* step 6: restart each of the previously
1105          * Running endpoints by ringing their doorbells
1106          */
1107
1108         spin_unlock_irq(&xhci->lock);
1109
1110  done:
1111         if (retval == 0) {
1112                 /* Resume root hubs only when have pending events. */
1113                 status = readl(&xhci->op_regs->status);
1114                 if (status & STS_EINT) {
1115                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1116                         usb_hcd_resume_root_hub(hcd);
1117                 }
1118         }
1119
1120         /*
1121          * If system is subject to the Quirk, Compliance Mode Timer needs to
1122          * be re-initialized Always after a system resume. Ports are subject
1123          * to suffer the Compliance Mode issue again. It doesn't matter if
1124          * ports have entered previously to U0 before system's suspension.
1125          */
1126         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1127                 compliance_mode_recovery_timer_init(xhci);
1128
1129         /* Re-enable port polling. */
1130         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1131         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1132         usb_hcd_poll_rh_status(xhci->shared_hcd);
1133         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1134         usb_hcd_poll_rh_status(hcd);
1135
1136         return retval;
1137 }
1138 EXPORT_SYMBOL_GPL(xhci_resume);
1139 #endif  /* CONFIG_PM */
1140
1141 /*-------------------------------------------------------------------------*/
1142
1143 /**
1144  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1145  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1146  * value to right shift 1 for the bitmask.
1147  *
1148  * Index  = (epnum * 2) + direction - 1,
1149  * where direction = 0 for OUT, 1 for IN.
1150  * For control endpoints, the IN index is used (OUT index is unused), so
1151  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1152  */
1153 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1154 {
1155         unsigned int index;
1156         if (usb_endpoint_xfer_control(desc))
1157                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1158         else
1159                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1160                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1161         return index;
1162 }
1163
1164 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1165  * address from the XHCI endpoint index.
1166  */
1167 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1168 {
1169         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1170         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1171         return direction | number;
1172 }
1173
1174 /* Find the flag for this endpoint (for use in the control context).  Use the
1175  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1176  * bit 1, etc.
1177  */
1178 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1179 {
1180         return 1 << (xhci_get_endpoint_index(desc) + 1);
1181 }
1182
1183 /* Find the flag for this endpoint (for use in the control context).  Use the
1184  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1185  * bit 1, etc.
1186  */
1187 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1188 {
1189         return 1 << (ep_index + 1);
1190 }
1191
1192 /* Compute the last valid endpoint context index.  Basically, this is the
1193  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1194  * we find the most significant bit set in the added contexts flags.
1195  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1196  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1197  */
1198 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1199 {
1200         return fls(added_ctxs) - 1;
1201 }
1202
1203 /* Returns 1 if the arguments are OK;
1204  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1205  */
1206 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1207                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1208                 const char *func) {
1209         struct xhci_hcd *xhci;
1210         struct xhci_virt_device *virt_dev;
1211
1212         if (!hcd || (check_ep && !ep) || !udev) {
1213                 pr_debug("xHCI %s called with invalid args\n", func);
1214                 return -EINVAL;
1215         }
1216         if (!udev->parent) {
1217                 pr_debug("xHCI %s called for root hub\n", func);
1218                 return 0;
1219         }
1220
1221         xhci = hcd_to_xhci(hcd);
1222         if (check_virt_dev) {
1223                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1224                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1225                                         func);
1226                         return -EINVAL;
1227                 }
1228
1229                 virt_dev = xhci->devs[udev->slot_id];
1230                 if (virt_dev->udev != udev) {
1231                         xhci_dbg(xhci, "xHCI %s called with udev and "
1232                                           "virt_dev does not match\n", func);
1233                         return -EINVAL;
1234                 }
1235         }
1236
1237         if (xhci->xhc_state & XHCI_STATE_HALTED)
1238                 return -ENODEV;
1239
1240         return 1;
1241 }
1242
1243 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1244                 struct usb_device *udev, struct xhci_command *command,
1245                 bool ctx_change, bool must_succeed);
1246
1247 /*
1248  * Full speed devices may have a max packet size greater than 8 bytes, but the
1249  * USB core doesn't know that until it reads the first 8 bytes of the
1250  * descriptor.  If the usb_device's max packet size changes after that point,
1251  * we need to issue an evaluate context command and wait on it.
1252  */
1253 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1254                 unsigned int ep_index, struct urb *urb)
1255 {
1256         struct xhci_container_ctx *out_ctx;
1257         struct xhci_input_control_ctx *ctrl_ctx;
1258         struct xhci_ep_ctx *ep_ctx;
1259         struct xhci_command *command;
1260         int max_packet_size;
1261         int hw_max_packet_size;
1262         int ret = 0;
1263
1264         out_ctx = xhci->devs[slot_id]->out_ctx;
1265         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1266         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1267         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1268         if (hw_max_packet_size != max_packet_size) {
1269                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1270                                 "Max Packet Size for ep 0 changed.");
1271                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1272                                 "Max packet size in usb_device = %d",
1273                                 max_packet_size);
1274                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1275                                 "Max packet size in xHCI HW = %d",
1276                                 hw_max_packet_size);
1277                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1278                                 "Issuing evaluate context command.");
1279
1280                 /* Set up the input context flags for the command */
1281                 /* FIXME: This won't work if a non-default control endpoint
1282                  * changes max packet sizes.
1283                  */
1284
1285                 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1286                 if (!command)
1287                         return -ENOMEM;
1288
1289                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1290                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1291                 if (!ctrl_ctx) {
1292                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1293                                         __func__);
1294                         ret = -ENOMEM;
1295                         goto command_cleanup;
1296                 }
1297                 /* Set up the modified control endpoint 0 */
1298                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1299                                 xhci->devs[slot_id]->out_ctx, ep_index);
1300
1301                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1302                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1303                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1304
1305                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1306                 ctrl_ctx->drop_flags = 0;
1307
1308                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1309                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1310                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1311                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1312
1313                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1314                                 true, false);
1315
1316                 /* Clean up the input context for later use by bandwidth
1317                  * functions.
1318                  */
1319                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1320 command_cleanup:
1321                 kfree(command->completion);
1322                 kfree(command);
1323         }
1324         return ret;
1325 }
1326
1327 /*
1328  * non-error returns are a promise to giveback() the urb later
1329  * we drop ownership so next owner (or urb unlink) can get it
1330  */
1331 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1332 {
1333         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1334         struct xhci_td *buffer;
1335         unsigned long flags;
1336         int ret = 0;
1337         unsigned int slot_id, ep_index;
1338         struct urb_priv *urb_priv;
1339         int size, i;
1340
1341         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1342                                         true, true, __func__) <= 0)
1343                 return -EINVAL;
1344
1345         slot_id = urb->dev->slot_id;
1346         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1347
1348         if (!HCD_HW_ACCESSIBLE(hcd)) {
1349                 if (!in_interrupt())
1350                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1351                 ret = -ESHUTDOWN;
1352                 goto exit;
1353         }
1354
1355         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1356                 size = urb->number_of_packets;
1357         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1358             urb->transfer_buffer_length > 0 &&
1359             urb->transfer_flags & URB_ZERO_PACKET &&
1360             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1361                 size = 2;
1362         else
1363                 size = 1;
1364
1365         urb_priv = kzalloc(sizeof(struct urb_priv) +
1366                                   size * sizeof(struct xhci_td *), mem_flags);
1367         if (!urb_priv)
1368                 return -ENOMEM;
1369
1370         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1371         if (!buffer) {
1372                 kfree(urb_priv);
1373                 return -ENOMEM;
1374         }
1375
1376         for (i = 0; i < size; i++) {
1377                 urb_priv->td[i] = buffer;
1378                 buffer++;
1379         }
1380
1381         urb_priv->length = size;
1382         urb_priv->td_cnt = 0;
1383         urb->hcpriv = urb_priv;
1384
1385         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1386                 /* Check to see if the max packet size for the default control
1387                  * endpoint changed during FS device enumeration
1388                  */
1389                 if (urb->dev->speed == USB_SPEED_FULL) {
1390                         ret = xhci_check_maxpacket(xhci, slot_id,
1391                                         ep_index, urb);
1392                         if (ret < 0) {
1393                                 xhci_urb_free_priv(urb_priv);
1394                                 urb->hcpriv = NULL;
1395                                 return ret;
1396                         }
1397                 }
1398
1399                 /* We have a spinlock and interrupts disabled, so we must pass
1400                  * atomic context to this function, which may allocate memory.
1401                  */
1402                 spin_lock_irqsave(&xhci->lock, flags);
1403                 if (xhci->xhc_state & XHCI_STATE_DYING)
1404                         goto dying;
1405                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1406                                 slot_id, ep_index);
1407                 if (ret)
1408                         goto free_priv;
1409                 spin_unlock_irqrestore(&xhci->lock, flags);
1410         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1411                 spin_lock_irqsave(&xhci->lock, flags);
1412                 if (xhci->xhc_state & XHCI_STATE_DYING)
1413                         goto dying;
1414                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1415                                 EP_GETTING_STREAMS) {
1416                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1417                                         "is transitioning to using streams.\n");
1418                         ret = -EINVAL;
1419                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1420                                 EP_GETTING_NO_STREAMS) {
1421                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1422                                         "is transitioning to "
1423                                         "not having streams.\n");
1424                         ret = -EINVAL;
1425                 } else {
1426                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1427                                         slot_id, ep_index);
1428                 }
1429                 if (ret)
1430                         goto free_priv;
1431                 spin_unlock_irqrestore(&xhci->lock, flags);
1432         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1433                 spin_lock_irqsave(&xhci->lock, flags);
1434                 if (xhci->xhc_state & XHCI_STATE_DYING)
1435                         goto dying;
1436                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1437                                 slot_id, ep_index);
1438                 if (ret)
1439                         goto free_priv;
1440                 spin_unlock_irqrestore(&xhci->lock, flags);
1441         } else {
1442                 spin_lock_irqsave(&xhci->lock, flags);
1443                 if (xhci->xhc_state & XHCI_STATE_DYING)
1444                         goto dying;
1445                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1446                                 slot_id, ep_index);
1447                 if (ret)
1448                         goto free_priv;
1449                 spin_unlock_irqrestore(&xhci->lock, flags);
1450         }
1451 exit:
1452         return ret;
1453 dying:
1454         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1455                         "non-responsive xHCI host.\n",
1456                         urb->ep->desc.bEndpointAddress, urb);
1457         ret = -ESHUTDOWN;
1458 free_priv:
1459         xhci_urb_free_priv(urb_priv);
1460         urb->hcpriv = NULL;
1461         spin_unlock_irqrestore(&xhci->lock, flags);
1462         return ret;
1463 }
1464
1465 /*
1466  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1467  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1468  * should pick up where it left off in the TD, unless a Set Transfer Ring
1469  * Dequeue Pointer is issued.
1470  *
1471  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1472  * the ring.  Since the ring is a contiguous structure, they can't be physically
1473  * removed.  Instead, there are two options:
1474  *
1475  *  1) If the HC is in the middle of processing the URB to be canceled, we
1476  *     simply move the ring's dequeue pointer past those TRBs using the Set
1477  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1478  *     when drivers timeout on the last submitted URB and attempt to cancel.
1479  *
1480  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1481  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1482  *     HC will need to invalidate the any TRBs it has cached after the stop
1483  *     endpoint command, as noted in the xHCI 0.95 errata.
1484  *
1485  *  3) The TD may have completed by the time the Stop Endpoint Command
1486  *     completes, so software needs to handle that case too.
1487  *
1488  * This function should protect against the TD enqueueing code ringing the
1489  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1490  * It also needs to account for multiple cancellations on happening at the same
1491  * time for the same endpoint.
1492  *
1493  * Note that this function can be called in any context, or so says
1494  * usb_hcd_unlink_urb()
1495  */
1496 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1497 {
1498         unsigned long flags;
1499         int ret, i;
1500         u32 temp;
1501         struct xhci_hcd *xhci;
1502         struct urb_priv *urb_priv;
1503         struct xhci_td *td;
1504         unsigned int ep_index;
1505         struct xhci_ring *ep_ring;
1506         struct xhci_virt_ep *ep;
1507         struct xhci_command *command;
1508
1509         xhci = hcd_to_xhci(hcd);
1510         spin_lock_irqsave(&xhci->lock, flags);
1511         /* Make sure the URB hasn't completed or been unlinked already */
1512         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1513         if (ret || !urb->hcpriv)
1514                 goto done;
1515         temp = readl(&xhci->op_regs->status);
1516         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1517                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1518                                 "HW died, freeing TD.");
1519                 urb_priv = urb->hcpriv;
1520                 for (i = urb_priv->td_cnt;
1521                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1522                      i++) {
1523                         td = urb_priv->td[i];
1524                         if (!list_empty(&td->td_list))
1525                                 list_del_init(&td->td_list);
1526                         if (!list_empty(&td->cancelled_td_list))
1527                                 list_del_init(&td->cancelled_td_list);
1528                 }
1529
1530                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1531                 spin_unlock_irqrestore(&xhci->lock, flags);
1532                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1533                 xhci_urb_free_priv(urb_priv);
1534                 return ret;
1535         }
1536         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1537                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
1538                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1539                                 "Ep 0x%x: URB %p to be canceled on "
1540                                 "non-responsive xHCI host.",
1541                                 urb->ep->desc.bEndpointAddress, urb);
1542                 /* Let the stop endpoint command watchdog timer (which set this
1543                  * state) finish cleaning up the endpoint TD lists.  We must
1544                  * have caught it in the middle of dropping a lock and giving
1545                  * back an URB.
1546                  */
1547                 goto done;
1548         }
1549
1550         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1551         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1552         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1553         if (!ep_ring) {
1554                 ret = -EINVAL;
1555                 goto done;
1556         }
1557
1558         urb_priv = urb->hcpriv;
1559         i = urb_priv->td_cnt;
1560         if (i < urb_priv->length)
1561                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1562                                 "Cancel URB %p, dev %s, ep 0x%x, "
1563                                 "starting at offset 0x%llx",
1564                                 urb, urb->dev->devpath,
1565                                 urb->ep->desc.bEndpointAddress,
1566                                 (unsigned long long) xhci_trb_virt_to_dma(
1567                                         urb_priv->td[i]->start_seg,
1568                                         urb_priv->td[i]->first_trb));
1569
1570         for (; i < urb_priv->length; i++) {
1571                 td = urb_priv->td[i];
1572                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1573         }
1574
1575         /* Queue a stop endpoint command, but only if this is
1576          * the first cancellation to be handled.
1577          */
1578         if (!(ep->ep_state & EP_HALT_PENDING)) {
1579                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1580                 if (!command) {
1581                         ret = -ENOMEM;
1582                         goto done;
1583                 }
1584                 ep->ep_state |= EP_HALT_PENDING;
1585                 ep->stop_cmds_pending++;
1586                 ep->stop_cmd_timer.expires = jiffies +
1587                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1588                 add_timer(&ep->stop_cmd_timer);
1589                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1590                                          ep_index, 0);
1591                 xhci_ring_cmd_db(xhci);
1592         }
1593 done:
1594         spin_unlock_irqrestore(&xhci->lock, flags);
1595         return ret;
1596 }
1597
1598 /* Drop an endpoint from a new bandwidth configuration for this device.
1599  * Only one call to this function is allowed per endpoint before
1600  * check_bandwidth() or reset_bandwidth() must be called.
1601  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1602  * add the endpoint to the schedule with possibly new parameters denoted by a
1603  * different endpoint descriptor in usb_host_endpoint.
1604  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1605  * not allowed.
1606  *
1607  * The USB core will not allow URBs to be queued to an endpoint that is being
1608  * disabled, so there's no need for mutual exclusion to protect
1609  * the xhci->devs[slot_id] structure.
1610  */
1611 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1612                 struct usb_host_endpoint *ep)
1613 {
1614         struct xhci_hcd *xhci;
1615         struct xhci_container_ctx *in_ctx, *out_ctx;
1616         struct xhci_input_control_ctx *ctrl_ctx;
1617         unsigned int ep_index;
1618         struct xhci_ep_ctx *ep_ctx;
1619         u32 drop_flag;
1620         u32 new_add_flags, new_drop_flags;
1621         int ret;
1622
1623         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1624         if (ret <= 0)
1625                 return ret;
1626         xhci = hcd_to_xhci(hcd);
1627         if (xhci->xhc_state & XHCI_STATE_DYING)
1628                 return -ENODEV;
1629
1630         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1631         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1632         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1633                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1634                                 __func__, drop_flag);
1635                 return 0;
1636         }
1637
1638         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1639         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1640         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1641         if (!ctrl_ctx) {
1642                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1643                                 __func__);
1644                 return 0;
1645         }
1646
1647         ep_index = xhci_get_endpoint_index(&ep->desc);
1648         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1649         /* If the HC already knows the endpoint is disabled,
1650          * or the HCD has noted it is disabled, ignore this request
1651          */
1652         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1653              cpu_to_le32(EP_STATE_DISABLED)) ||
1654             le32_to_cpu(ctrl_ctx->drop_flags) &
1655             xhci_get_endpoint_flag(&ep->desc)) {
1656                 /* Do not warn when called after a usb_device_reset */
1657                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1658                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1659                                   __func__, ep);
1660                 return 0;
1661         }
1662
1663         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1664         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1665
1666         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1667         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1668
1669         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1670
1671         if (xhci->quirks & XHCI_MTK_HOST)
1672                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1673
1674         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1675                         (unsigned int) ep->desc.bEndpointAddress,
1676                         udev->slot_id,
1677                         (unsigned int) new_drop_flags,
1678                         (unsigned int) new_add_flags);
1679         return 0;
1680 }
1681
1682 /* Add an endpoint to a new possible bandwidth configuration for this device.
1683  * Only one call to this function is allowed per endpoint before
1684  * check_bandwidth() or reset_bandwidth() must be called.
1685  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1686  * add the endpoint to the schedule with possibly new parameters denoted by a
1687  * different endpoint descriptor in usb_host_endpoint.
1688  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1689  * not allowed.
1690  *
1691  * The USB core will not allow URBs to be queued to an endpoint until the
1692  * configuration or alt setting is installed in the device, so there's no need
1693  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1694  */
1695 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1696                 struct usb_host_endpoint *ep)
1697 {
1698         struct xhci_hcd *xhci;
1699         struct xhci_container_ctx *in_ctx;
1700         unsigned int ep_index;
1701         struct xhci_input_control_ctx *ctrl_ctx;
1702         u32 added_ctxs;
1703         u32 new_add_flags, new_drop_flags;
1704         struct xhci_virt_device *virt_dev;
1705         int ret = 0;
1706
1707         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1708         if (ret <= 0) {
1709                 /* So we won't queue a reset ep command for a root hub */
1710                 ep->hcpriv = NULL;
1711                 return ret;
1712         }
1713         xhci = hcd_to_xhci(hcd);
1714         if (xhci->xhc_state & XHCI_STATE_DYING)
1715                 return -ENODEV;
1716
1717         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1718         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1719                 /* FIXME when we have to issue an evaluate endpoint command to
1720                  * deal with ep0 max packet size changing once we get the
1721                  * descriptors
1722                  */
1723                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1724                                 __func__, added_ctxs);
1725                 return 0;
1726         }
1727
1728         virt_dev = xhci->devs[udev->slot_id];
1729         in_ctx = virt_dev->in_ctx;
1730         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1731         if (!ctrl_ctx) {
1732                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1733                                 __func__);
1734                 return 0;
1735         }
1736
1737         ep_index = xhci_get_endpoint_index(&ep->desc);
1738         /* If this endpoint is already in use, and the upper layers are trying
1739          * to add it again without dropping it, reject the addition.
1740          */
1741         if (virt_dev->eps[ep_index].ring &&
1742                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1743                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1744                                 "without dropping it.\n",
1745                                 (unsigned int) ep->desc.bEndpointAddress);
1746                 return -EINVAL;
1747         }
1748
1749         /* If the HCD has already noted the endpoint is enabled,
1750          * ignore this request.
1751          */
1752         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1753                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1754                                 __func__, ep);
1755                 return 0;
1756         }
1757
1758         /*
1759          * Configuration and alternate setting changes must be done in
1760          * process context, not interrupt context (or so documenation
1761          * for usb_set_interface() and usb_set_configuration() claim).
1762          */
1763         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1764                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1765                                 __func__, ep->desc.bEndpointAddress);
1766                 return -ENOMEM;
1767         }
1768
1769         if (xhci->quirks & XHCI_MTK_HOST) {
1770                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1771                 if (ret < 0) {
1772                         xhci_free_or_cache_endpoint_ring(xhci,
1773                                 virt_dev, ep_index);
1774                         return ret;
1775                 }
1776         }
1777
1778         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1779         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1780
1781         /* If xhci_endpoint_disable() was called for this endpoint, but the
1782          * xHC hasn't been notified yet through the check_bandwidth() call,
1783          * this re-adds a new state for the endpoint from the new endpoint
1784          * descriptors.  We must drop and re-add this endpoint, so we leave the
1785          * drop flags alone.
1786          */
1787         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1788
1789         /* Store the usb_device pointer for later use */
1790         ep->hcpriv = udev;
1791
1792         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1793                         (unsigned int) ep->desc.bEndpointAddress,
1794                         udev->slot_id,
1795                         (unsigned int) new_drop_flags,
1796                         (unsigned int) new_add_flags);
1797         return 0;
1798 }
1799
1800 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1801 {
1802         struct xhci_input_control_ctx *ctrl_ctx;
1803         struct xhci_ep_ctx *ep_ctx;
1804         struct xhci_slot_ctx *slot_ctx;
1805         int i;
1806
1807         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1808         if (!ctrl_ctx) {
1809                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1810                                 __func__);
1811                 return;
1812         }
1813
1814         /* When a device's add flag and drop flag are zero, any subsequent
1815          * configure endpoint command will leave that endpoint's state
1816          * untouched.  Make sure we don't leave any old state in the input
1817          * endpoint contexts.
1818          */
1819         ctrl_ctx->drop_flags = 0;
1820         ctrl_ctx->add_flags = 0;
1821         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1822         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1823         /* Endpoint 0 is always valid */
1824         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1825         for (i = 1; i < 31; ++i) {
1826                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1827                 ep_ctx->ep_info = 0;
1828                 ep_ctx->ep_info2 = 0;
1829                 ep_ctx->deq = 0;
1830                 ep_ctx->tx_info = 0;
1831         }
1832 }
1833
1834 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1835                 struct usb_device *udev, u32 *cmd_status)
1836 {
1837         int ret;
1838
1839         switch (*cmd_status) {
1840         case COMP_CMD_ABORT:
1841         case COMP_CMD_STOP:
1842                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1843                 ret = -ETIME;
1844                 break;
1845         case COMP_ENOMEM:
1846                 dev_warn(&udev->dev,
1847                          "Not enough host controller resources for new device state.\n");
1848                 ret = -ENOMEM;
1849                 /* FIXME: can we allocate more resources for the HC? */
1850                 break;
1851         case COMP_BW_ERR:
1852         case COMP_2ND_BW_ERR:
1853                 dev_warn(&udev->dev,
1854                          "Not enough bandwidth for new device state.\n");
1855                 ret = -ENOSPC;
1856                 /* FIXME: can we go back to the old state? */
1857                 break;
1858         case COMP_TRB_ERR:
1859                 /* the HCD set up something wrong */
1860                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1861                                 "add flag = 1, "
1862                                 "and endpoint is not disabled.\n");
1863                 ret = -EINVAL;
1864                 break;
1865         case COMP_DEV_ERR:
1866                 dev_warn(&udev->dev,
1867                          "ERROR: Incompatible device for endpoint configure command.\n");
1868                 ret = -ENODEV;
1869                 break;
1870         case COMP_SUCCESS:
1871                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1872                                 "Successful Endpoint Configure command");
1873                 ret = 0;
1874                 break;
1875         default:
1876                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1877                                 *cmd_status);
1878                 ret = -EINVAL;
1879                 break;
1880         }
1881         return ret;
1882 }
1883
1884 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1885                 struct usb_device *udev, u32 *cmd_status)
1886 {
1887         int ret;
1888         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1889
1890         switch (*cmd_status) {
1891         case COMP_CMD_ABORT:
1892         case COMP_CMD_STOP:
1893                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1894                 ret = -ETIME;
1895                 break;
1896         case COMP_EINVAL:
1897                 dev_warn(&udev->dev,
1898                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1899                 ret = -EINVAL;
1900                 break;
1901         case COMP_EBADSLT:
1902                 dev_warn(&udev->dev,
1903                         "WARN: slot not enabled for evaluate context command.\n");
1904                 ret = -EINVAL;
1905                 break;
1906         case COMP_CTX_STATE:
1907                 dev_warn(&udev->dev,
1908                         "WARN: invalid context state for evaluate context command.\n");
1909                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1910                 ret = -EINVAL;
1911                 break;
1912         case COMP_DEV_ERR:
1913                 dev_warn(&udev->dev,
1914                         "ERROR: Incompatible device for evaluate context command.\n");
1915                 ret = -ENODEV;
1916                 break;
1917         case COMP_MEL_ERR:
1918                 /* Max Exit Latency too large error */
1919                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1920                 ret = -EINVAL;
1921                 break;
1922         case COMP_SUCCESS:
1923                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1924                                 "Successful evaluate context command");
1925                 ret = 0;
1926                 break;
1927         default:
1928                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1929                         *cmd_status);
1930                 ret = -EINVAL;
1931                 break;
1932         }
1933         return ret;
1934 }
1935
1936 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1937                 struct xhci_input_control_ctx *ctrl_ctx)
1938 {
1939         u32 valid_add_flags;
1940         u32 valid_drop_flags;
1941
1942         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1943          * (bit 1).  The default control endpoint is added during the Address
1944          * Device command and is never removed until the slot is disabled.
1945          */
1946         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1947         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1948
1949         /* Use hweight32 to count the number of ones in the add flags, or
1950          * number of endpoints added.  Don't count endpoints that are changed
1951          * (both added and dropped).
1952          */
1953         return hweight32(valid_add_flags) -
1954                 hweight32(valid_add_flags & valid_drop_flags);
1955 }
1956
1957 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1958                 struct xhci_input_control_ctx *ctrl_ctx)
1959 {
1960         u32 valid_add_flags;
1961         u32 valid_drop_flags;
1962
1963         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1964         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1965
1966         return hweight32(valid_drop_flags) -
1967                 hweight32(valid_add_flags & valid_drop_flags);
1968 }
1969
1970 /*
1971  * We need to reserve the new number of endpoints before the configure endpoint
1972  * command completes.  We can't subtract the dropped endpoints from the number
1973  * of active endpoints until the command completes because we can oversubscribe
1974  * the host in this case:
1975  *
1976  *  - the first configure endpoint command drops more endpoints than it adds
1977  *  - a second configure endpoint command that adds more endpoints is queued
1978  *  - the first configure endpoint command fails, so the config is unchanged
1979  *  - the second command may succeed, even though there isn't enough resources
1980  *
1981  * Must be called with xhci->lock held.
1982  */
1983 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1984                 struct xhci_input_control_ctx *ctrl_ctx)
1985 {
1986         u32 added_eps;
1987
1988         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1989         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1990                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1991                                 "Not enough ep ctxs: "
1992                                 "%u active, need to add %u, limit is %u.",
1993                                 xhci->num_active_eps, added_eps,
1994                                 xhci->limit_active_eps);
1995                 return -ENOMEM;
1996         }
1997         xhci->num_active_eps += added_eps;
1998         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1999                         "Adding %u ep ctxs, %u now active.", added_eps,
2000                         xhci->num_active_eps);
2001         return 0;
2002 }
2003
2004 /*
2005  * The configure endpoint was failed by the xHC for some other reason, so we
2006  * need to revert the resources that failed configuration would have used.
2007  *
2008  * Must be called with xhci->lock held.
2009  */
2010 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2011                 struct xhci_input_control_ctx *ctrl_ctx)
2012 {
2013         u32 num_failed_eps;
2014
2015         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2016         xhci->num_active_eps -= num_failed_eps;
2017         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2018                         "Removing %u failed ep ctxs, %u now active.",
2019                         num_failed_eps,
2020                         xhci->num_active_eps);
2021 }
2022
2023 /*
2024  * Now that the command has completed, clean up the active endpoint count by
2025  * subtracting out the endpoints that were dropped (but not changed).
2026  *
2027  * Must be called with xhci->lock held.
2028  */
2029 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2030                 struct xhci_input_control_ctx *ctrl_ctx)
2031 {
2032         u32 num_dropped_eps;
2033
2034         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2035         xhci->num_active_eps -= num_dropped_eps;
2036         if (num_dropped_eps)
2037                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2038                                 "Removing %u dropped ep ctxs, %u now active.",
2039                                 num_dropped_eps,
2040                                 xhci->num_active_eps);
2041 }
2042
2043 static unsigned int xhci_get_block_size(struct usb_device *udev)
2044 {
2045         switch (udev->speed) {
2046         case USB_SPEED_LOW:
2047         case USB_SPEED_FULL:
2048                 return FS_BLOCK;
2049         case USB_SPEED_HIGH:
2050                 return HS_BLOCK;
2051         case USB_SPEED_SUPER:
2052         case USB_SPEED_SUPER_PLUS:
2053                 return SS_BLOCK;
2054         case USB_SPEED_UNKNOWN:
2055         case USB_SPEED_WIRELESS:
2056         default:
2057                 /* Should never happen */
2058                 return 1;
2059         }
2060 }
2061
2062 static unsigned int
2063 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2064 {
2065         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2066                 return LS_OVERHEAD;
2067         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2068                 return FS_OVERHEAD;
2069         return HS_OVERHEAD;
2070 }
2071
2072 /* If we are changing a LS/FS device under a HS hub,
2073  * make sure (if we are activating a new TT) that the HS bus has enough
2074  * bandwidth for this new TT.
2075  */
2076 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2077                 struct xhci_virt_device *virt_dev,
2078                 int old_active_eps)
2079 {
2080         struct xhci_interval_bw_table *bw_table;
2081         struct xhci_tt_bw_info *tt_info;
2082
2083         /* Find the bandwidth table for the root port this TT is attached to. */
2084         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2085         tt_info = virt_dev->tt_info;
2086         /* If this TT already had active endpoints, the bandwidth for this TT
2087          * has already been added.  Removing all periodic endpoints (and thus
2088          * making the TT enactive) will only decrease the bandwidth used.
2089          */
2090         if (old_active_eps)
2091                 return 0;
2092         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2093                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2094                         return -ENOMEM;
2095                 return 0;
2096         }
2097         /* Not sure why we would have no new active endpoints...
2098          *
2099          * Maybe because of an Evaluate Context change for a hub update or a
2100          * control endpoint 0 max packet size change?
2101          * FIXME: skip the bandwidth calculation in that case.
2102          */
2103         return 0;
2104 }
2105
2106 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2107                 struct xhci_virt_device *virt_dev)
2108 {
2109         unsigned int bw_reserved;
2110
2111         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2112         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2113                 return -ENOMEM;
2114
2115         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2116         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2117                 return -ENOMEM;
2118
2119         return 0;
2120 }
2121
2122 /*
2123  * This algorithm is a very conservative estimate of the worst-case scheduling
2124  * scenario for any one interval.  The hardware dynamically schedules the
2125  * packets, so we can't tell which microframe could be the limiting factor in
2126  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2127  *
2128  * Obviously, we can't solve an NP complete problem to find the minimum worst
2129  * case scenario.  Instead, we come up with an estimate that is no less than
2130  * the worst case bandwidth used for any one microframe, but may be an
2131  * over-estimate.
2132  *
2133  * We walk the requirements for each endpoint by interval, starting with the
2134  * smallest interval, and place packets in the schedule where there is only one
2135  * possible way to schedule packets for that interval.  In order to simplify
2136  * this algorithm, we record the largest max packet size for each interval, and
2137  * assume all packets will be that size.
2138  *
2139  * For interval 0, we obviously must schedule all packets for each interval.
2140  * The bandwidth for interval 0 is just the amount of data to be transmitted
2141  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2142  * the number of packets).
2143  *
2144  * For interval 1, we have two possible microframes to schedule those packets
2145  * in.  For this algorithm, if we can schedule the same number of packets for
2146  * each possible scheduling opportunity (each microframe), we will do so.  The
2147  * remaining number of packets will be saved to be transmitted in the gaps in
2148  * the next interval's scheduling sequence.
2149  *
2150  * As we move those remaining packets to be scheduled with interval 2 packets,
2151  * we have to double the number of remaining packets to transmit.  This is
2152  * because the intervals are actually powers of 2, and we would be transmitting
2153  * the previous interval's packets twice in this interval.  We also have to be
2154  * sure that when we look at the largest max packet size for this interval, we
2155  * also look at the largest max packet size for the remaining packets and take
2156  * the greater of the two.
2157  *
2158  * The algorithm continues to evenly distribute packets in each scheduling
2159  * opportunity, and push the remaining packets out, until we get to the last
2160  * interval.  Then those packets and their associated overhead are just added
2161  * to the bandwidth used.
2162  */
2163 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2164                 struct xhci_virt_device *virt_dev,
2165                 int old_active_eps)
2166 {
2167         unsigned int bw_reserved;
2168         unsigned int max_bandwidth;
2169         unsigned int bw_used;
2170         unsigned int block_size;
2171         struct xhci_interval_bw_table *bw_table;
2172         unsigned int packet_size = 0;
2173         unsigned int overhead = 0;
2174         unsigned int packets_transmitted = 0;
2175         unsigned int packets_remaining = 0;
2176         unsigned int i;
2177
2178         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2179                 return xhci_check_ss_bw(xhci, virt_dev);
2180
2181         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2182                 max_bandwidth = HS_BW_LIMIT;
2183                 /* Convert percent of bus BW reserved to blocks reserved */
2184                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2185         } else {
2186                 max_bandwidth = FS_BW_LIMIT;
2187                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2188         }
2189
2190         bw_table = virt_dev->bw_table;
2191         /* We need to translate the max packet size and max ESIT payloads into
2192          * the units the hardware uses.
2193          */
2194         block_size = xhci_get_block_size(virt_dev->udev);
2195
2196         /* If we are manipulating a LS/FS device under a HS hub, double check
2197          * that the HS bus has enough bandwidth if we are activing a new TT.
2198          */
2199         if (virt_dev->tt_info) {
2200                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2201                                 "Recalculating BW for rootport %u",
2202                                 virt_dev->real_port);
2203                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2204                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2205                                         "newly activated TT.\n");
2206                         return -ENOMEM;
2207                 }
2208                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2209                                 "Recalculating BW for TT slot %u port %u",
2210                                 virt_dev->tt_info->slot_id,
2211                                 virt_dev->tt_info->ttport);
2212         } else {
2213                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2214                                 "Recalculating BW for rootport %u",
2215                                 virt_dev->real_port);
2216         }
2217
2218         /* Add in how much bandwidth will be used for interval zero, or the
2219          * rounded max ESIT payload + number of packets * largest overhead.
2220          */
2221         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2222                 bw_table->interval_bw[0].num_packets *
2223                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2224
2225         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2226                 unsigned int bw_added;
2227                 unsigned int largest_mps;
2228                 unsigned int interval_overhead;
2229
2230                 /*
2231                  * How many packets could we transmit in this interval?
2232                  * If packets didn't fit in the previous interval, we will need
2233                  * to transmit that many packets twice within this interval.
2234                  */
2235                 packets_remaining = 2 * packets_remaining +
2236                         bw_table->interval_bw[i].num_packets;
2237
2238                 /* Find the largest max packet size of this or the previous
2239                  * interval.
2240                  */
2241                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2242                         largest_mps = 0;
2243                 else {
2244                         struct xhci_virt_ep *virt_ep;
2245                         struct list_head *ep_entry;
2246
2247                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2248                         virt_ep = list_entry(ep_entry,
2249                                         struct xhci_virt_ep, bw_endpoint_list);
2250                         /* Convert to blocks, rounding up */
2251                         largest_mps = DIV_ROUND_UP(
2252                                         virt_ep->bw_info.max_packet_size,
2253                                         block_size);
2254                 }
2255                 if (largest_mps > packet_size)
2256                         packet_size = largest_mps;
2257
2258                 /* Use the larger overhead of this or the previous interval. */
2259                 interval_overhead = xhci_get_largest_overhead(
2260                                 &bw_table->interval_bw[i]);
2261                 if (interval_overhead > overhead)
2262                         overhead = interval_overhead;
2263
2264                 /* How many packets can we evenly distribute across
2265                  * (1 << (i + 1)) possible scheduling opportunities?
2266                  */
2267                 packets_transmitted = packets_remaining >> (i + 1);
2268
2269                 /* Add in the bandwidth used for those scheduled packets */
2270                 bw_added = packets_transmitted * (overhead + packet_size);
2271
2272                 /* How many packets do we have remaining to transmit? */
2273                 packets_remaining = packets_remaining % (1 << (i + 1));
2274
2275                 /* What largest max packet size should those packets have? */
2276                 /* If we've transmitted all packets, don't carry over the
2277                  * largest packet size.
2278                  */
2279                 if (packets_remaining == 0) {
2280                         packet_size = 0;
2281                         overhead = 0;
2282                 } else if (packets_transmitted > 0) {
2283                         /* Otherwise if we do have remaining packets, and we've
2284                          * scheduled some packets in this interval, take the
2285                          * largest max packet size from endpoints with this
2286                          * interval.
2287                          */
2288                         packet_size = largest_mps;
2289                         overhead = interval_overhead;
2290                 }
2291                 /* Otherwise carry over packet_size and overhead from the last
2292                  * time we had a remainder.
2293                  */
2294                 bw_used += bw_added;
2295                 if (bw_used > max_bandwidth) {
2296                         xhci_warn(xhci, "Not enough bandwidth. "
2297                                         "Proposed: %u, Max: %u\n",
2298                                 bw_used, max_bandwidth);
2299                         return -ENOMEM;
2300                 }
2301         }
2302         /*
2303          * Ok, we know we have some packets left over after even-handedly
2304          * scheduling interval 15.  We don't know which microframes they will
2305          * fit into, so we over-schedule and say they will be scheduled every
2306          * microframe.
2307          */
2308         if (packets_remaining > 0)
2309                 bw_used += overhead + packet_size;
2310
2311         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2312                 unsigned int port_index = virt_dev->real_port - 1;
2313
2314                 /* OK, we're manipulating a HS device attached to a
2315                  * root port bandwidth domain.  Include the number of active TTs
2316                  * in the bandwidth used.
2317                  */
2318                 bw_used += TT_HS_OVERHEAD *
2319                         xhci->rh_bw[port_index].num_active_tts;
2320         }
2321
2322         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2323                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2324                 "Available: %u " "percent",
2325                 bw_used, max_bandwidth, bw_reserved,
2326                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2327                 max_bandwidth);
2328
2329         bw_used += bw_reserved;
2330         if (bw_used > max_bandwidth) {
2331                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2332                                 bw_used, max_bandwidth);
2333                 return -ENOMEM;
2334         }
2335
2336         bw_table->bw_used = bw_used;
2337         return 0;
2338 }
2339
2340 static bool xhci_is_async_ep(unsigned int ep_type)
2341 {
2342         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2343                                         ep_type != ISOC_IN_EP &&
2344                                         ep_type != INT_IN_EP);
2345 }
2346
2347 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2348 {
2349         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2350 }
2351
2352 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2353 {
2354         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2355
2356         if (ep_bw->ep_interval == 0)
2357                 return SS_OVERHEAD_BURST +
2358                         (ep_bw->mult * ep_bw->num_packets *
2359                                         (SS_OVERHEAD + mps));
2360         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2361                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2362                                 1 << ep_bw->ep_interval);
2363
2364 }
2365
2366 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2367                 struct xhci_bw_info *ep_bw,
2368                 struct xhci_interval_bw_table *bw_table,
2369                 struct usb_device *udev,
2370                 struct xhci_virt_ep *virt_ep,
2371                 struct xhci_tt_bw_info *tt_info)
2372 {
2373         struct xhci_interval_bw *interval_bw;
2374         int normalized_interval;
2375
2376         if (xhci_is_async_ep(ep_bw->type))
2377                 return;
2378
2379         if (udev->speed >= USB_SPEED_SUPER) {
2380                 if (xhci_is_sync_in_ep(ep_bw->type))
2381                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2382                                 xhci_get_ss_bw_consumed(ep_bw);
2383                 else
2384                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2385                                 xhci_get_ss_bw_consumed(ep_bw);
2386                 return;
2387         }
2388
2389         /* SuperSpeed endpoints never get added to intervals in the table, so
2390          * this check is only valid for HS/FS/LS devices.
2391          */
2392         if (list_empty(&virt_ep->bw_endpoint_list))
2393                 return;
2394         /* For LS/FS devices, we need to translate the interval expressed in
2395          * microframes to frames.
2396          */
2397         if (udev->speed == USB_SPEED_HIGH)
2398                 normalized_interval = ep_bw->ep_interval;
2399         else
2400                 normalized_interval = ep_bw->ep_interval - 3;
2401
2402         if (normalized_interval == 0)
2403                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2404         interval_bw = &bw_table->interval_bw[normalized_interval];
2405         interval_bw->num_packets -= ep_bw->num_packets;
2406         switch (udev->speed) {
2407         case USB_SPEED_LOW:
2408                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2409                 break;
2410         case USB_SPEED_FULL:
2411                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2412                 break;
2413         case USB_SPEED_HIGH:
2414                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2415                 break;
2416         case USB_SPEED_SUPER:
2417         case USB_SPEED_SUPER_PLUS:
2418         case USB_SPEED_UNKNOWN:
2419         case USB_SPEED_WIRELESS:
2420                 /* Should never happen because only LS/FS/HS endpoints will get
2421                  * added to the endpoint list.
2422                  */
2423                 return;
2424         }
2425         if (tt_info)
2426                 tt_info->active_eps -= 1;
2427         list_del_init(&virt_ep->bw_endpoint_list);
2428 }
2429
2430 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2431                 struct xhci_bw_info *ep_bw,
2432                 struct xhci_interval_bw_table *bw_table,
2433                 struct usb_device *udev,
2434                 struct xhci_virt_ep *virt_ep,
2435                 struct xhci_tt_bw_info *tt_info)
2436 {
2437         struct xhci_interval_bw *interval_bw;
2438         struct xhci_virt_ep *smaller_ep;
2439         int normalized_interval;
2440
2441         if (xhci_is_async_ep(ep_bw->type))
2442                 return;
2443
2444         if (udev->speed == USB_SPEED_SUPER) {
2445                 if (xhci_is_sync_in_ep(ep_bw->type))
2446                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2447                                 xhci_get_ss_bw_consumed(ep_bw);
2448                 else
2449                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2450                                 xhci_get_ss_bw_consumed(ep_bw);
2451                 return;
2452         }
2453
2454         /* For LS/FS devices, we need to translate the interval expressed in
2455          * microframes to frames.
2456          */
2457         if (udev->speed == USB_SPEED_HIGH)
2458                 normalized_interval = ep_bw->ep_interval;
2459         else
2460                 normalized_interval = ep_bw->ep_interval - 3;
2461
2462         if (normalized_interval == 0)
2463                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2464         interval_bw = &bw_table->interval_bw[normalized_interval];
2465         interval_bw->num_packets += ep_bw->num_packets;
2466         switch (udev->speed) {
2467         case USB_SPEED_LOW:
2468                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2469                 break;
2470         case USB_SPEED_FULL:
2471                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2472                 break;
2473         case USB_SPEED_HIGH:
2474                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2475                 break;
2476         case USB_SPEED_SUPER:
2477         case USB_SPEED_SUPER_PLUS:
2478         case USB_SPEED_UNKNOWN:
2479         case USB_SPEED_WIRELESS:
2480                 /* Should never happen because only LS/FS/HS endpoints will get
2481                  * added to the endpoint list.
2482                  */
2483                 return;
2484         }
2485
2486         if (tt_info)
2487                 tt_info->active_eps += 1;
2488         /* Insert the endpoint into the list, largest max packet size first. */
2489         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2490                         bw_endpoint_list) {
2491                 if (ep_bw->max_packet_size >=
2492                                 smaller_ep->bw_info.max_packet_size) {
2493                         /* Add the new ep before the smaller endpoint */
2494                         list_add_tail(&virt_ep->bw_endpoint_list,
2495                                         &smaller_ep->bw_endpoint_list);
2496                         return;
2497                 }
2498         }
2499         /* Add the new endpoint at the end of the list. */
2500         list_add_tail(&virt_ep->bw_endpoint_list,
2501                         &interval_bw->endpoints);
2502 }
2503
2504 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2505                 struct xhci_virt_device *virt_dev,
2506                 int old_active_eps)
2507 {
2508         struct xhci_root_port_bw_info *rh_bw_info;
2509         if (!virt_dev->tt_info)
2510                 return;
2511
2512         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2513         if (old_active_eps == 0 &&
2514                                 virt_dev->tt_info->active_eps != 0) {
2515                 rh_bw_info->num_active_tts += 1;
2516                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2517         } else if (old_active_eps != 0 &&
2518                                 virt_dev->tt_info->active_eps == 0) {
2519                 rh_bw_info->num_active_tts -= 1;
2520                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2521         }
2522 }
2523
2524 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2525                 struct xhci_virt_device *virt_dev,
2526                 struct xhci_container_ctx *in_ctx)
2527 {
2528         struct xhci_bw_info ep_bw_info[31];
2529         int i;
2530         struct xhci_input_control_ctx *ctrl_ctx;
2531         int old_active_eps = 0;
2532
2533         if (virt_dev->tt_info)
2534                 old_active_eps = virt_dev->tt_info->active_eps;
2535
2536         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2537         if (!ctrl_ctx) {
2538                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2539                                 __func__);
2540                 return -ENOMEM;
2541         }
2542
2543         for (i = 0; i < 31; i++) {
2544                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2545                         continue;
2546
2547                 /* Make a copy of the BW info in case we need to revert this */
2548                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2549                                 sizeof(ep_bw_info[i]));
2550                 /* Drop the endpoint from the interval table if the endpoint is
2551                  * being dropped or changed.
2552                  */
2553                 if (EP_IS_DROPPED(ctrl_ctx, i))
2554                         xhci_drop_ep_from_interval_table(xhci,
2555                                         &virt_dev->eps[i].bw_info,
2556                                         virt_dev->bw_table,
2557                                         virt_dev->udev,
2558                                         &virt_dev->eps[i],
2559                                         virt_dev->tt_info);
2560         }
2561         /* Overwrite the information stored in the endpoints' bw_info */
2562         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2563         for (i = 0; i < 31; i++) {
2564                 /* Add any changed or added endpoints to the interval table */
2565                 if (EP_IS_ADDED(ctrl_ctx, i))
2566                         xhci_add_ep_to_interval_table(xhci,
2567                                         &virt_dev->eps[i].bw_info,
2568                                         virt_dev->bw_table,
2569                                         virt_dev->udev,
2570                                         &virt_dev->eps[i],
2571                                         virt_dev->tt_info);
2572         }
2573
2574         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2575                 /* Ok, this fits in the bandwidth we have.
2576                  * Update the number of active TTs.
2577                  */
2578                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2579                 return 0;
2580         }
2581
2582         /* We don't have enough bandwidth for this, revert the stored info. */
2583         for (i = 0; i < 31; i++) {
2584                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2585                         continue;
2586
2587                 /* Drop the new copies of any added or changed endpoints from
2588                  * the interval table.
2589                  */
2590                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2591                         xhci_drop_ep_from_interval_table(xhci,
2592                                         &virt_dev->eps[i].bw_info,
2593                                         virt_dev->bw_table,
2594                                         virt_dev->udev,
2595                                         &virt_dev->eps[i],
2596                                         virt_dev->tt_info);
2597                 }
2598                 /* Revert the endpoint back to its old information */
2599                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2600                                 sizeof(ep_bw_info[i]));
2601                 /* Add any changed or dropped endpoints back into the table */
2602                 if (EP_IS_DROPPED(ctrl_ctx, i))
2603                         xhci_add_ep_to_interval_table(xhci,
2604                                         &virt_dev->eps[i].bw_info,
2605                                         virt_dev->bw_table,
2606                                         virt_dev->udev,
2607                                         &virt_dev->eps[i],
2608                                         virt_dev->tt_info);
2609         }
2610         return -ENOMEM;
2611 }
2612
2613
2614 /* Issue a configure endpoint command or evaluate context command
2615  * and wait for it to finish.
2616  */
2617 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2618                 struct usb_device *udev,
2619                 struct xhci_command *command,
2620                 bool ctx_change, bool must_succeed)
2621 {
2622         int ret;
2623         unsigned long flags;
2624         struct xhci_input_control_ctx *ctrl_ctx;
2625         struct xhci_virt_device *virt_dev;
2626
2627         if (!command)
2628                 return -EINVAL;
2629
2630         spin_lock_irqsave(&xhci->lock, flags);
2631         virt_dev = xhci->devs[udev->slot_id];
2632
2633         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2634         if (!ctrl_ctx) {
2635                 spin_unlock_irqrestore(&xhci->lock, flags);
2636                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2637                                 __func__);
2638                 return -ENOMEM;
2639         }
2640
2641         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2642                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2643                 spin_unlock_irqrestore(&xhci->lock, flags);
2644                 xhci_warn(xhci, "Not enough host resources, "
2645                                 "active endpoint contexts = %u\n",
2646                                 xhci->num_active_eps);
2647                 return -ENOMEM;
2648         }
2649         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2650             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2651                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2652                         xhci_free_host_resources(xhci, ctrl_ctx);
2653                 spin_unlock_irqrestore(&xhci->lock, flags);
2654                 xhci_warn(xhci, "Not enough bandwidth\n");
2655                 return -ENOMEM;
2656         }
2657
2658         if (!ctx_change)
2659                 ret = xhci_queue_configure_endpoint(xhci, command,
2660                                 command->in_ctx->dma,
2661                                 udev->slot_id, must_succeed);
2662         else
2663                 ret = xhci_queue_evaluate_context(xhci, command,
2664                                 command->in_ctx->dma,
2665                                 udev->slot_id, must_succeed);
2666         if (ret < 0) {
2667                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2668                         xhci_free_host_resources(xhci, ctrl_ctx);
2669                 spin_unlock_irqrestore(&xhci->lock, flags);
2670                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2671                                 "FIXME allocate a new ring segment");
2672                 return -ENOMEM;
2673         }
2674         xhci_ring_cmd_db(xhci);
2675         spin_unlock_irqrestore(&xhci->lock, flags);
2676
2677         /* Wait for the configure endpoint command to complete */
2678         wait_for_completion(command->completion);
2679
2680         if (!ctx_change)
2681                 ret = xhci_configure_endpoint_result(xhci, udev,
2682                                                      &command->status);
2683         else
2684                 ret = xhci_evaluate_context_result(xhci, udev,
2685                                                    &command->status);
2686
2687         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2688                 spin_lock_irqsave(&xhci->lock, flags);
2689                 /* If the command failed, remove the reserved resources.
2690                  * Otherwise, clean up the estimate to include dropped eps.
2691                  */
2692                 if (ret)
2693                         xhci_free_host_resources(xhci, ctrl_ctx);
2694                 else
2695                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2696                 spin_unlock_irqrestore(&xhci->lock, flags);
2697         }
2698         return ret;
2699 }
2700
2701 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2702         struct xhci_virt_device *vdev, int i)
2703 {
2704         struct xhci_virt_ep *ep = &vdev->eps[i];
2705
2706         if (ep->ep_state & EP_HAS_STREAMS) {
2707                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2708                                 xhci_get_endpoint_address(i));
2709                 xhci_free_stream_info(xhci, ep->stream_info);
2710                 ep->stream_info = NULL;
2711                 ep->ep_state &= ~EP_HAS_STREAMS;
2712         }
2713 }
2714
2715 /* Called after one or more calls to xhci_add_endpoint() or
2716  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2717  * to call xhci_reset_bandwidth().
2718  *
2719  * Since we are in the middle of changing either configuration or
2720  * installing a new alt setting, the USB core won't allow URBs to be
2721  * enqueued for any endpoint on the old config or interface.  Nothing
2722  * else should be touching the xhci->devs[slot_id] structure, so we
2723  * don't need to take the xhci->lock for manipulating that.
2724  */
2725 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2726 {
2727         int i;
2728         int ret = 0;
2729         struct xhci_hcd *xhci;
2730         struct xhci_virt_device *virt_dev;
2731         struct xhci_input_control_ctx *ctrl_ctx;
2732         struct xhci_slot_ctx *slot_ctx;
2733         struct xhci_command *command;
2734
2735         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2736         if (ret <= 0)
2737                 return ret;
2738         xhci = hcd_to_xhci(hcd);
2739         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2740                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2741                 return -ENODEV;
2742
2743         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2744         virt_dev = xhci->devs[udev->slot_id];
2745
2746         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2747         if (!command)
2748                 return -ENOMEM;
2749
2750         command->in_ctx = virt_dev->in_ctx;
2751
2752         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2753         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2754         if (!ctrl_ctx) {
2755                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2756                                 __func__);
2757                 ret = -ENOMEM;
2758                 goto command_cleanup;
2759         }
2760         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2761         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2762         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2763
2764         /* Don't issue the command if there's no endpoints to update. */
2765         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2766             ctrl_ctx->drop_flags == 0) {
2767                 ret = 0;
2768                 goto command_cleanup;
2769         }
2770         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2771         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2772         for (i = 31; i >= 1; i--) {
2773                 __le32 le32 = cpu_to_le32(BIT(i));
2774
2775                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2776                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2777                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2778                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2779                         break;
2780                 }
2781         }
2782         xhci_dbg(xhci, "New Input Control Context:\n");
2783         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2784                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2785
2786         ret = xhci_configure_endpoint(xhci, udev, command,
2787                         false, false);
2788         if (ret)
2789                 /* Callee should call reset_bandwidth() */
2790                 goto command_cleanup;
2791
2792         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2793         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2794                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2795
2796         /* Free any rings that were dropped, but not changed. */
2797         for (i = 1; i < 31; ++i) {
2798                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2799                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2800                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2801                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2802                 }
2803         }
2804         xhci_zero_in_ctx(xhci, virt_dev);
2805         /*
2806          * Install any rings for completely new endpoints or changed endpoints,
2807          * and free or cache any old rings from changed endpoints.
2808          */
2809         for (i = 1; i < 31; ++i) {
2810                 if (!virt_dev->eps[i].new_ring)
2811                         continue;
2812                 /* Only cache or free the old ring if it exists.
2813                  * It may not if this is the first add of an endpoint.
2814                  */
2815                 if (virt_dev->eps[i].ring) {
2816                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2817                 }
2818                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2819                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2820                 virt_dev->eps[i].new_ring = NULL;
2821         }
2822 command_cleanup:
2823         kfree(command->completion);
2824         kfree(command);
2825
2826         return ret;
2827 }
2828
2829 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2830 {
2831         struct xhci_hcd *xhci;
2832         struct xhci_virt_device *virt_dev;
2833         int i, ret;
2834
2835         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2836         if (ret <= 0)
2837                 return;
2838         xhci = hcd_to_xhci(hcd);
2839
2840         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2841         virt_dev = xhci->devs[udev->slot_id];
2842         /* Free any rings allocated for added endpoints */
2843         for (i = 0; i < 31; ++i) {
2844                 if (virt_dev->eps[i].new_ring) {
2845                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2846                         virt_dev->eps[i].new_ring = NULL;
2847                 }
2848         }
2849         xhci_zero_in_ctx(xhci, virt_dev);
2850 }
2851
2852 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2853                 struct xhci_container_ctx *in_ctx,
2854                 struct xhci_container_ctx *out_ctx,
2855                 struct xhci_input_control_ctx *ctrl_ctx,
2856                 u32 add_flags, u32 drop_flags)
2857 {
2858         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2859         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2860         xhci_slot_copy(xhci, in_ctx, out_ctx);
2861         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2862
2863         xhci_dbg(xhci, "Input Context:\n");
2864         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2865 }
2866
2867 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2868                 unsigned int slot_id, unsigned int ep_index,
2869                 struct xhci_dequeue_state *deq_state)
2870 {
2871         struct xhci_input_control_ctx *ctrl_ctx;
2872         struct xhci_container_ctx *in_ctx;
2873         struct xhci_ep_ctx *ep_ctx;
2874         u32 added_ctxs;
2875         dma_addr_t addr;
2876
2877         in_ctx = xhci->devs[slot_id]->in_ctx;
2878         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2879         if (!ctrl_ctx) {
2880                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2881                                 __func__);
2882                 return;
2883         }
2884
2885         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2886                         xhci->devs[slot_id]->out_ctx, ep_index);
2887         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2888         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2889                         deq_state->new_deq_ptr);
2890         if (addr == 0) {
2891                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2892                                 "reset ep command\n");
2893                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2894                                 deq_state->new_deq_seg,
2895                                 deq_state->new_deq_ptr);
2896                 return;
2897         }
2898         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2899
2900         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2901         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2902                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2903                         added_ctxs, added_ctxs);
2904 }
2905
2906 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2907                         unsigned int ep_index, struct xhci_td *td)
2908 {
2909         struct xhci_dequeue_state deq_state;
2910         struct xhci_virt_ep *ep;
2911         struct usb_device *udev = td->urb->dev;
2912
2913         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2914                         "Cleaning up stalled endpoint ring");
2915         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2916         /* We need to move the HW's dequeue pointer past this TD,
2917          * or it will attempt to resend it on the next doorbell ring.
2918          */
2919         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2920                         ep_index, ep->stopped_stream, td, &deq_state);
2921
2922         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2923                 return;
2924
2925         /* HW with the reset endpoint quirk will use the saved dequeue state to
2926          * issue a configure endpoint command later.
2927          */
2928         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2929                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2930                                 "Queueing new dequeue state");
2931                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2932                                 ep_index, ep->stopped_stream, &deq_state);
2933         } else {
2934                 /* Better hope no one uses the input context between now and the
2935                  * reset endpoint completion!
2936                  * XXX: No idea how this hardware will react when stream rings
2937                  * are enabled.
2938                  */
2939                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2940                                 "Setting up input context for "
2941                                 "configure endpoint command");
2942                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2943                                 ep_index, &deq_state);
2944         }
2945 }
2946
2947 /* Called when clearing halted device. The core should have sent the control
2948  * message to clear the device halt condition. The host side of the halt should
2949  * already be cleared with a reset endpoint command issued when the STALL tx
2950  * event was received.
2951  *
2952  * Context: in_interrupt
2953  */
2954
2955 void xhci_endpoint_reset(struct usb_hcd *hcd,
2956                 struct usb_host_endpoint *ep)
2957 {
2958         struct xhci_hcd *xhci;
2959
2960         xhci = hcd_to_xhci(hcd);
2961
2962         /*
2963          * We might need to implement the config ep cmd in xhci 4.8.1 note:
2964          * The Reset Endpoint Command may only be issued to endpoints in the
2965          * Halted state. If software wishes reset the Data Toggle or Sequence
2966          * Number of an endpoint that isn't in the Halted state, then software
2967          * may issue a Configure Endpoint Command with the Drop and Add bits set
2968          * for the target endpoint. that is in the Stopped state.
2969          */
2970
2971         /* For now just print debug to follow the situation */
2972         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
2973                  ep->desc.bEndpointAddress);
2974 }
2975
2976 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2977                 struct usb_device *udev, struct usb_host_endpoint *ep,
2978                 unsigned int slot_id)
2979 {
2980         int ret;
2981         unsigned int ep_index;
2982         unsigned int ep_state;
2983
2984         if (!ep)
2985                 return -EINVAL;
2986         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2987         if (ret <= 0)
2988                 return -EINVAL;
2989         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2990                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2991                                 " descriptor for ep 0x%x does not support streams\n",
2992                                 ep->desc.bEndpointAddress);
2993                 return -EINVAL;
2994         }
2995
2996         ep_index = xhci_get_endpoint_index(&ep->desc);
2997         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2998         if (ep_state & EP_HAS_STREAMS ||
2999                         ep_state & EP_GETTING_STREAMS) {
3000                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3001                                 "already has streams set up.\n",
3002                                 ep->desc.bEndpointAddress);
3003                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3004                                 "dynamic stream context array reallocation.\n");
3005                 return -EINVAL;
3006         }
3007         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3008                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3009                                 "endpoint 0x%x; URBs are pending.\n",
3010                                 ep->desc.bEndpointAddress);
3011                 return -EINVAL;
3012         }
3013         return 0;
3014 }
3015
3016 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3017                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3018 {
3019         unsigned int max_streams;
3020
3021         /* The stream context array size must be a power of two */
3022         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3023         /*
3024          * Find out how many primary stream array entries the host controller
3025          * supports.  Later we may use secondary stream arrays (similar to 2nd
3026          * level page entries), but that's an optional feature for xHCI host
3027          * controllers. xHCs must support at least 4 stream IDs.
3028          */
3029         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3030         if (*num_stream_ctxs > max_streams) {
3031                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3032                                 max_streams);
3033                 *num_stream_ctxs = max_streams;
3034                 *num_streams = max_streams;
3035         }
3036 }
3037
3038 /* Returns an error code if one of the endpoint already has streams.
3039  * This does not change any data structures, it only checks and gathers
3040  * information.
3041  */
3042 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3043                 struct usb_device *udev,
3044                 struct usb_host_endpoint **eps, unsigned int num_eps,
3045                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3046 {
3047         unsigned int max_streams;
3048         unsigned int endpoint_flag;
3049         int i;
3050         int ret;
3051
3052         for (i = 0; i < num_eps; i++) {
3053                 ret = xhci_check_streams_endpoint(xhci, udev,
3054                                 eps[i], udev->slot_id);
3055                 if (ret < 0)
3056                         return ret;
3057
3058                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3059                 if (max_streams < (*num_streams - 1)) {
3060                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3061                                         eps[i]->desc.bEndpointAddress,
3062                                         max_streams);
3063                         *num_streams = max_streams+1;
3064                 }
3065
3066                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3067                 if (*changed_ep_bitmask & endpoint_flag)
3068                         return -EINVAL;
3069                 *changed_ep_bitmask |= endpoint_flag;
3070         }
3071         return 0;
3072 }
3073
3074 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3075                 struct usb_device *udev,
3076                 struct usb_host_endpoint **eps, unsigned int num_eps)
3077 {
3078         u32 changed_ep_bitmask = 0;
3079         unsigned int slot_id;
3080         unsigned int ep_index;
3081         unsigned int ep_state;
3082         int i;
3083
3084         slot_id = udev->slot_id;
3085         if (!xhci->devs[slot_id])
3086                 return 0;
3087
3088         for (i = 0; i < num_eps; i++) {
3089                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3090                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3091                 /* Are streams already being freed for the endpoint? */
3092                 if (ep_state & EP_GETTING_NO_STREAMS) {
3093                         xhci_warn(xhci, "WARN Can't disable streams for "
3094                                         "endpoint 0x%x, "
3095                                         "streams are being disabled already\n",
3096                                         eps[i]->desc.bEndpointAddress);
3097                         return 0;
3098                 }
3099                 /* Are there actually any streams to free? */
3100                 if (!(ep_state & EP_HAS_STREAMS) &&
3101                                 !(ep_state & EP_GETTING_STREAMS)) {
3102                         xhci_warn(xhci, "WARN Can't disable streams for "
3103                                         "endpoint 0x%x, "
3104                                         "streams are already disabled!\n",
3105                                         eps[i]->desc.bEndpointAddress);
3106                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3107                                         "with non-streams endpoint\n");
3108                         return 0;
3109                 }
3110                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3111         }
3112         return changed_ep_bitmask;
3113 }
3114
3115 /*
3116  * The USB device drivers use this function (through the HCD interface in USB
3117  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3118  * coordinate mass storage command queueing across multiple endpoints (basically
3119  * a stream ID == a task ID).
3120  *
3121  * Setting up streams involves allocating the same size stream context array
3122  * for each endpoint and issuing a configure endpoint command for all endpoints.
3123  *
3124  * Don't allow the call to succeed if one endpoint only supports one stream
3125  * (which means it doesn't support streams at all).
3126  *
3127  * Drivers may get less stream IDs than they asked for, if the host controller
3128  * hardware or endpoints claim they can't support the number of requested
3129  * stream IDs.
3130  */
3131 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3132                 struct usb_host_endpoint **eps, unsigned int num_eps,
3133                 unsigned int num_streams, gfp_t mem_flags)
3134 {
3135         int i, ret;
3136         struct xhci_hcd *xhci;
3137         struct xhci_virt_device *vdev;
3138         struct xhci_command *config_cmd;
3139         struct xhci_input_control_ctx *ctrl_ctx;
3140         unsigned int ep_index;
3141         unsigned int num_stream_ctxs;
3142         unsigned int max_packet;
3143         unsigned long flags;
3144         u32 changed_ep_bitmask = 0;
3145
3146         if (!eps)
3147                 return -EINVAL;
3148
3149         /* Add one to the number of streams requested to account for
3150          * stream 0 that is reserved for xHCI usage.
3151          */
3152         num_streams += 1;
3153         xhci = hcd_to_xhci(hcd);
3154         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3155                         num_streams);
3156
3157         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3158         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3159                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3160                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3161                 return -ENOSYS;
3162         }
3163
3164         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3165         if (!config_cmd) {
3166                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3167                 return -ENOMEM;
3168         }
3169         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3170         if (!ctrl_ctx) {
3171                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3172                                 __func__);
3173                 xhci_free_command(xhci, config_cmd);
3174                 return -ENOMEM;
3175         }
3176
3177         /* Check to make sure all endpoints are not already configured for
3178          * streams.  While we're at it, find the maximum number of streams that
3179          * all the endpoints will support and check for duplicate endpoints.
3180          */
3181         spin_lock_irqsave(&xhci->lock, flags);
3182         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3183                         num_eps, &num_streams, &changed_ep_bitmask);
3184         if (ret < 0) {
3185                 xhci_free_command(xhci, config_cmd);
3186                 spin_unlock_irqrestore(&xhci->lock, flags);
3187                 return ret;
3188         }
3189         if (num_streams <= 1) {
3190                 xhci_warn(xhci, "WARN: endpoints can't handle "
3191                                 "more than one stream.\n");
3192                 xhci_free_command(xhci, config_cmd);
3193                 spin_unlock_irqrestore(&xhci->lock, flags);
3194                 return -EINVAL;
3195         }
3196         vdev = xhci->devs[udev->slot_id];
3197         /* Mark each endpoint as being in transition, so
3198          * xhci_urb_enqueue() will reject all URBs.
3199          */
3200         for (i = 0; i < num_eps; i++) {
3201                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3202                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3203         }
3204         spin_unlock_irqrestore(&xhci->lock, flags);
3205
3206         /* Setup internal data structures and allocate HW data structures for
3207          * streams (but don't install the HW structures in the input context
3208          * until we're sure all memory allocation succeeded).
3209          */
3210         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3211         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3212                         num_stream_ctxs, num_streams);
3213
3214         for (i = 0; i < num_eps; i++) {
3215                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3216                 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc));
3217                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3218                                 num_stream_ctxs,
3219                                 num_streams,
3220                                 max_packet, mem_flags);
3221                 if (!vdev->eps[ep_index].stream_info)
3222                         goto cleanup;
3223                 /* Set maxPstreams in endpoint context and update deq ptr to
3224                  * point to stream context array. FIXME
3225                  */
3226         }
3227
3228         /* Set up the input context for a configure endpoint command. */
3229         for (i = 0; i < num_eps; i++) {
3230                 struct xhci_ep_ctx *ep_ctx;
3231
3232                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3233                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3234
3235                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3236                                 vdev->out_ctx, ep_index);
3237                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3238                                 vdev->eps[ep_index].stream_info);
3239         }
3240         /* Tell the HW to drop its old copy of the endpoint context info
3241          * and add the updated copy from the input context.
3242          */
3243         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3244                         vdev->out_ctx, ctrl_ctx,
3245                         changed_ep_bitmask, changed_ep_bitmask);
3246
3247         /* Issue and wait for the configure endpoint command */
3248         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3249                         false, false);
3250
3251         /* xHC rejected the configure endpoint command for some reason, so we
3252          * leave the old ring intact and free our internal streams data
3253          * structure.
3254          */
3255         if (ret < 0)
3256                 goto cleanup;
3257
3258         spin_lock_irqsave(&xhci->lock, flags);
3259         for (i = 0; i < num_eps; i++) {
3260                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3261                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3262                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3263                          udev->slot_id, ep_index);
3264                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3265         }
3266         xhci_free_command(xhci, config_cmd);
3267         spin_unlock_irqrestore(&xhci->lock, flags);
3268
3269         /* Subtract 1 for stream 0, which drivers can't use */
3270         return num_streams - 1;
3271
3272 cleanup:
3273         /* If it didn't work, free the streams! */
3274         for (i = 0; i < num_eps; i++) {
3275                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3276                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3277                 vdev->eps[ep_index].stream_info = NULL;
3278                 /* FIXME Unset maxPstreams in endpoint context and
3279                  * update deq ptr to point to normal string ring.
3280                  */
3281                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3282                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3283                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3284         }
3285         xhci_free_command(xhci, config_cmd);
3286         return -ENOMEM;
3287 }
3288
3289 /* Transition the endpoint from using streams to being a "normal" endpoint
3290  * without streams.
3291  *
3292  * Modify the endpoint context state, submit a configure endpoint command,
3293  * and free all endpoint rings for streams if that completes successfully.
3294  */
3295 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3296                 struct usb_host_endpoint **eps, unsigned int num_eps,
3297                 gfp_t mem_flags)
3298 {
3299         int i, ret;
3300         struct xhci_hcd *xhci;
3301         struct xhci_virt_device *vdev;
3302         struct xhci_command *command;
3303         struct xhci_input_control_ctx *ctrl_ctx;
3304         unsigned int ep_index;
3305         unsigned long flags;
3306         u32 changed_ep_bitmask;
3307
3308         xhci = hcd_to_xhci(hcd);
3309         vdev = xhci->devs[udev->slot_id];
3310
3311         /* Set up a configure endpoint command to remove the streams rings */
3312         spin_lock_irqsave(&xhci->lock, flags);
3313         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3314                         udev, eps, num_eps);
3315         if (changed_ep_bitmask == 0) {
3316                 spin_unlock_irqrestore(&xhci->lock, flags);
3317                 return -EINVAL;
3318         }
3319
3320         /* Use the xhci_command structure from the first endpoint.  We may have
3321          * allocated too many, but the driver may call xhci_free_streams() for
3322          * each endpoint it grouped into one call to xhci_alloc_streams().
3323          */
3324         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3325         command = vdev->eps[ep_index].stream_info->free_streams_command;
3326         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3327         if (!ctrl_ctx) {
3328                 spin_unlock_irqrestore(&xhci->lock, flags);
3329                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3330                                 __func__);
3331                 return -EINVAL;
3332         }
3333
3334         for (i = 0; i < num_eps; i++) {
3335                 struct xhci_ep_ctx *ep_ctx;
3336
3337                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3338                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3339                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3340                         EP_GETTING_NO_STREAMS;
3341
3342                 xhci_endpoint_copy(xhci, command->in_ctx,
3343                                 vdev->out_ctx, ep_index);
3344                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3345                                 &vdev->eps[ep_index]);
3346         }
3347         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3348                         vdev->out_ctx, ctrl_ctx,
3349                         changed_ep_bitmask, changed_ep_bitmask);
3350         spin_unlock_irqrestore(&xhci->lock, flags);
3351
3352         /* Issue and wait for the configure endpoint command,
3353          * which must succeed.
3354          */
3355         ret = xhci_configure_endpoint(xhci, udev, command,
3356                         false, true);
3357
3358         /* xHC rejected the configure endpoint command for some reason, so we
3359          * leave the streams rings intact.
3360          */
3361         if (ret < 0)
3362                 return ret;
3363
3364         spin_lock_irqsave(&xhci->lock, flags);
3365         for (i = 0; i < num_eps; i++) {
3366                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3367                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3368                 vdev->eps[ep_index].stream_info = NULL;
3369                 /* FIXME Unset maxPstreams in endpoint context and
3370                  * update deq ptr to point to normal string ring.
3371                  */
3372                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3373                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3374         }
3375         spin_unlock_irqrestore(&xhci->lock, flags);
3376
3377         return 0;
3378 }
3379
3380 /*
3381  * Deletes endpoint resources for endpoints that were active before a Reset
3382  * Device command, or a Disable Slot command.  The Reset Device command leaves
3383  * the control endpoint intact, whereas the Disable Slot command deletes it.
3384  *
3385  * Must be called with xhci->lock held.
3386  */
3387 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3388         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3389 {
3390         int i;
3391         unsigned int num_dropped_eps = 0;
3392         unsigned int drop_flags = 0;
3393
3394         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3395                 if (virt_dev->eps[i].ring) {
3396                         drop_flags |= 1 << i;
3397                         num_dropped_eps++;
3398                 }
3399         }
3400         xhci->num_active_eps -= num_dropped_eps;
3401         if (num_dropped_eps)
3402                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3403                                 "Dropped %u ep ctxs, flags = 0x%x, "
3404                                 "%u now active.",
3405                                 num_dropped_eps, drop_flags,
3406                                 xhci->num_active_eps);
3407 }
3408
3409 /*
3410  * This submits a Reset Device Command, which will set the device state to 0,
3411  * set the device address to 0, and disable all the endpoints except the default
3412  * control endpoint.  The USB core should come back and call
3413  * xhci_address_device(), and then re-set up the configuration.  If this is
3414  * called because of a usb_reset_and_verify_device(), then the old alternate
3415  * settings will be re-installed through the normal bandwidth allocation
3416  * functions.
3417  *
3418  * Wait for the Reset Device command to finish.  Remove all structures
3419  * associated with the endpoints that were disabled.  Clear the input device
3420  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3421  *
3422  * If the virt_dev to be reset does not exist or does not match the udev,
3423  * it means the device is lost, possibly due to the xHC restore error and
3424  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3425  * re-allocate the device.
3426  */
3427 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3428 {
3429         int ret, i;
3430         unsigned long flags;
3431         struct xhci_hcd *xhci;
3432         unsigned int slot_id;
3433         struct xhci_virt_device *virt_dev;
3434         struct xhci_command *reset_device_cmd;
3435         int last_freed_endpoint;
3436         struct xhci_slot_ctx *slot_ctx;
3437         int old_active_eps = 0;
3438
3439         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3440         if (ret <= 0)
3441                 return ret;
3442         xhci = hcd_to_xhci(hcd);
3443         slot_id = udev->slot_id;
3444         virt_dev = xhci->devs[slot_id];
3445         if (!virt_dev) {
3446                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3447                                 "not exist. Re-allocate the device\n", slot_id);
3448                 ret = xhci_alloc_dev(hcd, udev);
3449                 if (ret == 1)
3450                         return 0;
3451                 else
3452                         return -EINVAL;
3453         }
3454
3455         if (virt_dev->tt_info)
3456                 old_active_eps = virt_dev->tt_info->active_eps;
3457
3458         if (virt_dev->udev != udev) {
3459                 /* If the virt_dev and the udev does not match, this virt_dev
3460                  * may belong to another udev.
3461                  * Re-allocate the device.
3462                  */
3463                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3464                                 "not match the udev. Re-allocate the device\n",
3465                                 slot_id);
3466                 ret = xhci_alloc_dev(hcd, udev);
3467                 if (ret == 1)
3468                         return 0;
3469                 else
3470                         return -EINVAL;
3471         }
3472
3473         /* If device is not setup, there is no point in resetting it */
3474         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3475         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3476                                                 SLOT_STATE_DISABLED)
3477                 return 0;
3478
3479         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3480         /* Allocate the command structure that holds the struct completion.
3481          * Assume we're in process context, since the normal device reset
3482          * process has to wait for the device anyway.  Storage devices are
3483          * reset as part of error handling, so use GFP_NOIO instead of
3484          * GFP_KERNEL.
3485          */
3486         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3487         if (!reset_device_cmd) {
3488                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3489                 return -ENOMEM;
3490         }
3491
3492         /* Attempt to submit the Reset Device command to the command ring */
3493         spin_lock_irqsave(&xhci->lock, flags);
3494
3495         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3496         if (ret) {
3497                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3498                 spin_unlock_irqrestore(&xhci->lock, flags);
3499                 goto command_cleanup;
3500         }
3501         xhci_ring_cmd_db(xhci);
3502         spin_unlock_irqrestore(&xhci->lock, flags);
3503
3504         /* Wait for the Reset Device command to finish */
3505         wait_for_completion(reset_device_cmd->completion);
3506
3507         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3508          * unless we tried to reset a slot ID that wasn't enabled,
3509          * or the device wasn't in the addressed or configured state.
3510          */
3511         ret = reset_device_cmd->status;
3512         switch (ret) {
3513         case COMP_CMD_ABORT:
3514         case COMP_CMD_STOP:
3515                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3516                 ret = -ETIME;
3517                 goto command_cleanup;
3518         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3519         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3520                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3521                                 slot_id,
3522                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3523                 xhci_dbg(xhci, "Not freeing device rings.\n");
3524                 /* Don't treat this as an error.  May change my mind later. */
3525                 ret = 0;
3526                 goto command_cleanup;
3527         case COMP_SUCCESS:
3528                 xhci_dbg(xhci, "Successful reset device command.\n");
3529                 break;
3530         default:
3531                 if (xhci_is_vendor_info_code(xhci, ret))
3532                         break;
3533                 xhci_warn(xhci, "Unknown completion code %u for "
3534                                 "reset device command.\n", ret);
3535                 ret = -EINVAL;
3536                 goto command_cleanup;
3537         }
3538
3539         /* Free up host controller endpoint resources */
3540         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3541                 spin_lock_irqsave(&xhci->lock, flags);
3542                 /* Don't delete the default control endpoint resources */
3543                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3544                 spin_unlock_irqrestore(&xhci->lock, flags);
3545         }
3546
3547         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3548         last_freed_endpoint = 1;
3549         for (i = 1; i < 31; ++i) {
3550                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3551
3552                 if (ep->ep_state & EP_HAS_STREAMS) {
3553                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3554                                         xhci_get_endpoint_address(i));
3555                         xhci_free_stream_info(xhci, ep->stream_info);
3556                         ep->stream_info = NULL;
3557                         ep->ep_state &= ~EP_HAS_STREAMS;
3558                 }
3559
3560                 if (ep->ring) {
3561                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3562                         last_freed_endpoint = i;
3563                 }
3564                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3565                         xhci_drop_ep_from_interval_table(xhci,
3566                                         &virt_dev->eps[i].bw_info,
3567                                         virt_dev->bw_table,
3568                                         udev,
3569                                         &virt_dev->eps[i],
3570                                         virt_dev->tt_info);
3571                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3572         }
3573         /* If necessary, update the number of active TTs on this root port */
3574         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3575
3576         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3577         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3578         ret = 0;
3579
3580 command_cleanup:
3581         xhci_free_command(xhci, reset_device_cmd);
3582         return ret;
3583 }
3584
3585 /*
3586  * At this point, the struct usb_device is about to go away, the device has
3587  * disconnected, and all traffic has been stopped and the endpoints have been
3588  * disabled.  Free any HC data structures associated with that device.
3589  */
3590 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3591 {
3592         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3593         struct xhci_virt_device *virt_dev;
3594         unsigned long flags;
3595         u32 state;
3596         int i, ret;
3597         struct xhci_command *command;
3598
3599         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3600         if (!command)
3601                 return;
3602
3603 #ifndef CONFIG_USB_DEFAULT_PERSIST
3604         /*
3605          * We called pm_runtime_get_noresume when the device was attached.
3606          * Decrement the counter here to allow controller to runtime suspend
3607          * if no devices remain.
3608          */
3609         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3610                 pm_runtime_put_noidle(hcd->self.controller);
3611 #endif
3612
3613         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3614         /* If the host is halted due to driver unload, we still need to free the
3615          * device.
3616          */
3617         if (ret <= 0 && ret != -ENODEV) {
3618                 kfree(command);
3619                 return;
3620         }
3621
3622         virt_dev = xhci->devs[udev->slot_id];
3623
3624         /* Stop any wayward timer functions (which may grab the lock) */
3625         for (i = 0; i < 31; ++i) {
3626                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3627                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3628         }
3629
3630         spin_lock_irqsave(&xhci->lock, flags);
3631         /* Don't disable the slot if the host controller is dead. */
3632         state = readl(&xhci->op_regs->status);
3633         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3634                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3635                 xhci_free_virt_device(xhci, udev->slot_id);
3636                 spin_unlock_irqrestore(&xhci->lock, flags);
3637                 kfree(command);
3638                 return;
3639         }
3640
3641         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3642                                     udev->slot_id)) {
3643                 spin_unlock_irqrestore(&xhci->lock, flags);
3644                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3645                 return;
3646         }
3647         xhci_ring_cmd_db(xhci);
3648         spin_unlock_irqrestore(&xhci->lock, flags);
3649
3650         /*
3651          * Event command completion handler will free any data structures
3652          * associated with the slot.  XXX Can free sleep?
3653          */
3654 }
3655
3656 /*
3657  * Checks if we have enough host controller resources for the default control
3658  * endpoint.
3659  *
3660  * Must be called with xhci->lock held.
3661  */
3662 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3663 {
3664         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3665                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3666                                 "Not enough ep ctxs: "
3667                                 "%u active, need to add 1, limit is %u.",
3668                                 xhci->num_active_eps, xhci->limit_active_eps);
3669                 return -ENOMEM;
3670         }
3671         xhci->num_active_eps += 1;
3672         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3673                         "Adding 1 ep ctx, %u now active.",
3674                         xhci->num_active_eps);
3675         return 0;
3676 }
3677
3678
3679 /*
3680  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3681  * timed out, or allocating memory failed.  Returns 1 on success.
3682  */
3683 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3684 {
3685         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3686         unsigned long flags;
3687         int ret, slot_id;
3688         struct xhci_command *command;
3689
3690         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3691         if (!command)
3692                 return 0;
3693
3694         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3695         mutex_lock(&xhci->mutex);
3696         spin_lock_irqsave(&xhci->lock, flags);
3697         command->completion = &xhci->addr_dev;
3698         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3699         if (ret) {
3700                 spin_unlock_irqrestore(&xhci->lock, flags);
3701                 mutex_unlock(&xhci->mutex);
3702                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3703                 kfree(command);
3704                 return 0;
3705         }
3706         xhci_ring_cmd_db(xhci);
3707         spin_unlock_irqrestore(&xhci->lock, flags);
3708
3709         wait_for_completion(command->completion);
3710         slot_id = xhci->slot_id;
3711         mutex_unlock(&xhci->mutex);
3712
3713         if (!slot_id || command->status != COMP_SUCCESS) {
3714                 xhci_err(xhci, "Error while assigning device slot ID\n");
3715                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3716                                 HCS_MAX_SLOTS(
3717                                         readl(&xhci->cap_regs->hcs_params1)));
3718                 kfree(command);
3719                 return 0;
3720         }
3721
3722         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3723                 spin_lock_irqsave(&xhci->lock, flags);
3724                 ret = xhci_reserve_host_control_ep_resources(xhci);
3725                 if (ret) {
3726                         spin_unlock_irqrestore(&xhci->lock, flags);
3727                         xhci_warn(xhci, "Not enough host resources, "
3728                                         "active endpoint contexts = %u\n",
3729                                         xhci->num_active_eps);
3730                         goto disable_slot;
3731                 }
3732                 spin_unlock_irqrestore(&xhci->lock, flags);
3733         }
3734         /* Use GFP_NOIO, since this function can be called from
3735          * xhci_discover_or_reset_device(), which may be called as part of
3736          * mass storage driver error handling.
3737          */
3738         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3739                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3740                 goto disable_slot;
3741         }
3742         udev->slot_id = slot_id;
3743
3744 #ifndef CONFIG_USB_DEFAULT_PERSIST
3745         /*
3746          * If resetting upon resume, we can't put the controller into runtime
3747          * suspend if there is a device attached.
3748          */
3749         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3750                 pm_runtime_get_noresume(hcd->self.controller);
3751 #endif
3752
3753
3754         kfree(command);
3755         /* Is this a LS or FS device under a HS hub? */
3756         /* Hub or peripherial? */
3757         return 1;
3758
3759 disable_slot:
3760         /* Disable slot, if we can do it without mem alloc */
3761         spin_lock_irqsave(&xhci->lock, flags);
3762         command->completion = NULL;
3763         command->status = 0;
3764         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3765                                      udev->slot_id))
3766                 xhci_ring_cmd_db(xhci);
3767         spin_unlock_irqrestore(&xhci->lock, flags);
3768         return 0;
3769 }
3770
3771 /*
3772  * Issue an Address Device command and optionally send a corresponding
3773  * SetAddress request to the device.
3774  */
3775 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3776                              enum xhci_setup_dev setup)
3777 {
3778         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3779         unsigned long flags;
3780         struct xhci_virt_device *virt_dev;
3781         int ret = 0;
3782         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3783         struct xhci_slot_ctx *slot_ctx;
3784         struct xhci_input_control_ctx *ctrl_ctx;
3785         u64 temp_64;
3786         struct xhci_command *command = NULL;
3787
3788         mutex_lock(&xhci->mutex);
3789
3790         if (xhci->xhc_state)    /* dying, removing or halted */
3791                 goto out;
3792
3793         if (!udev->slot_id) {
3794                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3795                                 "Bad Slot ID %d", udev->slot_id);
3796                 ret = -EINVAL;
3797                 goto out;
3798         }
3799
3800         virt_dev = xhci->devs[udev->slot_id];
3801
3802         if (WARN_ON(!virt_dev)) {
3803                 /*
3804                  * In plug/unplug torture test with an NEC controller,
3805                  * a zero-dereference was observed once due to virt_dev = 0.
3806                  * Print useful debug rather than crash if it is observed again!
3807                  */
3808                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3809                         udev->slot_id);
3810                 ret = -EINVAL;
3811                 goto out;
3812         }
3813
3814         if (setup == SETUP_CONTEXT_ONLY) {
3815                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3816                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3817                     SLOT_STATE_DEFAULT) {
3818                         xhci_dbg(xhci, "Slot already in default state\n");
3819                         goto out;
3820                 }
3821         }
3822
3823         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3824         if (!command) {
3825                 ret = -ENOMEM;
3826                 goto out;
3827         }
3828
3829         command->in_ctx = virt_dev->in_ctx;
3830         command->completion = &xhci->addr_dev;
3831
3832         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3833         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3834         if (!ctrl_ctx) {
3835                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3836                                 __func__);
3837                 ret = -EINVAL;
3838                 goto out;
3839         }
3840         /*
3841          * If this is the first Set Address since device plug-in or
3842          * virt_device realloaction after a resume with an xHCI power loss,
3843          * then set up the slot context.
3844          */
3845         if (!slot_ctx->dev_info)
3846                 xhci_setup_addressable_virt_dev(xhci, udev);
3847         /* Otherwise, update the control endpoint ring enqueue pointer. */
3848         else
3849                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3850         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3851         ctrl_ctx->drop_flags = 0;
3852
3853         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3854         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3855         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3856                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3857
3858         spin_lock_irqsave(&xhci->lock, flags);
3859         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3860                                         udev->slot_id, setup);
3861         if (ret) {
3862                 spin_unlock_irqrestore(&xhci->lock, flags);
3863                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3864                                 "FIXME: allocate a command ring segment");
3865                 goto out;
3866         }
3867         xhci_ring_cmd_db(xhci);
3868         spin_unlock_irqrestore(&xhci->lock, flags);
3869
3870         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3871         wait_for_completion(command->completion);
3872
3873         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3874          * the SetAddress() "recovery interval" required by USB and aborting the
3875          * command on a timeout.
3876          */
3877         switch (command->status) {
3878         case COMP_CMD_ABORT:
3879         case COMP_CMD_STOP:
3880                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3881                 ret = -ETIME;
3882                 break;
3883         case COMP_CTX_STATE:
3884         case COMP_EBADSLT:
3885                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3886                          act, udev->slot_id);
3887                 ret = -EINVAL;
3888                 break;
3889         case COMP_TX_ERR:
3890                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3891                 ret = -EPROTO;
3892                 break;
3893         case COMP_DEV_ERR:
3894                 dev_warn(&udev->dev,
3895                          "ERROR: Incompatible device for setup %s command\n", act);
3896                 ret = -ENODEV;
3897                 break;
3898         case COMP_SUCCESS:
3899                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3900                                "Successful setup %s command", act);
3901                 break;
3902         default:
3903                 xhci_err(xhci,
3904                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3905                          act, command->status);
3906                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3907                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3908                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3909                 ret = -EINVAL;
3910                 break;
3911         }
3912         if (ret)
3913                 goto out;
3914         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3915         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3916                         "Op regs DCBAA ptr = %#016llx", temp_64);
3917         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3918                 "Slot ID %d dcbaa entry @%p = %#016llx",
3919                 udev->slot_id,
3920                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3921                 (unsigned long long)
3922                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3923         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3924                         "Output Context DMA address = %#08llx",
3925                         (unsigned long long)virt_dev->out_ctx->dma);
3926         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3927         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3928         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3929                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3930         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3931         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3932         /*
3933          * USB core uses address 1 for the roothubs, so we add one to the
3934          * address given back to us by the HC.
3935          */
3936         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3937         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3938                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3939         /* Zero the input context control for later use */
3940         ctrl_ctx->add_flags = 0;
3941         ctrl_ctx->drop_flags = 0;
3942
3943         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3944                        "Internal device address = %d",
3945                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3946 out:
3947         mutex_unlock(&xhci->mutex);
3948         kfree(command);
3949         return ret;
3950 }
3951
3952 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3953 {
3954         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3955 }
3956
3957 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3958 {
3959         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3960 }
3961
3962 /*
3963  * Transfer the port index into real index in the HW port status
3964  * registers. Caculate offset between the port's PORTSC register
3965  * and port status base. Divide the number of per port register
3966  * to get the real index. The raw port number bases 1.
3967  */
3968 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3969 {
3970         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3971         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3972         __le32 __iomem *addr;
3973         int raw_port;
3974
3975         if (hcd->speed < HCD_USB3)
3976                 addr = xhci->usb2_ports[port1 - 1];
3977         else
3978                 addr = xhci->usb3_ports[port1 - 1];
3979
3980         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3981         return raw_port;
3982 }
3983
3984 /*
3985  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3986  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3987  */
3988 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3989                         struct usb_device *udev, u16 max_exit_latency)
3990 {
3991         struct xhci_virt_device *virt_dev;
3992         struct xhci_command *command;
3993         struct xhci_input_control_ctx *ctrl_ctx;
3994         struct xhci_slot_ctx *slot_ctx;
3995         unsigned long flags;
3996         int ret;
3997
3998         spin_lock_irqsave(&xhci->lock, flags);
3999
4000         virt_dev = xhci->devs[udev->slot_id];
4001
4002         /*
4003          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4004          * xHC was re-initialized. Exit latency will be set later after
4005          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4006          */
4007
4008         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4009                 spin_unlock_irqrestore(&xhci->lock, flags);
4010                 return 0;
4011         }
4012
4013         /* Attempt to issue an Evaluate Context command to change the MEL. */
4014         command = xhci->lpm_command;
4015         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4016         if (!ctrl_ctx) {
4017                 spin_unlock_irqrestore(&xhci->lock, flags);
4018                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4019                                 __func__);
4020                 return -ENOMEM;
4021         }
4022
4023         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4024         spin_unlock_irqrestore(&xhci->lock, flags);
4025
4026         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4027         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4028         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4029         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4030         slot_ctx->dev_state = 0;
4031
4032         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4033                         "Set up evaluate context for LPM MEL change.");
4034         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4035         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4036
4037         /* Issue and wait for the evaluate context command. */
4038         ret = xhci_configure_endpoint(xhci, udev, command,
4039                         true, true);
4040         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4041         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4042
4043         if (!ret) {
4044                 spin_lock_irqsave(&xhci->lock, flags);
4045                 virt_dev->current_mel = max_exit_latency;
4046                 spin_unlock_irqrestore(&xhci->lock, flags);
4047         }
4048         return ret;
4049 }
4050
4051 #ifdef CONFIG_PM
4052
4053 /* BESL to HIRD Encoding array for USB2 LPM */
4054 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4055         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4056
4057 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4058 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4059                                         struct usb_device *udev)
4060 {
4061         int u2del, besl, besl_host;
4062         int besl_device = 0;
4063         u32 field;
4064
4065         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4066         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4067
4068         if (field & USB_BESL_SUPPORT) {
4069                 for (besl_host = 0; besl_host < 16; besl_host++) {
4070                         if (xhci_besl_encoding[besl_host] >= u2del)
4071                                 break;
4072                 }
4073                 /* Use baseline BESL value as default */
4074                 if (field & USB_BESL_BASELINE_VALID)
4075                         besl_device = USB_GET_BESL_BASELINE(field);
4076                 else if (field & USB_BESL_DEEP_VALID)
4077                         besl_device = USB_GET_BESL_DEEP(field);
4078         } else {
4079                 if (u2del <= 50)
4080                         besl_host = 0;
4081                 else
4082                         besl_host = (u2del - 51) / 75 + 1;
4083         }
4084
4085         besl = besl_host + besl_device;
4086         if (besl > 15)
4087                 besl = 15;
4088
4089         return besl;
4090 }
4091
4092 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4093 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4094 {
4095         u32 field;
4096         int l1;
4097         int besld = 0;
4098         int hirdm = 0;
4099
4100         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4101
4102         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4103         l1 = udev->l1_params.timeout / 256;
4104
4105         /* device has preferred BESLD */
4106         if (field & USB_BESL_DEEP_VALID) {
4107                 besld = USB_GET_BESL_DEEP(field);
4108                 hirdm = 1;
4109         }
4110
4111         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4112 }
4113
4114 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4115                         struct usb_device *udev, int enable)
4116 {
4117         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4118         __le32 __iomem  **port_array;
4119         __le32 __iomem  *pm_addr, *hlpm_addr;
4120         u32             pm_val, hlpm_val, field;
4121         unsigned int    port_num;
4122         unsigned long   flags;
4123         int             hird, exit_latency;
4124         int             ret;
4125
4126         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4127                         !udev->lpm_capable)
4128                 return -EPERM;
4129
4130         if (!udev->parent || udev->parent->parent ||
4131                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4132                 return -EPERM;
4133
4134         if (udev->usb2_hw_lpm_capable != 1)
4135                 return -EPERM;
4136
4137         spin_lock_irqsave(&xhci->lock, flags);
4138
4139         port_array = xhci->usb2_ports;
4140         port_num = udev->portnum - 1;
4141         pm_addr = port_array[port_num] + PORTPMSC;
4142         pm_val = readl(pm_addr);
4143         hlpm_addr = port_array[port_num] + PORTHLPMC;
4144         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4145
4146         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4147                         enable ? "enable" : "disable", port_num + 1);
4148
4149         if (enable) {
4150                 /* Host supports BESL timeout instead of HIRD */
4151                 if (udev->usb2_hw_lpm_besl_capable) {
4152                         /* if device doesn't have a preferred BESL value use a
4153                          * default one which works with mixed HIRD and BESL
4154                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4155                          */
4156                         if ((field & USB_BESL_SUPPORT) &&
4157                             (field & USB_BESL_BASELINE_VALID))
4158                                 hird = USB_GET_BESL_BASELINE(field);
4159                         else
4160                                 hird = udev->l1_params.besl;
4161
4162                         exit_latency = xhci_besl_encoding[hird];
4163                         spin_unlock_irqrestore(&xhci->lock, flags);
4164
4165                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4166                          * input context for link powermanagement evaluate
4167                          * context commands. It is protected by hcd->bandwidth
4168                          * mutex and is shared by all devices. We need to set
4169                          * the max ext latency in USB 2 BESL LPM as well, so
4170                          * use the same mutex and xhci_change_max_exit_latency()
4171                          */
4172                         mutex_lock(hcd->bandwidth_mutex);
4173                         ret = xhci_change_max_exit_latency(xhci, udev,
4174                                                            exit_latency);
4175                         mutex_unlock(hcd->bandwidth_mutex);
4176
4177                         if (ret < 0)
4178                                 return ret;
4179                         spin_lock_irqsave(&xhci->lock, flags);
4180
4181                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4182                         writel(hlpm_val, hlpm_addr);
4183                         /* flush write */
4184                         readl(hlpm_addr);
4185                 } else {
4186                         hird = xhci_calculate_hird_besl(xhci, udev);
4187                 }
4188
4189                 pm_val &= ~PORT_HIRD_MASK;
4190                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4191                 writel(pm_val, pm_addr);
4192                 pm_val = readl(pm_addr);
4193                 pm_val |= PORT_HLE;
4194                 writel(pm_val, pm_addr);
4195                 /* flush write */
4196                 readl(pm_addr);
4197         } else {
4198                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4199                 writel(pm_val, pm_addr);
4200                 /* flush write */
4201                 readl(pm_addr);
4202                 if (udev->usb2_hw_lpm_besl_capable) {
4203                         spin_unlock_irqrestore(&xhci->lock, flags);
4204                         mutex_lock(hcd->bandwidth_mutex);
4205                         xhci_change_max_exit_latency(xhci, udev, 0);
4206                         mutex_unlock(hcd->bandwidth_mutex);
4207                         return 0;
4208                 }
4209         }
4210
4211         spin_unlock_irqrestore(&xhci->lock, flags);
4212         return 0;
4213 }
4214
4215 /* check if a usb2 port supports a given extened capability protocol
4216  * only USB2 ports extended protocol capability values are cached.
4217  * Return 1 if capability is supported
4218  */
4219 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4220                                            unsigned capability)
4221 {
4222         u32 port_offset, port_count;
4223         int i;
4224
4225         for (i = 0; i < xhci->num_ext_caps; i++) {
4226                 if (xhci->ext_caps[i] & capability) {
4227                         /* port offsets starts at 1 */
4228                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4229                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4230                         if (port >= port_offset &&
4231                             port < port_offset + port_count)
4232                                 return 1;
4233                 }
4234         }
4235         return 0;
4236 }
4237
4238 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4239 {
4240         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4241         int             portnum = udev->portnum - 1;
4242
4243         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4244                         !udev->lpm_capable)
4245                 return 0;
4246
4247         /* we only support lpm for non-hub device connected to root hub yet */
4248         if (!udev->parent || udev->parent->parent ||
4249                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4250                 return 0;
4251
4252         if (xhci->hw_lpm_support == 1 &&
4253                         xhci_check_usb2_port_capability(
4254                                 xhci, portnum, XHCI_HLC)) {
4255                 udev->usb2_hw_lpm_capable = 1;
4256                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4257                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4258                 if (xhci_check_usb2_port_capability(xhci, portnum,
4259                                         XHCI_BLC))
4260                         udev->usb2_hw_lpm_besl_capable = 1;
4261         }
4262
4263         return 0;
4264 }
4265
4266 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4267
4268 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4269 static unsigned long long xhci_service_interval_to_ns(
4270                 struct usb_endpoint_descriptor *desc)
4271 {
4272         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4273 }
4274
4275 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4276                 enum usb3_link_state state)
4277 {
4278         unsigned long long sel;
4279         unsigned long long pel;
4280         unsigned int max_sel_pel;
4281         char *state_name;
4282
4283         switch (state) {
4284         case USB3_LPM_U1:
4285                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4286                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4287                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4288                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4289                 state_name = "U1";
4290                 break;
4291         case USB3_LPM_U2:
4292                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4293                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4294                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4295                 state_name = "U2";
4296                 break;
4297         default:
4298                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4299                                 __func__);
4300                 return USB3_LPM_DISABLED;
4301         }
4302
4303         if (sel <= max_sel_pel && pel <= max_sel_pel)
4304                 return USB3_LPM_DEVICE_INITIATED;
4305
4306         if (sel > max_sel_pel)
4307                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4308                                 "due to long SEL %llu ms\n",
4309                                 state_name, sel);
4310         else
4311                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4312                                 "due to long PEL %llu ms\n",
4313                                 state_name, pel);
4314         return USB3_LPM_DISABLED;
4315 }
4316
4317 /* The U1 timeout should be the maximum of the following values:
4318  *  - For control endpoints, U1 system exit latency (SEL) * 3
4319  *  - For bulk endpoints, U1 SEL * 5
4320  *  - For interrupt endpoints:
4321  *    - Notification EPs, U1 SEL * 3
4322  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4323  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4324  */
4325 static unsigned long long xhci_calculate_intel_u1_timeout(
4326                 struct usb_device *udev,
4327                 struct usb_endpoint_descriptor *desc)
4328 {
4329         unsigned long long timeout_ns;
4330         int ep_type;
4331         int intr_type;
4332
4333         ep_type = usb_endpoint_type(desc);
4334         switch (ep_type) {
4335         case USB_ENDPOINT_XFER_CONTROL:
4336                 timeout_ns = udev->u1_params.sel * 3;
4337                 break;
4338         case USB_ENDPOINT_XFER_BULK:
4339                 timeout_ns = udev->u1_params.sel * 5;
4340                 break;
4341         case USB_ENDPOINT_XFER_INT:
4342                 intr_type = usb_endpoint_interrupt_type(desc);
4343                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4344                         timeout_ns = udev->u1_params.sel * 3;
4345                         break;
4346                 }
4347                 /* Otherwise the calculation is the same as isoc eps */
4348         case USB_ENDPOINT_XFER_ISOC:
4349                 timeout_ns = xhci_service_interval_to_ns(desc);
4350                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4351                 if (timeout_ns < udev->u1_params.sel * 2)
4352                         timeout_ns = udev->u1_params.sel * 2;
4353                 break;
4354         default:
4355                 return 0;
4356         }
4357
4358         return timeout_ns;
4359 }
4360
4361 /* Returns the hub-encoded U1 timeout value. */
4362 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4363                 struct usb_device *udev,
4364                 struct usb_endpoint_descriptor *desc)
4365 {
4366         unsigned long long timeout_ns;
4367
4368         if (xhci->quirks & XHCI_INTEL_HOST)
4369                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4370         else
4371                 timeout_ns = udev->u1_params.sel;
4372
4373         /* The U1 timeout is encoded in 1us intervals.
4374          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4375          */
4376         if (timeout_ns == USB3_LPM_DISABLED)
4377                 timeout_ns = 1;
4378         else
4379                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4380
4381         /* If the necessary timeout value is bigger than what we can set in the
4382          * USB 3.0 hub, we have to disable hub-initiated U1.
4383          */
4384         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4385                 return timeout_ns;
4386         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4387                         "due to long timeout %llu ms\n", timeout_ns);
4388         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4389 }
4390
4391 /* The U2 timeout should be the maximum of:
4392  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4393  *  - largest bInterval of any active periodic endpoint (to avoid going
4394  *    into lower power link states between intervals).
4395  *  - the U2 Exit Latency of the device
4396  */
4397 static unsigned long long xhci_calculate_intel_u2_timeout(
4398                 struct usb_device *udev,
4399                 struct usb_endpoint_descriptor *desc)
4400 {
4401         unsigned long long timeout_ns;
4402         unsigned long long u2_del_ns;
4403
4404         timeout_ns = 10 * 1000 * 1000;
4405
4406         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4407                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4408                 timeout_ns = xhci_service_interval_to_ns(desc);
4409
4410         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4411         if (u2_del_ns > timeout_ns)
4412                 timeout_ns = u2_del_ns;
4413
4414         return timeout_ns;
4415 }
4416
4417 /* Returns the hub-encoded U2 timeout value. */
4418 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4419                 struct usb_device *udev,
4420                 struct usb_endpoint_descriptor *desc)
4421 {
4422         unsigned long long timeout_ns;
4423
4424         if (xhci->quirks & XHCI_INTEL_HOST)
4425                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4426         else
4427                 timeout_ns = udev->u2_params.sel;
4428
4429         /* The U2 timeout is encoded in 256us intervals */
4430         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4431         /* If the necessary timeout value is bigger than what we can set in the
4432          * USB 3.0 hub, we have to disable hub-initiated U2.
4433          */
4434         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4435                 return timeout_ns;
4436         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4437                         "due to long timeout %llu ms\n", timeout_ns);
4438         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4439 }
4440
4441 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4442                 struct usb_device *udev,
4443                 struct usb_endpoint_descriptor *desc,
4444                 enum usb3_link_state state,
4445                 u16 *timeout)
4446 {
4447         if (state == USB3_LPM_U1)
4448                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4449         else if (state == USB3_LPM_U2)
4450                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4451
4452         return USB3_LPM_DISABLED;
4453 }
4454
4455 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4456                 struct usb_device *udev,
4457                 struct usb_endpoint_descriptor *desc,
4458                 enum usb3_link_state state,
4459                 u16 *timeout)
4460 {
4461         u16 alt_timeout;
4462
4463         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4464                 desc, state, timeout);
4465
4466         /* If we found we can't enable hub-initiated LPM, or
4467          * the U1 or U2 exit latency was too high to allow
4468          * device-initiated LPM as well, just stop searching.
4469          */
4470         if (alt_timeout == USB3_LPM_DISABLED ||
4471                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4472                 *timeout = alt_timeout;
4473                 return -E2BIG;
4474         }
4475         if (alt_timeout > *timeout)
4476                 *timeout = alt_timeout;
4477         return 0;
4478 }
4479
4480 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4481                 struct usb_device *udev,
4482                 struct usb_host_interface *alt,
4483                 enum usb3_link_state state,
4484                 u16 *timeout)
4485 {
4486         int j;
4487
4488         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4489                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4490                                         &alt->endpoint[j].desc, state, timeout))
4491                         return -E2BIG;
4492                 continue;
4493         }
4494         return 0;
4495 }
4496
4497 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4498                 enum usb3_link_state state)
4499 {
4500         struct usb_device *parent;
4501         unsigned int num_hubs;
4502
4503         if (state == USB3_LPM_U2)
4504                 return 0;
4505
4506         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4507         for (parent = udev->parent, num_hubs = 0; parent->parent;
4508                         parent = parent->parent)
4509                 num_hubs++;
4510
4511         if (num_hubs < 2)
4512                 return 0;
4513
4514         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4515                         " below second-tier hub.\n");
4516         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4517                         "to decrease power consumption.\n");
4518         return -E2BIG;
4519 }
4520
4521 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4522                 struct usb_device *udev,
4523                 enum usb3_link_state state)
4524 {
4525         if (xhci->quirks & XHCI_INTEL_HOST)
4526                 return xhci_check_intel_tier_policy(udev, state);
4527         else
4528                 return 0;
4529 }
4530
4531 /* Returns the U1 or U2 timeout that should be enabled.
4532  * If the tier check or timeout setting functions return with a non-zero exit
4533  * code, that means the timeout value has been finalized and we shouldn't look
4534  * at any more endpoints.
4535  */
4536 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4537                         struct usb_device *udev, enum usb3_link_state state)
4538 {
4539         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4540         struct usb_host_config *config;
4541         char *state_name;
4542         int i;
4543         u16 timeout = USB3_LPM_DISABLED;
4544
4545         if (state == USB3_LPM_U1)
4546                 state_name = "U1";
4547         else if (state == USB3_LPM_U2)
4548                 state_name = "U2";
4549         else {
4550                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4551                                 state);
4552                 return timeout;
4553         }
4554
4555         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4556                 return timeout;
4557
4558         /* Gather some information about the currently installed configuration
4559          * and alternate interface settings.
4560          */
4561         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4562                         state, &timeout))
4563                 return timeout;
4564
4565         config = udev->actconfig;
4566         if (!config)
4567                 return timeout;
4568
4569         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4570                 struct usb_driver *driver;
4571                 struct usb_interface *intf = config->interface[i];
4572
4573                 if (!intf)
4574                         continue;
4575
4576                 /* Check if any currently bound drivers want hub-initiated LPM
4577                  * disabled.
4578                  */
4579                 if (intf->dev.driver) {
4580                         driver = to_usb_driver(intf->dev.driver);
4581                         if (driver && driver->disable_hub_initiated_lpm) {
4582                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4583                                                 "at request of driver %s\n",
4584                                                 state_name, driver->name);
4585                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4586                         }
4587                 }
4588
4589                 /* Not sure how this could happen... */
4590                 if (!intf->cur_altsetting)
4591                         continue;
4592
4593                 if (xhci_update_timeout_for_interface(xhci, udev,
4594                                         intf->cur_altsetting,
4595                                         state, &timeout))
4596                         return timeout;
4597         }
4598         return timeout;
4599 }
4600
4601 static int calculate_max_exit_latency(struct usb_device *udev,
4602                 enum usb3_link_state state_changed,
4603                 u16 hub_encoded_timeout)
4604 {
4605         unsigned long long u1_mel_us = 0;
4606         unsigned long long u2_mel_us = 0;
4607         unsigned long long mel_us = 0;
4608         bool disabling_u1;
4609         bool disabling_u2;
4610         bool enabling_u1;
4611         bool enabling_u2;
4612
4613         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4614                         hub_encoded_timeout == USB3_LPM_DISABLED);
4615         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4616                         hub_encoded_timeout == USB3_LPM_DISABLED);
4617
4618         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4619                         hub_encoded_timeout != USB3_LPM_DISABLED);
4620         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4621                         hub_encoded_timeout != USB3_LPM_DISABLED);
4622
4623         /* If U1 was already enabled and we're not disabling it,
4624          * or we're going to enable U1, account for the U1 max exit latency.
4625          */
4626         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4627                         enabling_u1)
4628                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4629         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4630                         enabling_u2)
4631                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4632
4633         if (u1_mel_us > u2_mel_us)
4634                 mel_us = u1_mel_us;
4635         else
4636                 mel_us = u2_mel_us;
4637         /* xHCI host controller max exit latency field is only 16 bits wide. */
4638         if (mel_us > MAX_EXIT) {
4639                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4640                                 "is too big.\n", mel_us);
4641                 return -E2BIG;
4642         }
4643         return mel_us;
4644 }
4645
4646 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4647 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4648                         struct usb_device *udev, enum usb3_link_state state)
4649 {
4650         struct xhci_hcd *xhci;
4651         u16 hub_encoded_timeout;
4652         int mel;
4653         int ret;
4654
4655         xhci = hcd_to_xhci(hcd);
4656         /* The LPM timeout values are pretty host-controller specific, so don't
4657          * enable hub-initiated timeouts unless the vendor has provided
4658          * information about their timeout algorithm.
4659          */
4660         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4661                         !xhci->devs[udev->slot_id])
4662                 return USB3_LPM_DISABLED;
4663
4664         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4665         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4666         if (mel < 0) {
4667                 /* Max Exit Latency is too big, disable LPM. */
4668                 hub_encoded_timeout = USB3_LPM_DISABLED;
4669                 mel = 0;
4670         }
4671
4672         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4673         if (ret)
4674                 return ret;
4675         return hub_encoded_timeout;
4676 }
4677
4678 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4679                         struct usb_device *udev, enum usb3_link_state state)
4680 {
4681         struct xhci_hcd *xhci;
4682         u16 mel;
4683
4684         xhci = hcd_to_xhci(hcd);
4685         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4686                         !xhci->devs[udev->slot_id])
4687                 return 0;
4688
4689         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4690         return xhci_change_max_exit_latency(xhci, udev, mel);
4691 }
4692 #else /* CONFIG_PM */
4693
4694 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4695                                 struct usb_device *udev, int enable)
4696 {
4697         return 0;
4698 }
4699
4700 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4701 {
4702         return 0;
4703 }
4704
4705 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4706                         struct usb_device *udev, enum usb3_link_state state)
4707 {
4708         return USB3_LPM_DISABLED;
4709 }
4710
4711 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4712                         struct usb_device *udev, enum usb3_link_state state)
4713 {
4714         return 0;
4715 }
4716 #endif  /* CONFIG_PM */
4717
4718 /*-------------------------------------------------------------------------*/
4719
4720 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4721  * internal data structures for the device.
4722  */
4723 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4724                         struct usb_tt *tt, gfp_t mem_flags)
4725 {
4726         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4727         struct xhci_virt_device *vdev;
4728         struct xhci_command *config_cmd;
4729         struct xhci_input_control_ctx *ctrl_ctx;
4730         struct xhci_slot_ctx *slot_ctx;
4731         unsigned long flags;
4732         unsigned think_time;
4733         int ret;
4734
4735         /* Ignore root hubs */
4736         if (!hdev->parent)
4737                 return 0;
4738
4739         vdev = xhci->devs[hdev->slot_id];
4740         if (!vdev) {
4741                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4742                 return -EINVAL;
4743         }
4744         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4745         if (!config_cmd) {
4746                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4747                 return -ENOMEM;
4748         }
4749         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4750         if (!ctrl_ctx) {
4751                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4752                                 __func__);
4753                 xhci_free_command(xhci, config_cmd);
4754                 return -ENOMEM;
4755         }
4756
4757         spin_lock_irqsave(&xhci->lock, flags);
4758         if (hdev->speed == USB_SPEED_HIGH &&
4759                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4760                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4761                 xhci_free_command(xhci, config_cmd);
4762                 spin_unlock_irqrestore(&xhci->lock, flags);
4763                 return -ENOMEM;
4764         }
4765
4766         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4767         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4768         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4769         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4770         /*
4771          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4772          * but it may be already set to 1 when setup an xHCI virtual
4773          * device, so clear it anyway.
4774          */
4775         if (tt->multi)
4776                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4777         else if (hdev->speed == USB_SPEED_FULL)
4778                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4779
4780         if (xhci->hci_version > 0x95) {
4781                 xhci_dbg(xhci, "xHCI version %x needs hub "
4782                                 "TT think time and number of ports\n",
4783                                 (unsigned int) xhci->hci_version);
4784                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4785                 /* Set TT think time - convert from ns to FS bit times.
4786                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4787                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4788                  *
4789                  * xHCI 1.0: this field shall be 0 if the device is not a
4790                  * High-spped hub.
4791                  */
4792                 think_time = tt->think_time;
4793                 if (think_time != 0)
4794                         think_time = (think_time / 666) - 1;
4795                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4796                         slot_ctx->tt_info |=
4797                                 cpu_to_le32(TT_THINK_TIME(think_time));
4798         } else {
4799                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4800                                 "TT think time or number of ports\n",
4801                                 (unsigned int) xhci->hci_version);
4802         }
4803         slot_ctx->dev_state = 0;
4804         spin_unlock_irqrestore(&xhci->lock, flags);
4805
4806         xhci_dbg(xhci, "Set up %s for hub device.\n",
4807                         (xhci->hci_version > 0x95) ?
4808                         "configure endpoint" : "evaluate context");
4809         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4810         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4811
4812         /* Issue and wait for the configure endpoint or
4813          * evaluate context command.
4814          */
4815         if (xhci->hci_version > 0x95)
4816                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4817                                 false, false);
4818         else
4819                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4820                                 true, false);
4821
4822         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4823         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4824
4825         xhci_free_command(xhci, config_cmd);
4826         return ret;
4827 }
4828
4829 int xhci_get_frame(struct usb_hcd *hcd)
4830 {
4831         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4832         /* EHCI mods by the periodic size.  Why? */
4833         return readl(&xhci->run_regs->microframe_index) >> 3;
4834 }
4835
4836 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4837 {
4838         struct xhci_hcd         *xhci;
4839         struct device           *dev = hcd->self.controller;
4840         int                     retval;
4841
4842         /* Accept arbitrarily long scatter-gather lists */
4843         hcd->self.sg_tablesize = ~0;
4844
4845         /* support to build packet from discontinuous buffers */
4846         hcd->self.no_sg_constraint = 1;
4847
4848         /* XHCI controllers don't stop the ep queue on short packets :| */
4849         hcd->self.no_stop_on_short = 1;
4850
4851         xhci = hcd_to_xhci(hcd);
4852
4853         if (usb_hcd_is_primary_hcd(hcd)) {
4854                 xhci->main_hcd = hcd;
4855                 /* Mark the first roothub as being USB 2.0.
4856                  * The xHCI driver will register the USB 3.0 roothub.
4857                  */
4858                 hcd->speed = HCD_USB2;
4859                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4860                 /*
4861                  * USB 2.0 roothub under xHCI has an integrated TT,
4862                  * (rate matching hub) as opposed to having an OHCI/UHCI
4863                  * companion controller.
4864                  */
4865                 hcd->has_tt = 1;
4866         } else {
4867                 if (xhci->sbrn == 0x31) {
4868                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4869                         hcd->speed = HCD_USB31;
4870                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4871                 }
4872                 /* xHCI private pointer was set in xhci_pci_probe for the second
4873                  * registered roothub.
4874                  */
4875                 return 0;
4876         }
4877
4878         mutex_init(&xhci->mutex);
4879         xhci->cap_regs = hcd->regs;
4880         xhci->op_regs = hcd->regs +
4881                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4882         xhci->run_regs = hcd->regs +
4883                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4884         /* Cache read-only capability registers */
4885         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4886         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4887         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4888         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4889         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4890         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4891         if (xhci->hci_version > 0x100)
4892                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4893         xhci_print_registers(xhci);
4894
4895         xhci->quirks |= quirks;
4896
4897         get_quirks(dev, xhci);
4898
4899         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4900          * success event after a short transfer. This quirk will ignore such
4901          * spurious event.
4902          */
4903         if (xhci->hci_version > 0x96)
4904                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4905
4906         /* Make sure the HC is halted. */
4907         retval = xhci_halt(xhci);
4908         if (retval)
4909                 return retval;
4910
4911         xhci_dbg(xhci, "Resetting HCD\n");
4912         /* Reset the internal HC memory state and registers. */
4913         retval = xhci_reset(xhci);
4914         if (retval)
4915                 return retval;
4916         xhci_dbg(xhci, "Reset complete\n");
4917
4918         /*
4919          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4920          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4921          * address memory pointers actually. So, this driver clears the AC64
4922          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4923          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4924          */
4925         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4926                 xhci->hcc_params &= ~BIT(0);
4927
4928         /* Set dma_mask and coherent_dma_mask to 64-bits,
4929          * if xHC supports 64-bit addressing */
4930         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4931                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4932                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4933                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4934         } else {
4935                 /*
4936                  * This is to avoid error in cases where a 32-bit USB
4937                  * controller is used on a 64-bit capable system.
4938                  */
4939                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4940                 if (retval)
4941                         return retval;
4942                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4943                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4944         }
4945
4946         xhci_dbg(xhci, "Calling HCD init\n");
4947         /* Initialize HCD and host controller data structures. */
4948         retval = xhci_init(hcd);
4949         if (retval)
4950                 return retval;
4951         xhci_dbg(xhci, "Called HCD init\n");
4952
4953         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4954                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4955
4956         return 0;
4957 }
4958 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4959
4960 static const struct hc_driver xhci_hc_driver = {
4961         .description =          "xhci-hcd",
4962         .product_desc =         "xHCI Host Controller",
4963         .hcd_priv_size =        sizeof(struct xhci_hcd),
4964
4965         /*
4966          * generic hardware linkage
4967          */
4968         .irq =                  xhci_irq,
4969         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4970
4971         /*
4972          * basic lifecycle operations
4973          */
4974         .reset =                NULL, /* set in xhci_init_driver() */
4975         .start =                xhci_run,
4976         .stop =                 xhci_stop,
4977         .shutdown =             xhci_shutdown,
4978
4979         /*
4980          * managing i/o requests and associated device resources
4981          */
4982         .urb_enqueue =          xhci_urb_enqueue,
4983         .urb_dequeue =          xhci_urb_dequeue,
4984         .alloc_dev =            xhci_alloc_dev,
4985         .free_dev =             xhci_free_dev,
4986         .alloc_streams =        xhci_alloc_streams,
4987         .free_streams =         xhci_free_streams,
4988         .add_endpoint =         xhci_add_endpoint,
4989         .drop_endpoint =        xhci_drop_endpoint,
4990         .endpoint_reset =       xhci_endpoint_reset,
4991         .check_bandwidth =      xhci_check_bandwidth,
4992         .reset_bandwidth =      xhci_reset_bandwidth,
4993         .address_device =       xhci_address_device,
4994         .enable_device =        xhci_enable_device,
4995         .update_hub_device =    xhci_update_hub_device,
4996         .reset_device =         xhci_discover_or_reset_device,
4997
4998         /*
4999          * scheduling support
5000          */
5001         .get_frame_number =     xhci_get_frame,
5002
5003         /*
5004          * root hub support
5005          */
5006         .hub_control =          xhci_hub_control,
5007         .hub_status_data =      xhci_hub_status_data,
5008         .bus_suspend =          xhci_bus_suspend,
5009         .bus_resume =           xhci_bus_resume,
5010
5011         /*
5012          * call back when device connected and addressed
5013          */
5014         .update_device =        xhci_update_device,
5015         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5016         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5017         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5018         .find_raw_port_number = xhci_find_raw_port_number,
5019 };
5020
5021 void xhci_init_driver(struct hc_driver *drv,
5022                       const struct xhci_driver_overrides *over)
5023 {
5024         BUG_ON(!over);
5025
5026         /* Copy the generic table to drv then apply the overrides */
5027         *drv = xhci_hc_driver;
5028
5029         if (over) {
5030                 drv->hcd_priv_size += over->extra_priv_size;
5031                 if (over->reset)
5032                         drv->reset = over->reset;
5033                 if (over->start)
5034                         drv->start = over->start;
5035         }
5036 }
5037 EXPORT_SYMBOL_GPL(xhci_init_driver);
5038
5039 MODULE_DESCRIPTION(DRIVER_DESC);
5040 MODULE_AUTHOR(DRIVER_AUTHOR);
5041 MODULE_LICENSE("GPL");
5042
5043 static int __init xhci_hcd_init(void)
5044 {
5045         /*
5046          * Check the compiler generated sizes of structures that must be laid
5047          * out in specific ways for hardware access.
5048          */
5049         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5050         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5051         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5052         /* xhci_device_control has eight fields, and also
5053          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5054          */
5055         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5056         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5057         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5058         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5059         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5060         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5061         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5062
5063         if (usb_disabled())
5064                 return -ENODEV;
5065
5066         return 0;
5067 }
5068
5069 /*
5070  * If an init function is provided, an exit function must also be provided
5071  * to allow module unload.
5072  */
5073 static void __exit xhci_hcd_fini(void) { }
5074
5075 module_init(xhci_hcd_init);
5076 module_exit(xhci_hcd_fini);