Merge branches 'acpi-cppc', 'acpi-misc', 'acpi-battery' and 'acpi-ac'
[linux-2.6-microblaze.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/irq.h>
13 #include <linux/log2.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/slab.h>
17 #include <linux/dmi.h>
18 #include <linux/dma-mapping.h>
19
20 #include "xhci.h"
21 #include "xhci-trace.h"
22 #include "xhci-mtk.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned int quirks;
37 module_param(quirks, uint, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 /* TODO: copied from ehci-hcd.c - can this be refactored? */
41 /*
42  * xhci_handshake - spin reading hc until handshake completes or fails
43  * @ptr: address of hc register to be read
44  * @mask: bits to look at in result of read
45  * @done: value of those bits when handshake succeeds
46  * @usec: timeout in microseconds
47  *
48  * Returns negative errno, or zero on success
49  *
50  * Success happens when the "mask" bits have the specified value (hardware
51  * handshake done).  There are two failure modes:  "usec" have passed (major
52  * hardware flakeout), or the register reads as all-ones (hardware removed).
53  */
54 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
55 {
56         u32     result;
57
58         do {
59                 result = readl(ptr);
60                 if (result == ~(u32)0)          /* card removed */
61                         return -ENODEV;
62                 result &= mask;
63                 if (result == done)
64                         return 0;
65                 udelay(1);
66                 usec--;
67         } while (usec > 0);
68         return -ETIMEDOUT;
69 }
70
71 /*
72  * Disable interrupts and begin the xHCI halting process.
73  */
74 void xhci_quiesce(struct xhci_hcd *xhci)
75 {
76         u32 halted;
77         u32 cmd;
78         u32 mask;
79
80         mask = ~(XHCI_IRQS);
81         halted = readl(&xhci->op_regs->status) & STS_HALT;
82         if (!halted)
83                 mask &= ~CMD_RUN;
84
85         cmd = readl(&xhci->op_regs->command);
86         cmd &= mask;
87         writel(cmd, &xhci->op_regs->command);
88 }
89
90 /*
91  * Force HC into halt state.
92  *
93  * Disable any IRQs and clear the run/stop bit.
94  * HC will complete any current and actively pipelined transactions, and
95  * should halt within 16 ms of the run/stop bit being cleared.
96  * Read HC Halted bit in the status register to see when the HC is finished.
97  */
98 int xhci_halt(struct xhci_hcd *xhci)
99 {
100         int ret;
101         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
102         xhci_quiesce(xhci);
103
104         ret = xhci_handshake(&xhci->op_regs->status,
105                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
106         if (ret) {
107                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
108                 return ret;
109         }
110         xhci->xhc_state |= XHCI_STATE_HALTED;
111         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
112         return ret;
113 }
114
115 /*
116  * Set the run bit and wait for the host to be running.
117  */
118 int xhci_start(struct xhci_hcd *xhci)
119 {
120         u32 temp;
121         int ret;
122
123         temp = readl(&xhci->op_regs->command);
124         temp |= (CMD_RUN);
125         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
126                         temp);
127         writel(temp, &xhci->op_regs->command);
128
129         /*
130          * Wait for the HCHalted Status bit to be 0 to indicate the host is
131          * running.
132          */
133         ret = xhci_handshake(&xhci->op_regs->status,
134                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
135         if (ret == -ETIMEDOUT)
136                 xhci_err(xhci, "Host took too long to start, "
137                                 "waited %u microseconds.\n",
138                                 XHCI_MAX_HALT_USEC);
139         if (!ret)
140                 /* clear state flags. Including dying, halted or removing */
141                 xhci->xhc_state = 0;
142
143         return ret;
144 }
145
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155         u32 command;
156         u32 state;
157         int ret, i;
158
159         state = readl(&xhci->op_regs->status);
160
161         if (state == ~(u32)0) {
162                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
163                 return -ENODEV;
164         }
165
166         if ((state & STS_HALT) == 0) {
167                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
168                 return 0;
169         }
170
171         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
172         command = readl(&xhci->op_regs->command);
173         command |= CMD_RESET;
174         writel(command, &xhci->op_regs->command);
175
176         /* Existing Intel xHCI controllers require a delay of 1 mS,
177          * after setting the CMD_RESET bit, and before accessing any
178          * HC registers. This allows the HC to complete the
179          * reset operation and be ready for HC register access.
180          * Without this delay, the subsequent HC register access,
181          * may result in a system hang very rarely.
182          */
183         if (xhci->quirks & XHCI_INTEL_HOST)
184                 udelay(1000);
185
186         ret = xhci_handshake(&xhci->op_regs->command,
187                         CMD_RESET, 0, 10 * 1000 * 1000);
188         if (ret)
189                 return ret;
190
191         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
192                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
193
194         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195                          "Wait for controller to be ready for doorbell rings");
196         /*
197          * xHCI cannot write to any doorbells or operational registers other
198          * than status until the "Controller Not Ready" flag is cleared.
199          */
200         ret = xhci_handshake(&xhci->op_regs->status,
201                         STS_CNR, 0, 10 * 1000 * 1000);
202
203         for (i = 0; i < 2; i++) {
204                 xhci->bus_state[i].port_c_suspend = 0;
205                 xhci->bus_state[i].suspended_ports = 0;
206                 xhci->bus_state[i].resuming_ports = 0;
207         }
208
209         return ret;
210 }
211
212
213 #ifdef CONFIG_USB_PCI
214 /*
215  * Set up MSI
216  */
217 static int xhci_setup_msi(struct xhci_hcd *xhci)
218 {
219         int ret;
220         /*
221          * TODO:Check with MSI Soc for sysdev
222          */
223         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
224
225         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
226         if (ret < 0) {
227                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
228                                 "failed to allocate MSI entry");
229                 return ret;
230         }
231
232         ret = request_irq(pdev->irq, xhci_msi_irq,
233                                 0, "xhci_hcd", xhci_to_hcd(xhci));
234         if (ret) {
235                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
236                                 "disable MSI interrupt");
237                 pci_free_irq_vectors(pdev);
238         }
239
240         return ret;
241 }
242
243 /*
244  * Set up MSI-X
245  */
246 static int xhci_setup_msix(struct xhci_hcd *xhci)
247 {
248         int i, ret = 0;
249         struct usb_hcd *hcd = xhci_to_hcd(xhci);
250         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
251
252         /*
253          * calculate number of msi-x vectors supported.
254          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
255          *   with max number of interrupters based on the xhci HCSPARAMS1.
256          * - num_online_cpus: maximum msi-x vectors per CPUs core.
257          *   Add additional 1 vector to ensure always available interrupt.
258          */
259         xhci->msix_count = min(num_online_cpus() + 1,
260                                 HCS_MAX_INTRS(xhci->hcs_params1));
261
262         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
263                         PCI_IRQ_MSIX);
264         if (ret < 0) {
265                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
266                                 "Failed to enable MSI-X");
267                 return ret;
268         }
269
270         for (i = 0; i < xhci->msix_count; i++) {
271                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
272                                 "xhci_hcd", xhci_to_hcd(xhci));
273                 if (ret)
274                         goto disable_msix;
275         }
276
277         hcd->msix_enabled = 1;
278         return ret;
279
280 disable_msix:
281         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
282         while (--i >= 0)
283                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
284         pci_free_irq_vectors(pdev);
285         return ret;
286 }
287
288 /* Free any IRQs and disable MSI-X */
289 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
290 {
291         struct usb_hcd *hcd = xhci_to_hcd(xhci);
292         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
293
294         if (xhci->quirks & XHCI_PLAT)
295                 return;
296
297         /* return if using legacy interrupt */
298         if (hcd->irq > 0)
299                 return;
300
301         if (hcd->msix_enabled) {
302                 int i;
303
304                 for (i = 0; i < xhci->msix_count; i++)
305                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
306         } else {
307                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
308         }
309
310         pci_free_irq_vectors(pdev);
311         hcd->msix_enabled = 0;
312 }
313
314 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
315 {
316         struct usb_hcd *hcd = xhci_to_hcd(xhci);
317
318         if (hcd->msix_enabled) {
319                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
320                 int i;
321
322                 for (i = 0; i < xhci->msix_count; i++)
323                         synchronize_irq(pci_irq_vector(pdev, i));
324         }
325 }
326
327 static int xhci_try_enable_msi(struct usb_hcd *hcd)
328 {
329         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
330         struct pci_dev  *pdev;
331         int ret;
332
333         /* The xhci platform device has set up IRQs through usb_add_hcd. */
334         if (xhci->quirks & XHCI_PLAT)
335                 return 0;
336
337         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
338         /*
339          * Some Fresco Logic host controllers advertise MSI, but fail to
340          * generate interrupts.  Don't even try to enable MSI.
341          */
342         if (xhci->quirks & XHCI_BROKEN_MSI)
343                 goto legacy_irq;
344
345         /* unregister the legacy interrupt */
346         if (hcd->irq)
347                 free_irq(hcd->irq, hcd);
348         hcd->irq = 0;
349
350         ret = xhci_setup_msix(xhci);
351         if (ret)
352                 /* fall back to msi*/
353                 ret = xhci_setup_msi(xhci);
354
355         if (!ret) {
356                 hcd->msi_enabled = 1;
357                 return 0;
358         }
359
360         if (!pdev->irq) {
361                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
362                 return -EINVAL;
363         }
364
365  legacy_irq:
366         if (!strlen(hcd->irq_descr))
367                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
368                          hcd->driver->description, hcd->self.busnum);
369
370         /* fall back to legacy interrupt*/
371         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
372                         hcd->irq_descr, hcd);
373         if (ret) {
374                 xhci_err(xhci, "request interrupt %d failed\n",
375                                 pdev->irq);
376                 return ret;
377         }
378         hcd->irq = pdev->irq;
379         return 0;
380 }
381
382 #else
383
384 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
385 {
386         return 0;
387 }
388
389 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
390 {
391 }
392
393 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395 }
396
397 #endif
398
399 static void compliance_mode_recovery(struct timer_list *t)
400 {
401         struct xhci_hcd *xhci;
402         struct usb_hcd *hcd;
403         u32 temp;
404         int i;
405
406         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
407
408         for (i = 0; i < xhci->num_usb3_ports; i++) {
409                 temp = readl(xhci->usb3_ports[i]);
410                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
411                         /*
412                          * Compliance Mode Detected. Letting USB Core
413                          * handle the Warm Reset
414                          */
415                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
416                                         "Compliance mode detected->port %d",
417                                         i + 1);
418                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
419                                         "Attempting compliance mode recovery");
420                         hcd = xhci->shared_hcd;
421
422                         if (hcd->state == HC_STATE_SUSPENDED)
423                                 usb_hcd_resume_root_hub(hcd);
424
425                         usb_hcd_poll_rh_status(hcd);
426                 }
427         }
428
429         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
430                 mod_timer(&xhci->comp_mode_recovery_timer,
431                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
432 }
433
434 /*
435  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
436  * that causes ports behind that hardware to enter compliance mode sometimes.
437  * The quirk creates a timer that polls every 2 seconds the link state of
438  * each host controller's port and recovers it by issuing a Warm reset
439  * if Compliance mode is detected, otherwise the port will become "dead" (no
440  * device connections or disconnections will be detected anymore). Becasue no
441  * status event is generated when entering compliance mode (per xhci spec),
442  * this quirk is needed on systems that have the failing hardware installed.
443  */
444 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
445 {
446         xhci->port_status_u0 = 0;
447         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
448                     0);
449         xhci->comp_mode_recovery_timer.expires = jiffies +
450                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
451
452         add_timer(&xhci->comp_mode_recovery_timer);
453         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
454                         "Compliance mode recovery timer initialized");
455 }
456
457 /*
458  * This function identifies the systems that have installed the SN65LVPE502CP
459  * USB3.0 re-driver and that need the Compliance Mode Quirk.
460  * Systems:
461  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
462  */
463 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
464 {
465         const char *dmi_product_name, *dmi_sys_vendor;
466
467         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
468         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
469         if (!dmi_product_name || !dmi_sys_vendor)
470                 return false;
471
472         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
473                 return false;
474
475         if (strstr(dmi_product_name, "Z420") ||
476                         strstr(dmi_product_name, "Z620") ||
477                         strstr(dmi_product_name, "Z820") ||
478                         strstr(dmi_product_name, "Z1 Workstation"))
479                 return true;
480
481         return false;
482 }
483
484 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
485 {
486         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
487 }
488
489
490 /*
491  * Initialize memory for HCD and xHC (one-time init).
492  *
493  * Program the PAGESIZE register, initialize the device context array, create
494  * device contexts (?), set up a command ring segment (or two?), create event
495  * ring (one for now).
496  */
497 static int xhci_init(struct usb_hcd *hcd)
498 {
499         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
500         int retval = 0;
501
502         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
503         spin_lock_init(&xhci->lock);
504         if (xhci->hci_version == 0x95 && link_quirk) {
505                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
506                                 "QUIRK: Not clearing Link TRB chain bits.");
507                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
508         } else {
509                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
510                                 "xHCI doesn't need link TRB QUIRK");
511         }
512         retval = xhci_mem_init(xhci, GFP_KERNEL);
513         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
514
515         /* Initializing Compliance Mode Recovery Data If Needed */
516         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
517                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
518                 compliance_mode_recovery_timer_init(xhci);
519         }
520
521         return retval;
522 }
523
524 /*-------------------------------------------------------------------------*/
525
526
527 static int xhci_run_finished(struct xhci_hcd *xhci)
528 {
529         if (xhci_start(xhci)) {
530                 xhci_halt(xhci);
531                 return -ENODEV;
532         }
533         xhci->shared_hcd->state = HC_STATE_RUNNING;
534         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
535
536         if (xhci->quirks & XHCI_NEC_HOST)
537                 xhci_ring_cmd_db(xhci);
538
539         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
540                         "Finished xhci_run for USB3 roothub");
541         return 0;
542 }
543
544 /*
545  * Start the HC after it was halted.
546  *
547  * This function is called by the USB core when the HC driver is added.
548  * Its opposite is xhci_stop().
549  *
550  * xhci_init() must be called once before this function can be called.
551  * Reset the HC, enable device slot contexts, program DCBAAP, and
552  * set command ring pointer and event ring pointer.
553  *
554  * Setup MSI-X vectors and enable interrupts.
555  */
556 int xhci_run(struct usb_hcd *hcd)
557 {
558         u32 temp;
559         u64 temp_64;
560         int ret;
561         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
562
563         /* Start the xHCI host controller running only after the USB 2.0 roothub
564          * is setup.
565          */
566
567         hcd->uses_new_polling = 1;
568         if (!usb_hcd_is_primary_hcd(hcd))
569                 return xhci_run_finished(xhci);
570
571         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
572
573         ret = xhci_try_enable_msi(hcd);
574         if (ret)
575                 return ret;
576
577         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
578         temp_64 &= ~ERST_PTR_MASK;
579         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
581
582         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
583                         "// Set the interrupt modulation register");
584         temp = readl(&xhci->ir_set->irq_control);
585         temp &= ~ER_IRQ_INTERVAL_MASK;
586         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
587         writel(temp, &xhci->ir_set->irq_control);
588
589         /* Set the HCD state before we enable the irqs */
590         temp = readl(&xhci->op_regs->command);
591         temp |= (CMD_EIE);
592         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
593                         "// Enable interrupts, cmd = 0x%x.", temp);
594         writel(temp, &xhci->op_regs->command);
595
596         temp = readl(&xhci->ir_set->irq_pending);
597         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
598                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
599                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
600         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
601
602         if (xhci->quirks & XHCI_NEC_HOST) {
603                 struct xhci_command *command;
604
605                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
606                 if (!command)
607                         return -ENOMEM;
608
609                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
610                                 TRB_TYPE(TRB_NEC_GET_FW));
611                 if (ret)
612                         xhci_free_command(xhci, command);
613         }
614         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
615                         "Finished xhci_run for USB2 roothub");
616
617         xhci_dbc_init(xhci);
618
619         xhci_debugfs_init(xhci);
620
621         return 0;
622 }
623 EXPORT_SYMBOL_GPL(xhci_run);
624
625 /*
626  * Stop xHCI driver.
627  *
628  * This function is called by the USB core when the HC driver is removed.
629  * Its opposite is xhci_run().
630  *
631  * Disable device contexts, disable IRQs, and quiesce the HC.
632  * Reset the HC, finish any completed transactions, and cleanup memory.
633  */
634 static void xhci_stop(struct usb_hcd *hcd)
635 {
636         u32 temp;
637         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
638
639         mutex_lock(&xhci->mutex);
640
641         /* Only halt host and free memory after both hcds are removed */
642         if (!usb_hcd_is_primary_hcd(hcd)) {
643                 /* usb core will free this hcd shortly, unset pointer */
644                 xhci->shared_hcd = NULL;
645                 mutex_unlock(&xhci->mutex);
646                 return;
647         }
648
649         xhci_dbc_exit(xhci);
650
651         spin_lock_irq(&xhci->lock);
652         xhci->xhc_state |= XHCI_STATE_HALTED;
653         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
654         xhci_halt(xhci);
655         xhci_reset(xhci);
656         spin_unlock_irq(&xhci->lock);
657
658         xhci_cleanup_msix(xhci);
659
660         /* Deleting Compliance Mode Recovery Timer */
661         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
662                         (!(xhci_all_ports_seen_u0(xhci)))) {
663                 del_timer_sync(&xhci->comp_mode_recovery_timer);
664                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
665                                 "%s: compliance mode recovery timer deleted",
666                                 __func__);
667         }
668
669         if (xhci->quirks & XHCI_AMD_PLL_FIX)
670                 usb_amd_dev_put();
671
672         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
673                         "// Disabling event ring interrupts");
674         temp = readl(&xhci->op_regs->status);
675         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
676         temp = readl(&xhci->ir_set->irq_pending);
677         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
678
679         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
680         xhci_mem_cleanup(xhci);
681         xhci_debugfs_exit(xhci);
682         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
683                         "xhci_stop completed - status = %x",
684                         readl(&xhci->op_regs->status));
685         mutex_unlock(&xhci->mutex);
686 }
687
688 /*
689  * Shutdown HC (not bus-specific)
690  *
691  * This is called when the machine is rebooting or halting.  We assume that the
692  * machine will be powered off, and the HC's internal state will be reset.
693  * Don't bother to free memory.
694  *
695  * This will only ever be called with the main usb_hcd (the USB3 roothub).
696  */
697 static void xhci_shutdown(struct usb_hcd *hcd)
698 {
699         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
700
701         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
702                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
703
704         spin_lock_irq(&xhci->lock);
705         xhci_halt(xhci);
706         /* Workaround for spurious wakeups at shutdown with HSW */
707         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
708                 xhci_reset(xhci);
709         spin_unlock_irq(&xhci->lock);
710
711         xhci_cleanup_msix(xhci);
712
713         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
714                         "xhci_shutdown completed - status = %x",
715                         readl(&xhci->op_regs->status));
716
717         /* Yet another workaround for spurious wakeups at shutdown with HSW */
718         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
719                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
720 }
721
722 #ifdef CONFIG_PM
723 static void xhci_save_registers(struct xhci_hcd *xhci)
724 {
725         xhci->s3.command = readl(&xhci->op_regs->command);
726         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
727         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
728         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
729         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
730         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
731         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
732         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
733         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
734 }
735
736 static void xhci_restore_registers(struct xhci_hcd *xhci)
737 {
738         writel(xhci->s3.command, &xhci->op_regs->command);
739         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
740         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
741         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
742         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
743         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
744         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
745         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
746         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
747 }
748
749 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
750 {
751         u64     val_64;
752
753         /* step 2: initialize command ring buffer */
754         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
755         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
756                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
757                                       xhci->cmd_ring->dequeue) &
758                  (u64) ~CMD_RING_RSVD_BITS) |
759                 xhci->cmd_ring->cycle_state;
760         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
761                         "// Setting command ring address to 0x%llx",
762                         (long unsigned long) val_64);
763         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
764 }
765
766 /*
767  * The whole command ring must be cleared to zero when we suspend the host.
768  *
769  * The host doesn't save the command ring pointer in the suspend well, so we
770  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
771  * aligned, because of the reserved bits in the command ring dequeue pointer
772  * register.  Therefore, we can't just set the dequeue pointer back in the
773  * middle of the ring (TRBs are 16-byte aligned).
774  */
775 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
776 {
777         struct xhci_ring *ring;
778         struct xhci_segment *seg;
779
780         ring = xhci->cmd_ring;
781         seg = ring->deq_seg;
782         do {
783                 memset(seg->trbs, 0,
784                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
785                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
786                         cpu_to_le32(~TRB_CYCLE);
787                 seg = seg->next;
788         } while (seg != ring->deq_seg);
789
790         /* Reset the software enqueue and dequeue pointers */
791         ring->deq_seg = ring->first_seg;
792         ring->dequeue = ring->first_seg->trbs;
793         ring->enq_seg = ring->deq_seg;
794         ring->enqueue = ring->dequeue;
795
796         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
797         /*
798          * Ring is now zeroed, so the HW should look for change of ownership
799          * when the cycle bit is set to 1.
800          */
801         ring->cycle_state = 1;
802
803         /*
804          * Reset the hardware dequeue pointer.
805          * Yes, this will need to be re-written after resume, but we're paranoid
806          * and want to make sure the hardware doesn't access bogus memory
807          * because, say, the BIOS or an SMI started the host without changing
808          * the command ring pointers.
809          */
810         xhci_set_cmd_ring_deq(xhci);
811 }
812
813 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
814 {
815         int port_index;
816         __le32 __iomem **port_array;
817         unsigned long flags;
818         u32 t1, t2;
819
820         spin_lock_irqsave(&xhci->lock, flags);
821
822         /* disable usb3 ports Wake bits */
823         port_index = xhci->num_usb3_ports;
824         port_array = xhci->usb3_ports;
825         while (port_index--) {
826                 t1 = readl(port_array[port_index]);
827                 t1 = xhci_port_state_to_neutral(t1);
828                 t2 = t1 & ~PORT_WAKE_BITS;
829                 if (t1 != t2)
830                         writel(t2, port_array[port_index]);
831         }
832
833         /* disable usb2 ports Wake bits */
834         port_index = xhci->num_usb2_ports;
835         port_array = xhci->usb2_ports;
836         while (port_index--) {
837                 t1 = readl(port_array[port_index]);
838                 t1 = xhci_port_state_to_neutral(t1);
839                 t2 = t1 & ~PORT_WAKE_BITS;
840                 if (t1 != t2)
841                         writel(t2, port_array[port_index]);
842         }
843
844         spin_unlock_irqrestore(&xhci->lock, flags);
845 }
846
847 /*
848  * Stop HC (not bus-specific)
849  *
850  * This is called when the machine transition into S3/S4 mode.
851  *
852  */
853 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
854 {
855         int                     rc = 0;
856         unsigned int            delay = XHCI_MAX_HALT_USEC;
857         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
858         u32                     command;
859
860         if (!hcd->state)
861                 return 0;
862
863         if (hcd->state != HC_STATE_SUSPENDED ||
864                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
865                 return -EINVAL;
866
867         xhci_dbc_suspend(xhci);
868
869         /* Clear root port wake on bits if wakeup not allowed. */
870         if (!do_wakeup)
871                 xhci_disable_port_wake_on_bits(xhci);
872
873         /* Don't poll the roothubs on bus suspend. */
874         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
875         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
876         del_timer_sync(&hcd->rh_timer);
877         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
878         del_timer_sync(&xhci->shared_hcd->rh_timer);
879
880         if (xhci->quirks & XHCI_SUSPEND_DELAY)
881                 usleep_range(1000, 1500);
882
883         spin_lock_irq(&xhci->lock);
884         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
885         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
886         /* step 1: stop endpoint */
887         /* skipped assuming that port suspend has done */
888
889         /* step 2: clear Run/Stop bit */
890         command = readl(&xhci->op_regs->command);
891         command &= ~CMD_RUN;
892         writel(command, &xhci->op_regs->command);
893
894         /* Some chips from Fresco Logic need an extraordinary delay */
895         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
896
897         if (xhci_handshake(&xhci->op_regs->status,
898                       STS_HALT, STS_HALT, delay)) {
899                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
900                 spin_unlock_irq(&xhci->lock);
901                 return -ETIMEDOUT;
902         }
903         xhci_clear_command_ring(xhci);
904
905         /* step 3: save registers */
906         xhci_save_registers(xhci);
907
908         /* step 4: set CSS flag */
909         command = readl(&xhci->op_regs->command);
910         command |= CMD_CSS;
911         writel(command, &xhci->op_regs->command);
912         if (xhci_handshake(&xhci->op_regs->status,
913                                 STS_SAVE, 0, 10 * 1000)) {
914                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
915                 spin_unlock_irq(&xhci->lock);
916                 return -ETIMEDOUT;
917         }
918         spin_unlock_irq(&xhci->lock);
919
920         /*
921          * Deleting Compliance Mode Recovery Timer because the xHCI Host
922          * is about to be suspended.
923          */
924         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
925                         (!(xhci_all_ports_seen_u0(xhci)))) {
926                 del_timer_sync(&xhci->comp_mode_recovery_timer);
927                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
928                                 "%s: compliance mode recovery timer deleted",
929                                 __func__);
930         }
931
932         /* step 5: remove core well power */
933         /* synchronize irq when using MSI-X */
934         xhci_msix_sync_irqs(xhci);
935
936         return rc;
937 }
938 EXPORT_SYMBOL_GPL(xhci_suspend);
939
940 /*
941  * start xHC (not bus-specific)
942  *
943  * This is called when the machine transition from S3/S4 mode.
944  *
945  */
946 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
947 {
948         u32                     command, temp = 0, status;
949         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
950         struct usb_hcd          *secondary_hcd;
951         int                     retval = 0;
952         bool                    comp_timer_running = false;
953
954         if (!hcd->state)
955                 return 0;
956
957         /* Wait a bit if either of the roothubs need to settle from the
958          * transition into bus suspend.
959          */
960         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
961                         time_before(jiffies,
962                                 xhci->bus_state[1].next_statechange))
963                 msleep(100);
964
965         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
966         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
967
968         spin_lock_irq(&xhci->lock);
969         if (xhci->quirks & XHCI_RESET_ON_RESUME)
970                 hibernated = true;
971
972         if (!hibernated) {
973                 /* step 1: restore register */
974                 xhci_restore_registers(xhci);
975                 /* step 2: initialize command ring buffer */
976                 xhci_set_cmd_ring_deq(xhci);
977                 /* step 3: restore state and start state*/
978                 /* step 3: set CRS flag */
979                 command = readl(&xhci->op_regs->command);
980                 command |= CMD_CRS;
981                 writel(command, &xhci->op_regs->command);
982                 if (xhci_handshake(&xhci->op_regs->status,
983                               STS_RESTORE, 0, 10 * 1000)) {
984                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
985                         spin_unlock_irq(&xhci->lock);
986                         return -ETIMEDOUT;
987                 }
988                 temp = readl(&xhci->op_regs->status);
989         }
990
991         /* If restore operation fails, re-initialize the HC during resume */
992         if ((temp & STS_SRE) || hibernated) {
993
994                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
995                                 !(xhci_all_ports_seen_u0(xhci))) {
996                         del_timer_sync(&xhci->comp_mode_recovery_timer);
997                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
998                                 "Compliance Mode Recovery Timer deleted!");
999                 }
1000
1001                 /* Let the USB core know _both_ roothubs lost power. */
1002                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1003                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1004
1005                 xhci_dbg(xhci, "Stop HCD\n");
1006                 xhci_halt(xhci);
1007                 xhci_reset(xhci);
1008                 spin_unlock_irq(&xhci->lock);
1009                 xhci_cleanup_msix(xhci);
1010
1011                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1012                 temp = readl(&xhci->op_regs->status);
1013                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1014                 temp = readl(&xhci->ir_set->irq_pending);
1015                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1016
1017                 xhci_dbg(xhci, "cleaning up memory\n");
1018                 xhci_mem_cleanup(xhci);
1019                 xhci_debugfs_exit(xhci);
1020                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1021                             readl(&xhci->op_regs->status));
1022
1023                 /* USB core calls the PCI reinit and start functions twice:
1024                  * first with the primary HCD, and then with the secondary HCD.
1025                  * If we don't do the same, the host will never be started.
1026                  */
1027                 if (!usb_hcd_is_primary_hcd(hcd))
1028                         secondary_hcd = hcd;
1029                 else
1030                         secondary_hcd = xhci->shared_hcd;
1031
1032                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1033                 retval = xhci_init(hcd->primary_hcd);
1034                 if (retval)
1035                         return retval;
1036                 comp_timer_running = true;
1037
1038                 xhci_dbg(xhci, "Start the primary HCD\n");
1039                 retval = xhci_run(hcd->primary_hcd);
1040                 if (!retval) {
1041                         xhci_dbg(xhci, "Start the secondary HCD\n");
1042                         retval = xhci_run(secondary_hcd);
1043                 }
1044                 hcd->state = HC_STATE_SUSPENDED;
1045                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1046                 goto done;
1047         }
1048
1049         /* step 4: set Run/Stop bit */
1050         command = readl(&xhci->op_regs->command);
1051         command |= CMD_RUN;
1052         writel(command, &xhci->op_regs->command);
1053         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1054                   0, 250 * 1000);
1055
1056         /* step 5: walk topology and initialize portsc,
1057          * portpmsc and portli
1058          */
1059         /* this is done in bus_resume */
1060
1061         /* step 6: restart each of the previously
1062          * Running endpoints by ringing their doorbells
1063          */
1064
1065         spin_unlock_irq(&xhci->lock);
1066
1067         xhci_dbc_resume(xhci);
1068
1069  done:
1070         if (retval == 0) {
1071                 /* Resume root hubs only when have pending events. */
1072                 status = readl(&xhci->op_regs->status);
1073                 if (status & STS_EINT) {
1074                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1075                         usb_hcd_resume_root_hub(hcd);
1076                 }
1077         }
1078
1079         /*
1080          * If system is subject to the Quirk, Compliance Mode Timer needs to
1081          * be re-initialized Always after a system resume. Ports are subject
1082          * to suffer the Compliance Mode issue again. It doesn't matter if
1083          * ports have entered previously to U0 before system's suspension.
1084          */
1085         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1086                 compliance_mode_recovery_timer_init(xhci);
1087
1088         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1089                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1090
1091         /* Re-enable port polling. */
1092         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1093         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1094         usb_hcd_poll_rh_status(xhci->shared_hcd);
1095         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1096         usb_hcd_poll_rh_status(hcd);
1097
1098         return retval;
1099 }
1100 EXPORT_SYMBOL_GPL(xhci_resume);
1101 #endif  /* CONFIG_PM */
1102
1103 /*-------------------------------------------------------------------------*/
1104
1105 /**
1106  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1107  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1108  * value to right shift 1 for the bitmask.
1109  *
1110  * Index  = (epnum * 2) + direction - 1,
1111  * where direction = 0 for OUT, 1 for IN.
1112  * For control endpoints, the IN index is used (OUT index is unused), so
1113  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1114  */
1115 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1116 {
1117         unsigned int index;
1118         if (usb_endpoint_xfer_control(desc))
1119                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1120         else
1121                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1122                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1123         return index;
1124 }
1125
1126 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1127  * address from the XHCI endpoint index.
1128  */
1129 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1130 {
1131         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1132         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1133         return direction | number;
1134 }
1135
1136 /* Find the flag for this endpoint (for use in the control context).  Use the
1137  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1138  * bit 1, etc.
1139  */
1140 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1141 {
1142         return 1 << (xhci_get_endpoint_index(desc) + 1);
1143 }
1144
1145 /* Find the flag for this endpoint (for use in the control context).  Use the
1146  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1147  * bit 1, etc.
1148  */
1149 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1150 {
1151         return 1 << (ep_index + 1);
1152 }
1153
1154 /* Compute the last valid endpoint context index.  Basically, this is the
1155  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1156  * we find the most significant bit set in the added contexts flags.
1157  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1158  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1159  */
1160 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1161 {
1162         return fls(added_ctxs) - 1;
1163 }
1164
1165 /* Returns 1 if the arguments are OK;
1166  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1167  */
1168 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1169                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1170                 const char *func) {
1171         struct xhci_hcd *xhci;
1172         struct xhci_virt_device *virt_dev;
1173
1174         if (!hcd || (check_ep && !ep) || !udev) {
1175                 pr_debug("xHCI %s called with invalid args\n", func);
1176                 return -EINVAL;
1177         }
1178         if (!udev->parent) {
1179                 pr_debug("xHCI %s called for root hub\n", func);
1180                 return 0;
1181         }
1182
1183         xhci = hcd_to_xhci(hcd);
1184         if (check_virt_dev) {
1185                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1186                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1187                                         func);
1188                         return -EINVAL;
1189                 }
1190
1191                 virt_dev = xhci->devs[udev->slot_id];
1192                 if (virt_dev->udev != udev) {
1193                         xhci_dbg(xhci, "xHCI %s called with udev and "
1194                                           "virt_dev does not match\n", func);
1195                         return -EINVAL;
1196                 }
1197         }
1198
1199         if (xhci->xhc_state & XHCI_STATE_HALTED)
1200                 return -ENODEV;
1201
1202         return 1;
1203 }
1204
1205 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1206                 struct usb_device *udev, struct xhci_command *command,
1207                 bool ctx_change, bool must_succeed);
1208
1209 /*
1210  * Full speed devices may have a max packet size greater than 8 bytes, but the
1211  * USB core doesn't know that until it reads the first 8 bytes of the
1212  * descriptor.  If the usb_device's max packet size changes after that point,
1213  * we need to issue an evaluate context command and wait on it.
1214  */
1215 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1216                 unsigned int ep_index, struct urb *urb)
1217 {
1218         struct xhci_container_ctx *out_ctx;
1219         struct xhci_input_control_ctx *ctrl_ctx;
1220         struct xhci_ep_ctx *ep_ctx;
1221         struct xhci_command *command;
1222         int max_packet_size;
1223         int hw_max_packet_size;
1224         int ret = 0;
1225
1226         out_ctx = xhci->devs[slot_id]->out_ctx;
1227         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1228         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1229         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1230         if (hw_max_packet_size != max_packet_size) {
1231                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1232                                 "Max Packet Size for ep 0 changed.");
1233                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1234                                 "Max packet size in usb_device = %d",
1235                                 max_packet_size);
1236                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1237                                 "Max packet size in xHCI HW = %d",
1238                                 hw_max_packet_size);
1239                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1240                                 "Issuing evaluate context command.");
1241
1242                 /* Set up the input context flags for the command */
1243                 /* FIXME: This won't work if a non-default control endpoint
1244                  * changes max packet sizes.
1245                  */
1246
1247                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1248                 if (!command)
1249                         return -ENOMEM;
1250
1251                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1252                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1253                 if (!ctrl_ctx) {
1254                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1255                                         __func__);
1256                         ret = -ENOMEM;
1257                         goto command_cleanup;
1258                 }
1259                 /* Set up the modified control endpoint 0 */
1260                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1261                                 xhci->devs[slot_id]->out_ctx, ep_index);
1262
1263                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1264                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1265                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1266
1267                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1268                 ctrl_ctx->drop_flags = 0;
1269
1270                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1271                                 true, false);
1272
1273                 /* Clean up the input context for later use by bandwidth
1274                  * functions.
1275                  */
1276                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1277 command_cleanup:
1278                 kfree(command->completion);
1279                 kfree(command);
1280         }
1281         return ret;
1282 }
1283
1284 /*
1285  * non-error returns are a promise to giveback() the urb later
1286  * we drop ownership so next owner (or urb unlink) can get it
1287  */
1288 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1289 {
1290         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1291         unsigned long flags;
1292         int ret = 0;
1293         unsigned int slot_id, ep_index;
1294         unsigned int *ep_state;
1295         struct urb_priv *urb_priv;
1296         int num_tds;
1297
1298         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1299                                         true, true, __func__) <= 0)
1300                 return -EINVAL;
1301
1302         slot_id = urb->dev->slot_id;
1303         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1304         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1305
1306         if (!HCD_HW_ACCESSIBLE(hcd)) {
1307                 if (!in_interrupt())
1308                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1309                 return -ESHUTDOWN;
1310         }
1311
1312         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1313                 num_tds = urb->number_of_packets;
1314         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1315             urb->transfer_buffer_length > 0 &&
1316             urb->transfer_flags & URB_ZERO_PACKET &&
1317             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1318                 num_tds = 2;
1319         else
1320                 num_tds = 1;
1321
1322         urb_priv = kzalloc(sizeof(struct urb_priv) +
1323                            num_tds * sizeof(struct xhci_td), mem_flags);
1324         if (!urb_priv)
1325                 return -ENOMEM;
1326
1327         urb_priv->num_tds = num_tds;
1328         urb_priv->num_tds_done = 0;
1329         urb->hcpriv = urb_priv;
1330
1331         trace_xhci_urb_enqueue(urb);
1332
1333         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1334                 /* Check to see if the max packet size for the default control
1335                  * endpoint changed during FS device enumeration
1336                  */
1337                 if (urb->dev->speed == USB_SPEED_FULL) {
1338                         ret = xhci_check_maxpacket(xhci, slot_id,
1339                                         ep_index, urb);
1340                         if (ret < 0) {
1341                                 xhci_urb_free_priv(urb_priv);
1342                                 urb->hcpriv = NULL;
1343                                 return ret;
1344                         }
1345                 }
1346         }
1347
1348         spin_lock_irqsave(&xhci->lock, flags);
1349
1350         if (xhci->xhc_state & XHCI_STATE_DYING) {
1351                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1352                          urb->ep->desc.bEndpointAddress, urb);
1353                 ret = -ESHUTDOWN;
1354                 goto free_priv;
1355         }
1356         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1357                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1358                           *ep_state);
1359                 ret = -EINVAL;
1360                 goto free_priv;
1361         }
1362         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1363                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1364                 ret = -EINVAL;
1365                 goto free_priv;
1366         }
1367
1368         switch (usb_endpoint_type(&urb->ep->desc)) {
1369
1370         case USB_ENDPOINT_XFER_CONTROL:
1371                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1372                                          slot_id, ep_index);
1373                 break;
1374         case USB_ENDPOINT_XFER_BULK:
1375                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1376                                          slot_id, ep_index);
1377                 break;
1378         case USB_ENDPOINT_XFER_INT:
1379                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1380                                 slot_id, ep_index);
1381                 break;
1382         case USB_ENDPOINT_XFER_ISOC:
1383                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1384                                 slot_id, ep_index);
1385         }
1386
1387         if (ret) {
1388 free_priv:
1389                 xhci_urb_free_priv(urb_priv);
1390                 urb->hcpriv = NULL;
1391         }
1392         spin_unlock_irqrestore(&xhci->lock, flags);
1393         return ret;
1394 }
1395
1396 /*
1397  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1398  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1399  * should pick up where it left off in the TD, unless a Set Transfer Ring
1400  * Dequeue Pointer is issued.
1401  *
1402  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1403  * the ring.  Since the ring is a contiguous structure, they can't be physically
1404  * removed.  Instead, there are two options:
1405  *
1406  *  1) If the HC is in the middle of processing the URB to be canceled, we
1407  *     simply move the ring's dequeue pointer past those TRBs using the Set
1408  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1409  *     when drivers timeout on the last submitted URB and attempt to cancel.
1410  *
1411  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1412  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1413  *     HC will need to invalidate the any TRBs it has cached after the stop
1414  *     endpoint command, as noted in the xHCI 0.95 errata.
1415  *
1416  *  3) The TD may have completed by the time the Stop Endpoint Command
1417  *     completes, so software needs to handle that case too.
1418  *
1419  * This function should protect against the TD enqueueing code ringing the
1420  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1421  * It also needs to account for multiple cancellations on happening at the same
1422  * time for the same endpoint.
1423  *
1424  * Note that this function can be called in any context, or so says
1425  * usb_hcd_unlink_urb()
1426  */
1427 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1428 {
1429         unsigned long flags;
1430         int ret, i;
1431         u32 temp;
1432         struct xhci_hcd *xhci;
1433         struct urb_priv *urb_priv;
1434         struct xhci_td *td;
1435         unsigned int ep_index;
1436         struct xhci_ring *ep_ring;
1437         struct xhci_virt_ep *ep;
1438         struct xhci_command *command;
1439         struct xhci_virt_device *vdev;
1440
1441         xhci = hcd_to_xhci(hcd);
1442         spin_lock_irqsave(&xhci->lock, flags);
1443
1444         trace_xhci_urb_dequeue(urb);
1445
1446         /* Make sure the URB hasn't completed or been unlinked already */
1447         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1448         if (ret)
1449                 goto done;
1450
1451         /* give back URB now if we can't queue it for cancel */
1452         vdev = xhci->devs[urb->dev->slot_id];
1453         urb_priv = urb->hcpriv;
1454         if (!vdev || !urb_priv)
1455                 goto err_giveback;
1456
1457         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1458         ep = &vdev->eps[ep_index];
1459         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1460         if (!ep || !ep_ring)
1461                 goto err_giveback;
1462
1463         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1464         temp = readl(&xhci->op_regs->status);
1465         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1466                 xhci_hc_died(xhci);
1467                 goto done;
1468         }
1469
1470         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1471                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1472                                 "HC halted, freeing TD manually.");
1473                 for (i = urb_priv->num_tds_done;
1474                      i < urb_priv->num_tds;
1475                      i++) {
1476                         td = &urb_priv->td[i];
1477                         if (!list_empty(&td->td_list))
1478                                 list_del_init(&td->td_list);
1479                         if (!list_empty(&td->cancelled_td_list))
1480                                 list_del_init(&td->cancelled_td_list);
1481                 }
1482                 goto err_giveback;
1483         }
1484
1485         i = urb_priv->num_tds_done;
1486         if (i < urb_priv->num_tds)
1487                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1488                                 "Cancel URB %p, dev %s, ep 0x%x, "
1489                                 "starting at offset 0x%llx",
1490                                 urb, urb->dev->devpath,
1491                                 urb->ep->desc.bEndpointAddress,
1492                                 (unsigned long long) xhci_trb_virt_to_dma(
1493                                         urb_priv->td[i].start_seg,
1494                                         urb_priv->td[i].first_trb));
1495
1496         for (; i < urb_priv->num_tds; i++) {
1497                 td = &urb_priv->td[i];
1498                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1499         }
1500
1501         /* Queue a stop endpoint command, but only if this is
1502          * the first cancellation to be handled.
1503          */
1504         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1505                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1506                 if (!command) {
1507                         ret = -ENOMEM;
1508                         goto done;
1509                 }
1510                 ep->ep_state |= EP_STOP_CMD_PENDING;
1511                 ep->stop_cmd_timer.expires = jiffies +
1512                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1513                 add_timer(&ep->stop_cmd_timer);
1514                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1515                                          ep_index, 0);
1516                 xhci_ring_cmd_db(xhci);
1517         }
1518 done:
1519         spin_unlock_irqrestore(&xhci->lock, flags);
1520         return ret;
1521
1522 err_giveback:
1523         if (urb_priv)
1524                 xhci_urb_free_priv(urb_priv);
1525         usb_hcd_unlink_urb_from_ep(hcd, urb);
1526         spin_unlock_irqrestore(&xhci->lock, flags);
1527         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1528         return ret;
1529 }
1530
1531 /* Drop an endpoint from a new bandwidth configuration for this device.
1532  * Only one call to this function is allowed per endpoint before
1533  * check_bandwidth() or reset_bandwidth() must be called.
1534  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1535  * add the endpoint to the schedule with possibly new parameters denoted by a
1536  * different endpoint descriptor in usb_host_endpoint.
1537  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1538  * not allowed.
1539  *
1540  * The USB core will not allow URBs to be queued to an endpoint that is being
1541  * disabled, so there's no need for mutual exclusion to protect
1542  * the xhci->devs[slot_id] structure.
1543  */
1544 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1545                 struct usb_host_endpoint *ep)
1546 {
1547         struct xhci_hcd *xhci;
1548         struct xhci_container_ctx *in_ctx, *out_ctx;
1549         struct xhci_input_control_ctx *ctrl_ctx;
1550         unsigned int ep_index;
1551         struct xhci_ep_ctx *ep_ctx;
1552         u32 drop_flag;
1553         u32 new_add_flags, new_drop_flags;
1554         int ret;
1555
1556         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1557         if (ret <= 0)
1558                 return ret;
1559         xhci = hcd_to_xhci(hcd);
1560         if (xhci->xhc_state & XHCI_STATE_DYING)
1561                 return -ENODEV;
1562
1563         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1564         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1565         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1566                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1567                                 __func__, drop_flag);
1568                 return 0;
1569         }
1570
1571         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1572         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1573         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1574         if (!ctrl_ctx) {
1575                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1576                                 __func__);
1577                 return 0;
1578         }
1579
1580         ep_index = xhci_get_endpoint_index(&ep->desc);
1581         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1582         /* If the HC already knows the endpoint is disabled,
1583          * or the HCD has noted it is disabled, ignore this request
1584          */
1585         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1586             le32_to_cpu(ctrl_ctx->drop_flags) &
1587             xhci_get_endpoint_flag(&ep->desc)) {
1588                 /* Do not warn when called after a usb_device_reset */
1589                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1590                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1591                                   __func__, ep);
1592                 return 0;
1593         }
1594
1595         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1596         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1597
1598         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1599         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1600
1601         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1602
1603         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1604
1605         if (xhci->quirks & XHCI_MTK_HOST)
1606                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1607
1608         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1609                         (unsigned int) ep->desc.bEndpointAddress,
1610                         udev->slot_id,
1611                         (unsigned int) new_drop_flags,
1612                         (unsigned int) new_add_flags);
1613         return 0;
1614 }
1615
1616 /* Add an endpoint to a new possible bandwidth configuration for this device.
1617  * Only one call to this function is allowed per endpoint before
1618  * check_bandwidth() or reset_bandwidth() must be called.
1619  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1620  * add the endpoint to the schedule with possibly new parameters denoted by a
1621  * different endpoint descriptor in usb_host_endpoint.
1622  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1623  * not allowed.
1624  *
1625  * The USB core will not allow URBs to be queued to an endpoint until the
1626  * configuration or alt setting is installed in the device, so there's no need
1627  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1628  */
1629 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1630                 struct usb_host_endpoint *ep)
1631 {
1632         struct xhci_hcd *xhci;
1633         struct xhci_container_ctx *in_ctx;
1634         unsigned int ep_index;
1635         struct xhci_input_control_ctx *ctrl_ctx;
1636         u32 added_ctxs;
1637         u32 new_add_flags, new_drop_flags;
1638         struct xhci_virt_device *virt_dev;
1639         int ret = 0;
1640
1641         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1642         if (ret <= 0) {
1643                 /* So we won't queue a reset ep command for a root hub */
1644                 ep->hcpriv = NULL;
1645                 return ret;
1646         }
1647         xhci = hcd_to_xhci(hcd);
1648         if (xhci->xhc_state & XHCI_STATE_DYING)
1649                 return -ENODEV;
1650
1651         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1652         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1653                 /* FIXME when we have to issue an evaluate endpoint command to
1654                  * deal with ep0 max packet size changing once we get the
1655                  * descriptors
1656                  */
1657                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1658                                 __func__, added_ctxs);
1659                 return 0;
1660         }
1661
1662         virt_dev = xhci->devs[udev->slot_id];
1663         in_ctx = virt_dev->in_ctx;
1664         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1665         if (!ctrl_ctx) {
1666                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1667                                 __func__);
1668                 return 0;
1669         }
1670
1671         ep_index = xhci_get_endpoint_index(&ep->desc);
1672         /* If this endpoint is already in use, and the upper layers are trying
1673          * to add it again without dropping it, reject the addition.
1674          */
1675         if (virt_dev->eps[ep_index].ring &&
1676                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1677                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1678                                 "without dropping it.\n",
1679                                 (unsigned int) ep->desc.bEndpointAddress);
1680                 return -EINVAL;
1681         }
1682
1683         /* If the HCD has already noted the endpoint is enabled,
1684          * ignore this request.
1685          */
1686         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1687                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1688                                 __func__, ep);
1689                 return 0;
1690         }
1691
1692         /*
1693          * Configuration and alternate setting changes must be done in
1694          * process context, not interrupt context (or so documenation
1695          * for usb_set_interface() and usb_set_configuration() claim).
1696          */
1697         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1698                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1699                                 __func__, ep->desc.bEndpointAddress);
1700                 return -ENOMEM;
1701         }
1702
1703         if (xhci->quirks & XHCI_MTK_HOST) {
1704                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1705                 if (ret < 0) {
1706                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1707                         virt_dev->eps[ep_index].new_ring = NULL;
1708                         return ret;
1709                 }
1710         }
1711
1712         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1713         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1714
1715         /* If xhci_endpoint_disable() was called for this endpoint, but the
1716          * xHC hasn't been notified yet through the check_bandwidth() call,
1717          * this re-adds a new state for the endpoint from the new endpoint
1718          * descriptors.  We must drop and re-add this endpoint, so we leave the
1719          * drop flags alone.
1720          */
1721         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1722
1723         /* Store the usb_device pointer for later use */
1724         ep->hcpriv = udev;
1725
1726         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1727
1728         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1729                         (unsigned int) ep->desc.bEndpointAddress,
1730                         udev->slot_id,
1731                         (unsigned int) new_drop_flags,
1732                         (unsigned int) new_add_flags);
1733         return 0;
1734 }
1735
1736 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1737 {
1738         struct xhci_input_control_ctx *ctrl_ctx;
1739         struct xhci_ep_ctx *ep_ctx;
1740         struct xhci_slot_ctx *slot_ctx;
1741         int i;
1742
1743         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1744         if (!ctrl_ctx) {
1745                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1746                                 __func__);
1747                 return;
1748         }
1749
1750         /* When a device's add flag and drop flag are zero, any subsequent
1751          * configure endpoint command will leave that endpoint's state
1752          * untouched.  Make sure we don't leave any old state in the input
1753          * endpoint contexts.
1754          */
1755         ctrl_ctx->drop_flags = 0;
1756         ctrl_ctx->add_flags = 0;
1757         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1758         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1759         /* Endpoint 0 is always valid */
1760         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1761         for (i = 1; i < 31; i++) {
1762                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1763                 ep_ctx->ep_info = 0;
1764                 ep_ctx->ep_info2 = 0;
1765                 ep_ctx->deq = 0;
1766                 ep_ctx->tx_info = 0;
1767         }
1768 }
1769
1770 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1771                 struct usb_device *udev, u32 *cmd_status)
1772 {
1773         int ret;
1774
1775         switch (*cmd_status) {
1776         case COMP_COMMAND_ABORTED:
1777         case COMP_COMMAND_RING_STOPPED:
1778                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1779                 ret = -ETIME;
1780                 break;
1781         case COMP_RESOURCE_ERROR:
1782                 dev_warn(&udev->dev,
1783                          "Not enough host controller resources for new device state.\n");
1784                 ret = -ENOMEM;
1785                 /* FIXME: can we allocate more resources for the HC? */
1786                 break;
1787         case COMP_BANDWIDTH_ERROR:
1788         case COMP_SECONDARY_BANDWIDTH_ERROR:
1789                 dev_warn(&udev->dev,
1790                          "Not enough bandwidth for new device state.\n");
1791                 ret = -ENOSPC;
1792                 /* FIXME: can we go back to the old state? */
1793                 break;
1794         case COMP_TRB_ERROR:
1795                 /* the HCD set up something wrong */
1796                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1797                                 "add flag = 1, "
1798                                 "and endpoint is not disabled.\n");
1799                 ret = -EINVAL;
1800                 break;
1801         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1802                 dev_warn(&udev->dev,
1803                          "ERROR: Incompatible device for endpoint configure command.\n");
1804                 ret = -ENODEV;
1805                 break;
1806         case COMP_SUCCESS:
1807                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1808                                 "Successful Endpoint Configure command");
1809                 ret = 0;
1810                 break;
1811         default:
1812                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1813                                 *cmd_status);
1814                 ret = -EINVAL;
1815                 break;
1816         }
1817         return ret;
1818 }
1819
1820 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1821                 struct usb_device *udev, u32 *cmd_status)
1822 {
1823         int ret;
1824
1825         switch (*cmd_status) {
1826         case COMP_COMMAND_ABORTED:
1827         case COMP_COMMAND_RING_STOPPED:
1828                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1829                 ret = -ETIME;
1830                 break;
1831         case COMP_PARAMETER_ERROR:
1832                 dev_warn(&udev->dev,
1833                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1834                 ret = -EINVAL;
1835                 break;
1836         case COMP_SLOT_NOT_ENABLED_ERROR:
1837                 dev_warn(&udev->dev,
1838                         "WARN: slot not enabled for evaluate context command.\n");
1839                 ret = -EINVAL;
1840                 break;
1841         case COMP_CONTEXT_STATE_ERROR:
1842                 dev_warn(&udev->dev,
1843                         "WARN: invalid context state for evaluate context command.\n");
1844                 ret = -EINVAL;
1845                 break;
1846         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1847                 dev_warn(&udev->dev,
1848                         "ERROR: Incompatible device for evaluate context command.\n");
1849                 ret = -ENODEV;
1850                 break;
1851         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
1852                 /* Max Exit Latency too large error */
1853                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1854                 ret = -EINVAL;
1855                 break;
1856         case COMP_SUCCESS:
1857                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1858                                 "Successful evaluate context command");
1859                 ret = 0;
1860                 break;
1861         default:
1862                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1863                         *cmd_status);
1864                 ret = -EINVAL;
1865                 break;
1866         }
1867         return ret;
1868 }
1869
1870 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1871                 struct xhci_input_control_ctx *ctrl_ctx)
1872 {
1873         u32 valid_add_flags;
1874         u32 valid_drop_flags;
1875
1876         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1877          * (bit 1).  The default control endpoint is added during the Address
1878          * Device command and is never removed until the slot is disabled.
1879          */
1880         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1881         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1882
1883         /* Use hweight32 to count the number of ones in the add flags, or
1884          * number of endpoints added.  Don't count endpoints that are changed
1885          * (both added and dropped).
1886          */
1887         return hweight32(valid_add_flags) -
1888                 hweight32(valid_add_flags & valid_drop_flags);
1889 }
1890
1891 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1892                 struct xhci_input_control_ctx *ctrl_ctx)
1893 {
1894         u32 valid_add_flags;
1895         u32 valid_drop_flags;
1896
1897         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1898         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1899
1900         return hweight32(valid_drop_flags) -
1901                 hweight32(valid_add_flags & valid_drop_flags);
1902 }
1903
1904 /*
1905  * We need to reserve the new number of endpoints before the configure endpoint
1906  * command completes.  We can't subtract the dropped endpoints from the number
1907  * of active endpoints until the command completes because we can oversubscribe
1908  * the host in this case:
1909  *
1910  *  - the first configure endpoint command drops more endpoints than it adds
1911  *  - a second configure endpoint command that adds more endpoints is queued
1912  *  - the first configure endpoint command fails, so the config is unchanged
1913  *  - the second command may succeed, even though there isn't enough resources
1914  *
1915  * Must be called with xhci->lock held.
1916  */
1917 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1918                 struct xhci_input_control_ctx *ctrl_ctx)
1919 {
1920         u32 added_eps;
1921
1922         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1923         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1924                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1925                                 "Not enough ep ctxs: "
1926                                 "%u active, need to add %u, limit is %u.",
1927                                 xhci->num_active_eps, added_eps,
1928                                 xhci->limit_active_eps);
1929                 return -ENOMEM;
1930         }
1931         xhci->num_active_eps += added_eps;
1932         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1933                         "Adding %u ep ctxs, %u now active.", added_eps,
1934                         xhci->num_active_eps);
1935         return 0;
1936 }
1937
1938 /*
1939  * The configure endpoint was failed by the xHC for some other reason, so we
1940  * need to revert the resources that failed configuration would have used.
1941  *
1942  * Must be called with xhci->lock held.
1943  */
1944 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1945                 struct xhci_input_control_ctx *ctrl_ctx)
1946 {
1947         u32 num_failed_eps;
1948
1949         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
1950         xhci->num_active_eps -= num_failed_eps;
1951         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1952                         "Removing %u failed ep ctxs, %u now active.",
1953                         num_failed_eps,
1954                         xhci->num_active_eps);
1955 }
1956
1957 /*
1958  * Now that the command has completed, clean up the active endpoint count by
1959  * subtracting out the endpoints that were dropped (but not changed).
1960  *
1961  * Must be called with xhci->lock held.
1962  */
1963 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1964                 struct xhci_input_control_ctx *ctrl_ctx)
1965 {
1966         u32 num_dropped_eps;
1967
1968         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
1969         xhci->num_active_eps -= num_dropped_eps;
1970         if (num_dropped_eps)
1971                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1972                                 "Removing %u dropped ep ctxs, %u now active.",
1973                                 num_dropped_eps,
1974                                 xhci->num_active_eps);
1975 }
1976
1977 static unsigned int xhci_get_block_size(struct usb_device *udev)
1978 {
1979         switch (udev->speed) {
1980         case USB_SPEED_LOW:
1981         case USB_SPEED_FULL:
1982                 return FS_BLOCK;
1983         case USB_SPEED_HIGH:
1984                 return HS_BLOCK;
1985         case USB_SPEED_SUPER:
1986         case USB_SPEED_SUPER_PLUS:
1987                 return SS_BLOCK;
1988         case USB_SPEED_UNKNOWN:
1989         case USB_SPEED_WIRELESS:
1990         default:
1991                 /* Should never happen */
1992                 return 1;
1993         }
1994 }
1995
1996 static unsigned int
1997 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1998 {
1999         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2000                 return LS_OVERHEAD;
2001         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2002                 return FS_OVERHEAD;
2003         return HS_OVERHEAD;
2004 }
2005
2006 /* If we are changing a LS/FS device under a HS hub,
2007  * make sure (if we are activating a new TT) that the HS bus has enough
2008  * bandwidth for this new TT.
2009  */
2010 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2011                 struct xhci_virt_device *virt_dev,
2012                 int old_active_eps)
2013 {
2014         struct xhci_interval_bw_table *bw_table;
2015         struct xhci_tt_bw_info *tt_info;
2016
2017         /* Find the bandwidth table for the root port this TT is attached to. */
2018         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2019         tt_info = virt_dev->tt_info;
2020         /* If this TT already had active endpoints, the bandwidth for this TT
2021          * has already been added.  Removing all periodic endpoints (and thus
2022          * making the TT enactive) will only decrease the bandwidth used.
2023          */
2024         if (old_active_eps)
2025                 return 0;
2026         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2027                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2028                         return -ENOMEM;
2029                 return 0;
2030         }
2031         /* Not sure why we would have no new active endpoints...
2032          *
2033          * Maybe because of an Evaluate Context change for a hub update or a
2034          * control endpoint 0 max packet size change?
2035          * FIXME: skip the bandwidth calculation in that case.
2036          */
2037         return 0;
2038 }
2039
2040 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2041                 struct xhci_virt_device *virt_dev)
2042 {
2043         unsigned int bw_reserved;
2044
2045         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2046         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2047                 return -ENOMEM;
2048
2049         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2050         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2051                 return -ENOMEM;
2052
2053         return 0;
2054 }
2055
2056 /*
2057  * This algorithm is a very conservative estimate of the worst-case scheduling
2058  * scenario for any one interval.  The hardware dynamically schedules the
2059  * packets, so we can't tell which microframe could be the limiting factor in
2060  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2061  *
2062  * Obviously, we can't solve an NP complete problem to find the minimum worst
2063  * case scenario.  Instead, we come up with an estimate that is no less than
2064  * the worst case bandwidth used for any one microframe, but may be an
2065  * over-estimate.
2066  *
2067  * We walk the requirements for each endpoint by interval, starting with the
2068  * smallest interval, and place packets in the schedule where there is only one
2069  * possible way to schedule packets for that interval.  In order to simplify
2070  * this algorithm, we record the largest max packet size for each interval, and
2071  * assume all packets will be that size.
2072  *
2073  * For interval 0, we obviously must schedule all packets for each interval.
2074  * The bandwidth for interval 0 is just the amount of data to be transmitted
2075  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2076  * the number of packets).
2077  *
2078  * For interval 1, we have two possible microframes to schedule those packets
2079  * in.  For this algorithm, if we can schedule the same number of packets for
2080  * each possible scheduling opportunity (each microframe), we will do so.  The
2081  * remaining number of packets will be saved to be transmitted in the gaps in
2082  * the next interval's scheduling sequence.
2083  *
2084  * As we move those remaining packets to be scheduled with interval 2 packets,
2085  * we have to double the number of remaining packets to transmit.  This is
2086  * because the intervals are actually powers of 2, and we would be transmitting
2087  * the previous interval's packets twice in this interval.  We also have to be
2088  * sure that when we look at the largest max packet size for this interval, we
2089  * also look at the largest max packet size for the remaining packets and take
2090  * the greater of the two.
2091  *
2092  * The algorithm continues to evenly distribute packets in each scheduling
2093  * opportunity, and push the remaining packets out, until we get to the last
2094  * interval.  Then those packets and their associated overhead are just added
2095  * to the bandwidth used.
2096  */
2097 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2098                 struct xhci_virt_device *virt_dev,
2099                 int old_active_eps)
2100 {
2101         unsigned int bw_reserved;
2102         unsigned int max_bandwidth;
2103         unsigned int bw_used;
2104         unsigned int block_size;
2105         struct xhci_interval_bw_table *bw_table;
2106         unsigned int packet_size = 0;
2107         unsigned int overhead = 0;
2108         unsigned int packets_transmitted = 0;
2109         unsigned int packets_remaining = 0;
2110         unsigned int i;
2111
2112         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2113                 return xhci_check_ss_bw(xhci, virt_dev);
2114
2115         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2116                 max_bandwidth = HS_BW_LIMIT;
2117                 /* Convert percent of bus BW reserved to blocks reserved */
2118                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2119         } else {
2120                 max_bandwidth = FS_BW_LIMIT;
2121                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2122         }
2123
2124         bw_table = virt_dev->bw_table;
2125         /* We need to translate the max packet size and max ESIT payloads into
2126          * the units the hardware uses.
2127          */
2128         block_size = xhci_get_block_size(virt_dev->udev);
2129
2130         /* If we are manipulating a LS/FS device under a HS hub, double check
2131          * that the HS bus has enough bandwidth if we are activing a new TT.
2132          */
2133         if (virt_dev->tt_info) {
2134                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2135                                 "Recalculating BW for rootport %u",
2136                                 virt_dev->real_port);
2137                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2138                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2139                                         "newly activated TT.\n");
2140                         return -ENOMEM;
2141                 }
2142                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2143                                 "Recalculating BW for TT slot %u port %u",
2144                                 virt_dev->tt_info->slot_id,
2145                                 virt_dev->tt_info->ttport);
2146         } else {
2147                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2148                                 "Recalculating BW for rootport %u",
2149                                 virt_dev->real_port);
2150         }
2151
2152         /* Add in how much bandwidth will be used for interval zero, or the
2153          * rounded max ESIT payload + number of packets * largest overhead.
2154          */
2155         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2156                 bw_table->interval_bw[0].num_packets *
2157                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2158
2159         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2160                 unsigned int bw_added;
2161                 unsigned int largest_mps;
2162                 unsigned int interval_overhead;
2163
2164                 /*
2165                  * How many packets could we transmit in this interval?
2166                  * If packets didn't fit in the previous interval, we will need
2167                  * to transmit that many packets twice within this interval.
2168                  */
2169                 packets_remaining = 2 * packets_remaining +
2170                         bw_table->interval_bw[i].num_packets;
2171
2172                 /* Find the largest max packet size of this or the previous
2173                  * interval.
2174                  */
2175                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2176                         largest_mps = 0;
2177                 else {
2178                         struct xhci_virt_ep *virt_ep;
2179                         struct list_head *ep_entry;
2180
2181                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2182                         virt_ep = list_entry(ep_entry,
2183                                         struct xhci_virt_ep, bw_endpoint_list);
2184                         /* Convert to blocks, rounding up */
2185                         largest_mps = DIV_ROUND_UP(
2186                                         virt_ep->bw_info.max_packet_size,
2187                                         block_size);
2188                 }
2189                 if (largest_mps > packet_size)
2190                         packet_size = largest_mps;
2191
2192                 /* Use the larger overhead of this or the previous interval. */
2193                 interval_overhead = xhci_get_largest_overhead(
2194                                 &bw_table->interval_bw[i]);
2195                 if (interval_overhead > overhead)
2196                         overhead = interval_overhead;
2197
2198                 /* How many packets can we evenly distribute across
2199                  * (1 << (i + 1)) possible scheduling opportunities?
2200                  */
2201                 packets_transmitted = packets_remaining >> (i + 1);
2202
2203                 /* Add in the bandwidth used for those scheduled packets */
2204                 bw_added = packets_transmitted * (overhead + packet_size);
2205
2206                 /* How many packets do we have remaining to transmit? */
2207                 packets_remaining = packets_remaining % (1 << (i + 1));
2208
2209                 /* What largest max packet size should those packets have? */
2210                 /* If we've transmitted all packets, don't carry over the
2211                  * largest packet size.
2212                  */
2213                 if (packets_remaining == 0) {
2214                         packet_size = 0;
2215                         overhead = 0;
2216                 } else if (packets_transmitted > 0) {
2217                         /* Otherwise if we do have remaining packets, and we've
2218                          * scheduled some packets in this interval, take the
2219                          * largest max packet size from endpoints with this
2220                          * interval.
2221                          */
2222                         packet_size = largest_mps;
2223                         overhead = interval_overhead;
2224                 }
2225                 /* Otherwise carry over packet_size and overhead from the last
2226                  * time we had a remainder.
2227                  */
2228                 bw_used += bw_added;
2229                 if (bw_used > max_bandwidth) {
2230                         xhci_warn(xhci, "Not enough bandwidth. "
2231                                         "Proposed: %u, Max: %u\n",
2232                                 bw_used, max_bandwidth);
2233                         return -ENOMEM;
2234                 }
2235         }
2236         /*
2237          * Ok, we know we have some packets left over after even-handedly
2238          * scheduling interval 15.  We don't know which microframes they will
2239          * fit into, so we over-schedule and say they will be scheduled every
2240          * microframe.
2241          */
2242         if (packets_remaining > 0)
2243                 bw_used += overhead + packet_size;
2244
2245         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2246                 unsigned int port_index = virt_dev->real_port - 1;
2247
2248                 /* OK, we're manipulating a HS device attached to a
2249                  * root port bandwidth domain.  Include the number of active TTs
2250                  * in the bandwidth used.
2251                  */
2252                 bw_used += TT_HS_OVERHEAD *
2253                         xhci->rh_bw[port_index].num_active_tts;
2254         }
2255
2256         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2257                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2258                 "Available: %u " "percent",
2259                 bw_used, max_bandwidth, bw_reserved,
2260                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2261                 max_bandwidth);
2262
2263         bw_used += bw_reserved;
2264         if (bw_used > max_bandwidth) {
2265                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2266                                 bw_used, max_bandwidth);
2267                 return -ENOMEM;
2268         }
2269
2270         bw_table->bw_used = bw_used;
2271         return 0;
2272 }
2273
2274 static bool xhci_is_async_ep(unsigned int ep_type)
2275 {
2276         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2277                                         ep_type != ISOC_IN_EP &&
2278                                         ep_type != INT_IN_EP);
2279 }
2280
2281 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2282 {
2283         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2284 }
2285
2286 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2287 {
2288         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2289
2290         if (ep_bw->ep_interval == 0)
2291                 return SS_OVERHEAD_BURST +
2292                         (ep_bw->mult * ep_bw->num_packets *
2293                                         (SS_OVERHEAD + mps));
2294         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2295                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2296                                 1 << ep_bw->ep_interval);
2297
2298 }
2299
2300 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2301                 struct xhci_bw_info *ep_bw,
2302                 struct xhci_interval_bw_table *bw_table,
2303                 struct usb_device *udev,
2304                 struct xhci_virt_ep *virt_ep,
2305                 struct xhci_tt_bw_info *tt_info)
2306 {
2307         struct xhci_interval_bw *interval_bw;
2308         int normalized_interval;
2309
2310         if (xhci_is_async_ep(ep_bw->type))
2311                 return;
2312
2313         if (udev->speed >= USB_SPEED_SUPER) {
2314                 if (xhci_is_sync_in_ep(ep_bw->type))
2315                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2316                                 xhci_get_ss_bw_consumed(ep_bw);
2317                 else
2318                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2319                                 xhci_get_ss_bw_consumed(ep_bw);
2320                 return;
2321         }
2322
2323         /* SuperSpeed endpoints never get added to intervals in the table, so
2324          * this check is only valid for HS/FS/LS devices.
2325          */
2326         if (list_empty(&virt_ep->bw_endpoint_list))
2327                 return;
2328         /* For LS/FS devices, we need to translate the interval expressed in
2329          * microframes to frames.
2330          */
2331         if (udev->speed == USB_SPEED_HIGH)
2332                 normalized_interval = ep_bw->ep_interval;
2333         else
2334                 normalized_interval = ep_bw->ep_interval - 3;
2335
2336         if (normalized_interval == 0)
2337                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2338         interval_bw = &bw_table->interval_bw[normalized_interval];
2339         interval_bw->num_packets -= ep_bw->num_packets;
2340         switch (udev->speed) {
2341         case USB_SPEED_LOW:
2342                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2343                 break;
2344         case USB_SPEED_FULL:
2345                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2346                 break;
2347         case USB_SPEED_HIGH:
2348                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2349                 break;
2350         case USB_SPEED_SUPER:
2351         case USB_SPEED_SUPER_PLUS:
2352         case USB_SPEED_UNKNOWN:
2353         case USB_SPEED_WIRELESS:
2354                 /* Should never happen because only LS/FS/HS endpoints will get
2355                  * added to the endpoint list.
2356                  */
2357                 return;
2358         }
2359         if (tt_info)
2360                 tt_info->active_eps -= 1;
2361         list_del_init(&virt_ep->bw_endpoint_list);
2362 }
2363
2364 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2365                 struct xhci_bw_info *ep_bw,
2366                 struct xhci_interval_bw_table *bw_table,
2367                 struct usb_device *udev,
2368                 struct xhci_virt_ep *virt_ep,
2369                 struct xhci_tt_bw_info *tt_info)
2370 {
2371         struct xhci_interval_bw *interval_bw;
2372         struct xhci_virt_ep *smaller_ep;
2373         int normalized_interval;
2374
2375         if (xhci_is_async_ep(ep_bw->type))
2376                 return;
2377
2378         if (udev->speed == USB_SPEED_SUPER) {
2379                 if (xhci_is_sync_in_ep(ep_bw->type))
2380                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2381                                 xhci_get_ss_bw_consumed(ep_bw);
2382                 else
2383                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2384                                 xhci_get_ss_bw_consumed(ep_bw);
2385                 return;
2386         }
2387
2388         /* For LS/FS devices, we need to translate the interval expressed in
2389          * microframes to frames.
2390          */
2391         if (udev->speed == USB_SPEED_HIGH)
2392                 normalized_interval = ep_bw->ep_interval;
2393         else
2394                 normalized_interval = ep_bw->ep_interval - 3;
2395
2396         if (normalized_interval == 0)
2397                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2398         interval_bw = &bw_table->interval_bw[normalized_interval];
2399         interval_bw->num_packets += ep_bw->num_packets;
2400         switch (udev->speed) {
2401         case USB_SPEED_LOW:
2402                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2403                 break;
2404         case USB_SPEED_FULL:
2405                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2406                 break;
2407         case USB_SPEED_HIGH:
2408                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2409                 break;
2410         case USB_SPEED_SUPER:
2411         case USB_SPEED_SUPER_PLUS:
2412         case USB_SPEED_UNKNOWN:
2413         case USB_SPEED_WIRELESS:
2414                 /* Should never happen because only LS/FS/HS endpoints will get
2415                  * added to the endpoint list.
2416                  */
2417                 return;
2418         }
2419
2420         if (tt_info)
2421                 tt_info->active_eps += 1;
2422         /* Insert the endpoint into the list, largest max packet size first. */
2423         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2424                         bw_endpoint_list) {
2425                 if (ep_bw->max_packet_size >=
2426                                 smaller_ep->bw_info.max_packet_size) {
2427                         /* Add the new ep before the smaller endpoint */
2428                         list_add_tail(&virt_ep->bw_endpoint_list,
2429                                         &smaller_ep->bw_endpoint_list);
2430                         return;
2431                 }
2432         }
2433         /* Add the new endpoint at the end of the list. */
2434         list_add_tail(&virt_ep->bw_endpoint_list,
2435                         &interval_bw->endpoints);
2436 }
2437
2438 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2439                 struct xhci_virt_device *virt_dev,
2440                 int old_active_eps)
2441 {
2442         struct xhci_root_port_bw_info *rh_bw_info;
2443         if (!virt_dev->tt_info)
2444                 return;
2445
2446         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2447         if (old_active_eps == 0 &&
2448                                 virt_dev->tt_info->active_eps != 0) {
2449                 rh_bw_info->num_active_tts += 1;
2450                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2451         } else if (old_active_eps != 0 &&
2452                                 virt_dev->tt_info->active_eps == 0) {
2453                 rh_bw_info->num_active_tts -= 1;
2454                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2455         }
2456 }
2457
2458 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2459                 struct xhci_virt_device *virt_dev,
2460                 struct xhci_container_ctx *in_ctx)
2461 {
2462         struct xhci_bw_info ep_bw_info[31];
2463         int i;
2464         struct xhci_input_control_ctx *ctrl_ctx;
2465         int old_active_eps = 0;
2466
2467         if (virt_dev->tt_info)
2468                 old_active_eps = virt_dev->tt_info->active_eps;
2469
2470         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2471         if (!ctrl_ctx) {
2472                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2473                                 __func__);
2474                 return -ENOMEM;
2475         }
2476
2477         for (i = 0; i < 31; i++) {
2478                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2479                         continue;
2480
2481                 /* Make a copy of the BW info in case we need to revert this */
2482                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2483                                 sizeof(ep_bw_info[i]));
2484                 /* Drop the endpoint from the interval table if the endpoint is
2485                  * being dropped or changed.
2486                  */
2487                 if (EP_IS_DROPPED(ctrl_ctx, i))
2488                         xhci_drop_ep_from_interval_table(xhci,
2489                                         &virt_dev->eps[i].bw_info,
2490                                         virt_dev->bw_table,
2491                                         virt_dev->udev,
2492                                         &virt_dev->eps[i],
2493                                         virt_dev->tt_info);
2494         }
2495         /* Overwrite the information stored in the endpoints' bw_info */
2496         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2497         for (i = 0; i < 31; i++) {
2498                 /* Add any changed or added endpoints to the interval table */
2499                 if (EP_IS_ADDED(ctrl_ctx, i))
2500                         xhci_add_ep_to_interval_table(xhci,
2501                                         &virt_dev->eps[i].bw_info,
2502                                         virt_dev->bw_table,
2503                                         virt_dev->udev,
2504                                         &virt_dev->eps[i],
2505                                         virt_dev->tt_info);
2506         }
2507
2508         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2509                 /* Ok, this fits in the bandwidth we have.
2510                  * Update the number of active TTs.
2511                  */
2512                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2513                 return 0;
2514         }
2515
2516         /* We don't have enough bandwidth for this, revert the stored info. */
2517         for (i = 0; i < 31; i++) {
2518                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2519                         continue;
2520
2521                 /* Drop the new copies of any added or changed endpoints from
2522                  * the interval table.
2523                  */
2524                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2525                         xhci_drop_ep_from_interval_table(xhci,
2526                                         &virt_dev->eps[i].bw_info,
2527                                         virt_dev->bw_table,
2528                                         virt_dev->udev,
2529                                         &virt_dev->eps[i],
2530                                         virt_dev->tt_info);
2531                 }
2532                 /* Revert the endpoint back to its old information */
2533                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2534                                 sizeof(ep_bw_info[i]));
2535                 /* Add any changed or dropped endpoints back into the table */
2536                 if (EP_IS_DROPPED(ctrl_ctx, i))
2537                         xhci_add_ep_to_interval_table(xhci,
2538                                         &virt_dev->eps[i].bw_info,
2539                                         virt_dev->bw_table,
2540                                         virt_dev->udev,
2541                                         &virt_dev->eps[i],
2542                                         virt_dev->tt_info);
2543         }
2544         return -ENOMEM;
2545 }
2546
2547
2548 /* Issue a configure endpoint command or evaluate context command
2549  * and wait for it to finish.
2550  */
2551 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2552                 struct usb_device *udev,
2553                 struct xhci_command *command,
2554                 bool ctx_change, bool must_succeed)
2555 {
2556         int ret;
2557         unsigned long flags;
2558         struct xhci_input_control_ctx *ctrl_ctx;
2559         struct xhci_virt_device *virt_dev;
2560         struct xhci_slot_ctx *slot_ctx;
2561
2562         if (!command)
2563                 return -EINVAL;
2564
2565         spin_lock_irqsave(&xhci->lock, flags);
2566
2567         if (xhci->xhc_state & XHCI_STATE_DYING) {
2568                 spin_unlock_irqrestore(&xhci->lock, flags);
2569                 return -ESHUTDOWN;
2570         }
2571
2572         virt_dev = xhci->devs[udev->slot_id];
2573
2574         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2575         if (!ctrl_ctx) {
2576                 spin_unlock_irqrestore(&xhci->lock, flags);
2577                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2578                                 __func__);
2579                 return -ENOMEM;
2580         }
2581
2582         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2583                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2584                 spin_unlock_irqrestore(&xhci->lock, flags);
2585                 xhci_warn(xhci, "Not enough host resources, "
2586                                 "active endpoint contexts = %u\n",
2587                                 xhci->num_active_eps);
2588                 return -ENOMEM;
2589         }
2590         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2591             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2592                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2593                         xhci_free_host_resources(xhci, ctrl_ctx);
2594                 spin_unlock_irqrestore(&xhci->lock, flags);
2595                 xhci_warn(xhci, "Not enough bandwidth\n");
2596                 return -ENOMEM;
2597         }
2598
2599         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2600         trace_xhci_configure_endpoint(slot_ctx);
2601
2602         if (!ctx_change)
2603                 ret = xhci_queue_configure_endpoint(xhci, command,
2604                                 command->in_ctx->dma,
2605                                 udev->slot_id, must_succeed);
2606         else
2607                 ret = xhci_queue_evaluate_context(xhci, command,
2608                                 command->in_ctx->dma,
2609                                 udev->slot_id, must_succeed);
2610         if (ret < 0) {
2611                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2612                         xhci_free_host_resources(xhci, ctrl_ctx);
2613                 spin_unlock_irqrestore(&xhci->lock, flags);
2614                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2615                                 "FIXME allocate a new ring segment");
2616                 return -ENOMEM;
2617         }
2618         xhci_ring_cmd_db(xhci);
2619         spin_unlock_irqrestore(&xhci->lock, flags);
2620
2621         /* Wait for the configure endpoint command to complete */
2622         wait_for_completion(command->completion);
2623
2624         if (!ctx_change)
2625                 ret = xhci_configure_endpoint_result(xhci, udev,
2626                                                      &command->status);
2627         else
2628                 ret = xhci_evaluate_context_result(xhci, udev,
2629                                                    &command->status);
2630
2631         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2632                 spin_lock_irqsave(&xhci->lock, flags);
2633                 /* If the command failed, remove the reserved resources.
2634                  * Otherwise, clean up the estimate to include dropped eps.
2635                  */
2636                 if (ret)
2637                         xhci_free_host_resources(xhci, ctrl_ctx);
2638                 else
2639                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2640                 spin_unlock_irqrestore(&xhci->lock, flags);
2641         }
2642         return ret;
2643 }
2644
2645 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2646         struct xhci_virt_device *vdev, int i)
2647 {
2648         struct xhci_virt_ep *ep = &vdev->eps[i];
2649
2650         if (ep->ep_state & EP_HAS_STREAMS) {
2651                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2652                                 xhci_get_endpoint_address(i));
2653                 xhci_free_stream_info(xhci, ep->stream_info);
2654                 ep->stream_info = NULL;
2655                 ep->ep_state &= ~EP_HAS_STREAMS;
2656         }
2657 }
2658
2659 /* Called after one or more calls to xhci_add_endpoint() or
2660  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2661  * to call xhci_reset_bandwidth().
2662  *
2663  * Since we are in the middle of changing either configuration or
2664  * installing a new alt setting, the USB core won't allow URBs to be
2665  * enqueued for any endpoint on the old config or interface.  Nothing
2666  * else should be touching the xhci->devs[slot_id] structure, so we
2667  * don't need to take the xhci->lock for manipulating that.
2668  */
2669 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2670 {
2671         int i;
2672         int ret = 0;
2673         struct xhci_hcd *xhci;
2674         struct xhci_virt_device *virt_dev;
2675         struct xhci_input_control_ctx *ctrl_ctx;
2676         struct xhci_slot_ctx *slot_ctx;
2677         struct xhci_command *command;
2678
2679         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2680         if (ret <= 0)
2681                 return ret;
2682         xhci = hcd_to_xhci(hcd);
2683         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2684                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2685                 return -ENODEV;
2686
2687         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2688         virt_dev = xhci->devs[udev->slot_id];
2689
2690         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2691         if (!command)
2692                 return -ENOMEM;
2693
2694         command->in_ctx = virt_dev->in_ctx;
2695
2696         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2697         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2698         if (!ctrl_ctx) {
2699                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2700                                 __func__);
2701                 ret = -ENOMEM;
2702                 goto command_cleanup;
2703         }
2704         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2705         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2706         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2707
2708         /* Don't issue the command if there's no endpoints to update. */
2709         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2710             ctrl_ctx->drop_flags == 0) {
2711                 ret = 0;
2712                 goto command_cleanup;
2713         }
2714         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2715         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2716         for (i = 31; i >= 1; i--) {
2717                 __le32 le32 = cpu_to_le32(BIT(i));
2718
2719                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2720                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2721                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2722                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2723                         break;
2724                 }
2725         }
2726
2727         ret = xhci_configure_endpoint(xhci, udev, command,
2728                         false, false);
2729         if (ret)
2730                 /* Callee should call reset_bandwidth() */
2731                 goto command_cleanup;
2732
2733         /* Free any rings that were dropped, but not changed. */
2734         for (i = 1; i < 31; i++) {
2735                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2736                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2737                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2738                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2739                 }
2740         }
2741         xhci_zero_in_ctx(xhci, virt_dev);
2742         /*
2743          * Install any rings for completely new endpoints or changed endpoints,
2744          * and free any old rings from changed endpoints.
2745          */
2746         for (i = 1; i < 31; i++) {
2747                 if (!virt_dev->eps[i].new_ring)
2748                         continue;
2749                 /* Only free the old ring if it exists.
2750                  * It may not if this is the first add of an endpoint.
2751                  */
2752                 if (virt_dev->eps[i].ring) {
2753                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2754                 }
2755                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2756                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2757                 virt_dev->eps[i].new_ring = NULL;
2758         }
2759 command_cleanup:
2760         kfree(command->completion);
2761         kfree(command);
2762
2763         return ret;
2764 }
2765
2766 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2767 {
2768         struct xhci_hcd *xhci;
2769         struct xhci_virt_device *virt_dev;
2770         int i, ret;
2771
2772         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2773         if (ret <= 0)
2774                 return;
2775         xhci = hcd_to_xhci(hcd);
2776
2777         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2778         virt_dev = xhci->devs[udev->slot_id];
2779         /* Free any rings allocated for added endpoints */
2780         for (i = 0; i < 31; i++) {
2781                 if (virt_dev->eps[i].new_ring) {
2782                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2783                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2784                         virt_dev->eps[i].new_ring = NULL;
2785                 }
2786         }
2787         xhci_zero_in_ctx(xhci, virt_dev);
2788 }
2789
2790 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2791                 struct xhci_container_ctx *in_ctx,
2792                 struct xhci_container_ctx *out_ctx,
2793                 struct xhci_input_control_ctx *ctrl_ctx,
2794                 u32 add_flags, u32 drop_flags)
2795 {
2796         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2797         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2798         xhci_slot_copy(xhci, in_ctx, out_ctx);
2799         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2800 }
2801
2802 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2803                 unsigned int slot_id, unsigned int ep_index,
2804                 struct xhci_dequeue_state *deq_state)
2805 {
2806         struct xhci_input_control_ctx *ctrl_ctx;
2807         struct xhci_container_ctx *in_ctx;
2808         struct xhci_ep_ctx *ep_ctx;
2809         u32 added_ctxs;
2810         dma_addr_t addr;
2811
2812         in_ctx = xhci->devs[slot_id]->in_ctx;
2813         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2814         if (!ctrl_ctx) {
2815                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2816                                 __func__);
2817                 return;
2818         }
2819
2820         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2821                         xhci->devs[slot_id]->out_ctx, ep_index);
2822         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2823         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2824                         deq_state->new_deq_ptr);
2825         if (addr == 0) {
2826                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2827                                 "reset ep command\n");
2828                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2829                                 deq_state->new_deq_seg,
2830                                 deq_state->new_deq_ptr);
2831                 return;
2832         }
2833         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2834
2835         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2836         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2837                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2838                         added_ctxs, added_ctxs);
2839 }
2840
2841 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
2842                                unsigned int stream_id, struct xhci_td *td)
2843 {
2844         struct xhci_dequeue_state deq_state;
2845         struct usb_device *udev = td->urb->dev;
2846
2847         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2848                         "Cleaning up stalled endpoint ring");
2849         /* We need to move the HW's dequeue pointer past this TD,
2850          * or it will attempt to resend it on the next doorbell ring.
2851          */
2852         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2853                         ep_index, stream_id, td, &deq_state);
2854
2855         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2856                 return;
2857
2858         /* HW with the reset endpoint quirk will use the saved dequeue state to
2859          * issue a configure endpoint command later.
2860          */
2861         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2862                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2863                                 "Queueing new dequeue state");
2864                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2865                                 ep_index, &deq_state);
2866         } else {
2867                 /* Better hope no one uses the input context between now and the
2868                  * reset endpoint completion!
2869                  * XXX: No idea how this hardware will react when stream rings
2870                  * are enabled.
2871                  */
2872                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2873                                 "Setting up input context for "
2874                                 "configure endpoint command");
2875                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2876                                 ep_index, &deq_state);
2877         }
2878 }
2879
2880 /*
2881  * Called after usb core issues a clear halt control message.
2882  * The host side of the halt should already be cleared by a reset endpoint
2883  * command issued when the STALL event was received.
2884  *
2885  * The reset endpoint command may only be issued to endpoints in the halted
2886  * state. For software that wishes to reset the data toggle or sequence number
2887  * of an endpoint that isn't in the halted state this function will issue a
2888  * configure endpoint command with the Drop and Add bits set for the target
2889  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
2890  */
2891
2892 static void xhci_endpoint_reset(struct usb_hcd *hcd,
2893                 struct usb_host_endpoint *host_ep)
2894 {
2895         struct xhci_hcd *xhci;
2896         struct usb_device *udev;
2897         struct xhci_virt_device *vdev;
2898         struct xhci_virt_ep *ep;
2899         struct xhci_input_control_ctx *ctrl_ctx;
2900         struct xhci_command *stop_cmd, *cfg_cmd;
2901         unsigned int ep_index;
2902         unsigned long flags;
2903         u32 ep_flag;
2904
2905         xhci = hcd_to_xhci(hcd);
2906         if (!host_ep->hcpriv)
2907                 return;
2908         udev = (struct usb_device *) host_ep->hcpriv;
2909         vdev = xhci->devs[udev->slot_id];
2910         ep_index = xhci_get_endpoint_index(&host_ep->desc);
2911         ep = &vdev->eps[ep_index];
2912
2913         /* Bail out if toggle is already being cleared by a endpoint reset */
2914         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
2915                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
2916                 return;
2917         }
2918         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
2919         if (usb_endpoint_xfer_control(&host_ep->desc) ||
2920             usb_endpoint_xfer_isoc(&host_ep->desc))
2921                 return;
2922
2923         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
2924
2925         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
2926                 return;
2927
2928         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
2929         if (!stop_cmd)
2930                 return;
2931
2932         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
2933         if (!cfg_cmd)
2934                 goto cleanup;
2935
2936         spin_lock_irqsave(&xhci->lock, flags);
2937
2938         /* block queuing new trbs and ringing ep doorbell */
2939         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
2940
2941         /*
2942          * Make sure endpoint ring is empty before resetting the toggle/seq.
2943          * Driver is required to synchronously cancel all transfer request.
2944          * Stop the endpoint to force xHC to update the output context
2945          */
2946
2947         if (!list_empty(&ep->ring->td_list)) {
2948                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
2949                 spin_unlock_irqrestore(&xhci->lock, flags);
2950                 goto cleanup;
2951         }
2952         xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
2953         xhci_ring_cmd_db(xhci);
2954         spin_unlock_irqrestore(&xhci->lock, flags);
2955
2956         wait_for_completion(stop_cmd->completion);
2957
2958         spin_lock_irqsave(&xhci->lock, flags);
2959
2960         /* config ep command clears toggle if add and drop ep flags are set */
2961         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
2962         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
2963                                            ctrl_ctx, ep_flag, ep_flag);
2964         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
2965
2966         xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
2967                                       udev->slot_id, false);
2968         xhci_ring_cmd_db(xhci);
2969         spin_unlock_irqrestore(&xhci->lock, flags);
2970
2971         wait_for_completion(cfg_cmd->completion);
2972
2973         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
2974         xhci_free_command(xhci, cfg_cmd);
2975 cleanup:
2976         xhci_free_command(xhci, stop_cmd);
2977 }
2978
2979 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2980                 struct usb_device *udev, struct usb_host_endpoint *ep,
2981                 unsigned int slot_id)
2982 {
2983         int ret;
2984         unsigned int ep_index;
2985         unsigned int ep_state;
2986
2987         if (!ep)
2988                 return -EINVAL;
2989         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2990         if (ret <= 0)
2991                 return -EINVAL;
2992         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
2993                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2994                                 " descriptor for ep 0x%x does not support streams\n",
2995                                 ep->desc.bEndpointAddress);
2996                 return -EINVAL;
2997         }
2998
2999         ep_index = xhci_get_endpoint_index(&ep->desc);
3000         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3001         if (ep_state & EP_HAS_STREAMS ||
3002                         ep_state & EP_GETTING_STREAMS) {
3003                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3004                                 "already has streams set up.\n",
3005                                 ep->desc.bEndpointAddress);
3006                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3007                                 "dynamic stream context array reallocation.\n");
3008                 return -EINVAL;
3009         }
3010         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3011                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3012                                 "endpoint 0x%x; URBs are pending.\n",
3013                                 ep->desc.bEndpointAddress);
3014                 return -EINVAL;
3015         }
3016         return 0;
3017 }
3018
3019 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3020                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3021 {
3022         unsigned int max_streams;
3023
3024         /* The stream context array size must be a power of two */
3025         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3026         /*
3027          * Find out how many primary stream array entries the host controller
3028          * supports.  Later we may use secondary stream arrays (similar to 2nd
3029          * level page entries), but that's an optional feature for xHCI host
3030          * controllers. xHCs must support at least 4 stream IDs.
3031          */
3032         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3033         if (*num_stream_ctxs > max_streams) {
3034                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3035                                 max_streams);
3036                 *num_stream_ctxs = max_streams;
3037                 *num_streams = max_streams;
3038         }
3039 }
3040
3041 /* Returns an error code if one of the endpoint already has streams.
3042  * This does not change any data structures, it only checks and gathers
3043  * information.
3044  */
3045 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3046                 struct usb_device *udev,
3047                 struct usb_host_endpoint **eps, unsigned int num_eps,
3048                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3049 {
3050         unsigned int max_streams;
3051         unsigned int endpoint_flag;
3052         int i;
3053         int ret;
3054
3055         for (i = 0; i < num_eps; i++) {
3056                 ret = xhci_check_streams_endpoint(xhci, udev,
3057                                 eps[i], udev->slot_id);
3058                 if (ret < 0)
3059                         return ret;
3060
3061                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3062                 if (max_streams < (*num_streams - 1)) {
3063                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3064                                         eps[i]->desc.bEndpointAddress,
3065                                         max_streams);
3066                         *num_streams = max_streams+1;
3067                 }
3068
3069                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3070                 if (*changed_ep_bitmask & endpoint_flag)
3071                         return -EINVAL;
3072                 *changed_ep_bitmask |= endpoint_flag;
3073         }
3074         return 0;
3075 }
3076
3077 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3078                 struct usb_device *udev,
3079                 struct usb_host_endpoint **eps, unsigned int num_eps)
3080 {
3081         u32 changed_ep_bitmask = 0;
3082         unsigned int slot_id;
3083         unsigned int ep_index;
3084         unsigned int ep_state;
3085         int i;
3086
3087         slot_id = udev->slot_id;
3088         if (!xhci->devs[slot_id])
3089                 return 0;
3090
3091         for (i = 0; i < num_eps; i++) {
3092                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3093                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3094                 /* Are streams already being freed for the endpoint? */
3095                 if (ep_state & EP_GETTING_NO_STREAMS) {
3096                         xhci_warn(xhci, "WARN Can't disable streams for "
3097                                         "endpoint 0x%x, "
3098                                         "streams are being disabled already\n",
3099                                         eps[i]->desc.bEndpointAddress);
3100                         return 0;
3101                 }
3102                 /* Are there actually any streams to free? */
3103                 if (!(ep_state & EP_HAS_STREAMS) &&
3104                                 !(ep_state & EP_GETTING_STREAMS)) {
3105                         xhci_warn(xhci, "WARN Can't disable streams for "
3106                                         "endpoint 0x%x, "
3107                                         "streams are already disabled!\n",
3108                                         eps[i]->desc.bEndpointAddress);
3109                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3110                                         "with non-streams endpoint\n");
3111                         return 0;
3112                 }
3113                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3114         }
3115         return changed_ep_bitmask;
3116 }
3117
3118 /*
3119  * The USB device drivers use this function (through the HCD interface in USB
3120  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3121  * coordinate mass storage command queueing across multiple endpoints (basically
3122  * a stream ID == a task ID).
3123  *
3124  * Setting up streams involves allocating the same size stream context array
3125  * for each endpoint and issuing a configure endpoint command for all endpoints.
3126  *
3127  * Don't allow the call to succeed if one endpoint only supports one stream
3128  * (which means it doesn't support streams at all).
3129  *
3130  * Drivers may get less stream IDs than they asked for, if the host controller
3131  * hardware or endpoints claim they can't support the number of requested
3132  * stream IDs.
3133  */
3134 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3135                 struct usb_host_endpoint **eps, unsigned int num_eps,
3136                 unsigned int num_streams, gfp_t mem_flags)
3137 {
3138         int i, ret;
3139         struct xhci_hcd *xhci;
3140         struct xhci_virt_device *vdev;
3141         struct xhci_command *config_cmd;
3142         struct xhci_input_control_ctx *ctrl_ctx;
3143         unsigned int ep_index;
3144         unsigned int num_stream_ctxs;
3145         unsigned int max_packet;
3146         unsigned long flags;
3147         u32 changed_ep_bitmask = 0;
3148
3149         if (!eps)
3150                 return -EINVAL;
3151
3152         /* Add one to the number of streams requested to account for
3153          * stream 0 that is reserved for xHCI usage.
3154          */
3155         num_streams += 1;
3156         xhci = hcd_to_xhci(hcd);
3157         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3158                         num_streams);
3159
3160         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3161         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3162                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3163                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3164                 return -ENOSYS;
3165         }
3166
3167         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3168         if (!config_cmd)
3169                 return -ENOMEM;
3170
3171         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3172         if (!ctrl_ctx) {
3173                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3174                                 __func__);
3175                 xhci_free_command(xhci, config_cmd);
3176                 return -ENOMEM;
3177         }
3178
3179         /* Check to make sure all endpoints are not already configured for
3180          * streams.  While we're at it, find the maximum number of streams that
3181          * all the endpoints will support and check for duplicate endpoints.
3182          */
3183         spin_lock_irqsave(&xhci->lock, flags);
3184         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3185                         num_eps, &num_streams, &changed_ep_bitmask);
3186         if (ret < 0) {
3187                 xhci_free_command(xhci, config_cmd);
3188                 spin_unlock_irqrestore(&xhci->lock, flags);
3189                 return ret;
3190         }
3191         if (num_streams <= 1) {
3192                 xhci_warn(xhci, "WARN: endpoints can't handle "
3193                                 "more than one stream.\n");
3194                 xhci_free_command(xhci, config_cmd);
3195                 spin_unlock_irqrestore(&xhci->lock, flags);
3196                 return -EINVAL;
3197         }
3198         vdev = xhci->devs[udev->slot_id];
3199         /* Mark each endpoint as being in transition, so
3200          * xhci_urb_enqueue() will reject all URBs.
3201          */
3202         for (i = 0; i < num_eps; i++) {
3203                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3204                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3205         }
3206         spin_unlock_irqrestore(&xhci->lock, flags);
3207
3208         /* Setup internal data structures and allocate HW data structures for
3209          * streams (but don't install the HW structures in the input context
3210          * until we're sure all memory allocation succeeded).
3211          */
3212         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3213         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3214                         num_stream_ctxs, num_streams);
3215
3216         for (i = 0; i < num_eps; i++) {
3217                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3218                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3219                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3220                                 num_stream_ctxs,
3221                                 num_streams,
3222                                 max_packet, mem_flags);
3223                 if (!vdev->eps[ep_index].stream_info)
3224                         goto cleanup;
3225                 /* Set maxPstreams in endpoint context and update deq ptr to
3226                  * point to stream context array. FIXME
3227                  */
3228         }
3229
3230         /* Set up the input context for a configure endpoint command. */
3231         for (i = 0; i < num_eps; i++) {
3232                 struct xhci_ep_ctx *ep_ctx;
3233
3234                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3235                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3236
3237                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3238                                 vdev->out_ctx, ep_index);
3239                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3240                                 vdev->eps[ep_index].stream_info);
3241         }
3242         /* Tell the HW to drop its old copy of the endpoint context info
3243          * and add the updated copy from the input context.
3244          */
3245         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3246                         vdev->out_ctx, ctrl_ctx,
3247                         changed_ep_bitmask, changed_ep_bitmask);
3248
3249         /* Issue and wait for the configure endpoint command */
3250         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3251                         false, false);
3252
3253         /* xHC rejected the configure endpoint command for some reason, so we
3254          * leave the old ring intact and free our internal streams data
3255          * structure.
3256          */
3257         if (ret < 0)
3258                 goto cleanup;
3259
3260         spin_lock_irqsave(&xhci->lock, flags);
3261         for (i = 0; i < num_eps; i++) {
3262                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3263                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3264                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3265                          udev->slot_id, ep_index);
3266                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3267         }
3268         xhci_free_command(xhci, config_cmd);
3269         spin_unlock_irqrestore(&xhci->lock, flags);
3270
3271         /* Subtract 1 for stream 0, which drivers can't use */
3272         return num_streams - 1;
3273
3274 cleanup:
3275         /* If it didn't work, free the streams! */
3276         for (i = 0; i < num_eps; i++) {
3277                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3278                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3279                 vdev->eps[ep_index].stream_info = NULL;
3280                 /* FIXME Unset maxPstreams in endpoint context and
3281                  * update deq ptr to point to normal string ring.
3282                  */
3283                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3284                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3285                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3286         }
3287         xhci_free_command(xhci, config_cmd);
3288         return -ENOMEM;
3289 }
3290
3291 /* Transition the endpoint from using streams to being a "normal" endpoint
3292  * without streams.
3293  *
3294  * Modify the endpoint context state, submit a configure endpoint command,
3295  * and free all endpoint rings for streams if that completes successfully.
3296  */
3297 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3298                 struct usb_host_endpoint **eps, unsigned int num_eps,
3299                 gfp_t mem_flags)
3300 {
3301         int i, ret;
3302         struct xhci_hcd *xhci;
3303         struct xhci_virt_device *vdev;
3304         struct xhci_command *command;
3305         struct xhci_input_control_ctx *ctrl_ctx;
3306         unsigned int ep_index;
3307         unsigned long flags;
3308         u32 changed_ep_bitmask;
3309
3310         xhci = hcd_to_xhci(hcd);
3311         vdev = xhci->devs[udev->slot_id];
3312
3313         /* Set up a configure endpoint command to remove the streams rings */
3314         spin_lock_irqsave(&xhci->lock, flags);
3315         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3316                         udev, eps, num_eps);
3317         if (changed_ep_bitmask == 0) {
3318                 spin_unlock_irqrestore(&xhci->lock, flags);
3319                 return -EINVAL;
3320         }
3321
3322         /* Use the xhci_command structure from the first endpoint.  We may have
3323          * allocated too many, but the driver may call xhci_free_streams() for
3324          * each endpoint it grouped into one call to xhci_alloc_streams().
3325          */
3326         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3327         command = vdev->eps[ep_index].stream_info->free_streams_command;
3328         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3329         if (!ctrl_ctx) {
3330                 spin_unlock_irqrestore(&xhci->lock, flags);
3331                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3332                                 __func__);
3333                 return -EINVAL;
3334         }
3335
3336         for (i = 0; i < num_eps; i++) {
3337                 struct xhci_ep_ctx *ep_ctx;
3338
3339                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3340                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3341                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3342                         EP_GETTING_NO_STREAMS;
3343
3344                 xhci_endpoint_copy(xhci, command->in_ctx,
3345                                 vdev->out_ctx, ep_index);
3346                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3347                                 &vdev->eps[ep_index]);
3348         }
3349         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3350                         vdev->out_ctx, ctrl_ctx,
3351                         changed_ep_bitmask, changed_ep_bitmask);
3352         spin_unlock_irqrestore(&xhci->lock, flags);
3353
3354         /* Issue and wait for the configure endpoint command,
3355          * which must succeed.
3356          */
3357         ret = xhci_configure_endpoint(xhci, udev, command,
3358                         false, true);
3359
3360         /* xHC rejected the configure endpoint command for some reason, so we
3361          * leave the streams rings intact.
3362          */
3363         if (ret < 0)
3364                 return ret;
3365
3366         spin_lock_irqsave(&xhci->lock, flags);
3367         for (i = 0; i < num_eps; i++) {
3368                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3369                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3370                 vdev->eps[ep_index].stream_info = NULL;
3371                 /* FIXME Unset maxPstreams in endpoint context and
3372                  * update deq ptr to point to normal string ring.
3373                  */
3374                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3375                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3376         }
3377         spin_unlock_irqrestore(&xhci->lock, flags);
3378
3379         return 0;
3380 }
3381
3382 /*
3383  * Deletes endpoint resources for endpoints that were active before a Reset
3384  * Device command, or a Disable Slot command.  The Reset Device command leaves
3385  * the control endpoint intact, whereas the Disable Slot command deletes it.
3386  *
3387  * Must be called with xhci->lock held.
3388  */
3389 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3390         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3391 {
3392         int i;
3393         unsigned int num_dropped_eps = 0;
3394         unsigned int drop_flags = 0;
3395
3396         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3397                 if (virt_dev->eps[i].ring) {
3398                         drop_flags |= 1 << i;
3399                         num_dropped_eps++;
3400                 }
3401         }
3402         xhci->num_active_eps -= num_dropped_eps;
3403         if (num_dropped_eps)
3404                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3405                                 "Dropped %u ep ctxs, flags = 0x%x, "
3406                                 "%u now active.",
3407                                 num_dropped_eps, drop_flags,
3408                                 xhci->num_active_eps);
3409 }
3410
3411 /*
3412  * This submits a Reset Device Command, which will set the device state to 0,
3413  * set the device address to 0, and disable all the endpoints except the default
3414  * control endpoint.  The USB core should come back and call
3415  * xhci_address_device(), and then re-set up the configuration.  If this is
3416  * called because of a usb_reset_and_verify_device(), then the old alternate
3417  * settings will be re-installed through the normal bandwidth allocation
3418  * functions.
3419  *
3420  * Wait for the Reset Device command to finish.  Remove all structures
3421  * associated with the endpoints that were disabled.  Clear the input device
3422  * structure? Reset the control endpoint 0 max packet size?
3423  *
3424  * If the virt_dev to be reset does not exist or does not match the udev,
3425  * it means the device is lost, possibly due to the xHC restore error and
3426  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3427  * re-allocate the device.
3428  */
3429 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3430                 struct usb_device *udev)
3431 {
3432         int ret, i;
3433         unsigned long flags;
3434         struct xhci_hcd *xhci;
3435         unsigned int slot_id;
3436         struct xhci_virt_device *virt_dev;
3437         struct xhci_command *reset_device_cmd;
3438         struct xhci_slot_ctx *slot_ctx;
3439         int old_active_eps = 0;
3440
3441         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3442         if (ret <= 0)
3443                 return ret;
3444         xhci = hcd_to_xhci(hcd);
3445         slot_id = udev->slot_id;
3446         virt_dev = xhci->devs[slot_id];
3447         if (!virt_dev) {
3448                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3449                                 "not exist. Re-allocate the device\n", slot_id);
3450                 ret = xhci_alloc_dev(hcd, udev);
3451                 if (ret == 1)
3452                         return 0;
3453                 else
3454                         return -EINVAL;
3455         }
3456
3457         if (virt_dev->tt_info)
3458                 old_active_eps = virt_dev->tt_info->active_eps;
3459
3460         if (virt_dev->udev != udev) {
3461                 /* If the virt_dev and the udev does not match, this virt_dev
3462                  * may belong to another udev.
3463                  * Re-allocate the device.
3464                  */
3465                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3466                                 "not match the udev. Re-allocate the device\n",
3467                                 slot_id);
3468                 ret = xhci_alloc_dev(hcd, udev);
3469                 if (ret == 1)
3470                         return 0;
3471                 else
3472                         return -EINVAL;
3473         }
3474
3475         /* If device is not setup, there is no point in resetting it */
3476         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3477         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3478                                                 SLOT_STATE_DISABLED)
3479                 return 0;
3480
3481         trace_xhci_discover_or_reset_device(slot_ctx);
3482
3483         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3484         /* Allocate the command structure that holds the struct completion.
3485          * Assume we're in process context, since the normal device reset
3486          * process has to wait for the device anyway.  Storage devices are
3487          * reset as part of error handling, so use GFP_NOIO instead of
3488          * GFP_KERNEL.
3489          */
3490         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3491         if (!reset_device_cmd) {
3492                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3493                 return -ENOMEM;
3494         }
3495
3496         /* Attempt to submit the Reset Device command to the command ring */
3497         spin_lock_irqsave(&xhci->lock, flags);
3498
3499         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3500         if (ret) {
3501                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3502                 spin_unlock_irqrestore(&xhci->lock, flags);
3503                 goto command_cleanup;
3504         }
3505         xhci_ring_cmd_db(xhci);
3506         spin_unlock_irqrestore(&xhci->lock, flags);
3507
3508         /* Wait for the Reset Device command to finish */
3509         wait_for_completion(reset_device_cmd->completion);
3510
3511         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3512          * unless we tried to reset a slot ID that wasn't enabled,
3513          * or the device wasn't in the addressed or configured state.
3514          */
3515         ret = reset_device_cmd->status;
3516         switch (ret) {
3517         case COMP_COMMAND_ABORTED:
3518         case COMP_COMMAND_RING_STOPPED:
3519                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3520                 ret = -ETIME;
3521                 goto command_cleanup;
3522         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3523         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3524                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3525                                 slot_id,
3526                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3527                 xhci_dbg(xhci, "Not freeing device rings.\n");
3528                 /* Don't treat this as an error.  May change my mind later. */
3529                 ret = 0;
3530                 goto command_cleanup;
3531         case COMP_SUCCESS:
3532                 xhci_dbg(xhci, "Successful reset device command.\n");
3533                 break;
3534         default:
3535                 if (xhci_is_vendor_info_code(xhci, ret))
3536                         break;
3537                 xhci_warn(xhci, "Unknown completion code %u for "
3538                                 "reset device command.\n", ret);
3539                 ret = -EINVAL;
3540                 goto command_cleanup;
3541         }
3542
3543         /* Free up host controller endpoint resources */
3544         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3545                 spin_lock_irqsave(&xhci->lock, flags);
3546                 /* Don't delete the default control endpoint resources */
3547                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3548                 spin_unlock_irqrestore(&xhci->lock, flags);
3549         }
3550
3551         /* Everything but endpoint 0 is disabled, so free the rings. */
3552         for (i = 1; i < 31; i++) {
3553                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3554
3555                 if (ep->ep_state & EP_HAS_STREAMS) {
3556                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3557                                         xhci_get_endpoint_address(i));
3558                         xhci_free_stream_info(xhci, ep->stream_info);
3559                         ep->stream_info = NULL;
3560                         ep->ep_state &= ~EP_HAS_STREAMS;
3561                 }
3562
3563                 if (ep->ring) {
3564                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3565                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3566                 }
3567                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3568                         xhci_drop_ep_from_interval_table(xhci,
3569                                         &virt_dev->eps[i].bw_info,
3570                                         virt_dev->bw_table,
3571                                         udev,
3572                                         &virt_dev->eps[i],
3573                                         virt_dev->tt_info);
3574                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3575         }
3576         /* If necessary, update the number of active TTs on this root port */
3577         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3578         ret = 0;
3579
3580 command_cleanup:
3581         xhci_free_command(xhci, reset_device_cmd);
3582         return ret;
3583 }
3584
3585 /*
3586  * At this point, the struct usb_device is about to go away, the device has
3587  * disconnected, and all traffic has been stopped and the endpoints have been
3588  * disabled.  Free any HC data structures associated with that device.
3589  */
3590 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3591 {
3592         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3593         struct xhci_virt_device *virt_dev;
3594         struct xhci_slot_ctx *slot_ctx;
3595         int i, ret;
3596
3597 #ifndef CONFIG_USB_DEFAULT_PERSIST
3598         /*
3599          * We called pm_runtime_get_noresume when the device was attached.
3600          * Decrement the counter here to allow controller to runtime suspend
3601          * if no devices remain.
3602          */
3603         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3604                 pm_runtime_put_noidle(hcd->self.controller);
3605 #endif
3606
3607         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3608         /* If the host is halted due to driver unload, we still need to free the
3609          * device.
3610          */
3611         if (ret <= 0 && ret != -ENODEV)
3612                 return;
3613
3614         virt_dev = xhci->devs[udev->slot_id];
3615         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3616         trace_xhci_free_dev(slot_ctx);
3617
3618         /* Stop any wayward timer functions (which may grab the lock) */
3619         for (i = 0; i < 31; i++) {
3620                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3621                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3622         }
3623         xhci_debugfs_remove_slot(xhci, udev->slot_id);
3624         virt_dev->udev = NULL;
3625         ret = xhci_disable_slot(xhci, udev->slot_id);
3626         if (ret)
3627                 xhci_free_virt_device(xhci, udev->slot_id);
3628 }
3629
3630 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3631 {
3632         struct xhci_command *command;
3633         unsigned long flags;
3634         u32 state;
3635         int ret = 0;
3636
3637         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3638         if (!command)
3639                 return -ENOMEM;
3640
3641         spin_lock_irqsave(&xhci->lock, flags);
3642         /* Don't disable the slot if the host controller is dead. */
3643         state = readl(&xhci->op_regs->status);
3644         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3645                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3646                 spin_unlock_irqrestore(&xhci->lock, flags);
3647                 kfree(command);
3648                 return -ENODEV;
3649         }
3650
3651         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3652                                 slot_id);
3653         if (ret) {
3654                 spin_unlock_irqrestore(&xhci->lock, flags);
3655                 kfree(command);
3656                 return ret;
3657         }
3658         xhci_ring_cmd_db(xhci);
3659         spin_unlock_irqrestore(&xhci->lock, flags);
3660         return ret;
3661 }
3662
3663 /*
3664  * Checks if we have enough host controller resources for the default control
3665  * endpoint.
3666  *
3667  * Must be called with xhci->lock held.
3668  */
3669 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3670 {
3671         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3672                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3673                                 "Not enough ep ctxs: "
3674                                 "%u active, need to add 1, limit is %u.",
3675                                 xhci->num_active_eps, xhci->limit_active_eps);
3676                 return -ENOMEM;
3677         }
3678         xhci->num_active_eps += 1;
3679         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3680                         "Adding 1 ep ctx, %u now active.",
3681                         xhci->num_active_eps);
3682         return 0;
3683 }
3684
3685
3686 /*
3687  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3688  * timed out, or allocating memory failed.  Returns 1 on success.
3689  */
3690 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3691 {
3692         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3693         struct xhci_virt_device *vdev;
3694         struct xhci_slot_ctx *slot_ctx;
3695         unsigned long flags;
3696         int ret, slot_id;
3697         struct xhci_command *command;
3698
3699         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3700         if (!command)
3701                 return 0;
3702
3703         spin_lock_irqsave(&xhci->lock, flags);
3704         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3705         if (ret) {
3706                 spin_unlock_irqrestore(&xhci->lock, flags);
3707                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3708                 xhci_free_command(xhci, command);
3709                 return 0;
3710         }
3711         xhci_ring_cmd_db(xhci);
3712         spin_unlock_irqrestore(&xhci->lock, flags);
3713
3714         wait_for_completion(command->completion);
3715         slot_id = command->slot_id;
3716
3717         if (!slot_id || command->status != COMP_SUCCESS) {
3718                 xhci_err(xhci, "Error while assigning device slot ID\n");
3719                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3720                                 HCS_MAX_SLOTS(
3721                                         readl(&xhci->cap_regs->hcs_params1)));
3722                 xhci_free_command(xhci, command);
3723                 return 0;
3724         }
3725
3726         xhci_free_command(xhci, command);
3727
3728         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3729                 spin_lock_irqsave(&xhci->lock, flags);
3730                 ret = xhci_reserve_host_control_ep_resources(xhci);
3731                 if (ret) {
3732                         spin_unlock_irqrestore(&xhci->lock, flags);
3733                         xhci_warn(xhci, "Not enough host resources, "
3734                                         "active endpoint contexts = %u\n",
3735                                         xhci->num_active_eps);
3736                         goto disable_slot;
3737                 }
3738                 spin_unlock_irqrestore(&xhci->lock, flags);
3739         }
3740         /* Use GFP_NOIO, since this function can be called from
3741          * xhci_discover_or_reset_device(), which may be called as part of
3742          * mass storage driver error handling.
3743          */
3744         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3745                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3746                 goto disable_slot;
3747         }
3748         vdev = xhci->devs[slot_id];
3749         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3750         trace_xhci_alloc_dev(slot_ctx);
3751
3752         udev->slot_id = slot_id;
3753
3754         xhci_debugfs_create_slot(xhci, slot_id);
3755
3756 #ifndef CONFIG_USB_DEFAULT_PERSIST
3757         /*
3758          * If resetting upon resume, we can't put the controller into runtime
3759          * suspend if there is a device attached.
3760          */
3761         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3762                 pm_runtime_get_noresume(hcd->self.controller);
3763 #endif
3764
3765         /* Is this a LS or FS device under a HS hub? */
3766         /* Hub or peripherial? */
3767         return 1;
3768
3769 disable_slot:
3770         ret = xhci_disable_slot(xhci, udev->slot_id);
3771         if (ret)
3772                 xhci_free_virt_device(xhci, udev->slot_id);
3773
3774         return 0;
3775 }
3776
3777 /*
3778  * Issue an Address Device command and optionally send a corresponding
3779  * SetAddress request to the device.
3780  */
3781 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3782                              enum xhci_setup_dev setup)
3783 {
3784         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3785         unsigned long flags;
3786         struct xhci_virt_device *virt_dev;
3787         int ret = 0;
3788         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3789         struct xhci_slot_ctx *slot_ctx;
3790         struct xhci_input_control_ctx *ctrl_ctx;
3791         u64 temp_64;
3792         struct xhci_command *command = NULL;
3793
3794         mutex_lock(&xhci->mutex);
3795
3796         if (xhci->xhc_state) {  /* dying, removing or halted */
3797                 ret = -ESHUTDOWN;
3798                 goto out;
3799         }
3800
3801         if (!udev->slot_id) {
3802                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3803                                 "Bad Slot ID %d", udev->slot_id);
3804                 ret = -EINVAL;
3805                 goto out;
3806         }
3807
3808         virt_dev = xhci->devs[udev->slot_id];
3809
3810         if (WARN_ON(!virt_dev)) {
3811                 /*
3812                  * In plug/unplug torture test with an NEC controller,
3813                  * a zero-dereference was observed once due to virt_dev = 0.
3814                  * Print useful debug rather than crash if it is observed again!
3815                  */
3816                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3817                         udev->slot_id);
3818                 ret = -EINVAL;
3819                 goto out;
3820         }
3821         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3822         trace_xhci_setup_device_slot(slot_ctx);
3823
3824         if (setup == SETUP_CONTEXT_ONLY) {
3825                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3826                     SLOT_STATE_DEFAULT) {
3827                         xhci_dbg(xhci, "Slot already in default state\n");
3828                         goto out;
3829                 }
3830         }
3831
3832         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3833         if (!command) {
3834                 ret = -ENOMEM;
3835                 goto out;
3836         }
3837
3838         command->in_ctx = virt_dev->in_ctx;
3839
3840         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3841         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3842         if (!ctrl_ctx) {
3843                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3844                                 __func__);
3845                 ret = -EINVAL;
3846                 goto out;
3847         }
3848         /*
3849          * If this is the first Set Address since device plug-in or
3850          * virt_device realloaction after a resume with an xHCI power loss,
3851          * then set up the slot context.
3852          */
3853         if (!slot_ctx->dev_info)
3854                 xhci_setup_addressable_virt_dev(xhci, udev);
3855         /* Otherwise, update the control endpoint ring enqueue pointer. */
3856         else
3857                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3858         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3859         ctrl_ctx->drop_flags = 0;
3860
3861         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3862                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3863
3864         spin_lock_irqsave(&xhci->lock, flags);
3865         trace_xhci_setup_device(virt_dev);
3866         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3867                                         udev->slot_id, setup);
3868         if (ret) {
3869                 spin_unlock_irqrestore(&xhci->lock, flags);
3870                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3871                                 "FIXME: allocate a command ring segment");
3872                 goto out;
3873         }
3874         xhci_ring_cmd_db(xhci);
3875         spin_unlock_irqrestore(&xhci->lock, flags);
3876
3877         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3878         wait_for_completion(command->completion);
3879
3880         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3881          * the SetAddress() "recovery interval" required by USB and aborting the
3882          * command on a timeout.
3883          */
3884         switch (command->status) {
3885         case COMP_COMMAND_ABORTED:
3886         case COMP_COMMAND_RING_STOPPED:
3887                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3888                 ret = -ETIME;
3889                 break;
3890         case COMP_CONTEXT_STATE_ERROR:
3891         case COMP_SLOT_NOT_ENABLED_ERROR:
3892                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3893                          act, udev->slot_id);
3894                 ret = -EINVAL;
3895                 break;
3896         case COMP_USB_TRANSACTION_ERROR:
3897                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3898
3899                 mutex_unlock(&xhci->mutex);
3900                 ret = xhci_disable_slot(xhci, udev->slot_id);
3901                 if (!ret)
3902                         xhci_alloc_dev(hcd, udev);
3903                 kfree(command->completion);
3904                 kfree(command);
3905                 return -EPROTO;
3906         case COMP_INCOMPATIBLE_DEVICE_ERROR:
3907                 dev_warn(&udev->dev,
3908                          "ERROR: Incompatible device for setup %s command\n", act);
3909                 ret = -ENODEV;
3910                 break;
3911         case COMP_SUCCESS:
3912                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3913                                "Successful setup %s command", act);
3914                 break;
3915         default:
3916                 xhci_err(xhci,
3917                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3918                          act, command->status);
3919                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3920                 ret = -EINVAL;
3921                 break;
3922         }
3923         if (ret)
3924                 goto out;
3925         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3926         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3927                         "Op regs DCBAA ptr = %#016llx", temp_64);
3928         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3929                 "Slot ID %d dcbaa entry @%p = %#016llx",
3930                 udev->slot_id,
3931                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3932                 (unsigned long long)
3933                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3934         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3935                         "Output Context DMA address = %#08llx",
3936                         (unsigned long long)virt_dev->out_ctx->dma);
3937         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3938                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3939         /*
3940          * USB core uses address 1 for the roothubs, so we add one to the
3941          * address given back to us by the HC.
3942          */
3943         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3944                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3945         /* Zero the input context control for later use */
3946         ctrl_ctx->add_flags = 0;
3947         ctrl_ctx->drop_flags = 0;
3948
3949         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3950                        "Internal device address = %d",
3951                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3952 out:
3953         mutex_unlock(&xhci->mutex);
3954         if (command) {
3955                 kfree(command->completion);
3956                 kfree(command);
3957         }
3958         return ret;
3959 }
3960
3961 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3962 {
3963         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3964 }
3965
3966 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3967 {
3968         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3969 }
3970
3971 /*
3972  * Transfer the port index into real index in the HW port status
3973  * registers. Caculate offset between the port's PORTSC register
3974  * and port status base. Divide the number of per port register
3975  * to get the real index. The raw port number bases 1.
3976  */
3977 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
3978 {
3979         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3980         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
3981         __le32 __iomem *addr;
3982         int raw_port;
3983
3984         if (hcd->speed < HCD_USB3)
3985                 addr = xhci->usb2_ports[port1 - 1];
3986         else
3987                 addr = xhci->usb3_ports[port1 - 1];
3988
3989         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
3990         return raw_port;
3991 }
3992
3993 /*
3994  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
3995  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
3996  */
3997 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
3998                         struct usb_device *udev, u16 max_exit_latency)
3999 {
4000         struct xhci_virt_device *virt_dev;
4001         struct xhci_command *command;
4002         struct xhci_input_control_ctx *ctrl_ctx;
4003         struct xhci_slot_ctx *slot_ctx;
4004         unsigned long flags;
4005         int ret;
4006
4007         spin_lock_irqsave(&xhci->lock, flags);
4008
4009         virt_dev = xhci->devs[udev->slot_id];
4010
4011         /*
4012          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4013          * xHC was re-initialized. Exit latency will be set later after
4014          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4015          */
4016
4017         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4018                 spin_unlock_irqrestore(&xhci->lock, flags);
4019                 return 0;
4020         }
4021
4022         /* Attempt to issue an Evaluate Context command to change the MEL. */
4023         command = xhci->lpm_command;
4024         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4025         if (!ctrl_ctx) {
4026                 spin_unlock_irqrestore(&xhci->lock, flags);
4027                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4028                                 __func__);
4029                 return -ENOMEM;
4030         }
4031
4032         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4033         spin_unlock_irqrestore(&xhci->lock, flags);
4034
4035         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4036         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4037         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4038         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4039         slot_ctx->dev_state = 0;
4040
4041         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4042                         "Set up evaluate context for LPM MEL change.");
4043
4044         /* Issue and wait for the evaluate context command. */
4045         ret = xhci_configure_endpoint(xhci, udev, command,
4046                         true, true);
4047
4048         if (!ret) {
4049                 spin_lock_irqsave(&xhci->lock, flags);
4050                 virt_dev->current_mel = max_exit_latency;
4051                 spin_unlock_irqrestore(&xhci->lock, flags);
4052         }
4053         return ret;
4054 }
4055
4056 #ifdef CONFIG_PM
4057
4058 /* BESL to HIRD Encoding array for USB2 LPM */
4059 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4060         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4061
4062 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4063 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4064                                         struct usb_device *udev)
4065 {
4066         int u2del, besl, besl_host;
4067         int besl_device = 0;
4068         u32 field;
4069
4070         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4071         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4072
4073         if (field & USB_BESL_SUPPORT) {
4074                 for (besl_host = 0; besl_host < 16; besl_host++) {
4075                         if (xhci_besl_encoding[besl_host] >= u2del)
4076                                 break;
4077                 }
4078                 /* Use baseline BESL value as default */
4079                 if (field & USB_BESL_BASELINE_VALID)
4080                         besl_device = USB_GET_BESL_BASELINE(field);
4081                 else if (field & USB_BESL_DEEP_VALID)
4082                         besl_device = USB_GET_BESL_DEEP(field);
4083         } else {
4084                 if (u2del <= 50)
4085                         besl_host = 0;
4086                 else
4087                         besl_host = (u2del - 51) / 75 + 1;
4088         }
4089
4090         besl = besl_host + besl_device;
4091         if (besl > 15)
4092                 besl = 15;
4093
4094         return besl;
4095 }
4096
4097 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4098 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4099 {
4100         u32 field;
4101         int l1;
4102         int besld = 0;
4103         int hirdm = 0;
4104
4105         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4106
4107         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4108         l1 = udev->l1_params.timeout / 256;
4109
4110         /* device has preferred BESLD */
4111         if (field & USB_BESL_DEEP_VALID) {
4112                 besld = USB_GET_BESL_DEEP(field);
4113                 hirdm = 1;
4114         }
4115
4116         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4117 }
4118
4119 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4120                         struct usb_device *udev, int enable)
4121 {
4122         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4123         __le32 __iomem  **port_array;
4124         __le32 __iomem  *pm_addr, *hlpm_addr;
4125         u32             pm_val, hlpm_val, field;
4126         unsigned int    port_num;
4127         unsigned long   flags;
4128         int             hird, exit_latency;
4129         int             ret;
4130
4131         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4132                         !udev->lpm_capable)
4133                 return -EPERM;
4134
4135         if (!udev->parent || udev->parent->parent ||
4136                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4137                 return -EPERM;
4138
4139         if (udev->usb2_hw_lpm_capable != 1)
4140                 return -EPERM;
4141
4142         spin_lock_irqsave(&xhci->lock, flags);
4143
4144         port_array = xhci->usb2_ports;
4145         port_num = udev->portnum - 1;
4146         pm_addr = port_array[port_num] + PORTPMSC;
4147         pm_val = readl(pm_addr);
4148         hlpm_addr = port_array[port_num] + PORTHLPMC;
4149         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4150
4151         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4152                         enable ? "enable" : "disable", port_num + 1);
4153
4154         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4155                 /* Host supports BESL timeout instead of HIRD */
4156                 if (udev->usb2_hw_lpm_besl_capable) {
4157                         /* if device doesn't have a preferred BESL value use a
4158                          * default one which works with mixed HIRD and BESL
4159                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4160                          */
4161                         if ((field & USB_BESL_SUPPORT) &&
4162                             (field & USB_BESL_BASELINE_VALID))
4163                                 hird = USB_GET_BESL_BASELINE(field);
4164                         else
4165                                 hird = udev->l1_params.besl;
4166
4167                         exit_latency = xhci_besl_encoding[hird];
4168                         spin_unlock_irqrestore(&xhci->lock, flags);
4169
4170                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4171                          * input context for link powermanagement evaluate
4172                          * context commands. It is protected by hcd->bandwidth
4173                          * mutex and is shared by all devices. We need to set
4174                          * the max ext latency in USB 2 BESL LPM as well, so
4175                          * use the same mutex and xhci_change_max_exit_latency()
4176                          */
4177                         mutex_lock(hcd->bandwidth_mutex);
4178                         ret = xhci_change_max_exit_latency(xhci, udev,
4179                                                            exit_latency);
4180                         mutex_unlock(hcd->bandwidth_mutex);
4181
4182                         if (ret < 0)
4183                                 return ret;
4184                         spin_lock_irqsave(&xhci->lock, flags);
4185
4186                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4187                         writel(hlpm_val, hlpm_addr);
4188                         /* flush write */
4189                         readl(hlpm_addr);
4190                 } else {
4191                         hird = xhci_calculate_hird_besl(xhci, udev);
4192                 }
4193
4194                 pm_val &= ~PORT_HIRD_MASK;
4195                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4196                 writel(pm_val, pm_addr);
4197                 pm_val = readl(pm_addr);
4198                 pm_val |= PORT_HLE;
4199                 writel(pm_val, pm_addr);
4200                 /* flush write */
4201                 readl(pm_addr);
4202         } else {
4203                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4204                 writel(pm_val, pm_addr);
4205                 /* flush write */
4206                 readl(pm_addr);
4207                 if (udev->usb2_hw_lpm_besl_capable) {
4208                         spin_unlock_irqrestore(&xhci->lock, flags);
4209                         mutex_lock(hcd->bandwidth_mutex);
4210                         xhci_change_max_exit_latency(xhci, udev, 0);
4211                         mutex_unlock(hcd->bandwidth_mutex);
4212                         return 0;
4213                 }
4214         }
4215
4216         spin_unlock_irqrestore(&xhci->lock, flags);
4217         return 0;
4218 }
4219
4220 /* check if a usb2 port supports a given extened capability protocol
4221  * only USB2 ports extended protocol capability values are cached.
4222  * Return 1 if capability is supported
4223  */
4224 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4225                                            unsigned capability)
4226 {
4227         u32 port_offset, port_count;
4228         int i;
4229
4230         for (i = 0; i < xhci->num_ext_caps; i++) {
4231                 if (xhci->ext_caps[i] & capability) {
4232                         /* port offsets starts at 1 */
4233                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4234                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4235                         if (port >= port_offset &&
4236                             port < port_offset + port_count)
4237                                 return 1;
4238                 }
4239         }
4240         return 0;
4241 }
4242
4243 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4244 {
4245         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4246         int             portnum = udev->portnum - 1;
4247
4248         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4249                         !udev->lpm_capable)
4250                 return 0;
4251
4252         /* we only support lpm for non-hub device connected to root hub yet */
4253         if (!udev->parent || udev->parent->parent ||
4254                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4255                 return 0;
4256
4257         if (xhci->hw_lpm_support == 1 &&
4258                         xhci_check_usb2_port_capability(
4259                                 xhci, portnum, XHCI_HLC)) {
4260                 udev->usb2_hw_lpm_capable = 1;
4261                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4262                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4263                 if (xhci_check_usb2_port_capability(xhci, portnum,
4264                                         XHCI_BLC))
4265                         udev->usb2_hw_lpm_besl_capable = 1;
4266         }
4267
4268         return 0;
4269 }
4270
4271 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4272
4273 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4274 static unsigned long long xhci_service_interval_to_ns(
4275                 struct usb_endpoint_descriptor *desc)
4276 {
4277         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4278 }
4279
4280 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4281                 enum usb3_link_state state)
4282 {
4283         unsigned long long sel;
4284         unsigned long long pel;
4285         unsigned int max_sel_pel;
4286         char *state_name;
4287
4288         switch (state) {
4289         case USB3_LPM_U1:
4290                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4291                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4292                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4293                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4294                 state_name = "U1";
4295                 break;
4296         case USB3_LPM_U2:
4297                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4298                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4299                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4300                 state_name = "U2";
4301                 break;
4302         default:
4303                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4304                                 __func__);
4305                 return USB3_LPM_DISABLED;
4306         }
4307
4308         if (sel <= max_sel_pel && pel <= max_sel_pel)
4309                 return USB3_LPM_DEVICE_INITIATED;
4310
4311         if (sel > max_sel_pel)
4312                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4313                                 "due to long SEL %llu ms\n",
4314                                 state_name, sel);
4315         else
4316                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4317                                 "due to long PEL %llu ms\n",
4318                                 state_name, pel);
4319         return USB3_LPM_DISABLED;
4320 }
4321
4322 /* The U1 timeout should be the maximum of the following values:
4323  *  - For control endpoints, U1 system exit latency (SEL) * 3
4324  *  - For bulk endpoints, U1 SEL * 5
4325  *  - For interrupt endpoints:
4326  *    - Notification EPs, U1 SEL * 3
4327  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4328  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4329  */
4330 static unsigned long long xhci_calculate_intel_u1_timeout(
4331                 struct usb_device *udev,
4332                 struct usb_endpoint_descriptor *desc)
4333 {
4334         unsigned long long timeout_ns;
4335         int ep_type;
4336         int intr_type;
4337
4338         ep_type = usb_endpoint_type(desc);
4339         switch (ep_type) {
4340         case USB_ENDPOINT_XFER_CONTROL:
4341                 timeout_ns = udev->u1_params.sel * 3;
4342                 break;
4343         case USB_ENDPOINT_XFER_BULK:
4344                 timeout_ns = udev->u1_params.sel * 5;
4345                 break;
4346         case USB_ENDPOINT_XFER_INT:
4347                 intr_type = usb_endpoint_interrupt_type(desc);
4348                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4349                         timeout_ns = udev->u1_params.sel * 3;
4350                         break;
4351                 }
4352                 /* Otherwise the calculation is the same as isoc eps */
4353                 /* fall through */
4354         case USB_ENDPOINT_XFER_ISOC:
4355                 timeout_ns = xhci_service_interval_to_ns(desc);
4356                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4357                 if (timeout_ns < udev->u1_params.sel * 2)
4358                         timeout_ns = udev->u1_params.sel * 2;
4359                 break;
4360         default:
4361                 return 0;
4362         }
4363
4364         return timeout_ns;
4365 }
4366
4367 /* Returns the hub-encoded U1 timeout value. */
4368 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4369                 struct usb_device *udev,
4370                 struct usb_endpoint_descriptor *desc)
4371 {
4372         unsigned long long timeout_ns;
4373
4374         if (xhci->quirks & XHCI_INTEL_HOST)
4375                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4376         else
4377                 timeout_ns = udev->u1_params.sel;
4378
4379         /* The U1 timeout is encoded in 1us intervals.
4380          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4381          */
4382         if (timeout_ns == USB3_LPM_DISABLED)
4383                 timeout_ns = 1;
4384         else
4385                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4386
4387         /* If the necessary timeout value is bigger than what we can set in the
4388          * USB 3.0 hub, we have to disable hub-initiated U1.
4389          */
4390         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4391                 return timeout_ns;
4392         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4393                         "due to long timeout %llu ms\n", timeout_ns);
4394         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4395 }
4396
4397 /* The U2 timeout should be the maximum of:
4398  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4399  *  - largest bInterval of any active periodic endpoint (to avoid going
4400  *    into lower power link states between intervals).
4401  *  - the U2 Exit Latency of the device
4402  */
4403 static unsigned long long xhci_calculate_intel_u2_timeout(
4404                 struct usb_device *udev,
4405                 struct usb_endpoint_descriptor *desc)
4406 {
4407         unsigned long long timeout_ns;
4408         unsigned long long u2_del_ns;
4409
4410         timeout_ns = 10 * 1000 * 1000;
4411
4412         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4413                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4414                 timeout_ns = xhci_service_interval_to_ns(desc);
4415
4416         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4417         if (u2_del_ns > timeout_ns)
4418                 timeout_ns = u2_del_ns;
4419
4420         return timeout_ns;
4421 }
4422
4423 /* Returns the hub-encoded U2 timeout value. */
4424 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4425                 struct usb_device *udev,
4426                 struct usb_endpoint_descriptor *desc)
4427 {
4428         unsigned long long timeout_ns;
4429
4430         if (xhci->quirks & XHCI_INTEL_HOST)
4431                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4432         else
4433                 timeout_ns = udev->u2_params.sel;
4434
4435         /* The U2 timeout is encoded in 256us intervals */
4436         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4437         /* If the necessary timeout value is bigger than what we can set in the
4438          * USB 3.0 hub, we have to disable hub-initiated U2.
4439          */
4440         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4441                 return timeout_ns;
4442         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4443                         "due to long timeout %llu ms\n", timeout_ns);
4444         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4445 }
4446
4447 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4448                 struct usb_device *udev,
4449                 struct usb_endpoint_descriptor *desc,
4450                 enum usb3_link_state state,
4451                 u16 *timeout)
4452 {
4453         if (state == USB3_LPM_U1)
4454                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4455         else if (state == USB3_LPM_U2)
4456                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4457
4458         return USB3_LPM_DISABLED;
4459 }
4460
4461 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4462                 struct usb_device *udev,
4463                 struct usb_endpoint_descriptor *desc,
4464                 enum usb3_link_state state,
4465                 u16 *timeout)
4466 {
4467         u16 alt_timeout;
4468
4469         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4470                 desc, state, timeout);
4471
4472         /* If we found we can't enable hub-initiated LPM, or
4473          * the U1 or U2 exit latency was too high to allow
4474          * device-initiated LPM as well, just stop searching.
4475          */
4476         if (alt_timeout == USB3_LPM_DISABLED ||
4477                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4478                 *timeout = alt_timeout;
4479                 return -E2BIG;
4480         }
4481         if (alt_timeout > *timeout)
4482                 *timeout = alt_timeout;
4483         return 0;
4484 }
4485
4486 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4487                 struct usb_device *udev,
4488                 struct usb_host_interface *alt,
4489                 enum usb3_link_state state,
4490                 u16 *timeout)
4491 {
4492         int j;
4493
4494         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4495                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4496                                         &alt->endpoint[j].desc, state, timeout))
4497                         return -E2BIG;
4498                 continue;
4499         }
4500         return 0;
4501 }
4502
4503 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4504                 enum usb3_link_state state)
4505 {
4506         struct usb_device *parent;
4507         unsigned int num_hubs;
4508
4509         if (state == USB3_LPM_U2)
4510                 return 0;
4511
4512         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4513         for (parent = udev->parent, num_hubs = 0; parent->parent;
4514                         parent = parent->parent)
4515                 num_hubs++;
4516
4517         if (num_hubs < 2)
4518                 return 0;
4519
4520         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4521                         " below second-tier hub.\n");
4522         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4523                         "to decrease power consumption.\n");
4524         return -E2BIG;
4525 }
4526
4527 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4528                 struct usb_device *udev,
4529                 enum usb3_link_state state)
4530 {
4531         if (xhci->quirks & XHCI_INTEL_HOST)
4532                 return xhci_check_intel_tier_policy(udev, state);
4533         else
4534                 return 0;
4535 }
4536
4537 /* Returns the U1 or U2 timeout that should be enabled.
4538  * If the tier check or timeout setting functions return with a non-zero exit
4539  * code, that means the timeout value has been finalized and we shouldn't look
4540  * at any more endpoints.
4541  */
4542 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4543                         struct usb_device *udev, enum usb3_link_state state)
4544 {
4545         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4546         struct usb_host_config *config;
4547         char *state_name;
4548         int i;
4549         u16 timeout = USB3_LPM_DISABLED;
4550
4551         if (state == USB3_LPM_U1)
4552                 state_name = "U1";
4553         else if (state == USB3_LPM_U2)
4554                 state_name = "U2";
4555         else {
4556                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4557                                 state);
4558                 return timeout;
4559         }
4560
4561         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4562                 return timeout;
4563
4564         /* Gather some information about the currently installed configuration
4565          * and alternate interface settings.
4566          */
4567         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4568                         state, &timeout))
4569                 return timeout;
4570
4571         config = udev->actconfig;
4572         if (!config)
4573                 return timeout;
4574
4575         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4576                 struct usb_driver *driver;
4577                 struct usb_interface *intf = config->interface[i];
4578
4579                 if (!intf)
4580                         continue;
4581
4582                 /* Check if any currently bound drivers want hub-initiated LPM
4583                  * disabled.
4584                  */
4585                 if (intf->dev.driver) {
4586                         driver = to_usb_driver(intf->dev.driver);
4587                         if (driver && driver->disable_hub_initiated_lpm) {
4588                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4589                                                 "at request of driver %s\n",
4590                                                 state_name, driver->name);
4591                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4592                         }
4593                 }
4594
4595                 /* Not sure how this could happen... */
4596                 if (!intf->cur_altsetting)
4597                         continue;
4598
4599                 if (xhci_update_timeout_for_interface(xhci, udev,
4600                                         intf->cur_altsetting,
4601                                         state, &timeout))
4602                         return timeout;
4603         }
4604         return timeout;
4605 }
4606
4607 static int calculate_max_exit_latency(struct usb_device *udev,
4608                 enum usb3_link_state state_changed,
4609                 u16 hub_encoded_timeout)
4610 {
4611         unsigned long long u1_mel_us = 0;
4612         unsigned long long u2_mel_us = 0;
4613         unsigned long long mel_us = 0;
4614         bool disabling_u1;
4615         bool disabling_u2;
4616         bool enabling_u1;
4617         bool enabling_u2;
4618
4619         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4620                         hub_encoded_timeout == USB3_LPM_DISABLED);
4621         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4622                         hub_encoded_timeout == USB3_LPM_DISABLED);
4623
4624         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4625                         hub_encoded_timeout != USB3_LPM_DISABLED);
4626         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4627                         hub_encoded_timeout != USB3_LPM_DISABLED);
4628
4629         /* If U1 was already enabled and we're not disabling it,
4630          * or we're going to enable U1, account for the U1 max exit latency.
4631          */
4632         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4633                         enabling_u1)
4634                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4635         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4636                         enabling_u2)
4637                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4638
4639         if (u1_mel_us > u2_mel_us)
4640                 mel_us = u1_mel_us;
4641         else
4642                 mel_us = u2_mel_us;
4643         /* xHCI host controller max exit latency field is only 16 bits wide. */
4644         if (mel_us > MAX_EXIT) {
4645                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4646                                 "is too big.\n", mel_us);
4647                 return -E2BIG;
4648         }
4649         return mel_us;
4650 }
4651
4652 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4653 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4654                         struct usb_device *udev, enum usb3_link_state state)
4655 {
4656         struct xhci_hcd *xhci;
4657         u16 hub_encoded_timeout;
4658         int mel;
4659         int ret;
4660
4661         xhci = hcd_to_xhci(hcd);
4662         /* The LPM timeout values are pretty host-controller specific, so don't
4663          * enable hub-initiated timeouts unless the vendor has provided
4664          * information about their timeout algorithm.
4665          */
4666         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4667                         !xhci->devs[udev->slot_id])
4668                 return USB3_LPM_DISABLED;
4669
4670         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4671         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4672         if (mel < 0) {
4673                 /* Max Exit Latency is too big, disable LPM. */
4674                 hub_encoded_timeout = USB3_LPM_DISABLED;
4675                 mel = 0;
4676         }
4677
4678         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4679         if (ret)
4680                 return ret;
4681         return hub_encoded_timeout;
4682 }
4683
4684 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4685                         struct usb_device *udev, enum usb3_link_state state)
4686 {
4687         struct xhci_hcd *xhci;
4688         u16 mel;
4689
4690         xhci = hcd_to_xhci(hcd);
4691         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4692                         !xhci->devs[udev->slot_id])
4693                 return 0;
4694
4695         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4696         return xhci_change_max_exit_latency(xhci, udev, mel);
4697 }
4698 #else /* CONFIG_PM */
4699
4700 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4701                                 struct usb_device *udev, int enable)
4702 {
4703         return 0;
4704 }
4705
4706 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4707 {
4708         return 0;
4709 }
4710
4711 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4712                         struct usb_device *udev, enum usb3_link_state state)
4713 {
4714         return USB3_LPM_DISABLED;
4715 }
4716
4717 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4718                         struct usb_device *udev, enum usb3_link_state state)
4719 {
4720         return 0;
4721 }
4722 #endif  /* CONFIG_PM */
4723
4724 /*-------------------------------------------------------------------------*/
4725
4726 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4727  * internal data structures for the device.
4728  */
4729 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4730                         struct usb_tt *tt, gfp_t mem_flags)
4731 {
4732         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4733         struct xhci_virt_device *vdev;
4734         struct xhci_command *config_cmd;
4735         struct xhci_input_control_ctx *ctrl_ctx;
4736         struct xhci_slot_ctx *slot_ctx;
4737         unsigned long flags;
4738         unsigned think_time;
4739         int ret;
4740
4741         /* Ignore root hubs */
4742         if (!hdev->parent)
4743                 return 0;
4744
4745         vdev = xhci->devs[hdev->slot_id];
4746         if (!vdev) {
4747                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4748                 return -EINVAL;
4749         }
4750
4751         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4752         if (!config_cmd)
4753                 return -ENOMEM;
4754
4755         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4756         if (!ctrl_ctx) {
4757                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4758                                 __func__);
4759                 xhci_free_command(xhci, config_cmd);
4760                 return -ENOMEM;
4761         }
4762
4763         spin_lock_irqsave(&xhci->lock, flags);
4764         if (hdev->speed == USB_SPEED_HIGH &&
4765                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4766                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4767                 xhci_free_command(xhci, config_cmd);
4768                 spin_unlock_irqrestore(&xhci->lock, flags);
4769                 return -ENOMEM;
4770         }
4771
4772         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4773         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4774         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4775         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4776         /*
4777          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4778          * but it may be already set to 1 when setup an xHCI virtual
4779          * device, so clear it anyway.
4780          */
4781         if (tt->multi)
4782                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4783         else if (hdev->speed == USB_SPEED_FULL)
4784                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4785
4786         if (xhci->hci_version > 0x95) {
4787                 xhci_dbg(xhci, "xHCI version %x needs hub "
4788                                 "TT think time and number of ports\n",
4789                                 (unsigned int) xhci->hci_version);
4790                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4791                 /* Set TT think time - convert from ns to FS bit times.
4792                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4793                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4794                  *
4795                  * xHCI 1.0: this field shall be 0 if the device is not a
4796                  * High-spped hub.
4797                  */
4798                 think_time = tt->think_time;
4799                 if (think_time != 0)
4800                         think_time = (think_time / 666) - 1;
4801                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4802                         slot_ctx->tt_info |=
4803                                 cpu_to_le32(TT_THINK_TIME(think_time));
4804         } else {
4805                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4806                                 "TT think time or number of ports\n",
4807                                 (unsigned int) xhci->hci_version);
4808         }
4809         slot_ctx->dev_state = 0;
4810         spin_unlock_irqrestore(&xhci->lock, flags);
4811
4812         xhci_dbg(xhci, "Set up %s for hub device.\n",
4813                         (xhci->hci_version > 0x95) ?
4814                         "configure endpoint" : "evaluate context");
4815
4816         /* Issue and wait for the configure endpoint or
4817          * evaluate context command.
4818          */
4819         if (xhci->hci_version > 0x95)
4820                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4821                                 false, false);
4822         else
4823                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4824                                 true, false);
4825
4826         xhci_free_command(xhci, config_cmd);
4827         return ret;
4828 }
4829
4830 static int xhci_get_frame(struct usb_hcd *hcd)
4831 {
4832         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4833         /* EHCI mods by the periodic size.  Why? */
4834         return readl(&xhci->run_regs->microframe_index) >> 3;
4835 }
4836
4837 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4838 {
4839         struct xhci_hcd         *xhci;
4840         /*
4841          * TODO: Check with DWC3 clients for sysdev according to
4842          * quirks
4843          */
4844         struct device           *dev = hcd->self.sysdev;
4845         unsigned int            minor_rev;
4846         int                     retval;
4847
4848         /* Accept arbitrarily long scatter-gather lists */
4849         hcd->self.sg_tablesize = ~0;
4850
4851         /* support to build packet from discontinuous buffers */
4852         hcd->self.no_sg_constraint = 1;
4853
4854         /* XHCI controllers don't stop the ep queue on short packets :| */
4855         hcd->self.no_stop_on_short = 1;
4856
4857         xhci = hcd_to_xhci(hcd);
4858
4859         if (usb_hcd_is_primary_hcd(hcd)) {
4860                 xhci->main_hcd = hcd;
4861                 /* Mark the first roothub as being USB 2.0.
4862                  * The xHCI driver will register the USB 3.0 roothub.
4863                  */
4864                 hcd->speed = HCD_USB2;
4865                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4866                 /*
4867                  * USB 2.0 roothub under xHCI has an integrated TT,
4868                  * (rate matching hub) as opposed to having an OHCI/UHCI
4869                  * companion controller.
4870                  */
4871                 hcd->has_tt = 1;
4872         } else {
4873                 /*
4874                  * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
4875                  * minor revision instead of sbrn
4876                  */
4877                 minor_rev = xhci->usb3_rhub.min_rev;
4878                 if (minor_rev) {
4879                         hcd->speed = HCD_USB31;
4880                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4881                 }
4882                 xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
4883                           minor_rev,
4884                           minor_rev ? "Enhanced" : "");
4885
4886                 /* xHCI private pointer was set in xhci_pci_probe for the second
4887                  * registered roothub.
4888                  */
4889                 return 0;
4890         }
4891
4892         mutex_init(&xhci->mutex);
4893         xhci->cap_regs = hcd->regs;
4894         xhci->op_regs = hcd->regs +
4895                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4896         xhci->run_regs = hcd->regs +
4897                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4898         /* Cache read-only capability registers */
4899         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4900         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4901         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4902         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4903         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4904         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4905         if (xhci->hci_version > 0x100)
4906                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4907
4908         xhci->quirks |= quirks;
4909
4910         get_quirks(dev, xhci);
4911
4912         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4913          * success event after a short transfer. This quirk will ignore such
4914          * spurious event.
4915          */
4916         if (xhci->hci_version > 0x96)
4917                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4918
4919         /* Make sure the HC is halted. */
4920         retval = xhci_halt(xhci);
4921         if (retval)
4922                 return retval;
4923
4924         xhci_dbg(xhci, "Resetting HCD\n");
4925         /* Reset the internal HC memory state and registers. */
4926         retval = xhci_reset(xhci);
4927         if (retval)
4928                 return retval;
4929         xhci_dbg(xhci, "Reset complete\n");
4930
4931         /*
4932          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4933          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4934          * address memory pointers actually. So, this driver clears the AC64
4935          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4936          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4937          */
4938         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4939                 xhci->hcc_params &= ~BIT(0);
4940
4941         /* Set dma_mask and coherent_dma_mask to 64-bits,
4942          * if xHC supports 64-bit addressing */
4943         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4944                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4945                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4946                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4947         } else {
4948                 /*
4949                  * This is to avoid error in cases where a 32-bit USB
4950                  * controller is used on a 64-bit capable system.
4951                  */
4952                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4953                 if (retval)
4954                         return retval;
4955                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4956                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4957         }
4958
4959         xhci_dbg(xhci, "Calling HCD init\n");
4960         /* Initialize HCD and host controller data structures. */
4961         retval = xhci_init(hcd);
4962         if (retval)
4963                 return retval;
4964         xhci_dbg(xhci, "Called HCD init\n");
4965
4966         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4967                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
4968
4969         return 0;
4970 }
4971 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4972
4973 static const struct hc_driver xhci_hc_driver = {
4974         .description =          "xhci-hcd",
4975         .product_desc =         "xHCI Host Controller",
4976         .hcd_priv_size =        sizeof(struct xhci_hcd),
4977
4978         /*
4979          * generic hardware linkage
4980          */
4981         .irq =                  xhci_irq,
4982         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4983
4984         /*
4985          * basic lifecycle operations
4986          */
4987         .reset =                NULL, /* set in xhci_init_driver() */
4988         .start =                xhci_run,
4989         .stop =                 xhci_stop,
4990         .shutdown =             xhci_shutdown,
4991
4992         /*
4993          * managing i/o requests and associated device resources
4994          */
4995         .urb_enqueue =          xhci_urb_enqueue,
4996         .urb_dequeue =          xhci_urb_dequeue,
4997         .alloc_dev =            xhci_alloc_dev,
4998         .free_dev =             xhci_free_dev,
4999         .alloc_streams =        xhci_alloc_streams,
5000         .free_streams =         xhci_free_streams,
5001         .add_endpoint =         xhci_add_endpoint,
5002         .drop_endpoint =        xhci_drop_endpoint,
5003         .endpoint_reset =       xhci_endpoint_reset,
5004         .check_bandwidth =      xhci_check_bandwidth,
5005         .reset_bandwidth =      xhci_reset_bandwidth,
5006         .address_device =       xhci_address_device,
5007         .enable_device =        xhci_enable_device,
5008         .update_hub_device =    xhci_update_hub_device,
5009         .reset_device =         xhci_discover_or_reset_device,
5010
5011         /*
5012          * scheduling support
5013          */
5014         .get_frame_number =     xhci_get_frame,
5015
5016         /*
5017          * root hub support
5018          */
5019         .hub_control =          xhci_hub_control,
5020         .hub_status_data =      xhci_hub_status_data,
5021         .bus_suspend =          xhci_bus_suspend,
5022         .bus_resume =           xhci_bus_resume,
5023
5024         /*
5025          * call back when device connected and addressed
5026          */
5027         .update_device =        xhci_update_device,
5028         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5029         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5030         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5031         .find_raw_port_number = xhci_find_raw_port_number,
5032 };
5033
5034 void xhci_init_driver(struct hc_driver *drv,
5035                       const struct xhci_driver_overrides *over)
5036 {
5037         BUG_ON(!over);
5038
5039         /* Copy the generic table to drv then apply the overrides */
5040         *drv = xhci_hc_driver;
5041
5042         if (over) {
5043                 drv->hcd_priv_size += over->extra_priv_size;
5044                 if (over->reset)
5045                         drv->reset = over->reset;
5046                 if (over->start)
5047                         drv->start = over->start;
5048         }
5049 }
5050 EXPORT_SYMBOL_GPL(xhci_init_driver);
5051
5052 MODULE_DESCRIPTION(DRIVER_DESC);
5053 MODULE_AUTHOR(DRIVER_AUTHOR);
5054 MODULE_LICENSE("GPL");
5055
5056 static int __init xhci_hcd_init(void)
5057 {
5058         /*
5059          * Check the compiler generated sizes of structures that must be laid
5060          * out in specific ways for hardware access.
5061          */
5062         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5063         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5064         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5065         /* xhci_device_control has eight fields, and also
5066          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5067          */
5068         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5069         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5070         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5071         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5072         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5073         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5074         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5075
5076         if (usb_disabled())
5077                 return -ENODEV;
5078
5079         xhci_debugfs_create_root();
5080
5081         return 0;
5082 }
5083
5084 /*
5085  * If an init function is provided, an exit function must also be provided
5086  * to allow module unload.
5087  */
5088 static void __exit xhci_hcd_fini(void)
5089 {
5090         xhci_debugfs_remove_root();
5091 }
5092
5093 module_init(xhci_hcd_init);
5094 module_exit(xhci_hcd_fini);