xhci: Improve detection of device initiated wake signal.
[linux-2.6-microblaze.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43         struct xhci_segment *seg = ring->first_seg;
44
45         if (!td || !td->start_seg)
46                 return false;
47         do {
48                 if (seg == td->start_seg)
49                         return true;
50                 seg = seg->next;
51         } while (seg && seg != ring->first_seg);
52
53         return false;
54 }
55
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72         int     ret;
73
74         ret = readl_poll_timeout_atomic(ptr, result,
75                                         (result & mask) == done ||
76                                         result == U32_MAX,
77                                         1, usec);
78         if (result == U32_MAX)          /* card removed */
79                 return -ENODEV;
80
81         return ret;
82 }
83
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89         u32 halted;
90         u32 cmd;
91         u32 mask;
92
93         mask = ~(XHCI_IRQS);
94         halted = readl(&xhci->op_regs->status) & STS_HALT;
95         if (!halted)
96                 mask &= ~CMD_RUN;
97
98         cmd = readl(&xhci->op_regs->command);
99         cmd &= mask;
100         writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113         int ret;
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123         xhci->xhc_state |= XHCI_STATE_HALTED;
124         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125         return ret;
126 }
127
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133         u32 temp;
134         int ret;
135
136         temp = readl(&xhci->op_regs->command);
137         temp |= (CMD_RUN);
138         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139                         temp);
140         writel(temp, &xhci->op_regs->command);
141
142         /*
143          * Wait for the HCHalted Status bit to be 0 to indicate the host is
144          * running.
145          */
146         ret = xhci_handshake(&xhci->op_regs->status,
147                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
148         if (ret == -ETIMEDOUT)
149                 xhci_err(xhci, "Host took too long to start, "
150                                 "waited %u microseconds.\n",
151                                 XHCI_MAX_HALT_USEC);
152         if (!ret)
153                 /* clear state flags. Including dying, halted or removing */
154                 xhci->xhc_state = 0;
155
156         return ret;
157 }
158
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168         u32 command;
169         u32 state;
170         int ret;
171
172         state = readl(&xhci->op_regs->status);
173
174         if (state == ~(u32)0) {
175                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176                 return -ENODEV;
177         }
178
179         if ((state & STS_HALT) == 0) {
180                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181                 return 0;
182         }
183
184         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185         command = readl(&xhci->op_regs->command);
186         command |= CMD_RESET;
187         writel(command, &xhci->op_regs->command);
188
189         /* Existing Intel xHCI controllers require a delay of 1 mS,
190          * after setting the CMD_RESET bit, and before accessing any
191          * HC registers. This allows the HC to complete the
192          * reset operation and be ready for HC register access.
193          * Without this delay, the subsequent HC register access,
194          * may result in a system hang very rarely.
195          */
196         if (xhci->quirks & XHCI_INTEL_HOST)
197                 udelay(1000);
198
199         ret = xhci_handshake(&xhci->op_regs->command,
200                         CMD_RESET, 0, 10 * 1000 * 1000);
201         if (ret)
202                 return ret;
203
204         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206
207         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208                          "Wait for controller to be ready for doorbell rings");
209         /*
210          * xHCI cannot write to any doorbells or operational registers other
211          * than status until the "Controller Not Ready" flag is cleared.
212          */
213         ret = xhci_handshake(&xhci->op_regs->status,
214                         STS_CNR, 0, 10 * 1000 * 1000);
215
216         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217         xhci->usb2_rhub.bus_state.suspended_ports = 0;
218         xhci->usb2_rhub.bus_state.resuming_ports = 0;
219         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220         xhci->usb3_rhub.bus_state.suspended_ports = 0;
221         xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223         return ret;
224 }
225
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229         int err, i;
230         u64 val;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270                 struct xhci_intr_reg __iomem *ir;
271
272                 ir = &xhci->run_regs->ir_set[i];
273                 val = xhci_read_64(xhci, &ir->erst_base);
274                 if (upper_32_bits(val))
275                         xhci_write_64(xhci, 0, &ir->erst_base);
276                 val= xhci_read_64(xhci, &ir->erst_dequeue);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
279         }
280
281         /* Wait for the fault to appear. It will be cleared on reset */
282         err = xhci_handshake(&xhci->op_regs->status,
283                              STS_FATAL, STS_FATAL,
284                              XHCI_MAX_HALT_USEC);
285         if (!err)
286                 xhci_info(xhci, "Fault detected\n");
287 }
288
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295         int ret;
296         /*
297          * TODO:Check with MSI Soc for sysdev
298          */
299         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300
301         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302         if (ret < 0) {
303                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304                                 "failed to allocate MSI entry");
305                 return ret;
306         }
307
308         ret = request_irq(pdev->irq, xhci_msi_irq,
309                                 0, "xhci_hcd", xhci_to_hcd(xhci));
310         if (ret) {
311                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312                                 "disable MSI interrupt");
313                 pci_free_irq_vectors(pdev);
314         }
315
316         return ret;
317 }
318
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324         int i, ret = 0;
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         /*
329          * calculate number of msi-x vectors supported.
330          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331          *   with max number of interrupters based on the xhci HCSPARAMS1.
332          * - num_online_cpus: maximum msi-x vectors per CPUs core.
333          *   Add additional 1 vector to ensure always available interrupt.
334          */
335         xhci->msix_count = min(num_online_cpus() + 1,
336                                 HCS_MAX_INTRS(xhci->hcs_params1));
337
338         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339                         PCI_IRQ_MSIX);
340         if (ret < 0) {
341                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342                                 "Failed to enable MSI-X");
343                 return ret;
344         }
345
346         for (i = 0; i < xhci->msix_count; i++) {
347                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348                                 "xhci_hcd", xhci_to_hcd(xhci));
349                 if (ret)
350                         goto disable_msix;
351         }
352
353         hcd->msix_enabled = 1;
354         return ret;
355
356 disable_msix:
357         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358         while (--i >= 0)
359                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360         pci_free_irq_vectors(pdev);
361         return ret;
362 }
363
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367         struct usb_hcd *hcd = xhci_to_hcd(xhci);
368         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369
370         if (xhci->quirks & XHCI_PLAT)
371                 return;
372
373         /* return if using legacy interrupt */
374         if (hcd->irq > 0)
375                 return;
376
377         if (hcd->msix_enabled) {
378                 int i;
379
380                 for (i = 0; i < xhci->msix_count; i++)
381                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382         } else {
383                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384         }
385
386         pci_free_irq_vectors(pdev);
387         hcd->msix_enabled = 0;
388 }
389
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392         struct usb_hcd *hcd = xhci_to_hcd(xhci);
393
394         if (hcd->msix_enabled) {
395                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396                 int i;
397
398                 for (i = 0; i < xhci->msix_count; i++)
399                         synchronize_irq(pci_irq_vector(pdev, i));
400         }
401 }
402
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406         struct pci_dev  *pdev;
407         int ret;
408
409         /* The xhci platform device has set up IRQs through usb_add_hcd. */
410         if (xhci->quirks & XHCI_PLAT)
411                 return 0;
412
413         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414         /*
415          * Some Fresco Logic host controllers advertise MSI, but fail to
416          * generate interrupts.  Don't even try to enable MSI.
417          */
418         if (xhci->quirks & XHCI_BROKEN_MSI)
419                 goto legacy_irq;
420
421         /* unregister the legacy interrupt */
422         if (hcd->irq)
423                 free_irq(hcd->irq, hcd);
424         hcd->irq = 0;
425
426         ret = xhci_setup_msix(xhci);
427         if (ret)
428                 /* fall back to msi*/
429                 ret = xhci_setup_msi(xhci);
430
431         if (!ret) {
432                 hcd->msi_enabled = 1;
433                 return 0;
434         }
435
436         if (!pdev->irq) {
437                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438                 return -EINVAL;
439         }
440
441  legacy_irq:
442         if (!strlen(hcd->irq_descr))
443                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444                          hcd->driver->description, hcd->self.busnum);
445
446         /* fall back to legacy interrupt*/
447         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448                         hcd->irq_descr, hcd);
449         if (ret) {
450                 xhci_err(xhci, "request interrupt %d failed\n",
451                                 pdev->irq);
452                 return ret;
453         }
454         hcd->irq = pdev->irq;
455         return 0;
456 }
457
458 #else
459
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462         return 0;
463 }
464
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472
473 #endif
474
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477         struct xhci_hcd *xhci;
478         struct usb_hcd *hcd;
479         struct xhci_hub *rhub;
480         u32 temp;
481         int i;
482
483         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484         rhub = &xhci->usb3_rhub;
485
486         for (i = 0; i < rhub->num_ports; i++) {
487                 temp = readl(rhub->ports[i]->addr);
488                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489                         /*
490                          * Compliance Mode Detected. Letting USB Core
491                          * handle the Warm Reset
492                          */
493                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494                                         "Compliance mode detected->port %d",
495                                         i + 1);
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Attempting compliance mode recovery");
498                         hcd = xhci->shared_hcd;
499
500                         if (hcd->state == HC_STATE_SUSPENDED)
501                                 usb_hcd_resume_root_hub(hcd);
502
503                         usb_hcd_poll_rh_status(hcd);
504                 }
505         }
506
507         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508                 mod_timer(&xhci->comp_mode_recovery_timer,
509                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524         xhci->port_status_u0 = 0;
525         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526                     0);
527         xhci->comp_mode_recovery_timer.expires = jiffies +
528                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529
530         add_timer(&xhci->comp_mode_recovery_timer);
531         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532                         "Compliance mode recovery timer initialized");
533 }
534
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543         const char *dmi_product_name, *dmi_sys_vendor;
544
545         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547         if (!dmi_product_name || !dmi_sys_vendor)
548                 return false;
549
550         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551                 return false;
552
553         if (strstr(dmi_product_name, "Z420") ||
554                         strstr(dmi_product_name, "Z620") ||
555                         strstr(dmi_product_name, "Z820") ||
556                         strstr(dmi_product_name, "Z1 Workstation"))
557                 return true;
558
559         return false;
560 }
561
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566
567
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578         int retval = 0;
579
580         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581         spin_lock_init(&xhci->lock);
582         if (xhci->hci_version == 0x95 && link_quirk) {
583                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584                                 "QUIRK: Not clearing Link TRB chain bits.");
585                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586         } else {
587                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588                                 "xHCI doesn't need link TRB QUIRK");
589         }
590         retval = xhci_mem_init(xhci, GFP_KERNEL);
591         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592
593         /* Initializing Compliance Mode Recovery Data If Needed */
594         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596                 compliance_mode_recovery_timer_init(xhci);
597         }
598
599         return retval;
600 }
601
602 /*-------------------------------------------------------------------------*/
603
604
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607         if (xhci_start(xhci)) {
608                 xhci_halt(xhci);
609                 return -ENODEV;
610         }
611         xhci->shared_hcd->state = HC_STATE_RUNNING;
612         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613
614         if (xhci->quirks & XHCI_NEC_HOST)
615                 xhci_ring_cmd_db(xhci);
616
617         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618                         "Finished xhci_run for USB3 roothub");
619         return 0;
620 }
621
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636         u32 temp;
637         u64 temp_64;
638         int ret;
639         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640
641         /* Start the xHCI host controller running only after the USB 2.0 roothub
642          * is setup.
643          */
644
645         hcd->uses_new_polling = 1;
646         if (!usb_hcd_is_primary_hcd(hcd))
647                 return xhci_run_finished(xhci);
648
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650
651         ret = xhci_try_enable_msi(hcd);
652         if (ret)
653                 return ret;
654
655         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656         temp_64 &= ~ERST_PTR_MASK;
657         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "// Set the interrupt modulation register");
662         temp = readl(&xhci->ir_set->irq_control);
663         temp &= ~ER_IRQ_INTERVAL_MASK;
664         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665         writel(temp, &xhci->ir_set->irq_control);
666
667         /* Set the HCD state before we enable the irqs */
668         temp = readl(&xhci->op_regs->command);
669         temp |= (CMD_EIE);
670         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671                         "// Enable interrupts, cmd = 0x%x.", temp);
672         writel(temp, &xhci->op_regs->command);
673
674         temp = readl(&xhci->ir_set->irq_pending);
675         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679
680         if (xhci->quirks & XHCI_NEC_HOST) {
681                 struct xhci_command *command;
682
683                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684                 if (!command)
685                         return -ENOMEM;
686
687                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688                                 TRB_TYPE(TRB_NEC_GET_FW));
689                 if (ret)
690                         xhci_free_command(xhci, command);
691         }
692         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693                         "Finished xhci_run for USB2 roothub");
694
695         xhci_dbc_init(xhci);
696
697         xhci_debugfs_init(xhci);
698
699         return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714         u32 temp;
715         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716
717         mutex_lock(&xhci->mutex);
718
719         /* Only halt host and free memory after both hcds are removed */
720         if (!usb_hcd_is_primary_hcd(hcd)) {
721                 mutex_unlock(&xhci->mutex);
722                 return;
723         }
724
725         xhci_dbc_exit(xhci);
726
727         spin_lock_irq(&xhci->lock);
728         xhci->xhc_state |= XHCI_STATE_HALTED;
729         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730         xhci_halt(xhci);
731         xhci_reset(xhci);
732         spin_unlock_irq(&xhci->lock);
733
734         xhci_cleanup_msix(xhci);
735
736         /* Deleting Compliance Mode Recovery Timer */
737         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738                         (!(xhci_all_ports_seen_u0(xhci)))) {
739                 del_timer_sync(&xhci->comp_mode_recovery_timer);
740                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741                                 "%s: compliance mode recovery timer deleted",
742                                 __func__);
743         }
744
745         if (xhci->quirks & XHCI_AMD_PLL_FIX)
746                 usb_amd_dev_put();
747
748         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749                         "// Disabling event ring interrupts");
750         temp = readl(&xhci->op_regs->status);
751         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752         temp = readl(&xhci->ir_set->irq_pending);
753         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754
755         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756         xhci_mem_cleanup(xhci);
757         xhci_debugfs_exit(xhci);
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "xhci_stop completed - status = %x",
760                         readl(&xhci->op_regs->status));
761         mutex_unlock(&xhci->mutex);
762 }
763
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779
780         spin_lock_irq(&xhci->lock);
781         xhci_halt(xhci);
782         /* Workaround for spurious wakeups at shutdown with HSW */
783         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784                 xhci_reset(xhci);
785         spin_unlock_irq(&xhci->lock);
786
787         xhci_cleanup_msix(xhci);
788
789         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790                         "xhci_shutdown completed - status = %x",
791                         readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798         xhci->s3.command = readl(&xhci->op_regs->command);
799         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811         writel(xhci->s3.command, &xhci->op_regs->command);
812         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824         u64     val_64;
825
826         /* step 2: initialize command ring buffer */
827         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830                                       xhci->cmd_ring->dequeue) &
831                  (u64) ~CMD_RING_RSVD_BITS) |
832                 xhci->cmd_ring->cycle_state;
833         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834                         "// Setting command ring address to 0x%llx",
835                         (long unsigned long) val_64);
836         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850         struct xhci_ring *ring;
851         struct xhci_segment *seg;
852
853         ring = xhci->cmd_ring;
854         seg = ring->deq_seg;
855         do {
856                 memset(seg->trbs, 0,
857                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859                         cpu_to_le32(~TRB_CYCLE);
860                 seg = seg->next;
861         } while (seg != ring->deq_seg);
862
863         /* Reset the software enqueue and dequeue pointers */
864         ring->deq_seg = ring->first_seg;
865         ring->dequeue = ring->first_seg->trbs;
866         ring->enq_seg = ring->deq_seg;
867         ring->enqueue = ring->dequeue;
868
869         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870         /*
871          * Ring is now zeroed, so the HW should look for change of ownership
872          * when the cycle bit is set to 1.
873          */
874         ring->cycle_state = 1;
875
876         /*
877          * Reset the hardware dequeue pointer.
878          * Yes, this will need to be re-written after resume, but we're paranoid
879          * and want to make sure the hardware doesn't access bogus memory
880          * because, say, the BIOS or an SMI started the host without changing
881          * the command ring pointers.
882          */
883         xhci_set_cmd_ring_deq(xhci);
884 }
885
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888         struct xhci_port **ports;
889         int port_index;
890         unsigned long flags;
891         u32 t1, t2, portsc;
892
893         spin_lock_irqsave(&xhci->lock, flags);
894
895         /* disable usb3 ports Wake bits */
896         port_index = xhci->usb3_rhub.num_ports;
897         ports = xhci->usb3_rhub.ports;
898         while (port_index--) {
899                 t1 = readl(ports[port_index]->addr);
900                 portsc = t1;
901                 t1 = xhci_port_state_to_neutral(t1);
902                 t2 = t1 & ~PORT_WAKE_BITS;
903                 if (t1 != t2) {
904                         writel(t2, ports[port_index]->addr);
905                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906                                  xhci->usb3_rhub.hcd->self.busnum,
907                                  port_index + 1, portsc, t2);
908                 }
909         }
910
911         /* disable usb2 ports Wake bits */
912         port_index = xhci->usb2_rhub.num_ports;
913         ports = xhci->usb2_rhub.ports;
914         while (port_index--) {
915                 t1 = readl(ports[port_index]->addr);
916                 portsc = t1;
917                 t1 = xhci_port_state_to_neutral(t1);
918                 t2 = t1 & ~PORT_WAKE_BITS;
919                 if (t1 != t2) {
920                         writel(t2, ports[port_index]->addr);
921                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922                                  xhci->usb2_rhub.hcd->self.busnum,
923                                  port_index + 1, portsc, t2);
924                 }
925         }
926         spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931         struct xhci_port        **ports;
932         int                     port_index;
933         u32                     status;
934         u32                     portsc;
935
936         status = readl(&xhci->op_regs->status);
937         if (status & STS_EINT)
938                 return true;
939         /*
940          * Checking STS_EINT is not enough as there is a lag between a change
941          * bit being set and the Port Status Change Event that it generated
942          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943          */
944
945         port_index = xhci->usb2_rhub.num_ports;
946         ports = xhci->usb2_rhub.ports;
947         while (port_index--) {
948                 portsc = readl(ports[port_index]->addr);
949                 if (portsc & PORT_CHANGE_MASK ||
950                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951                         return true;
952         }
953         port_index = xhci->usb3_rhub.num_ports;
954         ports = xhci->usb3_rhub.ports;
955         while (port_index--) {
956                 portsc = readl(ports[port_index]->addr);
957                 if (portsc & PORT_CHANGE_MASK ||
958                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959                         return true;
960         }
961         return false;
962 }
963
964 /*
965  * Stop HC (not bus-specific)
966  *
967  * This is called when the machine transition into S3/S4 mode.
968  *
969  */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972         int                     rc = 0;
973         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
974         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
975         u32                     command;
976         u32                     res;
977
978         if (!hcd->state)
979                 return 0;
980
981         if (hcd->state != HC_STATE_SUSPENDED ||
982                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983                 return -EINVAL;
984
985         /* Clear root port wake on bits if wakeup not allowed. */
986         if (!do_wakeup)
987                 xhci_disable_port_wake_on_bits(xhci);
988
989         if (!HCD_HW_ACCESSIBLE(hcd))
990                 return 0;
991
992         xhci_dbc_suspend(xhci);
993
994         /* Don't poll the roothubs on bus suspend. */
995         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
996         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997         del_timer_sync(&hcd->rh_timer);
998         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999         del_timer_sync(&xhci->shared_hcd->rh_timer);
1000
1001         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002                 usleep_range(1000, 1500);
1003
1004         spin_lock_irq(&xhci->lock);
1005         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007         /* step 1: stop endpoint */
1008         /* skipped assuming that port suspend has done */
1009
1010         /* step 2: clear Run/Stop bit */
1011         command = readl(&xhci->op_regs->command);
1012         command &= ~CMD_RUN;
1013         writel(command, &xhci->op_regs->command);
1014
1015         /* Some chips from Fresco Logic need an extraordinary delay */
1016         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017
1018         if (xhci_handshake(&xhci->op_regs->status,
1019                       STS_HALT, STS_HALT, delay)) {
1020                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021                 spin_unlock_irq(&xhci->lock);
1022                 return -ETIMEDOUT;
1023         }
1024         xhci_clear_command_ring(xhci);
1025
1026         /* step 3: save registers */
1027         xhci_save_registers(xhci);
1028
1029         /* step 4: set CSS flag */
1030         command = readl(&xhci->op_regs->command);
1031         command |= CMD_CSS;
1032         writel(command, &xhci->op_regs->command);
1033         xhci->broken_suspend = 0;
1034         if (xhci_handshake(&xhci->op_regs->status,
1035                                 STS_SAVE, 0, 20 * 1000)) {
1036         /*
1037          * AMD SNPS xHC 3.0 occasionally does not clear the
1038          * SSS bit of USBSTS and when driver tries to poll
1039          * to see if the xHC clears BIT(8) which never happens
1040          * and driver assumes that controller is not responding
1041          * and times out. To workaround this, its good to check
1042          * if SRE and HCE bits are not set (as per xhci
1043          * Section 5.4.2) and bypass the timeout.
1044          */
1045                 res = readl(&xhci->op_regs->status);
1046                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047                     (((res & STS_SRE) == 0) &&
1048                                 ((res & STS_HCE) == 0))) {
1049                         xhci->broken_suspend = 1;
1050                 } else {
1051                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052                         spin_unlock_irq(&xhci->lock);
1053                         return -ETIMEDOUT;
1054                 }
1055         }
1056         spin_unlock_irq(&xhci->lock);
1057
1058         /*
1059          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060          * is about to be suspended.
1061          */
1062         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063                         (!(xhci_all_ports_seen_u0(xhci)))) {
1064                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1065                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066                                 "%s: compliance mode recovery timer deleted",
1067                                 __func__);
1068         }
1069
1070         /* step 5: remove core well power */
1071         /* synchronize irq when using MSI-X */
1072         xhci_msix_sync_irqs(xhci);
1073
1074         return rc;
1075 }
1076 EXPORT_SYMBOL_GPL(xhci_suspend);
1077
1078 /*
1079  * start xHC (not bus-specific)
1080  *
1081  * This is called when the machine transition from S3/S4 mode.
1082  *
1083  */
1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085 {
1086         u32                     command, temp = 0;
1087         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1088         struct usb_hcd          *secondary_hcd;
1089         int                     retval = 0;
1090         bool                    comp_timer_running = false;
1091         bool                    pending_portevent = false;
1092
1093         if (!hcd->state)
1094                 return 0;
1095
1096         /* Wait a bit if either of the roothubs need to settle from the
1097          * transition into bus suspend.
1098          */
1099
1100         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1101             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1102                 msleep(100);
1103
1104         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1105         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1106
1107         spin_lock_irq(&xhci->lock);
1108         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1109                 hibernated = true;
1110
1111         if (!hibernated) {
1112                 /*
1113                  * Some controllers might lose power during suspend, so wait
1114                  * for controller not ready bit to clear, just as in xHC init.
1115                  */
1116                 retval = xhci_handshake(&xhci->op_regs->status,
1117                                         STS_CNR, 0, 10 * 1000 * 1000);
1118                 if (retval) {
1119                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1120                                   retval);
1121                         spin_unlock_irq(&xhci->lock);
1122                         return retval;
1123                 }
1124                 /* step 1: restore register */
1125                 xhci_restore_registers(xhci);
1126                 /* step 2: initialize command ring buffer */
1127                 xhci_set_cmd_ring_deq(xhci);
1128                 /* step 3: restore state and start state*/
1129                 /* step 3: set CRS flag */
1130                 command = readl(&xhci->op_regs->command);
1131                 command |= CMD_CRS;
1132                 writel(command, &xhci->op_regs->command);
1133                 /*
1134                  * Some controllers take up to 55+ ms to complete the controller
1135                  * restore so setting the timeout to 100ms. Xhci specification
1136                  * doesn't mention any timeout value.
1137                  */
1138                 if (xhci_handshake(&xhci->op_regs->status,
1139                               STS_RESTORE, 0, 100 * 1000)) {
1140                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1141                         spin_unlock_irq(&xhci->lock);
1142                         return -ETIMEDOUT;
1143                 }
1144                 temp = readl(&xhci->op_regs->status);
1145         }
1146
1147         /* If restore operation fails, re-initialize the HC during resume */
1148         if ((temp & STS_SRE) || hibernated) {
1149
1150                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1151                                 !(xhci_all_ports_seen_u0(xhci))) {
1152                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1153                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1154                                 "Compliance Mode Recovery Timer deleted!");
1155                 }
1156
1157                 /* Let the USB core know _both_ roothubs lost power. */
1158                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1159                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1160
1161                 xhci_dbg(xhci, "Stop HCD\n");
1162                 xhci_halt(xhci);
1163                 xhci_zero_64b_regs(xhci);
1164                 retval = xhci_reset(xhci);
1165                 spin_unlock_irq(&xhci->lock);
1166                 if (retval)
1167                         return retval;
1168                 xhci_cleanup_msix(xhci);
1169
1170                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1171                 temp = readl(&xhci->op_regs->status);
1172                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1173                 temp = readl(&xhci->ir_set->irq_pending);
1174                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1175
1176                 xhci_dbg(xhci, "cleaning up memory\n");
1177                 xhci_mem_cleanup(xhci);
1178                 xhci_debugfs_exit(xhci);
1179                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1180                             readl(&xhci->op_regs->status));
1181
1182                 /* USB core calls the PCI reinit and start functions twice:
1183                  * first with the primary HCD, and then with the secondary HCD.
1184                  * If we don't do the same, the host will never be started.
1185                  */
1186                 if (!usb_hcd_is_primary_hcd(hcd))
1187                         secondary_hcd = hcd;
1188                 else
1189                         secondary_hcd = xhci->shared_hcd;
1190
1191                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1192                 retval = xhci_init(hcd->primary_hcd);
1193                 if (retval)
1194                         return retval;
1195                 comp_timer_running = true;
1196
1197                 xhci_dbg(xhci, "Start the primary HCD\n");
1198                 retval = xhci_run(hcd->primary_hcd);
1199                 if (!retval) {
1200                         xhci_dbg(xhci, "Start the secondary HCD\n");
1201                         retval = xhci_run(secondary_hcd);
1202                 }
1203                 hcd->state = HC_STATE_SUSPENDED;
1204                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1205                 goto done;
1206         }
1207
1208         /* step 4: set Run/Stop bit */
1209         command = readl(&xhci->op_regs->command);
1210         command |= CMD_RUN;
1211         writel(command, &xhci->op_regs->command);
1212         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1213                   0, 250 * 1000);
1214
1215         /* step 5: walk topology and initialize portsc,
1216          * portpmsc and portli
1217          */
1218         /* this is done in bus_resume */
1219
1220         /* step 6: restart each of the previously
1221          * Running endpoints by ringing their doorbells
1222          */
1223
1224         spin_unlock_irq(&xhci->lock);
1225
1226         xhci_dbc_resume(xhci);
1227
1228  done:
1229         if (retval == 0) {
1230                 /*
1231                  * Resume roothubs only if there are pending events.
1232                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1233                  * the first wake signalling failed, give it that chance.
1234                  */
1235                 pending_portevent = xhci_pending_portevent(xhci);
1236                 if (!pending_portevent) {
1237                         msleep(120);
1238                         pending_portevent = xhci_pending_portevent(xhci);
1239                 }
1240
1241                 if (pending_portevent) {
1242                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1243                         usb_hcd_resume_root_hub(hcd);
1244                 }
1245         }
1246         /*
1247          * If system is subject to the Quirk, Compliance Mode Timer needs to
1248          * be re-initialized Always after a system resume. Ports are subject
1249          * to suffer the Compliance Mode issue again. It doesn't matter if
1250          * ports have entered previously to U0 before system's suspension.
1251          */
1252         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1253                 compliance_mode_recovery_timer_init(xhci);
1254
1255         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1256                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1257
1258         /* Re-enable port polling. */
1259         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1260         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1261         usb_hcd_poll_rh_status(xhci->shared_hcd);
1262         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1263         usb_hcd_poll_rh_status(hcd);
1264
1265         return retval;
1266 }
1267 EXPORT_SYMBOL_GPL(xhci_resume);
1268 #endif  /* CONFIG_PM */
1269
1270 /*-------------------------------------------------------------------------*/
1271
1272 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1273 {
1274         void *temp;
1275         int ret = 0;
1276         unsigned int buf_len;
1277         enum dma_data_direction dir;
1278
1279         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1280         buf_len = urb->transfer_buffer_length;
1281
1282         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1283                             dev_to_node(hcd->self.sysdev));
1284
1285         if (usb_urb_dir_out(urb))
1286                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1287                                    temp, buf_len, 0);
1288
1289         urb->transfer_buffer = temp;
1290         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1291                                            urb->transfer_buffer,
1292                                            urb->transfer_buffer_length,
1293                                            dir);
1294
1295         if (dma_mapping_error(hcd->self.sysdev,
1296                               urb->transfer_dma)) {
1297                 ret = -EAGAIN;
1298                 kfree(temp);
1299         } else {
1300                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1301         }
1302
1303         return ret;
1304 }
1305
1306 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1307                                           struct urb *urb)
1308 {
1309         bool ret = false;
1310         unsigned int i;
1311         unsigned int len = 0;
1312         unsigned int trb_size;
1313         unsigned int max_pkt;
1314         struct scatterlist *sg;
1315         struct scatterlist *tail_sg;
1316
1317         tail_sg = urb->sg;
1318         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1319
1320         if (!urb->num_sgs)
1321                 return ret;
1322
1323         if (urb->dev->speed >= USB_SPEED_SUPER)
1324                 trb_size = TRB_CACHE_SIZE_SS;
1325         else
1326                 trb_size = TRB_CACHE_SIZE_HS;
1327
1328         if (urb->transfer_buffer_length != 0 &&
1329             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1330                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1331                         len = len + sg->length;
1332                         if (i > trb_size - 2) {
1333                                 len = len - tail_sg->length;
1334                                 if (len < max_pkt) {
1335                                         ret = true;
1336                                         break;
1337                                 }
1338
1339                                 tail_sg = sg_next(tail_sg);
1340                         }
1341                 }
1342         }
1343         return ret;
1344 }
1345
1346 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1347 {
1348         unsigned int len;
1349         unsigned int buf_len;
1350         enum dma_data_direction dir;
1351
1352         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1353
1354         buf_len = urb->transfer_buffer_length;
1355
1356         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1357             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1358                 dma_unmap_single(hcd->self.sysdev,
1359                                  urb->transfer_dma,
1360                                  urb->transfer_buffer_length,
1361                                  dir);
1362
1363         if (usb_urb_dir_in(urb))
1364                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1365                                            urb->transfer_buffer,
1366                                            buf_len,
1367                                            0);
1368
1369         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1370         kfree(urb->transfer_buffer);
1371         urb->transfer_buffer = NULL;
1372 }
1373
1374 /*
1375  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1376  * we'll copy the actual data into the TRB address register. This is limited to
1377  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1378  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1379  */
1380 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1381                                 gfp_t mem_flags)
1382 {
1383         struct xhci_hcd *xhci;
1384
1385         xhci = hcd_to_xhci(hcd);
1386
1387         if (xhci_urb_suitable_for_idt(urb))
1388                 return 0;
1389
1390         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1391                 if (xhci_urb_temp_buffer_required(hcd, urb))
1392                         return xhci_map_temp_buffer(hcd, urb);
1393         }
1394         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1395 }
1396
1397 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1398 {
1399         struct xhci_hcd *xhci;
1400         bool unmap_temp_buf = false;
1401
1402         xhci = hcd_to_xhci(hcd);
1403
1404         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1405                 unmap_temp_buf = true;
1406
1407         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1408                 xhci_unmap_temp_buf(hcd, urb);
1409         else
1410                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1411 }
1412
1413 /**
1414  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1415  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1416  * value to right shift 1 for the bitmask.
1417  *
1418  * Index  = (epnum * 2) + direction - 1,
1419  * where direction = 0 for OUT, 1 for IN.
1420  * For control endpoints, the IN index is used (OUT index is unused), so
1421  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1422  */
1423 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1424 {
1425         unsigned int index;
1426         if (usb_endpoint_xfer_control(desc))
1427                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1428         else
1429                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1430                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1431         return index;
1432 }
1433
1434 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1435  * address from the XHCI endpoint index.
1436  */
1437 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1438 {
1439         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1440         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1441         return direction | number;
1442 }
1443
1444 /* Find the flag for this endpoint (for use in the control context).  Use the
1445  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1446  * bit 1, etc.
1447  */
1448 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1449 {
1450         return 1 << (xhci_get_endpoint_index(desc) + 1);
1451 }
1452
1453 /* Compute the last valid endpoint context index.  Basically, this is the
1454  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1455  * we find the most significant bit set in the added contexts flags.
1456  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1457  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1458  */
1459 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1460 {
1461         return fls(added_ctxs) - 1;
1462 }
1463
1464 /* Returns 1 if the arguments are OK;
1465  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1466  */
1467 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1468                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1469                 const char *func) {
1470         struct xhci_hcd *xhci;
1471         struct xhci_virt_device *virt_dev;
1472
1473         if (!hcd || (check_ep && !ep) || !udev) {
1474                 pr_debug("xHCI %s called with invalid args\n", func);
1475                 return -EINVAL;
1476         }
1477         if (!udev->parent) {
1478                 pr_debug("xHCI %s called for root hub\n", func);
1479                 return 0;
1480         }
1481
1482         xhci = hcd_to_xhci(hcd);
1483         if (check_virt_dev) {
1484                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1485                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1486                                         func);
1487                         return -EINVAL;
1488                 }
1489
1490                 virt_dev = xhci->devs[udev->slot_id];
1491                 if (virt_dev->udev != udev) {
1492                         xhci_dbg(xhci, "xHCI %s called with udev and "
1493                                           "virt_dev does not match\n", func);
1494                         return -EINVAL;
1495                 }
1496         }
1497
1498         if (xhci->xhc_state & XHCI_STATE_HALTED)
1499                 return -ENODEV;
1500
1501         return 1;
1502 }
1503
1504 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1505                 struct usb_device *udev, struct xhci_command *command,
1506                 bool ctx_change, bool must_succeed);
1507
1508 /*
1509  * Full speed devices may have a max packet size greater than 8 bytes, but the
1510  * USB core doesn't know that until it reads the first 8 bytes of the
1511  * descriptor.  If the usb_device's max packet size changes after that point,
1512  * we need to issue an evaluate context command and wait on it.
1513  */
1514 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1515                 unsigned int ep_index, struct urb *urb)
1516 {
1517         struct xhci_container_ctx *out_ctx;
1518         struct xhci_input_control_ctx *ctrl_ctx;
1519         struct xhci_ep_ctx *ep_ctx;
1520         struct xhci_command *command;
1521         int max_packet_size;
1522         int hw_max_packet_size;
1523         int ret = 0;
1524
1525         out_ctx = xhci->devs[slot_id]->out_ctx;
1526         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1527         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1528         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1529         if (hw_max_packet_size != max_packet_size) {
1530                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1531                                 "Max Packet Size for ep 0 changed.");
1532                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1533                                 "Max packet size in usb_device = %d",
1534                                 max_packet_size);
1535                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1536                                 "Max packet size in xHCI HW = %d",
1537                                 hw_max_packet_size);
1538                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1539                                 "Issuing evaluate context command.");
1540
1541                 /* Set up the input context flags for the command */
1542                 /* FIXME: This won't work if a non-default control endpoint
1543                  * changes max packet sizes.
1544                  */
1545
1546                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1547                 if (!command)
1548                         return -ENOMEM;
1549
1550                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1551                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1552                 if (!ctrl_ctx) {
1553                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1554                                         __func__);
1555                         ret = -ENOMEM;
1556                         goto command_cleanup;
1557                 }
1558                 /* Set up the modified control endpoint 0 */
1559                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1560                                 xhci->devs[slot_id]->out_ctx, ep_index);
1561
1562                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1563                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1564                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1565                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1566
1567                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1568                 ctrl_ctx->drop_flags = 0;
1569
1570                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1571                                 true, false);
1572
1573                 /* Clean up the input context for later use by bandwidth
1574                  * functions.
1575                  */
1576                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1577 command_cleanup:
1578                 kfree(command->completion);
1579                 kfree(command);
1580         }
1581         return ret;
1582 }
1583
1584 /*
1585  * non-error returns are a promise to giveback() the urb later
1586  * we drop ownership so next owner (or urb unlink) can get it
1587  */
1588 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1589 {
1590         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1591         unsigned long flags;
1592         int ret = 0;
1593         unsigned int slot_id, ep_index;
1594         unsigned int *ep_state;
1595         struct urb_priv *urb_priv;
1596         int num_tds;
1597
1598         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1599                                         true, true, __func__) <= 0)
1600                 return -EINVAL;
1601
1602         slot_id = urb->dev->slot_id;
1603         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1604         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1605
1606         if (!HCD_HW_ACCESSIBLE(hcd))
1607                 return -ESHUTDOWN;
1608
1609         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1610                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1611                 return -ENODEV;
1612         }
1613
1614         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1615                 num_tds = urb->number_of_packets;
1616         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1617             urb->transfer_buffer_length > 0 &&
1618             urb->transfer_flags & URB_ZERO_PACKET &&
1619             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1620                 num_tds = 2;
1621         else
1622                 num_tds = 1;
1623
1624         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1625         if (!urb_priv)
1626                 return -ENOMEM;
1627
1628         urb_priv->num_tds = num_tds;
1629         urb_priv->num_tds_done = 0;
1630         urb->hcpriv = urb_priv;
1631
1632         trace_xhci_urb_enqueue(urb);
1633
1634         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1635                 /* Check to see if the max packet size for the default control
1636                  * endpoint changed during FS device enumeration
1637                  */
1638                 if (urb->dev->speed == USB_SPEED_FULL) {
1639                         ret = xhci_check_maxpacket(xhci, slot_id,
1640                                         ep_index, urb);
1641                         if (ret < 0) {
1642                                 xhci_urb_free_priv(urb_priv);
1643                                 urb->hcpriv = NULL;
1644                                 return ret;
1645                         }
1646                 }
1647         }
1648
1649         spin_lock_irqsave(&xhci->lock, flags);
1650
1651         if (xhci->xhc_state & XHCI_STATE_DYING) {
1652                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1653                          urb->ep->desc.bEndpointAddress, urb);
1654                 ret = -ESHUTDOWN;
1655                 goto free_priv;
1656         }
1657         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1658                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1659                           *ep_state);
1660                 ret = -EINVAL;
1661                 goto free_priv;
1662         }
1663         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1664                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1665                 ret = -EINVAL;
1666                 goto free_priv;
1667         }
1668
1669         switch (usb_endpoint_type(&urb->ep->desc)) {
1670
1671         case USB_ENDPOINT_XFER_CONTROL:
1672                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1673                                          slot_id, ep_index);
1674                 break;
1675         case USB_ENDPOINT_XFER_BULK:
1676                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1677                                          slot_id, ep_index);
1678                 break;
1679         case USB_ENDPOINT_XFER_INT:
1680                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1681                                 slot_id, ep_index);
1682                 break;
1683         case USB_ENDPOINT_XFER_ISOC:
1684                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1685                                 slot_id, ep_index);
1686         }
1687
1688         if (ret) {
1689 free_priv:
1690                 xhci_urb_free_priv(urb_priv);
1691                 urb->hcpriv = NULL;
1692         }
1693         spin_unlock_irqrestore(&xhci->lock, flags);
1694         return ret;
1695 }
1696
1697 /*
1698  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1699  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1700  * should pick up where it left off in the TD, unless a Set Transfer Ring
1701  * Dequeue Pointer is issued.
1702  *
1703  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1704  * the ring.  Since the ring is a contiguous structure, they can't be physically
1705  * removed.  Instead, there are two options:
1706  *
1707  *  1) If the HC is in the middle of processing the URB to be canceled, we
1708  *     simply move the ring's dequeue pointer past those TRBs using the Set
1709  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1710  *     when drivers timeout on the last submitted URB and attempt to cancel.
1711  *
1712  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1713  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1714  *     HC will need to invalidate the any TRBs it has cached after the stop
1715  *     endpoint command, as noted in the xHCI 0.95 errata.
1716  *
1717  *  3) The TD may have completed by the time the Stop Endpoint Command
1718  *     completes, so software needs to handle that case too.
1719  *
1720  * This function should protect against the TD enqueueing code ringing the
1721  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1722  * It also needs to account for multiple cancellations on happening at the same
1723  * time for the same endpoint.
1724  *
1725  * Note that this function can be called in any context, or so says
1726  * usb_hcd_unlink_urb()
1727  */
1728 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1729 {
1730         unsigned long flags;
1731         int ret, i;
1732         u32 temp;
1733         struct xhci_hcd *xhci;
1734         struct urb_priv *urb_priv;
1735         struct xhci_td *td;
1736         unsigned int ep_index;
1737         struct xhci_ring *ep_ring;
1738         struct xhci_virt_ep *ep;
1739         struct xhci_command *command;
1740         struct xhci_virt_device *vdev;
1741
1742         xhci = hcd_to_xhci(hcd);
1743         spin_lock_irqsave(&xhci->lock, flags);
1744
1745         trace_xhci_urb_dequeue(urb);
1746
1747         /* Make sure the URB hasn't completed or been unlinked already */
1748         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1749         if (ret)
1750                 goto done;
1751
1752         /* give back URB now if we can't queue it for cancel */
1753         vdev = xhci->devs[urb->dev->slot_id];
1754         urb_priv = urb->hcpriv;
1755         if (!vdev || !urb_priv)
1756                 goto err_giveback;
1757
1758         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1759         ep = &vdev->eps[ep_index];
1760         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1761         if (!ep || !ep_ring)
1762                 goto err_giveback;
1763
1764         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1765         temp = readl(&xhci->op_regs->status);
1766         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1767                 xhci_hc_died(xhci);
1768                 goto done;
1769         }
1770
1771         /*
1772          * check ring is not re-allocated since URB was enqueued. If it is, then
1773          * make sure none of the ring related pointers in this URB private data
1774          * are touched, such as td_list, otherwise we overwrite freed data
1775          */
1776         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1777                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1778                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1779                         td = &urb_priv->td[i];
1780                         if (!list_empty(&td->cancelled_td_list))
1781                                 list_del_init(&td->cancelled_td_list);
1782                 }
1783                 goto err_giveback;
1784         }
1785
1786         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1787                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1788                                 "HC halted, freeing TD manually.");
1789                 for (i = urb_priv->num_tds_done;
1790                      i < urb_priv->num_tds;
1791                      i++) {
1792                         td = &urb_priv->td[i];
1793                         if (!list_empty(&td->td_list))
1794                                 list_del_init(&td->td_list);
1795                         if (!list_empty(&td->cancelled_td_list))
1796                                 list_del_init(&td->cancelled_td_list);
1797                 }
1798                 goto err_giveback;
1799         }
1800
1801         i = urb_priv->num_tds_done;
1802         if (i < urb_priv->num_tds)
1803                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1804                                 "Cancel URB %p, dev %s, ep 0x%x, "
1805                                 "starting at offset 0x%llx",
1806                                 urb, urb->dev->devpath,
1807                                 urb->ep->desc.bEndpointAddress,
1808                                 (unsigned long long) xhci_trb_virt_to_dma(
1809                                         urb_priv->td[i].start_seg,
1810                                         urb_priv->td[i].first_trb));
1811
1812         for (; i < urb_priv->num_tds; i++) {
1813                 td = &urb_priv->td[i];
1814                 /* TD can already be on cancelled list if ep halted on it */
1815                 if (list_empty(&td->cancelled_td_list)) {
1816                         td->cancel_status = TD_DIRTY;
1817                         list_add_tail(&td->cancelled_td_list,
1818                                       &ep->cancelled_td_list);
1819                 }
1820         }
1821
1822         /* Queue a stop endpoint command, but only if this is
1823          * the first cancellation to be handled.
1824          */
1825         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1826                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1827                 if (!command) {
1828                         ret = -ENOMEM;
1829                         goto done;
1830                 }
1831                 ep->ep_state |= EP_STOP_CMD_PENDING;
1832                 ep->stop_cmd_timer.expires = jiffies +
1833                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1834                 add_timer(&ep->stop_cmd_timer);
1835                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1836                                          ep_index, 0);
1837                 xhci_ring_cmd_db(xhci);
1838         }
1839 done:
1840         spin_unlock_irqrestore(&xhci->lock, flags);
1841         return ret;
1842
1843 err_giveback:
1844         if (urb_priv)
1845                 xhci_urb_free_priv(urb_priv);
1846         usb_hcd_unlink_urb_from_ep(hcd, urb);
1847         spin_unlock_irqrestore(&xhci->lock, flags);
1848         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1849         return ret;
1850 }
1851
1852 /* Drop an endpoint from a new bandwidth configuration for this device.
1853  * Only one call to this function is allowed per endpoint before
1854  * check_bandwidth() or reset_bandwidth() must be called.
1855  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1856  * add the endpoint to the schedule with possibly new parameters denoted by a
1857  * different endpoint descriptor in usb_host_endpoint.
1858  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1859  * not allowed.
1860  *
1861  * The USB core will not allow URBs to be queued to an endpoint that is being
1862  * disabled, so there's no need for mutual exclusion to protect
1863  * the xhci->devs[slot_id] structure.
1864  */
1865 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1866                 struct usb_host_endpoint *ep)
1867 {
1868         struct xhci_hcd *xhci;
1869         struct xhci_container_ctx *in_ctx, *out_ctx;
1870         struct xhci_input_control_ctx *ctrl_ctx;
1871         unsigned int ep_index;
1872         struct xhci_ep_ctx *ep_ctx;
1873         u32 drop_flag;
1874         u32 new_add_flags, new_drop_flags;
1875         int ret;
1876
1877         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1878         if (ret <= 0)
1879                 return ret;
1880         xhci = hcd_to_xhci(hcd);
1881         if (xhci->xhc_state & XHCI_STATE_DYING)
1882                 return -ENODEV;
1883
1884         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1885         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1886         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1887                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1888                                 __func__, drop_flag);
1889                 return 0;
1890         }
1891
1892         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1893         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1894         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1895         if (!ctrl_ctx) {
1896                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1897                                 __func__);
1898                 return 0;
1899         }
1900
1901         ep_index = xhci_get_endpoint_index(&ep->desc);
1902         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1903         /* If the HC already knows the endpoint is disabled,
1904          * or the HCD has noted it is disabled, ignore this request
1905          */
1906         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1907             le32_to_cpu(ctrl_ctx->drop_flags) &
1908             xhci_get_endpoint_flag(&ep->desc)) {
1909                 /* Do not warn when called after a usb_device_reset */
1910                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1911                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1912                                   __func__, ep);
1913                 return 0;
1914         }
1915
1916         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1917         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1918
1919         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1920         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1921
1922         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1923
1924         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1925
1926         if (xhci->quirks & XHCI_MTK_HOST)
1927                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1928
1929         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1930                         (unsigned int) ep->desc.bEndpointAddress,
1931                         udev->slot_id,
1932                         (unsigned int) new_drop_flags,
1933                         (unsigned int) new_add_flags);
1934         return 0;
1935 }
1936
1937 /* Add an endpoint to a new possible bandwidth configuration for this device.
1938  * Only one call to this function is allowed per endpoint before
1939  * check_bandwidth() or reset_bandwidth() must be called.
1940  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1941  * add the endpoint to the schedule with possibly new parameters denoted by a
1942  * different endpoint descriptor in usb_host_endpoint.
1943  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1944  * not allowed.
1945  *
1946  * The USB core will not allow URBs to be queued to an endpoint until the
1947  * configuration or alt setting is installed in the device, so there's no need
1948  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1949  */
1950 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1951                 struct usb_host_endpoint *ep)
1952 {
1953         struct xhci_hcd *xhci;
1954         struct xhci_container_ctx *in_ctx;
1955         unsigned int ep_index;
1956         struct xhci_input_control_ctx *ctrl_ctx;
1957         struct xhci_ep_ctx *ep_ctx;
1958         u32 added_ctxs;
1959         u32 new_add_flags, new_drop_flags;
1960         struct xhci_virt_device *virt_dev;
1961         int ret = 0;
1962
1963         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1964         if (ret <= 0) {
1965                 /* So we won't queue a reset ep command for a root hub */
1966                 ep->hcpriv = NULL;
1967                 return ret;
1968         }
1969         xhci = hcd_to_xhci(hcd);
1970         if (xhci->xhc_state & XHCI_STATE_DYING)
1971                 return -ENODEV;
1972
1973         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1974         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1975                 /* FIXME when we have to issue an evaluate endpoint command to
1976                  * deal with ep0 max packet size changing once we get the
1977                  * descriptors
1978                  */
1979                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1980                                 __func__, added_ctxs);
1981                 return 0;
1982         }
1983
1984         virt_dev = xhci->devs[udev->slot_id];
1985         in_ctx = virt_dev->in_ctx;
1986         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1987         if (!ctrl_ctx) {
1988                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1989                                 __func__);
1990                 return 0;
1991         }
1992
1993         ep_index = xhci_get_endpoint_index(&ep->desc);
1994         /* If this endpoint is already in use, and the upper layers are trying
1995          * to add it again without dropping it, reject the addition.
1996          */
1997         if (virt_dev->eps[ep_index].ring &&
1998                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1999                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2000                                 "without dropping it.\n",
2001                                 (unsigned int) ep->desc.bEndpointAddress);
2002                 return -EINVAL;
2003         }
2004
2005         /* If the HCD has already noted the endpoint is enabled,
2006          * ignore this request.
2007          */
2008         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2009                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2010                                 __func__, ep);
2011                 return 0;
2012         }
2013
2014         /*
2015          * Configuration and alternate setting changes must be done in
2016          * process context, not interrupt context (or so documenation
2017          * for usb_set_interface() and usb_set_configuration() claim).
2018          */
2019         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2020                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2021                                 __func__, ep->desc.bEndpointAddress);
2022                 return -ENOMEM;
2023         }
2024
2025         if (xhci->quirks & XHCI_MTK_HOST) {
2026                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
2027                 if (ret < 0) {
2028                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
2029                         virt_dev->eps[ep_index].new_ring = NULL;
2030                         return ret;
2031                 }
2032         }
2033
2034         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2035         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2036
2037         /* If xhci_endpoint_disable() was called for this endpoint, but the
2038          * xHC hasn't been notified yet through the check_bandwidth() call,
2039          * this re-adds a new state for the endpoint from the new endpoint
2040          * descriptors.  We must drop and re-add this endpoint, so we leave the
2041          * drop flags alone.
2042          */
2043         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2044
2045         /* Store the usb_device pointer for later use */
2046         ep->hcpriv = udev;
2047
2048         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2049         trace_xhci_add_endpoint(ep_ctx);
2050
2051         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2052                         (unsigned int) ep->desc.bEndpointAddress,
2053                         udev->slot_id,
2054                         (unsigned int) new_drop_flags,
2055                         (unsigned int) new_add_flags);
2056         return 0;
2057 }
2058
2059 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2060 {
2061         struct xhci_input_control_ctx *ctrl_ctx;
2062         struct xhci_ep_ctx *ep_ctx;
2063         struct xhci_slot_ctx *slot_ctx;
2064         int i;
2065
2066         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2067         if (!ctrl_ctx) {
2068                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2069                                 __func__);
2070                 return;
2071         }
2072
2073         /* When a device's add flag and drop flag are zero, any subsequent
2074          * configure endpoint command will leave that endpoint's state
2075          * untouched.  Make sure we don't leave any old state in the input
2076          * endpoint contexts.
2077          */
2078         ctrl_ctx->drop_flags = 0;
2079         ctrl_ctx->add_flags = 0;
2080         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2081         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2082         /* Endpoint 0 is always valid */
2083         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2084         for (i = 1; i < 31; i++) {
2085                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2086                 ep_ctx->ep_info = 0;
2087                 ep_ctx->ep_info2 = 0;
2088                 ep_ctx->deq = 0;
2089                 ep_ctx->tx_info = 0;
2090         }
2091 }
2092
2093 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2094                 struct usb_device *udev, u32 *cmd_status)
2095 {
2096         int ret;
2097
2098         switch (*cmd_status) {
2099         case COMP_COMMAND_ABORTED:
2100         case COMP_COMMAND_RING_STOPPED:
2101                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2102                 ret = -ETIME;
2103                 break;
2104         case COMP_RESOURCE_ERROR:
2105                 dev_warn(&udev->dev,
2106                          "Not enough host controller resources for new device state.\n");
2107                 ret = -ENOMEM;
2108                 /* FIXME: can we allocate more resources for the HC? */
2109                 break;
2110         case COMP_BANDWIDTH_ERROR:
2111         case COMP_SECONDARY_BANDWIDTH_ERROR:
2112                 dev_warn(&udev->dev,
2113                          "Not enough bandwidth for new device state.\n");
2114                 ret = -ENOSPC;
2115                 /* FIXME: can we go back to the old state? */
2116                 break;
2117         case COMP_TRB_ERROR:
2118                 /* the HCD set up something wrong */
2119                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2120                                 "add flag = 1, "
2121                                 "and endpoint is not disabled.\n");
2122                 ret = -EINVAL;
2123                 break;
2124         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2125                 dev_warn(&udev->dev,
2126                          "ERROR: Incompatible device for endpoint configure command.\n");
2127                 ret = -ENODEV;
2128                 break;
2129         case COMP_SUCCESS:
2130                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2131                                 "Successful Endpoint Configure command");
2132                 ret = 0;
2133                 break;
2134         default:
2135                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2136                                 *cmd_status);
2137                 ret = -EINVAL;
2138                 break;
2139         }
2140         return ret;
2141 }
2142
2143 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2144                 struct usb_device *udev, u32 *cmd_status)
2145 {
2146         int ret;
2147
2148         switch (*cmd_status) {
2149         case COMP_COMMAND_ABORTED:
2150         case COMP_COMMAND_RING_STOPPED:
2151                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2152                 ret = -ETIME;
2153                 break;
2154         case COMP_PARAMETER_ERROR:
2155                 dev_warn(&udev->dev,
2156                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2157                 ret = -EINVAL;
2158                 break;
2159         case COMP_SLOT_NOT_ENABLED_ERROR:
2160                 dev_warn(&udev->dev,
2161                         "WARN: slot not enabled for evaluate context command.\n");
2162                 ret = -EINVAL;
2163                 break;
2164         case COMP_CONTEXT_STATE_ERROR:
2165                 dev_warn(&udev->dev,
2166                         "WARN: invalid context state for evaluate context command.\n");
2167                 ret = -EINVAL;
2168                 break;
2169         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2170                 dev_warn(&udev->dev,
2171                         "ERROR: Incompatible device for evaluate context command.\n");
2172                 ret = -ENODEV;
2173                 break;
2174         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2175                 /* Max Exit Latency too large error */
2176                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2177                 ret = -EINVAL;
2178                 break;
2179         case COMP_SUCCESS:
2180                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2181                                 "Successful evaluate context command");
2182                 ret = 0;
2183                 break;
2184         default:
2185                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2186                         *cmd_status);
2187                 ret = -EINVAL;
2188                 break;
2189         }
2190         return ret;
2191 }
2192
2193 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2194                 struct xhci_input_control_ctx *ctrl_ctx)
2195 {
2196         u32 valid_add_flags;
2197         u32 valid_drop_flags;
2198
2199         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2200          * (bit 1).  The default control endpoint is added during the Address
2201          * Device command and is never removed until the slot is disabled.
2202          */
2203         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2204         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2205
2206         /* Use hweight32 to count the number of ones in the add flags, or
2207          * number of endpoints added.  Don't count endpoints that are changed
2208          * (both added and dropped).
2209          */
2210         return hweight32(valid_add_flags) -
2211                 hweight32(valid_add_flags & valid_drop_flags);
2212 }
2213
2214 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2215                 struct xhci_input_control_ctx *ctrl_ctx)
2216 {
2217         u32 valid_add_flags;
2218         u32 valid_drop_flags;
2219
2220         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2221         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2222
2223         return hweight32(valid_drop_flags) -
2224                 hweight32(valid_add_flags & valid_drop_flags);
2225 }
2226
2227 /*
2228  * We need to reserve the new number of endpoints before the configure endpoint
2229  * command completes.  We can't subtract the dropped endpoints from the number
2230  * of active endpoints until the command completes because we can oversubscribe
2231  * the host in this case:
2232  *
2233  *  - the first configure endpoint command drops more endpoints than it adds
2234  *  - a second configure endpoint command that adds more endpoints is queued
2235  *  - the first configure endpoint command fails, so the config is unchanged
2236  *  - the second command may succeed, even though there isn't enough resources
2237  *
2238  * Must be called with xhci->lock held.
2239  */
2240 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2241                 struct xhci_input_control_ctx *ctrl_ctx)
2242 {
2243         u32 added_eps;
2244
2245         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2246         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2247                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2248                                 "Not enough ep ctxs: "
2249                                 "%u active, need to add %u, limit is %u.",
2250                                 xhci->num_active_eps, added_eps,
2251                                 xhci->limit_active_eps);
2252                 return -ENOMEM;
2253         }
2254         xhci->num_active_eps += added_eps;
2255         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2256                         "Adding %u ep ctxs, %u now active.", added_eps,
2257                         xhci->num_active_eps);
2258         return 0;
2259 }
2260
2261 /*
2262  * The configure endpoint was failed by the xHC for some other reason, so we
2263  * need to revert the resources that failed configuration would have used.
2264  *
2265  * Must be called with xhci->lock held.
2266  */
2267 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2268                 struct xhci_input_control_ctx *ctrl_ctx)
2269 {
2270         u32 num_failed_eps;
2271
2272         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2273         xhci->num_active_eps -= num_failed_eps;
2274         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2275                         "Removing %u failed ep ctxs, %u now active.",
2276                         num_failed_eps,
2277                         xhci->num_active_eps);
2278 }
2279
2280 /*
2281  * Now that the command has completed, clean up the active endpoint count by
2282  * subtracting out the endpoints that were dropped (but not changed).
2283  *
2284  * Must be called with xhci->lock held.
2285  */
2286 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2287                 struct xhci_input_control_ctx *ctrl_ctx)
2288 {
2289         u32 num_dropped_eps;
2290
2291         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2292         xhci->num_active_eps -= num_dropped_eps;
2293         if (num_dropped_eps)
2294                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2295                                 "Removing %u dropped ep ctxs, %u now active.",
2296                                 num_dropped_eps,
2297                                 xhci->num_active_eps);
2298 }
2299
2300 static unsigned int xhci_get_block_size(struct usb_device *udev)
2301 {
2302         switch (udev->speed) {
2303         case USB_SPEED_LOW:
2304         case USB_SPEED_FULL:
2305                 return FS_BLOCK;
2306         case USB_SPEED_HIGH:
2307                 return HS_BLOCK;
2308         case USB_SPEED_SUPER:
2309         case USB_SPEED_SUPER_PLUS:
2310                 return SS_BLOCK;
2311         case USB_SPEED_UNKNOWN:
2312         case USB_SPEED_WIRELESS:
2313         default:
2314                 /* Should never happen */
2315                 return 1;
2316         }
2317 }
2318
2319 static unsigned int
2320 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2321 {
2322         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2323                 return LS_OVERHEAD;
2324         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2325                 return FS_OVERHEAD;
2326         return HS_OVERHEAD;
2327 }
2328
2329 /* If we are changing a LS/FS device under a HS hub,
2330  * make sure (if we are activating a new TT) that the HS bus has enough
2331  * bandwidth for this new TT.
2332  */
2333 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2334                 struct xhci_virt_device *virt_dev,
2335                 int old_active_eps)
2336 {
2337         struct xhci_interval_bw_table *bw_table;
2338         struct xhci_tt_bw_info *tt_info;
2339
2340         /* Find the bandwidth table for the root port this TT is attached to. */
2341         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2342         tt_info = virt_dev->tt_info;
2343         /* If this TT already had active endpoints, the bandwidth for this TT
2344          * has already been added.  Removing all periodic endpoints (and thus
2345          * making the TT enactive) will only decrease the bandwidth used.
2346          */
2347         if (old_active_eps)
2348                 return 0;
2349         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2350                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2351                         return -ENOMEM;
2352                 return 0;
2353         }
2354         /* Not sure why we would have no new active endpoints...
2355          *
2356          * Maybe because of an Evaluate Context change for a hub update or a
2357          * control endpoint 0 max packet size change?
2358          * FIXME: skip the bandwidth calculation in that case.
2359          */
2360         return 0;
2361 }
2362
2363 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2364                 struct xhci_virt_device *virt_dev)
2365 {
2366         unsigned int bw_reserved;
2367
2368         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2369         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2370                 return -ENOMEM;
2371
2372         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2373         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2374                 return -ENOMEM;
2375
2376         return 0;
2377 }
2378
2379 /*
2380  * This algorithm is a very conservative estimate of the worst-case scheduling
2381  * scenario for any one interval.  The hardware dynamically schedules the
2382  * packets, so we can't tell which microframe could be the limiting factor in
2383  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2384  *
2385  * Obviously, we can't solve an NP complete problem to find the minimum worst
2386  * case scenario.  Instead, we come up with an estimate that is no less than
2387  * the worst case bandwidth used for any one microframe, but may be an
2388  * over-estimate.
2389  *
2390  * We walk the requirements for each endpoint by interval, starting with the
2391  * smallest interval, and place packets in the schedule where there is only one
2392  * possible way to schedule packets for that interval.  In order to simplify
2393  * this algorithm, we record the largest max packet size for each interval, and
2394  * assume all packets will be that size.
2395  *
2396  * For interval 0, we obviously must schedule all packets for each interval.
2397  * The bandwidth for interval 0 is just the amount of data to be transmitted
2398  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2399  * the number of packets).
2400  *
2401  * For interval 1, we have two possible microframes to schedule those packets
2402  * in.  For this algorithm, if we can schedule the same number of packets for
2403  * each possible scheduling opportunity (each microframe), we will do so.  The
2404  * remaining number of packets will be saved to be transmitted in the gaps in
2405  * the next interval's scheduling sequence.
2406  *
2407  * As we move those remaining packets to be scheduled with interval 2 packets,
2408  * we have to double the number of remaining packets to transmit.  This is
2409  * because the intervals are actually powers of 2, and we would be transmitting
2410  * the previous interval's packets twice in this interval.  We also have to be
2411  * sure that when we look at the largest max packet size for this interval, we
2412  * also look at the largest max packet size for the remaining packets and take
2413  * the greater of the two.
2414  *
2415  * The algorithm continues to evenly distribute packets in each scheduling
2416  * opportunity, and push the remaining packets out, until we get to the last
2417  * interval.  Then those packets and their associated overhead are just added
2418  * to the bandwidth used.
2419  */
2420 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2421                 struct xhci_virt_device *virt_dev,
2422                 int old_active_eps)
2423 {
2424         unsigned int bw_reserved;
2425         unsigned int max_bandwidth;
2426         unsigned int bw_used;
2427         unsigned int block_size;
2428         struct xhci_interval_bw_table *bw_table;
2429         unsigned int packet_size = 0;
2430         unsigned int overhead = 0;
2431         unsigned int packets_transmitted = 0;
2432         unsigned int packets_remaining = 0;
2433         unsigned int i;
2434
2435         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2436                 return xhci_check_ss_bw(xhci, virt_dev);
2437
2438         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2439                 max_bandwidth = HS_BW_LIMIT;
2440                 /* Convert percent of bus BW reserved to blocks reserved */
2441                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2442         } else {
2443                 max_bandwidth = FS_BW_LIMIT;
2444                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2445         }
2446
2447         bw_table = virt_dev->bw_table;
2448         /* We need to translate the max packet size and max ESIT payloads into
2449          * the units the hardware uses.
2450          */
2451         block_size = xhci_get_block_size(virt_dev->udev);
2452
2453         /* If we are manipulating a LS/FS device under a HS hub, double check
2454          * that the HS bus has enough bandwidth if we are activing a new TT.
2455          */
2456         if (virt_dev->tt_info) {
2457                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2458                                 "Recalculating BW for rootport %u",
2459                                 virt_dev->real_port);
2460                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2461                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2462                                         "newly activated TT.\n");
2463                         return -ENOMEM;
2464                 }
2465                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2466                                 "Recalculating BW for TT slot %u port %u",
2467                                 virt_dev->tt_info->slot_id,
2468                                 virt_dev->tt_info->ttport);
2469         } else {
2470                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2471                                 "Recalculating BW for rootport %u",
2472                                 virt_dev->real_port);
2473         }
2474
2475         /* Add in how much bandwidth will be used for interval zero, or the
2476          * rounded max ESIT payload + number of packets * largest overhead.
2477          */
2478         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2479                 bw_table->interval_bw[0].num_packets *
2480                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2481
2482         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2483                 unsigned int bw_added;
2484                 unsigned int largest_mps;
2485                 unsigned int interval_overhead;
2486
2487                 /*
2488                  * How many packets could we transmit in this interval?
2489                  * If packets didn't fit in the previous interval, we will need
2490                  * to transmit that many packets twice within this interval.
2491                  */
2492                 packets_remaining = 2 * packets_remaining +
2493                         bw_table->interval_bw[i].num_packets;
2494
2495                 /* Find the largest max packet size of this or the previous
2496                  * interval.
2497                  */
2498                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2499                         largest_mps = 0;
2500                 else {
2501                         struct xhci_virt_ep *virt_ep;
2502                         struct list_head *ep_entry;
2503
2504                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2505                         virt_ep = list_entry(ep_entry,
2506                                         struct xhci_virt_ep, bw_endpoint_list);
2507                         /* Convert to blocks, rounding up */
2508                         largest_mps = DIV_ROUND_UP(
2509                                         virt_ep->bw_info.max_packet_size,
2510                                         block_size);
2511                 }
2512                 if (largest_mps > packet_size)
2513                         packet_size = largest_mps;
2514
2515                 /* Use the larger overhead of this or the previous interval. */
2516                 interval_overhead = xhci_get_largest_overhead(
2517                                 &bw_table->interval_bw[i]);
2518                 if (interval_overhead > overhead)
2519                         overhead = interval_overhead;
2520
2521                 /* How many packets can we evenly distribute across
2522                  * (1 << (i + 1)) possible scheduling opportunities?
2523                  */
2524                 packets_transmitted = packets_remaining >> (i + 1);
2525
2526                 /* Add in the bandwidth used for those scheduled packets */
2527                 bw_added = packets_transmitted * (overhead + packet_size);
2528
2529                 /* How many packets do we have remaining to transmit? */
2530                 packets_remaining = packets_remaining % (1 << (i + 1));
2531
2532                 /* What largest max packet size should those packets have? */
2533                 /* If we've transmitted all packets, don't carry over the
2534                  * largest packet size.
2535                  */
2536                 if (packets_remaining == 0) {
2537                         packet_size = 0;
2538                         overhead = 0;
2539                 } else if (packets_transmitted > 0) {
2540                         /* Otherwise if we do have remaining packets, and we've
2541                          * scheduled some packets in this interval, take the
2542                          * largest max packet size from endpoints with this
2543                          * interval.
2544                          */
2545                         packet_size = largest_mps;
2546                         overhead = interval_overhead;
2547                 }
2548                 /* Otherwise carry over packet_size and overhead from the last
2549                  * time we had a remainder.
2550                  */
2551                 bw_used += bw_added;
2552                 if (bw_used > max_bandwidth) {
2553                         xhci_warn(xhci, "Not enough bandwidth. "
2554                                         "Proposed: %u, Max: %u\n",
2555                                 bw_used, max_bandwidth);
2556                         return -ENOMEM;
2557                 }
2558         }
2559         /*
2560          * Ok, we know we have some packets left over after even-handedly
2561          * scheduling interval 15.  We don't know which microframes they will
2562          * fit into, so we over-schedule and say they will be scheduled every
2563          * microframe.
2564          */
2565         if (packets_remaining > 0)
2566                 bw_used += overhead + packet_size;
2567
2568         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2569                 unsigned int port_index = virt_dev->real_port - 1;
2570
2571                 /* OK, we're manipulating a HS device attached to a
2572                  * root port bandwidth domain.  Include the number of active TTs
2573                  * in the bandwidth used.
2574                  */
2575                 bw_used += TT_HS_OVERHEAD *
2576                         xhci->rh_bw[port_index].num_active_tts;
2577         }
2578
2579         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2580                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2581                 "Available: %u " "percent",
2582                 bw_used, max_bandwidth, bw_reserved,
2583                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2584                 max_bandwidth);
2585
2586         bw_used += bw_reserved;
2587         if (bw_used > max_bandwidth) {
2588                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2589                                 bw_used, max_bandwidth);
2590                 return -ENOMEM;
2591         }
2592
2593         bw_table->bw_used = bw_used;
2594         return 0;
2595 }
2596
2597 static bool xhci_is_async_ep(unsigned int ep_type)
2598 {
2599         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2600                                         ep_type != ISOC_IN_EP &&
2601                                         ep_type != INT_IN_EP);
2602 }
2603
2604 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2605 {
2606         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2607 }
2608
2609 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2610 {
2611         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2612
2613         if (ep_bw->ep_interval == 0)
2614                 return SS_OVERHEAD_BURST +
2615                         (ep_bw->mult * ep_bw->num_packets *
2616                                         (SS_OVERHEAD + mps));
2617         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2618                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2619                                 1 << ep_bw->ep_interval);
2620
2621 }
2622
2623 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2624                 struct xhci_bw_info *ep_bw,
2625                 struct xhci_interval_bw_table *bw_table,
2626                 struct usb_device *udev,
2627                 struct xhci_virt_ep *virt_ep,
2628                 struct xhci_tt_bw_info *tt_info)
2629 {
2630         struct xhci_interval_bw *interval_bw;
2631         int normalized_interval;
2632
2633         if (xhci_is_async_ep(ep_bw->type))
2634                 return;
2635
2636         if (udev->speed >= USB_SPEED_SUPER) {
2637                 if (xhci_is_sync_in_ep(ep_bw->type))
2638                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2639                                 xhci_get_ss_bw_consumed(ep_bw);
2640                 else
2641                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2642                                 xhci_get_ss_bw_consumed(ep_bw);
2643                 return;
2644         }
2645
2646         /* SuperSpeed endpoints never get added to intervals in the table, so
2647          * this check is only valid for HS/FS/LS devices.
2648          */
2649         if (list_empty(&virt_ep->bw_endpoint_list))
2650                 return;
2651         /* For LS/FS devices, we need to translate the interval expressed in
2652          * microframes to frames.
2653          */
2654         if (udev->speed == USB_SPEED_HIGH)
2655                 normalized_interval = ep_bw->ep_interval;
2656         else
2657                 normalized_interval = ep_bw->ep_interval - 3;
2658
2659         if (normalized_interval == 0)
2660                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2661         interval_bw = &bw_table->interval_bw[normalized_interval];
2662         interval_bw->num_packets -= ep_bw->num_packets;
2663         switch (udev->speed) {
2664         case USB_SPEED_LOW:
2665                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2666                 break;
2667         case USB_SPEED_FULL:
2668                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2669                 break;
2670         case USB_SPEED_HIGH:
2671                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2672                 break;
2673         case USB_SPEED_SUPER:
2674         case USB_SPEED_SUPER_PLUS:
2675         case USB_SPEED_UNKNOWN:
2676         case USB_SPEED_WIRELESS:
2677                 /* Should never happen because only LS/FS/HS endpoints will get
2678                  * added to the endpoint list.
2679                  */
2680                 return;
2681         }
2682         if (tt_info)
2683                 tt_info->active_eps -= 1;
2684         list_del_init(&virt_ep->bw_endpoint_list);
2685 }
2686
2687 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2688                 struct xhci_bw_info *ep_bw,
2689                 struct xhci_interval_bw_table *bw_table,
2690                 struct usb_device *udev,
2691                 struct xhci_virt_ep *virt_ep,
2692                 struct xhci_tt_bw_info *tt_info)
2693 {
2694         struct xhci_interval_bw *interval_bw;
2695         struct xhci_virt_ep *smaller_ep;
2696         int normalized_interval;
2697
2698         if (xhci_is_async_ep(ep_bw->type))
2699                 return;
2700
2701         if (udev->speed == USB_SPEED_SUPER) {
2702                 if (xhci_is_sync_in_ep(ep_bw->type))
2703                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2704                                 xhci_get_ss_bw_consumed(ep_bw);
2705                 else
2706                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2707                                 xhci_get_ss_bw_consumed(ep_bw);
2708                 return;
2709         }
2710
2711         /* For LS/FS devices, we need to translate the interval expressed in
2712          * microframes to frames.
2713          */
2714         if (udev->speed == USB_SPEED_HIGH)
2715                 normalized_interval = ep_bw->ep_interval;
2716         else
2717                 normalized_interval = ep_bw->ep_interval - 3;
2718
2719         if (normalized_interval == 0)
2720                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2721         interval_bw = &bw_table->interval_bw[normalized_interval];
2722         interval_bw->num_packets += ep_bw->num_packets;
2723         switch (udev->speed) {
2724         case USB_SPEED_LOW:
2725                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2726                 break;
2727         case USB_SPEED_FULL:
2728                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2729                 break;
2730         case USB_SPEED_HIGH:
2731                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2732                 break;
2733         case USB_SPEED_SUPER:
2734         case USB_SPEED_SUPER_PLUS:
2735         case USB_SPEED_UNKNOWN:
2736         case USB_SPEED_WIRELESS:
2737                 /* Should never happen because only LS/FS/HS endpoints will get
2738                  * added to the endpoint list.
2739                  */
2740                 return;
2741         }
2742
2743         if (tt_info)
2744                 tt_info->active_eps += 1;
2745         /* Insert the endpoint into the list, largest max packet size first. */
2746         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2747                         bw_endpoint_list) {
2748                 if (ep_bw->max_packet_size >=
2749                                 smaller_ep->bw_info.max_packet_size) {
2750                         /* Add the new ep before the smaller endpoint */
2751                         list_add_tail(&virt_ep->bw_endpoint_list,
2752                                         &smaller_ep->bw_endpoint_list);
2753                         return;
2754                 }
2755         }
2756         /* Add the new endpoint at the end of the list. */
2757         list_add_tail(&virt_ep->bw_endpoint_list,
2758                         &interval_bw->endpoints);
2759 }
2760
2761 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2762                 struct xhci_virt_device *virt_dev,
2763                 int old_active_eps)
2764 {
2765         struct xhci_root_port_bw_info *rh_bw_info;
2766         if (!virt_dev->tt_info)
2767                 return;
2768
2769         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2770         if (old_active_eps == 0 &&
2771                                 virt_dev->tt_info->active_eps != 0) {
2772                 rh_bw_info->num_active_tts += 1;
2773                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2774         } else if (old_active_eps != 0 &&
2775                                 virt_dev->tt_info->active_eps == 0) {
2776                 rh_bw_info->num_active_tts -= 1;
2777                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2778         }
2779 }
2780
2781 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2782                 struct xhci_virt_device *virt_dev,
2783                 struct xhci_container_ctx *in_ctx)
2784 {
2785         struct xhci_bw_info ep_bw_info[31];
2786         int i;
2787         struct xhci_input_control_ctx *ctrl_ctx;
2788         int old_active_eps = 0;
2789
2790         if (virt_dev->tt_info)
2791                 old_active_eps = virt_dev->tt_info->active_eps;
2792
2793         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2794         if (!ctrl_ctx) {
2795                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2796                                 __func__);
2797                 return -ENOMEM;
2798         }
2799
2800         for (i = 0; i < 31; i++) {
2801                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2802                         continue;
2803
2804                 /* Make a copy of the BW info in case we need to revert this */
2805                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2806                                 sizeof(ep_bw_info[i]));
2807                 /* Drop the endpoint from the interval table if the endpoint is
2808                  * being dropped or changed.
2809                  */
2810                 if (EP_IS_DROPPED(ctrl_ctx, i))
2811                         xhci_drop_ep_from_interval_table(xhci,
2812                                         &virt_dev->eps[i].bw_info,
2813                                         virt_dev->bw_table,
2814                                         virt_dev->udev,
2815                                         &virt_dev->eps[i],
2816                                         virt_dev->tt_info);
2817         }
2818         /* Overwrite the information stored in the endpoints' bw_info */
2819         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2820         for (i = 0; i < 31; i++) {
2821                 /* Add any changed or added endpoints to the interval table */
2822                 if (EP_IS_ADDED(ctrl_ctx, i))
2823                         xhci_add_ep_to_interval_table(xhci,
2824                                         &virt_dev->eps[i].bw_info,
2825                                         virt_dev->bw_table,
2826                                         virt_dev->udev,
2827                                         &virt_dev->eps[i],
2828                                         virt_dev->tt_info);
2829         }
2830
2831         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2832                 /* Ok, this fits in the bandwidth we have.
2833                  * Update the number of active TTs.
2834                  */
2835                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2836                 return 0;
2837         }
2838
2839         /* We don't have enough bandwidth for this, revert the stored info. */
2840         for (i = 0; i < 31; i++) {
2841                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2842                         continue;
2843
2844                 /* Drop the new copies of any added or changed endpoints from
2845                  * the interval table.
2846                  */
2847                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2848                         xhci_drop_ep_from_interval_table(xhci,
2849                                         &virt_dev->eps[i].bw_info,
2850                                         virt_dev->bw_table,
2851                                         virt_dev->udev,
2852                                         &virt_dev->eps[i],
2853                                         virt_dev->tt_info);
2854                 }
2855                 /* Revert the endpoint back to its old information */
2856                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2857                                 sizeof(ep_bw_info[i]));
2858                 /* Add any changed or dropped endpoints back into the table */
2859                 if (EP_IS_DROPPED(ctrl_ctx, i))
2860                         xhci_add_ep_to_interval_table(xhci,
2861                                         &virt_dev->eps[i].bw_info,
2862                                         virt_dev->bw_table,
2863                                         virt_dev->udev,
2864                                         &virt_dev->eps[i],
2865                                         virt_dev->tt_info);
2866         }
2867         return -ENOMEM;
2868 }
2869
2870
2871 /* Issue a configure endpoint command or evaluate context command
2872  * and wait for it to finish.
2873  */
2874 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2875                 struct usb_device *udev,
2876                 struct xhci_command *command,
2877                 bool ctx_change, bool must_succeed)
2878 {
2879         int ret;
2880         unsigned long flags;
2881         struct xhci_input_control_ctx *ctrl_ctx;
2882         struct xhci_virt_device *virt_dev;
2883         struct xhci_slot_ctx *slot_ctx;
2884
2885         if (!command)
2886                 return -EINVAL;
2887
2888         spin_lock_irqsave(&xhci->lock, flags);
2889
2890         if (xhci->xhc_state & XHCI_STATE_DYING) {
2891                 spin_unlock_irqrestore(&xhci->lock, flags);
2892                 return -ESHUTDOWN;
2893         }
2894
2895         virt_dev = xhci->devs[udev->slot_id];
2896
2897         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2898         if (!ctrl_ctx) {
2899                 spin_unlock_irqrestore(&xhci->lock, flags);
2900                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2901                                 __func__);
2902                 return -ENOMEM;
2903         }
2904
2905         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2906                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2907                 spin_unlock_irqrestore(&xhci->lock, flags);
2908                 xhci_warn(xhci, "Not enough host resources, "
2909                                 "active endpoint contexts = %u\n",
2910                                 xhci->num_active_eps);
2911                 return -ENOMEM;
2912         }
2913         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2914             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2915                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2916                         xhci_free_host_resources(xhci, ctrl_ctx);
2917                 spin_unlock_irqrestore(&xhci->lock, flags);
2918                 xhci_warn(xhci, "Not enough bandwidth\n");
2919                 return -ENOMEM;
2920         }
2921
2922         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2923
2924         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2925         trace_xhci_configure_endpoint(slot_ctx);
2926
2927         if (!ctx_change)
2928                 ret = xhci_queue_configure_endpoint(xhci, command,
2929                                 command->in_ctx->dma,
2930                                 udev->slot_id, must_succeed);
2931         else
2932                 ret = xhci_queue_evaluate_context(xhci, command,
2933                                 command->in_ctx->dma,
2934                                 udev->slot_id, must_succeed);
2935         if (ret < 0) {
2936                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2937                         xhci_free_host_resources(xhci, ctrl_ctx);
2938                 spin_unlock_irqrestore(&xhci->lock, flags);
2939                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2940                                 "FIXME allocate a new ring segment");
2941                 return -ENOMEM;
2942         }
2943         xhci_ring_cmd_db(xhci);
2944         spin_unlock_irqrestore(&xhci->lock, flags);
2945
2946         /* Wait for the configure endpoint command to complete */
2947         wait_for_completion(command->completion);
2948
2949         if (!ctx_change)
2950                 ret = xhci_configure_endpoint_result(xhci, udev,
2951                                                      &command->status);
2952         else
2953                 ret = xhci_evaluate_context_result(xhci, udev,
2954                                                    &command->status);
2955
2956         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2957                 spin_lock_irqsave(&xhci->lock, flags);
2958                 /* If the command failed, remove the reserved resources.
2959                  * Otherwise, clean up the estimate to include dropped eps.
2960                  */
2961                 if (ret)
2962                         xhci_free_host_resources(xhci, ctrl_ctx);
2963                 else
2964                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2965                 spin_unlock_irqrestore(&xhci->lock, flags);
2966         }
2967         return ret;
2968 }
2969
2970 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2971         struct xhci_virt_device *vdev, int i)
2972 {
2973         struct xhci_virt_ep *ep = &vdev->eps[i];
2974
2975         if (ep->ep_state & EP_HAS_STREAMS) {
2976                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2977                                 xhci_get_endpoint_address(i));
2978                 xhci_free_stream_info(xhci, ep->stream_info);
2979                 ep->stream_info = NULL;
2980                 ep->ep_state &= ~EP_HAS_STREAMS;
2981         }
2982 }
2983
2984 /* Called after one or more calls to xhci_add_endpoint() or
2985  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2986  * to call xhci_reset_bandwidth().
2987  *
2988  * Since we are in the middle of changing either configuration or
2989  * installing a new alt setting, the USB core won't allow URBs to be
2990  * enqueued for any endpoint on the old config or interface.  Nothing
2991  * else should be touching the xhci->devs[slot_id] structure, so we
2992  * don't need to take the xhci->lock for manipulating that.
2993  */
2994 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2995 {
2996         int i;
2997         int ret = 0;
2998         struct xhci_hcd *xhci;
2999         struct xhci_virt_device *virt_dev;
3000         struct xhci_input_control_ctx *ctrl_ctx;
3001         struct xhci_slot_ctx *slot_ctx;
3002         struct xhci_command *command;
3003
3004         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3005         if (ret <= 0)
3006                 return ret;
3007         xhci = hcd_to_xhci(hcd);
3008         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3009                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3010                 return -ENODEV;
3011
3012         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3013         virt_dev = xhci->devs[udev->slot_id];
3014
3015         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3016         if (!command)
3017                 return -ENOMEM;
3018
3019         command->in_ctx = virt_dev->in_ctx;
3020
3021         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3022         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3023         if (!ctrl_ctx) {
3024                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3025                                 __func__);
3026                 ret = -ENOMEM;
3027                 goto command_cleanup;
3028         }
3029         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3030         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3031         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3032
3033         /* Don't issue the command if there's no endpoints to update. */
3034         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3035             ctrl_ctx->drop_flags == 0) {
3036                 ret = 0;
3037                 goto command_cleanup;
3038         }
3039         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3040         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3041         for (i = 31; i >= 1; i--) {
3042                 __le32 le32 = cpu_to_le32(BIT(i));
3043
3044                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3045                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3046                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3047                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3048                         break;
3049                 }
3050         }
3051
3052         ret = xhci_configure_endpoint(xhci, udev, command,
3053                         false, false);
3054         if (ret)
3055                 /* Callee should call reset_bandwidth() */
3056                 goto command_cleanup;
3057
3058         /* Free any rings that were dropped, but not changed. */
3059         for (i = 1; i < 31; i++) {
3060                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3061                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3062                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3063                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3064                 }
3065         }
3066         xhci_zero_in_ctx(xhci, virt_dev);
3067         /*
3068          * Install any rings for completely new endpoints or changed endpoints,
3069          * and free any old rings from changed endpoints.
3070          */
3071         for (i = 1; i < 31; i++) {
3072                 if (!virt_dev->eps[i].new_ring)
3073                         continue;
3074                 /* Only free the old ring if it exists.
3075                  * It may not if this is the first add of an endpoint.
3076                  */
3077                 if (virt_dev->eps[i].ring) {
3078                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3079                 }
3080                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3081                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3082                 virt_dev->eps[i].new_ring = NULL;
3083                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3084         }
3085 command_cleanup:
3086         kfree(command->completion);
3087         kfree(command);
3088
3089         return ret;
3090 }
3091
3092 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3093 {
3094         struct xhci_hcd *xhci;
3095         struct xhci_virt_device *virt_dev;
3096         int i, ret;
3097
3098         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3099         if (ret <= 0)
3100                 return;
3101         xhci = hcd_to_xhci(hcd);
3102
3103         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3104         virt_dev = xhci->devs[udev->slot_id];
3105         /* Free any rings allocated for added endpoints */
3106         for (i = 0; i < 31; i++) {
3107                 if (virt_dev->eps[i].new_ring) {
3108                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3109                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3110                         virt_dev->eps[i].new_ring = NULL;
3111                 }
3112         }
3113         xhci_zero_in_ctx(xhci, virt_dev);
3114 }
3115
3116 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3117                 struct xhci_container_ctx *in_ctx,
3118                 struct xhci_container_ctx *out_ctx,
3119                 struct xhci_input_control_ctx *ctrl_ctx,
3120                 u32 add_flags, u32 drop_flags)
3121 {
3122         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3123         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3124         xhci_slot_copy(xhci, in_ctx, out_ctx);
3125         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3126 }
3127
3128 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3129                                   struct usb_host_endpoint *host_ep)
3130 {
3131         struct xhci_hcd         *xhci;
3132         struct xhci_virt_device *vdev;
3133         struct xhci_virt_ep     *ep;
3134         struct usb_device       *udev;
3135         unsigned long           flags;
3136         unsigned int            ep_index;
3137
3138         xhci = hcd_to_xhci(hcd);
3139 rescan:
3140         spin_lock_irqsave(&xhci->lock, flags);
3141
3142         udev = (struct usb_device *)host_ep->hcpriv;
3143         if (!udev || !udev->slot_id)
3144                 goto done;
3145
3146         vdev = xhci->devs[udev->slot_id];
3147         if (!vdev)
3148                 goto done;
3149
3150         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3151         ep = &vdev->eps[ep_index];
3152         if (!ep)
3153                 goto done;
3154
3155         /* wait for hub_tt_work to finish clearing hub TT */
3156         if (ep->ep_state & EP_CLEARING_TT) {
3157                 spin_unlock_irqrestore(&xhci->lock, flags);
3158                 schedule_timeout_uninterruptible(1);
3159                 goto rescan;
3160         }
3161
3162         if (ep->ep_state)
3163                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3164                          ep->ep_state);
3165 done:
3166         host_ep->hcpriv = NULL;
3167         spin_unlock_irqrestore(&xhci->lock, flags);
3168 }
3169
3170 /*
3171  * Called after usb core issues a clear halt control message.
3172  * The host side of the halt should already be cleared by a reset endpoint
3173  * command issued when the STALL event was received.
3174  *
3175  * The reset endpoint command may only be issued to endpoints in the halted
3176  * state. For software that wishes to reset the data toggle or sequence number
3177  * of an endpoint that isn't in the halted state this function will issue a
3178  * configure endpoint command with the Drop and Add bits set for the target
3179  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3180  */
3181
3182 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3183                 struct usb_host_endpoint *host_ep)
3184 {
3185         struct xhci_hcd *xhci;
3186         struct usb_device *udev;
3187         struct xhci_virt_device *vdev;
3188         struct xhci_virt_ep *ep;
3189         struct xhci_input_control_ctx *ctrl_ctx;
3190         struct xhci_command *stop_cmd, *cfg_cmd;
3191         unsigned int ep_index;
3192         unsigned long flags;
3193         u32 ep_flag;
3194         int err;
3195
3196         xhci = hcd_to_xhci(hcd);
3197         if (!host_ep->hcpriv)
3198                 return;
3199         udev = (struct usb_device *) host_ep->hcpriv;
3200         vdev = xhci->devs[udev->slot_id];
3201
3202         /*
3203          * vdev may be lost due to xHC restore error and re-initialization
3204          * during S3/S4 resume. A new vdev will be allocated later by
3205          * xhci_discover_or_reset_device()
3206          */
3207         if (!udev->slot_id || !vdev)
3208                 return;
3209         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3210         ep = &vdev->eps[ep_index];
3211         if (!ep)
3212                 return;
3213
3214         /* Bail out if toggle is already being cleared by a endpoint reset */
3215         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3216                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3217                 return;
3218         }
3219         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3220         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3221             usb_endpoint_xfer_isoc(&host_ep->desc))
3222                 return;
3223
3224         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3225
3226         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3227                 return;
3228
3229         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3230         if (!stop_cmd)
3231                 return;
3232
3233         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3234         if (!cfg_cmd)
3235                 goto cleanup;
3236
3237         spin_lock_irqsave(&xhci->lock, flags);
3238
3239         /* block queuing new trbs and ringing ep doorbell */
3240         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3241
3242         /*
3243          * Make sure endpoint ring is empty before resetting the toggle/seq.
3244          * Driver is required to synchronously cancel all transfer request.
3245          * Stop the endpoint to force xHC to update the output context
3246          */
3247
3248         if (!list_empty(&ep->ring->td_list)) {
3249                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3250                 spin_unlock_irqrestore(&xhci->lock, flags);
3251                 xhci_free_command(xhci, cfg_cmd);
3252                 goto cleanup;
3253         }
3254
3255         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3256                                         ep_index, 0);
3257         if (err < 0) {
3258                 spin_unlock_irqrestore(&xhci->lock, flags);
3259                 xhci_free_command(xhci, cfg_cmd);
3260                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3261                                 __func__, err);
3262                 goto cleanup;
3263         }
3264
3265         xhci_ring_cmd_db(xhci);
3266         spin_unlock_irqrestore(&xhci->lock, flags);
3267
3268         wait_for_completion(stop_cmd->completion);
3269
3270         spin_lock_irqsave(&xhci->lock, flags);
3271
3272         /* config ep command clears toggle if add and drop ep flags are set */
3273         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3274         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3275                                            ctrl_ctx, ep_flag, ep_flag);
3276         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3277
3278         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3279                                       udev->slot_id, false);
3280         if (err < 0) {
3281                 spin_unlock_irqrestore(&xhci->lock, flags);
3282                 xhci_free_command(xhci, cfg_cmd);
3283                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3284                                 __func__, err);
3285                 goto cleanup;
3286         }
3287
3288         xhci_ring_cmd_db(xhci);
3289         spin_unlock_irqrestore(&xhci->lock, flags);
3290
3291         wait_for_completion(cfg_cmd->completion);
3292
3293         xhci_free_command(xhci, cfg_cmd);
3294 cleanup:
3295         xhci_free_command(xhci, stop_cmd);
3296         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3297                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3298 }
3299
3300 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3301                 struct usb_device *udev, struct usb_host_endpoint *ep,
3302                 unsigned int slot_id)
3303 {
3304         int ret;
3305         unsigned int ep_index;
3306         unsigned int ep_state;
3307
3308         if (!ep)
3309                 return -EINVAL;
3310         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3311         if (ret <= 0)
3312                 return -EINVAL;
3313         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3314                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3315                                 " descriptor for ep 0x%x does not support streams\n",
3316                                 ep->desc.bEndpointAddress);
3317                 return -EINVAL;
3318         }
3319
3320         ep_index = xhci_get_endpoint_index(&ep->desc);
3321         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3322         if (ep_state & EP_HAS_STREAMS ||
3323                         ep_state & EP_GETTING_STREAMS) {
3324                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3325                                 "already has streams set up.\n",
3326                                 ep->desc.bEndpointAddress);
3327                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3328                                 "dynamic stream context array reallocation.\n");
3329                 return -EINVAL;
3330         }
3331         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3332                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3333                                 "endpoint 0x%x; URBs are pending.\n",
3334                                 ep->desc.bEndpointAddress);
3335                 return -EINVAL;
3336         }
3337         return 0;
3338 }
3339
3340 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3341                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3342 {
3343         unsigned int max_streams;
3344
3345         /* The stream context array size must be a power of two */
3346         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3347         /*
3348          * Find out how many primary stream array entries the host controller
3349          * supports.  Later we may use secondary stream arrays (similar to 2nd
3350          * level page entries), but that's an optional feature for xHCI host
3351          * controllers. xHCs must support at least 4 stream IDs.
3352          */
3353         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3354         if (*num_stream_ctxs > max_streams) {
3355                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3356                                 max_streams);
3357                 *num_stream_ctxs = max_streams;
3358                 *num_streams = max_streams;
3359         }
3360 }
3361
3362 /* Returns an error code if one of the endpoint already has streams.
3363  * This does not change any data structures, it only checks and gathers
3364  * information.
3365  */
3366 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3367                 struct usb_device *udev,
3368                 struct usb_host_endpoint **eps, unsigned int num_eps,
3369                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3370 {
3371         unsigned int max_streams;
3372         unsigned int endpoint_flag;
3373         int i;
3374         int ret;
3375
3376         for (i = 0; i < num_eps; i++) {
3377                 ret = xhci_check_streams_endpoint(xhci, udev,
3378                                 eps[i], udev->slot_id);
3379                 if (ret < 0)
3380                         return ret;
3381
3382                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3383                 if (max_streams < (*num_streams - 1)) {
3384                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3385                                         eps[i]->desc.bEndpointAddress,
3386                                         max_streams);
3387                         *num_streams = max_streams+1;
3388                 }
3389
3390                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3391                 if (*changed_ep_bitmask & endpoint_flag)
3392                         return -EINVAL;
3393                 *changed_ep_bitmask |= endpoint_flag;
3394         }
3395         return 0;
3396 }
3397
3398 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3399                 struct usb_device *udev,
3400                 struct usb_host_endpoint **eps, unsigned int num_eps)
3401 {
3402         u32 changed_ep_bitmask = 0;
3403         unsigned int slot_id;
3404         unsigned int ep_index;
3405         unsigned int ep_state;
3406         int i;
3407
3408         slot_id = udev->slot_id;
3409         if (!xhci->devs[slot_id])
3410                 return 0;
3411
3412         for (i = 0; i < num_eps; i++) {
3413                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3414                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3415                 /* Are streams already being freed for the endpoint? */
3416                 if (ep_state & EP_GETTING_NO_STREAMS) {
3417                         xhci_warn(xhci, "WARN Can't disable streams for "
3418                                         "endpoint 0x%x, "
3419                                         "streams are being disabled already\n",
3420                                         eps[i]->desc.bEndpointAddress);
3421                         return 0;
3422                 }
3423                 /* Are there actually any streams to free? */
3424                 if (!(ep_state & EP_HAS_STREAMS) &&
3425                                 !(ep_state & EP_GETTING_STREAMS)) {
3426                         xhci_warn(xhci, "WARN Can't disable streams for "
3427                                         "endpoint 0x%x, "
3428                                         "streams are already disabled!\n",
3429                                         eps[i]->desc.bEndpointAddress);
3430                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3431                                         "with non-streams endpoint\n");
3432                         return 0;
3433                 }
3434                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3435         }
3436         return changed_ep_bitmask;
3437 }
3438
3439 /*
3440  * The USB device drivers use this function (through the HCD interface in USB
3441  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3442  * coordinate mass storage command queueing across multiple endpoints (basically
3443  * a stream ID == a task ID).
3444  *
3445  * Setting up streams involves allocating the same size stream context array
3446  * for each endpoint and issuing a configure endpoint command for all endpoints.
3447  *
3448  * Don't allow the call to succeed if one endpoint only supports one stream
3449  * (which means it doesn't support streams at all).
3450  *
3451  * Drivers may get less stream IDs than they asked for, if the host controller
3452  * hardware or endpoints claim they can't support the number of requested
3453  * stream IDs.
3454  */
3455 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3456                 struct usb_host_endpoint **eps, unsigned int num_eps,
3457                 unsigned int num_streams, gfp_t mem_flags)
3458 {
3459         int i, ret;
3460         struct xhci_hcd *xhci;
3461         struct xhci_virt_device *vdev;
3462         struct xhci_command *config_cmd;
3463         struct xhci_input_control_ctx *ctrl_ctx;
3464         unsigned int ep_index;
3465         unsigned int num_stream_ctxs;
3466         unsigned int max_packet;
3467         unsigned long flags;
3468         u32 changed_ep_bitmask = 0;
3469
3470         if (!eps)
3471                 return -EINVAL;
3472
3473         /* Add one to the number of streams requested to account for
3474          * stream 0 that is reserved for xHCI usage.
3475          */
3476         num_streams += 1;
3477         xhci = hcd_to_xhci(hcd);
3478         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3479                         num_streams);
3480
3481         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3482         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3483                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3484                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3485                 return -ENOSYS;
3486         }
3487
3488         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3489         if (!config_cmd)
3490                 return -ENOMEM;
3491
3492         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3493         if (!ctrl_ctx) {
3494                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3495                                 __func__);
3496                 xhci_free_command(xhci, config_cmd);
3497                 return -ENOMEM;
3498         }
3499
3500         /* Check to make sure all endpoints are not already configured for
3501          * streams.  While we're at it, find the maximum number of streams that
3502          * all the endpoints will support and check for duplicate endpoints.
3503          */
3504         spin_lock_irqsave(&xhci->lock, flags);
3505         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3506                         num_eps, &num_streams, &changed_ep_bitmask);
3507         if (ret < 0) {
3508                 xhci_free_command(xhci, config_cmd);
3509                 spin_unlock_irqrestore(&xhci->lock, flags);
3510                 return ret;
3511         }
3512         if (num_streams <= 1) {
3513                 xhci_warn(xhci, "WARN: endpoints can't handle "
3514                                 "more than one stream.\n");
3515                 xhci_free_command(xhci, config_cmd);
3516                 spin_unlock_irqrestore(&xhci->lock, flags);
3517                 return -EINVAL;
3518         }
3519         vdev = xhci->devs[udev->slot_id];
3520         /* Mark each endpoint as being in transition, so
3521          * xhci_urb_enqueue() will reject all URBs.
3522          */
3523         for (i = 0; i < num_eps; i++) {
3524                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3525                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3526         }
3527         spin_unlock_irqrestore(&xhci->lock, flags);
3528
3529         /* Setup internal data structures and allocate HW data structures for
3530          * streams (but don't install the HW structures in the input context
3531          * until we're sure all memory allocation succeeded).
3532          */
3533         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3534         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3535                         num_stream_ctxs, num_streams);
3536
3537         for (i = 0; i < num_eps; i++) {
3538                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3539                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3540                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3541                                 num_stream_ctxs,
3542                                 num_streams,
3543                                 max_packet, mem_flags);
3544                 if (!vdev->eps[ep_index].stream_info)
3545                         goto cleanup;
3546                 /* Set maxPstreams in endpoint context and update deq ptr to
3547                  * point to stream context array. FIXME
3548                  */
3549         }
3550
3551         /* Set up the input context for a configure endpoint command. */
3552         for (i = 0; i < num_eps; i++) {
3553                 struct xhci_ep_ctx *ep_ctx;
3554
3555                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3556                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3557
3558                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3559                                 vdev->out_ctx, ep_index);
3560                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3561                                 vdev->eps[ep_index].stream_info);
3562         }
3563         /* Tell the HW to drop its old copy of the endpoint context info
3564          * and add the updated copy from the input context.
3565          */
3566         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3567                         vdev->out_ctx, ctrl_ctx,
3568                         changed_ep_bitmask, changed_ep_bitmask);
3569
3570         /* Issue and wait for the configure endpoint command */
3571         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3572                         false, false);
3573
3574         /* xHC rejected the configure endpoint command for some reason, so we
3575          * leave the old ring intact and free our internal streams data
3576          * structure.
3577          */
3578         if (ret < 0)
3579                 goto cleanup;
3580
3581         spin_lock_irqsave(&xhci->lock, flags);
3582         for (i = 0; i < num_eps; i++) {
3583                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3584                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3585                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3586                          udev->slot_id, ep_index);
3587                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3588         }
3589         xhci_free_command(xhci, config_cmd);
3590         spin_unlock_irqrestore(&xhci->lock, flags);
3591
3592         for (i = 0; i < num_eps; i++) {
3593                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3594                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3595         }
3596         /* Subtract 1 for stream 0, which drivers can't use */
3597         return num_streams - 1;
3598
3599 cleanup:
3600         /* If it didn't work, free the streams! */
3601         for (i = 0; i < num_eps; i++) {
3602                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3603                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3604                 vdev->eps[ep_index].stream_info = NULL;
3605                 /* FIXME Unset maxPstreams in endpoint context and
3606                  * update deq ptr to point to normal string ring.
3607                  */
3608                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3609                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3610                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3611         }
3612         xhci_free_command(xhci, config_cmd);
3613         return -ENOMEM;
3614 }
3615
3616 /* Transition the endpoint from using streams to being a "normal" endpoint
3617  * without streams.
3618  *
3619  * Modify the endpoint context state, submit a configure endpoint command,
3620  * and free all endpoint rings for streams if that completes successfully.
3621  */
3622 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3623                 struct usb_host_endpoint **eps, unsigned int num_eps,
3624                 gfp_t mem_flags)
3625 {
3626         int i, ret;
3627         struct xhci_hcd *xhci;
3628         struct xhci_virt_device *vdev;
3629         struct xhci_command *command;
3630         struct xhci_input_control_ctx *ctrl_ctx;
3631         unsigned int ep_index;
3632         unsigned long flags;
3633         u32 changed_ep_bitmask;
3634
3635         xhci = hcd_to_xhci(hcd);
3636         vdev = xhci->devs[udev->slot_id];
3637
3638         /* Set up a configure endpoint command to remove the streams rings */
3639         spin_lock_irqsave(&xhci->lock, flags);
3640         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3641                         udev, eps, num_eps);
3642         if (changed_ep_bitmask == 0) {
3643                 spin_unlock_irqrestore(&xhci->lock, flags);
3644                 return -EINVAL;
3645         }
3646
3647         /* Use the xhci_command structure from the first endpoint.  We may have
3648          * allocated too many, but the driver may call xhci_free_streams() for
3649          * each endpoint it grouped into one call to xhci_alloc_streams().
3650          */
3651         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3652         command = vdev->eps[ep_index].stream_info->free_streams_command;
3653         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3654         if (!ctrl_ctx) {
3655                 spin_unlock_irqrestore(&xhci->lock, flags);
3656                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3657                                 __func__);
3658                 return -EINVAL;
3659         }
3660
3661         for (i = 0; i < num_eps; i++) {
3662                 struct xhci_ep_ctx *ep_ctx;
3663
3664                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3665                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3666                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3667                         EP_GETTING_NO_STREAMS;
3668
3669                 xhci_endpoint_copy(xhci, command->in_ctx,
3670                                 vdev->out_ctx, ep_index);
3671                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3672                                 &vdev->eps[ep_index]);
3673         }
3674         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3675                         vdev->out_ctx, ctrl_ctx,
3676                         changed_ep_bitmask, changed_ep_bitmask);
3677         spin_unlock_irqrestore(&xhci->lock, flags);
3678
3679         /* Issue and wait for the configure endpoint command,
3680          * which must succeed.
3681          */
3682         ret = xhci_configure_endpoint(xhci, udev, command,
3683                         false, true);
3684
3685         /* xHC rejected the configure endpoint command for some reason, so we
3686          * leave the streams rings intact.
3687          */
3688         if (ret < 0)
3689                 return ret;
3690
3691         spin_lock_irqsave(&xhci->lock, flags);
3692         for (i = 0; i < num_eps; i++) {
3693                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3694                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3695                 vdev->eps[ep_index].stream_info = NULL;
3696                 /* FIXME Unset maxPstreams in endpoint context and
3697                  * update deq ptr to point to normal string ring.
3698                  */
3699                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3700                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3701         }
3702         spin_unlock_irqrestore(&xhci->lock, flags);
3703
3704         return 0;
3705 }
3706
3707 /*
3708  * Deletes endpoint resources for endpoints that were active before a Reset
3709  * Device command, or a Disable Slot command.  The Reset Device command leaves
3710  * the control endpoint intact, whereas the Disable Slot command deletes it.
3711  *
3712  * Must be called with xhci->lock held.
3713  */
3714 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3715         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3716 {
3717         int i;
3718         unsigned int num_dropped_eps = 0;
3719         unsigned int drop_flags = 0;
3720
3721         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3722                 if (virt_dev->eps[i].ring) {
3723                         drop_flags |= 1 << i;
3724                         num_dropped_eps++;
3725                 }
3726         }
3727         xhci->num_active_eps -= num_dropped_eps;
3728         if (num_dropped_eps)
3729                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3730                                 "Dropped %u ep ctxs, flags = 0x%x, "
3731                                 "%u now active.",
3732                                 num_dropped_eps, drop_flags,
3733                                 xhci->num_active_eps);
3734 }
3735
3736 /*
3737  * This submits a Reset Device Command, which will set the device state to 0,
3738  * set the device address to 0, and disable all the endpoints except the default
3739  * control endpoint.  The USB core should come back and call
3740  * xhci_address_device(), and then re-set up the configuration.  If this is
3741  * called because of a usb_reset_and_verify_device(), then the old alternate
3742  * settings will be re-installed through the normal bandwidth allocation
3743  * functions.
3744  *
3745  * Wait for the Reset Device command to finish.  Remove all structures
3746  * associated with the endpoints that were disabled.  Clear the input device
3747  * structure? Reset the control endpoint 0 max packet size?
3748  *
3749  * If the virt_dev to be reset does not exist or does not match the udev,
3750  * it means the device is lost, possibly due to the xHC restore error and
3751  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3752  * re-allocate the device.
3753  */
3754 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3755                 struct usb_device *udev)
3756 {
3757         int ret, i;
3758         unsigned long flags;
3759         struct xhci_hcd *xhci;
3760         unsigned int slot_id;
3761         struct xhci_virt_device *virt_dev;
3762         struct xhci_command *reset_device_cmd;
3763         struct xhci_slot_ctx *slot_ctx;
3764         int old_active_eps = 0;
3765
3766         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3767         if (ret <= 0)
3768                 return ret;
3769         xhci = hcd_to_xhci(hcd);
3770         slot_id = udev->slot_id;
3771         virt_dev = xhci->devs[slot_id];
3772         if (!virt_dev) {
3773                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3774                                 "not exist. Re-allocate the device\n", slot_id);
3775                 ret = xhci_alloc_dev(hcd, udev);
3776                 if (ret == 1)
3777                         return 0;
3778                 else
3779                         return -EINVAL;
3780         }
3781
3782         if (virt_dev->tt_info)
3783                 old_active_eps = virt_dev->tt_info->active_eps;
3784
3785         if (virt_dev->udev != udev) {
3786                 /* If the virt_dev and the udev does not match, this virt_dev
3787                  * may belong to another udev.
3788                  * Re-allocate the device.
3789                  */
3790                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3791                                 "not match the udev. Re-allocate the device\n",
3792                                 slot_id);
3793                 ret = xhci_alloc_dev(hcd, udev);
3794                 if (ret == 1)
3795                         return 0;
3796                 else
3797                         return -EINVAL;
3798         }
3799
3800         /* If device is not setup, there is no point in resetting it */
3801         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3802         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3803                                                 SLOT_STATE_DISABLED)
3804                 return 0;
3805
3806         trace_xhci_discover_or_reset_device(slot_ctx);
3807
3808         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3809         /* Allocate the command structure that holds the struct completion.
3810          * Assume we're in process context, since the normal device reset
3811          * process has to wait for the device anyway.  Storage devices are
3812          * reset as part of error handling, so use GFP_NOIO instead of
3813          * GFP_KERNEL.
3814          */
3815         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3816         if (!reset_device_cmd) {
3817                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3818                 return -ENOMEM;
3819         }
3820
3821         /* Attempt to submit the Reset Device command to the command ring */
3822         spin_lock_irqsave(&xhci->lock, flags);
3823
3824         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3825         if (ret) {
3826                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3827                 spin_unlock_irqrestore(&xhci->lock, flags);
3828                 goto command_cleanup;
3829         }
3830         xhci_ring_cmd_db(xhci);
3831         spin_unlock_irqrestore(&xhci->lock, flags);
3832
3833         /* Wait for the Reset Device command to finish */
3834         wait_for_completion(reset_device_cmd->completion);
3835
3836         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3837          * unless we tried to reset a slot ID that wasn't enabled,
3838          * or the device wasn't in the addressed or configured state.
3839          */
3840         ret = reset_device_cmd->status;
3841         switch (ret) {
3842         case COMP_COMMAND_ABORTED:
3843         case COMP_COMMAND_RING_STOPPED:
3844                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3845                 ret = -ETIME;
3846                 goto command_cleanup;
3847         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3848         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3849                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3850                                 slot_id,
3851                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3852                 xhci_dbg(xhci, "Not freeing device rings.\n");
3853                 /* Don't treat this as an error.  May change my mind later. */
3854                 ret = 0;
3855                 goto command_cleanup;
3856         case COMP_SUCCESS:
3857                 xhci_dbg(xhci, "Successful reset device command.\n");
3858                 break;
3859         default:
3860                 if (xhci_is_vendor_info_code(xhci, ret))
3861                         break;
3862                 xhci_warn(xhci, "Unknown completion code %u for "
3863                                 "reset device command.\n", ret);
3864                 ret = -EINVAL;
3865                 goto command_cleanup;
3866         }
3867
3868         /* Free up host controller endpoint resources */
3869         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3870                 spin_lock_irqsave(&xhci->lock, flags);
3871                 /* Don't delete the default control endpoint resources */
3872                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3873                 spin_unlock_irqrestore(&xhci->lock, flags);
3874         }
3875
3876         /* Everything but endpoint 0 is disabled, so free the rings. */
3877         for (i = 1; i < 31; i++) {
3878                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3879
3880                 if (ep->ep_state & EP_HAS_STREAMS) {
3881                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3882                                         xhci_get_endpoint_address(i));
3883                         xhci_free_stream_info(xhci, ep->stream_info);
3884                         ep->stream_info = NULL;
3885                         ep->ep_state &= ~EP_HAS_STREAMS;
3886                 }
3887
3888                 if (ep->ring) {
3889                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3890                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3891                 }
3892                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3893                         xhci_drop_ep_from_interval_table(xhci,
3894                                         &virt_dev->eps[i].bw_info,
3895                                         virt_dev->bw_table,
3896                                         udev,
3897                                         &virt_dev->eps[i],
3898                                         virt_dev->tt_info);
3899                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3900         }
3901         /* If necessary, update the number of active TTs on this root port */
3902         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3903         virt_dev->flags = 0;
3904         ret = 0;
3905
3906 command_cleanup:
3907         xhci_free_command(xhci, reset_device_cmd);
3908         return ret;
3909 }
3910
3911 /*
3912  * At this point, the struct usb_device is about to go away, the device has
3913  * disconnected, and all traffic has been stopped and the endpoints have been
3914  * disabled.  Free any HC data structures associated with that device.
3915  */
3916 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3917 {
3918         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3919         struct xhci_virt_device *virt_dev;
3920         struct xhci_slot_ctx *slot_ctx;
3921         int i, ret;
3922
3923 #ifndef CONFIG_USB_DEFAULT_PERSIST
3924         /*
3925          * We called pm_runtime_get_noresume when the device was attached.
3926          * Decrement the counter here to allow controller to runtime suspend
3927          * if no devices remain.
3928          */
3929         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3930                 pm_runtime_put_noidle(hcd->self.controller);
3931 #endif
3932
3933         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3934         /* If the host is halted due to driver unload, we still need to free the
3935          * device.
3936          */
3937         if (ret <= 0 && ret != -ENODEV)
3938                 return;
3939
3940         virt_dev = xhci->devs[udev->slot_id];
3941         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3942         trace_xhci_free_dev(slot_ctx);
3943
3944         /* Stop any wayward timer functions (which may grab the lock) */
3945         for (i = 0; i < 31; i++) {
3946                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3947                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3948         }
3949         virt_dev->udev = NULL;
3950         ret = xhci_disable_slot(xhci, udev->slot_id);
3951         if (ret)
3952                 xhci_free_virt_device(xhci, udev->slot_id);
3953 }
3954
3955 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3956 {
3957         struct xhci_command *command;
3958         unsigned long flags;
3959         u32 state;
3960         int ret = 0;
3961
3962         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3963         if (!command)
3964                 return -ENOMEM;
3965
3966         xhci_debugfs_remove_slot(xhci, slot_id);
3967
3968         spin_lock_irqsave(&xhci->lock, flags);
3969         /* Don't disable the slot if the host controller is dead. */
3970         state = readl(&xhci->op_regs->status);
3971         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3972                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3973                 spin_unlock_irqrestore(&xhci->lock, flags);
3974                 kfree(command);
3975                 return -ENODEV;
3976         }
3977
3978         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3979                                 slot_id);
3980         if (ret) {
3981                 spin_unlock_irqrestore(&xhci->lock, flags);
3982                 kfree(command);
3983                 return ret;
3984         }
3985         xhci_ring_cmd_db(xhci);
3986         spin_unlock_irqrestore(&xhci->lock, flags);
3987         return ret;
3988 }
3989
3990 /*
3991  * Checks if we have enough host controller resources for the default control
3992  * endpoint.
3993  *
3994  * Must be called with xhci->lock held.
3995  */
3996 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3997 {
3998         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3999                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4000                                 "Not enough ep ctxs: "
4001                                 "%u active, need to add 1, limit is %u.",
4002                                 xhci->num_active_eps, xhci->limit_active_eps);
4003                 return -ENOMEM;
4004         }
4005         xhci->num_active_eps += 1;
4006         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4007                         "Adding 1 ep ctx, %u now active.",
4008                         xhci->num_active_eps);
4009         return 0;
4010 }
4011
4012
4013 /*
4014  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4015  * timed out, or allocating memory failed.  Returns 1 on success.
4016  */
4017 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4018 {
4019         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4020         struct xhci_virt_device *vdev;
4021         struct xhci_slot_ctx *slot_ctx;
4022         unsigned long flags;
4023         int ret, slot_id;
4024         struct xhci_command *command;
4025
4026         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4027         if (!command)
4028                 return 0;
4029
4030         spin_lock_irqsave(&xhci->lock, flags);
4031         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4032         if (ret) {
4033                 spin_unlock_irqrestore(&xhci->lock, flags);
4034                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4035                 xhci_free_command(xhci, command);
4036                 return 0;
4037         }
4038         xhci_ring_cmd_db(xhci);
4039         spin_unlock_irqrestore(&xhci->lock, flags);
4040
4041         wait_for_completion(command->completion);
4042         slot_id = command->slot_id;
4043
4044         if (!slot_id || command->status != COMP_SUCCESS) {
4045                 xhci_err(xhci, "Error while assigning device slot ID\n");
4046                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4047                                 HCS_MAX_SLOTS(
4048                                         readl(&xhci->cap_regs->hcs_params1)));
4049                 xhci_free_command(xhci, command);
4050                 return 0;
4051         }
4052
4053         xhci_free_command(xhci, command);
4054
4055         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4056                 spin_lock_irqsave(&xhci->lock, flags);
4057                 ret = xhci_reserve_host_control_ep_resources(xhci);
4058                 if (ret) {
4059                         spin_unlock_irqrestore(&xhci->lock, flags);
4060                         xhci_warn(xhci, "Not enough host resources, "
4061                                         "active endpoint contexts = %u\n",
4062                                         xhci->num_active_eps);
4063                         goto disable_slot;
4064                 }
4065                 spin_unlock_irqrestore(&xhci->lock, flags);
4066         }
4067         /* Use GFP_NOIO, since this function can be called from
4068          * xhci_discover_or_reset_device(), which may be called as part of
4069          * mass storage driver error handling.
4070          */
4071         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4072                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4073                 goto disable_slot;
4074         }
4075         vdev = xhci->devs[slot_id];
4076         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4077         trace_xhci_alloc_dev(slot_ctx);
4078
4079         udev->slot_id = slot_id;
4080
4081         xhci_debugfs_create_slot(xhci, slot_id);
4082
4083 #ifndef CONFIG_USB_DEFAULT_PERSIST
4084         /*
4085          * If resetting upon resume, we can't put the controller into runtime
4086          * suspend if there is a device attached.
4087          */
4088         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4089                 pm_runtime_get_noresume(hcd->self.controller);
4090 #endif
4091
4092         /* Is this a LS or FS device under a HS hub? */
4093         /* Hub or peripherial? */
4094         return 1;
4095
4096 disable_slot:
4097         ret = xhci_disable_slot(xhci, udev->slot_id);
4098         if (ret)
4099                 xhci_free_virt_device(xhci, udev->slot_id);
4100
4101         return 0;
4102 }
4103
4104 /*
4105  * Issue an Address Device command and optionally send a corresponding
4106  * SetAddress request to the device.
4107  */
4108 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4109                              enum xhci_setup_dev setup)
4110 {
4111         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4112         unsigned long flags;
4113         struct xhci_virt_device *virt_dev;
4114         int ret = 0;
4115         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4116         struct xhci_slot_ctx *slot_ctx;
4117         struct xhci_input_control_ctx *ctrl_ctx;
4118         u64 temp_64;
4119         struct xhci_command *command = NULL;
4120
4121         mutex_lock(&xhci->mutex);
4122
4123         if (xhci->xhc_state) {  /* dying, removing or halted */
4124                 ret = -ESHUTDOWN;
4125                 goto out;
4126         }
4127
4128         if (!udev->slot_id) {
4129                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4130                                 "Bad Slot ID %d", udev->slot_id);
4131                 ret = -EINVAL;
4132                 goto out;
4133         }
4134
4135         virt_dev = xhci->devs[udev->slot_id];
4136
4137         if (WARN_ON(!virt_dev)) {
4138                 /*
4139                  * In plug/unplug torture test with an NEC controller,
4140                  * a zero-dereference was observed once due to virt_dev = 0.
4141                  * Print useful debug rather than crash if it is observed again!
4142                  */
4143                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4144                         udev->slot_id);
4145                 ret = -EINVAL;
4146                 goto out;
4147         }
4148         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4149         trace_xhci_setup_device_slot(slot_ctx);
4150
4151         if (setup == SETUP_CONTEXT_ONLY) {
4152                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4153                     SLOT_STATE_DEFAULT) {
4154                         xhci_dbg(xhci, "Slot already in default state\n");
4155                         goto out;
4156                 }
4157         }
4158
4159         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4160         if (!command) {
4161                 ret = -ENOMEM;
4162                 goto out;
4163         }
4164
4165         command->in_ctx = virt_dev->in_ctx;
4166
4167         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4168         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4169         if (!ctrl_ctx) {
4170                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4171                                 __func__);
4172                 ret = -EINVAL;
4173                 goto out;
4174         }
4175         /*
4176          * If this is the first Set Address since device plug-in or
4177          * virt_device realloaction after a resume with an xHCI power loss,
4178          * then set up the slot context.
4179          */
4180         if (!slot_ctx->dev_info)
4181                 xhci_setup_addressable_virt_dev(xhci, udev);
4182         /* Otherwise, update the control endpoint ring enqueue pointer. */
4183         else
4184                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4185         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4186         ctrl_ctx->drop_flags = 0;
4187
4188         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4189                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4190
4191         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4192         spin_lock_irqsave(&xhci->lock, flags);
4193         trace_xhci_setup_device(virt_dev);
4194         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4195                                         udev->slot_id, setup);
4196         if (ret) {
4197                 spin_unlock_irqrestore(&xhci->lock, flags);
4198                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4199                                 "FIXME: allocate a command ring segment");
4200                 goto out;
4201         }
4202         xhci_ring_cmd_db(xhci);
4203         spin_unlock_irqrestore(&xhci->lock, flags);
4204
4205         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4206         wait_for_completion(command->completion);
4207
4208         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4209          * the SetAddress() "recovery interval" required by USB and aborting the
4210          * command on a timeout.
4211          */
4212         switch (command->status) {
4213         case COMP_COMMAND_ABORTED:
4214         case COMP_COMMAND_RING_STOPPED:
4215                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4216                 ret = -ETIME;
4217                 break;
4218         case COMP_CONTEXT_STATE_ERROR:
4219         case COMP_SLOT_NOT_ENABLED_ERROR:
4220                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4221                          act, udev->slot_id);
4222                 ret = -EINVAL;
4223                 break;
4224         case COMP_USB_TRANSACTION_ERROR:
4225                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4226
4227                 mutex_unlock(&xhci->mutex);
4228                 ret = xhci_disable_slot(xhci, udev->slot_id);
4229                 if (!ret)
4230                         xhci_alloc_dev(hcd, udev);
4231                 kfree(command->completion);
4232                 kfree(command);
4233                 return -EPROTO;
4234         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4235                 dev_warn(&udev->dev,
4236                          "ERROR: Incompatible device for setup %s command\n", act);
4237                 ret = -ENODEV;
4238                 break;
4239         case COMP_SUCCESS:
4240                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4241                                "Successful setup %s command", act);
4242                 break;
4243         default:
4244                 xhci_err(xhci,
4245                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4246                          act, command->status);
4247                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4248                 ret = -EINVAL;
4249                 break;
4250         }
4251         if (ret)
4252                 goto out;
4253         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4254         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4255                         "Op regs DCBAA ptr = %#016llx", temp_64);
4256         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4257                 "Slot ID %d dcbaa entry @%p = %#016llx",
4258                 udev->slot_id,
4259                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4260                 (unsigned long long)
4261                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4262         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4263                         "Output Context DMA address = %#08llx",
4264                         (unsigned long long)virt_dev->out_ctx->dma);
4265         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4266                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4267         /*
4268          * USB core uses address 1 for the roothubs, so we add one to the
4269          * address given back to us by the HC.
4270          */
4271         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4272                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4273         /* Zero the input context control for later use */
4274         ctrl_ctx->add_flags = 0;
4275         ctrl_ctx->drop_flags = 0;
4276         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4277         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4278
4279         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4280                        "Internal device address = %d",
4281                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4282 out:
4283         mutex_unlock(&xhci->mutex);
4284         if (command) {
4285                 kfree(command->completion);
4286                 kfree(command);
4287         }
4288         return ret;
4289 }
4290
4291 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4292 {
4293         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4294 }
4295
4296 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4297 {
4298         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4299 }
4300
4301 /*
4302  * Transfer the port index into real index in the HW port status
4303  * registers. Caculate offset between the port's PORTSC register
4304  * and port status base. Divide the number of per port register
4305  * to get the real index. The raw port number bases 1.
4306  */
4307 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4308 {
4309         struct xhci_hub *rhub;
4310
4311         rhub = xhci_get_rhub(hcd);
4312         return rhub->ports[port1 - 1]->hw_portnum + 1;
4313 }
4314
4315 /*
4316  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4317  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4318  */
4319 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4320                         struct usb_device *udev, u16 max_exit_latency)
4321 {
4322         struct xhci_virt_device *virt_dev;
4323         struct xhci_command *command;
4324         struct xhci_input_control_ctx *ctrl_ctx;
4325         struct xhci_slot_ctx *slot_ctx;
4326         unsigned long flags;
4327         int ret;
4328
4329         spin_lock_irqsave(&xhci->lock, flags);
4330
4331         virt_dev = xhci->devs[udev->slot_id];
4332
4333         /*
4334          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4335          * xHC was re-initialized. Exit latency will be set later after
4336          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4337          */
4338
4339         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4340                 spin_unlock_irqrestore(&xhci->lock, flags);
4341                 return 0;
4342         }
4343
4344         /* Attempt to issue an Evaluate Context command to change the MEL. */
4345         command = xhci->lpm_command;
4346         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4347         if (!ctrl_ctx) {
4348                 spin_unlock_irqrestore(&xhci->lock, flags);
4349                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4350                                 __func__);
4351                 return -ENOMEM;
4352         }
4353
4354         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4355         spin_unlock_irqrestore(&xhci->lock, flags);
4356
4357         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4358         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4359         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4360         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4361         slot_ctx->dev_state = 0;
4362
4363         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4364                         "Set up evaluate context for LPM MEL change.");
4365
4366         /* Issue and wait for the evaluate context command. */
4367         ret = xhci_configure_endpoint(xhci, udev, command,
4368                         true, true);
4369
4370         if (!ret) {
4371                 spin_lock_irqsave(&xhci->lock, flags);
4372                 virt_dev->current_mel = max_exit_latency;
4373                 spin_unlock_irqrestore(&xhci->lock, flags);
4374         }
4375         return ret;
4376 }
4377
4378 #ifdef CONFIG_PM
4379
4380 /* BESL to HIRD Encoding array for USB2 LPM */
4381 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4382         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4383
4384 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4385 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4386                                         struct usb_device *udev)
4387 {
4388         int u2del, besl, besl_host;
4389         int besl_device = 0;
4390         u32 field;
4391
4392         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4393         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4394
4395         if (field & USB_BESL_SUPPORT) {
4396                 for (besl_host = 0; besl_host < 16; besl_host++) {
4397                         if (xhci_besl_encoding[besl_host] >= u2del)
4398                                 break;
4399                 }
4400                 /* Use baseline BESL value as default */
4401                 if (field & USB_BESL_BASELINE_VALID)
4402                         besl_device = USB_GET_BESL_BASELINE(field);
4403                 else if (field & USB_BESL_DEEP_VALID)
4404                         besl_device = USB_GET_BESL_DEEP(field);
4405         } else {
4406                 if (u2del <= 50)
4407                         besl_host = 0;
4408                 else
4409                         besl_host = (u2del - 51) / 75 + 1;
4410         }
4411
4412         besl = besl_host + besl_device;
4413         if (besl > 15)
4414                 besl = 15;
4415
4416         return besl;
4417 }
4418
4419 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4420 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4421 {
4422         u32 field;
4423         int l1;
4424         int besld = 0;
4425         int hirdm = 0;
4426
4427         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4428
4429         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4430         l1 = udev->l1_params.timeout / 256;
4431
4432         /* device has preferred BESLD */
4433         if (field & USB_BESL_DEEP_VALID) {
4434                 besld = USB_GET_BESL_DEEP(field);
4435                 hirdm = 1;
4436         }
4437
4438         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4439 }
4440
4441 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4442                         struct usb_device *udev, int enable)
4443 {
4444         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4445         struct xhci_port **ports;
4446         __le32 __iomem  *pm_addr, *hlpm_addr;
4447         u32             pm_val, hlpm_val, field;
4448         unsigned int    port_num;
4449         unsigned long   flags;
4450         int             hird, exit_latency;
4451         int             ret;
4452
4453         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4454                 return -EPERM;
4455
4456         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4457                         !udev->lpm_capable)
4458                 return -EPERM;
4459
4460         if (!udev->parent || udev->parent->parent ||
4461                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4462                 return -EPERM;
4463
4464         if (udev->usb2_hw_lpm_capable != 1)
4465                 return -EPERM;
4466
4467         spin_lock_irqsave(&xhci->lock, flags);
4468
4469         ports = xhci->usb2_rhub.ports;
4470         port_num = udev->portnum - 1;
4471         pm_addr = ports[port_num]->addr + PORTPMSC;
4472         pm_val = readl(pm_addr);
4473         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4474
4475         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4476                         enable ? "enable" : "disable", port_num + 1);
4477
4478         if (enable) {
4479                 /* Host supports BESL timeout instead of HIRD */
4480                 if (udev->usb2_hw_lpm_besl_capable) {
4481                         /* if device doesn't have a preferred BESL value use a
4482                          * default one which works with mixed HIRD and BESL
4483                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4484                          */
4485                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4486                         if ((field & USB_BESL_SUPPORT) &&
4487                             (field & USB_BESL_BASELINE_VALID))
4488                                 hird = USB_GET_BESL_BASELINE(field);
4489                         else
4490                                 hird = udev->l1_params.besl;
4491
4492                         exit_latency = xhci_besl_encoding[hird];
4493                         spin_unlock_irqrestore(&xhci->lock, flags);
4494
4495                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4496                          * input context for link powermanagement evaluate
4497                          * context commands. It is protected by hcd->bandwidth
4498                          * mutex and is shared by all devices. We need to set
4499                          * the max ext latency in USB 2 BESL LPM as well, so
4500                          * use the same mutex and xhci_change_max_exit_latency()
4501                          */
4502                         mutex_lock(hcd->bandwidth_mutex);
4503                         ret = xhci_change_max_exit_latency(xhci, udev,
4504                                                            exit_latency);
4505                         mutex_unlock(hcd->bandwidth_mutex);
4506
4507                         if (ret < 0)
4508                                 return ret;
4509                         spin_lock_irqsave(&xhci->lock, flags);
4510
4511                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4512                         writel(hlpm_val, hlpm_addr);
4513                         /* flush write */
4514                         readl(hlpm_addr);
4515                 } else {
4516                         hird = xhci_calculate_hird_besl(xhci, udev);
4517                 }
4518
4519                 pm_val &= ~PORT_HIRD_MASK;
4520                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4521                 writel(pm_val, pm_addr);
4522                 pm_val = readl(pm_addr);
4523                 pm_val |= PORT_HLE;
4524                 writel(pm_val, pm_addr);
4525                 /* flush write */
4526                 readl(pm_addr);
4527         } else {
4528                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4529                 writel(pm_val, pm_addr);
4530                 /* flush write */
4531                 readl(pm_addr);
4532                 if (udev->usb2_hw_lpm_besl_capable) {
4533                         spin_unlock_irqrestore(&xhci->lock, flags);
4534                         mutex_lock(hcd->bandwidth_mutex);
4535                         xhci_change_max_exit_latency(xhci, udev, 0);
4536                         mutex_unlock(hcd->bandwidth_mutex);
4537                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4538                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4539                                            100, 10000);
4540                         return 0;
4541                 }
4542         }
4543
4544         spin_unlock_irqrestore(&xhci->lock, flags);
4545         return 0;
4546 }
4547
4548 /* check if a usb2 port supports a given extened capability protocol
4549  * only USB2 ports extended protocol capability values are cached.
4550  * Return 1 if capability is supported
4551  */
4552 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4553                                            unsigned capability)
4554 {
4555         u32 port_offset, port_count;
4556         int i;
4557
4558         for (i = 0; i < xhci->num_ext_caps; i++) {
4559                 if (xhci->ext_caps[i] & capability) {
4560                         /* port offsets starts at 1 */
4561                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4562                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4563                         if (port >= port_offset &&
4564                             port < port_offset + port_count)
4565                                 return 1;
4566                 }
4567         }
4568         return 0;
4569 }
4570
4571 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4572 {
4573         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4574         int             portnum = udev->portnum - 1;
4575
4576         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4577                 return 0;
4578
4579         /* we only support lpm for non-hub device connected to root hub yet */
4580         if (!udev->parent || udev->parent->parent ||
4581                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4582                 return 0;
4583
4584         if (xhci->hw_lpm_support == 1 &&
4585                         xhci_check_usb2_port_capability(
4586                                 xhci, portnum, XHCI_HLC)) {
4587                 udev->usb2_hw_lpm_capable = 1;
4588                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4589                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4590                 if (xhci_check_usb2_port_capability(xhci, portnum,
4591                                         XHCI_BLC))
4592                         udev->usb2_hw_lpm_besl_capable = 1;
4593         }
4594
4595         return 0;
4596 }
4597
4598 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4599
4600 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4601 static unsigned long long xhci_service_interval_to_ns(
4602                 struct usb_endpoint_descriptor *desc)
4603 {
4604         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4605 }
4606
4607 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4608                 enum usb3_link_state state)
4609 {
4610         unsigned long long sel;
4611         unsigned long long pel;
4612         unsigned int max_sel_pel;
4613         char *state_name;
4614
4615         switch (state) {
4616         case USB3_LPM_U1:
4617                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4618                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4619                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4620                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4621                 state_name = "U1";
4622                 break;
4623         case USB3_LPM_U2:
4624                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4625                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4626                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4627                 state_name = "U2";
4628                 break;
4629         default:
4630                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4631                                 __func__);
4632                 return USB3_LPM_DISABLED;
4633         }
4634
4635         if (sel <= max_sel_pel && pel <= max_sel_pel)
4636                 return USB3_LPM_DEVICE_INITIATED;
4637
4638         if (sel > max_sel_pel)
4639                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4640                                 "due to long SEL %llu ms\n",
4641                                 state_name, sel);
4642         else
4643                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4644                                 "due to long PEL %llu ms\n",
4645                                 state_name, pel);
4646         return USB3_LPM_DISABLED;
4647 }
4648
4649 /* The U1 timeout should be the maximum of the following values:
4650  *  - For control endpoints, U1 system exit latency (SEL) * 3
4651  *  - For bulk endpoints, U1 SEL * 5
4652  *  - For interrupt endpoints:
4653  *    - Notification EPs, U1 SEL * 3
4654  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4655  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4656  */
4657 static unsigned long long xhci_calculate_intel_u1_timeout(
4658                 struct usb_device *udev,
4659                 struct usb_endpoint_descriptor *desc)
4660 {
4661         unsigned long long timeout_ns;
4662         int ep_type;
4663         int intr_type;
4664
4665         ep_type = usb_endpoint_type(desc);
4666         switch (ep_type) {
4667         case USB_ENDPOINT_XFER_CONTROL:
4668                 timeout_ns = udev->u1_params.sel * 3;
4669                 break;
4670         case USB_ENDPOINT_XFER_BULK:
4671                 timeout_ns = udev->u1_params.sel * 5;
4672                 break;
4673         case USB_ENDPOINT_XFER_INT:
4674                 intr_type = usb_endpoint_interrupt_type(desc);
4675                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4676                         timeout_ns = udev->u1_params.sel * 3;
4677                         break;
4678                 }
4679                 /* Otherwise the calculation is the same as isoc eps */
4680                 fallthrough;
4681         case USB_ENDPOINT_XFER_ISOC:
4682                 timeout_ns = xhci_service_interval_to_ns(desc);
4683                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4684                 if (timeout_ns < udev->u1_params.sel * 2)
4685                         timeout_ns = udev->u1_params.sel * 2;
4686                 break;
4687         default:
4688                 return 0;
4689         }
4690
4691         return timeout_ns;
4692 }
4693
4694 /* Returns the hub-encoded U1 timeout value. */
4695 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4696                 struct usb_device *udev,
4697                 struct usb_endpoint_descriptor *desc)
4698 {
4699         unsigned long long timeout_ns;
4700
4701         if (xhci->quirks & XHCI_INTEL_HOST)
4702                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4703         else
4704                 timeout_ns = udev->u1_params.sel;
4705
4706         /* Prevent U1 if service interval is shorter than U1 exit latency */
4707         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4708                 if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4709                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4710                         return USB3_LPM_DISABLED;
4711                 }
4712         }
4713
4714         /* The U1 timeout is encoded in 1us intervals.
4715          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4716          */
4717         if (timeout_ns == USB3_LPM_DISABLED)
4718                 timeout_ns = 1;
4719         else
4720                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4721
4722         /* If the necessary timeout value is bigger than what we can set in the
4723          * USB 3.0 hub, we have to disable hub-initiated U1.
4724          */
4725         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4726                 return timeout_ns;
4727         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4728                         "due to long timeout %llu ms\n", timeout_ns);
4729         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4730 }
4731
4732 /* The U2 timeout should be the maximum of:
4733  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4734  *  - largest bInterval of any active periodic endpoint (to avoid going
4735  *    into lower power link states between intervals).
4736  *  - the U2 Exit Latency of the device
4737  */
4738 static unsigned long long xhci_calculate_intel_u2_timeout(
4739                 struct usb_device *udev,
4740                 struct usb_endpoint_descriptor *desc)
4741 {
4742         unsigned long long timeout_ns;
4743         unsigned long long u2_del_ns;
4744
4745         timeout_ns = 10 * 1000 * 1000;
4746
4747         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4748                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4749                 timeout_ns = xhci_service_interval_to_ns(desc);
4750
4751         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4752         if (u2_del_ns > timeout_ns)
4753                 timeout_ns = u2_del_ns;
4754
4755         return timeout_ns;
4756 }
4757
4758 /* Returns the hub-encoded U2 timeout value. */
4759 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4760                 struct usb_device *udev,
4761                 struct usb_endpoint_descriptor *desc)
4762 {
4763         unsigned long long timeout_ns;
4764
4765         if (xhci->quirks & XHCI_INTEL_HOST)
4766                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4767         else
4768                 timeout_ns = udev->u2_params.sel;
4769
4770         /* Prevent U2 if service interval is shorter than U2 exit latency */
4771         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4772                 if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4773                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4774                         return USB3_LPM_DISABLED;
4775                 }
4776         }
4777
4778         /* The U2 timeout is encoded in 256us intervals */
4779         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4780         /* If the necessary timeout value is bigger than what we can set in the
4781          * USB 3.0 hub, we have to disable hub-initiated U2.
4782          */
4783         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4784                 return timeout_ns;
4785         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4786                         "due to long timeout %llu ms\n", timeout_ns);
4787         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4788 }
4789
4790 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4791                 struct usb_device *udev,
4792                 struct usb_endpoint_descriptor *desc,
4793                 enum usb3_link_state state,
4794                 u16 *timeout)
4795 {
4796         if (state == USB3_LPM_U1)
4797                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4798         else if (state == USB3_LPM_U2)
4799                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4800
4801         return USB3_LPM_DISABLED;
4802 }
4803
4804 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4805                 struct usb_device *udev,
4806                 struct usb_endpoint_descriptor *desc,
4807                 enum usb3_link_state state,
4808                 u16 *timeout)
4809 {
4810         u16 alt_timeout;
4811
4812         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4813                 desc, state, timeout);
4814
4815         /* If we found we can't enable hub-initiated LPM, and
4816          * the U1 or U2 exit latency was too high to allow
4817          * device-initiated LPM as well, then we will disable LPM
4818          * for this device, so stop searching any further.
4819          */
4820         if (alt_timeout == USB3_LPM_DISABLED) {
4821                 *timeout = alt_timeout;
4822                 return -E2BIG;
4823         }
4824         if (alt_timeout > *timeout)
4825                 *timeout = alt_timeout;
4826         return 0;
4827 }
4828
4829 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4830                 struct usb_device *udev,
4831                 struct usb_host_interface *alt,
4832                 enum usb3_link_state state,
4833                 u16 *timeout)
4834 {
4835         int j;
4836
4837         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4838                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4839                                         &alt->endpoint[j].desc, state, timeout))
4840                         return -E2BIG;
4841                 continue;
4842         }
4843         return 0;
4844 }
4845
4846 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4847                 enum usb3_link_state state)
4848 {
4849         struct usb_device *parent;
4850         unsigned int num_hubs;
4851
4852         if (state == USB3_LPM_U2)
4853                 return 0;
4854
4855         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4856         for (parent = udev->parent, num_hubs = 0; parent->parent;
4857                         parent = parent->parent)
4858                 num_hubs++;
4859
4860         if (num_hubs < 2)
4861                 return 0;
4862
4863         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4864                         " below second-tier hub.\n");
4865         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4866                         "to decrease power consumption.\n");
4867         return -E2BIG;
4868 }
4869
4870 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4871                 struct usb_device *udev,
4872                 enum usb3_link_state state)
4873 {
4874         if (xhci->quirks & XHCI_INTEL_HOST)
4875                 return xhci_check_intel_tier_policy(udev, state);
4876         else
4877                 return 0;
4878 }
4879
4880 /* Returns the U1 or U2 timeout that should be enabled.
4881  * If the tier check or timeout setting functions return with a non-zero exit
4882  * code, that means the timeout value has been finalized and we shouldn't look
4883  * at any more endpoints.
4884  */
4885 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4886                         struct usb_device *udev, enum usb3_link_state state)
4887 {
4888         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4889         struct usb_host_config *config;
4890         char *state_name;
4891         int i;
4892         u16 timeout = USB3_LPM_DISABLED;
4893
4894         if (state == USB3_LPM_U1)
4895                 state_name = "U1";
4896         else if (state == USB3_LPM_U2)
4897                 state_name = "U2";
4898         else {
4899                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4900                                 state);
4901                 return timeout;
4902         }
4903
4904         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4905                 return timeout;
4906
4907         /* Gather some information about the currently installed configuration
4908          * and alternate interface settings.
4909          */
4910         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4911                         state, &timeout))
4912                 return timeout;
4913
4914         config = udev->actconfig;
4915         if (!config)
4916                 return timeout;
4917
4918         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4919                 struct usb_driver *driver;
4920                 struct usb_interface *intf = config->interface[i];
4921
4922                 if (!intf)
4923                         continue;
4924
4925                 /* Check if any currently bound drivers want hub-initiated LPM
4926                  * disabled.
4927                  */
4928                 if (intf->dev.driver) {
4929                         driver = to_usb_driver(intf->dev.driver);
4930                         if (driver && driver->disable_hub_initiated_lpm) {
4931                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4932                                         state_name, driver->name);
4933                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4934                                                                       state);
4935                                 if (timeout == USB3_LPM_DISABLED)
4936                                         return timeout;
4937                         }
4938                 }
4939
4940                 /* Not sure how this could happen... */
4941                 if (!intf->cur_altsetting)
4942                         continue;
4943
4944                 if (xhci_update_timeout_for_interface(xhci, udev,
4945                                         intf->cur_altsetting,
4946                                         state, &timeout))
4947                         return timeout;
4948         }
4949         return timeout;
4950 }
4951
4952 static int calculate_max_exit_latency(struct usb_device *udev,
4953                 enum usb3_link_state state_changed,
4954                 u16 hub_encoded_timeout)
4955 {
4956         unsigned long long u1_mel_us = 0;
4957         unsigned long long u2_mel_us = 0;
4958         unsigned long long mel_us = 0;
4959         bool disabling_u1;
4960         bool disabling_u2;
4961         bool enabling_u1;
4962         bool enabling_u2;
4963
4964         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4965                         hub_encoded_timeout == USB3_LPM_DISABLED);
4966         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4967                         hub_encoded_timeout == USB3_LPM_DISABLED);
4968
4969         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4970                         hub_encoded_timeout != USB3_LPM_DISABLED);
4971         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4972                         hub_encoded_timeout != USB3_LPM_DISABLED);
4973
4974         /* If U1 was already enabled and we're not disabling it,
4975          * or we're going to enable U1, account for the U1 max exit latency.
4976          */
4977         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4978                         enabling_u1)
4979                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4980         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4981                         enabling_u2)
4982                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4983
4984         if (u1_mel_us > u2_mel_us)
4985                 mel_us = u1_mel_us;
4986         else
4987                 mel_us = u2_mel_us;
4988         /* xHCI host controller max exit latency field is only 16 bits wide. */
4989         if (mel_us > MAX_EXIT) {
4990                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4991                                 "is too big.\n", mel_us);
4992                 return -E2BIG;
4993         }
4994         return mel_us;
4995 }
4996
4997 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4998 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4999                         struct usb_device *udev, enum usb3_link_state state)
5000 {
5001         struct xhci_hcd *xhci;
5002         u16 hub_encoded_timeout;
5003         int mel;
5004         int ret;
5005
5006         xhci = hcd_to_xhci(hcd);
5007         /* The LPM timeout values are pretty host-controller specific, so don't
5008          * enable hub-initiated timeouts unless the vendor has provided
5009          * information about their timeout algorithm.
5010          */
5011         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5012                         !xhci->devs[udev->slot_id])
5013                 return USB3_LPM_DISABLED;
5014
5015         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5016         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5017         if (mel < 0) {
5018                 /* Max Exit Latency is too big, disable LPM. */
5019                 hub_encoded_timeout = USB3_LPM_DISABLED;
5020                 mel = 0;
5021         }
5022
5023         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5024         if (ret)
5025                 return ret;
5026         return hub_encoded_timeout;
5027 }
5028
5029 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5030                         struct usb_device *udev, enum usb3_link_state state)
5031 {
5032         struct xhci_hcd *xhci;
5033         u16 mel;
5034
5035         xhci = hcd_to_xhci(hcd);
5036         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5037                         !xhci->devs[udev->slot_id])
5038                 return 0;
5039
5040         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5041         return xhci_change_max_exit_latency(xhci, udev, mel);
5042 }
5043 #else /* CONFIG_PM */
5044
5045 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5046                                 struct usb_device *udev, int enable)
5047 {
5048         return 0;
5049 }
5050
5051 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5052 {
5053         return 0;
5054 }
5055
5056 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5057                         struct usb_device *udev, enum usb3_link_state state)
5058 {
5059         return USB3_LPM_DISABLED;
5060 }
5061
5062 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5063                         struct usb_device *udev, enum usb3_link_state state)
5064 {
5065         return 0;
5066 }
5067 #endif  /* CONFIG_PM */
5068
5069 /*-------------------------------------------------------------------------*/
5070
5071 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5072  * internal data structures for the device.
5073  */
5074 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5075                         struct usb_tt *tt, gfp_t mem_flags)
5076 {
5077         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5078         struct xhci_virt_device *vdev;
5079         struct xhci_command *config_cmd;
5080         struct xhci_input_control_ctx *ctrl_ctx;
5081         struct xhci_slot_ctx *slot_ctx;
5082         unsigned long flags;
5083         unsigned think_time;
5084         int ret;
5085
5086         /* Ignore root hubs */
5087         if (!hdev->parent)
5088                 return 0;
5089
5090         vdev = xhci->devs[hdev->slot_id];
5091         if (!vdev) {
5092                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5093                 return -EINVAL;
5094         }
5095
5096         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5097         if (!config_cmd)
5098                 return -ENOMEM;
5099
5100         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5101         if (!ctrl_ctx) {
5102                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5103                                 __func__);
5104                 xhci_free_command(xhci, config_cmd);
5105                 return -ENOMEM;
5106         }
5107
5108         spin_lock_irqsave(&xhci->lock, flags);
5109         if (hdev->speed == USB_SPEED_HIGH &&
5110                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5111                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5112                 xhci_free_command(xhci, config_cmd);
5113                 spin_unlock_irqrestore(&xhci->lock, flags);
5114                 return -ENOMEM;
5115         }
5116
5117         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5118         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5119         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5120         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5121         /*
5122          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5123          * but it may be already set to 1 when setup an xHCI virtual
5124          * device, so clear it anyway.
5125          */
5126         if (tt->multi)
5127                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5128         else if (hdev->speed == USB_SPEED_FULL)
5129                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5130
5131         if (xhci->hci_version > 0x95) {
5132                 xhci_dbg(xhci, "xHCI version %x needs hub "
5133                                 "TT think time and number of ports\n",
5134                                 (unsigned int) xhci->hci_version);
5135                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5136                 /* Set TT think time - convert from ns to FS bit times.
5137                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5138                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5139                  *
5140                  * xHCI 1.0: this field shall be 0 if the device is not a
5141                  * High-spped hub.
5142                  */
5143                 think_time = tt->think_time;
5144                 if (think_time != 0)
5145                         think_time = (think_time / 666) - 1;
5146                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5147                         slot_ctx->tt_info |=
5148                                 cpu_to_le32(TT_THINK_TIME(think_time));
5149         } else {
5150                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5151                                 "TT think time or number of ports\n",
5152                                 (unsigned int) xhci->hci_version);
5153         }
5154         slot_ctx->dev_state = 0;
5155         spin_unlock_irqrestore(&xhci->lock, flags);
5156
5157         xhci_dbg(xhci, "Set up %s for hub device.\n",
5158                         (xhci->hci_version > 0x95) ?
5159                         "configure endpoint" : "evaluate context");
5160
5161         /* Issue and wait for the configure endpoint or
5162          * evaluate context command.
5163          */
5164         if (xhci->hci_version > 0x95)
5165                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5166                                 false, false);
5167         else
5168                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5169                                 true, false);
5170
5171         xhci_free_command(xhci, config_cmd);
5172         return ret;
5173 }
5174
5175 static int xhci_get_frame(struct usb_hcd *hcd)
5176 {
5177         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5178         /* EHCI mods by the periodic size.  Why? */
5179         return readl(&xhci->run_regs->microframe_index) >> 3;
5180 }
5181
5182 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5183 {
5184         struct xhci_hcd         *xhci;
5185         /*
5186          * TODO: Check with DWC3 clients for sysdev according to
5187          * quirks
5188          */
5189         struct device           *dev = hcd->self.sysdev;
5190         unsigned int            minor_rev;
5191         int                     retval;
5192
5193         /* Accept arbitrarily long scatter-gather lists */
5194         hcd->self.sg_tablesize = ~0;
5195
5196         /* support to build packet from discontinuous buffers */
5197         hcd->self.no_sg_constraint = 1;
5198
5199         /* XHCI controllers don't stop the ep queue on short packets :| */
5200         hcd->self.no_stop_on_short = 1;
5201
5202         xhci = hcd_to_xhci(hcd);
5203
5204         if (usb_hcd_is_primary_hcd(hcd)) {
5205                 xhci->main_hcd = hcd;
5206                 xhci->usb2_rhub.hcd = hcd;
5207                 /* Mark the first roothub as being USB 2.0.
5208                  * The xHCI driver will register the USB 3.0 roothub.
5209                  */
5210                 hcd->speed = HCD_USB2;
5211                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5212                 /*
5213                  * USB 2.0 roothub under xHCI has an integrated TT,
5214                  * (rate matching hub) as opposed to having an OHCI/UHCI
5215                  * companion controller.
5216                  */
5217                 hcd->has_tt = 1;
5218         } else {
5219                 /*
5220                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5221                  * should return 0x31 for sbrn, or that the minor revision
5222                  * is a two digit BCD containig minor and sub-minor numbers.
5223                  * This was later clarified in xHCI 1.2.
5224                  *
5225                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5226                  * minor revision set to 0x1 instead of 0x10.
5227                  */
5228                 if (xhci->usb3_rhub.min_rev == 0x1)
5229                         minor_rev = 1;
5230                 else
5231                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5232
5233                 switch (minor_rev) {
5234                 case 2:
5235                         hcd->speed = HCD_USB32;
5236                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5237                         hcd->self.root_hub->rx_lanes = 2;
5238                         hcd->self.root_hub->tx_lanes = 2;
5239                         break;
5240                 case 1:
5241                         hcd->speed = HCD_USB31;
5242                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5243                         break;
5244                 }
5245                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5246                           minor_rev,
5247                           minor_rev ? "Enhanced " : "");
5248
5249                 xhci->usb3_rhub.hcd = hcd;
5250                 /* xHCI private pointer was set in xhci_pci_probe for the second
5251                  * registered roothub.
5252                  */
5253                 return 0;
5254         }
5255
5256         mutex_init(&xhci->mutex);
5257         xhci->cap_regs = hcd->regs;
5258         xhci->op_regs = hcd->regs +
5259                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5260         xhci->run_regs = hcd->regs +
5261                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5262         /* Cache read-only capability registers */
5263         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5264         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5265         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5266         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5267         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5268         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5269         if (xhci->hci_version > 0x100)
5270                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5271
5272         xhci->quirks |= quirks;
5273
5274         get_quirks(dev, xhci);
5275
5276         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5277          * success event after a short transfer. This quirk will ignore such
5278          * spurious event.
5279          */
5280         if (xhci->hci_version > 0x96)
5281                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5282
5283         /* Make sure the HC is halted. */
5284         retval = xhci_halt(xhci);
5285         if (retval)
5286                 return retval;
5287
5288         xhci_zero_64b_regs(xhci);
5289
5290         xhci_dbg(xhci, "Resetting HCD\n");
5291         /* Reset the internal HC memory state and registers. */
5292         retval = xhci_reset(xhci);
5293         if (retval)
5294                 return retval;
5295         xhci_dbg(xhci, "Reset complete\n");
5296
5297         /*
5298          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5299          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5300          * address memory pointers actually. So, this driver clears the AC64
5301          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5302          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5303          */
5304         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5305                 xhci->hcc_params &= ~BIT(0);
5306
5307         /* Set dma_mask and coherent_dma_mask to 64-bits,
5308          * if xHC supports 64-bit addressing */
5309         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5310                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5311                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5312                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5313         } else {
5314                 /*
5315                  * This is to avoid error in cases where a 32-bit USB
5316                  * controller is used on a 64-bit capable system.
5317                  */
5318                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5319                 if (retval)
5320                         return retval;
5321                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5322                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5323         }
5324
5325         xhci_dbg(xhci, "Calling HCD init\n");
5326         /* Initialize HCD and host controller data structures. */
5327         retval = xhci_init(hcd);
5328         if (retval)
5329                 return retval;
5330         xhci_dbg(xhci, "Called HCD init\n");
5331
5332         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5333                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5334
5335         return 0;
5336 }
5337 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5338
5339 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5340                 struct usb_host_endpoint *ep)
5341 {
5342         struct xhci_hcd *xhci;
5343         struct usb_device *udev;
5344         unsigned int slot_id;
5345         unsigned int ep_index;
5346         unsigned long flags;
5347
5348         xhci = hcd_to_xhci(hcd);
5349
5350         spin_lock_irqsave(&xhci->lock, flags);
5351         udev = (struct usb_device *)ep->hcpriv;
5352         slot_id = udev->slot_id;
5353         ep_index = xhci_get_endpoint_index(&ep->desc);
5354
5355         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5356         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5357         spin_unlock_irqrestore(&xhci->lock, flags);
5358 }
5359
5360 static const struct hc_driver xhci_hc_driver = {
5361         .description =          "xhci-hcd",
5362         .product_desc =         "xHCI Host Controller",
5363         .hcd_priv_size =        sizeof(struct xhci_hcd),
5364
5365         /*
5366          * generic hardware linkage
5367          */
5368         .irq =                  xhci_irq,
5369         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5370                                 HCD_BH,
5371
5372         /*
5373          * basic lifecycle operations
5374          */
5375         .reset =                NULL, /* set in xhci_init_driver() */
5376         .start =                xhci_run,
5377         .stop =                 xhci_stop,
5378         .shutdown =             xhci_shutdown,
5379
5380         /*
5381          * managing i/o requests and associated device resources
5382          */
5383         .map_urb_for_dma =      xhci_map_urb_for_dma,
5384         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5385         .urb_enqueue =          xhci_urb_enqueue,
5386         .urb_dequeue =          xhci_urb_dequeue,
5387         .alloc_dev =            xhci_alloc_dev,
5388         .free_dev =             xhci_free_dev,
5389         .alloc_streams =        xhci_alloc_streams,
5390         .free_streams =         xhci_free_streams,
5391         .add_endpoint =         xhci_add_endpoint,
5392         .drop_endpoint =        xhci_drop_endpoint,
5393         .endpoint_disable =     xhci_endpoint_disable,
5394         .endpoint_reset =       xhci_endpoint_reset,
5395         .check_bandwidth =      xhci_check_bandwidth,
5396         .reset_bandwidth =      xhci_reset_bandwidth,
5397         .address_device =       xhci_address_device,
5398         .enable_device =        xhci_enable_device,
5399         .update_hub_device =    xhci_update_hub_device,
5400         .reset_device =         xhci_discover_or_reset_device,
5401
5402         /*
5403          * scheduling support
5404          */
5405         .get_frame_number =     xhci_get_frame,
5406
5407         /*
5408          * root hub support
5409          */
5410         .hub_control =          xhci_hub_control,
5411         .hub_status_data =      xhci_hub_status_data,
5412         .bus_suspend =          xhci_bus_suspend,
5413         .bus_resume =           xhci_bus_resume,
5414         .get_resuming_ports =   xhci_get_resuming_ports,
5415
5416         /*
5417          * call back when device connected and addressed
5418          */
5419         .update_device =        xhci_update_device,
5420         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5421         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5422         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5423         .find_raw_port_number = xhci_find_raw_port_number,
5424         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5425 };
5426
5427 void xhci_init_driver(struct hc_driver *drv,
5428                       const struct xhci_driver_overrides *over)
5429 {
5430         BUG_ON(!over);
5431
5432         /* Copy the generic table to drv then apply the overrides */
5433         *drv = xhci_hc_driver;
5434
5435         if (over) {
5436                 drv->hcd_priv_size += over->extra_priv_size;
5437                 if (over->reset)
5438                         drv->reset = over->reset;
5439                 if (over->start)
5440                         drv->start = over->start;
5441                 if (over->check_bandwidth)
5442                         drv->check_bandwidth = over->check_bandwidth;
5443                 if (over->reset_bandwidth)
5444                         drv->reset_bandwidth = over->reset_bandwidth;
5445         }
5446 }
5447 EXPORT_SYMBOL_GPL(xhci_init_driver);
5448
5449 MODULE_DESCRIPTION(DRIVER_DESC);
5450 MODULE_AUTHOR(DRIVER_AUTHOR);
5451 MODULE_LICENSE("GPL");
5452
5453 static int __init xhci_hcd_init(void)
5454 {
5455         /*
5456          * Check the compiler generated sizes of structures that must be laid
5457          * out in specific ways for hardware access.
5458          */
5459         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5460         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5461         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5462         /* xhci_device_control has eight fields, and also
5463          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5464          */
5465         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5466         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5467         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5468         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5469         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5470         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5471         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5472
5473         if (usb_disabled())
5474                 return -ENODEV;
5475
5476         xhci_debugfs_create_root();
5477
5478         return 0;
5479 }
5480
5481 /*
5482  * If an init function is provided, an exit function must also be provided
5483  * to allow module unload.
5484  */
5485 static void __exit xhci_hcd_fini(void)
5486 {
5487         xhci_debugfs_remove_root();
5488 }
5489
5490 module_init(xhci_hcd_init);
5491 module_exit(xhci_hcd_fini);