Merge tag 'arc-5.2-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[linux-2.6-microblaze.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43         struct xhci_segment *seg = ring->first_seg;
44
45         if (!td || !td->start_seg)
46                 return false;
47         do {
48                 if (seg == td->start_seg)
49                         return true;
50                 seg = seg->next;
51         } while (seg && seg != ring->first_seg);
52
53         return false;
54 }
55
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72         int     ret;
73
74         ret = readl_poll_timeout_atomic(ptr, result,
75                                         (result & mask) == done ||
76                                         result == U32_MAX,
77                                         1, usec);
78         if (result == U32_MAX)          /* card removed */
79                 return -ENODEV;
80
81         return ret;
82 }
83
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89         u32 halted;
90         u32 cmd;
91         u32 mask;
92
93         mask = ~(XHCI_IRQS);
94         halted = readl(&xhci->op_regs->status) & STS_HALT;
95         if (!halted)
96                 mask &= ~CMD_RUN;
97
98         cmd = readl(&xhci->op_regs->command);
99         cmd &= mask;
100         writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113         int ret;
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123         xhci->xhc_state |= XHCI_STATE_HALTED;
124         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125         return ret;
126 }
127
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133         u32 temp;
134         int ret;
135
136         temp = readl(&xhci->op_regs->command);
137         temp |= (CMD_RUN);
138         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139                         temp);
140         writel(temp, &xhci->op_regs->command);
141
142         /*
143          * Wait for the HCHalted Status bit to be 0 to indicate the host is
144          * running.
145          */
146         ret = xhci_handshake(&xhci->op_regs->status,
147                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
148         if (ret == -ETIMEDOUT)
149                 xhci_err(xhci, "Host took too long to start, "
150                                 "waited %u microseconds.\n",
151                                 XHCI_MAX_HALT_USEC);
152         if (!ret)
153                 /* clear state flags. Including dying, halted or removing */
154                 xhci->xhc_state = 0;
155
156         return ret;
157 }
158
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168         u32 command;
169         u32 state;
170         int ret;
171
172         state = readl(&xhci->op_regs->status);
173
174         if (state == ~(u32)0) {
175                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176                 return -ENODEV;
177         }
178
179         if ((state & STS_HALT) == 0) {
180                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181                 return 0;
182         }
183
184         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185         command = readl(&xhci->op_regs->command);
186         command |= CMD_RESET;
187         writel(command, &xhci->op_regs->command);
188
189         /* Existing Intel xHCI controllers require a delay of 1 mS,
190          * after setting the CMD_RESET bit, and before accessing any
191          * HC registers. This allows the HC to complete the
192          * reset operation and be ready for HC register access.
193          * Without this delay, the subsequent HC register access,
194          * may result in a system hang very rarely.
195          */
196         if (xhci->quirks & XHCI_INTEL_HOST)
197                 udelay(1000);
198
199         ret = xhci_handshake(&xhci->op_regs->command,
200                         CMD_RESET, 0, 10 * 1000 * 1000);
201         if (ret)
202                 return ret;
203
204         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206
207         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208                          "Wait for controller to be ready for doorbell rings");
209         /*
210          * xHCI cannot write to any doorbells or operational registers other
211          * than status until the "Controller Not Ready" flag is cleared.
212          */
213         ret = xhci_handshake(&xhci->op_regs->status,
214                         STS_CNR, 0, 10 * 1000 * 1000);
215
216         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217         xhci->usb2_rhub.bus_state.suspended_ports = 0;
218         xhci->usb2_rhub.bus_state.resuming_ports = 0;
219         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220         xhci->usb3_rhub.bus_state.suspended_ports = 0;
221         xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223         return ret;
224 }
225
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229         int err, i;
230         u64 val;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270                 struct xhci_intr_reg __iomem *ir;
271
272                 ir = &xhci->run_regs->ir_set[i];
273                 val = xhci_read_64(xhci, &ir->erst_base);
274                 if (upper_32_bits(val))
275                         xhci_write_64(xhci, 0, &ir->erst_base);
276                 val= xhci_read_64(xhci, &ir->erst_dequeue);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
279         }
280
281         /* Wait for the fault to appear. It will be cleared on reset */
282         err = xhci_handshake(&xhci->op_regs->status,
283                              STS_FATAL, STS_FATAL,
284                              XHCI_MAX_HALT_USEC);
285         if (!err)
286                 xhci_info(xhci, "Fault detected\n");
287 }
288
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295         int ret;
296         /*
297          * TODO:Check with MSI Soc for sysdev
298          */
299         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300
301         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302         if (ret < 0) {
303                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304                                 "failed to allocate MSI entry");
305                 return ret;
306         }
307
308         ret = request_irq(pdev->irq, xhci_msi_irq,
309                                 0, "xhci_hcd", xhci_to_hcd(xhci));
310         if (ret) {
311                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312                                 "disable MSI interrupt");
313                 pci_free_irq_vectors(pdev);
314         }
315
316         return ret;
317 }
318
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324         int i, ret = 0;
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         /*
329          * calculate number of msi-x vectors supported.
330          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331          *   with max number of interrupters based on the xhci HCSPARAMS1.
332          * - num_online_cpus: maximum msi-x vectors per CPUs core.
333          *   Add additional 1 vector to ensure always available interrupt.
334          */
335         xhci->msix_count = min(num_online_cpus() + 1,
336                                 HCS_MAX_INTRS(xhci->hcs_params1));
337
338         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339                         PCI_IRQ_MSIX);
340         if (ret < 0) {
341                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342                                 "Failed to enable MSI-X");
343                 return ret;
344         }
345
346         for (i = 0; i < xhci->msix_count; i++) {
347                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348                                 "xhci_hcd", xhci_to_hcd(xhci));
349                 if (ret)
350                         goto disable_msix;
351         }
352
353         hcd->msix_enabled = 1;
354         return ret;
355
356 disable_msix:
357         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358         while (--i >= 0)
359                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360         pci_free_irq_vectors(pdev);
361         return ret;
362 }
363
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367         struct usb_hcd *hcd = xhci_to_hcd(xhci);
368         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369
370         if (xhci->quirks & XHCI_PLAT)
371                 return;
372
373         /* return if using legacy interrupt */
374         if (hcd->irq > 0)
375                 return;
376
377         if (hcd->msix_enabled) {
378                 int i;
379
380                 for (i = 0; i < xhci->msix_count; i++)
381                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382         } else {
383                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384         }
385
386         pci_free_irq_vectors(pdev);
387         hcd->msix_enabled = 0;
388 }
389
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392         struct usb_hcd *hcd = xhci_to_hcd(xhci);
393
394         if (hcd->msix_enabled) {
395                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396                 int i;
397
398                 for (i = 0; i < xhci->msix_count; i++)
399                         synchronize_irq(pci_irq_vector(pdev, i));
400         }
401 }
402
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406         struct pci_dev  *pdev;
407         int ret;
408
409         /* The xhci platform device has set up IRQs through usb_add_hcd. */
410         if (xhci->quirks & XHCI_PLAT)
411                 return 0;
412
413         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414         /*
415          * Some Fresco Logic host controllers advertise MSI, but fail to
416          * generate interrupts.  Don't even try to enable MSI.
417          */
418         if (xhci->quirks & XHCI_BROKEN_MSI)
419                 goto legacy_irq;
420
421         /* unregister the legacy interrupt */
422         if (hcd->irq)
423                 free_irq(hcd->irq, hcd);
424         hcd->irq = 0;
425
426         ret = xhci_setup_msix(xhci);
427         if (ret)
428                 /* fall back to msi*/
429                 ret = xhci_setup_msi(xhci);
430
431         if (!ret) {
432                 hcd->msi_enabled = 1;
433                 return 0;
434         }
435
436         if (!pdev->irq) {
437                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438                 return -EINVAL;
439         }
440
441  legacy_irq:
442         if (!strlen(hcd->irq_descr))
443                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444                          hcd->driver->description, hcd->self.busnum);
445
446         /* fall back to legacy interrupt*/
447         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448                         hcd->irq_descr, hcd);
449         if (ret) {
450                 xhci_err(xhci, "request interrupt %d failed\n",
451                                 pdev->irq);
452                 return ret;
453         }
454         hcd->irq = pdev->irq;
455         return 0;
456 }
457
458 #else
459
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462         return 0;
463 }
464
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472
473 #endif
474
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477         struct xhci_hcd *xhci;
478         struct usb_hcd *hcd;
479         struct xhci_hub *rhub;
480         u32 temp;
481         int i;
482
483         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484         rhub = &xhci->usb3_rhub;
485
486         for (i = 0; i < rhub->num_ports; i++) {
487                 temp = readl(rhub->ports[i]->addr);
488                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489                         /*
490                          * Compliance Mode Detected. Letting USB Core
491                          * handle the Warm Reset
492                          */
493                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494                                         "Compliance mode detected->port %d",
495                                         i + 1);
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Attempting compliance mode recovery");
498                         hcd = xhci->shared_hcd;
499
500                         if (hcd->state == HC_STATE_SUSPENDED)
501                                 usb_hcd_resume_root_hub(hcd);
502
503                         usb_hcd_poll_rh_status(hcd);
504                 }
505         }
506
507         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508                 mod_timer(&xhci->comp_mode_recovery_timer,
509                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524         xhci->port_status_u0 = 0;
525         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526                     0);
527         xhci->comp_mode_recovery_timer.expires = jiffies +
528                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529
530         add_timer(&xhci->comp_mode_recovery_timer);
531         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532                         "Compliance mode recovery timer initialized");
533 }
534
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543         const char *dmi_product_name, *dmi_sys_vendor;
544
545         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547         if (!dmi_product_name || !dmi_sys_vendor)
548                 return false;
549
550         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551                 return false;
552
553         if (strstr(dmi_product_name, "Z420") ||
554                         strstr(dmi_product_name, "Z620") ||
555                         strstr(dmi_product_name, "Z820") ||
556                         strstr(dmi_product_name, "Z1 Workstation"))
557                 return true;
558
559         return false;
560 }
561
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566
567
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578         int retval = 0;
579
580         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581         spin_lock_init(&xhci->lock);
582         if (xhci->hci_version == 0x95 && link_quirk) {
583                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584                                 "QUIRK: Not clearing Link TRB chain bits.");
585                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586         } else {
587                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588                                 "xHCI doesn't need link TRB QUIRK");
589         }
590         retval = xhci_mem_init(xhci, GFP_KERNEL);
591         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592
593         /* Initializing Compliance Mode Recovery Data If Needed */
594         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596                 compliance_mode_recovery_timer_init(xhci);
597         }
598
599         return retval;
600 }
601
602 /*-------------------------------------------------------------------------*/
603
604
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607         if (xhci_start(xhci)) {
608                 xhci_halt(xhci);
609                 return -ENODEV;
610         }
611         xhci->shared_hcd->state = HC_STATE_RUNNING;
612         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613
614         if (xhci->quirks & XHCI_NEC_HOST)
615                 xhci_ring_cmd_db(xhci);
616
617         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618                         "Finished xhci_run for USB3 roothub");
619         return 0;
620 }
621
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636         u32 temp;
637         u64 temp_64;
638         int ret;
639         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640
641         /* Start the xHCI host controller running only after the USB 2.0 roothub
642          * is setup.
643          */
644
645         hcd->uses_new_polling = 1;
646         if (!usb_hcd_is_primary_hcd(hcd))
647                 return xhci_run_finished(xhci);
648
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650
651         ret = xhci_try_enable_msi(hcd);
652         if (ret)
653                 return ret;
654
655         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656         temp_64 &= ~ERST_PTR_MASK;
657         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "// Set the interrupt modulation register");
662         temp = readl(&xhci->ir_set->irq_control);
663         temp &= ~ER_IRQ_INTERVAL_MASK;
664         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665         writel(temp, &xhci->ir_set->irq_control);
666
667         /* Set the HCD state before we enable the irqs */
668         temp = readl(&xhci->op_regs->command);
669         temp |= (CMD_EIE);
670         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671                         "// Enable interrupts, cmd = 0x%x.", temp);
672         writel(temp, &xhci->op_regs->command);
673
674         temp = readl(&xhci->ir_set->irq_pending);
675         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679
680         if (xhci->quirks & XHCI_NEC_HOST) {
681                 struct xhci_command *command;
682
683                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684                 if (!command)
685                         return -ENOMEM;
686
687                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688                                 TRB_TYPE(TRB_NEC_GET_FW));
689                 if (ret)
690                         xhci_free_command(xhci, command);
691         }
692         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693                         "Finished xhci_run for USB2 roothub");
694
695         xhci_dbc_init(xhci);
696
697         xhci_debugfs_init(xhci);
698
699         return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714         u32 temp;
715         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716
717         mutex_lock(&xhci->mutex);
718
719         /* Only halt host and free memory after both hcds are removed */
720         if (!usb_hcd_is_primary_hcd(hcd)) {
721                 mutex_unlock(&xhci->mutex);
722                 return;
723         }
724
725         xhci_dbc_exit(xhci);
726
727         spin_lock_irq(&xhci->lock);
728         xhci->xhc_state |= XHCI_STATE_HALTED;
729         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730         xhci_halt(xhci);
731         xhci_reset(xhci);
732         spin_unlock_irq(&xhci->lock);
733
734         xhci_cleanup_msix(xhci);
735
736         /* Deleting Compliance Mode Recovery Timer */
737         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738                         (!(xhci_all_ports_seen_u0(xhci)))) {
739                 del_timer_sync(&xhci->comp_mode_recovery_timer);
740                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741                                 "%s: compliance mode recovery timer deleted",
742                                 __func__);
743         }
744
745         if (xhci->quirks & XHCI_AMD_PLL_FIX)
746                 usb_amd_dev_put();
747
748         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749                         "// Disabling event ring interrupts");
750         temp = readl(&xhci->op_regs->status);
751         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752         temp = readl(&xhci->ir_set->irq_pending);
753         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754
755         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756         xhci_mem_cleanup(xhci);
757         xhci_debugfs_exit(xhci);
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "xhci_stop completed - status = %x",
760                         readl(&xhci->op_regs->status));
761         mutex_unlock(&xhci->mutex);
762 }
763
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 static void xhci_shutdown(struct usb_hcd *hcd)
774 {
775         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779
780         spin_lock_irq(&xhci->lock);
781         xhci_halt(xhci);
782         /* Workaround for spurious wakeups at shutdown with HSW */
783         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784                 xhci_reset(xhci);
785         spin_unlock_irq(&xhci->lock);
786
787         xhci_cleanup_msix(xhci);
788
789         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790                         "xhci_shutdown completed - status = %x",
791                         readl(&xhci->op_regs->status));
792
793         /* Yet another workaround for spurious wakeups at shutdown with HSW */
794         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
795                 pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
796 }
797
798 #ifdef CONFIG_PM
799 static void xhci_save_registers(struct xhci_hcd *xhci)
800 {
801         xhci->s3.command = readl(&xhci->op_regs->command);
802         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
810 }
811
812 static void xhci_restore_registers(struct xhci_hcd *xhci)
813 {
814         writel(xhci->s3.command, &xhci->op_regs->command);
815         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
823 }
824
825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
826 {
827         u64     val_64;
828
829         /* step 2: initialize command ring buffer */
830         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833                                       xhci->cmd_ring->dequeue) &
834                  (u64) ~CMD_RING_RSVD_BITS) |
835                 xhci->cmd_ring->cycle_state;
836         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837                         "// Setting command ring address to 0x%llx",
838                         (long unsigned long) val_64);
839         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840 }
841
842 /*
843  * The whole command ring must be cleared to zero when we suspend the host.
844  *
845  * The host doesn't save the command ring pointer in the suspend well, so we
846  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
847  * aligned, because of the reserved bits in the command ring dequeue pointer
848  * register.  Therefore, we can't just set the dequeue pointer back in the
849  * middle of the ring (TRBs are 16-byte aligned).
850  */
851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853         struct xhci_ring *ring;
854         struct xhci_segment *seg;
855
856         ring = xhci->cmd_ring;
857         seg = ring->deq_seg;
858         do {
859                 memset(seg->trbs, 0,
860                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862                         cpu_to_le32(~TRB_CYCLE);
863                 seg = seg->next;
864         } while (seg != ring->deq_seg);
865
866         /* Reset the software enqueue and dequeue pointers */
867         ring->deq_seg = ring->first_seg;
868         ring->dequeue = ring->first_seg->trbs;
869         ring->enq_seg = ring->deq_seg;
870         ring->enqueue = ring->dequeue;
871
872         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
873         /*
874          * Ring is now zeroed, so the HW should look for change of ownership
875          * when the cycle bit is set to 1.
876          */
877         ring->cycle_state = 1;
878
879         /*
880          * Reset the hardware dequeue pointer.
881          * Yes, this will need to be re-written after resume, but we're paranoid
882          * and want to make sure the hardware doesn't access bogus memory
883          * because, say, the BIOS or an SMI started the host without changing
884          * the command ring pointers.
885          */
886         xhci_set_cmd_ring_deq(xhci);
887 }
888
889 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
890 {
891         struct xhci_port **ports;
892         int port_index;
893         unsigned long flags;
894         u32 t1, t2, portsc;
895
896         spin_lock_irqsave(&xhci->lock, flags);
897
898         /* disable usb3 ports Wake bits */
899         port_index = xhci->usb3_rhub.num_ports;
900         ports = xhci->usb3_rhub.ports;
901         while (port_index--) {
902                 t1 = readl(ports[port_index]->addr);
903                 portsc = t1;
904                 t1 = xhci_port_state_to_neutral(t1);
905                 t2 = t1 & ~PORT_WAKE_BITS;
906                 if (t1 != t2) {
907                         writel(t2, ports[port_index]->addr);
908                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
909                                  xhci->usb3_rhub.hcd->self.busnum,
910                                  port_index + 1, portsc, t2);
911                 }
912         }
913
914         /* disable usb2 ports Wake bits */
915         port_index = xhci->usb2_rhub.num_ports;
916         ports = xhci->usb2_rhub.ports;
917         while (port_index--) {
918                 t1 = readl(ports[port_index]->addr);
919                 portsc = t1;
920                 t1 = xhci_port_state_to_neutral(t1);
921                 t2 = t1 & ~PORT_WAKE_BITS;
922                 if (t1 != t2) {
923                         writel(t2, ports[port_index]->addr);
924                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
925                                  xhci->usb2_rhub.hcd->self.busnum,
926                                  port_index + 1, portsc, t2);
927                 }
928         }
929         spin_unlock_irqrestore(&xhci->lock, flags);
930 }
931
932 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
933 {
934         struct xhci_port        **ports;
935         int                     port_index;
936         u32                     status;
937         u32                     portsc;
938
939         status = readl(&xhci->op_regs->status);
940         if (status & STS_EINT)
941                 return true;
942         /*
943          * Checking STS_EINT is not enough as there is a lag between a change
944          * bit being set and the Port Status Change Event that it generated
945          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
946          */
947
948         port_index = xhci->usb2_rhub.num_ports;
949         ports = xhci->usb2_rhub.ports;
950         while (port_index--) {
951                 portsc = readl(ports[port_index]->addr);
952                 if (portsc & PORT_CHANGE_MASK ||
953                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
954                         return true;
955         }
956         port_index = xhci->usb3_rhub.num_ports;
957         ports = xhci->usb3_rhub.ports;
958         while (port_index--) {
959                 portsc = readl(ports[port_index]->addr);
960                 if (portsc & PORT_CHANGE_MASK ||
961                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
962                         return true;
963         }
964         return false;
965 }
966
967 /*
968  * Stop HC (not bus-specific)
969  *
970  * This is called when the machine transition into S3/S4 mode.
971  *
972  */
973 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
974 {
975         int                     rc = 0;
976         unsigned int            delay = XHCI_MAX_HALT_USEC;
977         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
978         u32                     command;
979         u32                     res;
980
981         if (!hcd->state)
982                 return 0;
983
984         if (hcd->state != HC_STATE_SUSPENDED ||
985                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
986                 return -EINVAL;
987
988         xhci_dbc_suspend(xhci);
989
990         /* Clear root port wake on bits if wakeup not allowed. */
991         if (!do_wakeup)
992                 xhci_disable_port_wake_on_bits(xhci);
993
994         /* Don't poll the roothubs on bus suspend. */
995         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
996         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997         del_timer_sync(&hcd->rh_timer);
998         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999         del_timer_sync(&xhci->shared_hcd->rh_timer);
1000
1001         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002                 usleep_range(1000, 1500);
1003
1004         spin_lock_irq(&xhci->lock);
1005         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007         /* step 1: stop endpoint */
1008         /* skipped assuming that port suspend has done */
1009
1010         /* step 2: clear Run/Stop bit */
1011         command = readl(&xhci->op_regs->command);
1012         command &= ~CMD_RUN;
1013         writel(command, &xhci->op_regs->command);
1014
1015         /* Some chips from Fresco Logic need an extraordinary delay */
1016         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017
1018         if (xhci_handshake(&xhci->op_regs->status,
1019                       STS_HALT, STS_HALT, delay)) {
1020                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021                 spin_unlock_irq(&xhci->lock);
1022                 return -ETIMEDOUT;
1023         }
1024         xhci_clear_command_ring(xhci);
1025
1026         /* step 3: save registers */
1027         xhci_save_registers(xhci);
1028
1029         /* step 4: set CSS flag */
1030         command = readl(&xhci->op_regs->command);
1031         command |= CMD_CSS;
1032         writel(command, &xhci->op_regs->command);
1033         xhci->broken_suspend = 0;
1034         if (xhci_handshake(&xhci->op_regs->status,
1035                                 STS_SAVE, 0, 10 * 1000)) {
1036         /*
1037          * AMD SNPS xHC 3.0 occasionally does not clear the
1038          * SSS bit of USBSTS and when driver tries to poll
1039          * to see if the xHC clears BIT(8) which never happens
1040          * and driver assumes that controller is not responding
1041          * and times out. To workaround this, its good to check
1042          * if SRE and HCE bits are not set (as per xhci
1043          * Section 5.4.2) and bypass the timeout.
1044          */
1045                 res = readl(&xhci->op_regs->status);
1046                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047                     (((res & STS_SRE) == 0) &&
1048                                 ((res & STS_HCE) == 0))) {
1049                         xhci->broken_suspend = 1;
1050                 } else {
1051                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052                         spin_unlock_irq(&xhci->lock);
1053                         return -ETIMEDOUT;
1054                 }
1055         }
1056         spin_unlock_irq(&xhci->lock);
1057
1058         /*
1059          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060          * is about to be suspended.
1061          */
1062         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063                         (!(xhci_all_ports_seen_u0(xhci)))) {
1064                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1065                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066                                 "%s: compliance mode recovery timer deleted",
1067                                 __func__);
1068         }
1069
1070         /* step 5: remove core well power */
1071         /* synchronize irq when using MSI-X */
1072         xhci_msix_sync_irqs(xhci);
1073
1074         return rc;
1075 }
1076 EXPORT_SYMBOL_GPL(xhci_suspend);
1077
1078 /*
1079  * start xHC (not bus-specific)
1080  *
1081  * This is called when the machine transition from S3/S4 mode.
1082  *
1083  */
1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085 {
1086         u32                     command, temp = 0;
1087         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1088         struct usb_hcd          *secondary_hcd;
1089         int                     retval = 0;
1090         bool                    comp_timer_running = false;
1091
1092         if (!hcd->state)
1093                 return 0;
1094
1095         /* Wait a bit if either of the roothubs need to settle from the
1096          * transition into bus suspend.
1097          */
1098
1099         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101                 msleep(100);
1102
1103         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105
1106         spin_lock_irq(&xhci->lock);
1107         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108                 hibernated = true;
1109
1110         if (!hibernated) {
1111                 /* step 1: restore register */
1112                 xhci_restore_registers(xhci);
1113                 /* step 2: initialize command ring buffer */
1114                 xhci_set_cmd_ring_deq(xhci);
1115                 /* step 3: restore state and start state*/
1116                 /* step 3: set CRS flag */
1117                 command = readl(&xhci->op_regs->command);
1118                 command |= CMD_CRS;
1119                 writel(command, &xhci->op_regs->command);
1120                 /*
1121                  * Some controllers take up to 55+ ms to complete the controller
1122                  * restore so setting the timeout to 100ms. Xhci specification
1123                  * doesn't mention any timeout value.
1124                  */
1125                 if (xhci_handshake(&xhci->op_regs->status,
1126                               STS_RESTORE, 0, 100 * 1000)) {
1127                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1128                         spin_unlock_irq(&xhci->lock);
1129                         return -ETIMEDOUT;
1130                 }
1131                 temp = readl(&xhci->op_regs->status);
1132         }
1133
1134         /* If restore operation fails, re-initialize the HC during resume */
1135         if ((temp & STS_SRE) || hibernated) {
1136
1137                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1138                                 !(xhci_all_ports_seen_u0(xhci))) {
1139                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1140                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1141                                 "Compliance Mode Recovery Timer deleted!");
1142                 }
1143
1144                 /* Let the USB core know _both_ roothubs lost power. */
1145                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1146                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1147
1148                 xhci_dbg(xhci, "Stop HCD\n");
1149                 xhci_halt(xhci);
1150                 xhci_zero_64b_regs(xhci);
1151                 xhci_reset(xhci);
1152                 spin_unlock_irq(&xhci->lock);
1153                 xhci_cleanup_msix(xhci);
1154
1155                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1156                 temp = readl(&xhci->op_regs->status);
1157                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1158                 temp = readl(&xhci->ir_set->irq_pending);
1159                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1160
1161                 xhci_dbg(xhci, "cleaning up memory\n");
1162                 xhci_mem_cleanup(xhci);
1163                 xhci_debugfs_exit(xhci);
1164                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1165                             readl(&xhci->op_regs->status));
1166
1167                 /* USB core calls the PCI reinit and start functions twice:
1168                  * first with the primary HCD, and then with the secondary HCD.
1169                  * If we don't do the same, the host will never be started.
1170                  */
1171                 if (!usb_hcd_is_primary_hcd(hcd))
1172                         secondary_hcd = hcd;
1173                 else
1174                         secondary_hcd = xhci->shared_hcd;
1175
1176                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1177                 retval = xhci_init(hcd->primary_hcd);
1178                 if (retval)
1179                         return retval;
1180                 comp_timer_running = true;
1181
1182                 xhci_dbg(xhci, "Start the primary HCD\n");
1183                 retval = xhci_run(hcd->primary_hcd);
1184                 if (!retval) {
1185                         xhci_dbg(xhci, "Start the secondary HCD\n");
1186                         retval = xhci_run(secondary_hcd);
1187                 }
1188                 hcd->state = HC_STATE_SUSPENDED;
1189                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1190                 goto done;
1191         }
1192
1193         /* step 4: set Run/Stop bit */
1194         command = readl(&xhci->op_regs->command);
1195         command |= CMD_RUN;
1196         writel(command, &xhci->op_regs->command);
1197         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1198                   0, 250 * 1000);
1199
1200         /* step 5: walk topology and initialize portsc,
1201          * portpmsc and portli
1202          */
1203         /* this is done in bus_resume */
1204
1205         /* step 6: restart each of the previously
1206          * Running endpoints by ringing their doorbells
1207          */
1208
1209         spin_unlock_irq(&xhci->lock);
1210
1211         xhci_dbc_resume(xhci);
1212
1213  done:
1214         if (retval == 0) {
1215                 /* Resume root hubs only when have pending events. */
1216                 if (xhci_pending_portevent(xhci)) {
1217                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1218                         usb_hcd_resume_root_hub(hcd);
1219                 }
1220         }
1221
1222         /*
1223          * If system is subject to the Quirk, Compliance Mode Timer needs to
1224          * be re-initialized Always after a system resume. Ports are subject
1225          * to suffer the Compliance Mode issue again. It doesn't matter if
1226          * ports have entered previously to U0 before system's suspension.
1227          */
1228         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1229                 compliance_mode_recovery_timer_init(xhci);
1230
1231         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1232                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1233
1234         /* Re-enable port polling. */
1235         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1236         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1237         usb_hcd_poll_rh_status(xhci->shared_hcd);
1238         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1239         usb_hcd_poll_rh_status(hcd);
1240
1241         return retval;
1242 }
1243 EXPORT_SYMBOL_GPL(xhci_resume);
1244 #endif  /* CONFIG_PM */
1245
1246 /*-------------------------------------------------------------------------*/
1247
1248 /*
1249  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1250  * we'll copy the actual data into the TRB address register. This is limited to
1251  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1252  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1253  */
1254 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1255                                 gfp_t mem_flags)
1256 {
1257         if (xhci_urb_suitable_for_idt(urb))
1258                 return 0;
1259
1260         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1261 }
1262
1263 /**
1264  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1265  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1266  * value to right shift 1 for the bitmask.
1267  *
1268  * Index  = (epnum * 2) + direction - 1,
1269  * where direction = 0 for OUT, 1 for IN.
1270  * For control endpoints, the IN index is used (OUT index is unused), so
1271  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1272  */
1273 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1274 {
1275         unsigned int index;
1276         if (usb_endpoint_xfer_control(desc))
1277                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1278         else
1279                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1280                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1281         return index;
1282 }
1283
1284 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1285  * address from the XHCI endpoint index.
1286  */
1287 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1288 {
1289         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1290         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1291         return direction | number;
1292 }
1293
1294 /* Find the flag for this endpoint (for use in the control context).  Use the
1295  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1296  * bit 1, etc.
1297  */
1298 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1299 {
1300         return 1 << (xhci_get_endpoint_index(desc) + 1);
1301 }
1302
1303 /* Find the flag for this endpoint (for use in the control context).  Use the
1304  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1305  * bit 1, etc.
1306  */
1307 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1308 {
1309         return 1 << (ep_index + 1);
1310 }
1311
1312 /* Compute the last valid endpoint context index.  Basically, this is the
1313  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1314  * we find the most significant bit set in the added contexts flags.
1315  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1316  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1317  */
1318 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1319 {
1320         return fls(added_ctxs) - 1;
1321 }
1322
1323 /* Returns 1 if the arguments are OK;
1324  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1325  */
1326 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1327                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1328                 const char *func) {
1329         struct xhci_hcd *xhci;
1330         struct xhci_virt_device *virt_dev;
1331
1332         if (!hcd || (check_ep && !ep) || !udev) {
1333                 pr_debug("xHCI %s called with invalid args\n", func);
1334                 return -EINVAL;
1335         }
1336         if (!udev->parent) {
1337                 pr_debug("xHCI %s called for root hub\n", func);
1338                 return 0;
1339         }
1340
1341         xhci = hcd_to_xhci(hcd);
1342         if (check_virt_dev) {
1343                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1344                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1345                                         func);
1346                         return -EINVAL;
1347                 }
1348
1349                 virt_dev = xhci->devs[udev->slot_id];
1350                 if (virt_dev->udev != udev) {
1351                         xhci_dbg(xhci, "xHCI %s called with udev and "
1352                                           "virt_dev does not match\n", func);
1353                         return -EINVAL;
1354                 }
1355         }
1356
1357         if (xhci->xhc_state & XHCI_STATE_HALTED)
1358                 return -ENODEV;
1359
1360         return 1;
1361 }
1362
1363 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1364                 struct usb_device *udev, struct xhci_command *command,
1365                 bool ctx_change, bool must_succeed);
1366
1367 /*
1368  * Full speed devices may have a max packet size greater than 8 bytes, but the
1369  * USB core doesn't know that until it reads the first 8 bytes of the
1370  * descriptor.  If the usb_device's max packet size changes after that point,
1371  * we need to issue an evaluate context command and wait on it.
1372  */
1373 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1374                 unsigned int ep_index, struct urb *urb)
1375 {
1376         struct xhci_container_ctx *out_ctx;
1377         struct xhci_input_control_ctx *ctrl_ctx;
1378         struct xhci_ep_ctx *ep_ctx;
1379         struct xhci_command *command;
1380         int max_packet_size;
1381         int hw_max_packet_size;
1382         int ret = 0;
1383
1384         out_ctx = xhci->devs[slot_id]->out_ctx;
1385         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1386         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1387         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1388         if (hw_max_packet_size != max_packet_size) {
1389                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1390                                 "Max Packet Size for ep 0 changed.");
1391                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1392                                 "Max packet size in usb_device = %d",
1393                                 max_packet_size);
1394                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1395                                 "Max packet size in xHCI HW = %d",
1396                                 hw_max_packet_size);
1397                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1398                                 "Issuing evaluate context command.");
1399
1400                 /* Set up the input context flags for the command */
1401                 /* FIXME: This won't work if a non-default control endpoint
1402                  * changes max packet sizes.
1403                  */
1404
1405                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1406                 if (!command)
1407                         return -ENOMEM;
1408
1409                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1410                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1411                 if (!ctrl_ctx) {
1412                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1413                                         __func__);
1414                         ret = -ENOMEM;
1415                         goto command_cleanup;
1416                 }
1417                 /* Set up the modified control endpoint 0 */
1418                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1419                                 xhci->devs[slot_id]->out_ctx, ep_index);
1420
1421                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1422                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1423                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1424
1425                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1426                 ctrl_ctx->drop_flags = 0;
1427
1428                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1429                                 true, false);
1430
1431                 /* Clean up the input context for later use by bandwidth
1432                  * functions.
1433                  */
1434                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1435 command_cleanup:
1436                 kfree(command->completion);
1437                 kfree(command);
1438         }
1439         return ret;
1440 }
1441
1442 /*
1443  * non-error returns are a promise to giveback() the urb later
1444  * we drop ownership so next owner (or urb unlink) can get it
1445  */
1446 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1447 {
1448         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1449         unsigned long flags;
1450         int ret = 0;
1451         unsigned int slot_id, ep_index;
1452         unsigned int *ep_state;
1453         struct urb_priv *urb_priv;
1454         int num_tds;
1455
1456         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1457                                         true, true, __func__) <= 0)
1458                 return -EINVAL;
1459
1460         slot_id = urb->dev->slot_id;
1461         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1462         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1463
1464         if (!HCD_HW_ACCESSIBLE(hcd)) {
1465                 if (!in_interrupt())
1466                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1467                 return -ESHUTDOWN;
1468         }
1469         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1470                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1471                 return -ENODEV;
1472         }
1473
1474         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1475                 num_tds = urb->number_of_packets;
1476         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1477             urb->transfer_buffer_length > 0 &&
1478             urb->transfer_flags & URB_ZERO_PACKET &&
1479             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1480                 num_tds = 2;
1481         else
1482                 num_tds = 1;
1483
1484         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1485         if (!urb_priv)
1486                 return -ENOMEM;
1487
1488         urb_priv->num_tds = num_tds;
1489         urb_priv->num_tds_done = 0;
1490         urb->hcpriv = urb_priv;
1491
1492         trace_xhci_urb_enqueue(urb);
1493
1494         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1495                 /* Check to see if the max packet size for the default control
1496                  * endpoint changed during FS device enumeration
1497                  */
1498                 if (urb->dev->speed == USB_SPEED_FULL) {
1499                         ret = xhci_check_maxpacket(xhci, slot_id,
1500                                         ep_index, urb);
1501                         if (ret < 0) {
1502                                 xhci_urb_free_priv(urb_priv);
1503                                 urb->hcpriv = NULL;
1504                                 return ret;
1505                         }
1506                 }
1507         }
1508
1509         spin_lock_irqsave(&xhci->lock, flags);
1510
1511         if (xhci->xhc_state & XHCI_STATE_DYING) {
1512                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1513                          urb->ep->desc.bEndpointAddress, urb);
1514                 ret = -ESHUTDOWN;
1515                 goto free_priv;
1516         }
1517         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1518                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1519                           *ep_state);
1520                 ret = -EINVAL;
1521                 goto free_priv;
1522         }
1523         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1524                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1525                 ret = -EINVAL;
1526                 goto free_priv;
1527         }
1528
1529         switch (usb_endpoint_type(&urb->ep->desc)) {
1530
1531         case USB_ENDPOINT_XFER_CONTROL:
1532                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1533                                          slot_id, ep_index);
1534                 break;
1535         case USB_ENDPOINT_XFER_BULK:
1536                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1537                                          slot_id, ep_index);
1538                 break;
1539         case USB_ENDPOINT_XFER_INT:
1540                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1541                                 slot_id, ep_index);
1542                 break;
1543         case USB_ENDPOINT_XFER_ISOC:
1544                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1545                                 slot_id, ep_index);
1546         }
1547
1548         if (ret) {
1549 free_priv:
1550                 xhci_urb_free_priv(urb_priv);
1551                 urb->hcpriv = NULL;
1552         }
1553         spin_unlock_irqrestore(&xhci->lock, flags);
1554         return ret;
1555 }
1556
1557 /*
1558  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1559  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1560  * should pick up where it left off in the TD, unless a Set Transfer Ring
1561  * Dequeue Pointer is issued.
1562  *
1563  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1564  * the ring.  Since the ring is a contiguous structure, they can't be physically
1565  * removed.  Instead, there are two options:
1566  *
1567  *  1) If the HC is in the middle of processing the URB to be canceled, we
1568  *     simply move the ring's dequeue pointer past those TRBs using the Set
1569  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1570  *     when drivers timeout on the last submitted URB and attempt to cancel.
1571  *
1572  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1573  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1574  *     HC will need to invalidate the any TRBs it has cached after the stop
1575  *     endpoint command, as noted in the xHCI 0.95 errata.
1576  *
1577  *  3) The TD may have completed by the time the Stop Endpoint Command
1578  *     completes, so software needs to handle that case too.
1579  *
1580  * This function should protect against the TD enqueueing code ringing the
1581  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1582  * It also needs to account for multiple cancellations on happening at the same
1583  * time for the same endpoint.
1584  *
1585  * Note that this function can be called in any context, or so says
1586  * usb_hcd_unlink_urb()
1587  */
1588 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1589 {
1590         unsigned long flags;
1591         int ret, i;
1592         u32 temp;
1593         struct xhci_hcd *xhci;
1594         struct urb_priv *urb_priv;
1595         struct xhci_td *td;
1596         unsigned int ep_index;
1597         struct xhci_ring *ep_ring;
1598         struct xhci_virt_ep *ep;
1599         struct xhci_command *command;
1600         struct xhci_virt_device *vdev;
1601
1602         xhci = hcd_to_xhci(hcd);
1603         spin_lock_irqsave(&xhci->lock, flags);
1604
1605         trace_xhci_urb_dequeue(urb);
1606
1607         /* Make sure the URB hasn't completed or been unlinked already */
1608         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1609         if (ret)
1610                 goto done;
1611
1612         /* give back URB now if we can't queue it for cancel */
1613         vdev = xhci->devs[urb->dev->slot_id];
1614         urb_priv = urb->hcpriv;
1615         if (!vdev || !urb_priv)
1616                 goto err_giveback;
1617
1618         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1619         ep = &vdev->eps[ep_index];
1620         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1621         if (!ep || !ep_ring)
1622                 goto err_giveback;
1623
1624         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1625         temp = readl(&xhci->op_regs->status);
1626         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1627                 xhci_hc_died(xhci);
1628                 goto done;
1629         }
1630
1631         /*
1632          * check ring is not re-allocated since URB was enqueued. If it is, then
1633          * make sure none of the ring related pointers in this URB private data
1634          * are touched, such as td_list, otherwise we overwrite freed data
1635          */
1636         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1637                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1638                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1639                         td = &urb_priv->td[i];
1640                         if (!list_empty(&td->cancelled_td_list))
1641                                 list_del_init(&td->cancelled_td_list);
1642                 }
1643                 goto err_giveback;
1644         }
1645
1646         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1647                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1648                                 "HC halted, freeing TD manually.");
1649                 for (i = urb_priv->num_tds_done;
1650                      i < urb_priv->num_tds;
1651                      i++) {
1652                         td = &urb_priv->td[i];
1653                         if (!list_empty(&td->td_list))
1654                                 list_del_init(&td->td_list);
1655                         if (!list_empty(&td->cancelled_td_list))
1656                                 list_del_init(&td->cancelled_td_list);
1657                 }
1658                 goto err_giveback;
1659         }
1660
1661         i = urb_priv->num_tds_done;
1662         if (i < urb_priv->num_tds)
1663                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1664                                 "Cancel URB %p, dev %s, ep 0x%x, "
1665                                 "starting at offset 0x%llx",
1666                                 urb, urb->dev->devpath,
1667                                 urb->ep->desc.bEndpointAddress,
1668                                 (unsigned long long) xhci_trb_virt_to_dma(
1669                                         urb_priv->td[i].start_seg,
1670                                         urb_priv->td[i].first_trb));
1671
1672         for (; i < urb_priv->num_tds; i++) {
1673                 td = &urb_priv->td[i];
1674                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1675         }
1676
1677         /* Queue a stop endpoint command, but only if this is
1678          * the first cancellation to be handled.
1679          */
1680         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1681                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1682                 if (!command) {
1683                         ret = -ENOMEM;
1684                         goto done;
1685                 }
1686                 ep->ep_state |= EP_STOP_CMD_PENDING;
1687                 ep->stop_cmd_timer.expires = jiffies +
1688                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1689                 add_timer(&ep->stop_cmd_timer);
1690                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1691                                          ep_index, 0);
1692                 xhci_ring_cmd_db(xhci);
1693         }
1694 done:
1695         spin_unlock_irqrestore(&xhci->lock, flags);
1696         return ret;
1697
1698 err_giveback:
1699         if (urb_priv)
1700                 xhci_urb_free_priv(urb_priv);
1701         usb_hcd_unlink_urb_from_ep(hcd, urb);
1702         spin_unlock_irqrestore(&xhci->lock, flags);
1703         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1704         return ret;
1705 }
1706
1707 /* Drop an endpoint from a new bandwidth configuration for this device.
1708  * Only one call to this function is allowed per endpoint before
1709  * check_bandwidth() or reset_bandwidth() must be called.
1710  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1711  * add the endpoint to the schedule with possibly new parameters denoted by a
1712  * different endpoint descriptor in usb_host_endpoint.
1713  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1714  * not allowed.
1715  *
1716  * The USB core will not allow URBs to be queued to an endpoint that is being
1717  * disabled, so there's no need for mutual exclusion to protect
1718  * the xhci->devs[slot_id] structure.
1719  */
1720 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1721                 struct usb_host_endpoint *ep)
1722 {
1723         struct xhci_hcd *xhci;
1724         struct xhci_container_ctx *in_ctx, *out_ctx;
1725         struct xhci_input_control_ctx *ctrl_ctx;
1726         unsigned int ep_index;
1727         struct xhci_ep_ctx *ep_ctx;
1728         u32 drop_flag;
1729         u32 new_add_flags, new_drop_flags;
1730         int ret;
1731
1732         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1733         if (ret <= 0)
1734                 return ret;
1735         xhci = hcd_to_xhci(hcd);
1736         if (xhci->xhc_state & XHCI_STATE_DYING)
1737                 return -ENODEV;
1738
1739         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1740         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1741         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1742                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1743                                 __func__, drop_flag);
1744                 return 0;
1745         }
1746
1747         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1748         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1749         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1750         if (!ctrl_ctx) {
1751                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1752                                 __func__);
1753                 return 0;
1754         }
1755
1756         ep_index = xhci_get_endpoint_index(&ep->desc);
1757         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1758         /* If the HC already knows the endpoint is disabled,
1759          * or the HCD has noted it is disabled, ignore this request
1760          */
1761         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1762             le32_to_cpu(ctrl_ctx->drop_flags) &
1763             xhci_get_endpoint_flag(&ep->desc)) {
1764                 /* Do not warn when called after a usb_device_reset */
1765                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1766                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1767                                   __func__, ep);
1768                 return 0;
1769         }
1770
1771         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1772         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1773
1774         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1775         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1776
1777         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1778
1779         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1780
1781         if (xhci->quirks & XHCI_MTK_HOST)
1782                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1783
1784         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1785                         (unsigned int) ep->desc.bEndpointAddress,
1786                         udev->slot_id,
1787                         (unsigned int) new_drop_flags,
1788                         (unsigned int) new_add_flags);
1789         return 0;
1790 }
1791
1792 /* Add an endpoint to a new possible bandwidth configuration for this device.
1793  * Only one call to this function is allowed per endpoint before
1794  * check_bandwidth() or reset_bandwidth() must be called.
1795  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1796  * add the endpoint to the schedule with possibly new parameters denoted by a
1797  * different endpoint descriptor in usb_host_endpoint.
1798  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1799  * not allowed.
1800  *
1801  * The USB core will not allow URBs to be queued to an endpoint until the
1802  * configuration or alt setting is installed in the device, so there's no need
1803  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1804  */
1805 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1806                 struct usb_host_endpoint *ep)
1807 {
1808         struct xhci_hcd *xhci;
1809         struct xhci_container_ctx *in_ctx;
1810         unsigned int ep_index;
1811         struct xhci_input_control_ctx *ctrl_ctx;
1812         struct xhci_ep_ctx *ep_ctx;
1813         u32 added_ctxs;
1814         u32 new_add_flags, new_drop_flags;
1815         struct xhci_virt_device *virt_dev;
1816         int ret = 0;
1817
1818         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1819         if (ret <= 0) {
1820                 /* So we won't queue a reset ep command for a root hub */
1821                 ep->hcpriv = NULL;
1822                 return ret;
1823         }
1824         xhci = hcd_to_xhci(hcd);
1825         if (xhci->xhc_state & XHCI_STATE_DYING)
1826                 return -ENODEV;
1827
1828         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1829         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1830                 /* FIXME when we have to issue an evaluate endpoint command to
1831                  * deal with ep0 max packet size changing once we get the
1832                  * descriptors
1833                  */
1834                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1835                                 __func__, added_ctxs);
1836                 return 0;
1837         }
1838
1839         virt_dev = xhci->devs[udev->slot_id];
1840         in_ctx = virt_dev->in_ctx;
1841         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1842         if (!ctrl_ctx) {
1843                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1844                                 __func__);
1845                 return 0;
1846         }
1847
1848         ep_index = xhci_get_endpoint_index(&ep->desc);
1849         /* If this endpoint is already in use, and the upper layers are trying
1850          * to add it again without dropping it, reject the addition.
1851          */
1852         if (virt_dev->eps[ep_index].ring &&
1853                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1854                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1855                                 "without dropping it.\n",
1856                                 (unsigned int) ep->desc.bEndpointAddress);
1857                 return -EINVAL;
1858         }
1859
1860         /* If the HCD has already noted the endpoint is enabled,
1861          * ignore this request.
1862          */
1863         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1864                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1865                                 __func__, ep);
1866                 return 0;
1867         }
1868
1869         /*
1870          * Configuration and alternate setting changes must be done in
1871          * process context, not interrupt context (or so documenation
1872          * for usb_set_interface() and usb_set_configuration() claim).
1873          */
1874         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1875                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1876                                 __func__, ep->desc.bEndpointAddress);
1877                 return -ENOMEM;
1878         }
1879
1880         if (xhci->quirks & XHCI_MTK_HOST) {
1881                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1882                 if (ret < 0) {
1883                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1884                         virt_dev->eps[ep_index].new_ring = NULL;
1885                         return ret;
1886                 }
1887         }
1888
1889         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1890         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1891
1892         /* If xhci_endpoint_disable() was called for this endpoint, but the
1893          * xHC hasn't been notified yet through the check_bandwidth() call,
1894          * this re-adds a new state for the endpoint from the new endpoint
1895          * descriptors.  We must drop and re-add this endpoint, so we leave the
1896          * drop flags alone.
1897          */
1898         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1899
1900         /* Store the usb_device pointer for later use */
1901         ep->hcpriv = udev;
1902
1903         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1904         trace_xhci_add_endpoint(ep_ctx);
1905
1906         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1907
1908         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1909                         (unsigned int) ep->desc.bEndpointAddress,
1910                         udev->slot_id,
1911                         (unsigned int) new_drop_flags,
1912                         (unsigned int) new_add_flags);
1913         return 0;
1914 }
1915
1916 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1917 {
1918         struct xhci_input_control_ctx *ctrl_ctx;
1919         struct xhci_ep_ctx *ep_ctx;
1920         struct xhci_slot_ctx *slot_ctx;
1921         int i;
1922
1923         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1924         if (!ctrl_ctx) {
1925                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1926                                 __func__);
1927                 return;
1928         }
1929
1930         /* When a device's add flag and drop flag are zero, any subsequent
1931          * configure endpoint command will leave that endpoint's state
1932          * untouched.  Make sure we don't leave any old state in the input
1933          * endpoint contexts.
1934          */
1935         ctrl_ctx->drop_flags = 0;
1936         ctrl_ctx->add_flags = 0;
1937         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1938         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1939         /* Endpoint 0 is always valid */
1940         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1941         for (i = 1; i < 31; i++) {
1942                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1943                 ep_ctx->ep_info = 0;
1944                 ep_ctx->ep_info2 = 0;
1945                 ep_ctx->deq = 0;
1946                 ep_ctx->tx_info = 0;
1947         }
1948 }
1949
1950 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1951                 struct usb_device *udev, u32 *cmd_status)
1952 {
1953         int ret;
1954
1955         switch (*cmd_status) {
1956         case COMP_COMMAND_ABORTED:
1957         case COMP_COMMAND_RING_STOPPED:
1958                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1959                 ret = -ETIME;
1960                 break;
1961         case COMP_RESOURCE_ERROR:
1962                 dev_warn(&udev->dev,
1963                          "Not enough host controller resources for new device state.\n");
1964                 ret = -ENOMEM;
1965                 /* FIXME: can we allocate more resources for the HC? */
1966                 break;
1967         case COMP_BANDWIDTH_ERROR:
1968         case COMP_SECONDARY_BANDWIDTH_ERROR:
1969                 dev_warn(&udev->dev,
1970                          "Not enough bandwidth for new device state.\n");
1971                 ret = -ENOSPC;
1972                 /* FIXME: can we go back to the old state? */
1973                 break;
1974         case COMP_TRB_ERROR:
1975                 /* the HCD set up something wrong */
1976                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1977                                 "add flag = 1, "
1978                                 "and endpoint is not disabled.\n");
1979                 ret = -EINVAL;
1980                 break;
1981         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1982                 dev_warn(&udev->dev,
1983                          "ERROR: Incompatible device for endpoint configure command.\n");
1984                 ret = -ENODEV;
1985                 break;
1986         case COMP_SUCCESS:
1987                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1988                                 "Successful Endpoint Configure command");
1989                 ret = 0;
1990                 break;
1991         default:
1992                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1993                                 *cmd_status);
1994                 ret = -EINVAL;
1995                 break;
1996         }
1997         return ret;
1998 }
1999
2000 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2001                 struct usb_device *udev, u32 *cmd_status)
2002 {
2003         int ret;
2004
2005         switch (*cmd_status) {
2006         case COMP_COMMAND_ABORTED:
2007         case COMP_COMMAND_RING_STOPPED:
2008                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2009                 ret = -ETIME;
2010                 break;
2011         case COMP_PARAMETER_ERROR:
2012                 dev_warn(&udev->dev,
2013                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2014                 ret = -EINVAL;
2015                 break;
2016         case COMP_SLOT_NOT_ENABLED_ERROR:
2017                 dev_warn(&udev->dev,
2018                         "WARN: slot not enabled for evaluate context command.\n");
2019                 ret = -EINVAL;
2020                 break;
2021         case COMP_CONTEXT_STATE_ERROR:
2022                 dev_warn(&udev->dev,
2023                         "WARN: invalid context state for evaluate context command.\n");
2024                 ret = -EINVAL;
2025                 break;
2026         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2027                 dev_warn(&udev->dev,
2028                         "ERROR: Incompatible device for evaluate context command.\n");
2029                 ret = -ENODEV;
2030                 break;
2031         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2032                 /* Max Exit Latency too large error */
2033                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2034                 ret = -EINVAL;
2035                 break;
2036         case COMP_SUCCESS:
2037                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2038                                 "Successful evaluate context command");
2039                 ret = 0;
2040                 break;
2041         default:
2042                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2043                         *cmd_status);
2044                 ret = -EINVAL;
2045                 break;
2046         }
2047         return ret;
2048 }
2049
2050 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2051                 struct xhci_input_control_ctx *ctrl_ctx)
2052 {
2053         u32 valid_add_flags;
2054         u32 valid_drop_flags;
2055
2056         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2057          * (bit 1).  The default control endpoint is added during the Address
2058          * Device command and is never removed until the slot is disabled.
2059          */
2060         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2061         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2062
2063         /* Use hweight32 to count the number of ones in the add flags, or
2064          * number of endpoints added.  Don't count endpoints that are changed
2065          * (both added and dropped).
2066          */
2067         return hweight32(valid_add_flags) -
2068                 hweight32(valid_add_flags & valid_drop_flags);
2069 }
2070
2071 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2072                 struct xhci_input_control_ctx *ctrl_ctx)
2073 {
2074         u32 valid_add_flags;
2075         u32 valid_drop_flags;
2076
2077         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2078         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2079
2080         return hweight32(valid_drop_flags) -
2081                 hweight32(valid_add_flags & valid_drop_flags);
2082 }
2083
2084 /*
2085  * We need to reserve the new number of endpoints before the configure endpoint
2086  * command completes.  We can't subtract the dropped endpoints from the number
2087  * of active endpoints until the command completes because we can oversubscribe
2088  * the host in this case:
2089  *
2090  *  - the first configure endpoint command drops more endpoints than it adds
2091  *  - a second configure endpoint command that adds more endpoints is queued
2092  *  - the first configure endpoint command fails, so the config is unchanged
2093  *  - the second command may succeed, even though there isn't enough resources
2094  *
2095  * Must be called with xhci->lock held.
2096  */
2097 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2098                 struct xhci_input_control_ctx *ctrl_ctx)
2099 {
2100         u32 added_eps;
2101
2102         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2103         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2104                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2105                                 "Not enough ep ctxs: "
2106                                 "%u active, need to add %u, limit is %u.",
2107                                 xhci->num_active_eps, added_eps,
2108                                 xhci->limit_active_eps);
2109                 return -ENOMEM;
2110         }
2111         xhci->num_active_eps += added_eps;
2112         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2113                         "Adding %u ep ctxs, %u now active.", added_eps,
2114                         xhci->num_active_eps);
2115         return 0;
2116 }
2117
2118 /*
2119  * The configure endpoint was failed by the xHC for some other reason, so we
2120  * need to revert the resources that failed configuration would have used.
2121  *
2122  * Must be called with xhci->lock held.
2123  */
2124 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2125                 struct xhci_input_control_ctx *ctrl_ctx)
2126 {
2127         u32 num_failed_eps;
2128
2129         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2130         xhci->num_active_eps -= num_failed_eps;
2131         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2132                         "Removing %u failed ep ctxs, %u now active.",
2133                         num_failed_eps,
2134                         xhci->num_active_eps);
2135 }
2136
2137 /*
2138  * Now that the command has completed, clean up the active endpoint count by
2139  * subtracting out the endpoints that were dropped (but not changed).
2140  *
2141  * Must be called with xhci->lock held.
2142  */
2143 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2144                 struct xhci_input_control_ctx *ctrl_ctx)
2145 {
2146         u32 num_dropped_eps;
2147
2148         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2149         xhci->num_active_eps -= num_dropped_eps;
2150         if (num_dropped_eps)
2151                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2152                                 "Removing %u dropped ep ctxs, %u now active.",
2153                                 num_dropped_eps,
2154                                 xhci->num_active_eps);
2155 }
2156
2157 static unsigned int xhci_get_block_size(struct usb_device *udev)
2158 {
2159         switch (udev->speed) {
2160         case USB_SPEED_LOW:
2161         case USB_SPEED_FULL:
2162                 return FS_BLOCK;
2163         case USB_SPEED_HIGH:
2164                 return HS_BLOCK;
2165         case USB_SPEED_SUPER:
2166         case USB_SPEED_SUPER_PLUS:
2167                 return SS_BLOCK;
2168         case USB_SPEED_UNKNOWN:
2169         case USB_SPEED_WIRELESS:
2170         default:
2171                 /* Should never happen */
2172                 return 1;
2173         }
2174 }
2175
2176 static unsigned int
2177 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2178 {
2179         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2180                 return LS_OVERHEAD;
2181         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2182                 return FS_OVERHEAD;
2183         return HS_OVERHEAD;
2184 }
2185
2186 /* If we are changing a LS/FS device under a HS hub,
2187  * make sure (if we are activating a new TT) that the HS bus has enough
2188  * bandwidth for this new TT.
2189  */
2190 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2191                 struct xhci_virt_device *virt_dev,
2192                 int old_active_eps)
2193 {
2194         struct xhci_interval_bw_table *bw_table;
2195         struct xhci_tt_bw_info *tt_info;
2196
2197         /* Find the bandwidth table for the root port this TT is attached to. */
2198         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2199         tt_info = virt_dev->tt_info;
2200         /* If this TT already had active endpoints, the bandwidth for this TT
2201          * has already been added.  Removing all periodic endpoints (and thus
2202          * making the TT enactive) will only decrease the bandwidth used.
2203          */
2204         if (old_active_eps)
2205                 return 0;
2206         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2207                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2208                         return -ENOMEM;
2209                 return 0;
2210         }
2211         /* Not sure why we would have no new active endpoints...
2212          *
2213          * Maybe because of an Evaluate Context change for a hub update or a
2214          * control endpoint 0 max packet size change?
2215          * FIXME: skip the bandwidth calculation in that case.
2216          */
2217         return 0;
2218 }
2219
2220 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2221                 struct xhci_virt_device *virt_dev)
2222 {
2223         unsigned int bw_reserved;
2224
2225         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2226         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2227                 return -ENOMEM;
2228
2229         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2230         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2231                 return -ENOMEM;
2232
2233         return 0;
2234 }
2235
2236 /*
2237  * This algorithm is a very conservative estimate of the worst-case scheduling
2238  * scenario for any one interval.  The hardware dynamically schedules the
2239  * packets, so we can't tell which microframe could be the limiting factor in
2240  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2241  *
2242  * Obviously, we can't solve an NP complete problem to find the minimum worst
2243  * case scenario.  Instead, we come up with an estimate that is no less than
2244  * the worst case bandwidth used for any one microframe, but may be an
2245  * over-estimate.
2246  *
2247  * We walk the requirements for each endpoint by interval, starting with the
2248  * smallest interval, and place packets in the schedule where there is only one
2249  * possible way to schedule packets for that interval.  In order to simplify
2250  * this algorithm, we record the largest max packet size for each interval, and
2251  * assume all packets will be that size.
2252  *
2253  * For interval 0, we obviously must schedule all packets for each interval.
2254  * The bandwidth for interval 0 is just the amount of data to be transmitted
2255  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2256  * the number of packets).
2257  *
2258  * For interval 1, we have two possible microframes to schedule those packets
2259  * in.  For this algorithm, if we can schedule the same number of packets for
2260  * each possible scheduling opportunity (each microframe), we will do so.  The
2261  * remaining number of packets will be saved to be transmitted in the gaps in
2262  * the next interval's scheduling sequence.
2263  *
2264  * As we move those remaining packets to be scheduled with interval 2 packets,
2265  * we have to double the number of remaining packets to transmit.  This is
2266  * because the intervals are actually powers of 2, and we would be transmitting
2267  * the previous interval's packets twice in this interval.  We also have to be
2268  * sure that when we look at the largest max packet size for this interval, we
2269  * also look at the largest max packet size for the remaining packets and take
2270  * the greater of the two.
2271  *
2272  * The algorithm continues to evenly distribute packets in each scheduling
2273  * opportunity, and push the remaining packets out, until we get to the last
2274  * interval.  Then those packets and their associated overhead are just added
2275  * to the bandwidth used.
2276  */
2277 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2278                 struct xhci_virt_device *virt_dev,
2279                 int old_active_eps)
2280 {
2281         unsigned int bw_reserved;
2282         unsigned int max_bandwidth;
2283         unsigned int bw_used;
2284         unsigned int block_size;
2285         struct xhci_interval_bw_table *bw_table;
2286         unsigned int packet_size = 0;
2287         unsigned int overhead = 0;
2288         unsigned int packets_transmitted = 0;
2289         unsigned int packets_remaining = 0;
2290         unsigned int i;
2291
2292         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2293                 return xhci_check_ss_bw(xhci, virt_dev);
2294
2295         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2296                 max_bandwidth = HS_BW_LIMIT;
2297                 /* Convert percent of bus BW reserved to blocks reserved */
2298                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2299         } else {
2300                 max_bandwidth = FS_BW_LIMIT;
2301                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2302         }
2303
2304         bw_table = virt_dev->bw_table;
2305         /* We need to translate the max packet size and max ESIT payloads into
2306          * the units the hardware uses.
2307          */
2308         block_size = xhci_get_block_size(virt_dev->udev);
2309
2310         /* If we are manipulating a LS/FS device under a HS hub, double check
2311          * that the HS bus has enough bandwidth if we are activing a new TT.
2312          */
2313         if (virt_dev->tt_info) {
2314                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2315                                 "Recalculating BW for rootport %u",
2316                                 virt_dev->real_port);
2317                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2318                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2319                                         "newly activated TT.\n");
2320                         return -ENOMEM;
2321                 }
2322                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2323                                 "Recalculating BW for TT slot %u port %u",
2324                                 virt_dev->tt_info->slot_id,
2325                                 virt_dev->tt_info->ttport);
2326         } else {
2327                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2328                                 "Recalculating BW for rootport %u",
2329                                 virt_dev->real_port);
2330         }
2331
2332         /* Add in how much bandwidth will be used for interval zero, or the
2333          * rounded max ESIT payload + number of packets * largest overhead.
2334          */
2335         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2336                 bw_table->interval_bw[0].num_packets *
2337                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2338
2339         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2340                 unsigned int bw_added;
2341                 unsigned int largest_mps;
2342                 unsigned int interval_overhead;
2343
2344                 /*
2345                  * How many packets could we transmit in this interval?
2346                  * If packets didn't fit in the previous interval, we will need
2347                  * to transmit that many packets twice within this interval.
2348                  */
2349                 packets_remaining = 2 * packets_remaining +
2350                         bw_table->interval_bw[i].num_packets;
2351
2352                 /* Find the largest max packet size of this or the previous
2353                  * interval.
2354                  */
2355                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2356                         largest_mps = 0;
2357                 else {
2358                         struct xhci_virt_ep *virt_ep;
2359                         struct list_head *ep_entry;
2360
2361                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2362                         virt_ep = list_entry(ep_entry,
2363                                         struct xhci_virt_ep, bw_endpoint_list);
2364                         /* Convert to blocks, rounding up */
2365                         largest_mps = DIV_ROUND_UP(
2366                                         virt_ep->bw_info.max_packet_size,
2367                                         block_size);
2368                 }
2369                 if (largest_mps > packet_size)
2370                         packet_size = largest_mps;
2371
2372                 /* Use the larger overhead of this or the previous interval. */
2373                 interval_overhead = xhci_get_largest_overhead(
2374                                 &bw_table->interval_bw[i]);
2375                 if (interval_overhead > overhead)
2376                         overhead = interval_overhead;
2377
2378                 /* How many packets can we evenly distribute across
2379                  * (1 << (i + 1)) possible scheduling opportunities?
2380                  */
2381                 packets_transmitted = packets_remaining >> (i + 1);
2382
2383                 /* Add in the bandwidth used for those scheduled packets */
2384                 bw_added = packets_transmitted * (overhead + packet_size);
2385
2386                 /* How many packets do we have remaining to transmit? */
2387                 packets_remaining = packets_remaining % (1 << (i + 1));
2388
2389                 /* What largest max packet size should those packets have? */
2390                 /* If we've transmitted all packets, don't carry over the
2391                  * largest packet size.
2392                  */
2393                 if (packets_remaining == 0) {
2394                         packet_size = 0;
2395                         overhead = 0;
2396                 } else if (packets_transmitted > 0) {
2397                         /* Otherwise if we do have remaining packets, and we've
2398                          * scheduled some packets in this interval, take the
2399                          * largest max packet size from endpoints with this
2400                          * interval.
2401                          */
2402                         packet_size = largest_mps;
2403                         overhead = interval_overhead;
2404                 }
2405                 /* Otherwise carry over packet_size and overhead from the last
2406                  * time we had a remainder.
2407                  */
2408                 bw_used += bw_added;
2409                 if (bw_used > max_bandwidth) {
2410                         xhci_warn(xhci, "Not enough bandwidth. "
2411                                         "Proposed: %u, Max: %u\n",
2412                                 bw_used, max_bandwidth);
2413                         return -ENOMEM;
2414                 }
2415         }
2416         /*
2417          * Ok, we know we have some packets left over after even-handedly
2418          * scheduling interval 15.  We don't know which microframes they will
2419          * fit into, so we over-schedule and say they will be scheduled every
2420          * microframe.
2421          */
2422         if (packets_remaining > 0)
2423                 bw_used += overhead + packet_size;
2424
2425         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2426                 unsigned int port_index = virt_dev->real_port - 1;
2427
2428                 /* OK, we're manipulating a HS device attached to a
2429                  * root port bandwidth domain.  Include the number of active TTs
2430                  * in the bandwidth used.
2431                  */
2432                 bw_used += TT_HS_OVERHEAD *
2433                         xhci->rh_bw[port_index].num_active_tts;
2434         }
2435
2436         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2437                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2438                 "Available: %u " "percent",
2439                 bw_used, max_bandwidth, bw_reserved,
2440                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2441                 max_bandwidth);
2442
2443         bw_used += bw_reserved;
2444         if (bw_used > max_bandwidth) {
2445                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2446                                 bw_used, max_bandwidth);
2447                 return -ENOMEM;
2448         }
2449
2450         bw_table->bw_used = bw_used;
2451         return 0;
2452 }
2453
2454 static bool xhci_is_async_ep(unsigned int ep_type)
2455 {
2456         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2457                                         ep_type != ISOC_IN_EP &&
2458                                         ep_type != INT_IN_EP);
2459 }
2460
2461 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2462 {
2463         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2464 }
2465
2466 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2467 {
2468         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2469
2470         if (ep_bw->ep_interval == 0)
2471                 return SS_OVERHEAD_BURST +
2472                         (ep_bw->mult * ep_bw->num_packets *
2473                                         (SS_OVERHEAD + mps));
2474         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2475                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2476                                 1 << ep_bw->ep_interval);
2477
2478 }
2479
2480 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2481                 struct xhci_bw_info *ep_bw,
2482                 struct xhci_interval_bw_table *bw_table,
2483                 struct usb_device *udev,
2484                 struct xhci_virt_ep *virt_ep,
2485                 struct xhci_tt_bw_info *tt_info)
2486 {
2487         struct xhci_interval_bw *interval_bw;
2488         int normalized_interval;
2489
2490         if (xhci_is_async_ep(ep_bw->type))
2491                 return;
2492
2493         if (udev->speed >= USB_SPEED_SUPER) {
2494                 if (xhci_is_sync_in_ep(ep_bw->type))
2495                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2496                                 xhci_get_ss_bw_consumed(ep_bw);
2497                 else
2498                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2499                                 xhci_get_ss_bw_consumed(ep_bw);
2500                 return;
2501         }
2502
2503         /* SuperSpeed endpoints never get added to intervals in the table, so
2504          * this check is only valid for HS/FS/LS devices.
2505          */
2506         if (list_empty(&virt_ep->bw_endpoint_list))
2507                 return;
2508         /* For LS/FS devices, we need to translate the interval expressed in
2509          * microframes to frames.
2510          */
2511         if (udev->speed == USB_SPEED_HIGH)
2512                 normalized_interval = ep_bw->ep_interval;
2513         else
2514                 normalized_interval = ep_bw->ep_interval - 3;
2515
2516         if (normalized_interval == 0)
2517                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2518         interval_bw = &bw_table->interval_bw[normalized_interval];
2519         interval_bw->num_packets -= ep_bw->num_packets;
2520         switch (udev->speed) {
2521         case USB_SPEED_LOW:
2522                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2523                 break;
2524         case USB_SPEED_FULL:
2525                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2526                 break;
2527         case USB_SPEED_HIGH:
2528                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2529                 break;
2530         case USB_SPEED_SUPER:
2531         case USB_SPEED_SUPER_PLUS:
2532         case USB_SPEED_UNKNOWN:
2533         case USB_SPEED_WIRELESS:
2534                 /* Should never happen because only LS/FS/HS endpoints will get
2535                  * added to the endpoint list.
2536                  */
2537                 return;
2538         }
2539         if (tt_info)
2540                 tt_info->active_eps -= 1;
2541         list_del_init(&virt_ep->bw_endpoint_list);
2542 }
2543
2544 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2545                 struct xhci_bw_info *ep_bw,
2546                 struct xhci_interval_bw_table *bw_table,
2547                 struct usb_device *udev,
2548                 struct xhci_virt_ep *virt_ep,
2549                 struct xhci_tt_bw_info *tt_info)
2550 {
2551         struct xhci_interval_bw *interval_bw;
2552         struct xhci_virt_ep *smaller_ep;
2553         int normalized_interval;
2554
2555         if (xhci_is_async_ep(ep_bw->type))
2556                 return;
2557
2558         if (udev->speed == USB_SPEED_SUPER) {
2559                 if (xhci_is_sync_in_ep(ep_bw->type))
2560                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2561                                 xhci_get_ss_bw_consumed(ep_bw);
2562                 else
2563                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2564                                 xhci_get_ss_bw_consumed(ep_bw);
2565                 return;
2566         }
2567
2568         /* For LS/FS devices, we need to translate the interval expressed in
2569          * microframes to frames.
2570          */
2571         if (udev->speed == USB_SPEED_HIGH)
2572                 normalized_interval = ep_bw->ep_interval;
2573         else
2574                 normalized_interval = ep_bw->ep_interval - 3;
2575
2576         if (normalized_interval == 0)
2577                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2578         interval_bw = &bw_table->interval_bw[normalized_interval];
2579         interval_bw->num_packets += ep_bw->num_packets;
2580         switch (udev->speed) {
2581         case USB_SPEED_LOW:
2582                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2583                 break;
2584         case USB_SPEED_FULL:
2585                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2586                 break;
2587         case USB_SPEED_HIGH:
2588                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2589                 break;
2590         case USB_SPEED_SUPER:
2591         case USB_SPEED_SUPER_PLUS:
2592         case USB_SPEED_UNKNOWN:
2593         case USB_SPEED_WIRELESS:
2594                 /* Should never happen because only LS/FS/HS endpoints will get
2595                  * added to the endpoint list.
2596                  */
2597                 return;
2598         }
2599
2600         if (tt_info)
2601                 tt_info->active_eps += 1;
2602         /* Insert the endpoint into the list, largest max packet size first. */
2603         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2604                         bw_endpoint_list) {
2605                 if (ep_bw->max_packet_size >=
2606                                 smaller_ep->bw_info.max_packet_size) {
2607                         /* Add the new ep before the smaller endpoint */
2608                         list_add_tail(&virt_ep->bw_endpoint_list,
2609                                         &smaller_ep->bw_endpoint_list);
2610                         return;
2611                 }
2612         }
2613         /* Add the new endpoint at the end of the list. */
2614         list_add_tail(&virt_ep->bw_endpoint_list,
2615                         &interval_bw->endpoints);
2616 }
2617
2618 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2619                 struct xhci_virt_device *virt_dev,
2620                 int old_active_eps)
2621 {
2622         struct xhci_root_port_bw_info *rh_bw_info;
2623         if (!virt_dev->tt_info)
2624                 return;
2625
2626         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2627         if (old_active_eps == 0 &&
2628                                 virt_dev->tt_info->active_eps != 0) {
2629                 rh_bw_info->num_active_tts += 1;
2630                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2631         } else if (old_active_eps != 0 &&
2632                                 virt_dev->tt_info->active_eps == 0) {
2633                 rh_bw_info->num_active_tts -= 1;
2634                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2635         }
2636 }
2637
2638 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2639                 struct xhci_virt_device *virt_dev,
2640                 struct xhci_container_ctx *in_ctx)
2641 {
2642         struct xhci_bw_info ep_bw_info[31];
2643         int i;
2644         struct xhci_input_control_ctx *ctrl_ctx;
2645         int old_active_eps = 0;
2646
2647         if (virt_dev->tt_info)
2648                 old_active_eps = virt_dev->tt_info->active_eps;
2649
2650         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2651         if (!ctrl_ctx) {
2652                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2653                                 __func__);
2654                 return -ENOMEM;
2655         }
2656
2657         for (i = 0; i < 31; i++) {
2658                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2659                         continue;
2660
2661                 /* Make a copy of the BW info in case we need to revert this */
2662                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2663                                 sizeof(ep_bw_info[i]));
2664                 /* Drop the endpoint from the interval table if the endpoint is
2665                  * being dropped or changed.
2666                  */
2667                 if (EP_IS_DROPPED(ctrl_ctx, i))
2668                         xhci_drop_ep_from_interval_table(xhci,
2669                                         &virt_dev->eps[i].bw_info,
2670                                         virt_dev->bw_table,
2671                                         virt_dev->udev,
2672                                         &virt_dev->eps[i],
2673                                         virt_dev->tt_info);
2674         }
2675         /* Overwrite the information stored in the endpoints' bw_info */
2676         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2677         for (i = 0; i < 31; i++) {
2678                 /* Add any changed or added endpoints to the interval table */
2679                 if (EP_IS_ADDED(ctrl_ctx, i))
2680                         xhci_add_ep_to_interval_table(xhci,
2681                                         &virt_dev->eps[i].bw_info,
2682                                         virt_dev->bw_table,
2683                                         virt_dev->udev,
2684                                         &virt_dev->eps[i],
2685                                         virt_dev->tt_info);
2686         }
2687
2688         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2689                 /* Ok, this fits in the bandwidth we have.
2690                  * Update the number of active TTs.
2691                  */
2692                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2693                 return 0;
2694         }
2695
2696         /* We don't have enough bandwidth for this, revert the stored info. */
2697         for (i = 0; i < 31; i++) {
2698                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2699                         continue;
2700
2701                 /* Drop the new copies of any added or changed endpoints from
2702                  * the interval table.
2703                  */
2704                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2705                         xhci_drop_ep_from_interval_table(xhci,
2706                                         &virt_dev->eps[i].bw_info,
2707                                         virt_dev->bw_table,
2708                                         virt_dev->udev,
2709                                         &virt_dev->eps[i],
2710                                         virt_dev->tt_info);
2711                 }
2712                 /* Revert the endpoint back to its old information */
2713                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2714                                 sizeof(ep_bw_info[i]));
2715                 /* Add any changed or dropped endpoints back into the table */
2716                 if (EP_IS_DROPPED(ctrl_ctx, i))
2717                         xhci_add_ep_to_interval_table(xhci,
2718                                         &virt_dev->eps[i].bw_info,
2719                                         virt_dev->bw_table,
2720                                         virt_dev->udev,
2721                                         &virt_dev->eps[i],
2722                                         virt_dev->tt_info);
2723         }
2724         return -ENOMEM;
2725 }
2726
2727
2728 /* Issue a configure endpoint command or evaluate context command
2729  * and wait for it to finish.
2730  */
2731 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2732                 struct usb_device *udev,
2733                 struct xhci_command *command,
2734                 bool ctx_change, bool must_succeed)
2735 {
2736         int ret;
2737         unsigned long flags;
2738         struct xhci_input_control_ctx *ctrl_ctx;
2739         struct xhci_virt_device *virt_dev;
2740         struct xhci_slot_ctx *slot_ctx;
2741
2742         if (!command)
2743                 return -EINVAL;
2744
2745         spin_lock_irqsave(&xhci->lock, flags);
2746
2747         if (xhci->xhc_state & XHCI_STATE_DYING) {
2748                 spin_unlock_irqrestore(&xhci->lock, flags);
2749                 return -ESHUTDOWN;
2750         }
2751
2752         virt_dev = xhci->devs[udev->slot_id];
2753
2754         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2755         if (!ctrl_ctx) {
2756                 spin_unlock_irqrestore(&xhci->lock, flags);
2757                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2758                                 __func__);
2759                 return -ENOMEM;
2760         }
2761
2762         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2763                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2764                 spin_unlock_irqrestore(&xhci->lock, flags);
2765                 xhci_warn(xhci, "Not enough host resources, "
2766                                 "active endpoint contexts = %u\n",
2767                                 xhci->num_active_eps);
2768                 return -ENOMEM;
2769         }
2770         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2771             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2772                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2773                         xhci_free_host_resources(xhci, ctrl_ctx);
2774                 spin_unlock_irqrestore(&xhci->lock, flags);
2775                 xhci_warn(xhci, "Not enough bandwidth\n");
2776                 return -ENOMEM;
2777         }
2778
2779         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2780
2781         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2782         trace_xhci_configure_endpoint(slot_ctx);
2783
2784         if (!ctx_change)
2785                 ret = xhci_queue_configure_endpoint(xhci, command,
2786                                 command->in_ctx->dma,
2787                                 udev->slot_id, must_succeed);
2788         else
2789                 ret = xhci_queue_evaluate_context(xhci, command,
2790                                 command->in_ctx->dma,
2791                                 udev->slot_id, must_succeed);
2792         if (ret < 0) {
2793                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2794                         xhci_free_host_resources(xhci, ctrl_ctx);
2795                 spin_unlock_irqrestore(&xhci->lock, flags);
2796                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2797                                 "FIXME allocate a new ring segment");
2798                 return -ENOMEM;
2799         }
2800         xhci_ring_cmd_db(xhci);
2801         spin_unlock_irqrestore(&xhci->lock, flags);
2802
2803         /* Wait for the configure endpoint command to complete */
2804         wait_for_completion(command->completion);
2805
2806         if (!ctx_change)
2807                 ret = xhci_configure_endpoint_result(xhci, udev,
2808                                                      &command->status);
2809         else
2810                 ret = xhci_evaluate_context_result(xhci, udev,
2811                                                    &command->status);
2812
2813         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2814                 spin_lock_irqsave(&xhci->lock, flags);
2815                 /* If the command failed, remove the reserved resources.
2816                  * Otherwise, clean up the estimate to include dropped eps.
2817                  */
2818                 if (ret)
2819                         xhci_free_host_resources(xhci, ctrl_ctx);
2820                 else
2821                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2822                 spin_unlock_irqrestore(&xhci->lock, flags);
2823         }
2824         return ret;
2825 }
2826
2827 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2828         struct xhci_virt_device *vdev, int i)
2829 {
2830         struct xhci_virt_ep *ep = &vdev->eps[i];
2831
2832         if (ep->ep_state & EP_HAS_STREAMS) {
2833                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2834                                 xhci_get_endpoint_address(i));
2835                 xhci_free_stream_info(xhci, ep->stream_info);
2836                 ep->stream_info = NULL;
2837                 ep->ep_state &= ~EP_HAS_STREAMS;
2838         }
2839 }
2840
2841 /* Called after one or more calls to xhci_add_endpoint() or
2842  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2843  * to call xhci_reset_bandwidth().
2844  *
2845  * Since we are in the middle of changing either configuration or
2846  * installing a new alt setting, the USB core won't allow URBs to be
2847  * enqueued for any endpoint on the old config or interface.  Nothing
2848  * else should be touching the xhci->devs[slot_id] structure, so we
2849  * don't need to take the xhci->lock for manipulating that.
2850  */
2851 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2852 {
2853         int i;
2854         int ret = 0;
2855         struct xhci_hcd *xhci;
2856         struct xhci_virt_device *virt_dev;
2857         struct xhci_input_control_ctx *ctrl_ctx;
2858         struct xhci_slot_ctx *slot_ctx;
2859         struct xhci_command *command;
2860
2861         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2862         if (ret <= 0)
2863                 return ret;
2864         xhci = hcd_to_xhci(hcd);
2865         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2866                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2867                 return -ENODEV;
2868
2869         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2870         virt_dev = xhci->devs[udev->slot_id];
2871
2872         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2873         if (!command)
2874                 return -ENOMEM;
2875
2876         command->in_ctx = virt_dev->in_ctx;
2877
2878         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2879         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2880         if (!ctrl_ctx) {
2881                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2882                                 __func__);
2883                 ret = -ENOMEM;
2884                 goto command_cleanup;
2885         }
2886         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2887         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2888         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2889
2890         /* Don't issue the command if there's no endpoints to update. */
2891         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2892             ctrl_ctx->drop_flags == 0) {
2893                 ret = 0;
2894                 goto command_cleanup;
2895         }
2896         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2897         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2898         for (i = 31; i >= 1; i--) {
2899                 __le32 le32 = cpu_to_le32(BIT(i));
2900
2901                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2902                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2903                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2904                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2905                         break;
2906                 }
2907         }
2908
2909         ret = xhci_configure_endpoint(xhci, udev, command,
2910                         false, false);
2911         if (ret)
2912                 /* Callee should call reset_bandwidth() */
2913                 goto command_cleanup;
2914
2915         /* Free any rings that were dropped, but not changed. */
2916         for (i = 1; i < 31; i++) {
2917                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2918                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2919                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2920                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2921                 }
2922         }
2923         xhci_zero_in_ctx(xhci, virt_dev);
2924         /*
2925          * Install any rings for completely new endpoints or changed endpoints,
2926          * and free any old rings from changed endpoints.
2927          */
2928         for (i = 1; i < 31; i++) {
2929                 if (!virt_dev->eps[i].new_ring)
2930                         continue;
2931                 /* Only free the old ring if it exists.
2932                  * It may not if this is the first add of an endpoint.
2933                  */
2934                 if (virt_dev->eps[i].ring) {
2935                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2936                 }
2937                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2938                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2939                 virt_dev->eps[i].new_ring = NULL;
2940         }
2941 command_cleanup:
2942         kfree(command->completion);
2943         kfree(command);
2944
2945         return ret;
2946 }
2947
2948 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2949 {
2950         struct xhci_hcd *xhci;
2951         struct xhci_virt_device *virt_dev;
2952         int i, ret;
2953
2954         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2955         if (ret <= 0)
2956                 return;
2957         xhci = hcd_to_xhci(hcd);
2958
2959         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2960         virt_dev = xhci->devs[udev->slot_id];
2961         /* Free any rings allocated for added endpoints */
2962         for (i = 0; i < 31; i++) {
2963                 if (virt_dev->eps[i].new_ring) {
2964                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2965                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2966                         virt_dev->eps[i].new_ring = NULL;
2967                 }
2968         }
2969         xhci_zero_in_ctx(xhci, virt_dev);
2970 }
2971
2972 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2973                 struct xhci_container_ctx *in_ctx,
2974                 struct xhci_container_ctx *out_ctx,
2975                 struct xhci_input_control_ctx *ctrl_ctx,
2976                 u32 add_flags, u32 drop_flags)
2977 {
2978         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2979         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2980         xhci_slot_copy(xhci, in_ctx, out_ctx);
2981         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2982 }
2983
2984 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2985                 unsigned int slot_id, unsigned int ep_index,
2986                 struct xhci_dequeue_state *deq_state)
2987 {
2988         struct xhci_input_control_ctx *ctrl_ctx;
2989         struct xhci_container_ctx *in_ctx;
2990         struct xhci_ep_ctx *ep_ctx;
2991         u32 added_ctxs;
2992         dma_addr_t addr;
2993
2994         in_ctx = xhci->devs[slot_id]->in_ctx;
2995         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2996         if (!ctrl_ctx) {
2997                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2998                                 __func__);
2999                 return;
3000         }
3001
3002         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3003                         xhci->devs[slot_id]->out_ctx, ep_index);
3004         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3005         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3006                         deq_state->new_deq_ptr);
3007         if (addr == 0) {
3008                 xhci_warn(xhci, "WARN Cannot submit config ep after "
3009                                 "reset ep command\n");
3010                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3011                                 deq_state->new_deq_seg,
3012                                 deq_state->new_deq_ptr);
3013                 return;
3014         }
3015         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3016
3017         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3018         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3019                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3020                         added_ctxs, added_ctxs);
3021 }
3022
3023 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3024                                unsigned int stream_id, struct xhci_td *td)
3025 {
3026         struct xhci_dequeue_state deq_state;
3027         struct usb_device *udev = td->urb->dev;
3028
3029         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3030                         "Cleaning up stalled endpoint ring");
3031         /* We need to move the HW's dequeue pointer past this TD,
3032          * or it will attempt to resend it on the next doorbell ring.
3033          */
3034         xhci_find_new_dequeue_state(xhci, udev->slot_id,
3035                         ep_index, stream_id, td, &deq_state);
3036
3037         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3038                 return;
3039
3040         /* HW with the reset endpoint quirk will use the saved dequeue state to
3041          * issue a configure endpoint command later.
3042          */
3043         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3044                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3045                                 "Queueing new dequeue state");
3046                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3047                                 ep_index, &deq_state);
3048         } else {
3049                 /* Better hope no one uses the input context between now and the
3050                  * reset endpoint completion!
3051                  * XXX: No idea how this hardware will react when stream rings
3052                  * are enabled.
3053                  */
3054                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3055                                 "Setting up input context for "
3056                                 "configure endpoint command");
3057                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3058                                 ep_index, &deq_state);
3059         }
3060 }
3061
3062 /*
3063  * Called after usb core issues a clear halt control message.
3064  * The host side of the halt should already be cleared by a reset endpoint
3065  * command issued when the STALL event was received.
3066  *
3067  * The reset endpoint command may only be issued to endpoints in the halted
3068  * state. For software that wishes to reset the data toggle or sequence number
3069  * of an endpoint that isn't in the halted state this function will issue a
3070  * configure endpoint command with the Drop and Add bits set for the target
3071  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3072  */
3073
3074 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3075                 struct usb_host_endpoint *host_ep)
3076 {
3077         struct xhci_hcd *xhci;
3078         struct usb_device *udev;
3079         struct xhci_virt_device *vdev;
3080         struct xhci_virt_ep *ep;
3081         struct xhci_input_control_ctx *ctrl_ctx;
3082         struct xhci_command *stop_cmd, *cfg_cmd;
3083         unsigned int ep_index;
3084         unsigned long flags;
3085         u32 ep_flag;
3086
3087         xhci = hcd_to_xhci(hcd);
3088         if (!host_ep->hcpriv)
3089                 return;
3090         udev = (struct usb_device *) host_ep->hcpriv;
3091         vdev = xhci->devs[udev->slot_id];
3092         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3093         ep = &vdev->eps[ep_index];
3094
3095         /* Bail out if toggle is already being cleared by a endpoint reset */
3096         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3097                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3098                 return;
3099         }
3100         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3101         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3102             usb_endpoint_xfer_isoc(&host_ep->desc))
3103                 return;
3104
3105         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3106
3107         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3108                 return;
3109
3110         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3111         if (!stop_cmd)
3112                 return;
3113
3114         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3115         if (!cfg_cmd)
3116                 goto cleanup;
3117
3118         spin_lock_irqsave(&xhci->lock, flags);
3119
3120         /* block queuing new trbs and ringing ep doorbell */
3121         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3122
3123         /*
3124          * Make sure endpoint ring is empty before resetting the toggle/seq.
3125          * Driver is required to synchronously cancel all transfer request.
3126          * Stop the endpoint to force xHC to update the output context
3127          */
3128
3129         if (!list_empty(&ep->ring->td_list)) {
3130                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3131                 spin_unlock_irqrestore(&xhci->lock, flags);
3132                 xhci_free_command(xhci, cfg_cmd);
3133                 goto cleanup;
3134         }
3135         xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3136         xhci_ring_cmd_db(xhci);
3137         spin_unlock_irqrestore(&xhci->lock, flags);
3138
3139         wait_for_completion(stop_cmd->completion);
3140
3141         spin_lock_irqsave(&xhci->lock, flags);
3142
3143         /* config ep command clears toggle if add and drop ep flags are set */
3144         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3145         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3146                                            ctrl_ctx, ep_flag, ep_flag);
3147         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3148
3149         xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3150                                       udev->slot_id, false);
3151         xhci_ring_cmd_db(xhci);
3152         spin_unlock_irqrestore(&xhci->lock, flags);
3153
3154         wait_for_completion(cfg_cmd->completion);
3155
3156         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3157         xhci_free_command(xhci, cfg_cmd);
3158 cleanup:
3159         xhci_free_command(xhci, stop_cmd);
3160 }
3161
3162 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3163                 struct usb_device *udev, struct usb_host_endpoint *ep,
3164                 unsigned int slot_id)
3165 {
3166         int ret;
3167         unsigned int ep_index;
3168         unsigned int ep_state;
3169
3170         if (!ep)
3171                 return -EINVAL;
3172         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3173         if (ret <= 0)
3174                 return -EINVAL;
3175         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3176                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3177                                 " descriptor for ep 0x%x does not support streams\n",
3178                                 ep->desc.bEndpointAddress);
3179                 return -EINVAL;
3180         }
3181
3182         ep_index = xhci_get_endpoint_index(&ep->desc);
3183         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3184         if (ep_state & EP_HAS_STREAMS ||
3185                         ep_state & EP_GETTING_STREAMS) {
3186                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3187                                 "already has streams set up.\n",
3188                                 ep->desc.bEndpointAddress);
3189                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3190                                 "dynamic stream context array reallocation.\n");
3191                 return -EINVAL;
3192         }
3193         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3194                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3195                                 "endpoint 0x%x; URBs are pending.\n",
3196                                 ep->desc.bEndpointAddress);
3197                 return -EINVAL;
3198         }
3199         return 0;
3200 }
3201
3202 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3203                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3204 {
3205         unsigned int max_streams;
3206
3207         /* The stream context array size must be a power of two */
3208         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3209         /*
3210          * Find out how many primary stream array entries the host controller
3211          * supports.  Later we may use secondary stream arrays (similar to 2nd
3212          * level page entries), but that's an optional feature for xHCI host
3213          * controllers. xHCs must support at least 4 stream IDs.
3214          */
3215         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3216         if (*num_stream_ctxs > max_streams) {
3217                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3218                                 max_streams);
3219                 *num_stream_ctxs = max_streams;
3220                 *num_streams = max_streams;
3221         }
3222 }
3223
3224 /* Returns an error code if one of the endpoint already has streams.
3225  * This does not change any data structures, it only checks and gathers
3226  * information.
3227  */
3228 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3229                 struct usb_device *udev,
3230                 struct usb_host_endpoint **eps, unsigned int num_eps,
3231                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3232 {
3233         unsigned int max_streams;
3234         unsigned int endpoint_flag;
3235         int i;
3236         int ret;
3237
3238         for (i = 0; i < num_eps; i++) {
3239                 ret = xhci_check_streams_endpoint(xhci, udev,
3240                                 eps[i], udev->slot_id);
3241                 if (ret < 0)
3242                         return ret;
3243
3244                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3245                 if (max_streams < (*num_streams - 1)) {
3246                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3247                                         eps[i]->desc.bEndpointAddress,
3248                                         max_streams);
3249                         *num_streams = max_streams+1;
3250                 }
3251
3252                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3253                 if (*changed_ep_bitmask & endpoint_flag)
3254                         return -EINVAL;
3255                 *changed_ep_bitmask |= endpoint_flag;
3256         }
3257         return 0;
3258 }
3259
3260 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3261                 struct usb_device *udev,
3262                 struct usb_host_endpoint **eps, unsigned int num_eps)
3263 {
3264         u32 changed_ep_bitmask = 0;
3265         unsigned int slot_id;
3266         unsigned int ep_index;
3267         unsigned int ep_state;
3268         int i;
3269
3270         slot_id = udev->slot_id;
3271         if (!xhci->devs[slot_id])
3272                 return 0;
3273
3274         for (i = 0; i < num_eps; i++) {
3275                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3276                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3277                 /* Are streams already being freed for the endpoint? */
3278                 if (ep_state & EP_GETTING_NO_STREAMS) {
3279                         xhci_warn(xhci, "WARN Can't disable streams for "
3280                                         "endpoint 0x%x, "
3281                                         "streams are being disabled already\n",
3282                                         eps[i]->desc.bEndpointAddress);
3283                         return 0;
3284                 }
3285                 /* Are there actually any streams to free? */
3286                 if (!(ep_state & EP_HAS_STREAMS) &&
3287                                 !(ep_state & EP_GETTING_STREAMS)) {
3288                         xhci_warn(xhci, "WARN Can't disable streams for "
3289                                         "endpoint 0x%x, "
3290                                         "streams are already disabled!\n",
3291                                         eps[i]->desc.bEndpointAddress);
3292                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3293                                         "with non-streams endpoint\n");
3294                         return 0;
3295                 }
3296                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3297         }
3298         return changed_ep_bitmask;
3299 }
3300
3301 /*
3302  * The USB device drivers use this function (through the HCD interface in USB
3303  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3304  * coordinate mass storage command queueing across multiple endpoints (basically
3305  * a stream ID == a task ID).
3306  *
3307  * Setting up streams involves allocating the same size stream context array
3308  * for each endpoint and issuing a configure endpoint command for all endpoints.
3309  *
3310  * Don't allow the call to succeed if one endpoint only supports one stream
3311  * (which means it doesn't support streams at all).
3312  *
3313  * Drivers may get less stream IDs than they asked for, if the host controller
3314  * hardware or endpoints claim they can't support the number of requested
3315  * stream IDs.
3316  */
3317 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3318                 struct usb_host_endpoint **eps, unsigned int num_eps,
3319                 unsigned int num_streams, gfp_t mem_flags)
3320 {
3321         int i, ret;
3322         struct xhci_hcd *xhci;
3323         struct xhci_virt_device *vdev;
3324         struct xhci_command *config_cmd;
3325         struct xhci_input_control_ctx *ctrl_ctx;
3326         unsigned int ep_index;
3327         unsigned int num_stream_ctxs;
3328         unsigned int max_packet;
3329         unsigned long flags;
3330         u32 changed_ep_bitmask = 0;
3331
3332         if (!eps)
3333                 return -EINVAL;
3334
3335         /* Add one to the number of streams requested to account for
3336          * stream 0 that is reserved for xHCI usage.
3337          */
3338         num_streams += 1;
3339         xhci = hcd_to_xhci(hcd);
3340         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3341                         num_streams);
3342
3343         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3344         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3345                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3346                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3347                 return -ENOSYS;
3348         }
3349
3350         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3351         if (!config_cmd)
3352                 return -ENOMEM;
3353
3354         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3355         if (!ctrl_ctx) {
3356                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3357                                 __func__);
3358                 xhci_free_command(xhci, config_cmd);
3359                 return -ENOMEM;
3360         }
3361
3362         /* Check to make sure all endpoints are not already configured for
3363          * streams.  While we're at it, find the maximum number of streams that
3364          * all the endpoints will support and check for duplicate endpoints.
3365          */
3366         spin_lock_irqsave(&xhci->lock, flags);
3367         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3368                         num_eps, &num_streams, &changed_ep_bitmask);
3369         if (ret < 0) {
3370                 xhci_free_command(xhci, config_cmd);
3371                 spin_unlock_irqrestore(&xhci->lock, flags);
3372                 return ret;
3373         }
3374         if (num_streams <= 1) {
3375                 xhci_warn(xhci, "WARN: endpoints can't handle "
3376                                 "more than one stream.\n");
3377                 xhci_free_command(xhci, config_cmd);
3378                 spin_unlock_irqrestore(&xhci->lock, flags);
3379                 return -EINVAL;
3380         }
3381         vdev = xhci->devs[udev->slot_id];
3382         /* Mark each endpoint as being in transition, so
3383          * xhci_urb_enqueue() will reject all URBs.
3384          */
3385         for (i = 0; i < num_eps; i++) {
3386                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3387                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3388         }
3389         spin_unlock_irqrestore(&xhci->lock, flags);
3390
3391         /* Setup internal data structures and allocate HW data structures for
3392          * streams (but don't install the HW structures in the input context
3393          * until we're sure all memory allocation succeeded).
3394          */
3395         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3396         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3397                         num_stream_ctxs, num_streams);
3398
3399         for (i = 0; i < num_eps; i++) {
3400                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3401                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3402                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3403                                 num_stream_ctxs,
3404                                 num_streams,
3405                                 max_packet, mem_flags);
3406                 if (!vdev->eps[ep_index].stream_info)
3407                         goto cleanup;
3408                 /* Set maxPstreams in endpoint context and update deq ptr to
3409                  * point to stream context array. FIXME
3410                  */
3411         }
3412
3413         /* Set up the input context for a configure endpoint command. */
3414         for (i = 0; i < num_eps; i++) {
3415                 struct xhci_ep_ctx *ep_ctx;
3416
3417                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3418                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3419
3420                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3421                                 vdev->out_ctx, ep_index);
3422                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3423                                 vdev->eps[ep_index].stream_info);
3424         }
3425         /* Tell the HW to drop its old copy of the endpoint context info
3426          * and add the updated copy from the input context.
3427          */
3428         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3429                         vdev->out_ctx, ctrl_ctx,
3430                         changed_ep_bitmask, changed_ep_bitmask);
3431
3432         /* Issue and wait for the configure endpoint command */
3433         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3434                         false, false);
3435
3436         /* xHC rejected the configure endpoint command for some reason, so we
3437          * leave the old ring intact and free our internal streams data
3438          * structure.
3439          */
3440         if (ret < 0)
3441                 goto cleanup;
3442
3443         spin_lock_irqsave(&xhci->lock, flags);
3444         for (i = 0; i < num_eps; i++) {
3445                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3446                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3447                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3448                          udev->slot_id, ep_index);
3449                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3450         }
3451         xhci_free_command(xhci, config_cmd);
3452         spin_unlock_irqrestore(&xhci->lock, flags);
3453
3454         /* Subtract 1 for stream 0, which drivers can't use */
3455         return num_streams - 1;
3456
3457 cleanup:
3458         /* If it didn't work, free the streams! */
3459         for (i = 0; i < num_eps; i++) {
3460                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3461                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3462                 vdev->eps[ep_index].stream_info = NULL;
3463                 /* FIXME Unset maxPstreams in endpoint context and
3464                  * update deq ptr to point to normal string ring.
3465                  */
3466                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3467                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3468                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3469         }
3470         xhci_free_command(xhci, config_cmd);
3471         return -ENOMEM;
3472 }
3473
3474 /* Transition the endpoint from using streams to being a "normal" endpoint
3475  * without streams.
3476  *
3477  * Modify the endpoint context state, submit a configure endpoint command,
3478  * and free all endpoint rings for streams if that completes successfully.
3479  */
3480 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3481                 struct usb_host_endpoint **eps, unsigned int num_eps,
3482                 gfp_t mem_flags)
3483 {
3484         int i, ret;
3485         struct xhci_hcd *xhci;
3486         struct xhci_virt_device *vdev;
3487         struct xhci_command *command;
3488         struct xhci_input_control_ctx *ctrl_ctx;
3489         unsigned int ep_index;
3490         unsigned long flags;
3491         u32 changed_ep_bitmask;
3492
3493         xhci = hcd_to_xhci(hcd);
3494         vdev = xhci->devs[udev->slot_id];
3495
3496         /* Set up a configure endpoint command to remove the streams rings */
3497         spin_lock_irqsave(&xhci->lock, flags);
3498         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3499                         udev, eps, num_eps);
3500         if (changed_ep_bitmask == 0) {
3501                 spin_unlock_irqrestore(&xhci->lock, flags);
3502                 return -EINVAL;
3503         }
3504
3505         /* Use the xhci_command structure from the first endpoint.  We may have
3506          * allocated too many, but the driver may call xhci_free_streams() for
3507          * each endpoint it grouped into one call to xhci_alloc_streams().
3508          */
3509         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3510         command = vdev->eps[ep_index].stream_info->free_streams_command;
3511         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3512         if (!ctrl_ctx) {
3513                 spin_unlock_irqrestore(&xhci->lock, flags);
3514                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3515                                 __func__);
3516                 return -EINVAL;
3517         }
3518
3519         for (i = 0; i < num_eps; i++) {
3520                 struct xhci_ep_ctx *ep_ctx;
3521
3522                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3523                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3524                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3525                         EP_GETTING_NO_STREAMS;
3526
3527                 xhci_endpoint_copy(xhci, command->in_ctx,
3528                                 vdev->out_ctx, ep_index);
3529                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3530                                 &vdev->eps[ep_index]);
3531         }
3532         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3533                         vdev->out_ctx, ctrl_ctx,
3534                         changed_ep_bitmask, changed_ep_bitmask);
3535         spin_unlock_irqrestore(&xhci->lock, flags);
3536
3537         /* Issue and wait for the configure endpoint command,
3538          * which must succeed.
3539          */
3540         ret = xhci_configure_endpoint(xhci, udev, command,
3541                         false, true);
3542
3543         /* xHC rejected the configure endpoint command for some reason, so we
3544          * leave the streams rings intact.
3545          */
3546         if (ret < 0)
3547                 return ret;
3548
3549         spin_lock_irqsave(&xhci->lock, flags);
3550         for (i = 0; i < num_eps; i++) {
3551                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3552                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3553                 vdev->eps[ep_index].stream_info = NULL;
3554                 /* FIXME Unset maxPstreams in endpoint context and
3555                  * update deq ptr to point to normal string ring.
3556                  */
3557                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3558                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3559         }
3560         spin_unlock_irqrestore(&xhci->lock, flags);
3561
3562         return 0;
3563 }
3564
3565 /*
3566  * Deletes endpoint resources for endpoints that were active before a Reset
3567  * Device command, or a Disable Slot command.  The Reset Device command leaves
3568  * the control endpoint intact, whereas the Disable Slot command deletes it.
3569  *
3570  * Must be called with xhci->lock held.
3571  */
3572 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3573         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3574 {
3575         int i;
3576         unsigned int num_dropped_eps = 0;
3577         unsigned int drop_flags = 0;
3578
3579         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3580                 if (virt_dev->eps[i].ring) {
3581                         drop_flags |= 1 << i;
3582                         num_dropped_eps++;
3583                 }
3584         }
3585         xhci->num_active_eps -= num_dropped_eps;
3586         if (num_dropped_eps)
3587                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3588                                 "Dropped %u ep ctxs, flags = 0x%x, "
3589                                 "%u now active.",
3590                                 num_dropped_eps, drop_flags,
3591                                 xhci->num_active_eps);
3592 }
3593
3594 /*
3595  * This submits a Reset Device Command, which will set the device state to 0,
3596  * set the device address to 0, and disable all the endpoints except the default
3597  * control endpoint.  The USB core should come back and call
3598  * xhci_address_device(), and then re-set up the configuration.  If this is
3599  * called because of a usb_reset_and_verify_device(), then the old alternate
3600  * settings will be re-installed through the normal bandwidth allocation
3601  * functions.
3602  *
3603  * Wait for the Reset Device command to finish.  Remove all structures
3604  * associated with the endpoints that were disabled.  Clear the input device
3605  * structure? Reset the control endpoint 0 max packet size?
3606  *
3607  * If the virt_dev to be reset does not exist or does not match the udev,
3608  * it means the device is lost, possibly due to the xHC restore error and
3609  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3610  * re-allocate the device.
3611  */
3612 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3613                 struct usb_device *udev)
3614 {
3615         int ret, i;
3616         unsigned long flags;
3617         struct xhci_hcd *xhci;
3618         unsigned int slot_id;
3619         struct xhci_virt_device *virt_dev;
3620         struct xhci_command *reset_device_cmd;
3621         struct xhci_slot_ctx *slot_ctx;
3622         int old_active_eps = 0;
3623
3624         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3625         if (ret <= 0)
3626                 return ret;
3627         xhci = hcd_to_xhci(hcd);
3628         slot_id = udev->slot_id;
3629         virt_dev = xhci->devs[slot_id];
3630         if (!virt_dev) {
3631                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3632                                 "not exist. Re-allocate the device\n", slot_id);
3633                 ret = xhci_alloc_dev(hcd, udev);
3634                 if (ret == 1)
3635                         return 0;
3636                 else
3637                         return -EINVAL;
3638         }
3639
3640         if (virt_dev->tt_info)
3641                 old_active_eps = virt_dev->tt_info->active_eps;
3642
3643         if (virt_dev->udev != udev) {
3644                 /* If the virt_dev and the udev does not match, this virt_dev
3645                  * may belong to another udev.
3646                  * Re-allocate the device.
3647                  */
3648                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3649                                 "not match the udev. Re-allocate the device\n",
3650                                 slot_id);
3651                 ret = xhci_alloc_dev(hcd, udev);
3652                 if (ret == 1)
3653                         return 0;
3654                 else
3655                         return -EINVAL;
3656         }
3657
3658         /* If device is not setup, there is no point in resetting it */
3659         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3660         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3661                                                 SLOT_STATE_DISABLED)
3662                 return 0;
3663
3664         trace_xhci_discover_or_reset_device(slot_ctx);
3665
3666         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3667         /* Allocate the command structure that holds the struct completion.
3668          * Assume we're in process context, since the normal device reset
3669          * process has to wait for the device anyway.  Storage devices are
3670          * reset as part of error handling, so use GFP_NOIO instead of
3671          * GFP_KERNEL.
3672          */
3673         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3674         if (!reset_device_cmd) {
3675                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3676                 return -ENOMEM;
3677         }
3678
3679         /* Attempt to submit the Reset Device command to the command ring */
3680         spin_lock_irqsave(&xhci->lock, flags);
3681
3682         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3683         if (ret) {
3684                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3685                 spin_unlock_irqrestore(&xhci->lock, flags);
3686                 goto command_cleanup;
3687         }
3688         xhci_ring_cmd_db(xhci);
3689         spin_unlock_irqrestore(&xhci->lock, flags);
3690
3691         /* Wait for the Reset Device command to finish */
3692         wait_for_completion(reset_device_cmd->completion);
3693
3694         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3695          * unless we tried to reset a slot ID that wasn't enabled,
3696          * or the device wasn't in the addressed or configured state.
3697          */
3698         ret = reset_device_cmd->status;
3699         switch (ret) {
3700         case COMP_COMMAND_ABORTED:
3701         case COMP_COMMAND_RING_STOPPED:
3702                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3703                 ret = -ETIME;
3704                 goto command_cleanup;
3705         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3706         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3707                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3708                                 slot_id,
3709                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3710                 xhci_dbg(xhci, "Not freeing device rings.\n");
3711                 /* Don't treat this as an error.  May change my mind later. */
3712                 ret = 0;
3713                 goto command_cleanup;
3714         case COMP_SUCCESS:
3715                 xhci_dbg(xhci, "Successful reset device command.\n");
3716                 break;
3717         default:
3718                 if (xhci_is_vendor_info_code(xhci, ret))
3719                         break;
3720                 xhci_warn(xhci, "Unknown completion code %u for "
3721                                 "reset device command.\n", ret);
3722                 ret = -EINVAL;
3723                 goto command_cleanup;
3724         }
3725
3726         /* Free up host controller endpoint resources */
3727         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3728                 spin_lock_irqsave(&xhci->lock, flags);
3729                 /* Don't delete the default control endpoint resources */
3730                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3731                 spin_unlock_irqrestore(&xhci->lock, flags);
3732         }
3733
3734         /* Everything but endpoint 0 is disabled, so free the rings. */
3735         for (i = 1; i < 31; i++) {
3736                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3737
3738                 if (ep->ep_state & EP_HAS_STREAMS) {
3739                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3740                                         xhci_get_endpoint_address(i));
3741                         xhci_free_stream_info(xhci, ep->stream_info);
3742                         ep->stream_info = NULL;
3743                         ep->ep_state &= ~EP_HAS_STREAMS;
3744                 }
3745
3746                 if (ep->ring) {
3747                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3748                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3749                 }
3750                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3751                         xhci_drop_ep_from_interval_table(xhci,
3752                                         &virt_dev->eps[i].bw_info,
3753                                         virt_dev->bw_table,
3754                                         udev,
3755                                         &virt_dev->eps[i],
3756                                         virt_dev->tt_info);
3757                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3758         }
3759         /* If necessary, update the number of active TTs on this root port */
3760         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3761         virt_dev->flags = 0;
3762         ret = 0;
3763
3764 command_cleanup:
3765         xhci_free_command(xhci, reset_device_cmd);
3766         return ret;
3767 }
3768
3769 /*
3770  * At this point, the struct usb_device is about to go away, the device has
3771  * disconnected, and all traffic has been stopped and the endpoints have been
3772  * disabled.  Free any HC data structures associated with that device.
3773  */
3774 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3775 {
3776         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3777         struct xhci_virt_device *virt_dev;
3778         struct xhci_slot_ctx *slot_ctx;
3779         int i, ret;
3780
3781 #ifndef CONFIG_USB_DEFAULT_PERSIST
3782         /*
3783          * We called pm_runtime_get_noresume when the device was attached.
3784          * Decrement the counter here to allow controller to runtime suspend
3785          * if no devices remain.
3786          */
3787         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3788                 pm_runtime_put_noidle(hcd->self.controller);
3789 #endif
3790
3791         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3792         /* If the host is halted due to driver unload, we still need to free the
3793          * device.
3794          */
3795         if (ret <= 0 && ret != -ENODEV)
3796                 return;
3797
3798         virt_dev = xhci->devs[udev->slot_id];
3799         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3800         trace_xhci_free_dev(slot_ctx);
3801
3802         /* Stop any wayward timer functions (which may grab the lock) */
3803         for (i = 0; i < 31; i++) {
3804                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3805                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3806         }
3807         xhci_debugfs_remove_slot(xhci, udev->slot_id);
3808         virt_dev->udev = NULL;
3809         ret = xhci_disable_slot(xhci, udev->slot_id);
3810         if (ret)
3811                 xhci_free_virt_device(xhci, udev->slot_id);
3812 }
3813
3814 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3815 {
3816         struct xhci_command *command;
3817         unsigned long flags;
3818         u32 state;
3819         int ret = 0;
3820
3821         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3822         if (!command)
3823                 return -ENOMEM;
3824
3825         spin_lock_irqsave(&xhci->lock, flags);
3826         /* Don't disable the slot if the host controller is dead. */
3827         state = readl(&xhci->op_regs->status);
3828         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3829                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3830                 spin_unlock_irqrestore(&xhci->lock, flags);
3831                 kfree(command);
3832                 return -ENODEV;
3833         }
3834
3835         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3836                                 slot_id);
3837         if (ret) {
3838                 spin_unlock_irqrestore(&xhci->lock, flags);
3839                 kfree(command);
3840                 return ret;
3841         }
3842         xhci_ring_cmd_db(xhci);
3843         spin_unlock_irqrestore(&xhci->lock, flags);
3844         return ret;
3845 }
3846
3847 /*
3848  * Checks if we have enough host controller resources for the default control
3849  * endpoint.
3850  *
3851  * Must be called with xhci->lock held.
3852  */
3853 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3854 {
3855         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3856                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3857                                 "Not enough ep ctxs: "
3858                                 "%u active, need to add 1, limit is %u.",
3859                                 xhci->num_active_eps, xhci->limit_active_eps);
3860                 return -ENOMEM;
3861         }
3862         xhci->num_active_eps += 1;
3863         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3864                         "Adding 1 ep ctx, %u now active.",
3865                         xhci->num_active_eps);
3866         return 0;
3867 }
3868
3869
3870 /*
3871  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3872  * timed out, or allocating memory failed.  Returns 1 on success.
3873  */
3874 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3875 {
3876         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3877         struct xhci_virt_device *vdev;
3878         struct xhci_slot_ctx *slot_ctx;
3879         unsigned long flags;
3880         int ret, slot_id;
3881         struct xhci_command *command;
3882
3883         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3884         if (!command)
3885                 return 0;
3886
3887         spin_lock_irqsave(&xhci->lock, flags);
3888         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3889         if (ret) {
3890                 spin_unlock_irqrestore(&xhci->lock, flags);
3891                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3892                 xhci_free_command(xhci, command);
3893                 return 0;
3894         }
3895         xhci_ring_cmd_db(xhci);
3896         spin_unlock_irqrestore(&xhci->lock, flags);
3897
3898         wait_for_completion(command->completion);
3899         slot_id = command->slot_id;
3900
3901         if (!slot_id || command->status != COMP_SUCCESS) {
3902                 xhci_err(xhci, "Error while assigning device slot ID\n");
3903                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3904                                 HCS_MAX_SLOTS(
3905                                         readl(&xhci->cap_regs->hcs_params1)));
3906                 xhci_free_command(xhci, command);
3907                 return 0;
3908         }
3909
3910         xhci_free_command(xhci, command);
3911
3912         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3913                 spin_lock_irqsave(&xhci->lock, flags);
3914                 ret = xhci_reserve_host_control_ep_resources(xhci);
3915                 if (ret) {
3916                         spin_unlock_irqrestore(&xhci->lock, flags);
3917                         xhci_warn(xhci, "Not enough host resources, "
3918                                         "active endpoint contexts = %u\n",
3919                                         xhci->num_active_eps);
3920                         goto disable_slot;
3921                 }
3922                 spin_unlock_irqrestore(&xhci->lock, flags);
3923         }
3924         /* Use GFP_NOIO, since this function can be called from
3925          * xhci_discover_or_reset_device(), which may be called as part of
3926          * mass storage driver error handling.
3927          */
3928         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3929                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3930                 goto disable_slot;
3931         }
3932         vdev = xhci->devs[slot_id];
3933         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3934         trace_xhci_alloc_dev(slot_ctx);
3935
3936         udev->slot_id = slot_id;
3937
3938         xhci_debugfs_create_slot(xhci, slot_id);
3939
3940 #ifndef CONFIG_USB_DEFAULT_PERSIST
3941         /*
3942          * If resetting upon resume, we can't put the controller into runtime
3943          * suspend if there is a device attached.
3944          */
3945         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3946                 pm_runtime_get_noresume(hcd->self.controller);
3947 #endif
3948
3949         /* Is this a LS or FS device under a HS hub? */
3950         /* Hub or peripherial? */
3951         return 1;
3952
3953 disable_slot:
3954         ret = xhci_disable_slot(xhci, udev->slot_id);
3955         if (ret)
3956                 xhci_free_virt_device(xhci, udev->slot_id);
3957
3958         return 0;
3959 }
3960
3961 /*
3962  * Issue an Address Device command and optionally send a corresponding
3963  * SetAddress request to the device.
3964  */
3965 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3966                              enum xhci_setup_dev setup)
3967 {
3968         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3969         unsigned long flags;
3970         struct xhci_virt_device *virt_dev;
3971         int ret = 0;
3972         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3973         struct xhci_slot_ctx *slot_ctx;
3974         struct xhci_input_control_ctx *ctrl_ctx;
3975         u64 temp_64;
3976         struct xhci_command *command = NULL;
3977
3978         mutex_lock(&xhci->mutex);
3979
3980         if (xhci->xhc_state) {  /* dying, removing or halted */
3981                 ret = -ESHUTDOWN;
3982                 goto out;
3983         }
3984
3985         if (!udev->slot_id) {
3986                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3987                                 "Bad Slot ID %d", udev->slot_id);
3988                 ret = -EINVAL;
3989                 goto out;
3990         }
3991
3992         virt_dev = xhci->devs[udev->slot_id];
3993
3994         if (WARN_ON(!virt_dev)) {
3995                 /*
3996                  * In plug/unplug torture test with an NEC controller,
3997                  * a zero-dereference was observed once due to virt_dev = 0.
3998                  * Print useful debug rather than crash if it is observed again!
3999                  */
4000                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4001                         udev->slot_id);
4002                 ret = -EINVAL;
4003                 goto out;
4004         }
4005         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4006         trace_xhci_setup_device_slot(slot_ctx);
4007
4008         if (setup == SETUP_CONTEXT_ONLY) {
4009                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4010                     SLOT_STATE_DEFAULT) {
4011                         xhci_dbg(xhci, "Slot already in default state\n");
4012                         goto out;
4013                 }
4014         }
4015
4016         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4017         if (!command) {
4018                 ret = -ENOMEM;
4019                 goto out;
4020         }
4021
4022         command->in_ctx = virt_dev->in_ctx;
4023
4024         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4025         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4026         if (!ctrl_ctx) {
4027                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4028                                 __func__);
4029                 ret = -EINVAL;
4030                 goto out;
4031         }
4032         /*
4033          * If this is the first Set Address since device plug-in or
4034          * virt_device realloaction after a resume with an xHCI power loss,
4035          * then set up the slot context.
4036          */
4037         if (!slot_ctx->dev_info)
4038                 xhci_setup_addressable_virt_dev(xhci, udev);
4039         /* Otherwise, update the control endpoint ring enqueue pointer. */
4040         else
4041                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4042         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4043         ctrl_ctx->drop_flags = 0;
4044
4045         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4046                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4047
4048         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4049         spin_lock_irqsave(&xhci->lock, flags);
4050         trace_xhci_setup_device(virt_dev);
4051         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4052                                         udev->slot_id, setup);
4053         if (ret) {
4054                 spin_unlock_irqrestore(&xhci->lock, flags);
4055                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4056                                 "FIXME: allocate a command ring segment");
4057                 goto out;
4058         }
4059         xhci_ring_cmd_db(xhci);
4060         spin_unlock_irqrestore(&xhci->lock, flags);
4061
4062         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4063         wait_for_completion(command->completion);
4064
4065         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4066          * the SetAddress() "recovery interval" required by USB and aborting the
4067          * command on a timeout.
4068          */
4069         switch (command->status) {
4070         case COMP_COMMAND_ABORTED:
4071         case COMP_COMMAND_RING_STOPPED:
4072                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4073                 ret = -ETIME;
4074                 break;
4075         case COMP_CONTEXT_STATE_ERROR:
4076         case COMP_SLOT_NOT_ENABLED_ERROR:
4077                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4078                          act, udev->slot_id);
4079                 ret = -EINVAL;
4080                 break;
4081         case COMP_USB_TRANSACTION_ERROR:
4082                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4083
4084                 mutex_unlock(&xhci->mutex);
4085                 ret = xhci_disable_slot(xhci, udev->slot_id);
4086                 if (!ret)
4087                         xhci_alloc_dev(hcd, udev);
4088                 kfree(command->completion);
4089                 kfree(command);
4090                 return -EPROTO;
4091         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4092                 dev_warn(&udev->dev,
4093                          "ERROR: Incompatible device for setup %s command\n", act);
4094                 ret = -ENODEV;
4095                 break;
4096         case COMP_SUCCESS:
4097                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4098                                "Successful setup %s command", act);
4099                 break;
4100         default:
4101                 xhci_err(xhci,
4102                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4103                          act, command->status);
4104                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4105                 ret = -EINVAL;
4106                 break;
4107         }
4108         if (ret)
4109                 goto out;
4110         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4111         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4112                         "Op regs DCBAA ptr = %#016llx", temp_64);
4113         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4114                 "Slot ID %d dcbaa entry @%p = %#016llx",
4115                 udev->slot_id,
4116                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4117                 (unsigned long long)
4118                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4119         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4120                         "Output Context DMA address = %#08llx",
4121                         (unsigned long long)virt_dev->out_ctx->dma);
4122         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4123                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4124         /*
4125          * USB core uses address 1 for the roothubs, so we add one to the
4126          * address given back to us by the HC.
4127          */
4128         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4129                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4130         /* Zero the input context control for later use */
4131         ctrl_ctx->add_flags = 0;
4132         ctrl_ctx->drop_flags = 0;
4133
4134         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4135                        "Internal device address = %d",
4136                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4137 out:
4138         mutex_unlock(&xhci->mutex);
4139         if (command) {
4140                 kfree(command->completion);
4141                 kfree(command);
4142         }
4143         return ret;
4144 }
4145
4146 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4147 {
4148         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4149 }
4150
4151 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4152 {
4153         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4154 }
4155
4156 /*
4157  * Transfer the port index into real index in the HW port status
4158  * registers. Caculate offset between the port's PORTSC register
4159  * and port status base. Divide the number of per port register
4160  * to get the real index. The raw port number bases 1.
4161  */
4162 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4163 {
4164         struct xhci_hub *rhub;
4165
4166         rhub = xhci_get_rhub(hcd);
4167         return rhub->ports[port1 - 1]->hw_portnum + 1;
4168 }
4169
4170 /*
4171  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4172  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4173  */
4174 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4175                         struct usb_device *udev, u16 max_exit_latency)
4176 {
4177         struct xhci_virt_device *virt_dev;
4178         struct xhci_command *command;
4179         struct xhci_input_control_ctx *ctrl_ctx;
4180         struct xhci_slot_ctx *slot_ctx;
4181         unsigned long flags;
4182         int ret;
4183
4184         spin_lock_irqsave(&xhci->lock, flags);
4185
4186         virt_dev = xhci->devs[udev->slot_id];
4187
4188         /*
4189          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4190          * xHC was re-initialized. Exit latency will be set later after
4191          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4192          */
4193
4194         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4195                 spin_unlock_irqrestore(&xhci->lock, flags);
4196                 return 0;
4197         }
4198
4199         /* Attempt to issue an Evaluate Context command to change the MEL. */
4200         command = xhci->lpm_command;
4201         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4202         if (!ctrl_ctx) {
4203                 spin_unlock_irqrestore(&xhci->lock, flags);
4204                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4205                                 __func__);
4206                 return -ENOMEM;
4207         }
4208
4209         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4210         spin_unlock_irqrestore(&xhci->lock, flags);
4211
4212         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4213         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4214         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4215         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4216         slot_ctx->dev_state = 0;
4217
4218         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4219                         "Set up evaluate context for LPM MEL change.");
4220
4221         /* Issue and wait for the evaluate context command. */
4222         ret = xhci_configure_endpoint(xhci, udev, command,
4223                         true, true);
4224
4225         if (!ret) {
4226                 spin_lock_irqsave(&xhci->lock, flags);
4227                 virt_dev->current_mel = max_exit_latency;
4228                 spin_unlock_irqrestore(&xhci->lock, flags);
4229         }
4230         return ret;
4231 }
4232
4233 #ifdef CONFIG_PM
4234
4235 /* BESL to HIRD Encoding array for USB2 LPM */
4236 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4237         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4238
4239 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4240 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4241                                         struct usb_device *udev)
4242 {
4243         int u2del, besl, besl_host;
4244         int besl_device = 0;
4245         u32 field;
4246
4247         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4248         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4249
4250         if (field & USB_BESL_SUPPORT) {
4251                 for (besl_host = 0; besl_host < 16; besl_host++) {
4252                         if (xhci_besl_encoding[besl_host] >= u2del)
4253                                 break;
4254                 }
4255                 /* Use baseline BESL value as default */
4256                 if (field & USB_BESL_BASELINE_VALID)
4257                         besl_device = USB_GET_BESL_BASELINE(field);
4258                 else if (field & USB_BESL_DEEP_VALID)
4259                         besl_device = USB_GET_BESL_DEEP(field);
4260         } else {
4261                 if (u2del <= 50)
4262                         besl_host = 0;
4263                 else
4264                         besl_host = (u2del - 51) / 75 + 1;
4265         }
4266
4267         besl = besl_host + besl_device;
4268         if (besl > 15)
4269                 besl = 15;
4270
4271         return besl;
4272 }
4273
4274 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4275 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4276 {
4277         u32 field;
4278         int l1;
4279         int besld = 0;
4280         int hirdm = 0;
4281
4282         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4283
4284         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4285         l1 = udev->l1_params.timeout / 256;
4286
4287         /* device has preferred BESLD */
4288         if (field & USB_BESL_DEEP_VALID) {
4289                 besld = USB_GET_BESL_DEEP(field);
4290                 hirdm = 1;
4291         }
4292
4293         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4294 }
4295
4296 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4297                         struct usb_device *udev, int enable)
4298 {
4299         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4300         struct xhci_port **ports;
4301         __le32 __iomem  *pm_addr, *hlpm_addr;
4302         u32             pm_val, hlpm_val, field;
4303         unsigned int    port_num;
4304         unsigned long   flags;
4305         int             hird, exit_latency;
4306         int             ret;
4307
4308         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4309                         !udev->lpm_capable)
4310                 return -EPERM;
4311
4312         if (!udev->parent || udev->parent->parent ||
4313                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4314                 return -EPERM;
4315
4316         if (udev->usb2_hw_lpm_capable != 1)
4317                 return -EPERM;
4318
4319         spin_lock_irqsave(&xhci->lock, flags);
4320
4321         ports = xhci->usb2_rhub.ports;
4322         port_num = udev->portnum - 1;
4323         pm_addr = ports[port_num]->addr + PORTPMSC;
4324         pm_val = readl(pm_addr);
4325         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4326
4327         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4328                         enable ? "enable" : "disable", port_num + 1);
4329
4330         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4331                 /* Host supports BESL timeout instead of HIRD */
4332                 if (udev->usb2_hw_lpm_besl_capable) {
4333                         /* if device doesn't have a preferred BESL value use a
4334                          * default one which works with mixed HIRD and BESL
4335                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4336                          */
4337                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4338                         if ((field & USB_BESL_SUPPORT) &&
4339                             (field & USB_BESL_BASELINE_VALID))
4340                                 hird = USB_GET_BESL_BASELINE(field);
4341                         else
4342                                 hird = udev->l1_params.besl;
4343
4344                         exit_latency = xhci_besl_encoding[hird];
4345                         spin_unlock_irqrestore(&xhci->lock, flags);
4346
4347                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4348                          * input context for link powermanagement evaluate
4349                          * context commands. It is protected by hcd->bandwidth
4350                          * mutex and is shared by all devices. We need to set
4351                          * the max ext latency in USB 2 BESL LPM as well, so
4352                          * use the same mutex and xhci_change_max_exit_latency()
4353                          */
4354                         mutex_lock(hcd->bandwidth_mutex);
4355                         ret = xhci_change_max_exit_latency(xhci, udev,
4356                                                            exit_latency);
4357                         mutex_unlock(hcd->bandwidth_mutex);
4358
4359                         if (ret < 0)
4360                                 return ret;
4361                         spin_lock_irqsave(&xhci->lock, flags);
4362
4363                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4364                         writel(hlpm_val, hlpm_addr);
4365                         /* flush write */
4366                         readl(hlpm_addr);
4367                 } else {
4368                         hird = xhci_calculate_hird_besl(xhci, udev);
4369                 }
4370
4371                 pm_val &= ~PORT_HIRD_MASK;
4372                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4373                 writel(pm_val, pm_addr);
4374                 pm_val = readl(pm_addr);
4375                 pm_val |= PORT_HLE;
4376                 writel(pm_val, pm_addr);
4377                 /* flush write */
4378                 readl(pm_addr);
4379         } else {
4380                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4381                 writel(pm_val, pm_addr);
4382                 /* flush write */
4383                 readl(pm_addr);
4384                 if (udev->usb2_hw_lpm_besl_capable) {
4385                         spin_unlock_irqrestore(&xhci->lock, flags);
4386                         mutex_lock(hcd->bandwidth_mutex);
4387                         xhci_change_max_exit_latency(xhci, udev, 0);
4388                         mutex_unlock(hcd->bandwidth_mutex);
4389                         return 0;
4390                 }
4391         }
4392
4393         spin_unlock_irqrestore(&xhci->lock, flags);
4394         return 0;
4395 }
4396
4397 /* check if a usb2 port supports a given extened capability protocol
4398  * only USB2 ports extended protocol capability values are cached.
4399  * Return 1 if capability is supported
4400  */
4401 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4402                                            unsigned capability)
4403 {
4404         u32 port_offset, port_count;
4405         int i;
4406
4407         for (i = 0; i < xhci->num_ext_caps; i++) {
4408                 if (xhci->ext_caps[i] & capability) {
4409                         /* port offsets starts at 1 */
4410                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4411                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4412                         if (port >= port_offset &&
4413                             port < port_offset + port_count)
4414                                 return 1;
4415                 }
4416         }
4417         return 0;
4418 }
4419
4420 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4421 {
4422         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4423         int             portnum = udev->portnum - 1;
4424
4425         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4426                 return 0;
4427
4428         /* we only support lpm for non-hub device connected to root hub yet */
4429         if (!udev->parent || udev->parent->parent ||
4430                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4431                 return 0;
4432
4433         if (xhci->hw_lpm_support == 1 &&
4434                         xhci_check_usb2_port_capability(
4435                                 xhci, portnum, XHCI_HLC)) {
4436                 udev->usb2_hw_lpm_capable = 1;
4437                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4438                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4439                 if (xhci_check_usb2_port_capability(xhci, portnum,
4440                                         XHCI_BLC))
4441                         udev->usb2_hw_lpm_besl_capable = 1;
4442         }
4443
4444         return 0;
4445 }
4446
4447 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4448
4449 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4450 static unsigned long long xhci_service_interval_to_ns(
4451                 struct usb_endpoint_descriptor *desc)
4452 {
4453         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4454 }
4455
4456 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4457                 enum usb3_link_state state)
4458 {
4459         unsigned long long sel;
4460         unsigned long long pel;
4461         unsigned int max_sel_pel;
4462         char *state_name;
4463
4464         switch (state) {
4465         case USB3_LPM_U1:
4466                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4467                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4468                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4469                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4470                 state_name = "U1";
4471                 break;
4472         case USB3_LPM_U2:
4473                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4474                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4475                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4476                 state_name = "U2";
4477                 break;
4478         default:
4479                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4480                                 __func__);
4481                 return USB3_LPM_DISABLED;
4482         }
4483
4484         if (sel <= max_sel_pel && pel <= max_sel_pel)
4485                 return USB3_LPM_DEVICE_INITIATED;
4486
4487         if (sel > max_sel_pel)
4488                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4489                                 "due to long SEL %llu ms\n",
4490                                 state_name, sel);
4491         else
4492                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4493                                 "due to long PEL %llu ms\n",
4494                                 state_name, pel);
4495         return USB3_LPM_DISABLED;
4496 }
4497
4498 /* The U1 timeout should be the maximum of the following values:
4499  *  - For control endpoints, U1 system exit latency (SEL) * 3
4500  *  - For bulk endpoints, U1 SEL * 5
4501  *  - For interrupt endpoints:
4502  *    - Notification EPs, U1 SEL * 3
4503  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4504  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4505  */
4506 static unsigned long long xhci_calculate_intel_u1_timeout(
4507                 struct usb_device *udev,
4508                 struct usb_endpoint_descriptor *desc)
4509 {
4510         unsigned long long timeout_ns;
4511         int ep_type;
4512         int intr_type;
4513
4514         ep_type = usb_endpoint_type(desc);
4515         switch (ep_type) {
4516         case USB_ENDPOINT_XFER_CONTROL:
4517                 timeout_ns = udev->u1_params.sel * 3;
4518                 break;
4519         case USB_ENDPOINT_XFER_BULK:
4520                 timeout_ns = udev->u1_params.sel * 5;
4521                 break;
4522         case USB_ENDPOINT_XFER_INT:
4523                 intr_type = usb_endpoint_interrupt_type(desc);
4524                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4525                         timeout_ns = udev->u1_params.sel * 3;
4526                         break;
4527                 }
4528                 /* Otherwise the calculation is the same as isoc eps */
4529                 /* fall through */
4530         case USB_ENDPOINT_XFER_ISOC:
4531                 timeout_ns = xhci_service_interval_to_ns(desc);
4532                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4533                 if (timeout_ns < udev->u1_params.sel * 2)
4534                         timeout_ns = udev->u1_params.sel * 2;
4535                 break;
4536         default:
4537                 return 0;
4538         }
4539
4540         return timeout_ns;
4541 }
4542
4543 /* Returns the hub-encoded U1 timeout value. */
4544 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4545                 struct usb_device *udev,
4546                 struct usb_endpoint_descriptor *desc)
4547 {
4548         unsigned long long timeout_ns;
4549
4550         /* Prevent U1 if service interval is shorter than U1 exit latency */
4551         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4552                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4553                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4554                         return USB3_LPM_DISABLED;
4555                 }
4556         }
4557
4558         if (xhci->quirks & XHCI_INTEL_HOST)
4559                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4560         else
4561                 timeout_ns = udev->u1_params.sel;
4562
4563         /* The U1 timeout is encoded in 1us intervals.
4564          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4565          */
4566         if (timeout_ns == USB3_LPM_DISABLED)
4567                 timeout_ns = 1;
4568         else
4569                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4570
4571         /* If the necessary timeout value is bigger than what we can set in the
4572          * USB 3.0 hub, we have to disable hub-initiated U1.
4573          */
4574         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4575                 return timeout_ns;
4576         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4577                         "due to long timeout %llu ms\n", timeout_ns);
4578         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4579 }
4580
4581 /* The U2 timeout should be the maximum of:
4582  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4583  *  - largest bInterval of any active periodic endpoint (to avoid going
4584  *    into lower power link states between intervals).
4585  *  - the U2 Exit Latency of the device
4586  */
4587 static unsigned long long xhci_calculate_intel_u2_timeout(
4588                 struct usb_device *udev,
4589                 struct usb_endpoint_descriptor *desc)
4590 {
4591         unsigned long long timeout_ns;
4592         unsigned long long u2_del_ns;
4593
4594         timeout_ns = 10 * 1000 * 1000;
4595
4596         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4597                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4598                 timeout_ns = xhci_service_interval_to_ns(desc);
4599
4600         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4601         if (u2_del_ns > timeout_ns)
4602                 timeout_ns = u2_del_ns;
4603
4604         return timeout_ns;
4605 }
4606
4607 /* Returns the hub-encoded U2 timeout value. */
4608 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4609                 struct usb_device *udev,
4610                 struct usb_endpoint_descriptor *desc)
4611 {
4612         unsigned long long timeout_ns;
4613
4614         /* Prevent U2 if service interval is shorter than U2 exit latency */
4615         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4616                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4617                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4618                         return USB3_LPM_DISABLED;
4619                 }
4620         }
4621
4622         if (xhci->quirks & XHCI_INTEL_HOST)
4623                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4624         else
4625                 timeout_ns = udev->u2_params.sel;
4626
4627         /* The U2 timeout is encoded in 256us intervals */
4628         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4629         /* If the necessary timeout value is bigger than what we can set in the
4630          * USB 3.0 hub, we have to disable hub-initiated U2.
4631          */
4632         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4633                 return timeout_ns;
4634         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4635                         "due to long timeout %llu ms\n", timeout_ns);
4636         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4637 }
4638
4639 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4640                 struct usb_device *udev,
4641                 struct usb_endpoint_descriptor *desc,
4642                 enum usb3_link_state state,
4643                 u16 *timeout)
4644 {
4645         if (state == USB3_LPM_U1)
4646                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4647         else if (state == USB3_LPM_U2)
4648                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4649
4650         return USB3_LPM_DISABLED;
4651 }
4652
4653 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4654                 struct usb_device *udev,
4655                 struct usb_endpoint_descriptor *desc,
4656                 enum usb3_link_state state,
4657                 u16 *timeout)
4658 {
4659         u16 alt_timeout;
4660
4661         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4662                 desc, state, timeout);
4663
4664         /* If we found we can't enable hub-initiated LPM, or
4665          * the U1 or U2 exit latency was too high to allow
4666          * device-initiated LPM as well, just stop searching.
4667          */
4668         if (alt_timeout == USB3_LPM_DISABLED ||
4669                         alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4670                 *timeout = alt_timeout;
4671                 return -E2BIG;
4672         }
4673         if (alt_timeout > *timeout)
4674                 *timeout = alt_timeout;
4675         return 0;
4676 }
4677
4678 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4679                 struct usb_device *udev,
4680                 struct usb_host_interface *alt,
4681                 enum usb3_link_state state,
4682                 u16 *timeout)
4683 {
4684         int j;
4685
4686         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4687                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4688                                         &alt->endpoint[j].desc, state, timeout))
4689                         return -E2BIG;
4690                 continue;
4691         }
4692         return 0;
4693 }
4694
4695 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4696                 enum usb3_link_state state)
4697 {
4698         struct usb_device *parent;
4699         unsigned int num_hubs;
4700
4701         if (state == USB3_LPM_U2)
4702                 return 0;
4703
4704         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4705         for (parent = udev->parent, num_hubs = 0; parent->parent;
4706                         parent = parent->parent)
4707                 num_hubs++;
4708
4709         if (num_hubs < 2)
4710                 return 0;
4711
4712         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4713                         " below second-tier hub.\n");
4714         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4715                         "to decrease power consumption.\n");
4716         return -E2BIG;
4717 }
4718
4719 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4720                 struct usb_device *udev,
4721                 enum usb3_link_state state)
4722 {
4723         if (xhci->quirks & XHCI_INTEL_HOST)
4724                 return xhci_check_intel_tier_policy(udev, state);
4725         else
4726                 return 0;
4727 }
4728
4729 /* Returns the U1 or U2 timeout that should be enabled.
4730  * If the tier check or timeout setting functions return with a non-zero exit
4731  * code, that means the timeout value has been finalized and we shouldn't look
4732  * at any more endpoints.
4733  */
4734 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4735                         struct usb_device *udev, enum usb3_link_state state)
4736 {
4737         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4738         struct usb_host_config *config;
4739         char *state_name;
4740         int i;
4741         u16 timeout = USB3_LPM_DISABLED;
4742
4743         if (state == USB3_LPM_U1)
4744                 state_name = "U1";
4745         else if (state == USB3_LPM_U2)
4746                 state_name = "U2";
4747         else {
4748                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4749                                 state);
4750                 return timeout;
4751         }
4752
4753         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4754                 return timeout;
4755
4756         /* Gather some information about the currently installed configuration
4757          * and alternate interface settings.
4758          */
4759         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4760                         state, &timeout))
4761                 return timeout;
4762
4763         config = udev->actconfig;
4764         if (!config)
4765                 return timeout;
4766
4767         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4768                 struct usb_driver *driver;
4769                 struct usb_interface *intf = config->interface[i];
4770
4771                 if (!intf)
4772                         continue;
4773
4774                 /* Check if any currently bound drivers want hub-initiated LPM
4775                  * disabled.
4776                  */
4777                 if (intf->dev.driver) {
4778                         driver = to_usb_driver(intf->dev.driver);
4779                         if (driver && driver->disable_hub_initiated_lpm) {
4780                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4781                                                 "at request of driver %s\n",
4782                                                 state_name, driver->name);
4783                                 return xhci_get_timeout_no_hub_lpm(udev, state);
4784                         }
4785                 }
4786
4787                 /* Not sure how this could happen... */
4788                 if (!intf->cur_altsetting)
4789                         continue;
4790
4791                 if (xhci_update_timeout_for_interface(xhci, udev,
4792                                         intf->cur_altsetting,
4793                                         state, &timeout))
4794                         return timeout;
4795         }
4796         return timeout;
4797 }
4798
4799 static int calculate_max_exit_latency(struct usb_device *udev,
4800                 enum usb3_link_state state_changed,
4801                 u16 hub_encoded_timeout)
4802 {
4803         unsigned long long u1_mel_us = 0;
4804         unsigned long long u2_mel_us = 0;
4805         unsigned long long mel_us = 0;
4806         bool disabling_u1;
4807         bool disabling_u2;
4808         bool enabling_u1;
4809         bool enabling_u2;
4810
4811         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4812                         hub_encoded_timeout == USB3_LPM_DISABLED);
4813         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4814                         hub_encoded_timeout == USB3_LPM_DISABLED);
4815
4816         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4817                         hub_encoded_timeout != USB3_LPM_DISABLED);
4818         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4819                         hub_encoded_timeout != USB3_LPM_DISABLED);
4820
4821         /* If U1 was already enabled and we're not disabling it,
4822          * or we're going to enable U1, account for the U1 max exit latency.
4823          */
4824         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4825                         enabling_u1)
4826                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4827         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4828                         enabling_u2)
4829                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4830
4831         if (u1_mel_us > u2_mel_us)
4832                 mel_us = u1_mel_us;
4833         else
4834                 mel_us = u2_mel_us;
4835         /* xHCI host controller max exit latency field is only 16 bits wide. */
4836         if (mel_us > MAX_EXIT) {
4837                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4838                                 "is too big.\n", mel_us);
4839                 return -E2BIG;
4840         }
4841         return mel_us;
4842 }
4843
4844 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4845 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4846                         struct usb_device *udev, enum usb3_link_state state)
4847 {
4848         struct xhci_hcd *xhci;
4849         u16 hub_encoded_timeout;
4850         int mel;
4851         int ret;
4852
4853         xhci = hcd_to_xhci(hcd);
4854         /* The LPM timeout values are pretty host-controller specific, so don't
4855          * enable hub-initiated timeouts unless the vendor has provided
4856          * information about their timeout algorithm.
4857          */
4858         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4859                         !xhci->devs[udev->slot_id])
4860                 return USB3_LPM_DISABLED;
4861
4862         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4863         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4864         if (mel < 0) {
4865                 /* Max Exit Latency is too big, disable LPM. */
4866                 hub_encoded_timeout = USB3_LPM_DISABLED;
4867                 mel = 0;
4868         }
4869
4870         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4871         if (ret)
4872                 return ret;
4873         return hub_encoded_timeout;
4874 }
4875
4876 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4877                         struct usb_device *udev, enum usb3_link_state state)
4878 {
4879         struct xhci_hcd *xhci;
4880         u16 mel;
4881
4882         xhci = hcd_to_xhci(hcd);
4883         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4884                         !xhci->devs[udev->slot_id])
4885                 return 0;
4886
4887         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4888         return xhci_change_max_exit_latency(xhci, udev, mel);
4889 }
4890 #else /* CONFIG_PM */
4891
4892 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4893                                 struct usb_device *udev, int enable)
4894 {
4895         return 0;
4896 }
4897
4898 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4899 {
4900         return 0;
4901 }
4902
4903 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4904                         struct usb_device *udev, enum usb3_link_state state)
4905 {
4906         return USB3_LPM_DISABLED;
4907 }
4908
4909 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4910                         struct usb_device *udev, enum usb3_link_state state)
4911 {
4912         return 0;
4913 }
4914 #endif  /* CONFIG_PM */
4915
4916 /*-------------------------------------------------------------------------*/
4917
4918 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4919  * internal data structures for the device.
4920  */
4921 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4922                         struct usb_tt *tt, gfp_t mem_flags)
4923 {
4924         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4925         struct xhci_virt_device *vdev;
4926         struct xhci_command *config_cmd;
4927         struct xhci_input_control_ctx *ctrl_ctx;
4928         struct xhci_slot_ctx *slot_ctx;
4929         unsigned long flags;
4930         unsigned think_time;
4931         int ret;
4932
4933         /* Ignore root hubs */
4934         if (!hdev->parent)
4935                 return 0;
4936
4937         vdev = xhci->devs[hdev->slot_id];
4938         if (!vdev) {
4939                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4940                 return -EINVAL;
4941         }
4942
4943         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4944         if (!config_cmd)
4945                 return -ENOMEM;
4946
4947         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4948         if (!ctrl_ctx) {
4949                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4950                                 __func__);
4951                 xhci_free_command(xhci, config_cmd);
4952                 return -ENOMEM;
4953         }
4954
4955         spin_lock_irqsave(&xhci->lock, flags);
4956         if (hdev->speed == USB_SPEED_HIGH &&
4957                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4958                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4959                 xhci_free_command(xhci, config_cmd);
4960                 spin_unlock_irqrestore(&xhci->lock, flags);
4961                 return -ENOMEM;
4962         }
4963
4964         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4965         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4966         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4967         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4968         /*
4969          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4970          * but it may be already set to 1 when setup an xHCI virtual
4971          * device, so clear it anyway.
4972          */
4973         if (tt->multi)
4974                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4975         else if (hdev->speed == USB_SPEED_FULL)
4976                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4977
4978         if (xhci->hci_version > 0x95) {
4979                 xhci_dbg(xhci, "xHCI version %x needs hub "
4980                                 "TT think time and number of ports\n",
4981                                 (unsigned int) xhci->hci_version);
4982                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4983                 /* Set TT think time - convert from ns to FS bit times.
4984                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4985                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4986                  *
4987                  * xHCI 1.0: this field shall be 0 if the device is not a
4988                  * High-spped hub.
4989                  */
4990                 think_time = tt->think_time;
4991                 if (think_time != 0)
4992                         think_time = (think_time / 666) - 1;
4993                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4994                         slot_ctx->tt_info |=
4995                                 cpu_to_le32(TT_THINK_TIME(think_time));
4996         } else {
4997                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4998                                 "TT think time or number of ports\n",
4999                                 (unsigned int) xhci->hci_version);
5000         }
5001         slot_ctx->dev_state = 0;
5002         spin_unlock_irqrestore(&xhci->lock, flags);
5003
5004         xhci_dbg(xhci, "Set up %s for hub device.\n",
5005                         (xhci->hci_version > 0x95) ?
5006                         "configure endpoint" : "evaluate context");
5007
5008         /* Issue and wait for the configure endpoint or
5009          * evaluate context command.
5010          */
5011         if (xhci->hci_version > 0x95)
5012                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5013                                 false, false);
5014         else
5015                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5016                                 true, false);
5017
5018         xhci_free_command(xhci, config_cmd);
5019         return ret;
5020 }
5021
5022 static int xhci_get_frame(struct usb_hcd *hcd)
5023 {
5024         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5025         /* EHCI mods by the periodic size.  Why? */
5026         return readl(&xhci->run_regs->microframe_index) >> 3;
5027 }
5028
5029 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5030 {
5031         struct xhci_hcd         *xhci;
5032         /*
5033          * TODO: Check with DWC3 clients for sysdev according to
5034          * quirks
5035          */
5036         struct device           *dev = hcd->self.sysdev;
5037         unsigned int            minor_rev;
5038         int                     retval;
5039
5040         /* Accept arbitrarily long scatter-gather lists */
5041         hcd->self.sg_tablesize = ~0;
5042
5043         /* support to build packet from discontinuous buffers */
5044         hcd->self.no_sg_constraint = 1;
5045
5046         /* XHCI controllers don't stop the ep queue on short packets :| */
5047         hcd->self.no_stop_on_short = 1;
5048
5049         xhci = hcd_to_xhci(hcd);
5050
5051         if (usb_hcd_is_primary_hcd(hcd)) {
5052                 xhci->main_hcd = hcd;
5053                 xhci->usb2_rhub.hcd = hcd;
5054                 /* Mark the first roothub as being USB 2.0.
5055                  * The xHCI driver will register the USB 3.0 roothub.
5056                  */
5057                 hcd->speed = HCD_USB2;
5058                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5059                 /*
5060                  * USB 2.0 roothub under xHCI has an integrated TT,
5061                  * (rate matching hub) as opposed to having an OHCI/UHCI
5062                  * companion controller.
5063                  */
5064                 hcd->has_tt = 1;
5065         } else {
5066                 /*
5067                  * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5068                  * minor revision instead of sbrn. Minor revision is a two digit
5069                  * BCD containing minor and sub-minor numbers, only show minor.
5070                  */
5071                 minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5072
5073                 switch (minor_rev) {
5074                 case 2:
5075                         hcd->speed = HCD_USB32;
5076                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5077                         hcd->self.root_hub->rx_lanes = 2;
5078                         hcd->self.root_hub->tx_lanes = 2;
5079                         break;
5080                 case 1:
5081                         hcd->speed = HCD_USB31;
5082                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5083                         break;
5084                 }
5085                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5086                           minor_rev,
5087                           minor_rev ? "Enhanced " : "");
5088
5089                 xhci->usb3_rhub.hcd = hcd;
5090                 /* xHCI private pointer was set in xhci_pci_probe for the second
5091                  * registered roothub.
5092                  */
5093                 return 0;
5094         }
5095
5096         mutex_init(&xhci->mutex);
5097         xhci->cap_regs = hcd->regs;
5098         xhci->op_regs = hcd->regs +
5099                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5100         xhci->run_regs = hcd->regs +
5101                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5102         /* Cache read-only capability registers */
5103         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5104         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5105         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5106         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5107         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5108         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5109         if (xhci->hci_version > 0x100)
5110                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5111
5112         xhci->quirks |= quirks;
5113
5114         get_quirks(dev, xhci);
5115
5116         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5117          * success event after a short transfer. This quirk will ignore such
5118          * spurious event.
5119          */
5120         if (xhci->hci_version > 0x96)
5121                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5122
5123         /* Make sure the HC is halted. */
5124         retval = xhci_halt(xhci);
5125         if (retval)
5126                 return retval;
5127
5128         xhci_zero_64b_regs(xhci);
5129
5130         xhci_dbg(xhci, "Resetting HCD\n");
5131         /* Reset the internal HC memory state and registers. */
5132         retval = xhci_reset(xhci);
5133         if (retval)
5134                 return retval;
5135         xhci_dbg(xhci, "Reset complete\n");
5136
5137         /*
5138          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5139          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5140          * address memory pointers actually. So, this driver clears the AC64
5141          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5142          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5143          */
5144         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5145                 xhci->hcc_params &= ~BIT(0);
5146
5147         /* Set dma_mask and coherent_dma_mask to 64-bits,
5148          * if xHC supports 64-bit addressing */
5149         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5150                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5151                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5152                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5153         } else {
5154                 /*
5155                  * This is to avoid error in cases where a 32-bit USB
5156                  * controller is used on a 64-bit capable system.
5157                  */
5158                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5159                 if (retval)
5160                         return retval;
5161                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5162                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5163         }
5164
5165         xhci_dbg(xhci, "Calling HCD init\n");
5166         /* Initialize HCD and host controller data structures. */
5167         retval = xhci_init(hcd);
5168         if (retval)
5169                 return retval;
5170         xhci_dbg(xhci, "Called HCD init\n");
5171
5172         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5173                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5174
5175         return 0;
5176 }
5177 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5178
5179 static const struct hc_driver xhci_hc_driver = {
5180         .description =          "xhci-hcd",
5181         .product_desc =         "xHCI Host Controller",
5182         .hcd_priv_size =        sizeof(struct xhci_hcd),
5183
5184         /*
5185          * generic hardware linkage
5186          */
5187         .irq =                  xhci_irq,
5188         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5189
5190         /*
5191          * basic lifecycle operations
5192          */
5193         .reset =                NULL, /* set in xhci_init_driver() */
5194         .start =                xhci_run,
5195         .stop =                 xhci_stop,
5196         .shutdown =             xhci_shutdown,
5197
5198         /*
5199          * managing i/o requests and associated device resources
5200          */
5201         .map_urb_for_dma =      xhci_map_urb_for_dma,
5202         .urb_enqueue =          xhci_urb_enqueue,
5203         .urb_dequeue =          xhci_urb_dequeue,
5204         .alloc_dev =            xhci_alloc_dev,
5205         .free_dev =             xhci_free_dev,
5206         .alloc_streams =        xhci_alloc_streams,
5207         .free_streams =         xhci_free_streams,
5208         .add_endpoint =         xhci_add_endpoint,
5209         .drop_endpoint =        xhci_drop_endpoint,
5210         .endpoint_reset =       xhci_endpoint_reset,
5211         .check_bandwidth =      xhci_check_bandwidth,
5212         .reset_bandwidth =      xhci_reset_bandwidth,
5213         .address_device =       xhci_address_device,
5214         .enable_device =        xhci_enable_device,
5215         .update_hub_device =    xhci_update_hub_device,
5216         .reset_device =         xhci_discover_or_reset_device,
5217
5218         /*
5219          * scheduling support
5220          */
5221         .get_frame_number =     xhci_get_frame,
5222
5223         /*
5224          * root hub support
5225          */
5226         .hub_control =          xhci_hub_control,
5227         .hub_status_data =      xhci_hub_status_data,
5228         .bus_suspend =          xhci_bus_suspend,
5229         .bus_resume =           xhci_bus_resume,
5230         .get_resuming_ports =   xhci_get_resuming_ports,
5231
5232         /*
5233          * call back when device connected and addressed
5234          */
5235         .update_device =        xhci_update_device,
5236         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5237         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5238         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5239         .find_raw_port_number = xhci_find_raw_port_number,
5240 };
5241
5242 void xhci_init_driver(struct hc_driver *drv,
5243                       const struct xhci_driver_overrides *over)
5244 {
5245         BUG_ON(!over);
5246
5247         /* Copy the generic table to drv then apply the overrides */
5248         *drv = xhci_hc_driver;
5249
5250         if (over) {
5251                 drv->hcd_priv_size += over->extra_priv_size;
5252                 if (over->reset)
5253                         drv->reset = over->reset;
5254                 if (over->start)
5255                         drv->start = over->start;
5256         }
5257 }
5258 EXPORT_SYMBOL_GPL(xhci_init_driver);
5259
5260 MODULE_DESCRIPTION(DRIVER_DESC);
5261 MODULE_AUTHOR(DRIVER_AUTHOR);
5262 MODULE_LICENSE("GPL");
5263
5264 static int __init xhci_hcd_init(void)
5265 {
5266         /*
5267          * Check the compiler generated sizes of structures that must be laid
5268          * out in specific ways for hardware access.
5269          */
5270         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5271         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5272         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5273         /* xhci_device_control has eight fields, and also
5274          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5275          */
5276         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5277         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5278         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5279         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5280         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5281         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5282         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5283
5284         if (usb_disabled())
5285                 return -ENODEV;
5286
5287         xhci_debugfs_create_root();
5288
5289         return 0;
5290 }
5291
5292 /*
5293  * If an init function is provided, an exit function must also be provided
5294  * to allow module unload.
5295  */
5296 static void __exit xhci_hcd_fini(void)
5297 {
5298         xhci_debugfs_remove_root();
5299 }
5300
5301 module_init(xhci_hcd_init);
5302 module_exit(xhci_hcd_fini);