03b64b73eb996afd877ae59bfdf3219208ce7cee
[linux-2.6-microblaze.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29
30 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43         struct xhci_segment *seg = ring->first_seg;
44
45         if (!td || !td->start_seg)
46                 return false;
47         do {
48                 if (seg == td->start_seg)
49                         return true;
50                 seg = seg->next;
51         } while (seg && seg != ring->first_seg);
52
53         return false;
54 }
55
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71         u32     result;
72         int     ret;
73
74         ret = readl_poll_timeout_atomic(ptr, result,
75                                         (result & mask) == done ||
76                                         result == U32_MAX,
77                                         1, usec);
78         if (result == U32_MAX)          /* card removed */
79                 return -ENODEV;
80
81         return ret;
82 }
83
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89         u32 halted;
90         u32 cmd;
91         u32 mask;
92
93         mask = ~(XHCI_IRQS);
94         halted = readl(&xhci->op_regs->status) & STS_HALT;
95         if (!halted)
96                 mask &= ~CMD_RUN;
97
98         cmd = readl(&xhci->op_regs->command);
99         cmd &= mask;
100         writel(cmd, &xhci->op_regs->command);
101 }
102
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113         int ret;
114         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115         xhci_quiesce(xhci);
116
117         ret = xhci_handshake(&xhci->op_regs->status,
118                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119         if (ret) {
120                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
121                 return ret;
122         }
123         xhci->xhc_state |= XHCI_STATE_HALTED;
124         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125         return ret;
126 }
127
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133         u32 temp;
134         int ret;
135
136         temp = readl(&xhci->op_regs->command);
137         temp |= (CMD_RUN);
138         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139                         temp);
140         writel(temp, &xhci->op_regs->command);
141
142         /*
143          * Wait for the HCHalted Status bit to be 0 to indicate the host is
144          * running.
145          */
146         ret = xhci_handshake(&xhci->op_regs->status,
147                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
148         if (ret == -ETIMEDOUT)
149                 xhci_err(xhci, "Host took too long to start, "
150                                 "waited %u microseconds.\n",
151                                 XHCI_MAX_HALT_USEC);
152         if (!ret)
153                 /* clear state flags. Including dying, halted or removing */
154                 xhci->xhc_state = 0;
155
156         return ret;
157 }
158
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168         u32 command;
169         u32 state;
170         int ret;
171
172         state = readl(&xhci->op_regs->status);
173
174         if (state == ~(u32)0) {
175                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
176                 return -ENODEV;
177         }
178
179         if ((state & STS_HALT) == 0) {
180                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181                 return 0;
182         }
183
184         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185         command = readl(&xhci->op_regs->command);
186         command |= CMD_RESET;
187         writel(command, &xhci->op_regs->command);
188
189         /* Existing Intel xHCI controllers require a delay of 1 mS,
190          * after setting the CMD_RESET bit, and before accessing any
191          * HC registers. This allows the HC to complete the
192          * reset operation and be ready for HC register access.
193          * Without this delay, the subsequent HC register access,
194          * may result in a system hang very rarely.
195          */
196         if (xhci->quirks & XHCI_INTEL_HOST)
197                 udelay(1000);
198
199         ret = xhci_handshake(&xhci->op_regs->command,
200                         CMD_RESET, 0, 10 * 1000 * 1000);
201         if (ret)
202                 return ret;
203
204         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206
207         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208                          "Wait for controller to be ready for doorbell rings");
209         /*
210          * xHCI cannot write to any doorbells or operational registers other
211          * than status until the "Controller Not Ready" flag is cleared.
212          */
213         ret = xhci_handshake(&xhci->op_regs->status,
214                         STS_CNR, 0, 10 * 1000 * 1000);
215
216         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217         xhci->usb2_rhub.bus_state.suspended_ports = 0;
218         xhci->usb2_rhub.bus_state.resuming_ports = 0;
219         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220         xhci->usb3_rhub.bus_state.suspended_ports = 0;
221         xhci->usb3_rhub.bus_state.resuming_ports = 0;
222
223         return ret;
224 }
225
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229         int err, i;
230         u64 val;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270                 struct xhci_intr_reg __iomem *ir;
271
272                 ir = &xhci->run_regs->ir_set[i];
273                 val = xhci_read_64(xhci, &ir->erst_base);
274                 if (upper_32_bits(val))
275                         xhci_write_64(xhci, 0, &ir->erst_base);
276                 val= xhci_read_64(xhci, &ir->erst_dequeue);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
279         }
280
281         /* Wait for the fault to appear. It will be cleared on reset */
282         err = xhci_handshake(&xhci->op_regs->status,
283                              STS_FATAL, STS_FATAL,
284                              XHCI_MAX_HALT_USEC);
285         if (!err)
286                 xhci_info(xhci, "Fault detected\n");
287 }
288
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295         int ret;
296         /*
297          * TODO:Check with MSI Soc for sysdev
298          */
299         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300
301         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302         if (ret < 0) {
303                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304                                 "failed to allocate MSI entry");
305                 return ret;
306         }
307
308         ret = request_irq(pdev->irq, xhci_msi_irq,
309                                 0, "xhci_hcd", xhci_to_hcd(xhci));
310         if (ret) {
311                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312                                 "disable MSI interrupt");
313                 pci_free_irq_vectors(pdev);
314         }
315
316         return ret;
317 }
318
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324         int i, ret = 0;
325         struct usb_hcd *hcd = xhci_to_hcd(xhci);
326         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327
328         /*
329          * calculate number of msi-x vectors supported.
330          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331          *   with max number of interrupters based on the xhci HCSPARAMS1.
332          * - num_online_cpus: maximum msi-x vectors per CPUs core.
333          *   Add additional 1 vector to ensure always available interrupt.
334          */
335         xhci->msix_count = min(num_online_cpus() + 1,
336                                 HCS_MAX_INTRS(xhci->hcs_params1));
337
338         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339                         PCI_IRQ_MSIX);
340         if (ret < 0) {
341                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342                                 "Failed to enable MSI-X");
343                 return ret;
344         }
345
346         for (i = 0; i < xhci->msix_count; i++) {
347                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348                                 "xhci_hcd", xhci_to_hcd(xhci));
349                 if (ret)
350                         goto disable_msix;
351         }
352
353         hcd->msix_enabled = 1;
354         return ret;
355
356 disable_msix:
357         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358         while (--i >= 0)
359                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360         pci_free_irq_vectors(pdev);
361         return ret;
362 }
363
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367         struct usb_hcd *hcd = xhci_to_hcd(xhci);
368         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369
370         if (xhci->quirks & XHCI_PLAT)
371                 return;
372
373         /* return if using legacy interrupt */
374         if (hcd->irq > 0)
375                 return;
376
377         if (hcd->msix_enabled) {
378                 int i;
379
380                 for (i = 0; i < xhci->msix_count; i++)
381                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382         } else {
383                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384         }
385
386         pci_free_irq_vectors(pdev);
387         hcd->msix_enabled = 0;
388 }
389
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392         struct usb_hcd *hcd = xhci_to_hcd(xhci);
393
394         if (hcd->msix_enabled) {
395                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396                 int i;
397
398                 for (i = 0; i < xhci->msix_count; i++)
399                         synchronize_irq(pci_irq_vector(pdev, i));
400         }
401 }
402
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406         struct pci_dev  *pdev;
407         int ret;
408
409         /* The xhci platform device has set up IRQs through usb_add_hcd. */
410         if (xhci->quirks & XHCI_PLAT)
411                 return 0;
412
413         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414         /*
415          * Some Fresco Logic host controllers advertise MSI, but fail to
416          * generate interrupts.  Don't even try to enable MSI.
417          */
418         if (xhci->quirks & XHCI_BROKEN_MSI)
419                 goto legacy_irq;
420
421         /* unregister the legacy interrupt */
422         if (hcd->irq)
423                 free_irq(hcd->irq, hcd);
424         hcd->irq = 0;
425
426         ret = xhci_setup_msix(xhci);
427         if (ret)
428                 /* fall back to msi*/
429                 ret = xhci_setup_msi(xhci);
430
431         if (!ret) {
432                 hcd->msi_enabled = 1;
433                 return 0;
434         }
435
436         if (!pdev->irq) {
437                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438                 return -EINVAL;
439         }
440
441  legacy_irq:
442         if (!strlen(hcd->irq_descr))
443                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444                          hcd->driver->description, hcd->self.busnum);
445
446         /* fall back to legacy interrupt*/
447         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448                         hcd->irq_descr, hcd);
449         if (ret) {
450                 xhci_err(xhci, "request interrupt %d failed\n",
451                                 pdev->irq);
452                 return ret;
453         }
454         hcd->irq = pdev->irq;
455         return 0;
456 }
457
458 #else
459
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462         return 0;
463 }
464
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472
473 #endif
474
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477         struct xhci_hcd *xhci;
478         struct usb_hcd *hcd;
479         struct xhci_hub *rhub;
480         u32 temp;
481         int i;
482
483         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484         rhub = &xhci->usb3_rhub;
485
486         for (i = 0; i < rhub->num_ports; i++) {
487                 temp = readl(rhub->ports[i]->addr);
488                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489                         /*
490                          * Compliance Mode Detected. Letting USB Core
491                          * handle the Warm Reset
492                          */
493                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494                                         "Compliance mode detected->port %d",
495                                         i + 1);
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Attempting compliance mode recovery");
498                         hcd = xhci->shared_hcd;
499
500                         if (hcd->state == HC_STATE_SUSPENDED)
501                                 usb_hcd_resume_root_hub(hcd);
502
503                         usb_hcd_poll_rh_status(hcd);
504                 }
505         }
506
507         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508                 mod_timer(&xhci->comp_mode_recovery_timer,
509                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524         xhci->port_status_u0 = 0;
525         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526                     0);
527         xhci->comp_mode_recovery_timer.expires = jiffies +
528                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529
530         add_timer(&xhci->comp_mode_recovery_timer);
531         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532                         "Compliance mode recovery timer initialized");
533 }
534
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543         const char *dmi_product_name, *dmi_sys_vendor;
544
545         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547         if (!dmi_product_name || !dmi_sys_vendor)
548                 return false;
549
550         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551                 return false;
552
553         if (strstr(dmi_product_name, "Z420") ||
554                         strstr(dmi_product_name, "Z620") ||
555                         strstr(dmi_product_name, "Z820") ||
556                         strstr(dmi_product_name, "Z1 Workstation"))
557                 return true;
558
559         return false;
560 }
561
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566
567
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578         int retval = 0;
579
580         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581         spin_lock_init(&xhci->lock);
582         if (xhci->hci_version == 0x95 && link_quirk) {
583                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584                                 "QUIRK: Not clearing Link TRB chain bits.");
585                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586         } else {
587                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588                                 "xHCI doesn't need link TRB QUIRK");
589         }
590         retval = xhci_mem_init(xhci, GFP_KERNEL);
591         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592
593         /* Initializing Compliance Mode Recovery Data If Needed */
594         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596                 compliance_mode_recovery_timer_init(xhci);
597         }
598
599         return retval;
600 }
601
602 /*-------------------------------------------------------------------------*/
603
604
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607         if (xhci_start(xhci)) {
608                 xhci_halt(xhci);
609                 return -ENODEV;
610         }
611         xhci->shared_hcd->state = HC_STATE_RUNNING;
612         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613
614         if (xhci->quirks & XHCI_NEC_HOST)
615                 xhci_ring_cmd_db(xhci);
616
617         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618                         "Finished xhci_run for USB3 roothub");
619         return 0;
620 }
621
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636         u32 temp;
637         u64 temp_64;
638         int ret;
639         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640
641         /* Start the xHCI host controller running only after the USB 2.0 roothub
642          * is setup.
643          */
644
645         hcd->uses_new_polling = 1;
646         if (!usb_hcd_is_primary_hcd(hcd))
647                 return xhci_run_finished(xhci);
648
649         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650
651         ret = xhci_try_enable_msi(hcd);
652         if (ret)
653                 return ret;
654
655         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656         temp_64 &= ~ERST_PTR_MASK;
657         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "// Set the interrupt modulation register");
662         temp = readl(&xhci->ir_set->irq_control);
663         temp &= ~ER_IRQ_INTERVAL_MASK;
664         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665         writel(temp, &xhci->ir_set->irq_control);
666
667         /* Set the HCD state before we enable the irqs */
668         temp = readl(&xhci->op_regs->command);
669         temp |= (CMD_EIE);
670         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671                         "// Enable interrupts, cmd = 0x%x.", temp);
672         writel(temp, &xhci->op_regs->command);
673
674         temp = readl(&xhci->ir_set->irq_pending);
675         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679
680         if (xhci->quirks & XHCI_NEC_HOST) {
681                 struct xhci_command *command;
682
683                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684                 if (!command)
685                         return -ENOMEM;
686
687                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688                                 TRB_TYPE(TRB_NEC_GET_FW));
689                 if (ret)
690                         xhci_free_command(xhci, command);
691         }
692         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693                         "Finished xhci_run for USB2 roothub");
694
695         xhci_dbc_init(xhci);
696
697         xhci_debugfs_init(xhci);
698
699         return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714         u32 temp;
715         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716
717         mutex_lock(&xhci->mutex);
718
719         /* Only halt host and free memory after both hcds are removed */
720         if (!usb_hcd_is_primary_hcd(hcd)) {
721                 mutex_unlock(&xhci->mutex);
722                 return;
723         }
724
725         xhci_dbc_exit(xhci);
726
727         spin_lock_irq(&xhci->lock);
728         xhci->xhc_state |= XHCI_STATE_HALTED;
729         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730         xhci_halt(xhci);
731         xhci_reset(xhci);
732         spin_unlock_irq(&xhci->lock);
733
734         xhci_cleanup_msix(xhci);
735
736         /* Deleting Compliance Mode Recovery Timer */
737         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738                         (!(xhci_all_ports_seen_u0(xhci)))) {
739                 del_timer_sync(&xhci->comp_mode_recovery_timer);
740                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741                                 "%s: compliance mode recovery timer deleted",
742                                 __func__);
743         }
744
745         if (xhci->quirks & XHCI_AMD_PLL_FIX)
746                 usb_amd_dev_put();
747
748         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749                         "// Disabling event ring interrupts");
750         temp = readl(&xhci->op_regs->status);
751         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752         temp = readl(&xhci->ir_set->irq_pending);
753         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754
755         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756         xhci_mem_cleanup(xhci);
757         xhci_debugfs_exit(xhci);
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "xhci_stop completed - status = %x",
760                         readl(&xhci->op_regs->status));
761         mutex_unlock(&xhci->mutex);
762 }
763
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776
777         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779
780         spin_lock_irq(&xhci->lock);
781         xhci_halt(xhci);
782         /* Workaround for spurious wakeups at shutdown with HSW */
783         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784                 xhci_reset(xhci);
785         spin_unlock_irq(&xhci->lock);
786
787         xhci_cleanup_msix(xhci);
788
789         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790                         "xhci_shutdown completed - status = %x",
791                         readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798         xhci->s3.command = readl(&xhci->op_regs->command);
799         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811         writel(xhci->s3.command, &xhci->op_regs->command);
812         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824         u64     val_64;
825
826         /* step 2: initialize command ring buffer */
827         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830                                       xhci->cmd_ring->dequeue) &
831                  (u64) ~CMD_RING_RSVD_BITS) |
832                 xhci->cmd_ring->cycle_state;
833         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834                         "// Setting command ring address to 0x%llx",
835                         (long unsigned long) val_64);
836         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850         struct xhci_ring *ring;
851         struct xhci_segment *seg;
852
853         ring = xhci->cmd_ring;
854         seg = ring->deq_seg;
855         do {
856                 memset(seg->trbs, 0,
857                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859                         cpu_to_le32(~TRB_CYCLE);
860                 seg = seg->next;
861         } while (seg != ring->deq_seg);
862
863         /* Reset the software enqueue and dequeue pointers */
864         ring->deq_seg = ring->first_seg;
865         ring->dequeue = ring->first_seg->trbs;
866         ring->enq_seg = ring->deq_seg;
867         ring->enqueue = ring->dequeue;
868
869         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870         /*
871          * Ring is now zeroed, so the HW should look for change of ownership
872          * when the cycle bit is set to 1.
873          */
874         ring->cycle_state = 1;
875
876         /*
877          * Reset the hardware dequeue pointer.
878          * Yes, this will need to be re-written after resume, but we're paranoid
879          * and want to make sure the hardware doesn't access bogus memory
880          * because, say, the BIOS or an SMI started the host without changing
881          * the command ring pointers.
882          */
883         xhci_set_cmd_ring_deq(xhci);
884 }
885
886 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
887 {
888         struct xhci_port **ports;
889         int port_index;
890         unsigned long flags;
891         u32 t1, t2, portsc;
892
893         spin_lock_irqsave(&xhci->lock, flags);
894
895         /* disable usb3 ports Wake bits */
896         port_index = xhci->usb3_rhub.num_ports;
897         ports = xhci->usb3_rhub.ports;
898         while (port_index--) {
899                 t1 = readl(ports[port_index]->addr);
900                 portsc = t1;
901                 t1 = xhci_port_state_to_neutral(t1);
902                 t2 = t1 & ~PORT_WAKE_BITS;
903                 if (t1 != t2) {
904                         writel(t2, ports[port_index]->addr);
905                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
906                                  xhci->usb3_rhub.hcd->self.busnum,
907                                  port_index + 1, portsc, t2);
908                 }
909         }
910
911         /* disable usb2 ports Wake bits */
912         port_index = xhci->usb2_rhub.num_ports;
913         ports = xhci->usb2_rhub.ports;
914         while (port_index--) {
915                 t1 = readl(ports[port_index]->addr);
916                 portsc = t1;
917                 t1 = xhci_port_state_to_neutral(t1);
918                 t2 = t1 & ~PORT_WAKE_BITS;
919                 if (t1 != t2) {
920                         writel(t2, ports[port_index]->addr);
921                         xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
922                                  xhci->usb2_rhub.hcd->self.busnum,
923                                  port_index + 1, portsc, t2);
924                 }
925         }
926         spin_unlock_irqrestore(&xhci->lock, flags);
927 }
928
929 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
930 {
931         struct xhci_port        **ports;
932         int                     port_index;
933         u32                     status;
934         u32                     portsc;
935
936         status = readl(&xhci->op_regs->status);
937         if (status & STS_EINT)
938                 return true;
939         /*
940          * Checking STS_EINT is not enough as there is a lag between a change
941          * bit being set and the Port Status Change Event that it generated
942          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
943          */
944
945         port_index = xhci->usb2_rhub.num_ports;
946         ports = xhci->usb2_rhub.ports;
947         while (port_index--) {
948                 portsc = readl(ports[port_index]->addr);
949                 if (portsc & PORT_CHANGE_MASK ||
950                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
951                         return true;
952         }
953         port_index = xhci->usb3_rhub.num_ports;
954         ports = xhci->usb3_rhub.ports;
955         while (port_index--) {
956                 portsc = readl(ports[port_index]->addr);
957                 if (portsc & PORT_CHANGE_MASK ||
958                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
959                         return true;
960         }
961         return false;
962 }
963
964 /*
965  * Stop HC (not bus-specific)
966  *
967  * This is called when the machine transition into S3/S4 mode.
968  *
969  */
970 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
971 {
972         int                     rc = 0;
973         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
974         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
975         u32                     command;
976         u32                     res;
977
978         if (!hcd->state)
979                 return 0;
980
981         if (hcd->state != HC_STATE_SUSPENDED ||
982                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
983                 return -EINVAL;
984
985         xhci_dbc_suspend(xhci);
986
987         /* Clear root port wake on bits if wakeup not allowed. */
988         if (!do_wakeup)
989                 xhci_disable_port_wake_on_bits(xhci);
990
991         /* Don't poll the roothubs on bus suspend. */
992         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
993         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
994         del_timer_sync(&hcd->rh_timer);
995         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
996         del_timer_sync(&xhci->shared_hcd->rh_timer);
997
998         if (xhci->quirks & XHCI_SUSPEND_DELAY)
999                 usleep_range(1000, 1500);
1000
1001         spin_lock_irq(&xhci->lock);
1002         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1003         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1004         /* step 1: stop endpoint */
1005         /* skipped assuming that port suspend has done */
1006
1007         /* step 2: clear Run/Stop bit */
1008         command = readl(&xhci->op_regs->command);
1009         command &= ~CMD_RUN;
1010         writel(command, &xhci->op_regs->command);
1011
1012         /* Some chips from Fresco Logic need an extraordinary delay */
1013         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1014
1015         if (xhci_handshake(&xhci->op_regs->status,
1016                       STS_HALT, STS_HALT, delay)) {
1017                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1018                 spin_unlock_irq(&xhci->lock);
1019                 return -ETIMEDOUT;
1020         }
1021         xhci_clear_command_ring(xhci);
1022
1023         /* step 3: save registers */
1024         xhci_save_registers(xhci);
1025
1026         /* step 4: set CSS flag */
1027         command = readl(&xhci->op_regs->command);
1028         command |= CMD_CSS;
1029         writel(command, &xhci->op_regs->command);
1030         xhci->broken_suspend = 0;
1031         if (xhci_handshake(&xhci->op_regs->status,
1032                                 STS_SAVE, 0, 20 * 1000)) {
1033         /*
1034          * AMD SNPS xHC 3.0 occasionally does not clear the
1035          * SSS bit of USBSTS and when driver tries to poll
1036          * to see if the xHC clears BIT(8) which never happens
1037          * and driver assumes that controller is not responding
1038          * and times out. To workaround this, its good to check
1039          * if SRE and HCE bits are not set (as per xhci
1040          * Section 5.4.2) and bypass the timeout.
1041          */
1042                 res = readl(&xhci->op_regs->status);
1043                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1044                     (((res & STS_SRE) == 0) &&
1045                                 ((res & STS_HCE) == 0))) {
1046                         xhci->broken_suspend = 1;
1047                 } else {
1048                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1049                         spin_unlock_irq(&xhci->lock);
1050                         return -ETIMEDOUT;
1051                 }
1052         }
1053         spin_unlock_irq(&xhci->lock);
1054
1055         /*
1056          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1057          * is about to be suspended.
1058          */
1059         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1060                         (!(xhci_all_ports_seen_u0(xhci)))) {
1061                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1062                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1063                                 "%s: compliance mode recovery timer deleted",
1064                                 __func__);
1065         }
1066
1067         /* step 5: remove core well power */
1068         /* synchronize irq when using MSI-X */
1069         xhci_msix_sync_irqs(xhci);
1070
1071         return rc;
1072 }
1073 EXPORT_SYMBOL_GPL(xhci_suspend);
1074
1075 /*
1076  * start xHC (not bus-specific)
1077  *
1078  * This is called when the machine transition from S3/S4 mode.
1079  *
1080  */
1081 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1082 {
1083         u32                     command, temp = 0;
1084         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1085         struct usb_hcd          *secondary_hcd;
1086         int                     retval = 0;
1087         bool                    comp_timer_running = false;
1088
1089         if (!hcd->state)
1090                 return 0;
1091
1092         /* Wait a bit if either of the roothubs need to settle from the
1093          * transition into bus suspend.
1094          */
1095
1096         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1097             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1098                 msleep(100);
1099
1100         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1101         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1102
1103         spin_lock_irq(&xhci->lock);
1104         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1105                 hibernated = true;
1106
1107         if (!hibernated) {
1108                 /*
1109                  * Some controllers might lose power during suspend, so wait
1110                  * for controller not ready bit to clear, just as in xHC init.
1111                  */
1112                 retval = xhci_handshake(&xhci->op_regs->status,
1113                                         STS_CNR, 0, 10 * 1000 * 1000);
1114                 if (retval) {
1115                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1116                                   retval);
1117                         spin_unlock_irq(&xhci->lock);
1118                         return retval;
1119                 }
1120                 /* step 1: restore register */
1121                 xhci_restore_registers(xhci);
1122                 /* step 2: initialize command ring buffer */
1123                 xhci_set_cmd_ring_deq(xhci);
1124                 /* step 3: restore state and start state*/
1125                 /* step 3: set CRS flag */
1126                 command = readl(&xhci->op_regs->command);
1127                 command |= CMD_CRS;
1128                 writel(command, &xhci->op_regs->command);
1129                 /*
1130                  * Some controllers take up to 55+ ms to complete the controller
1131                  * restore so setting the timeout to 100ms. Xhci specification
1132                  * doesn't mention any timeout value.
1133                  */
1134                 if (xhci_handshake(&xhci->op_regs->status,
1135                               STS_RESTORE, 0, 100 * 1000)) {
1136                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1137                         spin_unlock_irq(&xhci->lock);
1138                         return -ETIMEDOUT;
1139                 }
1140                 temp = readl(&xhci->op_regs->status);
1141         }
1142
1143         /* If restore operation fails, re-initialize the HC during resume */
1144         if ((temp & STS_SRE) || hibernated) {
1145
1146                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1147                                 !(xhci_all_ports_seen_u0(xhci))) {
1148                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1149                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1150                                 "Compliance Mode Recovery Timer deleted!");
1151                 }
1152
1153                 /* Let the USB core know _both_ roothubs lost power. */
1154                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1155                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1156
1157                 xhci_dbg(xhci, "Stop HCD\n");
1158                 xhci_halt(xhci);
1159                 xhci_zero_64b_regs(xhci);
1160                 retval = xhci_reset(xhci);
1161                 spin_unlock_irq(&xhci->lock);
1162                 if (retval)
1163                         return retval;
1164                 xhci_cleanup_msix(xhci);
1165
1166                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1167                 temp = readl(&xhci->op_regs->status);
1168                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1169                 temp = readl(&xhci->ir_set->irq_pending);
1170                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1171
1172                 xhci_dbg(xhci, "cleaning up memory\n");
1173                 xhci_mem_cleanup(xhci);
1174                 xhci_debugfs_exit(xhci);
1175                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1176                             readl(&xhci->op_regs->status));
1177
1178                 /* USB core calls the PCI reinit and start functions twice:
1179                  * first with the primary HCD, and then with the secondary HCD.
1180                  * If we don't do the same, the host will never be started.
1181                  */
1182                 if (!usb_hcd_is_primary_hcd(hcd))
1183                         secondary_hcd = hcd;
1184                 else
1185                         secondary_hcd = xhci->shared_hcd;
1186
1187                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1188                 retval = xhci_init(hcd->primary_hcd);
1189                 if (retval)
1190                         return retval;
1191                 comp_timer_running = true;
1192
1193                 xhci_dbg(xhci, "Start the primary HCD\n");
1194                 retval = xhci_run(hcd->primary_hcd);
1195                 if (!retval) {
1196                         xhci_dbg(xhci, "Start the secondary HCD\n");
1197                         retval = xhci_run(secondary_hcd);
1198                 }
1199                 hcd->state = HC_STATE_SUSPENDED;
1200                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1201                 goto done;
1202         }
1203
1204         /* step 4: set Run/Stop bit */
1205         command = readl(&xhci->op_regs->command);
1206         command |= CMD_RUN;
1207         writel(command, &xhci->op_regs->command);
1208         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1209                   0, 250 * 1000);
1210
1211         /* step 5: walk topology and initialize portsc,
1212          * portpmsc and portli
1213          */
1214         /* this is done in bus_resume */
1215
1216         /* step 6: restart each of the previously
1217          * Running endpoints by ringing their doorbells
1218          */
1219
1220         spin_unlock_irq(&xhci->lock);
1221
1222         xhci_dbc_resume(xhci);
1223
1224  done:
1225         if (retval == 0) {
1226                 /* Resume root hubs only when have pending events. */
1227                 if (xhci_pending_portevent(xhci)) {
1228                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1229                         usb_hcd_resume_root_hub(hcd);
1230                 }
1231         }
1232
1233         /*
1234          * If system is subject to the Quirk, Compliance Mode Timer needs to
1235          * be re-initialized Always after a system resume. Ports are subject
1236          * to suffer the Compliance Mode issue again. It doesn't matter if
1237          * ports have entered previously to U0 before system's suspension.
1238          */
1239         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1240                 compliance_mode_recovery_timer_init(xhci);
1241
1242         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1243                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1244
1245         /* Re-enable port polling. */
1246         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1247         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1248         usb_hcd_poll_rh_status(xhci->shared_hcd);
1249         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1250         usb_hcd_poll_rh_status(hcd);
1251
1252         return retval;
1253 }
1254 EXPORT_SYMBOL_GPL(xhci_resume);
1255 #endif  /* CONFIG_PM */
1256
1257 /*-------------------------------------------------------------------------*/
1258
1259 /*
1260  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1261  * we'll copy the actual data into the TRB address register. This is limited to
1262  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1263  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1264  */
1265 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1266                                 gfp_t mem_flags)
1267 {
1268         if (xhci_urb_suitable_for_idt(urb))
1269                 return 0;
1270
1271         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1272 }
1273
1274 /**
1275  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1276  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1277  * value to right shift 1 for the bitmask.
1278  *
1279  * Index  = (epnum * 2) + direction - 1,
1280  * where direction = 0 for OUT, 1 for IN.
1281  * For control endpoints, the IN index is used (OUT index is unused), so
1282  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1283  */
1284 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1285 {
1286         unsigned int index;
1287         if (usb_endpoint_xfer_control(desc))
1288                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1289         else
1290                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1291                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1292         return index;
1293 }
1294
1295 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1296  * address from the XHCI endpoint index.
1297  */
1298 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1299 {
1300         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1301         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1302         return direction | number;
1303 }
1304
1305 /* Find the flag for this endpoint (for use in the control context).  Use the
1306  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1307  * bit 1, etc.
1308  */
1309 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1310 {
1311         return 1 << (xhci_get_endpoint_index(desc) + 1);
1312 }
1313
1314 /* Find the flag for this endpoint (for use in the control context).  Use the
1315  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1316  * bit 1, etc.
1317  */
1318 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1319 {
1320         return 1 << (ep_index + 1);
1321 }
1322
1323 /* Compute the last valid endpoint context index.  Basically, this is the
1324  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1325  * we find the most significant bit set in the added contexts flags.
1326  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1327  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1328  */
1329 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1330 {
1331         return fls(added_ctxs) - 1;
1332 }
1333
1334 /* Returns 1 if the arguments are OK;
1335  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1336  */
1337 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1338                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1339                 const char *func) {
1340         struct xhci_hcd *xhci;
1341         struct xhci_virt_device *virt_dev;
1342
1343         if (!hcd || (check_ep && !ep) || !udev) {
1344                 pr_debug("xHCI %s called with invalid args\n", func);
1345                 return -EINVAL;
1346         }
1347         if (!udev->parent) {
1348                 pr_debug("xHCI %s called for root hub\n", func);
1349                 return 0;
1350         }
1351
1352         xhci = hcd_to_xhci(hcd);
1353         if (check_virt_dev) {
1354                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1355                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1356                                         func);
1357                         return -EINVAL;
1358                 }
1359
1360                 virt_dev = xhci->devs[udev->slot_id];
1361                 if (virt_dev->udev != udev) {
1362                         xhci_dbg(xhci, "xHCI %s called with udev and "
1363                                           "virt_dev does not match\n", func);
1364                         return -EINVAL;
1365                 }
1366         }
1367
1368         if (xhci->xhc_state & XHCI_STATE_HALTED)
1369                 return -ENODEV;
1370
1371         return 1;
1372 }
1373
1374 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1375                 struct usb_device *udev, struct xhci_command *command,
1376                 bool ctx_change, bool must_succeed);
1377
1378 /*
1379  * Full speed devices may have a max packet size greater than 8 bytes, but the
1380  * USB core doesn't know that until it reads the first 8 bytes of the
1381  * descriptor.  If the usb_device's max packet size changes after that point,
1382  * we need to issue an evaluate context command and wait on it.
1383  */
1384 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1385                 unsigned int ep_index, struct urb *urb)
1386 {
1387         struct xhci_container_ctx *out_ctx;
1388         struct xhci_input_control_ctx *ctrl_ctx;
1389         struct xhci_ep_ctx *ep_ctx;
1390         struct xhci_command *command;
1391         int max_packet_size;
1392         int hw_max_packet_size;
1393         int ret = 0;
1394
1395         out_ctx = xhci->devs[slot_id]->out_ctx;
1396         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1397         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1398         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1399         if (hw_max_packet_size != max_packet_size) {
1400                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1401                                 "Max Packet Size for ep 0 changed.");
1402                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1403                                 "Max packet size in usb_device = %d",
1404                                 max_packet_size);
1405                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1406                                 "Max packet size in xHCI HW = %d",
1407                                 hw_max_packet_size);
1408                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1409                                 "Issuing evaluate context command.");
1410
1411                 /* Set up the input context flags for the command */
1412                 /* FIXME: This won't work if a non-default control endpoint
1413                  * changes max packet sizes.
1414                  */
1415
1416                 command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1417                 if (!command)
1418                         return -ENOMEM;
1419
1420                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1421                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1422                 if (!ctrl_ctx) {
1423                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1424                                         __func__);
1425                         ret = -ENOMEM;
1426                         goto command_cleanup;
1427                 }
1428                 /* Set up the modified control endpoint 0 */
1429                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1430                                 xhci->devs[slot_id]->out_ctx, ep_index);
1431
1432                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1433                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1434                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1435                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1436
1437                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1438                 ctrl_ctx->drop_flags = 0;
1439
1440                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1441                                 true, false);
1442
1443                 /* Clean up the input context for later use by bandwidth
1444                  * functions.
1445                  */
1446                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1447 command_cleanup:
1448                 kfree(command->completion);
1449                 kfree(command);
1450         }
1451         return ret;
1452 }
1453
1454 /*
1455  * non-error returns are a promise to giveback() the urb later
1456  * we drop ownership so next owner (or urb unlink) can get it
1457  */
1458 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1459 {
1460         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1461         unsigned long flags;
1462         int ret = 0;
1463         unsigned int slot_id, ep_index;
1464         unsigned int *ep_state;
1465         struct urb_priv *urb_priv;
1466         int num_tds;
1467
1468         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1469                                         true, true, __func__) <= 0)
1470                 return -EINVAL;
1471
1472         slot_id = urb->dev->slot_id;
1473         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1474         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1475
1476         if (!HCD_HW_ACCESSIBLE(hcd)) {
1477                 if (!in_interrupt())
1478                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1479                 return -ESHUTDOWN;
1480         }
1481         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1482                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1483                 return -ENODEV;
1484         }
1485
1486         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1487                 num_tds = urb->number_of_packets;
1488         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1489             urb->transfer_buffer_length > 0 &&
1490             urb->transfer_flags & URB_ZERO_PACKET &&
1491             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1492                 num_tds = 2;
1493         else
1494                 num_tds = 1;
1495
1496         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1497         if (!urb_priv)
1498                 return -ENOMEM;
1499
1500         urb_priv->num_tds = num_tds;
1501         urb_priv->num_tds_done = 0;
1502         urb->hcpriv = urb_priv;
1503
1504         trace_xhci_urb_enqueue(urb);
1505
1506         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1507                 /* Check to see if the max packet size for the default control
1508                  * endpoint changed during FS device enumeration
1509                  */
1510                 if (urb->dev->speed == USB_SPEED_FULL) {
1511                         ret = xhci_check_maxpacket(xhci, slot_id,
1512                                         ep_index, urb);
1513                         if (ret < 0) {
1514                                 xhci_urb_free_priv(urb_priv);
1515                                 urb->hcpriv = NULL;
1516                                 return ret;
1517                         }
1518                 }
1519         }
1520
1521         spin_lock_irqsave(&xhci->lock, flags);
1522
1523         if (xhci->xhc_state & XHCI_STATE_DYING) {
1524                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1525                          urb->ep->desc.bEndpointAddress, urb);
1526                 ret = -ESHUTDOWN;
1527                 goto free_priv;
1528         }
1529         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1530                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1531                           *ep_state);
1532                 ret = -EINVAL;
1533                 goto free_priv;
1534         }
1535         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1536                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1537                 ret = -EINVAL;
1538                 goto free_priv;
1539         }
1540
1541         switch (usb_endpoint_type(&urb->ep->desc)) {
1542
1543         case USB_ENDPOINT_XFER_CONTROL:
1544                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1545                                          slot_id, ep_index);
1546                 break;
1547         case USB_ENDPOINT_XFER_BULK:
1548                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1549                                          slot_id, ep_index);
1550                 break;
1551         case USB_ENDPOINT_XFER_INT:
1552                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1553                                 slot_id, ep_index);
1554                 break;
1555         case USB_ENDPOINT_XFER_ISOC:
1556                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1557                                 slot_id, ep_index);
1558         }
1559
1560         if (ret) {
1561 free_priv:
1562                 xhci_urb_free_priv(urb_priv);
1563                 urb->hcpriv = NULL;
1564         }
1565         spin_unlock_irqrestore(&xhci->lock, flags);
1566         return ret;
1567 }
1568
1569 /*
1570  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1571  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1572  * should pick up where it left off in the TD, unless a Set Transfer Ring
1573  * Dequeue Pointer is issued.
1574  *
1575  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1576  * the ring.  Since the ring is a contiguous structure, they can't be physically
1577  * removed.  Instead, there are two options:
1578  *
1579  *  1) If the HC is in the middle of processing the URB to be canceled, we
1580  *     simply move the ring's dequeue pointer past those TRBs using the Set
1581  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1582  *     when drivers timeout on the last submitted URB and attempt to cancel.
1583  *
1584  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1585  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1586  *     HC will need to invalidate the any TRBs it has cached after the stop
1587  *     endpoint command, as noted in the xHCI 0.95 errata.
1588  *
1589  *  3) The TD may have completed by the time the Stop Endpoint Command
1590  *     completes, so software needs to handle that case too.
1591  *
1592  * This function should protect against the TD enqueueing code ringing the
1593  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1594  * It also needs to account for multiple cancellations on happening at the same
1595  * time for the same endpoint.
1596  *
1597  * Note that this function can be called in any context, or so says
1598  * usb_hcd_unlink_urb()
1599  */
1600 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1601 {
1602         unsigned long flags;
1603         int ret, i;
1604         u32 temp;
1605         struct xhci_hcd *xhci;
1606         struct urb_priv *urb_priv;
1607         struct xhci_td *td;
1608         unsigned int ep_index;
1609         struct xhci_ring *ep_ring;
1610         struct xhci_virt_ep *ep;
1611         struct xhci_command *command;
1612         struct xhci_virt_device *vdev;
1613
1614         xhci = hcd_to_xhci(hcd);
1615         spin_lock_irqsave(&xhci->lock, flags);
1616
1617         trace_xhci_urb_dequeue(urb);
1618
1619         /* Make sure the URB hasn't completed or been unlinked already */
1620         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1621         if (ret)
1622                 goto done;
1623
1624         /* give back URB now if we can't queue it for cancel */
1625         vdev = xhci->devs[urb->dev->slot_id];
1626         urb_priv = urb->hcpriv;
1627         if (!vdev || !urb_priv)
1628                 goto err_giveback;
1629
1630         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1631         ep = &vdev->eps[ep_index];
1632         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1633         if (!ep || !ep_ring)
1634                 goto err_giveback;
1635
1636         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1637         temp = readl(&xhci->op_regs->status);
1638         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1639                 xhci_hc_died(xhci);
1640                 goto done;
1641         }
1642
1643         /*
1644          * check ring is not re-allocated since URB was enqueued. If it is, then
1645          * make sure none of the ring related pointers in this URB private data
1646          * are touched, such as td_list, otherwise we overwrite freed data
1647          */
1648         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1649                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1650                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1651                         td = &urb_priv->td[i];
1652                         if (!list_empty(&td->cancelled_td_list))
1653                                 list_del_init(&td->cancelled_td_list);
1654                 }
1655                 goto err_giveback;
1656         }
1657
1658         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1659                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1660                                 "HC halted, freeing TD manually.");
1661                 for (i = urb_priv->num_tds_done;
1662                      i < urb_priv->num_tds;
1663                      i++) {
1664                         td = &urb_priv->td[i];
1665                         if (!list_empty(&td->td_list))
1666                                 list_del_init(&td->td_list);
1667                         if (!list_empty(&td->cancelled_td_list))
1668                                 list_del_init(&td->cancelled_td_list);
1669                 }
1670                 goto err_giveback;
1671         }
1672
1673         i = urb_priv->num_tds_done;
1674         if (i < urb_priv->num_tds)
1675                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1676                                 "Cancel URB %p, dev %s, ep 0x%x, "
1677                                 "starting at offset 0x%llx",
1678                                 urb, urb->dev->devpath,
1679                                 urb->ep->desc.bEndpointAddress,
1680                                 (unsigned long long) xhci_trb_virt_to_dma(
1681                                         urb_priv->td[i].start_seg,
1682                                         urb_priv->td[i].first_trb));
1683
1684         for (; i < urb_priv->num_tds; i++) {
1685                 td = &urb_priv->td[i];
1686                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1687         }
1688
1689         /* Queue a stop endpoint command, but only if this is
1690          * the first cancellation to be handled.
1691          */
1692         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1693                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1694                 if (!command) {
1695                         ret = -ENOMEM;
1696                         goto done;
1697                 }
1698                 ep->ep_state |= EP_STOP_CMD_PENDING;
1699                 ep->stop_cmd_timer.expires = jiffies +
1700                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1701                 add_timer(&ep->stop_cmd_timer);
1702                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1703                                          ep_index, 0);
1704                 xhci_ring_cmd_db(xhci);
1705         }
1706 done:
1707         spin_unlock_irqrestore(&xhci->lock, flags);
1708         return ret;
1709
1710 err_giveback:
1711         if (urb_priv)
1712                 xhci_urb_free_priv(urb_priv);
1713         usb_hcd_unlink_urb_from_ep(hcd, urb);
1714         spin_unlock_irqrestore(&xhci->lock, flags);
1715         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1716         return ret;
1717 }
1718
1719 /* Drop an endpoint from a new bandwidth configuration for this device.
1720  * Only one call to this function is allowed per endpoint before
1721  * check_bandwidth() or reset_bandwidth() must be called.
1722  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1723  * add the endpoint to the schedule with possibly new parameters denoted by a
1724  * different endpoint descriptor in usb_host_endpoint.
1725  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1726  * not allowed.
1727  *
1728  * The USB core will not allow URBs to be queued to an endpoint that is being
1729  * disabled, so there's no need for mutual exclusion to protect
1730  * the xhci->devs[slot_id] structure.
1731  */
1732 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1733                 struct usb_host_endpoint *ep)
1734 {
1735         struct xhci_hcd *xhci;
1736         struct xhci_container_ctx *in_ctx, *out_ctx;
1737         struct xhci_input_control_ctx *ctrl_ctx;
1738         unsigned int ep_index;
1739         struct xhci_ep_ctx *ep_ctx;
1740         u32 drop_flag;
1741         u32 new_add_flags, new_drop_flags;
1742         int ret;
1743
1744         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1745         if (ret <= 0)
1746                 return ret;
1747         xhci = hcd_to_xhci(hcd);
1748         if (xhci->xhc_state & XHCI_STATE_DYING)
1749                 return -ENODEV;
1750
1751         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1752         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1753         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1754                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1755                                 __func__, drop_flag);
1756                 return 0;
1757         }
1758
1759         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1760         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1761         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1762         if (!ctrl_ctx) {
1763                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1764                                 __func__);
1765                 return 0;
1766         }
1767
1768         ep_index = xhci_get_endpoint_index(&ep->desc);
1769         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1770         /* If the HC already knows the endpoint is disabled,
1771          * or the HCD has noted it is disabled, ignore this request
1772          */
1773         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1774             le32_to_cpu(ctrl_ctx->drop_flags) &
1775             xhci_get_endpoint_flag(&ep->desc)) {
1776                 /* Do not warn when called after a usb_device_reset */
1777                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1778                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1779                                   __func__, ep);
1780                 return 0;
1781         }
1782
1783         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1784         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1785
1786         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1787         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1788
1789         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1790
1791         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1792
1793         if (xhci->quirks & XHCI_MTK_HOST)
1794                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1795
1796         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1797                         (unsigned int) ep->desc.bEndpointAddress,
1798                         udev->slot_id,
1799                         (unsigned int) new_drop_flags,
1800                         (unsigned int) new_add_flags);
1801         return 0;
1802 }
1803
1804 /* Add an endpoint to a new possible bandwidth configuration for this device.
1805  * Only one call to this function is allowed per endpoint before
1806  * check_bandwidth() or reset_bandwidth() must be called.
1807  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1808  * add the endpoint to the schedule with possibly new parameters denoted by a
1809  * different endpoint descriptor in usb_host_endpoint.
1810  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1811  * not allowed.
1812  *
1813  * The USB core will not allow URBs to be queued to an endpoint until the
1814  * configuration or alt setting is installed in the device, so there's no need
1815  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1816  */
1817 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1818                 struct usb_host_endpoint *ep)
1819 {
1820         struct xhci_hcd *xhci;
1821         struct xhci_container_ctx *in_ctx;
1822         unsigned int ep_index;
1823         struct xhci_input_control_ctx *ctrl_ctx;
1824         struct xhci_ep_ctx *ep_ctx;
1825         u32 added_ctxs;
1826         u32 new_add_flags, new_drop_flags;
1827         struct xhci_virt_device *virt_dev;
1828         int ret = 0;
1829
1830         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1831         if (ret <= 0) {
1832                 /* So we won't queue a reset ep command for a root hub */
1833                 ep->hcpriv = NULL;
1834                 return ret;
1835         }
1836         xhci = hcd_to_xhci(hcd);
1837         if (xhci->xhc_state & XHCI_STATE_DYING)
1838                 return -ENODEV;
1839
1840         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1841         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1842                 /* FIXME when we have to issue an evaluate endpoint command to
1843                  * deal with ep0 max packet size changing once we get the
1844                  * descriptors
1845                  */
1846                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1847                                 __func__, added_ctxs);
1848                 return 0;
1849         }
1850
1851         virt_dev = xhci->devs[udev->slot_id];
1852         in_ctx = virt_dev->in_ctx;
1853         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1854         if (!ctrl_ctx) {
1855                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1856                                 __func__);
1857                 return 0;
1858         }
1859
1860         ep_index = xhci_get_endpoint_index(&ep->desc);
1861         /* If this endpoint is already in use, and the upper layers are trying
1862          * to add it again without dropping it, reject the addition.
1863          */
1864         if (virt_dev->eps[ep_index].ring &&
1865                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1866                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1867                                 "without dropping it.\n",
1868                                 (unsigned int) ep->desc.bEndpointAddress);
1869                 return -EINVAL;
1870         }
1871
1872         /* If the HCD has already noted the endpoint is enabled,
1873          * ignore this request.
1874          */
1875         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1876                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1877                                 __func__, ep);
1878                 return 0;
1879         }
1880
1881         /*
1882          * Configuration and alternate setting changes must be done in
1883          * process context, not interrupt context (or so documenation
1884          * for usb_set_interface() and usb_set_configuration() claim).
1885          */
1886         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1887                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1888                                 __func__, ep->desc.bEndpointAddress);
1889                 return -ENOMEM;
1890         }
1891
1892         if (xhci->quirks & XHCI_MTK_HOST) {
1893                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1894                 if (ret < 0) {
1895                         xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1896                         virt_dev->eps[ep_index].new_ring = NULL;
1897                         return ret;
1898                 }
1899         }
1900
1901         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1902         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1903
1904         /* If xhci_endpoint_disable() was called for this endpoint, but the
1905          * xHC hasn't been notified yet through the check_bandwidth() call,
1906          * this re-adds a new state for the endpoint from the new endpoint
1907          * descriptors.  We must drop and re-add this endpoint, so we leave the
1908          * drop flags alone.
1909          */
1910         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1911
1912         /* Store the usb_device pointer for later use */
1913         ep->hcpriv = udev;
1914
1915         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1916         trace_xhci_add_endpoint(ep_ctx);
1917
1918         xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1919
1920         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1921                         (unsigned int) ep->desc.bEndpointAddress,
1922                         udev->slot_id,
1923                         (unsigned int) new_drop_flags,
1924                         (unsigned int) new_add_flags);
1925         return 0;
1926 }
1927
1928 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1929 {
1930         struct xhci_input_control_ctx *ctrl_ctx;
1931         struct xhci_ep_ctx *ep_ctx;
1932         struct xhci_slot_ctx *slot_ctx;
1933         int i;
1934
1935         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1936         if (!ctrl_ctx) {
1937                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1938                                 __func__);
1939                 return;
1940         }
1941
1942         /* When a device's add flag and drop flag are zero, any subsequent
1943          * configure endpoint command will leave that endpoint's state
1944          * untouched.  Make sure we don't leave any old state in the input
1945          * endpoint contexts.
1946          */
1947         ctrl_ctx->drop_flags = 0;
1948         ctrl_ctx->add_flags = 0;
1949         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1950         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1951         /* Endpoint 0 is always valid */
1952         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1953         for (i = 1; i < 31; i++) {
1954                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1955                 ep_ctx->ep_info = 0;
1956                 ep_ctx->ep_info2 = 0;
1957                 ep_ctx->deq = 0;
1958                 ep_ctx->tx_info = 0;
1959         }
1960 }
1961
1962 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1963                 struct usb_device *udev, u32 *cmd_status)
1964 {
1965         int ret;
1966
1967         switch (*cmd_status) {
1968         case COMP_COMMAND_ABORTED:
1969         case COMP_COMMAND_RING_STOPPED:
1970                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1971                 ret = -ETIME;
1972                 break;
1973         case COMP_RESOURCE_ERROR:
1974                 dev_warn(&udev->dev,
1975                          "Not enough host controller resources for new device state.\n");
1976                 ret = -ENOMEM;
1977                 /* FIXME: can we allocate more resources for the HC? */
1978                 break;
1979         case COMP_BANDWIDTH_ERROR:
1980         case COMP_SECONDARY_BANDWIDTH_ERROR:
1981                 dev_warn(&udev->dev,
1982                          "Not enough bandwidth for new device state.\n");
1983                 ret = -ENOSPC;
1984                 /* FIXME: can we go back to the old state? */
1985                 break;
1986         case COMP_TRB_ERROR:
1987                 /* the HCD set up something wrong */
1988                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1989                                 "add flag = 1, "
1990                                 "and endpoint is not disabled.\n");
1991                 ret = -EINVAL;
1992                 break;
1993         case COMP_INCOMPATIBLE_DEVICE_ERROR:
1994                 dev_warn(&udev->dev,
1995                          "ERROR: Incompatible device for endpoint configure command.\n");
1996                 ret = -ENODEV;
1997                 break;
1998         case COMP_SUCCESS:
1999                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2000                                 "Successful Endpoint Configure command");
2001                 ret = 0;
2002                 break;
2003         default:
2004                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2005                                 *cmd_status);
2006                 ret = -EINVAL;
2007                 break;
2008         }
2009         return ret;
2010 }
2011
2012 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2013                 struct usb_device *udev, u32 *cmd_status)
2014 {
2015         int ret;
2016
2017         switch (*cmd_status) {
2018         case COMP_COMMAND_ABORTED:
2019         case COMP_COMMAND_RING_STOPPED:
2020                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2021                 ret = -ETIME;
2022                 break;
2023         case COMP_PARAMETER_ERROR:
2024                 dev_warn(&udev->dev,
2025                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2026                 ret = -EINVAL;
2027                 break;
2028         case COMP_SLOT_NOT_ENABLED_ERROR:
2029                 dev_warn(&udev->dev,
2030                         "WARN: slot not enabled for evaluate context command.\n");
2031                 ret = -EINVAL;
2032                 break;
2033         case COMP_CONTEXT_STATE_ERROR:
2034                 dev_warn(&udev->dev,
2035                         "WARN: invalid context state for evaluate context command.\n");
2036                 ret = -EINVAL;
2037                 break;
2038         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2039                 dev_warn(&udev->dev,
2040                         "ERROR: Incompatible device for evaluate context command.\n");
2041                 ret = -ENODEV;
2042                 break;
2043         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2044                 /* Max Exit Latency too large error */
2045                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2046                 ret = -EINVAL;
2047                 break;
2048         case COMP_SUCCESS:
2049                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2050                                 "Successful evaluate context command");
2051                 ret = 0;
2052                 break;
2053         default:
2054                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2055                         *cmd_status);
2056                 ret = -EINVAL;
2057                 break;
2058         }
2059         return ret;
2060 }
2061
2062 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2063                 struct xhci_input_control_ctx *ctrl_ctx)
2064 {
2065         u32 valid_add_flags;
2066         u32 valid_drop_flags;
2067
2068         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2069          * (bit 1).  The default control endpoint is added during the Address
2070          * Device command and is never removed until the slot is disabled.
2071          */
2072         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2073         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2074
2075         /* Use hweight32 to count the number of ones in the add flags, or
2076          * number of endpoints added.  Don't count endpoints that are changed
2077          * (both added and dropped).
2078          */
2079         return hweight32(valid_add_flags) -
2080                 hweight32(valid_add_flags & valid_drop_flags);
2081 }
2082
2083 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2084                 struct xhci_input_control_ctx *ctrl_ctx)
2085 {
2086         u32 valid_add_flags;
2087         u32 valid_drop_flags;
2088
2089         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2090         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2091
2092         return hweight32(valid_drop_flags) -
2093                 hweight32(valid_add_flags & valid_drop_flags);
2094 }
2095
2096 /*
2097  * We need to reserve the new number of endpoints before the configure endpoint
2098  * command completes.  We can't subtract the dropped endpoints from the number
2099  * of active endpoints until the command completes because we can oversubscribe
2100  * the host in this case:
2101  *
2102  *  - the first configure endpoint command drops more endpoints than it adds
2103  *  - a second configure endpoint command that adds more endpoints is queued
2104  *  - the first configure endpoint command fails, so the config is unchanged
2105  *  - the second command may succeed, even though there isn't enough resources
2106  *
2107  * Must be called with xhci->lock held.
2108  */
2109 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2110                 struct xhci_input_control_ctx *ctrl_ctx)
2111 {
2112         u32 added_eps;
2113
2114         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2115         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2116                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2117                                 "Not enough ep ctxs: "
2118                                 "%u active, need to add %u, limit is %u.",
2119                                 xhci->num_active_eps, added_eps,
2120                                 xhci->limit_active_eps);
2121                 return -ENOMEM;
2122         }
2123         xhci->num_active_eps += added_eps;
2124         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2125                         "Adding %u ep ctxs, %u now active.", added_eps,
2126                         xhci->num_active_eps);
2127         return 0;
2128 }
2129
2130 /*
2131  * The configure endpoint was failed by the xHC for some other reason, so we
2132  * need to revert the resources that failed configuration would have used.
2133  *
2134  * Must be called with xhci->lock held.
2135  */
2136 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2137                 struct xhci_input_control_ctx *ctrl_ctx)
2138 {
2139         u32 num_failed_eps;
2140
2141         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2142         xhci->num_active_eps -= num_failed_eps;
2143         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2144                         "Removing %u failed ep ctxs, %u now active.",
2145                         num_failed_eps,
2146                         xhci->num_active_eps);
2147 }
2148
2149 /*
2150  * Now that the command has completed, clean up the active endpoint count by
2151  * subtracting out the endpoints that were dropped (but not changed).
2152  *
2153  * Must be called with xhci->lock held.
2154  */
2155 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2156                 struct xhci_input_control_ctx *ctrl_ctx)
2157 {
2158         u32 num_dropped_eps;
2159
2160         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2161         xhci->num_active_eps -= num_dropped_eps;
2162         if (num_dropped_eps)
2163                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2164                                 "Removing %u dropped ep ctxs, %u now active.",
2165                                 num_dropped_eps,
2166                                 xhci->num_active_eps);
2167 }
2168
2169 static unsigned int xhci_get_block_size(struct usb_device *udev)
2170 {
2171         switch (udev->speed) {
2172         case USB_SPEED_LOW:
2173         case USB_SPEED_FULL:
2174                 return FS_BLOCK;
2175         case USB_SPEED_HIGH:
2176                 return HS_BLOCK;
2177         case USB_SPEED_SUPER:
2178         case USB_SPEED_SUPER_PLUS:
2179                 return SS_BLOCK;
2180         case USB_SPEED_UNKNOWN:
2181         case USB_SPEED_WIRELESS:
2182         default:
2183                 /* Should never happen */
2184                 return 1;
2185         }
2186 }
2187
2188 static unsigned int
2189 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2190 {
2191         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2192                 return LS_OVERHEAD;
2193         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2194                 return FS_OVERHEAD;
2195         return HS_OVERHEAD;
2196 }
2197
2198 /* If we are changing a LS/FS device under a HS hub,
2199  * make sure (if we are activating a new TT) that the HS bus has enough
2200  * bandwidth for this new TT.
2201  */
2202 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2203                 struct xhci_virt_device *virt_dev,
2204                 int old_active_eps)
2205 {
2206         struct xhci_interval_bw_table *bw_table;
2207         struct xhci_tt_bw_info *tt_info;
2208
2209         /* Find the bandwidth table for the root port this TT is attached to. */
2210         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2211         tt_info = virt_dev->tt_info;
2212         /* If this TT already had active endpoints, the bandwidth for this TT
2213          * has already been added.  Removing all periodic endpoints (and thus
2214          * making the TT enactive) will only decrease the bandwidth used.
2215          */
2216         if (old_active_eps)
2217                 return 0;
2218         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2219                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2220                         return -ENOMEM;
2221                 return 0;
2222         }
2223         /* Not sure why we would have no new active endpoints...
2224          *
2225          * Maybe because of an Evaluate Context change for a hub update or a
2226          * control endpoint 0 max packet size change?
2227          * FIXME: skip the bandwidth calculation in that case.
2228          */
2229         return 0;
2230 }
2231
2232 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2233                 struct xhci_virt_device *virt_dev)
2234 {
2235         unsigned int bw_reserved;
2236
2237         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2238         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2239                 return -ENOMEM;
2240
2241         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2242         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2243                 return -ENOMEM;
2244
2245         return 0;
2246 }
2247
2248 /*
2249  * This algorithm is a very conservative estimate of the worst-case scheduling
2250  * scenario for any one interval.  The hardware dynamically schedules the
2251  * packets, so we can't tell which microframe could be the limiting factor in
2252  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2253  *
2254  * Obviously, we can't solve an NP complete problem to find the minimum worst
2255  * case scenario.  Instead, we come up with an estimate that is no less than
2256  * the worst case bandwidth used for any one microframe, but may be an
2257  * over-estimate.
2258  *
2259  * We walk the requirements for each endpoint by interval, starting with the
2260  * smallest interval, and place packets in the schedule where there is only one
2261  * possible way to schedule packets for that interval.  In order to simplify
2262  * this algorithm, we record the largest max packet size for each interval, and
2263  * assume all packets will be that size.
2264  *
2265  * For interval 0, we obviously must schedule all packets for each interval.
2266  * The bandwidth for interval 0 is just the amount of data to be transmitted
2267  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2268  * the number of packets).
2269  *
2270  * For interval 1, we have two possible microframes to schedule those packets
2271  * in.  For this algorithm, if we can schedule the same number of packets for
2272  * each possible scheduling opportunity (each microframe), we will do so.  The
2273  * remaining number of packets will be saved to be transmitted in the gaps in
2274  * the next interval's scheduling sequence.
2275  *
2276  * As we move those remaining packets to be scheduled with interval 2 packets,
2277  * we have to double the number of remaining packets to transmit.  This is
2278  * because the intervals are actually powers of 2, and we would be transmitting
2279  * the previous interval's packets twice in this interval.  We also have to be
2280  * sure that when we look at the largest max packet size for this interval, we
2281  * also look at the largest max packet size for the remaining packets and take
2282  * the greater of the two.
2283  *
2284  * The algorithm continues to evenly distribute packets in each scheduling
2285  * opportunity, and push the remaining packets out, until we get to the last
2286  * interval.  Then those packets and their associated overhead are just added
2287  * to the bandwidth used.
2288  */
2289 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2290                 struct xhci_virt_device *virt_dev,
2291                 int old_active_eps)
2292 {
2293         unsigned int bw_reserved;
2294         unsigned int max_bandwidth;
2295         unsigned int bw_used;
2296         unsigned int block_size;
2297         struct xhci_interval_bw_table *bw_table;
2298         unsigned int packet_size = 0;
2299         unsigned int overhead = 0;
2300         unsigned int packets_transmitted = 0;
2301         unsigned int packets_remaining = 0;
2302         unsigned int i;
2303
2304         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2305                 return xhci_check_ss_bw(xhci, virt_dev);
2306
2307         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2308                 max_bandwidth = HS_BW_LIMIT;
2309                 /* Convert percent of bus BW reserved to blocks reserved */
2310                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2311         } else {
2312                 max_bandwidth = FS_BW_LIMIT;
2313                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2314         }
2315
2316         bw_table = virt_dev->bw_table;
2317         /* We need to translate the max packet size and max ESIT payloads into
2318          * the units the hardware uses.
2319          */
2320         block_size = xhci_get_block_size(virt_dev->udev);
2321
2322         /* If we are manipulating a LS/FS device under a HS hub, double check
2323          * that the HS bus has enough bandwidth if we are activing a new TT.
2324          */
2325         if (virt_dev->tt_info) {
2326                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2327                                 "Recalculating BW for rootport %u",
2328                                 virt_dev->real_port);
2329                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2330                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2331                                         "newly activated TT.\n");
2332                         return -ENOMEM;
2333                 }
2334                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2335                                 "Recalculating BW for TT slot %u port %u",
2336                                 virt_dev->tt_info->slot_id,
2337                                 virt_dev->tt_info->ttport);
2338         } else {
2339                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2340                                 "Recalculating BW for rootport %u",
2341                                 virt_dev->real_port);
2342         }
2343
2344         /* Add in how much bandwidth will be used for interval zero, or the
2345          * rounded max ESIT payload + number of packets * largest overhead.
2346          */
2347         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2348                 bw_table->interval_bw[0].num_packets *
2349                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2350
2351         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2352                 unsigned int bw_added;
2353                 unsigned int largest_mps;
2354                 unsigned int interval_overhead;
2355
2356                 /*
2357                  * How many packets could we transmit in this interval?
2358                  * If packets didn't fit in the previous interval, we will need
2359                  * to transmit that many packets twice within this interval.
2360                  */
2361                 packets_remaining = 2 * packets_remaining +
2362                         bw_table->interval_bw[i].num_packets;
2363
2364                 /* Find the largest max packet size of this or the previous
2365                  * interval.
2366                  */
2367                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2368                         largest_mps = 0;
2369                 else {
2370                         struct xhci_virt_ep *virt_ep;
2371                         struct list_head *ep_entry;
2372
2373                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2374                         virt_ep = list_entry(ep_entry,
2375                                         struct xhci_virt_ep, bw_endpoint_list);
2376                         /* Convert to blocks, rounding up */
2377                         largest_mps = DIV_ROUND_UP(
2378                                         virt_ep->bw_info.max_packet_size,
2379                                         block_size);
2380                 }
2381                 if (largest_mps > packet_size)
2382                         packet_size = largest_mps;
2383
2384                 /* Use the larger overhead of this or the previous interval. */
2385                 interval_overhead = xhci_get_largest_overhead(
2386                                 &bw_table->interval_bw[i]);
2387                 if (interval_overhead > overhead)
2388                         overhead = interval_overhead;
2389
2390                 /* How many packets can we evenly distribute across
2391                  * (1 << (i + 1)) possible scheduling opportunities?
2392                  */
2393                 packets_transmitted = packets_remaining >> (i + 1);
2394
2395                 /* Add in the bandwidth used for those scheduled packets */
2396                 bw_added = packets_transmitted * (overhead + packet_size);
2397
2398                 /* How many packets do we have remaining to transmit? */
2399                 packets_remaining = packets_remaining % (1 << (i + 1));
2400
2401                 /* What largest max packet size should those packets have? */
2402                 /* If we've transmitted all packets, don't carry over the
2403                  * largest packet size.
2404                  */
2405                 if (packets_remaining == 0) {
2406                         packet_size = 0;
2407                         overhead = 0;
2408                 } else if (packets_transmitted > 0) {
2409                         /* Otherwise if we do have remaining packets, and we've
2410                          * scheduled some packets in this interval, take the
2411                          * largest max packet size from endpoints with this
2412                          * interval.
2413                          */
2414                         packet_size = largest_mps;
2415                         overhead = interval_overhead;
2416                 }
2417                 /* Otherwise carry over packet_size and overhead from the last
2418                  * time we had a remainder.
2419                  */
2420                 bw_used += bw_added;
2421                 if (bw_used > max_bandwidth) {
2422                         xhci_warn(xhci, "Not enough bandwidth. "
2423                                         "Proposed: %u, Max: %u\n",
2424                                 bw_used, max_bandwidth);
2425                         return -ENOMEM;
2426                 }
2427         }
2428         /*
2429          * Ok, we know we have some packets left over after even-handedly
2430          * scheduling interval 15.  We don't know which microframes they will
2431          * fit into, so we over-schedule and say they will be scheduled every
2432          * microframe.
2433          */
2434         if (packets_remaining > 0)
2435                 bw_used += overhead + packet_size;
2436
2437         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2438                 unsigned int port_index = virt_dev->real_port - 1;
2439
2440                 /* OK, we're manipulating a HS device attached to a
2441                  * root port bandwidth domain.  Include the number of active TTs
2442                  * in the bandwidth used.
2443                  */
2444                 bw_used += TT_HS_OVERHEAD *
2445                         xhci->rh_bw[port_index].num_active_tts;
2446         }
2447
2448         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2449                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2450                 "Available: %u " "percent",
2451                 bw_used, max_bandwidth, bw_reserved,
2452                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2453                 max_bandwidth);
2454
2455         bw_used += bw_reserved;
2456         if (bw_used > max_bandwidth) {
2457                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2458                                 bw_used, max_bandwidth);
2459                 return -ENOMEM;
2460         }
2461
2462         bw_table->bw_used = bw_used;
2463         return 0;
2464 }
2465
2466 static bool xhci_is_async_ep(unsigned int ep_type)
2467 {
2468         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2469                                         ep_type != ISOC_IN_EP &&
2470                                         ep_type != INT_IN_EP);
2471 }
2472
2473 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2474 {
2475         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2476 }
2477
2478 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2479 {
2480         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2481
2482         if (ep_bw->ep_interval == 0)
2483                 return SS_OVERHEAD_BURST +
2484                         (ep_bw->mult * ep_bw->num_packets *
2485                                         (SS_OVERHEAD + mps));
2486         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2487                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2488                                 1 << ep_bw->ep_interval);
2489
2490 }
2491
2492 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2493                 struct xhci_bw_info *ep_bw,
2494                 struct xhci_interval_bw_table *bw_table,
2495                 struct usb_device *udev,
2496                 struct xhci_virt_ep *virt_ep,
2497                 struct xhci_tt_bw_info *tt_info)
2498 {
2499         struct xhci_interval_bw *interval_bw;
2500         int normalized_interval;
2501
2502         if (xhci_is_async_ep(ep_bw->type))
2503                 return;
2504
2505         if (udev->speed >= USB_SPEED_SUPER) {
2506                 if (xhci_is_sync_in_ep(ep_bw->type))
2507                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2508                                 xhci_get_ss_bw_consumed(ep_bw);
2509                 else
2510                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2511                                 xhci_get_ss_bw_consumed(ep_bw);
2512                 return;
2513         }
2514
2515         /* SuperSpeed endpoints never get added to intervals in the table, so
2516          * this check is only valid for HS/FS/LS devices.
2517          */
2518         if (list_empty(&virt_ep->bw_endpoint_list))
2519                 return;
2520         /* For LS/FS devices, we need to translate the interval expressed in
2521          * microframes to frames.
2522          */
2523         if (udev->speed == USB_SPEED_HIGH)
2524                 normalized_interval = ep_bw->ep_interval;
2525         else
2526                 normalized_interval = ep_bw->ep_interval - 3;
2527
2528         if (normalized_interval == 0)
2529                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2530         interval_bw = &bw_table->interval_bw[normalized_interval];
2531         interval_bw->num_packets -= ep_bw->num_packets;
2532         switch (udev->speed) {
2533         case USB_SPEED_LOW:
2534                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2535                 break;
2536         case USB_SPEED_FULL:
2537                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2538                 break;
2539         case USB_SPEED_HIGH:
2540                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2541                 break;
2542         case USB_SPEED_SUPER:
2543         case USB_SPEED_SUPER_PLUS:
2544         case USB_SPEED_UNKNOWN:
2545         case USB_SPEED_WIRELESS:
2546                 /* Should never happen because only LS/FS/HS endpoints will get
2547                  * added to the endpoint list.
2548                  */
2549                 return;
2550         }
2551         if (tt_info)
2552                 tt_info->active_eps -= 1;
2553         list_del_init(&virt_ep->bw_endpoint_list);
2554 }
2555
2556 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2557                 struct xhci_bw_info *ep_bw,
2558                 struct xhci_interval_bw_table *bw_table,
2559                 struct usb_device *udev,
2560                 struct xhci_virt_ep *virt_ep,
2561                 struct xhci_tt_bw_info *tt_info)
2562 {
2563         struct xhci_interval_bw *interval_bw;
2564         struct xhci_virt_ep *smaller_ep;
2565         int normalized_interval;
2566
2567         if (xhci_is_async_ep(ep_bw->type))
2568                 return;
2569
2570         if (udev->speed == USB_SPEED_SUPER) {
2571                 if (xhci_is_sync_in_ep(ep_bw->type))
2572                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2573                                 xhci_get_ss_bw_consumed(ep_bw);
2574                 else
2575                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2576                                 xhci_get_ss_bw_consumed(ep_bw);
2577                 return;
2578         }
2579
2580         /* For LS/FS devices, we need to translate the interval expressed in
2581          * microframes to frames.
2582          */
2583         if (udev->speed == USB_SPEED_HIGH)
2584                 normalized_interval = ep_bw->ep_interval;
2585         else
2586                 normalized_interval = ep_bw->ep_interval - 3;
2587
2588         if (normalized_interval == 0)
2589                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2590         interval_bw = &bw_table->interval_bw[normalized_interval];
2591         interval_bw->num_packets += ep_bw->num_packets;
2592         switch (udev->speed) {
2593         case USB_SPEED_LOW:
2594                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2595                 break;
2596         case USB_SPEED_FULL:
2597                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2598                 break;
2599         case USB_SPEED_HIGH:
2600                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2601                 break;
2602         case USB_SPEED_SUPER:
2603         case USB_SPEED_SUPER_PLUS:
2604         case USB_SPEED_UNKNOWN:
2605         case USB_SPEED_WIRELESS:
2606                 /* Should never happen because only LS/FS/HS endpoints will get
2607                  * added to the endpoint list.
2608                  */
2609                 return;
2610         }
2611
2612         if (tt_info)
2613                 tt_info->active_eps += 1;
2614         /* Insert the endpoint into the list, largest max packet size first. */
2615         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2616                         bw_endpoint_list) {
2617                 if (ep_bw->max_packet_size >=
2618                                 smaller_ep->bw_info.max_packet_size) {
2619                         /* Add the new ep before the smaller endpoint */
2620                         list_add_tail(&virt_ep->bw_endpoint_list,
2621                                         &smaller_ep->bw_endpoint_list);
2622                         return;
2623                 }
2624         }
2625         /* Add the new endpoint at the end of the list. */
2626         list_add_tail(&virt_ep->bw_endpoint_list,
2627                         &interval_bw->endpoints);
2628 }
2629
2630 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2631                 struct xhci_virt_device *virt_dev,
2632                 int old_active_eps)
2633 {
2634         struct xhci_root_port_bw_info *rh_bw_info;
2635         if (!virt_dev->tt_info)
2636                 return;
2637
2638         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2639         if (old_active_eps == 0 &&
2640                                 virt_dev->tt_info->active_eps != 0) {
2641                 rh_bw_info->num_active_tts += 1;
2642                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2643         } else if (old_active_eps != 0 &&
2644                                 virt_dev->tt_info->active_eps == 0) {
2645                 rh_bw_info->num_active_tts -= 1;
2646                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2647         }
2648 }
2649
2650 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2651                 struct xhci_virt_device *virt_dev,
2652                 struct xhci_container_ctx *in_ctx)
2653 {
2654         struct xhci_bw_info ep_bw_info[31];
2655         int i;
2656         struct xhci_input_control_ctx *ctrl_ctx;
2657         int old_active_eps = 0;
2658
2659         if (virt_dev->tt_info)
2660                 old_active_eps = virt_dev->tt_info->active_eps;
2661
2662         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2663         if (!ctrl_ctx) {
2664                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2665                                 __func__);
2666                 return -ENOMEM;
2667         }
2668
2669         for (i = 0; i < 31; i++) {
2670                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2671                         continue;
2672
2673                 /* Make a copy of the BW info in case we need to revert this */
2674                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2675                                 sizeof(ep_bw_info[i]));
2676                 /* Drop the endpoint from the interval table if the endpoint is
2677                  * being dropped or changed.
2678                  */
2679                 if (EP_IS_DROPPED(ctrl_ctx, i))
2680                         xhci_drop_ep_from_interval_table(xhci,
2681                                         &virt_dev->eps[i].bw_info,
2682                                         virt_dev->bw_table,
2683                                         virt_dev->udev,
2684                                         &virt_dev->eps[i],
2685                                         virt_dev->tt_info);
2686         }
2687         /* Overwrite the information stored in the endpoints' bw_info */
2688         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2689         for (i = 0; i < 31; i++) {
2690                 /* Add any changed or added endpoints to the interval table */
2691                 if (EP_IS_ADDED(ctrl_ctx, i))
2692                         xhci_add_ep_to_interval_table(xhci,
2693                                         &virt_dev->eps[i].bw_info,
2694                                         virt_dev->bw_table,
2695                                         virt_dev->udev,
2696                                         &virt_dev->eps[i],
2697                                         virt_dev->tt_info);
2698         }
2699
2700         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2701                 /* Ok, this fits in the bandwidth we have.
2702                  * Update the number of active TTs.
2703                  */
2704                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2705                 return 0;
2706         }
2707
2708         /* We don't have enough bandwidth for this, revert the stored info. */
2709         for (i = 0; i < 31; i++) {
2710                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2711                         continue;
2712
2713                 /* Drop the new copies of any added or changed endpoints from
2714                  * the interval table.
2715                  */
2716                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2717                         xhci_drop_ep_from_interval_table(xhci,
2718                                         &virt_dev->eps[i].bw_info,
2719                                         virt_dev->bw_table,
2720                                         virt_dev->udev,
2721                                         &virt_dev->eps[i],
2722                                         virt_dev->tt_info);
2723                 }
2724                 /* Revert the endpoint back to its old information */
2725                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2726                                 sizeof(ep_bw_info[i]));
2727                 /* Add any changed or dropped endpoints back into the table */
2728                 if (EP_IS_DROPPED(ctrl_ctx, i))
2729                         xhci_add_ep_to_interval_table(xhci,
2730                                         &virt_dev->eps[i].bw_info,
2731                                         virt_dev->bw_table,
2732                                         virt_dev->udev,
2733                                         &virt_dev->eps[i],
2734                                         virt_dev->tt_info);
2735         }
2736         return -ENOMEM;
2737 }
2738
2739
2740 /* Issue a configure endpoint command or evaluate context command
2741  * and wait for it to finish.
2742  */
2743 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2744                 struct usb_device *udev,
2745                 struct xhci_command *command,
2746                 bool ctx_change, bool must_succeed)
2747 {
2748         int ret;
2749         unsigned long flags;
2750         struct xhci_input_control_ctx *ctrl_ctx;
2751         struct xhci_virt_device *virt_dev;
2752         struct xhci_slot_ctx *slot_ctx;
2753
2754         if (!command)
2755                 return -EINVAL;
2756
2757         spin_lock_irqsave(&xhci->lock, flags);
2758
2759         if (xhci->xhc_state & XHCI_STATE_DYING) {
2760                 spin_unlock_irqrestore(&xhci->lock, flags);
2761                 return -ESHUTDOWN;
2762         }
2763
2764         virt_dev = xhci->devs[udev->slot_id];
2765
2766         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2767         if (!ctrl_ctx) {
2768                 spin_unlock_irqrestore(&xhci->lock, flags);
2769                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2770                                 __func__);
2771                 return -ENOMEM;
2772         }
2773
2774         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2775                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2776                 spin_unlock_irqrestore(&xhci->lock, flags);
2777                 xhci_warn(xhci, "Not enough host resources, "
2778                                 "active endpoint contexts = %u\n",
2779                                 xhci->num_active_eps);
2780                 return -ENOMEM;
2781         }
2782         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2783             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2784                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2785                         xhci_free_host_resources(xhci, ctrl_ctx);
2786                 spin_unlock_irqrestore(&xhci->lock, flags);
2787                 xhci_warn(xhci, "Not enough bandwidth\n");
2788                 return -ENOMEM;
2789         }
2790
2791         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2792
2793         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2794         trace_xhci_configure_endpoint(slot_ctx);
2795
2796         if (!ctx_change)
2797                 ret = xhci_queue_configure_endpoint(xhci, command,
2798                                 command->in_ctx->dma,
2799                                 udev->slot_id, must_succeed);
2800         else
2801                 ret = xhci_queue_evaluate_context(xhci, command,
2802                                 command->in_ctx->dma,
2803                                 udev->slot_id, must_succeed);
2804         if (ret < 0) {
2805                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2806                         xhci_free_host_resources(xhci, ctrl_ctx);
2807                 spin_unlock_irqrestore(&xhci->lock, flags);
2808                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2809                                 "FIXME allocate a new ring segment");
2810                 return -ENOMEM;
2811         }
2812         xhci_ring_cmd_db(xhci);
2813         spin_unlock_irqrestore(&xhci->lock, flags);
2814
2815         /* Wait for the configure endpoint command to complete */
2816         wait_for_completion(command->completion);
2817
2818         if (!ctx_change)
2819                 ret = xhci_configure_endpoint_result(xhci, udev,
2820                                                      &command->status);
2821         else
2822                 ret = xhci_evaluate_context_result(xhci, udev,
2823                                                    &command->status);
2824
2825         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2826                 spin_lock_irqsave(&xhci->lock, flags);
2827                 /* If the command failed, remove the reserved resources.
2828                  * Otherwise, clean up the estimate to include dropped eps.
2829                  */
2830                 if (ret)
2831                         xhci_free_host_resources(xhci, ctrl_ctx);
2832                 else
2833                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2834                 spin_unlock_irqrestore(&xhci->lock, flags);
2835         }
2836         return ret;
2837 }
2838
2839 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2840         struct xhci_virt_device *vdev, int i)
2841 {
2842         struct xhci_virt_ep *ep = &vdev->eps[i];
2843
2844         if (ep->ep_state & EP_HAS_STREAMS) {
2845                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2846                                 xhci_get_endpoint_address(i));
2847                 xhci_free_stream_info(xhci, ep->stream_info);
2848                 ep->stream_info = NULL;
2849                 ep->ep_state &= ~EP_HAS_STREAMS;
2850         }
2851 }
2852
2853 /* Called after one or more calls to xhci_add_endpoint() or
2854  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2855  * to call xhci_reset_bandwidth().
2856  *
2857  * Since we are in the middle of changing either configuration or
2858  * installing a new alt setting, the USB core won't allow URBs to be
2859  * enqueued for any endpoint on the old config or interface.  Nothing
2860  * else should be touching the xhci->devs[slot_id] structure, so we
2861  * don't need to take the xhci->lock for manipulating that.
2862  */
2863 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2864 {
2865         int i;
2866         int ret = 0;
2867         struct xhci_hcd *xhci;
2868         struct xhci_virt_device *virt_dev;
2869         struct xhci_input_control_ctx *ctrl_ctx;
2870         struct xhci_slot_ctx *slot_ctx;
2871         struct xhci_command *command;
2872
2873         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2874         if (ret <= 0)
2875                 return ret;
2876         xhci = hcd_to_xhci(hcd);
2877         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2878                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2879                 return -ENODEV;
2880
2881         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2882         virt_dev = xhci->devs[udev->slot_id];
2883
2884         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2885         if (!command)
2886                 return -ENOMEM;
2887
2888         command->in_ctx = virt_dev->in_ctx;
2889
2890         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2891         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2892         if (!ctrl_ctx) {
2893                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2894                                 __func__);
2895                 ret = -ENOMEM;
2896                 goto command_cleanup;
2897         }
2898         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2899         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2900         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2901
2902         /* Don't issue the command if there's no endpoints to update. */
2903         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2904             ctrl_ctx->drop_flags == 0) {
2905                 ret = 0;
2906                 goto command_cleanup;
2907         }
2908         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2909         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2910         for (i = 31; i >= 1; i--) {
2911                 __le32 le32 = cpu_to_le32(BIT(i));
2912
2913                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2914                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2915                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2916                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2917                         break;
2918                 }
2919         }
2920
2921         ret = xhci_configure_endpoint(xhci, udev, command,
2922                         false, false);
2923         if (ret)
2924                 /* Callee should call reset_bandwidth() */
2925                 goto command_cleanup;
2926
2927         /* Free any rings that were dropped, but not changed. */
2928         for (i = 1; i < 31; i++) {
2929                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2930                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2931                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2932                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2933                 }
2934         }
2935         xhci_zero_in_ctx(xhci, virt_dev);
2936         /*
2937          * Install any rings for completely new endpoints or changed endpoints,
2938          * and free any old rings from changed endpoints.
2939          */
2940         for (i = 1; i < 31; i++) {
2941                 if (!virt_dev->eps[i].new_ring)
2942                         continue;
2943                 /* Only free the old ring if it exists.
2944                  * It may not if this is the first add of an endpoint.
2945                  */
2946                 if (virt_dev->eps[i].ring) {
2947                         xhci_free_endpoint_ring(xhci, virt_dev, i);
2948                 }
2949                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2950                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2951                 virt_dev->eps[i].new_ring = NULL;
2952         }
2953 command_cleanup:
2954         kfree(command->completion);
2955         kfree(command);
2956
2957         return ret;
2958 }
2959
2960 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2961 {
2962         struct xhci_hcd *xhci;
2963         struct xhci_virt_device *virt_dev;
2964         int i, ret;
2965
2966         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2967         if (ret <= 0)
2968                 return;
2969         xhci = hcd_to_xhci(hcd);
2970
2971         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2972         virt_dev = xhci->devs[udev->slot_id];
2973         /* Free any rings allocated for added endpoints */
2974         for (i = 0; i < 31; i++) {
2975                 if (virt_dev->eps[i].new_ring) {
2976                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2977                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2978                         virt_dev->eps[i].new_ring = NULL;
2979                 }
2980         }
2981         xhci_zero_in_ctx(xhci, virt_dev);
2982 }
2983
2984 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2985                 struct xhci_container_ctx *in_ctx,
2986                 struct xhci_container_ctx *out_ctx,
2987                 struct xhci_input_control_ctx *ctrl_ctx,
2988                 u32 add_flags, u32 drop_flags)
2989 {
2990         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2991         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2992         xhci_slot_copy(xhci, in_ctx, out_ctx);
2993         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2994 }
2995
2996 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2997                 unsigned int slot_id, unsigned int ep_index,
2998                 struct xhci_dequeue_state *deq_state)
2999 {
3000         struct xhci_input_control_ctx *ctrl_ctx;
3001         struct xhci_container_ctx *in_ctx;
3002         struct xhci_ep_ctx *ep_ctx;
3003         u32 added_ctxs;
3004         dma_addr_t addr;
3005
3006         in_ctx = xhci->devs[slot_id]->in_ctx;
3007         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
3008         if (!ctrl_ctx) {
3009                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3010                                 __func__);
3011                 return;
3012         }
3013
3014         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
3015                         xhci->devs[slot_id]->out_ctx, ep_index);
3016         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3017         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3018                         deq_state->new_deq_ptr);
3019         if (addr == 0) {
3020                 xhci_warn(xhci, "WARN Cannot submit config ep after "
3021                                 "reset ep command\n");
3022                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3023                                 deq_state->new_deq_seg,
3024                                 deq_state->new_deq_ptr);
3025                 return;
3026         }
3027         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3028
3029         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3030         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3031                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3032                         added_ctxs, added_ctxs);
3033 }
3034
3035 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int slot_id,
3036                                unsigned int ep_index, unsigned int stream_id,
3037                                struct xhci_td *td)
3038 {
3039         struct xhci_dequeue_state deq_state;
3040
3041         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3042                         "Cleaning up stalled endpoint ring");
3043         /* We need to move the HW's dequeue pointer past this TD,
3044          * or it will attempt to resend it on the next doorbell ring.
3045          */
3046         xhci_find_new_dequeue_state(xhci, slot_id, ep_index, stream_id, td,
3047                                     &deq_state);
3048
3049         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3050                 return;
3051
3052         /* HW with the reset endpoint quirk will use the saved dequeue state to
3053          * issue a configure endpoint command later.
3054          */
3055         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3056                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3057                                 "Queueing new dequeue state");
3058                 xhci_queue_new_dequeue_state(xhci, slot_id,
3059                                 ep_index, &deq_state);
3060         } else {
3061                 /* Better hope no one uses the input context between now and the
3062                  * reset endpoint completion!
3063                  * XXX: No idea how this hardware will react when stream rings
3064                  * are enabled.
3065                  */
3066                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3067                                 "Setting up input context for "
3068                                 "configure endpoint command");
3069                 xhci_setup_input_ctx_for_quirk(xhci, slot_id,
3070                                 ep_index, &deq_state);
3071         }
3072 }
3073
3074 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3075                                   struct usb_host_endpoint *host_ep)
3076 {
3077         struct xhci_hcd         *xhci;
3078         struct xhci_virt_device *vdev;
3079         struct xhci_virt_ep     *ep;
3080         struct usb_device       *udev;
3081         unsigned long           flags;
3082         unsigned int            ep_index;
3083
3084         xhci = hcd_to_xhci(hcd);
3085 rescan:
3086         spin_lock_irqsave(&xhci->lock, flags);
3087
3088         udev = (struct usb_device *)host_ep->hcpriv;
3089         if (!udev || !udev->slot_id)
3090                 goto done;
3091
3092         vdev = xhci->devs[udev->slot_id];
3093         if (!vdev)
3094                 goto done;
3095
3096         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3097         ep = &vdev->eps[ep_index];
3098         if (!ep)
3099                 goto done;
3100
3101         /* wait for hub_tt_work to finish clearing hub TT */
3102         if (ep->ep_state & EP_CLEARING_TT) {
3103                 spin_unlock_irqrestore(&xhci->lock, flags);
3104                 schedule_timeout_uninterruptible(1);
3105                 goto rescan;
3106         }
3107
3108         if (ep->ep_state)
3109                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3110                          ep->ep_state);
3111 done:
3112         host_ep->hcpriv = NULL;
3113         spin_unlock_irqrestore(&xhci->lock, flags);
3114 }
3115
3116 /*
3117  * Called after usb core issues a clear halt control message.
3118  * The host side of the halt should already be cleared by a reset endpoint
3119  * command issued when the STALL event was received.
3120  *
3121  * The reset endpoint command may only be issued to endpoints in the halted
3122  * state. For software that wishes to reset the data toggle or sequence number
3123  * of an endpoint that isn't in the halted state this function will issue a
3124  * configure endpoint command with the Drop and Add bits set for the target
3125  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3126  */
3127
3128 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3129                 struct usb_host_endpoint *host_ep)
3130 {
3131         struct xhci_hcd *xhci;
3132         struct usb_device *udev;
3133         struct xhci_virt_device *vdev;
3134         struct xhci_virt_ep *ep;
3135         struct xhci_input_control_ctx *ctrl_ctx;
3136         struct xhci_command *stop_cmd, *cfg_cmd;
3137         unsigned int ep_index;
3138         unsigned long flags;
3139         u32 ep_flag;
3140         int err;
3141
3142         xhci = hcd_to_xhci(hcd);
3143         if (!host_ep->hcpriv)
3144                 return;
3145         udev = (struct usb_device *) host_ep->hcpriv;
3146         vdev = xhci->devs[udev->slot_id];
3147
3148         /*
3149          * vdev may be lost due to xHC restore error and re-initialization
3150          * during S3/S4 resume. A new vdev will be allocated later by
3151          * xhci_discover_or_reset_device()
3152          */
3153         if (!udev->slot_id || !vdev)
3154                 return;
3155         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3156         ep = &vdev->eps[ep_index];
3157         if (!ep)
3158                 return;
3159
3160         /* Bail out if toggle is already being cleared by a endpoint reset */
3161         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3162                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3163                 return;
3164         }
3165         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3166         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3167             usb_endpoint_xfer_isoc(&host_ep->desc))
3168                 return;
3169
3170         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3171
3172         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3173                 return;
3174
3175         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3176         if (!stop_cmd)
3177                 return;
3178
3179         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3180         if (!cfg_cmd)
3181                 goto cleanup;
3182
3183         spin_lock_irqsave(&xhci->lock, flags);
3184
3185         /* block queuing new trbs and ringing ep doorbell */
3186         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3187
3188         /*
3189          * Make sure endpoint ring is empty before resetting the toggle/seq.
3190          * Driver is required to synchronously cancel all transfer request.
3191          * Stop the endpoint to force xHC to update the output context
3192          */
3193
3194         if (!list_empty(&ep->ring->td_list)) {
3195                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3196                 spin_unlock_irqrestore(&xhci->lock, flags);
3197                 xhci_free_command(xhci, cfg_cmd);
3198                 goto cleanup;
3199         }
3200
3201         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3202                                         ep_index, 0);
3203         if (err < 0) {
3204                 spin_unlock_irqrestore(&xhci->lock, flags);
3205                 xhci_free_command(xhci, cfg_cmd);
3206                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3207                                 __func__, err);
3208                 goto cleanup;
3209         }
3210
3211         xhci_ring_cmd_db(xhci);
3212         spin_unlock_irqrestore(&xhci->lock, flags);
3213
3214         wait_for_completion(stop_cmd->completion);
3215
3216         spin_lock_irqsave(&xhci->lock, flags);
3217
3218         /* config ep command clears toggle if add and drop ep flags are set */
3219         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3220         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3221                                            ctrl_ctx, ep_flag, ep_flag);
3222         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3223
3224         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3225                                       udev->slot_id, false);
3226         if (err < 0) {
3227                 spin_unlock_irqrestore(&xhci->lock, flags);
3228                 xhci_free_command(xhci, cfg_cmd);
3229                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3230                                 __func__, err);
3231                 goto cleanup;
3232         }
3233
3234         xhci_ring_cmd_db(xhci);
3235         spin_unlock_irqrestore(&xhci->lock, flags);
3236
3237         wait_for_completion(cfg_cmd->completion);
3238
3239         ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3240         xhci_free_command(xhci, cfg_cmd);
3241 cleanup:
3242         xhci_free_command(xhci, stop_cmd);
3243 }
3244
3245 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3246                 struct usb_device *udev, struct usb_host_endpoint *ep,
3247                 unsigned int slot_id)
3248 {
3249         int ret;
3250         unsigned int ep_index;
3251         unsigned int ep_state;
3252
3253         if (!ep)
3254                 return -EINVAL;
3255         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3256         if (ret <= 0)
3257                 return -EINVAL;
3258         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3259                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3260                                 " descriptor for ep 0x%x does not support streams\n",
3261                                 ep->desc.bEndpointAddress);
3262                 return -EINVAL;
3263         }
3264
3265         ep_index = xhci_get_endpoint_index(&ep->desc);
3266         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3267         if (ep_state & EP_HAS_STREAMS ||
3268                         ep_state & EP_GETTING_STREAMS) {
3269                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3270                                 "already has streams set up.\n",
3271                                 ep->desc.bEndpointAddress);
3272                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3273                                 "dynamic stream context array reallocation.\n");
3274                 return -EINVAL;
3275         }
3276         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3277                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3278                                 "endpoint 0x%x; URBs are pending.\n",
3279                                 ep->desc.bEndpointAddress);
3280                 return -EINVAL;
3281         }
3282         return 0;
3283 }
3284
3285 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3286                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3287 {
3288         unsigned int max_streams;
3289
3290         /* The stream context array size must be a power of two */
3291         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3292         /*
3293          * Find out how many primary stream array entries the host controller
3294          * supports.  Later we may use secondary stream arrays (similar to 2nd
3295          * level page entries), but that's an optional feature for xHCI host
3296          * controllers. xHCs must support at least 4 stream IDs.
3297          */
3298         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3299         if (*num_stream_ctxs > max_streams) {
3300                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3301                                 max_streams);
3302                 *num_stream_ctxs = max_streams;
3303                 *num_streams = max_streams;
3304         }
3305 }
3306
3307 /* Returns an error code if one of the endpoint already has streams.
3308  * This does not change any data structures, it only checks and gathers
3309  * information.
3310  */
3311 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3312                 struct usb_device *udev,
3313                 struct usb_host_endpoint **eps, unsigned int num_eps,
3314                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3315 {
3316         unsigned int max_streams;
3317         unsigned int endpoint_flag;
3318         int i;
3319         int ret;
3320
3321         for (i = 0; i < num_eps; i++) {
3322                 ret = xhci_check_streams_endpoint(xhci, udev,
3323                                 eps[i], udev->slot_id);
3324                 if (ret < 0)
3325                         return ret;
3326
3327                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3328                 if (max_streams < (*num_streams - 1)) {
3329                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3330                                         eps[i]->desc.bEndpointAddress,
3331                                         max_streams);
3332                         *num_streams = max_streams+1;
3333                 }
3334
3335                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3336                 if (*changed_ep_bitmask & endpoint_flag)
3337                         return -EINVAL;
3338                 *changed_ep_bitmask |= endpoint_flag;
3339         }
3340         return 0;
3341 }
3342
3343 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3344                 struct usb_device *udev,
3345                 struct usb_host_endpoint **eps, unsigned int num_eps)
3346 {
3347         u32 changed_ep_bitmask = 0;
3348         unsigned int slot_id;
3349         unsigned int ep_index;
3350         unsigned int ep_state;
3351         int i;
3352
3353         slot_id = udev->slot_id;
3354         if (!xhci->devs[slot_id])
3355                 return 0;
3356
3357         for (i = 0; i < num_eps; i++) {
3358                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3359                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3360                 /* Are streams already being freed for the endpoint? */
3361                 if (ep_state & EP_GETTING_NO_STREAMS) {
3362                         xhci_warn(xhci, "WARN Can't disable streams for "
3363                                         "endpoint 0x%x, "
3364                                         "streams are being disabled already\n",
3365                                         eps[i]->desc.bEndpointAddress);
3366                         return 0;
3367                 }
3368                 /* Are there actually any streams to free? */
3369                 if (!(ep_state & EP_HAS_STREAMS) &&
3370                                 !(ep_state & EP_GETTING_STREAMS)) {
3371                         xhci_warn(xhci, "WARN Can't disable streams for "
3372                                         "endpoint 0x%x, "
3373                                         "streams are already disabled!\n",
3374                                         eps[i]->desc.bEndpointAddress);
3375                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3376                                         "with non-streams endpoint\n");
3377                         return 0;
3378                 }
3379                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3380         }
3381         return changed_ep_bitmask;
3382 }
3383
3384 /*
3385  * The USB device drivers use this function (through the HCD interface in USB
3386  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3387  * coordinate mass storage command queueing across multiple endpoints (basically
3388  * a stream ID == a task ID).
3389  *
3390  * Setting up streams involves allocating the same size stream context array
3391  * for each endpoint and issuing a configure endpoint command for all endpoints.
3392  *
3393  * Don't allow the call to succeed if one endpoint only supports one stream
3394  * (which means it doesn't support streams at all).
3395  *
3396  * Drivers may get less stream IDs than they asked for, if the host controller
3397  * hardware or endpoints claim they can't support the number of requested
3398  * stream IDs.
3399  */
3400 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3401                 struct usb_host_endpoint **eps, unsigned int num_eps,
3402                 unsigned int num_streams, gfp_t mem_flags)
3403 {
3404         int i, ret;
3405         struct xhci_hcd *xhci;
3406         struct xhci_virt_device *vdev;
3407         struct xhci_command *config_cmd;
3408         struct xhci_input_control_ctx *ctrl_ctx;
3409         unsigned int ep_index;
3410         unsigned int num_stream_ctxs;
3411         unsigned int max_packet;
3412         unsigned long flags;
3413         u32 changed_ep_bitmask = 0;
3414
3415         if (!eps)
3416                 return -EINVAL;
3417
3418         /* Add one to the number of streams requested to account for
3419          * stream 0 that is reserved for xHCI usage.
3420          */
3421         num_streams += 1;
3422         xhci = hcd_to_xhci(hcd);
3423         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3424                         num_streams);
3425
3426         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3427         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3428                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3429                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3430                 return -ENOSYS;
3431         }
3432
3433         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3434         if (!config_cmd)
3435                 return -ENOMEM;
3436
3437         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3438         if (!ctrl_ctx) {
3439                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3440                                 __func__);
3441                 xhci_free_command(xhci, config_cmd);
3442                 return -ENOMEM;
3443         }
3444
3445         /* Check to make sure all endpoints are not already configured for
3446          * streams.  While we're at it, find the maximum number of streams that
3447          * all the endpoints will support and check for duplicate endpoints.
3448          */
3449         spin_lock_irqsave(&xhci->lock, flags);
3450         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3451                         num_eps, &num_streams, &changed_ep_bitmask);
3452         if (ret < 0) {
3453                 xhci_free_command(xhci, config_cmd);
3454                 spin_unlock_irqrestore(&xhci->lock, flags);
3455                 return ret;
3456         }
3457         if (num_streams <= 1) {
3458                 xhci_warn(xhci, "WARN: endpoints can't handle "
3459                                 "more than one stream.\n");
3460                 xhci_free_command(xhci, config_cmd);
3461                 spin_unlock_irqrestore(&xhci->lock, flags);
3462                 return -EINVAL;
3463         }
3464         vdev = xhci->devs[udev->slot_id];
3465         /* Mark each endpoint as being in transition, so
3466          * xhci_urb_enqueue() will reject all URBs.
3467          */
3468         for (i = 0; i < num_eps; i++) {
3469                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3470                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3471         }
3472         spin_unlock_irqrestore(&xhci->lock, flags);
3473
3474         /* Setup internal data structures and allocate HW data structures for
3475          * streams (but don't install the HW structures in the input context
3476          * until we're sure all memory allocation succeeded).
3477          */
3478         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3479         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3480                         num_stream_ctxs, num_streams);
3481
3482         for (i = 0; i < num_eps; i++) {
3483                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3484                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3485                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3486                                 num_stream_ctxs,
3487                                 num_streams,
3488                                 max_packet, mem_flags);
3489                 if (!vdev->eps[ep_index].stream_info)
3490                         goto cleanup;
3491                 /* Set maxPstreams in endpoint context and update deq ptr to
3492                  * point to stream context array. FIXME
3493                  */
3494         }
3495
3496         /* Set up the input context for a configure endpoint command. */
3497         for (i = 0; i < num_eps; i++) {
3498                 struct xhci_ep_ctx *ep_ctx;
3499
3500                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3501                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3502
3503                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3504                                 vdev->out_ctx, ep_index);
3505                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3506                                 vdev->eps[ep_index].stream_info);
3507         }
3508         /* Tell the HW to drop its old copy of the endpoint context info
3509          * and add the updated copy from the input context.
3510          */
3511         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3512                         vdev->out_ctx, ctrl_ctx,
3513                         changed_ep_bitmask, changed_ep_bitmask);
3514
3515         /* Issue and wait for the configure endpoint command */
3516         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3517                         false, false);
3518
3519         /* xHC rejected the configure endpoint command for some reason, so we
3520          * leave the old ring intact and free our internal streams data
3521          * structure.
3522          */
3523         if (ret < 0)
3524                 goto cleanup;
3525
3526         spin_lock_irqsave(&xhci->lock, flags);
3527         for (i = 0; i < num_eps; i++) {
3528                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3529                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3530                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3531                          udev->slot_id, ep_index);
3532                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3533         }
3534         xhci_free_command(xhci, config_cmd);
3535         spin_unlock_irqrestore(&xhci->lock, flags);
3536
3537         /* Subtract 1 for stream 0, which drivers can't use */
3538         return num_streams - 1;
3539
3540 cleanup:
3541         /* If it didn't work, free the streams! */
3542         for (i = 0; i < num_eps; i++) {
3543                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3544                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3545                 vdev->eps[ep_index].stream_info = NULL;
3546                 /* FIXME Unset maxPstreams in endpoint context and
3547                  * update deq ptr to point to normal string ring.
3548                  */
3549                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3550                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3551                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3552         }
3553         xhci_free_command(xhci, config_cmd);
3554         return -ENOMEM;
3555 }
3556
3557 /* Transition the endpoint from using streams to being a "normal" endpoint
3558  * without streams.
3559  *
3560  * Modify the endpoint context state, submit a configure endpoint command,
3561  * and free all endpoint rings for streams if that completes successfully.
3562  */
3563 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3564                 struct usb_host_endpoint **eps, unsigned int num_eps,
3565                 gfp_t mem_flags)
3566 {
3567         int i, ret;
3568         struct xhci_hcd *xhci;
3569         struct xhci_virt_device *vdev;
3570         struct xhci_command *command;
3571         struct xhci_input_control_ctx *ctrl_ctx;
3572         unsigned int ep_index;
3573         unsigned long flags;
3574         u32 changed_ep_bitmask;
3575
3576         xhci = hcd_to_xhci(hcd);
3577         vdev = xhci->devs[udev->slot_id];
3578
3579         /* Set up a configure endpoint command to remove the streams rings */
3580         spin_lock_irqsave(&xhci->lock, flags);
3581         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3582                         udev, eps, num_eps);
3583         if (changed_ep_bitmask == 0) {
3584                 spin_unlock_irqrestore(&xhci->lock, flags);
3585                 return -EINVAL;
3586         }
3587
3588         /* Use the xhci_command structure from the first endpoint.  We may have
3589          * allocated too many, but the driver may call xhci_free_streams() for
3590          * each endpoint it grouped into one call to xhci_alloc_streams().
3591          */
3592         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3593         command = vdev->eps[ep_index].stream_info->free_streams_command;
3594         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3595         if (!ctrl_ctx) {
3596                 spin_unlock_irqrestore(&xhci->lock, flags);
3597                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3598                                 __func__);
3599                 return -EINVAL;
3600         }
3601
3602         for (i = 0; i < num_eps; i++) {
3603                 struct xhci_ep_ctx *ep_ctx;
3604
3605                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3606                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3607                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3608                         EP_GETTING_NO_STREAMS;
3609
3610                 xhci_endpoint_copy(xhci, command->in_ctx,
3611                                 vdev->out_ctx, ep_index);
3612                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3613                                 &vdev->eps[ep_index]);
3614         }
3615         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3616                         vdev->out_ctx, ctrl_ctx,
3617                         changed_ep_bitmask, changed_ep_bitmask);
3618         spin_unlock_irqrestore(&xhci->lock, flags);
3619
3620         /* Issue and wait for the configure endpoint command,
3621          * which must succeed.
3622          */
3623         ret = xhci_configure_endpoint(xhci, udev, command,
3624                         false, true);
3625
3626         /* xHC rejected the configure endpoint command for some reason, so we
3627          * leave the streams rings intact.
3628          */
3629         if (ret < 0)
3630                 return ret;
3631
3632         spin_lock_irqsave(&xhci->lock, flags);
3633         for (i = 0; i < num_eps; i++) {
3634                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3635                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3636                 vdev->eps[ep_index].stream_info = NULL;
3637                 /* FIXME Unset maxPstreams in endpoint context and
3638                  * update deq ptr to point to normal string ring.
3639                  */
3640                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3641                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3642         }
3643         spin_unlock_irqrestore(&xhci->lock, flags);
3644
3645         return 0;
3646 }
3647
3648 /*
3649  * Deletes endpoint resources for endpoints that were active before a Reset
3650  * Device command, or a Disable Slot command.  The Reset Device command leaves
3651  * the control endpoint intact, whereas the Disable Slot command deletes it.
3652  *
3653  * Must be called with xhci->lock held.
3654  */
3655 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3656         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3657 {
3658         int i;
3659         unsigned int num_dropped_eps = 0;
3660         unsigned int drop_flags = 0;
3661
3662         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3663                 if (virt_dev->eps[i].ring) {
3664                         drop_flags |= 1 << i;
3665                         num_dropped_eps++;
3666                 }
3667         }
3668         xhci->num_active_eps -= num_dropped_eps;
3669         if (num_dropped_eps)
3670                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3671                                 "Dropped %u ep ctxs, flags = 0x%x, "
3672                                 "%u now active.",
3673                                 num_dropped_eps, drop_flags,
3674                                 xhci->num_active_eps);
3675 }
3676
3677 /*
3678  * This submits a Reset Device Command, which will set the device state to 0,
3679  * set the device address to 0, and disable all the endpoints except the default
3680  * control endpoint.  The USB core should come back and call
3681  * xhci_address_device(), and then re-set up the configuration.  If this is
3682  * called because of a usb_reset_and_verify_device(), then the old alternate
3683  * settings will be re-installed through the normal bandwidth allocation
3684  * functions.
3685  *
3686  * Wait for the Reset Device command to finish.  Remove all structures
3687  * associated with the endpoints that were disabled.  Clear the input device
3688  * structure? Reset the control endpoint 0 max packet size?
3689  *
3690  * If the virt_dev to be reset does not exist or does not match the udev,
3691  * it means the device is lost, possibly due to the xHC restore error and
3692  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3693  * re-allocate the device.
3694  */
3695 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3696                 struct usb_device *udev)
3697 {
3698         int ret, i;
3699         unsigned long flags;
3700         struct xhci_hcd *xhci;
3701         unsigned int slot_id;
3702         struct xhci_virt_device *virt_dev;
3703         struct xhci_command *reset_device_cmd;
3704         struct xhci_slot_ctx *slot_ctx;
3705         int old_active_eps = 0;
3706
3707         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3708         if (ret <= 0)
3709                 return ret;
3710         xhci = hcd_to_xhci(hcd);
3711         slot_id = udev->slot_id;
3712         virt_dev = xhci->devs[slot_id];
3713         if (!virt_dev) {
3714                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3715                                 "not exist. Re-allocate the device\n", slot_id);
3716                 ret = xhci_alloc_dev(hcd, udev);
3717                 if (ret == 1)
3718                         return 0;
3719                 else
3720                         return -EINVAL;
3721         }
3722
3723         if (virt_dev->tt_info)
3724                 old_active_eps = virt_dev->tt_info->active_eps;
3725
3726         if (virt_dev->udev != udev) {
3727                 /* If the virt_dev and the udev does not match, this virt_dev
3728                  * may belong to another udev.
3729                  * Re-allocate the device.
3730                  */
3731                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3732                                 "not match the udev. Re-allocate the device\n",
3733                                 slot_id);
3734                 ret = xhci_alloc_dev(hcd, udev);
3735                 if (ret == 1)
3736                         return 0;
3737                 else
3738                         return -EINVAL;
3739         }
3740
3741         /* If device is not setup, there is no point in resetting it */
3742         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3743         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3744                                                 SLOT_STATE_DISABLED)
3745                 return 0;
3746
3747         trace_xhci_discover_or_reset_device(slot_ctx);
3748
3749         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3750         /* Allocate the command structure that holds the struct completion.
3751          * Assume we're in process context, since the normal device reset
3752          * process has to wait for the device anyway.  Storage devices are
3753          * reset as part of error handling, so use GFP_NOIO instead of
3754          * GFP_KERNEL.
3755          */
3756         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3757         if (!reset_device_cmd) {
3758                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3759                 return -ENOMEM;
3760         }
3761
3762         /* Attempt to submit the Reset Device command to the command ring */
3763         spin_lock_irqsave(&xhci->lock, flags);
3764
3765         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3766         if (ret) {
3767                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3768                 spin_unlock_irqrestore(&xhci->lock, flags);
3769                 goto command_cleanup;
3770         }
3771         xhci_ring_cmd_db(xhci);
3772         spin_unlock_irqrestore(&xhci->lock, flags);
3773
3774         /* Wait for the Reset Device command to finish */
3775         wait_for_completion(reset_device_cmd->completion);
3776
3777         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3778          * unless we tried to reset a slot ID that wasn't enabled,
3779          * or the device wasn't in the addressed or configured state.
3780          */
3781         ret = reset_device_cmd->status;
3782         switch (ret) {
3783         case COMP_COMMAND_ABORTED:
3784         case COMP_COMMAND_RING_STOPPED:
3785                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3786                 ret = -ETIME;
3787                 goto command_cleanup;
3788         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3789         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3790                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3791                                 slot_id,
3792                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3793                 xhci_dbg(xhci, "Not freeing device rings.\n");
3794                 /* Don't treat this as an error.  May change my mind later. */
3795                 ret = 0;
3796                 goto command_cleanup;
3797         case COMP_SUCCESS:
3798                 xhci_dbg(xhci, "Successful reset device command.\n");
3799                 break;
3800         default:
3801                 if (xhci_is_vendor_info_code(xhci, ret))
3802                         break;
3803                 xhci_warn(xhci, "Unknown completion code %u for "
3804                                 "reset device command.\n", ret);
3805                 ret = -EINVAL;
3806                 goto command_cleanup;
3807         }
3808
3809         /* Free up host controller endpoint resources */
3810         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3811                 spin_lock_irqsave(&xhci->lock, flags);
3812                 /* Don't delete the default control endpoint resources */
3813                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3814                 spin_unlock_irqrestore(&xhci->lock, flags);
3815         }
3816
3817         /* Everything but endpoint 0 is disabled, so free the rings. */
3818         for (i = 1; i < 31; i++) {
3819                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3820
3821                 if (ep->ep_state & EP_HAS_STREAMS) {
3822                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3823                                         xhci_get_endpoint_address(i));
3824                         xhci_free_stream_info(xhci, ep->stream_info);
3825                         ep->stream_info = NULL;
3826                         ep->ep_state &= ~EP_HAS_STREAMS;
3827                 }
3828
3829                 if (ep->ring) {
3830                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3831                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3832                 }
3833                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3834                         xhci_drop_ep_from_interval_table(xhci,
3835                                         &virt_dev->eps[i].bw_info,
3836                                         virt_dev->bw_table,
3837                                         udev,
3838                                         &virt_dev->eps[i],
3839                                         virt_dev->tt_info);
3840                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3841         }
3842         /* If necessary, update the number of active TTs on this root port */
3843         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3844         virt_dev->flags = 0;
3845         ret = 0;
3846
3847 command_cleanup:
3848         xhci_free_command(xhci, reset_device_cmd);
3849         return ret;
3850 }
3851
3852 /*
3853  * At this point, the struct usb_device is about to go away, the device has
3854  * disconnected, and all traffic has been stopped and the endpoints have been
3855  * disabled.  Free any HC data structures associated with that device.
3856  */
3857 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3858 {
3859         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3860         struct xhci_virt_device *virt_dev;
3861         struct xhci_slot_ctx *slot_ctx;
3862         int i, ret;
3863
3864 #ifndef CONFIG_USB_DEFAULT_PERSIST
3865         /*
3866          * We called pm_runtime_get_noresume when the device was attached.
3867          * Decrement the counter here to allow controller to runtime suspend
3868          * if no devices remain.
3869          */
3870         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3871                 pm_runtime_put_noidle(hcd->self.controller);
3872 #endif
3873
3874         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3875         /* If the host is halted due to driver unload, we still need to free the
3876          * device.
3877          */
3878         if (ret <= 0 && ret != -ENODEV)
3879                 return;
3880
3881         virt_dev = xhci->devs[udev->slot_id];
3882         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3883         trace_xhci_free_dev(slot_ctx);
3884
3885         /* Stop any wayward timer functions (which may grab the lock) */
3886         for (i = 0; i < 31; i++) {
3887                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3888                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3889         }
3890         virt_dev->udev = NULL;
3891         ret = xhci_disable_slot(xhci, udev->slot_id);
3892         if (ret)
3893                 xhci_free_virt_device(xhci, udev->slot_id);
3894 }
3895
3896 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3897 {
3898         struct xhci_command *command;
3899         unsigned long flags;
3900         u32 state;
3901         int ret = 0;
3902
3903         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3904         if (!command)
3905                 return -ENOMEM;
3906
3907         xhci_debugfs_remove_slot(xhci, slot_id);
3908
3909         spin_lock_irqsave(&xhci->lock, flags);
3910         /* Don't disable the slot if the host controller is dead. */
3911         state = readl(&xhci->op_regs->status);
3912         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3913                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3914                 spin_unlock_irqrestore(&xhci->lock, flags);
3915                 kfree(command);
3916                 return -ENODEV;
3917         }
3918
3919         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3920                                 slot_id);
3921         if (ret) {
3922                 spin_unlock_irqrestore(&xhci->lock, flags);
3923                 kfree(command);
3924                 return ret;
3925         }
3926         xhci_ring_cmd_db(xhci);
3927         spin_unlock_irqrestore(&xhci->lock, flags);
3928         return ret;
3929 }
3930
3931 /*
3932  * Checks if we have enough host controller resources for the default control
3933  * endpoint.
3934  *
3935  * Must be called with xhci->lock held.
3936  */
3937 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3938 {
3939         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3940                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3941                                 "Not enough ep ctxs: "
3942                                 "%u active, need to add 1, limit is %u.",
3943                                 xhci->num_active_eps, xhci->limit_active_eps);
3944                 return -ENOMEM;
3945         }
3946         xhci->num_active_eps += 1;
3947         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3948                         "Adding 1 ep ctx, %u now active.",
3949                         xhci->num_active_eps);
3950         return 0;
3951 }
3952
3953
3954 /*
3955  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3956  * timed out, or allocating memory failed.  Returns 1 on success.
3957  */
3958 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3959 {
3960         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3961         struct xhci_virt_device *vdev;
3962         struct xhci_slot_ctx *slot_ctx;
3963         unsigned long flags;
3964         int ret, slot_id;
3965         struct xhci_command *command;
3966
3967         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3968         if (!command)
3969                 return 0;
3970
3971         spin_lock_irqsave(&xhci->lock, flags);
3972         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3973         if (ret) {
3974                 spin_unlock_irqrestore(&xhci->lock, flags);
3975                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3976                 xhci_free_command(xhci, command);
3977                 return 0;
3978         }
3979         xhci_ring_cmd_db(xhci);
3980         spin_unlock_irqrestore(&xhci->lock, flags);
3981
3982         wait_for_completion(command->completion);
3983         slot_id = command->slot_id;
3984
3985         if (!slot_id || command->status != COMP_SUCCESS) {
3986                 xhci_err(xhci, "Error while assigning device slot ID\n");
3987                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3988                                 HCS_MAX_SLOTS(
3989                                         readl(&xhci->cap_regs->hcs_params1)));
3990                 xhci_free_command(xhci, command);
3991                 return 0;
3992         }
3993
3994         xhci_free_command(xhci, command);
3995
3996         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3997                 spin_lock_irqsave(&xhci->lock, flags);
3998                 ret = xhci_reserve_host_control_ep_resources(xhci);
3999                 if (ret) {
4000                         spin_unlock_irqrestore(&xhci->lock, flags);
4001                         xhci_warn(xhci, "Not enough host resources, "
4002                                         "active endpoint contexts = %u\n",
4003                                         xhci->num_active_eps);
4004                         goto disable_slot;
4005                 }
4006                 spin_unlock_irqrestore(&xhci->lock, flags);
4007         }
4008         /* Use GFP_NOIO, since this function can be called from
4009          * xhci_discover_or_reset_device(), which may be called as part of
4010          * mass storage driver error handling.
4011          */
4012         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4013                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4014                 goto disable_slot;
4015         }
4016         vdev = xhci->devs[slot_id];
4017         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4018         trace_xhci_alloc_dev(slot_ctx);
4019
4020         udev->slot_id = slot_id;
4021
4022         xhci_debugfs_create_slot(xhci, slot_id);
4023
4024 #ifndef CONFIG_USB_DEFAULT_PERSIST
4025         /*
4026          * If resetting upon resume, we can't put the controller into runtime
4027          * suspend if there is a device attached.
4028          */
4029         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4030                 pm_runtime_get_noresume(hcd->self.controller);
4031 #endif
4032
4033         /* Is this a LS or FS device under a HS hub? */
4034         /* Hub or peripherial? */
4035         return 1;
4036
4037 disable_slot:
4038         ret = xhci_disable_slot(xhci, udev->slot_id);
4039         if (ret)
4040                 xhci_free_virt_device(xhci, udev->slot_id);
4041
4042         return 0;
4043 }
4044
4045 /*
4046  * Issue an Address Device command and optionally send a corresponding
4047  * SetAddress request to the device.
4048  */
4049 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4050                              enum xhci_setup_dev setup)
4051 {
4052         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4053         unsigned long flags;
4054         struct xhci_virt_device *virt_dev;
4055         int ret = 0;
4056         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4057         struct xhci_slot_ctx *slot_ctx;
4058         struct xhci_input_control_ctx *ctrl_ctx;
4059         u64 temp_64;
4060         struct xhci_command *command = NULL;
4061
4062         mutex_lock(&xhci->mutex);
4063
4064         if (xhci->xhc_state) {  /* dying, removing or halted */
4065                 ret = -ESHUTDOWN;
4066                 goto out;
4067         }
4068
4069         if (!udev->slot_id) {
4070                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4071                                 "Bad Slot ID %d", udev->slot_id);
4072                 ret = -EINVAL;
4073                 goto out;
4074         }
4075
4076         virt_dev = xhci->devs[udev->slot_id];
4077
4078         if (WARN_ON(!virt_dev)) {
4079                 /*
4080                  * In plug/unplug torture test with an NEC controller,
4081                  * a zero-dereference was observed once due to virt_dev = 0.
4082                  * Print useful debug rather than crash if it is observed again!
4083                  */
4084                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4085                         udev->slot_id);
4086                 ret = -EINVAL;
4087                 goto out;
4088         }
4089         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4090         trace_xhci_setup_device_slot(slot_ctx);
4091
4092         if (setup == SETUP_CONTEXT_ONLY) {
4093                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4094                     SLOT_STATE_DEFAULT) {
4095                         xhci_dbg(xhci, "Slot already in default state\n");
4096                         goto out;
4097                 }
4098         }
4099
4100         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4101         if (!command) {
4102                 ret = -ENOMEM;
4103                 goto out;
4104         }
4105
4106         command->in_ctx = virt_dev->in_ctx;
4107
4108         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4109         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4110         if (!ctrl_ctx) {
4111                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4112                                 __func__);
4113                 ret = -EINVAL;
4114                 goto out;
4115         }
4116         /*
4117          * If this is the first Set Address since device plug-in or
4118          * virt_device realloaction after a resume with an xHCI power loss,
4119          * then set up the slot context.
4120          */
4121         if (!slot_ctx->dev_info)
4122                 xhci_setup_addressable_virt_dev(xhci, udev);
4123         /* Otherwise, update the control endpoint ring enqueue pointer. */
4124         else
4125                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4126         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4127         ctrl_ctx->drop_flags = 0;
4128
4129         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4130                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4131
4132         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4133         spin_lock_irqsave(&xhci->lock, flags);
4134         trace_xhci_setup_device(virt_dev);
4135         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4136                                         udev->slot_id, setup);
4137         if (ret) {
4138                 spin_unlock_irqrestore(&xhci->lock, flags);
4139                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4140                                 "FIXME: allocate a command ring segment");
4141                 goto out;
4142         }
4143         xhci_ring_cmd_db(xhci);
4144         spin_unlock_irqrestore(&xhci->lock, flags);
4145
4146         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4147         wait_for_completion(command->completion);
4148
4149         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4150          * the SetAddress() "recovery interval" required by USB and aborting the
4151          * command on a timeout.
4152          */
4153         switch (command->status) {
4154         case COMP_COMMAND_ABORTED:
4155         case COMP_COMMAND_RING_STOPPED:
4156                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4157                 ret = -ETIME;
4158                 break;
4159         case COMP_CONTEXT_STATE_ERROR:
4160         case COMP_SLOT_NOT_ENABLED_ERROR:
4161                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4162                          act, udev->slot_id);
4163                 ret = -EINVAL;
4164                 break;
4165         case COMP_USB_TRANSACTION_ERROR:
4166                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4167
4168                 mutex_unlock(&xhci->mutex);
4169                 ret = xhci_disable_slot(xhci, udev->slot_id);
4170                 if (!ret)
4171                         xhci_alloc_dev(hcd, udev);
4172                 kfree(command->completion);
4173                 kfree(command);
4174                 return -EPROTO;
4175         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4176                 dev_warn(&udev->dev,
4177                          "ERROR: Incompatible device for setup %s command\n", act);
4178                 ret = -ENODEV;
4179                 break;
4180         case COMP_SUCCESS:
4181                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4182                                "Successful setup %s command", act);
4183                 break;
4184         default:
4185                 xhci_err(xhci,
4186                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4187                          act, command->status);
4188                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4189                 ret = -EINVAL;
4190                 break;
4191         }
4192         if (ret)
4193                 goto out;
4194         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4195         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4196                         "Op regs DCBAA ptr = %#016llx", temp_64);
4197         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4198                 "Slot ID %d dcbaa entry @%p = %#016llx",
4199                 udev->slot_id,
4200                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4201                 (unsigned long long)
4202                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4203         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4204                         "Output Context DMA address = %#08llx",
4205                         (unsigned long long)virt_dev->out_ctx->dma);
4206         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4207                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4208         /*
4209          * USB core uses address 1 for the roothubs, so we add one to the
4210          * address given back to us by the HC.
4211          */
4212         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4213                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4214         /* Zero the input context control for later use */
4215         ctrl_ctx->add_flags = 0;
4216         ctrl_ctx->drop_flags = 0;
4217         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4218         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4219
4220         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221                        "Internal device address = %d",
4222                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4223 out:
4224         mutex_unlock(&xhci->mutex);
4225         if (command) {
4226                 kfree(command->completion);
4227                 kfree(command);
4228         }
4229         return ret;
4230 }
4231
4232 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4233 {
4234         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4235 }
4236
4237 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4238 {
4239         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4240 }
4241
4242 /*
4243  * Transfer the port index into real index in the HW port status
4244  * registers. Caculate offset between the port's PORTSC register
4245  * and port status base. Divide the number of per port register
4246  * to get the real index. The raw port number bases 1.
4247  */
4248 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4249 {
4250         struct xhci_hub *rhub;
4251
4252         rhub = xhci_get_rhub(hcd);
4253         return rhub->ports[port1 - 1]->hw_portnum + 1;
4254 }
4255
4256 /*
4257  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4258  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4259  */
4260 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4261                         struct usb_device *udev, u16 max_exit_latency)
4262 {
4263         struct xhci_virt_device *virt_dev;
4264         struct xhci_command *command;
4265         struct xhci_input_control_ctx *ctrl_ctx;
4266         struct xhci_slot_ctx *slot_ctx;
4267         unsigned long flags;
4268         int ret;
4269
4270         spin_lock_irqsave(&xhci->lock, flags);
4271
4272         virt_dev = xhci->devs[udev->slot_id];
4273
4274         /*
4275          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4276          * xHC was re-initialized. Exit latency will be set later after
4277          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4278          */
4279
4280         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4281                 spin_unlock_irqrestore(&xhci->lock, flags);
4282                 return 0;
4283         }
4284
4285         /* Attempt to issue an Evaluate Context command to change the MEL. */
4286         command = xhci->lpm_command;
4287         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4288         if (!ctrl_ctx) {
4289                 spin_unlock_irqrestore(&xhci->lock, flags);
4290                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4291                                 __func__);
4292                 return -ENOMEM;
4293         }
4294
4295         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4296         spin_unlock_irqrestore(&xhci->lock, flags);
4297
4298         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4299         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4300         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4301         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4302         slot_ctx->dev_state = 0;
4303
4304         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4305                         "Set up evaluate context for LPM MEL change.");
4306
4307         /* Issue and wait for the evaluate context command. */
4308         ret = xhci_configure_endpoint(xhci, udev, command,
4309                         true, true);
4310
4311         if (!ret) {
4312                 spin_lock_irqsave(&xhci->lock, flags);
4313                 virt_dev->current_mel = max_exit_latency;
4314                 spin_unlock_irqrestore(&xhci->lock, flags);
4315         }
4316         return ret;
4317 }
4318
4319 #ifdef CONFIG_PM
4320
4321 /* BESL to HIRD Encoding array for USB2 LPM */
4322 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4323         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4324
4325 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4326 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4327                                         struct usb_device *udev)
4328 {
4329         int u2del, besl, besl_host;
4330         int besl_device = 0;
4331         u32 field;
4332
4333         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4334         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4335
4336         if (field & USB_BESL_SUPPORT) {
4337                 for (besl_host = 0; besl_host < 16; besl_host++) {
4338                         if (xhci_besl_encoding[besl_host] >= u2del)
4339                                 break;
4340                 }
4341                 /* Use baseline BESL value as default */
4342                 if (field & USB_BESL_BASELINE_VALID)
4343                         besl_device = USB_GET_BESL_BASELINE(field);
4344                 else if (field & USB_BESL_DEEP_VALID)
4345                         besl_device = USB_GET_BESL_DEEP(field);
4346         } else {
4347                 if (u2del <= 50)
4348                         besl_host = 0;
4349                 else
4350                         besl_host = (u2del - 51) / 75 + 1;
4351         }
4352
4353         besl = besl_host + besl_device;
4354         if (besl > 15)
4355                 besl = 15;
4356
4357         return besl;
4358 }
4359
4360 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4361 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4362 {
4363         u32 field;
4364         int l1;
4365         int besld = 0;
4366         int hirdm = 0;
4367
4368         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4369
4370         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4371         l1 = udev->l1_params.timeout / 256;
4372
4373         /* device has preferred BESLD */
4374         if (field & USB_BESL_DEEP_VALID) {
4375                 besld = USB_GET_BESL_DEEP(field);
4376                 hirdm = 1;
4377         }
4378
4379         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4380 }
4381
4382 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4383                         struct usb_device *udev, int enable)
4384 {
4385         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4386         struct xhci_port **ports;
4387         __le32 __iomem  *pm_addr, *hlpm_addr;
4388         u32             pm_val, hlpm_val, field;
4389         unsigned int    port_num;
4390         unsigned long   flags;
4391         int             hird, exit_latency;
4392         int             ret;
4393
4394         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4395                         !udev->lpm_capable)
4396                 return -EPERM;
4397
4398         if (!udev->parent || udev->parent->parent ||
4399                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4400                 return -EPERM;
4401
4402         if (udev->usb2_hw_lpm_capable != 1)
4403                 return -EPERM;
4404
4405         spin_lock_irqsave(&xhci->lock, flags);
4406
4407         ports = xhci->usb2_rhub.ports;
4408         port_num = udev->portnum - 1;
4409         pm_addr = ports[port_num]->addr + PORTPMSC;
4410         pm_val = readl(pm_addr);
4411         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4412
4413         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4414                         enable ? "enable" : "disable", port_num + 1);
4415
4416         if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4417                 /* Host supports BESL timeout instead of HIRD */
4418                 if (udev->usb2_hw_lpm_besl_capable) {
4419                         /* if device doesn't have a preferred BESL value use a
4420                          * default one which works with mixed HIRD and BESL
4421                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4422                          */
4423                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4424                         if ((field & USB_BESL_SUPPORT) &&
4425                             (field & USB_BESL_BASELINE_VALID))
4426                                 hird = USB_GET_BESL_BASELINE(field);
4427                         else
4428                                 hird = udev->l1_params.besl;
4429
4430                         exit_latency = xhci_besl_encoding[hird];
4431                         spin_unlock_irqrestore(&xhci->lock, flags);
4432
4433                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4434                          * input context for link powermanagement evaluate
4435                          * context commands. It is protected by hcd->bandwidth
4436                          * mutex and is shared by all devices. We need to set
4437                          * the max ext latency in USB 2 BESL LPM as well, so
4438                          * use the same mutex and xhci_change_max_exit_latency()
4439                          */
4440                         mutex_lock(hcd->bandwidth_mutex);
4441                         ret = xhci_change_max_exit_latency(xhci, udev,
4442                                                            exit_latency);
4443                         mutex_unlock(hcd->bandwidth_mutex);
4444
4445                         if (ret < 0)
4446                                 return ret;
4447                         spin_lock_irqsave(&xhci->lock, flags);
4448
4449                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4450                         writel(hlpm_val, hlpm_addr);
4451                         /* flush write */
4452                         readl(hlpm_addr);
4453                 } else {
4454                         hird = xhci_calculate_hird_besl(xhci, udev);
4455                 }
4456
4457                 pm_val &= ~PORT_HIRD_MASK;
4458                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4459                 writel(pm_val, pm_addr);
4460                 pm_val = readl(pm_addr);
4461                 pm_val |= PORT_HLE;
4462                 writel(pm_val, pm_addr);
4463                 /* flush write */
4464                 readl(pm_addr);
4465         } else {
4466                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4467                 writel(pm_val, pm_addr);
4468                 /* flush write */
4469                 readl(pm_addr);
4470                 if (udev->usb2_hw_lpm_besl_capable) {
4471                         spin_unlock_irqrestore(&xhci->lock, flags);
4472                         mutex_lock(hcd->bandwidth_mutex);
4473                         xhci_change_max_exit_latency(xhci, udev, 0);
4474                         mutex_unlock(hcd->bandwidth_mutex);
4475                         return 0;
4476                 }
4477         }
4478
4479         spin_unlock_irqrestore(&xhci->lock, flags);
4480         return 0;
4481 }
4482
4483 /* check if a usb2 port supports a given extened capability protocol
4484  * only USB2 ports extended protocol capability values are cached.
4485  * Return 1 if capability is supported
4486  */
4487 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4488                                            unsigned capability)
4489 {
4490         u32 port_offset, port_count;
4491         int i;
4492
4493         for (i = 0; i < xhci->num_ext_caps; i++) {
4494                 if (xhci->ext_caps[i] & capability) {
4495                         /* port offsets starts at 1 */
4496                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4497                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4498                         if (port >= port_offset &&
4499                             port < port_offset + port_count)
4500                                 return 1;
4501                 }
4502         }
4503         return 0;
4504 }
4505
4506 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4507 {
4508         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4509         int             portnum = udev->portnum - 1;
4510
4511         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4512                 return 0;
4513
4514         /* we only support lpm for non-hub device connected to root hub yet */
4515         if (!udev->parent || udev->parent->parent ||
4516                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4517                 return 0;
4518
4519         if (xhci->hw_lpm_support == 1 &&
4520                         xhci_check_usb2_port_capability(
4521                                 xhci, portnum, XHCI_HLC)) {
4522                 udev->usb2_hw_lpm_capable = 1;
4523                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4524                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4525                 if (xhci_check_usb2_port_capability(xhci, portnum,
4526                                         XHCI_BLC))
4527                         udev->usb2_hw_lpm_besl_capable = 1;
4528         }
4529
4530         return 0;
4531 }
4532
4533 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4534
4535 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4536 static unsigned long long xhci_service_interval_to_ns(
4537                 struct usb_endpoint_descriptor *desc)
4538 {
4539         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4540 }
4541
4542 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4543                 enum usb3_link_state state)
4544 {
4545         unsigned long long sel;
4546         unsigned long long pel;
4547         unsigned int max_sel_pel;
4548         char *state_name;
4549
4550         switch (state) {
4551         case USB3_LPM_U1:
4552                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4553                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4554                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4555                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4556                 state_name = "U1";
4557                 break;
4558         case USB3_LPM_U2:
4559                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4560                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4561                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4562                 state_name = "U2";
4563                 break;
4564         default:
4565                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4566                                 __func__);
4567                 return USB3_LPM_DISABLED;
4568         }
4569
4570         if (sel <= max_sel_pel && pel <= max_sel_pel)
4571                 return USB3_LPM_DEVICE_INITIATED;
4572
4573         if (sel > max_sel_pel)
4574                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4575                                 "due to long SEL %llu ms\n",
4576                                 state_name, sel);
4577         else
4578                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4579                                 "due to long PEL %llu ms\n",
4580                                 state_name, pel);
4581         return USB3_LPM_DISABLED;
4582 }
4583
4584 /* The U1 timeout should be the maximum of the following values:
4585  *  - For control endpoints, U1 system exit latency (SEL) * 3
4586  *  - For bulk endpoints, U1 SEL * 5
4587  *  - For interrupt endpoints:
4588  *    - Notification EPs, U1 SEL * 3
4589  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4590  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4591  */
4592 static unsigned long long xhci_calculate_intel_u1_timeout(
4593                 struct usb_device *udev,
4594                 struct usb_endpoint_descriptor *desc)
4595 {
4596         unsigned long long timeout_ns;
4597         int ep_type;
4598         int intr_type;
4599
4600         ep_type = usb_endpoint_type(desc);
4601         switch (ep_type) {
4602         case USB_ENDPOINT_XFER_CONTROL:
4603                 timeout_ns = udev->u1_params.sel * 3;
4604                 break;
4605         case USB_ENDPOINT_XFER_BULK:
4606                 timeout_ns = udev->u1_params.sel * 5;
4607                 break;
4608         case USB_ENDPOINT_XFER_INT:
4609                 intr_type = usb_endpoint_interrupt_type(desc);
4610                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4611                         timeout_ns = udev->u1_params.sel * 3;
4612                         break;
4613                 }
4614                 /* Otherwise the calculation is the same as isoc eps */
4615                 /* fall through */
4616         case USB_ENDPOINT_XFER_ISOC:
4617                 timeout_ns = xhci_service_interval_to_ns(desc);
4618                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4619                 if (timeout_ns < udev->u1_params.sel * 2)
4620                         timeout_ns = udev->u1_params.sel * 2;
4621                 break;
4622         default:
4623                 return 0;
4624         }
4625
4626         return timeout_ns;
4627 }
4628
4629 /* Returns the hub-encoded U1 timeout value. */
4630 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4631                 struct usb_device *udev,
4632                 struct usb_endpoint_descriptor *desc)
4633 {
4634         unsigned long long timeout_ns;
4635
4636         /* Prevent U1 if service interval is shorter than U1 exit latency */
4637         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4638                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4639                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4640                         return USB3_LPM_DISABLED;
4641                 }
4642         }
4643
4644         if (xhci->quirks & XHCI_INTEL_HOST)
4645                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4646         else
4647                 timeout_ns = udev->u1_params.sel;
4648
4649         /* The U1 timeout is encoded in 1us intervals.
4650          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4651          */
4652         if (timeout_ns == USB3_LPM_DISABLED)
4653                 timeout_ns = 1;
4654         else
4655                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4656
4657         /* If the necessary timeout value is bigger than what we can set in the
4658          * USB 3.0 hub, we have to disable hub-initiated U1.
4659          */
4660         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4661                 return timeout_ns;
4662         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4663                         "due to long timeout %llu ms\n", timeout_ns);
4664         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4665 }
4666
4667 /* The U2 timeout should be the maximum of:
4668  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4669  *  - largest bInterval of any active periodic endpoint (to avoid going
4670  *    into lower power link states between intervals).
4671  *  - the U2 Exit Latency of the device
4672  */
4673 static unsigned long long xhci_calculate_intel_u2_timeout(
4674                 struct usb_device *udev,
4675                 struct usb_endpoint_descriptor *desc)
4676 {
4677         unsigned long long timeout_ns;
4678         unsigned long long u2_del_ns;
4679
4680         timeout_ns = 10 * 1000 * 1000;
4681
4682         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4683                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4684                 timeout_ns = xhci_service_interval_to_ns(desc);
4685
4686         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4687         if (u2_del_ns > timeout_ns)
4688                 timeout_ns = u2_del_ns;
4689
4690         return timeout_ns;
4691 }
4692
4693 /* Returns the hub-encoded U2 timeout value. */
4694 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4695                 struct usb_device *udev,
4696                 struct usb_endpoint_descriptor *desc)
4697 {
4698         unsigned long long timeout_ns;
4699
4700         /* Prevent U2 if service interval is shorter than U2 exit latency */
4701         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4702                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4703                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4704                         return USB3_LPM_DISABLED;
4705                 }
4706         }
4707
4708         if (xhci->quirks & XHCI_INTEL_HOST)
4709                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4710         else
4711                 timeout_ns = udev->u2_params.sel;
4712
4713         /* The U2 timeout is encoded in 256us intervals */
4714         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4715         /* If the necessary timeout value is bigger than what we can set in the
4716          * USB 3.0 hub, we have to disable hub-initiated U2.
4717          */
4718         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4719                 return timeout_ns;
4720         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4721                         "due to long timeout %llu ms\n", timeout_ns);
4722         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4723 }
4724
4725 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4726                 struct usb_device *udev,
4727                 struct usb_endpoint_descriptor *desc,
4728                 enum usb3_link_state state,
4729                 u16 *timeout)
4730 {
4731         if (state == USB3_LPM_U1)
4732                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4733         else if (state == USB3_LPM_U2)
4734                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4735
4736         return USB3_LPM_DISABLED;
4737 }
4738
4739 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4740                 struct usb_device *udev,
4741                 struct usb_endpoint_descriptor *desc,
4742                 enum usb3_link_state state,
4743                 u16 *timeout)
4744 {
4745         u16 alt_timeout;
4746
4747         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4748                 desc, state, timeout);
4749
4750         /* If we found we can't enable hub-initiated LPM, and
4751          * the U1 or U2 exit latency was too high to allow
4752          * device-initiated LPM as well, then we will disable LPM
4753          * for this device, so stop searching any further.
4754          */
4755         if (alt_timeout == USB3_LPM_DISABLED) {
4756                 *timeout = alt_timeout;
4757                 return -E2BIG;
4758         }
4759         if (alt_timeout > *timeout)
4760                 *timeout = alt_timeout;
4761         return 0;
4762 }
4763
4764 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4765                 struct usb_device *udev,
4766                 struct usb_host_interface *alt,
4767                 enum usb3_link_state state,
4768                 u16 *timeout)
4769 {
4770         int j;
4771
4772         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4773                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4774                                         &alt->endpoint[j].desc, state, timeout))
4775                         return -E2BIG;
4776                 continue;
4777         }
4778         return 0;
4779 }
4780
4781 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4782                 enum usb3_link_state state)
4783 {
4784         struct usb_device *parent;
4785         unsigned int num_hubs;
4786
4787         if (state == USB3_LPM_U2)
4788                 return 0;
4789
4790         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4791         for (parent = udev->parent, num_hubs = 0; parent->parent;
4792                         parent = parent->parent)
4793                 num_hubs++;
4794
4795         if (num_hubs < 2)
4796                 return 0;
4797
4798         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4799                         " below second-tier hub.\n");
4800         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4801                         "to decrease power consumption.\n");
4802         return -E2BIG;
4803 }
4804
4805 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4806                 struct usb_device *udev,
4807                 enum usb3_link_state state)
4808 {
4809         if (xhci->quirks & XHCI_INTEL_HOST)
4810                 return xhci_check_intel_tier_policy(udev, state);
4811         else
4812                 return 0;
4813 }
4814
4815 /* Returns the U1 or U2 timeout that should be enabled.
4816  * If the tier check or timeout setting functions return with a non-zero exit
4817  * code, that means the timeout value has been finalized and we shouldn't look
4818  * at any more endpoints.
4819  */
4820 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4821                         struct usb_device *udev, enum usb3_link_state state)
4822 {
4823         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4824         struct usb_host_config *config;
4825         char *state_name;
4826         int i;
4827         u16 timeout = USB3_LPM_DISABLED;
4828
4829         if (state == USB3_LPM_U1)
4830                 state_name = "U1";
4831         else if (state == USB3_LPM_U2)
4832                 state_name = "U2";
4833         else {
4834                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4835                                 state);
4836                 return timeout;
4837         }
4838
4839         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4840                 return timeout;
4841
4842         /* Gather some information about the currently installed configuration
4843          * and alternate interface settings.
4844          */
4845         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4846                         state, &timeout))
4847                 return timeout;
4848
4849         config = udev->actconfig;
4850         if (!config)
4851                 return timeout;
4852
4853         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4854                 struct usb_driver *driver;
4855                 struct usb_interface *intf = config->interface[i];
4856
4857                 if (!intf)
4858                         continue;
4859
4860                 /* Check if any currently bound drivers want hub-initiated LPM
4861                  * disabled.
4862                  */
4863                 if (intf->dev.driver) {
4864                         driver = to_usb_driver(intf->dev.driver);
4865                         if (driver && driver->disable_hub_initiated_lpm) {
4866                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4867                                         state_name, driver->name);
4868                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4869                                                                       state);
4870                                 if (timeout == USB3_LPM_DISABLED)
4871                                         return timeout;
4872                         }
4873                 }
4874
4875                 /* Not sure how this could happen... */
4876                 if (!intf->cur_altsetting)
4877                         continue;
4878
4879                 if (xhci_update_timeout_for_interface(xhci, udev,
4880                                         intf->cur_altsetting,
4881                                         state, &timeout))
4882                         return timeout;
4883         }
4884         return timeout;
4885 }
4886
4887 static int calculate_max_exit_latency(struct usb_device *udev,
4888                 enum usb3_link_state state_changed,
4889                 u16 hub_encoded_timeout)
4890 {
4891         unsigned long long u1_mel_us = 0;
4892         unsigned long long u2_mel_us = 0;
4893         unsigned long long mel_us = 0;
4894         bool disabling_u1;
4895         bool disabling_u2;
4896         bool enabling_u1;
4897         bool enabling_u2;
4898
4899         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4900                         hub_encoded_timeout == USB3_LPM_DISABLED);
4901         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4902                         hub_encoded_timeout == USB3_LPM_DISABLED);
4903
4904         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4905                         hub_encoded_timeout != USB3_LPM_DISABLED);
4906         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4907                         hub_encoded_timeout != USB3_LPM_DISABLED);
4908
4909         /* If U1 was already enabled and we're not disabling it,
4910          * or we're going to enable U1, account for the U1 max exit latency.
4911          */
4912         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4913                         enabling_u1)
4914                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4915         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4916                         enabling_u2)
4917                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4918
4919         if (u1_mel_us > u2_mel_us)
4920                 mel_us = u1_mel_us;
4921         else
4922                 mel_us = u2_mel_us;
4923         /* xHCI host controller max exit latency field is only 16 bits wide. */
4924         if (mel_us > MAX_EXIT) {
4925                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4926                                 "is too big.\n", mel_us);
4927                 return -E2BIG;
4928         }
4929         return mel_us;
4930 }
4931
4932 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4933 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4934                         struct usb_device *udev, enum usb3_link_state state)
4935 {
4936         struct xhci_hcd *xhci;
4937         u16 hub_encoded_timeout;
4938         int mel;
4939         int ret;
4940
4941         xhci = hcd_to_xhci(hcd);
4942         /* The LPM timeout values are pretty host-controller specific, so don't
4943          * enable hub-initiated timeouts unless the vendor has provided
4944          * information about their timeout algorithm.
4945          */
4946         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4947                         !xhci->devs[udev->slot_id])
4948                 return USB3_LPM_DISABLED;
4949
4950         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4951         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4952         if (mel < 0) {
4953                 /* Max Exit Latency is too big, disable LPM. */
4954                 hub_encoded_timeout = USB3_LPM_DISABLED;
4955                 mel = 0;
4956         }
4957
4958         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4959         if (ret)
4960                 return ret;
4961         return hub_encoded_timeout;
4962 }
4963
4964 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4965                         struct usb_device *udev, enum usb3_link_state state)
4966 {
4967         struct xhci_hcd *xhci;
4968         u16 mel;
4969
4970         xhci = hcd_to_xhci(hcd);
4971         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4972                         !xhci->devs[udev->slot_id])
4973                 return 0;
4974
4975         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4976         return xhci_change_max_exit_latency(xhci, udev, mel);
4977 }
4978 #else /* CONFIG_PM */
4979
4980 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4981                                 struct usb_device *udev, int enable)
4982 {
4983         return 0;
4984 }
4985
4986 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4987 {
4988         return 0;
4989 }
4990
4991 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4992                         struct usb_device *udev, enum usb3_link_state state)
4993 {
4994         return USB3_LPM_DISABLED;
4995 }
4996
4997 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4998                         struct usb_device *udev, enum usb3_link_state state)
4999 {
5000         return 0;
5001 }
5002 #endif  /* CONFIG_PM */
5003
5004 /*-------------------------------------------------------------------------*/
5005
5006 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5007  * internal data structures for the device.
5008  */
5009 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5010                         struct usb_tt *tt, gfp_t mem_flags)
5011 {
5012         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5013         struct xhci_virt_device *vdev;
5014         struct xhci_command *config_cmd;
5015         struct xhci_input_control_ctx *ctrl_ctx;
5016         struct xhci_slot_ctx *slot_ctx;
5017         unsigned long flags;
5018         unsigned think_time;
5019         int ret;
5020
5021         /* Ignore root hubs */
5022         if (!hdev->parent)
5023                 return 0;
5024
5025         vdev = xhci->devs[hdev->slot_id];
5026         if (!vdev) {
5027                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5028                 return -EINVAL;
5029         }
5030
5031         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5032         if (!config_cmd)
5033                 return -ENOMEM;
5034
5035         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5036         if (!ctrl_ctx) {
5037                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5038                                 __func__);
5039                 xhci_free_command(xhci, config_cmd);
5040                 return -ENOMEM;
5041         }
5042
5043         spin_lock_irqsave(&xhci->lock, flags);
5044         if (hdev->speed == USB_SPEED_HIGH &&
5045                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5046                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5047                 xhci_free_command(xhci, config_cmd);
5048                 spin_unlock_irqrestore(&xhci->lock, flags);
5049                 return -ENOMEM;
5050         }
5051
5052         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5053         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5054         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5055         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5056         /*
5057          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5058          * but it may be already set to 1 when setup an xHCI virtual
5059          * device, so clear it anyway.
5060          */
5061         if (tt->multi)
5062                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5063         else if (hdev->speed == USB_SPEED_FULL)
5064                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5065
5066         if (xhci->hci_version > 0x95) {
5067                 xhci_dbg(xhci, "xHCI version %x needs hub "
5068                                 "TT think time and number of ports\n",
5069                                 (unsigned int) xhci->hci_version);
5070                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5071                 /* Set TT think time - convert from ns to FS bit times.
5072                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5073                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5074                  *
5075                  * xHCI 1.0: this field shall be 0 if the device is not a
5076                  * High-spped hub.
5077                  */
5078                 think_time = tt->think_time;
5079                 if (think_time != 0)
5080                         think_time = (think_time / 666) - 1;
5081                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5082                         slot_ctx->tt_info |=
5083                                 cpu_to_le32(TT_THINK_TIME(think_time));
5084         } else {
5085                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5086                                 "TT think time or number of ports\n",
5087                                 (unsigned int) xhci->hci_version);
5088         }
5089         slot_ctx->dev_state = 0;
5090         spin_unlock_irqrestore(&xhci->lock, flags);
5091
5092         xhci_dbg(xhci, "Set up %s for hub device.\n",
5093                         (xhci->hci_version > 0x95) ?
5094                         "configure endpoint" : "evaluate context");
5095
5096         /* Issue and wait for the configure endpoint or
5097          * evaluate context command.
5098          */
5099         if (xhci->hci_version > 0x95)
5100                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5101                                 false, false);
5102         else
5103                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5104                                 true, false);
5105
5106         xhci_free_command(xhci, config_cmd);
5107         return ret;
5108 }
5109
5110 static int xhci_get_frame(struct usb_hcd *hcd)
5111 {
5112         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5113         /* EHCI mods by the periodic size.  Why? */
5114         return readl(&xhci->run_regs->microframe_index) >> 3;
5115 }
5116
5117 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5118 {
5119         struct xhci_hcd         *xhci;
5120         /*
5121          * TODO: Check with DWC3 clients for sysdev according to
5122          * quirks
5123          */
5124         struct device           *dev = hcd->self.sysdev;
5125         unsigned int            minor_rev;
5126         int                     retval;
5127
5128         /* Accept arbitrarily long scatter-gather lists */
5129         hcd->self.sg_tablesize = ~0;
5130
5131         /* support to build packet from discontinuous buffers */
5132         hcd->self.no_sg_constraint = 1;
5133
5134         /* XHCI controllers don't stop the ep queue on short packets :| */
5135         hcd->self.no_stop_on_short = 1;
5136
5137         xhci = hcd_to_xhci(hcd);
5138
5139         if (usb_hcd_is_primary_hcd(hcd)) {
5140                 xhci->main_hcd = hcd;
5141                 xhci->usb2_rhub.hcd = hcd;
5142                 /* Mark the first roothub as being USB 2.0.
5143                  * The xHCI driver will register the USB 3.0 roothub.
5144                  */
5145                 hcd->speed = HCD_USB2;
5146                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5147                 /*
5148                  * USB 2.0 roothub under xHCI has an integrated TT,
5149                  * (rate matching hub) as opposed to having an OHCI/UHCI
5150                  * companion controller.
5151                  */
5152                 hcd->has_tt = 1;
5153         } else {
5154                 /*
5155                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5156                  * should return 0x31 for sbrn, or that the minor revision
5157                  * is a two digit BCD containig minor and sub-minor numbers.
5158                  * This was later clarified in xHCI 1.2.
5159                  *
5160                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5161                  * minor revision set to 0x1 instead of 0x10.
5162                  */
5163                 if (xhci->usb3_rhub.min_rev == 0x1)
5164                         minor_rev = 1;
5165                 else
5166                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5167
5168                 switch (minor_rev) {
5169                 case 2:
5170                         hcd->speed = HCD_USB32;
5171                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5172                         hcd->self.root_hub->rx_lanes = 2;
5173                         hcd->self.root_hub->tx_lanes = 2;
5174                         break;
5175                 case 1:
5176                         hcd->speed = HCD_USB31;
5177                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5178                         break;
5179                 }
5180                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5181                           minor_rev,
5182                           minor_rev ? "Enhanced " : "");
5183
5184                 xhci->usb3_rhub.hcd = hcd;
5185                 /* xHCI private pointer was set in xhci_pci_probe for the second
5186                  * registered roothub.
5187                  */
5188                 return 0;
5189         }
5190
5191         mutex_init(&xhci->mutex);
5192         xhci->cap_regs = hcd->regs;
5193         xhci->op_regs = hcd->regs +
5194                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5195         xhci->run_regs = hcd->regs +
5196                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5197         /* Cache read-only capability registers */
5198         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5199         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5200         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5201         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5202         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5203         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5204         if (xhci->hci_version > 0x100)
5205                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5206
5207         xhci->quirks |= quirks;
5208
5209         get_quirks(dev, xhci);
5210
5211         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5212          * success event after a short transfer. This quirk will ignore such
5213          * spurious event.
5214          */
5215         if (xhci->hci_version > 0x96)
5216                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5217
5218         /* Make sure the HC is halted. */
5219         retval = xhci_halt(xhci);
5220         if (retval)
5221                 return retval;
5222
5223         xhci_zero_64b_regs(xhci);
5224
5225         xhci_dbg(xhci, "Resetting HCD\n");
5226         /* Reset the internal HC memory state and registers. */
5227         retval = xhci_reset(xhci);
5228         if (retval)
5229                 return retval;
5230         xhci_dbg(xhci, "Reset complete\n");
5231
5232         /*
5233          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5234          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5235          * address memory pointers actually. So, this driver clears the AC64
5236          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5237          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5238          */
5239         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5240                 xhci->hcc_params &= ~BIT(0);
5241
5242         /* Set dma_mask and coherent_dma_mask to 64-bits,
5243          * if xHC supports 64-bit addressing */
5244         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5245                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5246                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5247                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5248         } else {
5249                 /*
5250                  * This is to avoid error in cases where a 32-bit USB
5251                  * controller is used on a 64-bit capable system.
5252                  */
5253                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5254                 if (retval)
5255                         return retval;
5256                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5257                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5258         }
5259
5260         xhci_dbg(xhci, "Calling HCD init\n");
5261         /* Initialize HCD and host controller data structures. */
5262         retval = xhci_init(hcd);
5263         if (retval)
5264                 return retval;
5265         xhci_dbg(xhci, "Called HCD init\n");
5266
5267         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5268                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5269
5270         return 0;
5271 }
5272 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5273
5274 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5275                 struct usb_host_endpoint *ep)
5276 {
5277         struct xhci_hcd *xhci;
5278         struct usb_device *udev;
5279         unsigned int slot_id;
5280         unsigned int ep_index;
5281         unsigned long flags;
5282
5283         xhci = hcd_to_xhci(hcd);
5284
5285         spin_lock_irqsave(&xhci->lock, flags);
5286         udev = (struct usb_device *)ep->hcpriv;
5287         slot_id = udev->slot_id;
5288         ep_index = xhci_get_endpoint_index(&ep->desc);
5289
5290         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5291         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5292         spin_unlock_irqrestore(&xhci->lock, flags);
5293 }
5294
5295 static const struct hc_driver xhci_hc_driver = {
5296         .description =          "xhci-hcd",
5297         .product_desc =         "xHCI Host Controller",
5298         .hcd_priv_size =        sizeof(struct xhci_hcd),
5299
5300         /*
5301          * generic hardware linkage
5302          */
5303         .irq =                  xhci_irq,
5304         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5305                                 HCD_BH,
5306
5307         /*
5308          * basic lifecycle operations
5309          */
5310         .reset =                NULL, /* set in xhci_init_driver() */
5311         .start =                xhci_run,
5312         .stop =                 xhci_stop,
5313         .shutdown =             xhci_shutdown,
5314
5315         /*
5316          * managing i/o requests and associated device resources
5317          */
5318         .map_urb_for_dma =      xhci_map_urb_for_dma,
5319         .urb_enqueue =          xhci_urb_enqueue,
5320         .urb_dequeue =          xhci_urb_dequeue,
5321         .alloc_dev =            xhci_alloc_dev,
5322         .free_dev =             xhci_free_dev,
5323         .alloc_streams =        xhci_alloc_streams,
5324         .free_streams =         xhci_free_streams,
5325         .add_endpoint =         xhci_add_endpoint,
5326         .drop_endpoint =        xhci_drop_endpoint,
5327         .endpoint_disable =     xhci_endpoint_disable,
5328         .endpoint_reset =       xhci_endpoint_reset,
5329         .check_bandwidth =      xhci_check_bandwidth,
5330         .reset_bandwidth =      xhci_reset_bandwidth,
5331         .address_device =       xhci_address_device,
5332         .enable_device =        xhci_enable_device,
5333         .update_hub_device =    xhci_update_hub_device,
5334         .reset_device =         xhci_discover_or_reset_device,
5335
5336         /*
5337          * scheduling support
5338          */
5339         .get_frame_number =     xhci_get_frame,
5340
5341         /*
5342          * root hub support
5343          */
5344         .hub_control =          xhci_hub_control,
5345         .hub_status_data =      xhci_hub_status_data,
5346         .bus_suspend =          xhci_bus_suspend,
5347         .bus_resume =           xhci_bus_resume,
5348         .get_resuming_ports =   xhci_get_resuming_ports,
5349
5350         /*
5351          * call back when device connected and addressed
5352          */
5353         .update_device =        xhci_update_device,
5354         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5355         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5356         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5357         .find_raw_port_number = xhci_find_raw_port_number,
5358         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5359 };
5360
5361 void xhci_init_driver(struct hc_driver *drv,
5362                       const struct xhci_driver_overrides *over)
5363 {
5364         BUG_ON(!over);
5365
5366         /* Copy the generic table to drv then apply the overrides */
5367         *drv = xhci_hc_driver;
5368
5369         if (over) {
5370                 drv->hcd_priv_size += over->extra_priv_size;
5371                 if (over->reset)
5372                         drv->reset = over->reset;
5373                 if (over->start)
5374                         drv->start = over->start;
5375         }
5376 }
5377 EXPORT_SYMBOL_GPL(xhci_init_driver);
5378
5379 MODULE_DESCRIPTION(DRIVER_DESC);
5380 MODULE_AUTHOR(DRIVER_AUTHOR);
5381 MODULE_LICENSE("GPL");
5382
5383 static int __init xhci_hcd_init(void)
5384 {
5385         /*
5386          * Check the compiler generated sizes of structures that must be laid
5387          * out in specific ways for hardware access.
5388          */
5389         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5390         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5391         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5392         /* xhci_device_control has eight fields, and also
5393          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5394          */
5395         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5396         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5397         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5398         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5399         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5400         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5401         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5402
5403         if (usb_disabled())
5404                 return -ENODEV;
5405
5406         xhci_debugfs_create_root();
5407
5408         return 0;
5409 }
5410
5411 /*
5412  * If an init function is provided, an exit function must also be provided
5413  * to allow module unload.
5414  */
5415 static void __exit xhci_hcd_fini(void)
5416 {
5417         xhci_debugfs_remove_root();
5418 }
5419
5420 module_init(xhci_hcd_init);
5421 module_exit(xhci_hcd_fini);