Merge tag 'for-linus-5.2-rc1' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / usb / host / fotg210-hcd.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
3  *
4  * Copyright (c) 2013 Faraday Technology Corporation
5  *
6  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7  *         Feng-Hsin Chiang <john453@faraday-tech.com>
8  *         Po-Yu Chuang <ratbert.chuang@gmail.com>
9  *
10  * Most of code borrowed from the Linux-3.7 EHCI driver
11  */
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/dmapool.h>
15 #include <linux/kernel.h>
16 #include <linux/delay.h>
17 #include <linux/ioport.h>
18 #include <linux/sched.h>
19 #include <linux/vmalloc.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/hrtimer.h>
23 #include <linux/list.h>
24 #include <linux/interrupt.h>
25 #include <linux/usb.h>
26 #include <linux/usb/hcd.h>
27 #include <linux/moduleparam.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/platform_device.h>
33 #include <linux/io.h>
34 #include <linux/clk.h>
35
36 #include <asm/byteorder.h>
37 #include <asm/irq.h>
38 #include <asm/unaligned.h>
39
40 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
41 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
42 static const char hcd_name[] = "fotg210_hcd";
43
44 #undef FOTG210_URB_TRACE
45 #define FOTG210_STATS
46
47 /* magic numbers that can affect system performance */
48 #define FOTG210_TUNE_CERR       3 /* 0-3 qtd retries; 0 == don't stop */
49 #define FOTG210_TUNE_RL_HS      4 /* nak throttle; see 4.9 */
50 #define FOTG210_TUNE_RL_TT      0
51 #define FOTG210_TUNE_MULT_HS    1 /* 1-3 transactions/uframe; 4.10.3 */
52 #define FOTG210_TUNE_MULT_TT    1
53
54 /* Some drivers think it's safe to schedule isochronous transfers more than 256
55  * ms into the future (partly as a result of an old bug in the scheduling
56  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
57  * length of 512 frames instead of 256.
58  */
59 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
60
61 /* Initial IRQ latency:  faster than hw default */
62 static int log2_irq_thresh; /* 0 to 6 */
63 module_param(log2_irq_thresh, int, S_IRUGO);
64 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
65
66 /* initial park setting:  slower than hw default */
67 static unsigned park;
68 module_param(park, uint, S_IRUGO);
69 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
70
71 /* for link power management(LPM) feature */
72 static unsigned int hird;
73 module_param(hird, int, S_IRUGO);
74 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
75
76 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
77
78 #include "fotg210.h"
79
80 #define fotg210_dbg(fotg210, fmt, args...) \
81         dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
82 #define fotg210_err(fotg210, fmt, args...) \
83         dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
84 #define fotg210_info(fotg210, fmt, args...) \
85         dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
86 #define fotg210_warn(fotg210, fmt, args...) \
87         dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
88
89 /* check the values in the HCSPARAMS register (host controller _Structural_
90  * parameters) see EHCI spec, Table 2-4 for each value
91  */
92 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
93 {
94         u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
95
96         fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
97                         HCS_N_PORTS(params));
98 }
99
100 /* check the values in the HCCPARAMS register (host controller _Capability_
101  * parameters) see EHCI Spec, Table 2-5 for each value
102  */
103 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
104 {
105         u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
106
107         fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
108                         params,
109                         HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
110                         HCC_CANPARK(params) ? " park" : "");
111 }
112
113 static void __maybe_unused
114 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
115 {
116         fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
117                         hc32_to_cpup(fotg210, &qtd->hw_next),
118                         hc32_to_cpup(fotg210, &qtd->hw_alt_next),
119                         hc32_to_cpup(fotg210, &qtd->hw_token),
120                         hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
121         if (qtd->hw_buf[1])
122                 fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
123                                 hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
124                                 hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
125                                 hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
126                                 hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
127 }
128
129 static void __maybe_unused
130 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
131 {
132         struct fotg210_qh_hw *hw = qh->hw;
133
134         fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
135                         hw->hw_next, hw->hw_info1, hw->hw_info2,
136                         hw->hw_current);
137
138         dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
139 }
140
141 static void __maybe_unused
142 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
143 {
144         fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
145                         itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
146                         itd->urb);
147
148         fotg210_dbg(fotg210,
149                         "  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
150                         hc32_to_cpu(fotg210, itd->hw_transaction[0]),
151                         hc32_to_cpu(fotg210, itd->hw_transaction[1]),
152                         hc32_to_cpu(fotg210, itd->hw_transaction[2]),
153                         hc32_to_cpu(fotg210, itd->hw_transaction[3]),
154                         hc32_to_cpu(fotg210, itd->hw_transaction[4]),
155                         hc32_to_cpu(fotg210, itd->hw_transaction[5]),
156                         hc32_to_cpu(fotg210, itd->hw_transaction[6]),
157                         hc32_to_cpu(fotg210, itd->hw_transaction[7]));
158
159         fotg210_dbg(fotg210,
160                         "  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
161                         hc32_to_cpu(fotg210, itd->hw_bufp[0]),
162                         hc32_to_cpu(fotg210, itd->hw_bufp[1]),
163                         hc32_to_cpu(fotg210, itd->hw_bufp[2]),
164                         hc32_to_cpu(fotg210, itd->hw_bufp[3]),
165                         hc32_to_cpu(fotg210, itd->hw_bufp[4]),
166                         hc32_to_cpu(fotg210, itd->hw_bufp[5]),
167                         hc32_to_cpu(fotg210, itd->hw_bufp[6]));
168
169         fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
170                         itd->index[0], itd->index[1], itd->index[2],
171                         itd->index[3], itd->index[4], itd->index[5],
172                         itd->index[6], itd->index[7]);
173 }
174
175 static int __maybe_unused
176 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
177 {
178         return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
179                         label, label[0] ? " " : "", status,
180                         (status & STS_ASS) ? " Async" : "",
181                         (status & STS_PSS) ? " Periodic" : "",
182                         (status & STS_RECL) ? " Recl" : "",
183                         (status & STS_HALT) ? " Halt" : "",
184                         (status & STS_IAA) ? " IAA" : "",
185                         (status & STS_FATAL) ? " FATAL" : "",
186                         (status & STS_FLR) ? " FLR" : "",
187                         (status & STS_PCD) ? " PCD" : "",
188                         (status & STS_ERR) ? " ERR" : "",
189                         (status & STS_INT) ? " INT" : "");
190 }
191
192 static int __maybe_unused
193 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
194 {
195         return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
196                         label, label[0] ? " " : "", enable,
197                         (enable & STS_IAA) ? " IAA" : "",
198                         (enable & STS_FATAL) ? " FATAL" : "",
199                         (enable & STS_FLR) ? " FLR" : "",
200                         (enable & STS_PCD) ? " PCD" : "",
201                         (enable & STS_ERR) ? " ERR" : "",
202                         (enable & STS_INT) ? " INT" : "");
203 }
204
205 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
206
207 static int dbg_command_buf(char *buf, unsigned len, const char *label,
208                 u32 command)
209 {
210         return scnprintf(buf, len,
211                         "%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
212                         label, label[0] ? " " : "", command,
213                         (command & CMD_PARK) ? " park" : "(park)",
214                         CMD_PARK_CNT(command),
215                         (command >> 16) & 0x3f,
216                         (command & CMD_IAAD) ? " IAAD" : "",
217                         (command & CMD_ASE) ? " Async" : "",
218                         (command & CMD_PSE) ? " Periodic" : "",
219                         fls_strings[(command >> 2) & 0x3],
220                         (command & CMD_RESET) ? " Reset" : "",
221                         (command & CMD_RUN) ? "RUN" : "HALT");
222 }
223
224 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
225                 u32 status)
226 {
227         char *sig;
228
229         /* signaling state */
230         switch (status & (3 << 10)) {
231         case 0 << 10:
232                 sig = "se0";
233                 break;
234         case 1 << 10:
235                 sig = "k";
236                 break; /* low speed */
237         case 2 << 10:
238                 sig = "j";
239                 break;
240         default:
241                 sig = "?";
242                 break;
243         }
244
245         scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
246                         label, label[0] ? " " : "", port, status,
247                         status >> 25, /*device address */
248                         sig,
249                         (status & PORT_RESET) ? " RESET" : "",
250                         (status & PORT_SUSPEND) ? " SUSPEND" : "",
251                         (status & PORT_RESUME) ? " RESUME" : "",
252                         (status & PORT_PEC) ? " PEC" : "",
253                         (status & PORT_PE) ? " PE" : "",
254                         (status & PORT_CSC) ? " CSC" : "",
255                         (status & PORT_CONNECT) ? " CONNECT" : "");
256
257         return buf;
258 }
259
260 /* functions have the "wrong" filename when they're output... */
261 #define dbg_status(fotg210, label, status) {                    \
262         char _buf[80];                                          \
263         dbg_status_buf(_buf, sizeof(_buf), label, status);      \
264         fotg210_dbg(fotg210, "%s\n", _buf);                     \
265 }
266
267 #define dbg_cmd(fotg210, label, command) {                      \
268         char _buf[80];                                          \
269         dbg_command_buf(_buf, sizeof(_buf), label, command);    \
270         fotg210_dbg(fotg210, "%s\n", _buf);                     \
271 }
272
273 #define dbg_port(fotg210, label, port, status) {                               \
274         char _buf[80];                                                         \
275         fotg210_dbg(fotg210, "%s\n",                                           \
276                         dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
277 }
278
279 /* troubleshooting help: expose state in debugfs */
280 static int debug_async_open(struct inode *, struct file *);
281 static int debug_periodic_open(struct inode *, struct file *);
282 static int debug_registers_open(struct inode *, struct file *);
283 static int debug_async_open(struct inode *, struct file *);
284
285 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
286 static int debug_close(struct inode *, struct file *);
287
288 static const struct file_operations debug_async_fops = {
289         .owner          = THIS_MODULE,
290         .open           = debug_async_open,
291         .read           = debug_output,
292         .release        = debug_close,
293         .llseek         = default_llseek,
294 };
295 static const struct file_operations debug_periodic_fops = {
296         .owner          = THIS_MODULE,
297         .open           = debug_periodic_open,
298         .read           = debug_output,
299         .release        = debug_close,
300         .llseek         = default_llseek,
301 };
302 static const struct file_operations debug_registers_fops = {
303         .owner          = THIS_MODULE,
304         .open           = debug_registers_open,
305         .read           = debug_output,
306         .release        = debug_close,
307         .llseek         = default_llseek,
308 };
309
310 static struct dentry *fotg210_debug_root;
311
312 struct debug_buffer {
313         ssize_t (*fill_func)(struct debug_buffer *);    /* fill method */
314         struct usb_bus *bus;
315         struct mutex mutex;     /* protect filling of buffer */
316         size_t count;           /* number of characters filled into buffer */
317         char *output_buf;
318         size_t alloc_size;
319 };
320
321 static inline char speed_char(u32 scratch)
322 {
323         switch (scratch & (3 << 12)) {
324         case QH_FULL_SPEED:
325                 return 'f';
326
327         case QH_LOW_SPEED:
328                 return 'l';
329
330         case QH_HIGH_SPEED:
331                 return 'h';
332
333         default:
334                 return '?';
335         }
336 }
337
338 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
339 {
340         __u32 v = hc32_to_cpu(fotg210, token);
341
342         if (v & QTD_STS_ACTIVE)
343                 return '*';
344         if (v & QTD_STS_HALT)
345                 return '-';
346         if (!IS_SHORT_READ(v))
347                 return ' ';
348         /* tries to advance through hw_alt_next */
349         return '/';
350 }
351
352 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
353                 char **nextp, unsigned *sizep)
354 {
355         u32 scratch;
356         u32 hw_curr;
357         struct fotg210_qtd *td;
358         unsigned temp;
359         unsigned size = *sizep;
360         char *next = *nextp;
361         char mark;
362         __le32 list_end = FOTG210_LIST_END(fotg210);
363         struct fotg210_qh_hw *hw = qh->hw;
364
365         if (hw->hw_qtd_next == list_end) /* NEC does this */
366                 mark = '@';
367         else
368                 mark = token_mark(fotg210, hw->hw_token);
369         if (mark == '/') { /* qh_alt_next controls qh advance? */
370                 if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
371                     fotg210->async->hw->hw_alt_next)
372                         mark = '#'; /* blocked */
373                 else if (hw->hw_alt_next == list_end)
374                         mark = '.'; /* use hw_qtd_next */
375                 /* else alt_next points to some other qtd */
376         }
377         scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
378         hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
379         temp = scnprintf(next, size,
380                         "qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
381                         qh, scratch & 0x007f,
382                         speed_char(scratch),
383                         (scratch >> 8) & 0x000f,
384                         scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
385                         hc32_to_cpup(fotg210, &hw->hw_token), mark,
386                         (cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
387                                 ? "data1" : "data0",
388                         (hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
389         size -= temp;
390         next += temp;
391
392         /* hc may be modifying the list as we read it ... */
393         list_for_each_entry(td, &qh->qtd_list, qtd_list) {
394                 scratch = hc32_to_cpup(fotg210, &td->hw_token);
395                 mark = ' ';
396                 if (hw_curr == td->qtd_dma)
397                         mark = '*';
398                 else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
399                         mark = '+';
400                 else if (QTD_LENGTH(scratch)) {
401                         if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
402                                 mark = '#';
403                         else if (td->hw_alt_next != list_end)
404                                 mark = '/';
405                 }
406                 temp = snprintf(next, size,
407                                 "\n\t%p%c%s len=%d %08x urb %p",
408                                 td, mark, ({ char *tmp;
409                                  switch ((scratch>>8)&0x03) {
410                                  case 0:
411                                         tmp = "out";
412                                         break;
413                                  case 1:
414                                         tmp = "in";
415                                         break;
416                                  case 2:
417                                         tmp = "setup";
418                                         break;
419                                  default:
420                                         tmp = "?";
421                                         break;
422                                  } tmp; }),
423                                 (scratch >> 16) & 0x7fff,
424                                 scratch,
425                                 td->urb);
426                 if (size < temp)
427                         temp = size;
428                 size -= temp;
429                 next += temp;
430                 if (temp == size)
431                         goto done;
432         }
433
434         temp = snprintf(next, size, "\n");
435         if (size < temp)
436                 temp = size;
437
438         size -= temp;
439         next += temp;
440
441 done:
442         *sizep = size;
443         *nextp = next;
444 }
445
446 static ssize_t fill_async_buffer(struct debug_buffer *buf)
447 {
448         struct usb_hcd *hcd;
449         struct fotg210_hcd *fotg210;
450         unsigned long flags;
451         unsigned temp, size;
452         char *next;
453         struct fotg210_qh *qh;
454
455         hcd = bus_to_hcd(buf->bus);
456         fotg210 = hcd_to_fotg210(hcd);
457         next = buf->output_buf;
458         size = buf->alloc_size;
459
460         *next = 0;
461
462         /* dumps a snapshot of the async schedule.
463          * usually empty except for long-term bulk reads, or head.
464          * one QH per line, and TDs we know about
465          */
466         spin_lock_irqsave(&fotg210->lock, flags);
467         for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
468                         qh = qh->qh_next.qh)
469                 qh_lines(fotg210, qh, &next, &size);
470         if (fotg210->async_unlink && size > 0) {
471                 temp = scnprintf(next, size, "\nunlink =\n");
472                 size -= temp;
473                 next += temp;
474
475                 for (qh = fotg210->async_unlink; size > 0 && qh;
476                                 qh = qh->unlink_next)
477                         qh_lines(fotg210, qh, &next, &size);
478         }
479         spin_unlock_irqrestore(&fotg210->lock, flags);
480
481         return strlen(buf->output_buf);
482 }
483
484 /* count tds, get ep direction */
485 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
486                 struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
487 {
488         u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
489         struct fotg210_qtd *qtd;
490         char *type = "";
491         unsigned temp = 0;
492
493         /* count tds, get ep direction */
494         list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
495                 temp++;
496                 switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
497                 case 0:
498                         type = "out";
499                         continue;
500                 case 1:
501                         type = "in";
502                         continue;
503                 }
504         }
505
506         return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
507                         speed_char(scratch), scratch & 0x007f,
508                         (scratch >> 8) & 0x000f, type, qh->usecs,
509                         qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
510 }
511
512 #define DBG_SCHED_LIMIT 64
513 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
514 {
515         struct usb_hcd *hcd;
516         struct fotg210_hcd *fotg210;
517         unsigned long flags;
518         union fotg210_shadow p, *seen;
519         unsigned temp, size, seen_count;
520         char *next;
521         unsigned i;
522         __hc32 tag;
523
524         seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
525         if (!seen)
526                 return 0;
527
528         seen_count = 0;
529
530         hcd = bus_to_hcd(buf->bus);
531         fotg210 = hcd_to_fotg210(hcd);
532         next = buf->output_buf;
533         size = buf->alloc_size;
534
535         temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
536         size -= temp;
537         next += temp;
538
539         /* dump a snapshot of the periodic schedule.
540          * iso changes, interrupt usually doesn't.
541          */
542         spin_lock_irqsave(&fotg210->lock, flags);
543         for (i = 0; i < fotg210->periodic_size; i++) {
544                 p = fotg210->pshadow[i];
545                 if (likely(!p.ptr))
546                         continue;
547
548                 tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
549
550                 temp = scnprintf(next, size, "%4d: ", i);
551                 size -= temp;
552                 next += temp;
553
554                 do {
555                         struct fotg210_qh_hw *hw;
556
557                         switch (hc32_to_cpu(fotg210, tag)) {
558                         case Q_TYPE_QH:
559                                 hw = p.qh->hw;
560                                 temp = scnprintf(next, size, " qh%d-%04x/%p",
561                                                 p.qh->period,
562                                                 hc32_to_cpup(fotg210,
563                                                         &hw->hw_info2)
564                                                         /* uframe masks */
565                                                         & (QH_CMASK | QH_SMASK),
566                                                 p.qh);
567                                 size -= temp;
568                                 next += temp;
569                                 /* don't repeat what follows this qh */
570                                 for (temp = 0; temp < seen_count; temp++) {
571                                         if (seen[temp].ptr != p.ptr)
572                                                 continue;
573                                         if (p.qh->qh_next.ptr) {
574                                                 temp = scnprintf(next, size,
575                                                                 " ...");
576                                                 size -= temp;
577                                                 next += temp;
578                                         }
579                                         break;
580                                 }
581                                 /* show more info the first time around */
582                                 if (temp == seen_count) {
583                                         temp = output_buf_tds_dir(next,
584                                                         fotg210, hw,
585                                                         p.qh, size);
586
587                                         if (seen_count < DBG_SCHED_LIMIT)
588                                                 seen[seen_count++].qh = p.qh;
589                                 } else
590                                         temp = 0;
591                                 tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
592                                 p = p.qh->qh_next;
593                                 break;
594                         case Q_TYPE_FSTN:
595                                 temp = scnprintf(next, size,
596                                                 " fstn-%8x/%p",
597                                                 p.fstn->hw_prev, p.fstn);
598                                 tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
599                                 p = p.fstn->fstn_next;
600                                 break;
601                         case Q_TYPE_ITD:
602                                 temp = scnprintf(next, size,
603                                                 " itd/%p", p.itd);
604                                 tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
605                                 p = p.itd->itd_next;
606                                 break;
607                         }
608                         size -= temp;
609                         next += temp;
610                 } while (p.ptr);
611
612                 temp = scnprintf(next, size, "\n");
613                 size -= temp;
614                 next += temp;
615         }
616         spin_unlock_irqrestore(&fotg210->lock, flags);
617         kfree(seen);
618
619         return buf->alloc_size - size;
620 }
621 #undef DBG_SCHED_LIMIT
622
623 static const char *rh_state_string(struct fotg210_hcd *fotg210)
624 {
625         switch (fotg210->rh_state) {
626         case FOTG210_RH_HALTED:
627                 return "halted";
628         case FOTG210_RH_SUSPENDED:
629                 return "suspended";
630         case FOTG210_RH_RUNNING:
631                 return "running";
632         case FOTG210_RH_STOPPING:
633                 return "stopping";
634         }
635         return "?";
636 }
637
638 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
639 {
640         struct usb_hcd *hcd;
641         struct fotg210_hcd *fotg210;
642         unsigned long flags;
643         unsigned temp, size, i;
644         char *next, scratch[80];
645         static const char fmt[] = "%*s\n";
646         static const char label[] = "";
647
648         hcd = bus_to_hcd(buf->bus);
649         fotg210 = hcd_to_fotg210(hcd);
650         next = buf->output_buf;
651         size = buf->alloc_size;
652
653         spin_lock_irqsave(&fotg210->lock, flags);
654
655         if (!HCD_HW_ACCESSIBLE(hcd)) {
656                 size = scnprintf(next, size,
657                                 "bus %s, device %s\n"
658                                 "%s\n"
659                                 "SUSPENDED(no register access)\n",
660                                 hcd->self.controller->bus->name,
661                                 dev_name(hcd->self.controller),
662                                 hcd->product_desc);
663                 goto done;
664         }
665
666         /* Capability Registers */
667         i = HC_VERSION(fotg210, fotg210_readl(fotg210,
668                         &fotg210->caps->hc_capbase));
669         temp = scnprintf(next, size,
670                         "bus %s, device %s\n"
671                         "%s\n"
672                         "EHCI %x.%02x, rh state %s\n",
673                         hcd->self.controller->bus->name,
674                         dev_name(hcd->self.controller),
675                         hcd->product_desc,
676                         i >> 8, i & 0x0ff, rh_state_string(fotg210));
677         size -= temp;
678         next += temp;
679
680         /* FIXME interpret both types of params */
681         i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
682         temp = scnprintf(next, size, "structural params 0x%08x\n", i);
683         size -= temp;
684         next += temp;
685
686         i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
687         temp = scnprintf(next, size, "capability params 0x%08x\n", i);
688         size -= temp;
689         next += temp;
690
691         /* Operational Registers */
692         temp = dbg_status_buf(scratch, sizeof(scratch), label,
693                         fotg210_readl(fotg210, &fotg210->regs->status));
694         temp = scnprintf(next, size, fmt, temp, scratch);
695         size -= temp;
696         next += temp;
697
698         temp = dbg_command_buf(scratch, sizeof(scratch), label,
699                         fotg210_readl(fotg210, &fotg210->regs->command));
700         temp = scnprintf(next, size, fmt, temp, scratch);
701         size -= temp;
702         next += temp;
703
704         temp = dbg_intr_buf(scratch, sizeof(scratch), label,
705                         fotg210_readl(fotg210, &fotg210->regs->intr_enable));
706         temp = scnprintf(next, size, fmt, temp, scratch);
707         size -= temp;
708         next += temp;
709
710         temp = scnprintf(next, size, "uframe %04x\n",
711                         fotg210_read_frame_index(fotg210));
712         size -= temp;
713         next += temp;
714
715         if (fotg210->async_unlink) {
716                 temp = scnprintf(next, size, "async unlink qh %p\n",
717                                 fotg210->async_unlink);
718                 size -= temp;
719                 next += temp;
720         }
721
722 #ifdef FOTG210_STATS
723         temp = scnprintf(next, size,
724                         "irq normal %ld err %ld iaa %ld(lost %ld)\n",
725                         fotg210->stats.normal, fotg210->stats.error,
726                         fotg210->stats.iaa, fotg210->stats.lost_iaa);
727         size -= temp;
728         next += temp;
729
730         temp = scnprintf(next, size, "complete %ld unlink %ld\n",
731                         fotg210->stats.complete, fotg210->stats.unlink);
732         size -= temp;
733         next += temp;
734 #endif
735
736 done:
737         spin_unlock_irqrestore(&fotg210->lock, flags);
738
739         return buf->alloc_size - size;
740 }
741
742 static struct debug_buffer
743 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
744 {
745         struct debug_buffer *buf;
746
747         buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
748
749         if (buf) {
750                 buf->bus = bus;
751                 buf->fill_func = fill_func;
752                 mutex_init(&buf->mutex);
753                 buf->alloc_size = PAGE_SIZE;
754         }
755
756         return buf;
757 }
758
759 static int fill_buffer(struct debug_buffer *buf)
760 {
761         int ret = 0;
762
763         if (!buf->output_buf)
764                 buf->output_buf = vmalloc(buf->alloc_size);
765
766         if (!buf->output_buf) {
767                 ret = -ENOMEM;
768                 goto out;
769         }
770
771         ret = buf->fill_func(buf);
772
773         if (ret >= 0) {
774                 buf->count = ret;
775                 ret = 0;
776         }
777
778 out:
779         return ret;
780 }
781
782 static ssize_t debug_output(struct file *file, char __user *user_buf,
783                 size_t len, loff_t *offset)
784 {
785         struct debug_buffer *buf = file->private_data;
786         int ret = 0;
787
788         mutex_lock(&buf->mutex);
789         if (buf->count == 0) {
790                 ret = fill_buffer(buf);
791                 if (ret != 0) {
792                         mutex_unlock(&buf->mutex);
793                         goto out;
794                 }
795         }
796         mutex_unlock(&buf->mutex);
797
798         ret = simple_read_from_buffer(user_buf, len, offset,
799                         buf->output_buf, buf->count);
800
801 out:
802         return ret;
803
804 }
805
806 static int debug_close(struct inode *inode, struct file *file)
807 {
808         struct debug_buffer *buf = file->private_data;
809
810         if (buf) {
811                 vfree(buf->output_buf);
812                 kfree(buf);
813         }
814
815         return 0;
816 }
817 static int debug_async_open(struct inode *inode, struct file *file)
818 {
819         file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
820
821         return file->private_data ? 0 : -ENOMEM;
822 }
823
824 static int debug_periodic_open(struct inode *inode, struct file *file)
825 {
826         struct debug_buffer *buf;
827
828         buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
829         if (!buf)
830                 return -ENOMEM;
831
832         buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
833         file->private_data = buf;
834         return 0;
835 }
836
837 static int debug_registers_open(struct inode *inode, struct file *file)
838 {
839         file->private_data = alloc_buffer(inode->i_private,
840                         fill_registers_buffer);
841
842         return file->private_data ? 0 : -ENOMEM;
843 }
844
845 static inline void create_debug_files(struct fotg210_hcd *fotg210)
846 {
847         struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
848         struct dentry *root;
849
850         root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
851         fotg210->debug_dir = root;
852
853         debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
854         debugfs_create_file("periodic", S_IRUGO, root, bus,
855                             &debug_periodic_fops);
856         debugfs_create_file("registers", S_IRUGO, root, bus,
857                             &debug_registers_fops);
858 }
859
860 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
861 {
862         debugfs_remove_recursive(fotg210->debug_dir);
863 }
864
865 /* handshake - spin reading hc until handshake completes or fails
866  * @ptr: address of hc register to be read
867  * @mask: bits to look at in result of read
868  * @done: value of those bits when handshake succeeds
869  * @usec: timeout in microseconds
870  *
871  * Returns negative errno, or zero on success
872  *
873  * Success happens when the "mask" bits have the specified value (hardware
874  * handshake done).  There are two failure modes:  "usec" have passed (major
875  * hardware flakeout), or the register reads as all-ones (hardware removed).
876  *
877  * That last failure should_only happen in cases like physical cardbus eject
878  * before driver shutdown. But it also seems to be caused by bugs in cardbus
879  * bridge shutdown:  shutting down the bridge before the devices using it.
880  */
881 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
882                 u32 mask, u32 done, int usec)
883 {
884         u32 result;
885
886         do {
887                 result = fotg210_readl(fotg210, ptr);
888                 if (result == ~(u32)0)          /* card removed */
889                         return -ENODEV;
890                 result &= mask;
891                 if (result == done)
892                         return 0;
893                 udelay(1);
894                 usec--;
895         } while (usec > 0);
896         return -ETIMEDOUT;
897 }
898
899 /* Force HC to halt state from unknown (EHCI spec section 2.3).
900  * Must be called with interrupts enabled and the lock not held.
901  */
902 static int fotg210_halt(struct fotg210_hcd *fotg210)
903 {
904         u32 temp;
905
906         spin_lock_irq(&fotg210->lock);
907
908         /* disable any irqs left enabled by previous code */
909         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
910
911         /*
912          * This routine gets called during probe before fotg210->command
913          * has been initialized, so we can't rely on its value.
914          */
915         fotg210->command &= ~CMD_RUN;
916         temp = fotg210_readl(fotg210, &fotg210->regs->command);
917         temp &= ~(CMD_RUN | CMD_IAAD);
918         fotg210_writel(fotg210, temp, &fotg210->regs->command);
919
920         spin_unlock_irq(&fotg210->lock);
921         synchronize_irq(fotg210_to_hcd(fotg210)->irq);
922
923         return handshake(fotg210, &fotg210->regs->status,
924                         STS_HALT, STS_HALT, 16 * 125);
925 }
926
927 /* Reset a non-running (STS_HALT == 1) controller.
928  * Must be called with interrupts enabled and the lock not held.
929  */
930 static int fotg210_reset(struct fotg210_hcd *fotg210)
931 {
932         int retval;
933         u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
934
935         /* If the EHCI debug controller is active, special care must be
936          * taken before and after a host controller reset
937          */
938         if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
939                 fotg210->debug = NULL;
940
941         command |= CMD_RESET;
942         dbg_cmd(fotg210, "reset", command);
943         fotg210_writel(fotg210, command, &fotg210->regs->command);
944         fotg210->rh_state = FOTG210_RH_HALTED;
945         fotg210->next_statechange = jiffies;
946         retval = handshake(fotg210, &fotg210->regs->command,
947                         CMD_RESET, 0, 250 * 1000);
948
949         if (retval)
950                 return retval;
951
952         if (fotg210->debug)
953                 dbgp_external_startup(fotg210_to_hcd(fotg210));
954
955         fotg210->port_c_suspend = fotg210->suspended_ports =
956                         fotg210->resuming_ports = 0;
957         return retval;
958 }
959
960 /* Idle the controller (turn off the schedules).
961  * Must be called with interrupts enabled and the lock not held.
962  */
963 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
964 {
965         u32 temp;
966
967         if (fotg210->rh_state != FOTG210_RH_RUNNING)
968                 return;
969
970         /* wait for any schedule enables/disables to take effect */
971         temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
972         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
973                         16 * 125);
974
975         /* then disable anything that's still active */
976         spin_lock_irq(&fotg210->lock);
977         fotg210->command &= ~(CMD_ASE | CMD_PSE);
978         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
979         spin_unlock_irq(&fotg210->lock);
980
981         /* hardware can take 16 microframes to turn off ... */
982         handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
983                         16 * 125);
984 }
985
986 static void end_unlink_async(struct fotg210_hcd *fotg210);
987 static void unlink_empty_async(struct fotg210_hcd *fotg210);
988 static void fotg210_work(struct fotg210_hcd *fotg210);
989 static void start_unlink_intr(struct fotg210_hcd *fotg210,
990                               struct fotg210_qh *qh);
991 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
992
993 /* Set a bit in the USBCMD register */
994 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
995 {
996         fotg210->command |= bit;
997         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
998
999         /* unblock posted write */
1000         fotg210_readl(fotg210, &fotg210->regs->command);
1001 }
1002
1003 /* Clear a bit in the USBCMD register */
1004 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1005 {
1006         fotg210->command &= ~bit;
1007         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1008
1009         /* unblock posted write */
1010         fotg210_readl(fotg210, &fotg210->regs->command);
1011 }
1012
1013 /* EHCI timer support...  Now using hrtimers.
1014  *
1015  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1016  * the timer routine runs, it checks each possible event; events that are
1017  * currently enabled and whose expiration time has passed get handled.
1018  * The set of enabled events is stored as a collection of bitflags in
1019  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1020  * increasing delay values (ranging between 1 ms and 100 ms).
1021  *
1022  * Rather than implementing a sorted list or tree of all pending events,
1023  * we keep track only of the lowest-numbered pending event, in
1024  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1025  * expiration time is set to the timeout value for this event.
1026  *
1027  * As a result, events might not get handled right away; the actual delay
1028  * could be anywhere up to twice the requested delay.  This doesn't
1029  * matter, because none of the events are especially time-critical.  The
1030  * ones that matter most all have a delay of 1 ms, so they will be
1031  * handled after 2 ms at most, which is okay.  In addition to this, we
1032  * allow for an expiration range of 1 ms.
1033  */
1034
1035 /* Delay lengths for the hrtimer event types.
1036  * Keep this list sorted by delay length, in the same order as
1037  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1038  */
1039 static unsigned event_delays_ns[] = {
1040         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_ASS */
1041         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_PSS */
1042         1 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_POLL_DEAD */
1043         1125 * NSEC_PER_USEC,   /* FOTG210_HRTIMER_UNLINK_INTR */
1044         2 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_FREE_ITDS */
1045         6 * NSEC_PER_MSEC,      /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1046         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_IAA_WATCHDOG */
1047         10 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1048         15 * NSEC_PER_MSEC,     /* FOTG210_HRTIMER_DISABLE_ASYNC */
1049         100 * NSEC_PER_MSEC,    /* FOTG210_HRTIMER_IO_WATCHDOG */
1050 };
1051
1052 /* Enable a pending hrtimer event */
1053 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1054                 bool resched)
1055 {
1056         ktime_t *timeout = &fotg210->hr_timeouts[event];
1057
1058         if (resched)
1059                 *timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1060         fotg210->enabled_hrtimer_events |= (1 << event);
1061
1062         /* Track only the lowest-numbered pending event */
1063         if (event < fotg210->next_hrtimer_event) {
1064                 fotg210->next_hrtimer_event = event;
1065                 hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1066                                 NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1067         }
1068 }
1069
1070
1071 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1072 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1073 {
1074         unsigned actual, want;
1075
1076         /* Don't enable anything if the controller isn't running (e.g., died) */
1077         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1078                 return;
1079
1080         want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1081         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1082
1083         if (want != actual) {
1084
1085                 /* Poll again later, but give up after about 20 ms */
1086                 if (fotg210->ASS_poll_count++ < 20) {
1087                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1088                                         true);
1089                         return;
1090                 }
1091                 fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1092                                 want, actual);
1093         }
1094         fotg210->ASS_poll_count = 0;
1095
1096         /* The status is up-to-date; restart or stop the schedule as needed */
1097         if (want == 0) {        /* Stopped */
1098                 if (fotg210->async_count > 0)
1099                         fotg210_set_command_bit(fotg210, CMD_ASE);
1100
1101         } else {                /* Running */
1102                 if (fotg210->async_count == 0) {
1103
1104                         /* Turn off the schedule after a while */
1105                         fotg210_enable_event(fotg210,
1106                                         FOTG210_HRTIMER_DISABLE_ASYNC,
1107                                         true);
1108                 }
1109         }
1110 }
1111
1112 /* Turn off the async schedule after a brief delay */
1113 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1114 {
1115         fotg210_clear_command_bit(fotg210, CMD_ASE);
1116 }
1117
1118
1119 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1120 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1121 {
1122         unsigned actual, want;
1123
1124         /* Don't do anything if the controller isn't running (e.g., died) */
1125         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1126                 return;
1127
1128         want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1129         actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1130
1131         if (want != actual) {
1132
1133                 /* Poll again later, but give up after about 20 ms */
1134                 if (fotg210->PSS_poll_count++ < 20) {
1135                         fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1136                                         true);
1137                         return;
1138                 }
1139                 fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1140                                 want, actual);
1141         }
1142         fotg210->PSS_poll_count = 0;
1143
1144         /* The status is up-to-date; restart or stop the schedule as needed */
1145         if (want == 0) {        /* Stopped */
1146                 if (fotg210->periodic_count > 0)
1147                         fotg210_set_command_bit(fotg210, CMD_PSE);
1148
1149         } else {                /* Running */
1150                 if (fotg210->periodic_count == 0) {
1151
1152                         /* Turn off the schedule after a while */
1153                         fotg210_enable_event(fotg210,
1154                                         FOTG210_HRTIMER_DISABLE_PERIODIC,
1155                                         true);
1156                 }
1157         }
1158 }
1159
1160 /* Turn off the periodic schedule after a brief delay */
1161 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1162 {
1163         fotg210_clear_command_bit(fotg210, CMD_PSE);
1164 }
1165
1166
1167 /* Poll the STS_HALT status bit; see when a dead controller stops */
1168 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1169 {
1170         if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1171
1172                 /* Give up after a few milliseconds */
1173                 if (fotg210->died_poll_count++ < 5) {
1174                         /* Try again later */
1175                         fotg210_enable_event(fotg210,
1176                                         FOTG210_HRTIMER_POLL_DEAD, true);
1177                         return;
1178                 }
1179                 fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1180         }
1181
1182         /* Clean up the mess */
1183         fotg210->rh_state = FOTG210_RH_HALTED;
1184         fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1185         fotg210_work(fotg210);
1186         end_unlink_async(fotg210);
1187
1188         /* Not in process context, so don't try to reset the controller */
1189 }
1190
1191
1192 /* Handle unlinked interrupt QHs once they are gone from the hardware */
1193 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1194 {
1195         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1196
1197         /*
1198          * Process all the QHs on the intr_unlink list that were added
1199          * before the current unlink cycle began.  The list is in
1200          * temporal order, so stop when we reach the first entry in the
1201          * current cycle.  But if the root hub isn't running then
1202          * process all the QHs on the list.
1203          */
1204         fotg210->intr_unlinking = true;
1205         while (fotg210->intr_unlink) {
1206                 struct fotg210_qh *qh = fotg210->intr_unlink;
1207
1208                 if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1209                         break;
1210                 fotg210->intr_unlink = qh->unlink_next;
1211                 qh->unlink_next = NULL;
1212                 end_unlink_intr(fotg210, qh);
1213         }
1214
1215         /* Handle remaining entries later */
1216         if (fotg210->intr_unlink) {
1217                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1218                                 true);
1219                 ++fotg210->intr_unlink_cycle;
1220         }
1221         fotg210->intr_unlinking = false;
1222 }
1223
1224
1225 /* Start another free-iTDs/siTDs cycle */
1226 static void start_free_itds(struct fotg210_hcd *fotg210)
1227 {
1228         if (!(fotg210->enabled_hrtimer_events &
1229                         BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1230                 fotg210->last_itd_to_free = list_entry(
1231                                 fotg210->cached_itd_list.prev,
1232                                 struct fotg210_itd, itd_list);
1233                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1234         }
1235 }
1236
1237 /* Wait for controller to stop using old iTDs and siTDs */
1238 static void end_free_itds(struct fotg210_hcd *fotg210)
1239 {
1240         struct fotg210_itd *itd, *n;
1241
1242         if (fotg210->rh_state < FOTG210_RH_RUNNING)
1243                 fotg210->last_itd_to_free = NULL;
1244
1245         list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1246                 list_del(&itd->itd_list);
1247                 dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1248                 if (itd == fotg210->last_itd_to_free)
1249                         break;
1250         }
1251
1252         if (!list_empty(&fotg210->cached_itd_list))
1253                 start_free_itds(fotg210);
1254 }
1255
1256
1257 /* Handle lost (or very late) IAA interrupts */
1258 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1259 {
1260         if (fotg210->rh_state != FOTG210_RH_RUNNING)
1261                 return;
1262
1263         /*
1264          * Lost IAA irqs wedge things badly; seen first with a vt8235.
1265          * So we need this watchdog, but must protect it against both
1266          * (a) SMP races against real IAA firing and retriggering, and
1267          * (b) clean HC shutdown, when IAA watchdog was pending.
1268          */
1269         if (fotg210->async_iaa) {
1270                 u32 cmd, status;
1271
1272                 /* If we get here, IAA is *REALLY* late.  It's barely
1273                  * conceivable that the system is so busy that CMD_IAAD
1274                  * is still legitimately set, so let's be sure it's
1275                  * clear before we read STS_IAA.  (The HC should clear
1276                  * CMD_IAAD when it sets STS_IAA.)
1277                  */
1278                 cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1279
1280                 /*
1281                  * If IAA is set here it either legitimately triggered
1282                  * after the watchdog timer expired (_way_ late, so we'll
1283                  * still count it as lost) ... or a silicon erratum:
1284                  * - VIA seems to set IAA without triggering the IRQ;
1285                  * - IAAD potentially cleared without setting IAA.
1286                  */
1287                 status = fotg210_readl(fotg210, &fotg210->regs->status);
1288                 if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1289                         INCR(fotg210->stats.lost_iaa);
1290                         fotg210_writel(fotg210, STS_IAA,
1291                                         &fotg210->regs->status);
1292                 }
1293
1294                 fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1295                                 status, cmd);
1296                 end_unlink_async(fotg210);
1297         }
1298 }
1299
1300
1301 /* Enable the I/O watchdog, if appropriate */
1302 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1303 {
1304         /* Not needed if the controller isn't running or it's already enabled */
1305         if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1306                         (fotg210->enabled_hrtimer_events &
1307                         BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1308                 return;
1309
1310         /*
1311          * Isochronous transfers always need the watchdog.
1312          * For other sorts we use it only if the flag is set.
1313          */
1314         if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1315                         fotg210->async_count + fotg210->intr_count > 0))
1316                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1317                                 true);
1318 }
1319
1320
1321 /* Handler functions for the hrtimer event types.
1322  * Keep this array in the same order as the event types indexed by
1323  * enum fotg210_hrtimer_event in fotg210.h.
1324  */
1325 static void (*event_handlers[])(struct fotg210_hcd *) = {
1326         fotg210_poll_ASS,                       /* FOTG210_HRTIMER_POLL_ASS */
1327         fotg210_poll_PSS,                       /* FOTG210_HRTIMER_POLL_PSS */
1328         fotg210_handle_controller_death,        /* FOTG210_HRTIMER_POLL_DEAD */
1329         fotg210_handle_intr_unlinks,    /* FOTG210_HRTIMER_UNLINK_INTR */
1330         end_free_itds,                  /* FOTG210_HRTIMER_FREE_ITDS */
1331         unlink_empty_async,             /* FOTG210_HRTIMER_ASYNC_UNLINKS */
1332         fotg210_iaa_watchdog,           /* FOTG210_HRTIMER_IAA_WATCHDOG */
1333         fotg210_disable_PSE,            /* FOTG210_HRTIMER_DISABLE_PERIODIC */
1334         fotg210_disable_ASE,            /* FOTG210_HRTIMER_DISABLE_ASYNC */
1335         fotg210_work,                   /* FOTG210_HRTIMER_IO_WATCHDOG */
1336 };
1337
1338 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1339 {
1340         struct fotg210_hcd *fotg210 =
1341                         container_of(t, struct fotg210_hcd, hrtimer);
1342         ktime_t now;
1343         unsigned long events;
1344         unsigned long flags;
1345         unsigned e;
1346
1347         spin_lock_irqsave(&fotg210->lock, flags);
1348
1349         events = fotg210->enabled_hrtimer_events;
1350         fotg210->enabled_hrtimer_events = 0;
1351         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1352
1353         /*
1354          * Check each pending event.  If its time has expired, handle
1355          * the event; otherwise re-enable it.
1356          */
1357         now = ktime_get();
1358         for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1359                 if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1360                         event_handlers[e](fotg210);
1361                 else
1362                         fotg210_enable_event(fotg210, e, false);
1363         }
1364
1365         spin_unlock_irqrestore(&fotg210->lock, flags);
1366         return HRTIMER_NORESTART;
1367 }
1368
1369 #define fotg210_bus_suspend NULL
1370 #define fotg210_bus_resume NULL
1371
1372 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1373                 u32 __iomem *status_reg, int port_status)
1374 {
1375         if (!(port_status & PORT_CONNECT))
1376                 return port_status;
1377
1378         /* if reset finished and it's still not enabled -- handoff */
1379         if (!(port_status & PORT_PE))
1380                 /* with integrated TT, there's nobody to hand it to! */
1381                 fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1382                                 index + 1);
1383         else
1384                 fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1385                                 index + 1);
1386
1387         return port_status;
1388 }
1389
1390
1391 /* build "status change" packet (one or two bytes) from HC registers */
1392
1393 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1394 {
1395         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1396         u32 temp, status;
1397         u32 mask;
1398         int retval = 1;
1399         unsigned long flags;
1400
1401         /* init status to no-changes */
1402         buf[0] = 0;
1403
1404         /* Inform the core about resumes-in-progress by returning
1405          * a non-zero value even if there are no status changes.
1406          */
1407         status = fotg210->resuming_ports;
1408
1409         mask = PORT_CSC | PORT_PEC;
1410         /* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1411
1412         /* no hub change reports (bit 0) for now (power, ...) */
1413
1414         /* port N changes (bit N)? */
1415         spin_lock_irqsave(&fotg210->lock, flags);
1416
1417         temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1418
1419         /*
1420          * Return status information even for ports with OWNER set.
1421          * Otherwise hub_wq wouldn't see the disconnect event when a
1422          * high-speed device is switched over to the companion
1423          * controller by the user.
1424          */
1425
1426         if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1427                         (fotg210->reset_done[0] &&
1428                         time_after_eq(jiffies, fotg210->reset_done[0]))) {
1429                 buf[0] |= 1 << 1;
1430                 status = STS_PCD;
1431         }
1432         /* FIXME autosuspend idle root hubs */
1433         spin_unlock_irqrestore(&fotg210->lock, flags);
1434         return status ? retval : 0;
1435 }
1436
1437 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1438                 struct usb_hub_descriptor *desc)
1439 {
1440         int ports = HCS_N_PORTS(fotg210->hcs_params);
1441         u16 temp;
1442
1443         desc->bDescriptorType = USB_DT_HUB;
1444         desc->bPwrOn2PwrGood = 10;      /* fotg210 1.0, 2.3.9 says 20ms max */
1445         desc->bHubContrCurrent = 0;
1446
1447         desc->bNbrPorts = ports;
1448         temp = 1 + (ports / 8);
1449         desc->bDescLength = 7 + 2 * temp;
1450
1451         /* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1452         memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1453         memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1454
1455         temp = HUB_CHAR_INDV_PORT_OCPM; /* per-port overcurrent reporting */
1456         temp |= HUB_CHAR_NO_LPSM;       /* no power switching */
1457         desc->wHubCharacteristics = cpu_to_le16(temp);
1458 }
1459
1460 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1461                 u16 wIndex, char *buf, u16 wLength)
1462 {
1463         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1464         int ports = HCS_N_PORTS(fotg210->hcs_params);
1465         u32 __iomem *status_reg = &fotg210->regs->port_status;
1466         u32 temp, temp1, status;
1467         unsigned long flags;
1468         int retval = 0;
1469         unsigned selector;
1470
1471         /*
1472          * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1473          * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1474          * (track current state ourselves) ... blink for diagnostics,
1475          * power, "this is the one", etc.  EHCI spec supports this.
1476          */
1477
1478         spin_lock_irqsave(&fotg210->lock, flags);
1479         switch (typeReq) {
1480         case ClearHubFeature:
1481                 switch (wValue) {
1482                 case C_HUB_LOCAL_POWER:
1483                 case C_HUB_OVER_CURRENT:
1484                         /* no hub-wide feature/status flags */
1485                         break;
1486                 default:
1487                         goto error;
1488                 }
1489                 break;
1490         case ClearPortFeature:
1491                 if (!wIndex || wIndex > ports)
1492                         goto error;
1493                 wIndex--;
1494                 temp = fotg210_readl(fotg210, status_reg);
1495                 temp &= ~PORT_RWC_BITS;
1496
1497                 /*
1498                  * Even if OWNER is set, so the port is owned by the
1499                  * companion controller, hub_wq needs to be able to clear
1500                  * the port-change status bits (especially
1501                  * USB_PORT_STAT_C_CONNECTION).
1502                  */
1503
1504                 switch (wValue) {
1505                 case USB_PORT_FEAT_ENABLE:
1506                         fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1507                         break;
1508                 case USB_PORT_FEAT_C_ENABLE:
1509                         fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1510                         break;
1511                 case USB_PORT_FEAT_SUSPEND:
1512                         if (temp & PORT_RESET)
1513                                 goto error;
1514                         if (!(temp & PORT_SUSPEND))
1515                                 break;
1516                         if ((temp & PORT_PE) == 0)
1517                                 goto error;
1518
1519                         /* resume signaling for 20 msec */
1520                         fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1521                         fotg210->reset_done[wIndex] = jiffies
1522                                         + msecs_to_jiffies(USB_RESUME_TIMEOUT);
1523                         break;
1524                 case USB_PORT_FEAT_C_SUSPEND:
1525                         clear_bit(wIndex, &fotg210->port_c_suspend);
1526                         break;
1527                 case USB_PORT_FEAT_C_CONNECTION:
1528                         fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1529                         break;
1530                 case USB_PORT_FEAT_C_OVER_CURRENT:
1531                         fotg210_writel(fotg210, temp | OTGISR_OVC,
1532                                         &fotg210->regs->otgisr);
1533                         break;
1534                 case USB_PORT_FEAT_C_RESET:
1535                         /* GetPortStatus clears reset */
1536                         break;
1537                 default:
1538                         goto error;
1539                 }
1540                 fotg210_readl(fotg210, &fotg210->regs->command);
1541                 break;
1542         case GetHubDescriptor:
1543                 fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1544                                 buf);
1545                 break;
1546         case GetHubStatus:
1547                 /* no hub-wide feature/status flags */
1548                 memset(buf, 0, 4);
1549                 /*cpu_to_le32s ((u32 *) buf); */
1550                 break;
1551         case GetPortStatus:
1552                 if (!wIndex || wIndex > ports)
1553                         goto error;
1554                 wIndex--;
1555                 status = 0;
1556                 temp = fotg210_readl(fotg210, status_reg);
1557
1558                 /* wPortChange bits */
1559                 if (temp & PORT_CSC)
1560                         status |= USB_PORT_STAT_C_CONNECTION << 16;
1561                 if (temp & PORT_PEC)
1562                         status |= USB_PORT_STAT_C_ENABLE << 16;
1563
1564                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1565                 if (temp1 & OTGISR_OVC)
1566                         status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1567
1568                 /* whoever resumes must GetPortStatus to complete it!! */
1569                 if (temp & PORT_RESUME) {
1570
1571                         /* Remote Wakeup received? */
1572                         if (!fotg210->reset_done[wIndex]) {
1573                                 /* resume signaling for 20 msec */
1574                                 fotg210->reset_done[wIndex] = jiffies
1575                                                 + msecs_to_jiffies(20);
1576                                 /* check the port again */
1577                                 mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1578                                                 fotg210->reset_done[wIndex]);
1579                         }
1580
1581                         /* resume completed? */
1582                         else if (time_after_eq(jiffies,
1583                                         fotg210->reset_done[wIndex])) {
1584                                 clear_bit(wIndex, &fotg210->suspended_ports);
1585                                 set_bit(wIndex, &fotg210->port_c_suspend);
1586                                 fotg210->reset_done[wIndex] = 0;
1587
1588                                 /* stop resume signaling */
1589                                 temp = fotg210_readl(fotg210, status_reg);
1590                                 fotg210_writel(fotg210, temp &
1591                                                 ~(PORT_RWC_BITS | PORT_RESUME),
1592                                                 status_reg);
1593                                 clear_bit(wIndex, &fotg210->resuming_ports);
1594                                 retval = handshake(fotg210, status_reg,
1595                                                 PORT_RESUME, 0, 2000);/* 2ms */
1596                                 if (retval != 0) {
1597                                         fotg210_err(fotg210,
1598                                                         "port %d resume error %d\n",
1599                                                         wIndex + 1, retval);
1600                                         goto error;
1601                                 }
1602                                 temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1603                         }
1604                 }
1605
1606                 /* whoever resets must GetPortStatus to complete it!! */
1607                 if ((temp & PORT_RESET) && time_after_eq(jiffies,
1608                                 fotg210->reset_done[wIndex])) {
1609                         status |= USB_PORT_STAT_C_RESET << 16;
1610                         fotg210->reset_done[wIndex] = 0;
1611                         clear_bit(wIndex, &fotg210->resuming_ports);
1612
1613                         /* force reset to complete */
1614                         fotg210_writel(fotg210,
1615                                         temp & ~(PORT_RWC_BITS | PORT_RESET),
1616                                         status_reg);
1617                         /* REVISIT:  some hardware needs 550+ usec to clear
1618                          * this bit; seems too long to spin routinely...
1619                          */
1620                         retval = handshake(fotg210, status_reg,
1621                                         PORT_RESET, 0, 1000);
1622                         if (retval != 0) {
1623                                 fotg210_err(fotg210, "port %d reset error %d\n",
1624                                                 wIndex + 1, retval);
1625                                 goto error;
1626                         }
1627
1628                         /* see what we found out */
1629                         temp = check_reset_complete(fotg210, wIndex, status_reg,
1630                                         fotg210_readl(fotg210, status_reg));
1631                 }
1632
1633                 if (!(temp & (PORT_RESUME|PORT_RESET))) {
1634                         fotg210->reset_done[wIndex] = 0;
1635                         clear_bit(wIndex, &fotg210->resuming_ports);
1636                 }
1637
1638                 /* transfer dedicated ports to the companion hc */
1639                 if ((temp & PORT_CONNECT) &&
1640                                 test_bit(wIndex, &fotg210->companion_ports)) {
1641                         temp &= ~PORT_RWC_BITS;
1642                         fotg210_writel(fotg210, temp, status_reg);
1643                         fotg210_dbg(fotg210, "port %d --> companion\n",
1644                                         wIndex + 1);
1645                         temp = fotg210_readl(fotg210, status_reg);
1646                 }
1647
1648                 /*
1649                  * Even if OWNER is set, there's no harm letting hub_wq
1650                  * see the wPortStatus values (they should all be 0 except
1651                  * for PORT_POWER anyway).
1652                  */
1653
1654                 if (temp & PORT_CONNECT) {
1655                         status |= USB_PORT_STAT_CONNECTION;
1656                         status |= fotg210_port_speed(fotg210, temp);
1657                 }
1658                 if (temp & PORT_PE)
1659                         status |= USB_PORT_STAT_ENABLE;
1660
1661                 /* maybe the port was unsuspended without our knowledge */
1662                 if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1663                         status |= USB_PORT_STAT_SUSPEND;
1664                 } else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1665                         clear_bit(wIndex, &fotg210->suspended_ports);
1666                         clear_bit(wIndex, &fotg210->resuming_ports);
1667                         fotg210->reset_done[wIndex] = 0;
1668                         if (temp & PORT_PE)
1669                                 set_bit(wIndex, &fotg210->port_c_suspend);
1670                 }
1671
1672                 temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1673                 if (temp1 & OTGISR_OVC)
1674                         status |= USB_PORT_STAT_OVERCURRENT;
1675                 if (temp & PORT_RESET)
1676                         status |= USB_PORT_STAT_RESET;
1677                 if (test_bit(wIndex, &fotg210->port_c_suspend))
1678                         status |= USB_PORT_STAT_C_SUSPEND << 16;
1679
1680                 if (status & ~0xffff)   /* only if wPortChange is interesting */
1681                         dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1682                 put_unaligned_le32(status, buf);
1683                 break;
1684         case SetHubFeature:
1685                 switch (wValue) {
1686                 case C_HUB_LOCAL_POWER:
1687                 case C_HUB_OVER_CURRENT:
1688                         /* no hub-wide feature/status flags */
1689                         break;
1690                 default:
1691                         goto error;
1692                 }
1693                 break;
1694         case SetPortFeature:
1695                 selector = wIndex >> 8;
1696                 wIndex &= 0xff;
1697
1698                 if (!wIndex || wIndex > ports)
1699                         goto error;
1700                 wIndex--;
1701                 temp = fotg210_readl(fotg210, status_reg);
1702                 temp &= ~PORT_RWC_BITS;
1703                 switch (wValue) {
1704                 case USB_PORT_FEAT_SUSPEND:
1705                         if ((temp & PORT_PE) == 0
1706                                         || (temp & PORT_RESET) != 0)
1707                                 goto error;
1708
1709                         /* After above check the port must be connected.
1710                          * Set appropriate bit thus could put phy into low power
1711                          * mode if we have hostpc feature
1712                          */
1713                         fotg210_writel(fotg210, temp | PORT_SUSPEND,
1714                                         status_reg);
1715                         set_bit(wIndex, &fotg210->suspended_ports);
1716                         break;
1717                 case USB_PORT_FEAT_RESET:
1718                         if (temp & PORT_RESUME)
1719                                 goto error;
1720                         /* line status bits may report this as low speed,
1721                          * which can be fine if this root hub has a
1722                          * transaction translator built in.
1723                          */
1724                         fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1725                         temp |= PORT_RESET;
1726                         temp &= ~PORT_PE;
1727
1728                         /*
1729                          * caller must wait, then call GetPortStatus
1730                          * usb 2.0 spec says 50 ms resets on root
1731                          */
1732                         fotg210->reset_done[wIndex] = jiffies
1733                                         + msecs_to_jiffies(50);
1734                         fotg210_writel(fotg210, temp, status_reg);
1735                         break;
1736
1737                 /* For downstream facing ports (these):  one hub port is put
1738                  * into test mode according to USB2 11.24.2.13, then the hub
1739                  * must be reset (which for root hub now means rmmod+modprobe,
1740                  * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1741                  * about the EHCI-specific stuff.
1742                  */
1743                 case USB_PORT_FEAT_TEST:
1744                         if (!selector || selector > 5)
1745                                 goto error;
1746                         spin_unlock_irqrestore(&fotg210->lock, flags);
1747                         fotg210_quiesce(fotg210);
1748                         spin_lock_irqsave(&fotg210->lock, flags);
1749
1750                         /* Put all enabled ports into suspend */
1751                         temp = fotg210_readl(fotg210, status_reg) &
1752                                 ~PORT_RWC_BITS;
1753                         if (temp & PORT_PE)
1754                                 fotg210_writel(fotg210, temp | PORT_SUSPEND,
1755                                                 status_reg);
1756
1757                         spin_unlock_irqrestore(&fotg210->lock, flags);
1758                         fotg210_halt(fotg210);
1759                         spin_lock_irqsave(&fotg210->lock, flags);
1760
1761                         temp = fotg210_readl(fotg210, status_reg);
1762                         temp |= selector << 16;
1763                         fotg210_writel(fotg210, temp, status_reg);
1764                         break;
1765
1766                 default:
1767                         goto error;
1768                 }
1769                 fotg210_readl(fotg210, &fotg210->regs->command);
1770                 break;
1771
1772         default:
1773 error:
1774                 /* "stall" on error */
1775                 retval = -EPIPE;
1776         }
1777         spin_unlock_irqrestore(&fotg210->lock, flags);
1778         return retval;
1779 }
1780
1781 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1782                 int portnum)
1783 {
1784         return;
1785 }
1786
1787 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1788                 int portnum)
1789 {
1790         return 0;
1791 }
1792
1793 /* There's basically three types of memory:
1794  *      - data used only by the HCD ... kmalloc is fine
1795  *      - async and periodic schedules, shared by HC and HCD ... these
1796  *        need to use dma_pool or dma_alloc_coherent
1797  *      - driver buffers, read/written by HC ... single shot DMA mapped
1798  *
1799  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1800  * No memory seen by this driver is pageable.
1801  */
1802
1803 /* Allocate the key transfer structures from the previously allocated pool */
1804 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1805                 struct fotg210_qtd *qtd, dma_addr_t dma)
1806 {
1807         memset(qtd, 0, sizeof(*qtd));
1808         qtd->qtd_dma = dma;
1809         qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1810         qtd->hw_next = FOTG210_LIST_END(fotg210);
1811         qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1812         INIT_LIST_HEAD(&qtd->qtd_list);
1813 }
1814
1815 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1816                 gfp_t flags)
1817 {
1818         struct fotg210_qtd *qtd;
1819         dma_addr_t dma;
1820
1821         qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1822         if (qtd != NULL)
1823                 fotg210_qtd_init(fotg210, qtd, dma);
1824
1825         return qtd;
1826 }
1827
1828 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1829                 struct fotg210_qtd *qtd)
1830 {
1831         dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1832 }
1833
1834
1835 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1836 {
1837         /* clean qtds first, and know this is not linked */
1838         if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1839                 fotg210_dbg(fotg210, "unused qh not empty!\n");
1840                 BUG();
1841         }
1842         if (qh->dummy)
1843                 fotg210_qtd_free(fotg210, qh->dummy);
1844         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1845         kfree(qh);
1846 }
1847
1848 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1849                 gfp_t flags)
1850 {
1851         struct fotg210_qh *qh;
1852         dma_addr_t dma;
1853
1854         qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1855         if (!qh)
1856                 goto done;
1857         qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1858         if (!qh->hw)
1859                 goto fail;
1860         qh->qh_dma = dma;
1861         INIT_LIST_HEAD(&qh->qtd_list);
1862
1863         /* dummy td enables safe urb queuing */
1864         qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1865         if (qh->dummy == NULL) {
1866                 fotg210_dbg(fotg210, "no dummy td\n");
1867                 goto fail1;
1868         }
1869 done:
1870         return qh;
1871 fail1:
1872         dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1873 fail:
1874         kfree(qh);
1875         return NULL;
1876 }
1877
1878 /* The queue heads and transfer descriptors are managed from pools tied
1879  * to each of the "per device" structures.
1880  * This is the initialisation and cleanup code.
1881  */
1882
1883 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1884 {
1885         if (fotg210->async)
1886                 qh_destroy(fotg210, fotg210->async);
1887         fotg210->async = NULL;
1888
1889         if (fotg210->dummy)
1890                 qh_destroy(fotg210, fotg210->dummy);
1891         fotg210->dummy = NULL;
1892
1893         /* DMA consistent memory and pools */
1894         dma_pool_destroy(fotg210->qtd_pool);
1895         fotg210->qtd_pool = NULL;
1896
1897         dma_pool_destroy(fotg210->qh_pool);
1898         fotg210->qh_pool = NULL;
1899
1900         dma_pool_destroy(fotg210->itd_pool);
1901         fotg210->itd_pool = NULL;
1902
1903         if (fotg210->periodic)
1904                 dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1905                                 fotg210->periodic_size * sizeof(u32),
1906                                 fotg210->periodic, fotg210->periodic_dma);
1907         fotg210->periodic = NULL;
1908
1909         /* shadow periodic table */
1910         kfree(fotg210->pshadow);
1911         fotg210->pshadow = NULL;
1912 }
1913
1914 /* remember to add cleanup code (above) if you add anything here */
1915 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1916 {
1917         int i;
1918
1919         /* QTDs for control/bulk/intr transfers */
1920         fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1921                         fotg210_to_hcd(fotg210)->self.controller,
1922                         sizeof(struct fotg210_qtd),
1923                         32 /* byte alignment (for hw parts) */,
1924                         4096 /* can't cross 4K */);
1925         if (!fotg210->qtd_pool)
1926                 goto fail;
1927
1928         /* QHs for control/bulk/intr transfers */
1929         fotg210->qh_pool = dma_pool_create("fotg210_qh",
1930                         fotg210_to_hcd(fotg210)->self.controller,
1931                         sizeof(struct fotg210_qh_hw),
1932                         32 /* byte alignment (for hw parts) */,
1933                         4096 /* can't cross 4K */);
1934         if (!fotg210->qh_pool)
1935                 goto fail;
1936
1937         fotg210->async = fotg210_qh_alloc(fotg210, flags);
1938         if (!fotg210->async)
1939                 goto fail;
1940
1941         /* ITD for high speed ISO transfers */
1942         fotg210->itd_pool = dma_pool_create("fotg210_itd",
1943                         fotg210_to_hcd(fotg210)->self.controller,
1944                         sizeof(struct fotg210_itd),
1945                         64 /* byte alignment (for hw parts) */,
1946                         4096 /* can't cross 4K */);
1947         if (!fotg210->itd_pool)
1948                 goto fail;
1949
1950         /* Hardware periodic table */
1951         fotg210->periodic = (__le32 *)
1952                 dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1953                                 fotg210->periodic_size * sizeof(__le32),
1954                                 &fotg210->periodic_dma, 0);
1955         if (fotg210->periodic == NULL)
1956                 goto fail;
1957
1958         for (i = 0; i < fotg210->periodic_size; i++)
1959                 fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1960
1961         /* software shadow of hardware table */
1962         fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1963                         flags);
1964         if (fotg210->pshadow != NULL)
1965                 return 0;
1966
1967 fail:
1968         fotg210_dbg(fotg210, "couldn't init memory\n");
1969         fotg210_mem_cleanup(fotg210);
1970         return -ENOMEM;
1971 }
1972 /* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1973  *
1974  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1975  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1976  * buffers needed for the larger number).  We use one QH per endpoint, queue
1977  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1978  *
1979  * ISO traffic uses "ISO TD" (itd) records, and (along with
1980  * interrupts) needs careful scheduling.  Performance improvements can be
1981  * an ongoing challenge.  That's in "ehci-sched.c".
1982  *
1983  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1984  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1985  * (b) special fields in qh entries or (c) split iso entries.  TTs will
1986  * buffer low/full speed data so the host collects it at high speed.
1987  */
1988
1989 /* fill a qtd, returning how much of the buffer we were able to queue up */
1990 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1991                 dma_addr_t buf, size_t len, int token, int maxpacket)
1992 {
1993         int i, count;
1994         u64 addr = buf;
1995
1996         /* one buffer entry per 4K ... first might be short or unaligned */
1997         qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
1998         qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
1999         count = 0x1000 - (buf & 0x0fff);        /* rest of that page */
2000         if (likely(len < count))                /* ... iff needed */
2001                 count = len;
2002         else {
2003                 buf +=  0x1000;
2004                 buf &= ~0x0fff;
2005
2006                 /* per-qtd limit: from 16K to 20K (best alignment) */
2007                 for (i = 1; count < len && i < 5; i++) {
2008                         addr = buf;
2009                         qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2010                         qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2011                                         (u32)(addr >> 32));
2012                         buf += 0x1000;
2013                         if ((count + 0x1000) < len)
2014                                 count += 0x1000;
2015                         else
2016                                 count = len;
2017                 }
2018
2019                 /* short packets may only terminate transfers */
2020                 if (count != len)
2021                         count -= (count % maxpacket);
2022         }
2023         qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2024         qtd->length = count;
2025
2026         return count;
2027 }
2028
2029 static inline void qh_update(struct fotg210_hcd *fotg210,
2030                 struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2031 {
2032         struct fotg210_qh_hw *hw = qh->hw;
2033
2034         /* writes to an active overlay are unsafe */
2035         BUG_ON(qh->qh_state != QH_STATE_IDLE);
2036
2037         hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2038         hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2039
2040         /* Except for control endpoints, we make hardware maintain data
2041          * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2042          * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2043          * ever clear it.
2044          */
2045         if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2046                 unsigned is_out, epnum;
2047
2048                 is_out = qh->is_out;
2049                 epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2050                 if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2051                         hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2052                         usb_settoggle(qh->dev, epnum, is_out, 1);
2053                 }
2054         }
2055
2056         hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2057 }
2058
2059 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2060  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2061  * recovery (including urb dequeue) would need software changes to a QH...
2062  */
2063 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2064 {
2065         struct fotg210_qtd *qtd;
2066
2067         if (list_empty(&qh->qtd_list))
2068                 qtd = qh->dummy;
2069         else {
2070                 qtd = list_entry(qh->qtd_list.next,
2071                                 struct fotg210_qtd, qtd_list);
2072                 /*
2073                  * first qtd may already be partially processed.
2074                  * If we come here during unlink, the QH overlay region
2075                  * might have reference to the just unlinked qtd. The
2076                  * qtd is updated in qh_completions(). Update the QH
2077                  * overlay here.
2078                  */
2079                 if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2080                         qh->hw->hw_qtd_next = qtd->hw_next;
2081                         qtd = NULL;
2082                 }
2083         }
2084
2085         if (qtd)
2086                 qh_update(fotg210, qh, qtd);
2087 }
2088
2089 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2090
2091 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2092                 struct usb_host_endpoint *ep)
2093 {
2094         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2095         struct fotg210_qh *qh = ep->hcpriv;
2096         unsigned long flags;
2097
2098         spin_lock_irqsave(&fotg210->lock, flags);
2099         qh->clearing_tt = 0;
2100         if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2101                         && fotg210->rh_state == FOTG210_RH_RUNNING)
2102                 qh_link_async(fotg210, qh);
2103         spin_unlock_irqrestore(&fotg210->lock, flags);
2104 }
2105
2106 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2107                 struct fotg210_qh *qh, struct urb *urb, u32 token)
2108 {
2109
2110         /* If an async split transaction gets an error or is unlinked,
2111          * the TT buffer may be left in an indeterminate state.  We
2112          * have to clear the TT buffer.
2113          *
2114          * Note: this routine is never called for Isochronous transfers.
2115          */
2116         if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2117                 struct usb_device *tt = urb->dev->tt->hub;
2118
2119                 dev_dbg(&tt->dev,
2120                                 "clear tt buffer port %d, a%d ep%d t%08x\n",
2121                                 urb->dev->ttport, urb->dev->devnum,
2122                                 usb_pipeendpoint(urb->pipe), token);
2123
2124                 if (urb->dev->tt->hub !=
2125                                 fotg210_to_hcd(fotg210)->self.root_hub) {
2126                         if (usb_hub_clear_tt_buffer(urb) == 0)
2127                                 qh->clearing_tt = 1;
2128                 }
2129         }
2130 }
2131
2132 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2133                 size_t length, u32 token)
2134 {
2135         int status = -EINPROGRESS;
2136
2137         /* count IN/OUT bytes, not SETUP (even short packets) */
2138         if (likely(QTD_PID(token) != 2))
2139                 urb->actual_length += length - QTD_LENGTH(token);
2140
2141         /* don't modify error codes */
2142         if (unlikely(urb->unlinked))
2143                 return status;
2144
2145         /* force cleanup after short read; not always an error */
2146         if (unlikely(IS_SHORT_READ(token)))
2147                 status = -EREMOTEIO;
2148
2149         /* serious "can't proceed" faults reported by the hardware */
2150         if (token & QTD_STS_HALT) {
2151                 if (token & QTD_STS_BABBLE) {
2152                         /* FIXME "must" disable babbling device's port too */
2153                         status = -EOVERFLOW;
2154                 /* CERR nonzero + halt --> stall */
2155                 } else if (QTD_CERR(token)) {
2156                         status = -EPIPE;
2157
2158                 /* In theory, more than one of the following bits can be set
2159                  * since they are sticky and the transaction is retried.
2160                  * Which to test first is rather arbitrary.
2161                  */
2162                 } else if (token & QTD_STS_MMF) {
2163                         /* fs/ls interrupt xfer missed the complete-split */
2164                         status = -EPROTO;
2165                 } else if (token & QTD_STS_DBE) {
2166                         status = (QTD_PID(token) == 1) /* IN ? */
2167                                 ? -ENOSR  /* hc couldn't read data */
2168                                 : -ECOMM; /* hc couldn't write data */
2169                 } else if (token & QTD_STS_XACT) {
2170                         /* timeout, bad CRC, wrong PID, etc */
2171                         fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2172                                         urb->dev->devpath,
2173                                         usb_pipeendpoint(urb->pipe),
2174                                         usb_pipein(urb->pipe) ? "in" : "out");
2175                         status = -EPROTO;
2176                 } else {        /* unknown */
2177                         status = -EPROTO;
2178                 }
2179
2180                 fotg210_dbg(fotg210,
2181                                 "dev%d ep%d%s qtd token %08x --> status %d\n",
2182                                 usb_pipedevice(urb->pipe),
2183                                 usb_pipeendpoint(urb->pipe),
2184                                 usb_pipein(urb->pipe) ? "in" : "out",
2185                                 token, status);
2186         }
2187
2188         return status;
2189 }
2190
2191 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2192                 int status)
2193 __releases(fotg210->lock)
2194 __acquires(fotg210->lock)
2195 {
2196         if (likely(urb->hcpriv != NULL)) {
2197                 struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2198
2199                 /* S-mask in a QH means it's an interrupt urb */
2200                 if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2201
2202                         /* ... update hc-wide periodic stats (for usbfs) */
2203                         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2204                 }
2205         }
2206
2207         if (unlikely(urb->unlinked)) {
2208                 INCR(fotg210->stats.unlink);
2209         } else {
2210                 /* report non-error and short read status as zero */
2211                 if (status == -EINPROGRESS || status == -EREMOTEIO)
2212                         status = 0;
2213                 INCR(fotg210->stats.complete);
2214         }
2215
2216 #ifdef FOTG210_URB_TRACE
2217         fotg210_dbg(fotg210,
2218                         "%s %s urb %p ep%d%s status %d len %d/%d\n",
2219                         __func__, urb->dev->devpath, urb,
2220                         usb_pipeendpoint(urb->pipe),
2221                         usb_pipein(urb->pipe) ? "in" : "out",
2222                         status,
2223                         urb->actual_length, urb->transfer_buffer_length);
2224 #endif
2225
2226         /* complete() can reenter this HCD */
2227         usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2228         spin_unlock(&fotg210->lock);
2229         usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2230         spin_lock(&fotg210->lock);
2231 }
2232
2233 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2234
2235 /* Process and free completed qtds for a qh, returning URBs to drivers.
2236  * Chases up to qh->hw_current.  Returns number of completions called,
2237  * indicating how much "real" work we did.
2238  */
2239 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2240                 struct fotg210_qh *qh)
2241 {
2242         struct fotg210_qtd *last, *end = qh->dummy;
2243         struct fotg210_qtd *qtd, *tmp;
2244         int last_status;
2245         int stopped;
2246         unsigned count = 0;
2247         u8 state;
2248         struct fotg210_qh_hw *hw = qh->hw;
2249
2250         if (unlikely(list_empty(&qh->qtd_list)))
2251                 return count;
2252
2253         /* completions (or tasks on other cpus) must never clobber HALT
2254          * till we've gone through and cleaned everything up, even when
2255          * they add urbs to this qh's queue or mark them for unlinking.
2256          *
2257          * NOTE:  unlinking expects to be done in queue order.
2258          *
2259          * It's a bug for qh->qh_state to be anything other than
2260          * QH_STATE_IDLE, unless our caller is scan_async() or
2261          * scan_intr().
2262          */
2263         state = qh->qh_state;
2264         qh->qh_state = QH_STATE_COMPLETING;
2265         stopped = (state == QH_STATE_IDLE);
2266
2267 rescan:
2268         last = NULL;
2269         last_status = -EINPROGRESS;
2270         qh->needs_rescan = 0;
2271
2272         /* remove de-activated QTDs from front of queue.
2273          * after faults (including short reads), cleanup this urb
2274          * then let the queue advance.
2275          * if queue is stopped, handles unlinks.
2276          */
2277         list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2278                 struct urb *urb;
2279                 u32 token = 0;
2280
2281                 urb = qtd->urb;
2282
2283                 /* clean up any state from previous QTD ...*/
2284                 if (last) {
2285                         if (likely(last->urb != urb)) {
2286                                 fotg210_urb_done(fotg210, last->urb,
2287                                                 last_status);
2288                                 count++;
2289                                 last_status = -EINPROGRESS;
2290                         }
2291                         fotg210_qtd_free(fotg210, last);
2292                         last = NULL;
2293                 }
2294
2295                 /* ignore urbs submitted during completions we reported */
2296                 if (qtd == end)
2297                         break;
2298
2299                 /* hardware copies qtd out of qh overlay */
2300                 rmb();
2301                 token = hc32_to_cpu(fotg210, qtd->hw_token);
2302
2303                 /* always clean up qtds the hc de-activated */
2304 retry_xacterr:
2305                 if ((token & QTD_STS_ACTIVE) == 0) {
2306
2307                         /* Report Data Buffer Error: non-fatal but useful */
2308                         if (token & QTD_STS_DBE)
2309                                 fotg210_dbg(fotg210,
2310                                         "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2311                                         urb, usb_endpoint_num(&urb->ep->desc),
2312                                         usb_endpoint_dir_in(&urb->ep->desc)
2313                                                 ? "in" : "out",
2314                                         urb->transfer_buffer_length, qtd, qh);
2315
2316                         /* on STALL, error, and short reads this urb must
2317                          * complete and all its qtds must be recycled.
2318                          */
2319                         if ((token & QTD_STS_HALT) != 0) {
2320
2321                                 /* retry transaction errors until we
2322                                  * reach the software xacterr limit
2323                                  */
2324                                 if ((token & QTD_STS_XACT) &&
2325                                                 QTD_CERR(token) == 0 &&
2326                                                 ++qh->xacterrs < QH_XACTERR_MAX &&
2327                                                 !urb->unlinked) {
2328                                         fotg210_dbg(fotg210,
2329                                                 "detected XactErr len %zu/%zu retry %d\n",
2330                                                 qtd->length - QTD_LENGTH(token),
2331                                                 qtd->length,
2332                                                 qh->xacterrs);
2333
2334                                         /* reset the token in the qtd and the
2335                                          * qh overlay (which still contains
2336                                          * the qtd) so that we pick up from
2337                                          * where we left off
2338                                          */
2339                                         token &= ~QTD_STS_HALT;
2340                                         token |= QTD_STS_ACTIVE |
2341                                                  (FOTG210_TUNE_CERR << 10);
2342                                         qtd->hw_token = cpu_to_hc32(fotg210,
2343                                                         token);
2344                                         wmb();
2345                                         hw->hw_token = cpu_to_hc32(fotg210,
2346                                                         token);
2347                                         goto retry_xacterr;
2348                                 }
2349                                 stopped = 1;
2350
2351                         /* magic dummy for some short reads; qh won't advance.
2352                          * that silicon quirk can kick in with this dummy too.
2353                          *
2354                          * other short reads won't stop the queue, including
2355                          * control transfers (status stage handles that) or
2356                          * most other single-qtd reads ... the queue stops if
2357                          * URB_SHORT_NOT_OK was set so the driver submitting
2358                          * the urbs could clean it up.
2359                          */
2360                         } else if (IS_SHORT_READ(token) &&
2361                                         !(qtd->hw_alt_next &
2362                                         FOTG210_LIST_END(fotg210))) {
2363                                 stopped = 1;
2364                         }
2365
2366                 /* stop scanning when we reach qtds the hc is using */
2367                 } else if (likely(!stopped
2368                                 && fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2369                         break;
2370
2371                 /* scan the whole queue for unlinks whenever it stops */
2372                 } else {
2373                         stopped = 1;
2374
2375                         /* cancel everything if we halt, suspend, etc */
2376                         if (fotg210->rh_state < FOTG210_RH_RUNNING)
2377                                 last_status = -ESHUTDOWN;
2378
2379                         /* this qtd is active; skip it unless a previous qtd
2380                          * for its urb faulted, or its urb was canceled.
2381                          */
2382                         else if (last_status == -EINPROGRESS && !urb->unlinked)
2383                                 continue;
2384
2385                         /* qh unlinked; token in overlay may be most current */
2386                         if (state == QH_STATE_IDLE &&
2387                                         cpu_to_hc32(fotg210, qtd->qtd_dma)
2388                                         == hw->hw_current) {
2389                                 token = hc32_to_cpu(fotg210, hw->hw_token);
2390
2391                                 /* An unlink may leave an incomplete
2392                                  * async transaction in the TT buffer.
2393                                  * We have to clear it.
2394                                  */
2395                                 fotg210_clear_tt_buffer(fotg210, qh, urb,
2396                                                 token);
2397                         }
2398                 }
2399
2400                 /* unless we already know the urb's status, collect qtd status
2401                  * and update count of bytes transferred.  in common short read
2402                  * cases with only one data qtd (including control transfers),
2403                  * queue processing won't halt.  but with two or more qtds (for
2404                  * example, with a 32 KB transfer), when the first qtd gets a
2405                  * short read the second must be removed by hand.
2406                  */
2407                 if (last_status == -EINPROGRESS) {
2408                         last_status = qtd_copy_status(fotg210, urb,
2409                                         qtd->length, token);
2410                         if (last_status == -EREMOTEIO &&
2411                                         (qtd->hw_alt_next &
2412                                         FOTG210_LIST_END(fotg210)))
2413                                 last_status = -EINPROGRESS;
2414
2415                         /* As part of low/full-speed endpoint-halt processing
2416                          * we must clear the TT buffer (11.17.5).
2417                          */
2418                         if (unlikely(last_status != -EINPROGRESS &&
2419                                         last_status != -EREMOTEIO)) {
2420                                 /* The TT's in some hubs malfunction when they
2421                                  * receive this request following a STALL (they
2422                                  * stop sending isochronous packets).  Since a
2423                                  * STALL can't leave the TT buffer in a busy
2424                                  * state (if you believe Figures 11-48 - 11-51
2425                                  * in the USB 2.0 spec), we won't clear the TT
2426                                  * buffer in this case.  Strictly speaking this
2427                                  * is a violation of the spec.
2428                                  */
2429                                 if (last_status != -EPIPE)
2430                                         fotg210_clear_tt_buffer(fotg210, qh,
2431                                                         urb, token);
2432                         }
2433                 }
2434
2435                 /* if we're removing something not at the queue head,
2436                  * patch the hardware queue pointer.
2437                  */
2438                 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2439                         last = list_entry(qtd->qtd_list.prev,
2440                                         struct fotg210_qtd, qtd_list);
2441                         last->hw_next = qtd->hw_next;
2442                 }
2443
2444                 /* remove qtd; it's recycled after possible urb completion */
2445                 list_del(&qtd->qtd_list);
2446                 last = qtd;
2447
2448                 /* reinit the xacterr counter for the next qtd */
2449                 qh->xacterrs = 0;
2450         }
2451
2452         /* last urb's completion might still need calling */
2453         if (likely(last != NULL)) {
2454                 fotg210_urb_done(fotg210, last->urb, last_status);
2455                 count++;
2456                 fotg210_qtd_free(fotg210, last);
2457         }
2458
2459         /* Do we need to rescan for URBs dequeued during a giveback? */
2460         if (unlikely(qh->needs_rescan)) {
2461                 /* If the QH is already unlinked, do the rescan now. */
2462                 if (state == QH_STATE_IDLE)
2463                         goto rescan;
2464
2465                 /* Otherwise we have to wait until the QH is fully unlinked.
2466                  * Our caller will start an unlink if qh->needs_rescan is
2467                  * set.  But if an unlink has already started, nothing needs
2468                  * to be done.
2469                  */
2470                 if (state != QH_STATE_LINKED)
2471                         qh->needs_rescan = 0;
2472         }
2473
2474         /* restore original state; caller must unlink or relink */
2475         qh->qh_state = state;
2476
2477         /* be sure the hardware's done with the qh before refreshing
2478          * it after fault cleanup, or recovering from silicon wrongly
2479          * overlaying the dummy qtd (which reduces DMA chatter).
2480          */
2481         if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2482                 switch (state) {
2483                 case QH_STATE_IDLE:
2484                         qh_refresh(fotg210, qh);
2485                         break;
2486                 case QH_STATE_LINKED:
2487                         /* We won't refresh a QH that's linked (after the HC
2488                          * stopped the queue).  That avoids a race:
2489                          *  - HC reads first part of QH;
2490                          *  - CPU updates that first part and the token;
2491                          *  - HC reads rest of that QH, including token
2492                          * Result:  HC gets an inconsistent image, and then
2493                          * DMAs to/from the wrong memory (corrupting it).
2494                          *
2495                          * That should be rare for interrupt transfers,
2496                          * except maybe high bandwidth ...
2497                          */
2498
2499                         /* Tell the caller to start an unlink */
2500                         qh->needs_rescan = 1;
2501                         break;
2502                 /* otherwise, unlink already started */
2503                 }
2504         }
2505
2506         return count;
2507 }
2508
2509 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2510 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2511 /* ... and packet size, for any kind of endpoint descriptor */
2512 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2513
2514 /* reverse of qh_urb_transaction:  free a list of TDs.
2515  * used for cleanup after errors, before HC sees an URB's TDs.
2516  */
2517 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2518                 struct list_head *head)
2519 {
2520         struct fotg210_qtd *qtd, *temp;
2521
2522         list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2523                 list_del(&qtd->qtd_list);
2524                 fotg210_qtd_free(fotg210, qtd);
2525         }
2526 }
2527
2528 /* create a list of filled qtds for this URB; won't link into qh.
2529  */
2530 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2531                 struct urb *urb, struct list_head *head, gfp_t flags)
2532 {
2533         struct fotg210_qtd *qtd, *qtd_prev;
2534         dma_addr_t buf;
2535         int len, this_sg_len, maxpacket;
2536         int is_input;
2537         u32 token;
2538         int i;
2539         struct scatterlist *sg;
2540
2541         /*
2542          * URBs map to sequences of QTDs:  one logical transaction
2543          */
2544         qtd = fotg210_qtd_alloc(fotg210, flags);
2545         if (unlikely(!qtd))
2546                 return NULL;
2547         list_add_tail(&qtd->qtd_list, head);
2548         qtd->urb = urb;
2549
2550         token = QTD_STS_ACTIVE;
2551         token |= (FOTG210_TUNE_CERR << 10);
2552         /* for split transactions, SplitXState initialized to zero */
2553
2554         len = urb->transfer_buffer_length;
2555         is_input = usb_pipein(urb->pipe);
2556         if (usb_pipecontrol(urb->pipe)) {
2557                 /* SETUP pid */
2558                 qtd_fill(fotg210, qtd, urb->setup_dma,
2559                                 sizeof(struct usb_ctrlrequest),
2560                                 token | (2 /* "setup" */ << 8), 8);
2561
2562                 /* ... and always at least one more pid */
2563                 token ^= QTD_TOGGLE;
2564                 qtd_prev = qtd;
2565                 qtd = fotg210_qtd_alloc(fotg210, flags);
2566                 if (unlikely(!qtd))
2567                         goto cleanup;
2568                 qtd->urb = urb;
2569                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2570                 list_add_tail(&qtd->qtd_list, head);
2571
2572                 /* for zero length DATA stages, STATUS is always IN */
2573                 if (len == 0)
2574                         token |= (1 /* "in" */ << 8);
2575         }
2576
2577         /*
2578          * data transfer stage:  buffer setup
2579          */
2580         i = urb->num_mapped_sgs;
2581         if (len > 0 && i > 0) {
2582                 sg = urb->sg;
2583                 buf = sg_dma_address(sg);
2584
2585                 /* urb->transfer_buffer_length may be smaller than the
2586                  * size of the scatterlist (or vice versa)
2587                  */
2588                 this_sg_len = min_t(int, sg_dma_len(sg), len);
2589         } else {
2590                 sg = NULL;
2591                 buf = urb->transfer_dma;
2592                 this_sg_len = len;
2593         }
2594
2595         if (is_input)
2596                 token |= (1 /* "in" */ << 8);
2597         /* else it's already initted to "out" pid (0 << 8) */
2598
2599         maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2600
2601         /*
2602          * buffer gets wrapped in one or more qtds;
2603          * last one may be "short" (including zero len)
2604          * and may serve as a control status ack
2605          */
2606         for (;;) {
2607                 int this_qtd_len;
2608
2609                 this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2610                                 maxpacket);
2611                 this_sg_len -= this_qtd_len;
2612                 len -= this_qtd_len;
2613                 buf += this_qtd_len;
2614
2615                 /*
2616                  * short reads advance to a "magic" dummy instead of the next
2617                  * qtd ... that forces the queue to stop, for manual cleanup.
2618                  * (this will usually be overridden later.)
2619                  */
2620                 if (is_input)
2621                         qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2622
2623                 /* qh makes control packets use qtd toggle; maybe switch it */
2624                 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2625                         token ^= QTD_TOGGLE;
2626
2627                 if (likely(this_sg_len <= 0)) {
2628                         if (--i <= 0 || len <= 0)
2629                                 break;
2630                         sg = sg_next(sg);
2631                         buf = sg_dma_address(sg);
2632                         this_sg_len = min_t(int, sg_dma_len(sg), len);
2633                 }
2634
2635                 qtd_prev = qtd;
2636                 qtd = fotg210_qtd_alloc(fotg210, flags);
2637                 if (unlikely(!qtd))
2638                         goto cleanup;
2639                 qtd->urb = urb;
2640                 qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2641                 list_add_tail(&qtd->qtd_list, head);
2642         }
2643
2644         /*
2645          * unless the caller requires manual cleanup after short reads,
2646          * have the alt_next mechanism keep the queue running after the
2647          * last data qtd (the only one, for control and most other cases).
2648          */
2649         if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2650                         usb_pipecontrol(urb->pipe)))
2651                 qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2652
2653         /*
2654          * control requests may need a terminating data "status" ack;
2655          * other OUT ones may need a terminating short packet
2656          * (zero length).
2657          */
2658         if (likely(urb->transfer_buffer_length != 0)) {
2659                 int one_more = 0;
2660
2661                 if (usb_pipecontrol(urb->pipe)) {
2662                         one_more = 1;
2663                         token ^= 0x0100;        /* "in" <--> "out"  */
2664                         token |= QTD_TOGGLE;    /* force DATA1 */
2665                 } else if (usb_pipeout(urb->pipe)
2666                                 && (urb->transfer_flags & URB_ZERO_PACKET)
2667                                 && !(urb->transfer_buffer_length % maxpacket)) {
2668                         one_more = 1;
2669                 }
2670                 if (one_more) {
2671                         qtd_prev = qtd;
2672                         qtd = fotg210_qtd_alloc(fotg210, flags);
2673                         if (unlikely(!qtd))
2674                                 goto cleanup;
2675                         qtd->urb = urb;
2676                         qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2677                         list_add_tail(&qtd->qtd_list, head);
2678
2679                         /* never any data in such packets */
2680                         qtd_fill(fotg210, qtd, 0, 0, token, 0);
2681                 }
2682         }
2683
2684         /* by default, enable interrupt on urb completion */
2685         if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2686                 qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2687         return head;
2688
2689 cleanup:
2690         qtd_list_free(fotg210, urb, head);
2691         return NULL;
2692 }
2693
2694 /* Would be best to create all qh's from config descriptors,
2695  * when each interface/altsetting is established.  Unlink
2696  * any previous qh and cancel its urbs first; endpoints are
2697  * implicitly reset then (data toggle too).
2698  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2699 */
2700
2701
2702 /* Each QH holds a qtd list; a QH is used for everything except iso.
2703  *
2704  * For interrupt urbs, the scheduler must set the microframe scheduling
2705  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2706  * just one microframe in the s-mask.  For split interrupt transactions
2707  * there are additional complications: c-mask, maybe FSTNs.
2708  */
2709 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2710                 gfp_t flags)
2711 {
2712         struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2713         u32 info1 = 0, info2 = 0;
2714         int is_input, type;
2715         int maxp = 0;
2716         struct usb_tt *tt = urb->dev->tt;
2717         struct fotg210_qh_hw *hw;
2718
2719         if (!qh)
2720                 return qh;
2721
2722         /*
2723          * init endpoint/device data for this QH
2724          */
2725         info1 |= usb_pipeendpoint(urb->pipe) << 8;
2726         info1 |= usb_pipedevice(urb->pipe) << 0;
2727
2728         is_input = usb_pipein(urb->pipe);
2729         type = usb_pipetype(urb->pipe);
2730         maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2731
2732         /* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2733          * acts like up to 3KB, but is built from smaller packets.
2734          */
2735         if (max_packet(maxp) > 1024) {
2736                 fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2737                                 max_packet(maxp));
2738                 goto done;
2739         }
2740
2741         /* Compute interrupt scheduling parameters just once, and save.
2742          * - allowing for high bandwidth, how many nsec/uframe are used?
2743          * - split transactions need a second CSPLIT uframe; same question
2744          * - splits also need a schedule gap (for full/low speed I/O)
2745          * - qh has a polling interval
2746          *
2747          * For control/bulk requests, the HC or TT handles these.
2748          */
2749         if (type == PIPE_INTERRUPT) {
2750                 qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2751                                 is_input, 0,
2752                                 hb_mult(maxp) * max_packet(maxp)));
2753                 qh->start = NO_FRAME;
2754
2755                 if (urb->dev->speed == USB_SPEED_HIGH) {
2756                         qh->c_usecs = 0;
2757                         qh->gap_uf = 0;
2758
2759                         qh->period = urb->interval >> 3;
2760                         if (qh->period == 0 && urb->interval != 1) {
2761                                 /* NOTE interval 2 or 4 uframes could work.
2762                                  * But interval 1 scheduling is simpler, and
2763                                  * includes high bandwidth.
2764                                  */
2765                                 urb->interval = 1;
2766                         } else if (qh->period > fotg210->periodic_size) {
2767                                 qh->period = fotg210->periodic_size;
2768                                 urb->interval = qh->period << 3;
2769                         }
2770                 } else {
2771                         int think_time;
2772
2773                         /* gap is f(FS/LS transfer times) */
2774                         qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2775                                         is_input, 0, maxp) / (125 * 1000);
2776
2777                         /* FIXME this just approximates SPLIT/CSPLIT times */
2778                         if (is_input) {         /* SPLIT, gap, CSPLIT+DATA */
2779                                 qh->c_usecs = qh->usecs + HS_USECS(0);
2780                                 qh->usecs = HS_USECS(1);
2781                         } else {                /* SPLIT+DATA, gap, CSPLIT */
2782                                 qh->usecs += HS_USECS(1);
2783                                 qh->c_usecs = HS_USECS(0);
2784                         }
2785
2786                         think_time = tt ? tt->think_time : 0;
2787                         qh->tt_usecs = NS_TO_US(think_time +
2788                                         usb_calc_bus_time(urb->dev->speed,
2789                                         is_input, 0, max_packet(maxp)));
2790                         qh->period = urb->interval;
2791                         if (qh->period > fotg210->periodic_size) {
2792                                 qh->period = fotg210->periodic_size;
2793                                 urb->interval = qh->period;
2794                         }
2795                 }
2796         }
2797
2798         /* support for tt scheduling, and access to toggles */
2799         qh->dev = urb->dev;
2800
2801         /* using TT? */
2802         switch (urb->dev->speed) {
2803         case USB_SPEED_LOW:
2804                 info1 |= QH_LOW_SPEED;
2805                 /* FALL THROUGH */
2806
2807         case USB_SPEED_FULL:
2808                 /* EPS 0 means "full" */
2809                 if (type != PIPE_INTERRUPT)
2810                         info1 |= (FOTG210_TUNE_RL_TT << 28);
2811                 if (type == PIPE_CONTROL) {
2812                         info1 |= QH_CONTROL_EP;         /* for TT */
2813                         info1 |= QH_TOGGLE_CTL;         /* toggle from qtd */
2814                 }
2815                 info1 |= maxp << 16;
2816
2817                 info2 |= (FOTG210_TUNE_MULT_TT << 30);
2818
2819                 /* Some Freescale processors have an erratum in which the
2820                  * port number in the queue head was 0..N-1 instead of 1..N.
2821                  */
2822                 if (fotg210_has_fsl_portno_bug(fotg210))
2823                         info2 |= (urb->dev->ttport-1) << 23;
2824                 else
2825                         info2 |= urb->dev->ttport << 23;
2826
2827                 /* set the address of the TT; for TDI's integrated
2828                  * root hub tt, leave it zeroed.
2829                  */
2830                 if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2831                         info2 |= tt->hub->devnum << 16;
2832
2833                 /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2834
2835                 break;
2836
2837         case USB_SPEED_HIGH:            /* no TT involved */
2838                 info1 |= QH_HIGH_SPEED;
2839                 if (type == PIPE_CONTROL) {
2840                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2841                         info1 |= 64 << 16;      /* usb2 fixed maxpacket */
2842                         info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
2843                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2844                 } else if (type == PIPE_BULK) {
2845                         info1 |= (FOTG210_TUNE_RL_HS << 28);
2846                         /* The USB spec says that high speed bulk endpoints
2847                          * always use 512 byte maxpacket.  But some device
2848                          * vendors decided to ignore that, and MSFT is happy
2849                          * to help them do so.  So now people expect to use
2850                          * such nonconformant devices with Linux too; sigh.
2851                          */
2852                         info1 |= max_packet(maxp) << 16;
2853                         info2 |= (FOTG210_TUNE_MULT_HS << 30);
2854                 } else {                /* PIPE_INTERRUPT */
2855                         info1 |= max_packet(maxp) << 16;
2856                         info2 |= hb_mult(maxp) << 30;
2857                 }
2858                 break;
2859         default:
2860                 fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2861                                 urb->dev->speed);
2862 done:
2863                 qh_destroy(fotg210, qh);
2864                 return NULL;
2865         }
2866
2867         /* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2868
2869         /* init as live, toggle clear, advance to dummy */
2870         qh->qh_state = QH_STATE_IDLE;
2871         hw = qh->hw;
2872         hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2873         hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2874         qh->is_out = !is_input;
2875         usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2876         qh_refresh(fotg210, qh);
2877         return qh;
2878 }
2879
2880 static void enable_async(struct fotg210_hcd *fotg210)
2881 {
2882         if (fotg210->async_count++)
2883                 return;
2884
2885         /* Stop waiting to turn off the async schedule */
2886         fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2887
2888         /* Don't start the schedule until ASS is 0 */
2889         fotg210_poll_ASS(fotg210);
2890         turn_on_io_watchdog(fotg210);
2891 }
2892
2893 static void disable_async(struct fotg210_hcd *fotg210)
2894 {
2895         if (--fotg210->async_count)
2896                 return;
2897
2898         /* The async schedule and async_unlink list are supposed to be empty */
2899         WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2900
2901         /* Don't turn off the schedule until ASS is 1 */
2902         fotg210_poll_ASS(fotg210);
2903 }
2904
2905 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
2906
2907 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2908 {
2909         __hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2910         struct fotg210_qh *head;
2911
2912         /* Don't link a QH if there's a Clear-TT-Buffer pending */
2913         if (unlikely(qh->clearing_tt))
2914                 return;
2915
2916         WARN_ON(qh->qh_state != QH_STATE_IDLE);
2917
2918         /* clear halt and/or toggle; and maybe recover from silicon quirk */
2919         qh_refresh(fotg210, qh);
2920
2921         /* splice right after start */
2922         head = fotg210->async;
2923         qh->qh_next = head->qh_next;
2924         qh->hw->hw_next = head->hw->hw_next;
2925         wmb();
2926
2927         head->qh_next.qh = qh;
2928         head->hw->hw_next = dma;
2929
2930         qh->xacterrs = 0;
2931         qh->qh_state = QH_STATE_LINKED;
2932         /* qtd completions reported later by interrupt */
2933
2934         enable_async(fotg210);
2935 }
2936
2937 /* For control/bulk/interrupt, return QH with these TDs appended.
2938  * Allocates and initializes the QH if necessary.
2939  * Returns null if it can't allocate a QH it needs to.
2940  * If the QH has TDs (urbs) already, that's great.
2941  */
2942 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2943                 struct urb *urb, struct list_head *qtd_list,
2944                 int epnum, void **ptr)
2945 {
2946         struct fotg210_qh *qh = NULL;
2947         __hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2948
2949         qh = (struct fotg210_qh *) *ptr;
2950         if (unlikely(qh == NULL)) {
2951                 /* can't sleep here, we have fotg210->lock... */
2952                 qh = qh_make(fotg210, urb, GFP_ATOMIC);
2953                 *ptr = qh;
2954         }
2955         if (likely(qh != NULL)) {
2956                 struct fotg210_qtd *qtd;
2957
2958                 if (unlikely(list_empty(qtd_list)))
2959                         qtd = NULL;
2960                 else
2961                         qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2962                                         qtd_list);
2963
2964                 /* control qh may need patching ... */
2965                 if (unlikely(epnum == 0)) {
2966                         /* usb_reset_device() briefly reverts to address 0 */
2967                         if (usb_pipedevice(urb->pipe) == 0)
2968                                 qh->hw->hw_info1 &= ~qh_addr_mask;
2969                 }
2970
2971                 /* just one way to queue requests: swap with the dummy qtd.
2972                  * only hc or qh_refresh() ever modify the overlay.
2973                  */
2974                 if (likely(qtd != NULL)) {
2975                         struct fotg210_qtd *dummy;
2976                         dma_addr_t dma;
2977                         __hc32 token;
2978
2979                         /* to avoid racing the HC, use the dummy td instead of
2980                          * the first td of our list (becomes new dummy).  both
2981                          * tds stay deactivated until we're done, when the
2982                          * HC is allowed to fetch the old dummy (4.10.2).
2983                          */
2984                         token = qtd->hw_token;
2985                         qtd->hw_token = HALT_BIT(fotg210);
2986
2987                         dummy = qh->dummy;
2988
2989                         dma = dummy->qtd_dma;
2990                         *dummy = *qtd;
2991                         dummy->qtd_dma = dma;
2992
2993                         list_del(&qtd->qtd_list);
2994                         list_add(&dummy->qtd_list, qtd_list);
2995                         list_splice_tail(qtd_list, &qh->qtd_list);
2996
2997                         fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2998                         qh->dummy = qtd;
2999
3000                         /* hc must see the new dummy at list end */
3001                         dma = qtd->qtd_dma;
3002                         qtd = list_entry(qh->qtd_list.prev,
3003                                         struct fotg210_qtd, qtd_list);
3004                         qtd->hw_next = QTD_NEXT(fotg210, dma);
3005
3006                         /* let the hc process these next qtds */
3007                         wmb();
3008                         dummy->hw_token = token;
3009
3010                         urb->hcpriv = qh;
3011                 }
3012         }
3013         return qh;
3014 }
3015
3016 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3017                 struct list_head *qtd_list, gfp_t mem_flags)
3018 {
3019         int epnum;
3020         unsigned long flags;
3021         struct fotg210_qh *qh = NULL;
3022         int rc;
3023
3024         epnum = urb->ep->desc.bEndpointAddress;
3025
3026 #ifdef FOTG210_URB_TRACE
3027         {
3028                 struct fotg210_qtd *qtd;
3029
3030                 qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3031                 fotg210_dbg(fotg210,
3032                                 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3033                                 __func__, urb->dev->devpath, urb,
3034                                 epnum & 0x0f, (epnum & USB_DIR_IN)
3035                                         ? "in" : "out",
3036                                 urb->transfer_buffer_length,
3037                                 qtd, urb->ep->hcpriv);
3038         }
3039 #endif
3040
3041         spin_lock_irqsave(&fotg210->lock, flags);
3042         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3043                 rc = -ESHUTDOWN;
3044                 goto done;
3045         }
3046         rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3047         if (unlikely(rc))
3048                 goto done;
3049
3050         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3051         if (unlikely(qh == NULL)) {
3052                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3053                 rc = -ENOMEM;
3054                 goto done;
3055         }
3056
3057         /* Control/bulk operations through TTs don't need scheduling,
3058          * the HC and TT handle it when the TT has a buffer ready.
3059          */
3060         if (likely(qh->qh_state == QH_STATE_IDLE))
3061                 qh_link_async(fotg210, qh);
3062 done:
3063         spin_unlock_irqrestore(&fotg210->lock, flags);
3064         if (unlikely(qh == NULL))
3065                 qtd_list_free(fotg210, urb, qtd_list);
3066         return rc;
3067 }
3068
3069 static void single_unlink_async(struct fotg210_hcd *fotg210,
3070                 struct fotg210_qh *qh)
3071 {
3072         struct fotg210_qh *prev;
3073
3074         /* Add to the end of the list of QHs waiting for the next IAAD */
3075         qh->qh_state = QH_STATE_UNLINK;
3076         if (fotg210->async_unlink)
3077                 fotg210->async_unlink_last->unlink_next = qh;
3078         else
3079                 fotg210->async_unlink = qh;
3080         fotg210->async_unlink_last = qh;
3081
3082         /* Unlink it from the schedule */
3083         prev = fotg210->async;
3084         while (prev->qh_next.qh != qh)
3085                 prev = prev->qh_next.qh;
3086
3087         prev->hw->hw_next = qh->hw->hw_next;
3088         prev->qh_next = qh->qh_next;
3089         if (fotg210->qh_scan_next == qh)
3090                 fotg210->qh_scan_next = qh->qh_next.qh;
3091 }
3092
3093 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3094 {
3095         /*
3096          * Do nothing if an IAA cycle is already running or
3097          * if one will be started shortly.
3098          */
3099         if (fotg210->async_iaa || fotg210->async_unlinking)
3100                 return;
3101
3102         /* Do all the waiting QHs at once */
3103         fotg210->async_iaa = fotg210->async_unlink;
3104         fotg210->async_unlink = NULL;
3105
3106         /* If the controller isn't running, we don't have to wait for it */
3107         if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3108                 if (!nested)            /* Avoid recursion */
3109                         end_unlink_async(fotg210);
3110
3111         /* Otherwise start a new IAA cycle */
3112         } else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3113                 /* Make sure the unlinks are all visible to the hardware */
3114                 wmb();
3115
3116                 fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3117                                 &fotg210->regs->command);
3118                 fotg210_readl(fotg210, &fotg210->regs->command);
3119                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3120                                 true);
3121         }
3122 }
3123
3124 /* the async qh for the qtds being unlinked are now gone from the HC */
3125
3126 static void end_unlink_async(struct fotg210_hcd *fotg210)
3127 {
3128         struct fotg210_qh *qh;
3129
3130         /* Process the idle QHs */
3131 restart:
3132         fotg210->async_unlinking = true;
3133         while (fotg210->async_iaa) {
3134                 qh = fotg210->async_iaa;
3135                 fotg210->async_iaa = qh->unlink_next;
3136                 qh->unlink_next = NULL;
3137
3138                 qh->qh_state = QH_STATE_IDLE;
3139                 qh->qh_next.qh = NULL;
3140
3141                 qh_completions(fotg210, qh);
3142                 if (!list_empty(&qh->qtd_list) &&
3143                                 fotg210->rh_state == FOTG210_RH_RUNNING)
3144                         qh_link_async(fotg210, qh);
3145                 disable_async(fotg210);
3146         }
3147         fotg210->async_unlinking = false;
3148
3149         /* Start a new IAA cycle if any QHs are waiting for it */
3150         if (fotg210->async_unlink) {
3151                 start_iaa_cycle(fotg210, true);
3152                 if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3153                         goto restart;
3154         }
3155 }
3156
3157 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3158 {
3159         struct fotg210_qh *qh, *next;
3160         bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3161         bool check_unlinks_later = false;
3162
3163         /* Unlink all the async QHs that have been empty for a timer cycle */
3164         next = fotg210->async->qh_next.qh;
3165         while (next) {
3166                 qh = next;
3167                 next = qh->qh_next.qh;
3168
3169                 if (list_empty(&qh->qtd_list) &&
3170                                 qh->qh_state == QH_STATE_LINKED) {
3171                         if (!stopped && qh->unlink_cycle ==
3172                                         fotg210->async_unlink_cycle)
3173                                 check_unlinks_later = true;
3174                         else
3175                                 single_unlink_async(fotg210, qh);
3176                 }
3177         }
3178
3179         /* Start a new IAA cycle if any QHs are waiting for it */
3180         if (fotg210->async_unlink)
3181                 start_iaa_cycle(fotg210, false);
3182
3183         /* QHs that haven't been empty for long enough will be handled later */
3184         if (check_unlinks_later) {
3185                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3186                                 true);
3187                 ++fotg210->async_unlink_cycle;
3188         }
3189 }
3190
3191 /* makes sure the async qh will become idle */
3192 /* caller must own fotg210->lock */
3193
3194 static void start_unlink_async(struct fotg210_hcd *fotg210,
3195                 struct fotg210_qh *qh)
3196 {
3197         /*
3198          * If the QH isn't linked then there's nothing we can do
3199          * unless we were called during a giveback, in which case
3200          * qh_completions() has to deal with it.
3201          */
3202         if (qh->qh_state != QH_STATE_LINKED) {
3203                 if (qh->qh_state == QH_STATE_COMPLETING)
3204                         qh->needs_rescan = 1;
3205                 return;
3206         }
3207
3208         single_unlink_async(fotg210, qh);
3209         start_iaa_cycle(fotg210, false);
3210 }
3211
3212 static void scan_async(struct fotg210_hcd *fotg210)
3213 {
3214         struct fotg210_qh *qh;
3215         bool check_unlinks_later = false;
3216
3217         fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3218         while (fotg210->qh_scan_next) {
3219                 qh = fotg210->qh_scan_next;
3220                 fotg210->qh_scan_next = qh->qh_next.qh;
3221 rescan:
3222                 /* clean any finished work for this qh */
3223                 if (!list_empty(&qh->qtd_list)) {
3224                         int temp;
3225
3226                         /*
3227                          * Unlinks could happen here; completion reporting
3228                          * drops the lock.  That's why fotg210->qh_scan_next
3229                          * always holds the next qh to scan; if the next qh
3230                          * gets unlinked then fotg210->qh_scan_next is adjusted
3231                          * in single_unlink_async().
3232                          */
3233                         temp = qh_completions(fotg210, qh);
3234                         if (qh->needs_rescan) {
3235                                 start_unlink_async(fotg210, qh);
3236                         } else if (list_empty(&qh->qtd_list)
3237                                         && qh->qh_state == QH_STATE_LINKED) {
3238                                 qh->unlink_cycle = fotg210->async_unlink_cycle;
3239                                 check_unlinks_later = true;
3240                         } else if (temp != 0)
3241                                 goto rescan;
3242                 }
3243         }
3244
3245         /*
3246          * Unlink empty entries, reducing DMA usage as well
3247          * as HCD schedule-scanning costs.  Delay for any qh
3248          * we just scanned, there's a not-unusual case that it
3249          * doesn't stay idle for long.
3250          */
3251         if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3252                         !(fotg210->enabled_hrtimer_events &
3253                         BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3254                 fotg210_enable_event(fotg210,
3255                                 FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3256                 ++fotg210->async_unlink_cycle;
3257         }
3258 }
3259 /* EHCI scheduled transaction support:  interrupt, iso, split iso
3260  * These are called "periodic" transactions in the EHCI spec.
3261  *
3262  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3263  * with the "asynchronous" transaction support (control/bulk transfers).
3264  * The only real difference is in how interrupt transfers are scheduled.
3265  *
3266  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3267  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3268  * pre-calculated schedule data to make appending to the queue be quick.
3269  */
3270 static int fotg210_get_frame(struct usb_hcd *hcd);
3271
3272 /* periodic_next_shadow - return "next" pointer on shadow list
3273  * @periodic: host pointer to qh/itd
3274  * @tag: hardware tag for type of this record
3275  */
3276 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3277                 union fotg210_shadow *periodic, __hc32 tag)
3278 {
3279         switch (hc32_to_cpu(fotg210, tag)) {
3280         case Q_TYPE_QH:
3281                 return &periodic->qh->qh_next;
3282         case Q_TYPE_FSTN:
3283                 return &periodic->fstn->fstn_next;
3284         default:
3285                 return &periodic->itd->itd_next;
3286         }
3287 }
3288
3289 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3290                 union fotg210_shadow *periodic, __hc32 tag)
3291 {
3292         switch (hc32_to_cpu(fotg210, tag)) {
3293         /* our fotg210_shadow.qh is actually software part */
3294         case Q_TYPE_QH:
3295                 return &periodic->qh->hw->hw_next;
3296         /* others are hw parts */
3297         default:
3298                 return periodic->hw_next;
3299         }
3300 }
3301
3302 /* caller must hold fotg210->lock */
3303 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3304                 void *ptr)
3305 {
3306         union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3307         __hc32 *hw_p = &fotg210->periodic[frame];
3308         union fotg210_shadow here = *prev_p;
3309
3310         /* find predecessor of "ptr"; hw and shadow lists are in sync */
3311         while (here.ptr && here.ptr != ptr) {
3312                 prev_p = periodic_next_shadow(fotg210, prev_p,
3313                                 Q_NEXT_TYPE(fotg210, *hw_p));
3314                 hw_p = shadow_next_periodic(fotg210, &here,
3315                                 Q_NEXT_TYPE(fotg210, *hw_p));
3316                 here = *prev_p;
3317         }
3318         /* an interrupt entry (at list end) could have been shared */
3319         if (!here.ptr)
3320                 return;
3321
3322         /* update shadow and hardware lists ... the old "next" pointers
3323          * from ptr may still be in use, the caller updates them.
3324          */
3325         *prev_p = *periodic_next_shadow(fotg210, &here,
3326                         Q_NEXT_TYPE(fotg210, *hw_p));
3327
3328         *hw_p = *shadow_next_periodic(fotg210, &here,
3329                         Q_NEXT_TYPE(fotg210, *hw_p));
3330 }
3331
3332 /* how many of the uframe's 125 usecs are allocated? */
3333 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3334                 unsigned frame, unsigned uframe)
3335 {
3336         __hc32 *hw_p = &fotg210->periodic[frame];
3337         union fotg210_shadow *q = &fotg210->pshadow[frame];
3338         unsigned usecs = 0;
3339         struct fotg210_qh_hw *hw;
3340
3341         while (q->ptr) {
3342                 switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3343                 case Q_TYPE_QH:
3344                         hw = q->qh->hw;
3345                         /* is it in the S-mask? */
3346                         if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3347                                 usecs += q->qh->usecs;
3348                         /* ... or C-mask? */
3349                         if (hw->hw_info2 & cpu_to_hc32(fotg210,
3350                                         1 << (8 + uframe)))
3351                                 usecs += q->qh->c_usecs;
3352                         hw_p = &hw->hw_next;
3353                         q = &q->qh->qh_next;
3354                         break;
3355                 /* case Q_TYPE_FSTN: */
3356                 default:
3357                         /* for "save place" FSTNs, count the relevant INTR
3358                          * bandwidth from the previous frame
3359                          */
3360                         if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3361                                 fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3362
3363                         hw_p = &q->fstn->hw_next;
3364                         q = &q->fstn->fstn_next;
3365                         break;
3366                 case Q_TYPE_ITD:
3367                         if (q->itd->hw_transaction[uframe])
3368                                 usecs += q->itd->stream->usecs;
3369                         hw_p = &q->itd->hw_next;
3370                         q = &q->itd->itd_next;
3371                         break;
3372                 }
3373         }
3374         if (usecs > fotg210->uframe_periodic_max)
3375                 fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3376                                 frame * 8 + uframe, usecs);
3377         return usecs;
3378 }
3379
3380 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3381 {
3382         if (!dev1->tt || !dev2->tt)
3383                 return 0;
3384         if (dev1->tt != dev2->tt)
3385                 return 0;
3386         if (dev1->tt->multi)
3387                 return dev1->ttport == dev2->ttport;
3388         else
3389                 return 1;
3390 }
3391
3392 /* return true iff the device's transaction translator is available
3393  * for a periodic transfer starting at the specified frame, using
3394  * all the uframes in the mask.
3395  */
3396 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3397                 struct usb_device *dev, unsigned frame, u32 uf_mask)
3398 {
3399         if (period == 0)        /* error */
3400                 return 0;
3401
3402         /* note bandwidth wastage:  split never follows csplit
3403          * (different dev or endpoint) until the next uframe.
3404          * calling convention doesn't make that distinction.
3405          */
3406         for (; frame < fotg210->periodic_size; frame += period) {
3407                 union fotg210_shadow here;
3408                 __hc32 type;
3409                 struct fotg210_qh_hw *hw;
3410
3411                 here = fotg210->pshadow[frame];
3412                 type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3413                 while (here.ptr) {
3414                         switch (hc32_to_cpu(fotg210, type)) {
3415                         case Q_TYPE_ITD:
3416                                 type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3417                                 here = here.itd->itd_next;
3418                                 continue;
3419                         case Q_TYPE_QH:
3420                                 hw = here.qh->hw;
3421                                 if (same_tt(dev, here.qh->dev)) {
3422                                         u32 mask;
3423
3424                                         mask = hc32_to_cpu(fotg210,
3425                                                         hw->hw_info2);
3426                                         /* "knows" no gap is needed */
3427                                         mask |= mask >> 8;
3428                                         if (mask & uf_mask)
3429                                                 break;
3430                                 }
3431                                 type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3432                                 here = here.qh->qh_next;
3433                                 continue;
3434                         /* case Q_TYPE_FSTN: */
3435                         default:
3436                                 fotg210_dbg(fotg210,
3437                                                 "periodic frame %d bogus type %d\n",
3438                                                 frame, type);
3439                         }
3440
3441                         /* collision or error */
3442                         return 0;
3443                 }
3444         }
3445
3446         /* no collision */
3447         return 1;
3448 }
3449
3450 static void enable_periodic(struct fotg210_hcd *fotg210)
3451 {
3452         if (fotg210->periodic_count++)
3453                 return;
3454
3455         /* Stop waiting to turn off the periodic schedule */
3456         fotg210->enabled_hrtimer_events &=
3457                 ~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3458
3459         /* Don't start the schedule until PSS is 0 */
3460         fotg210_poll_PSS(fotg210);
3461         turn_on_io_watchdog(fotg210);
3462 }
3463
3464 static void disable_periodic(struct fotg210_hcd *fotg210)
3465 {
3466         if (--fotg210->periodic_count)
3467                 return;
3468
3469         /* Don't turn off the schedule until PSS is 1 */
3470         fotg210_poll_PSS(fotg210);
3471 }
3472
3473 /* periodic schedule slots have iso tds (normal or split) first, then a
3474  * sparse tree for active interrupt transfers.
3475  *
3476  * this just links in a qh; caller guarantees uframe masks are set right.
3477  * no FSTN support (yet; fotg210 0.96+)
3478  */
3479 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3480 {
3481         unsigned i;
3482         unsigned period = qh->period;
3483
3484         dev_dbg(&qh->dev->dev,
3485                         "link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3486                         hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3487                         (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3488                         qh->c_usecs);
3489
3490         /* high bandwidth, or otherwise every microframe */
3491         if (period == 0)
3492                 period = 1;
3493
3494         for (i = qh->start; i < fotg210->periodic_size; i += period) {
3495                 union fotg210_shadow *prev = &fotg210->pshadow[i];
3496                 __hc32 *hw_p = &fotg210->periodic[i];
3497                 union fotg210_shadow here = *prev;
3498                 __hc32 type = 0;
3499
3500                 /* skip the iso nodes at list head */
3501                 while (here.ptr) {
3502                         type = Q_NEXT_TYPE(fotg210, *hw_p);
3503                         if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3504                                 break;
3505                         prev = periodic_next_shadow(fotg210, prev, type);
3506                         hw_p = shadow_next_periodic(fotg210, &here, type);
3507                         here = *prev;
3508                 }
3509
3510                 /* sorting each branch by period (slow-->fast)
3511                  * enables sharing interior tree nodes
3512                  */
3513                 while (here.ptr && qh != here.qh) {
3514                         if (qh->period > here.qh->period)
3515                                 break;
3516                         prev = &here.qh->qh_next;
3517                         hw_p = &here.qh->hw->hw_next;
3518                         here = *prev;
3519                 }
3520                 /* link in this qh, unless some earlier pass did that */
3521                 if (qh != here.qh) {
3522                         qh->qh_next = here;
3523                         if (here.qh)
3524                                 qh->hw->hw_next = *hw_p;
3525                         wmb();
3526                         prev->qh = qh;
3527                         *hw_p = QH_NEXT(fotg210, qh->qh_dma);
3528                 }
3529         }
3530         qh->qh_state = QH_STATE_LINKED;
3531         qh->xacterrs = 0;
3532
3533         /* update per-qh bandwidth for usbfs */
3534         fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3535                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3536                 : (qh->usecs * 8);
3537
3538         list_add(&qh->intr_node, &fotg210->intr_qh_list);
3539
3540         /* maybe enable periodic schedule processing */
3541         ++fotg210->intr_count;
3542         enable_periodic(fotg210);
3543 }
3544
3545 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3546                 struct fotg210_qh *qh)
3547 {
3548         unsigned i;
3549         unsigned period;
3550
3551         /*
3552          * If qh is for a low/full-speed device, simply unlinking it
3553          * could interfere with an ongoing split transaction.  To unlink
3554          * it safely would require setting the QH_INACTIVATE bit and
3555          * waiting at least one frame, as described in EHCI 4.12.2.5.
3556          *
3557          * We won't bother with any of this.  Instead, we assume that the
3558          * only reason for unlinking an interrupt QH while the current URB
3559          * is still active is to dequeue all the URBs (flush the whole
3560          * endpoint queue).
3561          *
3562          * If rebalancing the periodic schedule is ever implemented, this
3563          * approach will no longer be valid.
3564          */
3565
3566         /* high bandwidth, or otherwise part of every microframe */
3567         period = qh->period;
3568         if (!period)
3569                 period = 1;
3570
3571         for (i = qh->start; i < fotg210->periodic_size; i += period)
3572                 periodic_unlink(fotg210, i, qh);
3573
3574         /* update per-qh bandwidth for usbfs */
3575         fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3576                 ? ((qh->usecs + qh->c_usecs) / qh->period)
3577                 : (qh->usecs * 8);
3578
3579         dev_dbg(&qh->dev->dev,
3580                         "unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3581                         qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3582                         (QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3583                         qh->c_usecs);
3584
3585         /* qh->qh_next still "live" to HC */
3586         qh->qh_state = QH_STATE_UNLINK;
3587         qh->qh_next.ptr = NULL;
3588
3589         if (fotg210->qh_scan_next == qh)
3590                 fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3591                                 struct fotg210_qh, intr_node);
3592         list_del(&qh->intr_node);
3593 }
3594
3595 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3596                 struct fotg210_qh *qh)
3597 {
3598         /* If the QH isn't linked then there's nothing we can do
3599          * unless we were called during a giveback, in which case
3600          * qh_completions() has to deal with it.
3601          */
3602         if (qh->qh_state != QH_STATE_LINKED) {
3603                 if (qh->qh_state == QH_STATE_COMPLETING)
3604                         qh->needs_rescan = 1;
3605                 return;
3606         }
3607
3608         qh_unlink_periodic(fotg210, qh);
3609
3610         /* Make sure the unlinks are visible before starting the timer */
3611         wmb();
3612
3613         /*
3614          * The EHCI spec doesn't say how long it takes the controller to
3615          * stop accessing an unlinked interrupt QH.  The timer delay is
3616          * 9 uframes; presumably that will be long enough.
3617          */
3618         qh->unlink_cycle = fotg210->intr_unlink_cycle;
3619
3620         /* New entries go at the end of the intr_unlink list */
3621         if (fotg210->intr_unlink)
3622                 fotg210->intr_unlink_last->unlink_next = qh;
3623         else
3624                 fotg210->intr_unlink = qh;
3625         fotg210->intr_unlink_last = qh;
3626
3627         if (fotg210->intr_unlinking)
3628                 ;       /* Avoid recursive calls */
3629         else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3630                 fotg210_handle_intr_unlinks(fotg210);
3631         else if (fotg210->intr_unlink == qh) {
3632                 fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3633                                 true);
3634                 ++fotg210->intr_unlink_cycle;
3635         }
3636 }
3637
3638 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3639 {
3640         struct fotg210_qh_hw *hw = qh->hw;
3641         int rc;
3642
3643         qh->qh_state = QH_STATE_IDLE;
3644         hw->hw_next = FOTG210_LIST_END(fotg210);
3645
3646         qh_completions(fotg210, qh);
3647
3648         /* reschedule QH iff another request is queued */
3649         if (!list_empty(&qh->qtd_list) &&
3650                         fotg210->rh_state == FOTG210_RH_RUNNING) {
3651                 rc = qh_schedule(fotg210, qh);
3652
3653                 /* An error here likely indicates handshake failure
3654                  * or no space left in the schedule.  Neither fault
3655                  * should happen often ...
3656                  *
3657                  * FIXME kill the now-dysfunctional queued urbs
3658                  */
3659                 if (rc != 0)
3660                         fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3661                                         qh, rc);
3662         }
3663
3664         /* maybe turn off periodic schedule */
3665         --fotg210->intr_count;
3666         disable_periodic(fotg210);
3667 }
3668
3669 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3670                 unsigned uframe, unsigned period, unsigned usecs)
3671 {
3672         int claimed;
3673
3674         /* complete split running into next frame?
3675          * given FSTN support, we could sometimes check...
3676          */
3677         if (uframe >= 8)
3678                 return 0;
3679
3680         /* convert "usecs we need" to "max already claimed" */
3681         usecs = fotg210->uframe_periodic_max - usecs;
3682
3683         /* we "know" 2 and 4 uframe intervals were rejected; so
3684          * for period 0, check _every_ microframe in the schedule.
3685          */
3686         if (unlikely(period == 0)) {
3687                 do {
3688                         for (uframe = 0; uframe < 7; uframe++) {
3689                                 claimed = periodic_usecs(fotg210, frame,
3690                                                 uframe);
3691                                 if (claimed > usecs)
3692                                         return 0;
3693                         }
3694                 } while ((frame += 1) < fotg210->periodic_size);
3695
3696         /* just check the specified uframe, at that period */
3697         } else {
3698                 do {
3699                         claimed = periodic_usecs(fotg210, frame, uframe);
3700                         if (claimed > usecs)
3701                                 return 0;
3702                 } while ((frame += period) < fotg210->periodic_size);
3703         }
3704
3705         /* success! */
3706         return 1;
3707 }
3708
3709 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3710                 unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3711 {
3712         int retval = -ENOSPC;
3713         u8 mask = 0;
3714
3715         if (qh->c_usecs && uframe >= 6)         /* FSTN territory? */
3716                 goto done;
3717
3718         if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3719                 goto done;
3720         if (!qh->c_usecs) {
3721                 retval = 0;
3722                 *c_maskp = 0;
3723                 goto done;
3724         }
3725
3726         /* Make sure this tt's buffer is also available for CSPLITs.
3727          * We pessimize a bit; probably the typical full speed case
3728          * doesn't need the second CSPLIT.
3729          *
3730          * NOTE:  both SPLIT and CSPLIT could be checked in just
3731          * one smart pass...
3732          */
3733         mask = 0x03 << (uframe + qh->gap_uf);
3734         *c_maskp = cpu_to_hc32(fotg210, mask << 8);
3735
3736         mask |= 1 << uframe;
3737         if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3738                 if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3739                                 qh->period, qh->c_usecs))
3740                         goto done;
3741                 if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3742                                 qh->period, qh->c_usecs))
3743                         goto done;
3744                 retval = 0;
3745         }
3746 done:
3747         return retval;
3748 }
3749
3750 /* "first fit" scheduling policy used the first time through,
3751  * or when the previous schedule slot can't be re-used.
3752  */
3753 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3754 {
3755         int status;
3756         unsigned uframe;
3757         __hc32 c_mask;
3758         unsigned frame; /* 0..(qh->period - 1), or NO_FRAME */
3759         struct fotg210_qh_hw *hw = qh->hw;
3760
3761         qh_refresh(fotg210, qh);
3762         hw->hw_next = FOTG210_LIST_END(fotg210);
3763         frame = qh->start;
3764
3765         /* reuse the previous schedule slots, if we can */
3766         if (frame < qh->period) {
3767                 uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3768                 status = check_intr_schedule(fotg210, frame, --uframe,
3769                                 qh, &c_mask);
3770         } else {
3771                 uframe = 0;
3772                 c_mask = 0;
3773                 status = -ENOSPC;
3774         }
3775
3776         /* else scan the schedule to find a group of slots such that all
3777          * uframes have enough periodic bandwidth available.
3778          */
3779         if (status) {
3780                 /* "normal" case, uframing flexible except with splits */
3781                 if (qh->period) {
3782                         int i;
3783
3784                         for (i = qh->period; status && i > 0; --i) {
3785                                 frame = ++fotg210->random_frame % qh->period;
3786                                 for (uframe = 0; uframe < 8; uframe++) {
3787                                         status = check_intr_schedule(fotg210,
3788                                                         frame, uframe, qh,
3789                                                         &c_mask);
3790                                         if (status == 0)
3791                                                 break;
3792                                 }
3793                         }
3794
3795                 /* qh->period == 0 means every uframe */
3796                 } else {
3797                         frame = 0;
3798                         status = check_intr_schedule(fotg210, 0, 0, qh,
3799                                         &c_mask);
3800                 }
3801                 if (status)
3802                         goto done;
3803                 qh->start = frame;
3804
3805                 /* reset S-frame and (maybe) C-frame masks */
3806                 hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3807                 hw->hw_info2 |= qh->period
3808                         ? cpu_to_hc32(fotg210, 1 << uframe)
3809                         : cpu_to_hc32(fotg210, QH_SMASK);
3810                 hw->hw_info2 |= c_mask;
3811         } else
3812                 fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3813
3814         /* stuff into the periodic schedule */
3815         qh_link_periodic(fotg210, qh);
3816 done:
3817         return status;
3818 }
3819
3820 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3821                 struct list_head *qtd_list, gfp_t mem_flags)
3822 {
3823         unsigned epnum;
3824         unsigned long flags;
3825         struct fotg210_qh *qh;
3826         int status;
3827         struct list_head empty;
3828
3829         /* get endpoint and transfer/schedule data */
3830         epnum = urb->ep->desc.bEndpointAddress;
3831
3832         spin_lock_irqsave(&fotg210->lock, flags);
3833
3834         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3835                 status = -ESHUTDOWN;
3836                 goto done_not_linked;
3837         }
3838         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3839         if (unlikely(status))
3840                 goto done_not_linked;
3841
3842         /* get qh and force any scheduling errors */
3843         INIT_LIST_HEAD(&empty);
3844         qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3845         if (qh == NULL) {
3846                 status = -ENOMEM;
3847                 goto done;
3848         }
3849         if (qh->qh_state == QH_STATE_IDLE) {
3850                 status = qh_schedule(fotg210, qh);
3851                 if (status)
3852                         goto done;
3853         }
3854
3855         /* then queue the urb's tds to the qh */
3856         qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3857         BUG_ON(qh == NULL);
3858
3859         /* ... update usbfs periodic stats */
3860         fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3861
3862 done:
3863         if (unlikely(status))
3864                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3865 done_not_linked:
3866         spin_unlock_irqrestore(&fotg210->lock, flags);
3867         if (status)
3868                 qtd_list_free(fotg210, urb, qtd_list);
3869
3870         return status;
3871 }
3872
3873 static void scan_intr(struct fotg210_hcd *fotg210)
3874 {
3875         struct fotg210_qh *qh;
3876
3877         list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3878                         &fotg210->intr_qh_list, intr_node) {
3879 rescan:
3880                 /* clean any finished work for this qh */
3881                 if (!list_empty(&qh->qtd_list)) {
3882                         int temp;
3883
3884                         /*
3885                          * Unlinks could happen here; completion reporting
3886                          * drops the lock.  That's why fotg210->qh_scan_next
3887                          * always holds the next qh to scan; if the next qh
3888                          * gets unlinked then fotg210->qh_scan_next is adjusted
3889                          * in qh_unlink_periodic().
3890                          */
3891                         temp = qh_completions(fotg210, qh);
3892                         if (unlikely(qh->needs_rescan ||
3893                                         (list_empty(&qh->qtd_list) &&
3894                                         qh->qh_state == QH_STATE_LINKED)))
3895                                 start_unlink_intr(fotg210, qh);
3896                         else if (temp != 0)
3897                                 goto rescan;
3898                 }
3899         }
3900 }
3901
3902 /* fotg210_iso_stream ops work with both ITD and SITD */
3903
3904 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3905 {
3906         struct fotg210_iso_stream *stream;
3907
3908         stream = kzalloc(sizeof(*stream), mem_flags);
3909         if (likely(stream != NULL)) {
3910                 INIT_LIST_HEAD(&stream->td_list);
3911                 INIT_LIST_HEAD(&stream->free_list);
3912                 stream->next_uframe = -1;
3913         }
3914         return stream;
3915 }
3916
3917 static void iso_stream_init(struct fotg210_hcd *fotg210,
3918                 struct fotg210_iso_stream *stream, struct usb_device *dev,
3919                 int pipe, unsigned interval)
3920 {
3921         u32 buf1;
3922         unsigned epnum, maxp;
3923         int is_input;
3924         long bandwidth;
3925         unsigned multi;
3926
3927         /*
3928          * this might be a "high bandwidth" highspeed endpoint,
3929          * as encoded in the ep descriptor's wMaxPacket field
3930          */
3931         epnum = usb_pipeendpoint(pipe);
3932         is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3933         maxp = usb_maxpacket(dev, pipe, !is_input);
3934         if (is_input)
3935                 buf1 = (1 << 11);
3936         else
3937                 buf1 = 0;
3938
3939         maxp = max_packet(maxp);
3940         multi = hb_mult(maxp);
3941         buf1 |= maxp;
3942         maxp *= multi;
3943
3944         stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3945         stream->buf1 = cpu_to_hc32(fotg210, buf1);
3946         stream->buf2 = cpu_to_hc32(fotg210, multi);
3947
3948         /* usbfs wants to report the average usecs per frame tied up
3949          * when transfers on this endpoint are scheduled ...
3950          */
3951         if (dev->speed == USB_SPEED_FULL) {
3952                 interval <<= 3;
3953                 stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3954                                 is_input, 1, maxp));
3955                 stream->usecs /= 8;
3956         } else {
3957                 stream->highspeed = 1;
3958                 stream->usecs = HS_USECS_ISO(maxp);
3959         }
3960         bandwidth = stream->usecs * 8;
3961         bandwidth /= interval;
3962
3963         stream->bandwidth = bandwidth;
3964         stream->udev = dev;
3965         stream->bEndpointAddress = is_input | epnum;
3966         stream->interval = interval;
3967         stream->maxp = maxp;
3968 }
3969
3970 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3971                 struct urb *urb)
3972 {
3973         unsigned epnum;
3974         struct fotg210_iso_stream *stream;
3975         struct usb_host_endpoint *ep;
3976         unsigned long flags;
3977
3978         epnum = usb_pipeendpoint(urb->pipe);
3979         if (usb_pipein(urb->pipe))
3980                 ep = urb->dev->ep_in[epnum];
3981         else
3982                 ep = urb->dev->ep_out[epnum];
3983
3984         spin_lock_irqsave(&fotg210->lock, flags);
3985         stream = ep->hcpriv;
3986
3987         if (unlikely(stream == NULL)) {
3988                 stream = iso_stream_alloc(GFP_ATOMIC);
3989                 if (likely(stream != NULL)) {
3990                         ep->hcpriv = stream;
3991                         stream->ep = ep;
3992                         iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3993                                         urb->interval);
3994                 }
3995
3996         /* if dev->ep[epnum] is a QH, hw is set */
3997         } else if (unlikely(stream->hw != NULL)) {
3998                 fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
3999                                 urb->dev->devpath, epnum,
4000                                 usb_pipein(urb->pipe) ? "in" : "out");
4001                 stream = NULL;
4002         }
4003
4004         spin_unlock_irqrestore(&fotg210->lock, flags);
4005         return stream;
4006 }
4007
4008 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4009
4010 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4011                 gfp_t mem_flags)
4012 {
4013         struct fotg210_iso_sched *iso_sched;
4014         int size = sizeof(*iso_sched);
4015
4016         size += packets * sizeof(struct fotg210_iso_packet);
4017         iso_sched = kzalloc(size, mem_flags);
4018         if (likely(iso_sched != NULL))
4019                 INIT_LIST_HEAD(&iso_sched->td_list);
4020
4021         return iso_sched;
4022 }
4023
4024 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4025                 struct fotg210_iso_sched *iso_sched,
4026                 struct fotg210_iso_stream *stream, struct urb *urb)
4027 {
4028         unsigned i;
4029         dma_addr_t dma = urb->transfer_dma;
4030
4031         /* how many uframes are needed for these transfers */
4032         iso_sched->span = urb->number_of_packets * stream->interval;
4033
4034         /* figure out per-uframe itd fields that we'll need later
4035          * when we fit new itds into the schedule.
4036          */
4037         for (i = 0; i < urb->number_of_packets; i++) {
4038                 struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4039                 unsigned length;
4040                 dma_addr_t buf;
4041                 u32 trans;
4042
4043                 length = urb->iso_frame_desc[i].length;
4044                 buf = dma + urb->iso_frame_desc[i].offset;
4045
4046                 trans = FOTG210_ISOC_ACTIVE;
4047                 trans |= buf & 0x0fff;
4048                 if (unlikely(((i + 1) == urb->number_of_packets))
4049                                 && !(urb->transfer_flags & URB_NO_INTERRUPT))
4050                         trans |= FOTG210_ITD_IOC;
4051                 trans |= length << 16;
4052                 uframe->transaction = cpu_to_hc32(fotg210, trans);
4053
4054                 /* might need to cross a buffer page within a uframe */
4055                 uframe->bufp = (buf & ~(u64)0x0fff);
4056                 buf += length;
4057                 if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4058                         uframe->cross = 1;
4059         }
4060 }
4061
4062 static void iso_sched_free(struct fotg210_iso_stream *stream,
4063                 struct fotg210_iso_sched *iso_sched)
4064 {
4065         if (!iso_sched)
4066                 return;
4067         /* caller must hold fotg210->lock!*/
4068         list_splice(&iso_sched->td_list, &stream->free_list);
4069         kfree(iso_sched);
4070 }
4071
4072 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4073                 struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4074 {
4075         struct fotg210_itd *itd;
4076         dma_addr_t itd_dma;
4077         int i;
4078         unsigned num_itds;
4079         struct fotg210_iso_sched *sched;
4080         unsigned long flags;
4081
4082         sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4083         if (unlikely(sched == NULL))
4084                 return -ENOMEM;
4085
4086         itd_sched_init(fotg210, sched, stream, urb);
4087
4088         if (urb->interval < 8)
4089                 num_itds = 1 + (sched->span + 7) / 8;
4090         else
4091                 num_itds = urb->number_of_packets;
4092
4093         /* allocate/init ITDs */
4094         spin_lock_irqsave(&fotg210->lock, flags);
4095         for (i = 0; i < num_itds; i++) {
4096
4097                 /*
4098                  * Use iTDs from the free list, but not iTDs that may
4099                  * still be in use by the hardware.
4100                  */
4101                 if (likely(!list_empty(&stream->free_list))) {
4102                         itd = list_first_entry(&stream->free_list,
4103                                         struct fotg210_itd, itd_list);
4104                         if (itd->frame == fotg210->now_frame)
4105                                 goto alloc_itd;
4106                         list_del(&itd->itd_list);
4107                         itd_dma = itd->itd_dma;
4108                 } else {
4109 alloc_itd:
4110                         spin_unlock_irqrestore(&fotg210->lock, flags);
4111                         itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4112                                         &itd_dma);
4113                         spin_lock_irqsave(&fotg210->lock, flags);
4114                         if (!itd) {
4115                                 iso_sched_free(stream, sched);
4116                                 spin_unlock_irqrestore(&fotg210->lock, flags);
4117                                 return -ENOMEM;
4118                         }
4119                 }
4120
4121                 itd->itd_dma = itd_dma;
4122                 list_add(&itd->itd_list, &sched->td_list);
4123         }
4124         spin_unlock_irqrestore(&fotg210->lock, flags);
4125
4126         /* temporarily store schedule info in hcpriv */
4127         urb->hcpriv = sched;
4128         urb->error_count = 0;
4129         return 0;
4130 }
4131
4132 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4133                 u8 usecs, u32 period)
4134 {
4135         uframe %= period;
4136         do {
4137                 /* can't commit more than uframe_periodic_max usec */
4138                 if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4139                                 > (fotg210->uframe_periodic_max - usecs))
4140                         return 0;
4141
4142                 /* we know urb->interval is 2^N uframes */
4143                 uframe += period;
4144         } while (uframe < mod);
4145         return 1;
4146 }
4147
4148 /* This scheduler plans almost as far into the future as it has actual
4149  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4150  * "as small as possible" to be cache-friendlier.)  That limits the size
4151  * transfers you can stream reliably; avoid more than 64 msec per urb.
4152  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4153  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4154  * and other factors); or more than about 230 msec total (for portability,
4155  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4156  */
4157
4158 #define SCHEDULE_SLOP 80 /* microframes */
4159
4160 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4161                 struct fotg210_iso_stream *stream)
4162 {
4163         u32 now, next, start, period, span;
4164         int status;
4165         unsigned mod = fotg210->periodic_size << 3;
4166         struct fotg210_iso_sched *sched = urb->hcpriv;
4167
4168         period = urb->interval;
4169         span = sched->span;
4170
4171         if (span > mod - SCHEDULE_SLOP) {
4172                 fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4173                 status = -EFBIG;
4174                 goto fail;
4175         }
4176
4177         now = fotg210_read_frame_index(fotg210) & (mod - 1);
4178
4179         /* Typical case: reuse current schedule, stream is still active.
4180          * Hopefully there are no gaps from the host falling behind
4181          * (irq delays etc), but if there are we'll take the next
4182          * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4183          */
4184         if (likely(!list_empty(&stream->td_list))) {
4185                 u32 excess;
4186
4187                 /* For high speed devices, allow scheduling within the
4188                  * isochronous scheduling threshold.  For full speed devices
4189                  * and Intel PCI-based controllers, don't (work around for
4190                  * Intel ICH9 bug).
4191                  */
4192                 if (!stream->highspeed && fotg210->fs_i_thresh)
4193                         next = now + fotg210->i_thresh;
4194                 else
4195                         next = now;
4196
4197                 /* Fell behind (by up to twice the slop amount)?
4198                  * We decide based on the time of the last currently-scheduled
4199                  * slot, not the time of the next available slot.
4200                  */
4201                 excess = (stream->next_uframe - period - next) & (mod - 1);
4202                 if (excess >= mod - 2 * SCHEDULE_SLOP)
4203                         start = next + excess - mod + period *
4204                                         DIV_ROUND_UP(mod - excess, period);
4205                 else
4206                         start = next + excess + period;
4207                 if (start - now >= mod) {
4208                         fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4209                                         urb, start - now - period, period,
4210                                         mod);
4211                         status = -EFBIG;
4212                         goto fail;
4213                 }
4214         }
4215
4216         /* need to schedule; when's the next (u)frame we could start?
4217          * this is bigger than fotg210->i_thresh allows; scheduling itself
4218          * isn't free, the slop should handle reasonably slow cpus.  it
4219          * can also help high bandwidth if the dma and irq loads don't
4220          * jump until after the queue is primed.
4221          */
4222         else {
4223                 int done = 0;
4224
4225                 start = SCHEDULE_SLOP + (now & ~0x07);
4226
4227                 /* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4228
4229                 /* find a uframe slot with enough bandwidth.
4230                  * Early uframes are more precious because full-speed
4231                  * iso IN transfers can't use late uframes,
4232                  * and therefore they should be allocated last.
4233                  */
4234                 next = start;
4235                 start += period;
4236                 do {
4237                         start--;
4238                         /* check schedule: enough space? */
4239                         if (itd_slot_ok(fotg210, mod, start,
4240                                         stream->usecs, period))
4241                                 done = 1;
4242                 } while (start > next && !done);
4243
4244                 /* no room in the schedule */
4245                 if (!done) {
4246                         fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4247                                         urb, now, now + mod);
4248                         status = -ENOSPC;
4249                         goto fail;
4250                 }
4251         }
4252
4253         /* Tried to schedule too far into the future? */
4254         if (unlikely(start - now + span - period >=
4255                         mod - 2 * SCHEDULE_SLOP)) {
4256                 fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4257                                 urb, start - now, span - period,
4258                                 mod - 2 * SCHEDULE_SLOP);
4259                 status = -EFBIG;
4260                 goto fail;
4261         }
4262
4263         stream->next_uframe = start & (mod - 1);
4264
4265         /* report high speed start in uframes; full speed, in frames */
4266         urb->start_frame = stream->next_uframe;
4267         if (!stream->highspeed)
4268                 urb->start_frame >>= 3;
4269
4270         /* Make sure scan_isoc() sees these */
4271         if (fotg210->isoc_count == 0)
4272                 fotg210->next_frame = now >> 3;
4273         return 0;
4274
4275 fail:
4276         iso_sched_free(stream, sched);
4277         urb->hcpriv = NULL;
4278         return status;
4279 }
4280
4281 static inline void itd_init(struct fotg210_hcd *fotg210,
4282                 struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4283 {
4284         int i;
4285
4286         /* it's been recently zeroed */
4287         itd->hw_next = FOTG210_LIST_END(fotg210);
4288         itd->hw_bufp[0] = stream->buf0;
4289         itd->hw_bufp[1] = stream->buf1;
4290         itd->hw_bufp[2] = stream->buf2;
4291
4292         for (i = 0; i < 8; i++)
4293                 itd->index[i] = -1;
4294
4295         /* All other fields are filled when scheduling */
4296 }
4297
4298 static inline void itd_patch(struct fotg210_hcd *fotg210,
4299                 struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4300                 unsigned index, u16 uframe)
4301 {
4302         struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4303         unsigned pg = itd->pg;
4304
4305         uframe &= 0x07;
4306         itd->index[uframe] = index;
4307
4308         itd->hw_transaction[uframe] = uf->transaction;
4309         itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4310         itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4311         itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4312
4313         /* iso_frame_desc[].offset must be strictly increasing */
4314         if (unlikely(uf->cross)) {
4315                 u64 bufp = uf->bufp + 4096;
4316
4317                 itd->pg = ++pg;
4318                 itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4319                 itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4320         }
4321 }
4322
4323 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4324                 struct fotg210_itd *itd)
4325 {
4326         union fotg210_shadow *prev = &fotg210->pshadow[frame];
4327         __hc32 *hw_p = &fotg210->periodic[frame];
4328         union fotg210_shadow here = *prev;
4329         __hc32 type = 0;
4330
4331         /* skip any iso nodes which might belong to previous microframes */
4332         while (here.ptr) {
4333                 type = Q_NEXT_TYPE(fotg210, *hw_p);
4334                 if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4335                         break;
4336                 prev = periodic_next_shadow(fotg210, prev, type);
4337                 hw_p = shadow_next_periodic(fotg210, &here, type);
4338                 here = *prev;
4339         }
4340
4341         itd->itd_next = here;
4342         itd->hw_next = *hw_p;
4343         prev->itd = itd;
4344         itd->frame = frame;
4345         wmb();
4346         *hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4347 }
4348
4349 /* fit urb's itds into the selected schedule slot; activate as needed */
4350 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4351                 unsigned mod, struct fotg210_iso_stream *stream)
4352 {
4353         int packet;
4354         unsigned next_uframe, uframe, frame;
4355         struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4356         struct fotg210_itd *itd;
4357
4358         next_uframe = stream->next_uframe & (mod - 1);
4359
4360         if (unlikely(list_empty(&stream->td_list))) {
4361                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4362                                 += stream->bandwidth;
4363                 fotg210_dbg(fotg210,
4364                         "schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4365                         urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4366                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4367                         urb->interval,
4368                         next_uframe >> 3, next_uframe & 0x7);
4369         }
4370
4371         /* fill iTDs uframe by uframe */
4372         for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4373                 if (itd == NULL) {
4374                         /* ASSERT:  we have all necessary itds */
4375
4376                         /* ASSERT:  no itds for this endpoint in this uframe */
4377
4378                         itd = list_entry(iso_sched->td_list.next,
4379                                         struct fotg210_itd, itd_list);
4380                         list_move_tail(&itd->itd_list, &stream->td_list);
4381                         itd->stream = stream;
4382                         itd->urb = urb;
4383                         itd_init(fotg210, stream, itd);
4384                 }
4385
4386                 uframe = next_uframe & 0x07;
4387                 frame = next_uframe >> 3;
4388
4389                 itd_patch(fotg210, itd, iso_sched, packet, uframe);
4390
4391                 next_uframe += stream->interval;
4392                 next_uframe &= mod - 1;
4393                 packet++;
4394
4395                 /* link completed itds into the schedule */
4396                 if (((next_uframe >> 3) != frame)
4397                                 || packet == urb->number_of_packets) {
4398                         itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4399                                         itd);
4400                         itd = NULL;
4401                 }
4402         }
4403         stream->next_uframe = next_uframe;
4404
4405         /* don't need that schedule data any more */
4406         iso_sched_free(stream, iso_sched);
4407         urb->hcpriv = NULL;
4408
4409         ++fotg210->isoc_count;
4410         enable_periodic(fotg210);
4411 }
4412
4413 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4414                 FOTG210_ISOC_XACTERR)
4415
4416 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4417  * and hence its completion callback probably added things to the hardware
4418  * schedule.
4419  *
4420  * Note that we carefully avoid recycling this descriptor until after any
4421  * completion callback runs, so that it won't be reused quickly.  That is,
4422  * assuming (a) no more than two urbs per frame on this endpoint, and also
4423  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4424  * corrupts things if you reuse completed descriptors very quickly...
4425  */
4426 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4427 {
4428         struct urb *urb = itd->urb;
4429         struct usb_iso_packet_descriptor *desc;
4430         u32 t;
4431         unsigned uframe;
4432         int urb_index = -1;
4433         struct fotg210_iso_stream *stream = itd->stream;
4434         struct usb_device *dev;
4435         bool retval = false;
4436
4437         /* for each uframe with a packet */
4438         for (uframe = 0; uframe < 8; uframe++) {
4439                 if (likely(itd->index[uframe] == -1))
4440                         continue;
4441                 urb_index = itd->index[uframe];
4442                 desc = &urb->iso_frame_desc[urb_index];
4443
4444                 t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4445                 itd->hw_transaction[uframe] = 0;
4446
4447                 /* report transfer status */
4448                 if (unlikely(t & ISO_ERRS)) {
4449                         urb->error_count++;
4450                         if (t & FOTG210_ISOC_BUF_ERR)
4451                                 desc->status = usb_pipein(urb->pipe)
4452                                         ? -ENOSR  /* hc couldn't read */
4453                                         : -ECOMM; /* hc couldn't write */
4454                         else if (t & FOTG210_ISOC_BABBLE)
4455                                 desc->status = -EOVERFLOW;
4456                         else /* (t & FOTG210_ISOC_XACTERR) */
4457                                 desc->status = -EPROTO;
4458
4459                         /* HC need not update length with this error */
4460                         if (!(t & FOTG210_ISOC_BABBLE)) {
4461                                 desc->actual_length =
4462                                         fotg210_itdlen(urb, desc, t);
4463                                 urb->actual_length += desc->actual_length;
4464                         }
4465                 } else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4466                         desc->status = 0;
4467                         desc->actual_length = fotg210_itdlen(urb, desc, t);
4468                         urb->actual_length += desc->actual_length;
4469                 } else {
4470                         /* URB was too late */
4471                         desc->status = -EXDEV;
4472                 }
4473         }
4474
4475         /* handle completion now? */
4476         if (likely((urb_index + 1) != urb->number_of_packets))
4477                 goto done;
4478
4479         /* ASSERT: it's really the last itd for this urb
4480          * list_for_each_entry (itd, &stream->td_list, itd_list)
4481          *      BUG_ON (itd->urb == urb);
4482          */
4483
4484         /* give urb back to the driver; completion often (re)submits */
4485         dev = urb->dev;
4486         fotg210_urb_done(fotg210, urb, 0);
4487         retval = true;
4488         urb = NULL;
4489
4490         --fotg210->isoc_count;
4491         disable_periodic(fotg210);
4492
4493         if (unlikely(list_is_singular(&stream->td_list))) {
4494                 fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4495                                 -= stream->bandwidth;
4496                 fotg210_dbg(fotg210,
4497                         "deschedule devp %s ep%d%s-iso\n",
4498                         dev->devpath, stream->bEndpointAddress & 0x0f,
4499                         (stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4500         }
4501
4502 done:
4503         itd->urb = NULL;
4504
4505         /* Add to the end of the free list for later reuse */
4506         list_move_tail(&itd->itd_list, &stream->free_list);
4507
4508         /* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4509         if (list_empty(&stream->td_list)) {
4510                 list_splice_tail_init(&stream->free_list,
4511                                 &fotg210->cached_itd_list);
4512                 start_free_itds(fotg210);
4513         }
4514
4515         return retval;
4516 }
4517
4518 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4519                 gfp_t mem_flags)
4520 {
4521         int status = -EINVAL;
4522         unsigned long flags;
4523         struct fotg210_iso_stream *stream;
4524
4525         /* Get iso_stream head */
4526         stream = iso_stream_find(fotg210, urb);
4527         if (unlikely(stream == NULL)) {
4528                 fotg210_dbg(fotg210, "can't get iso stream\n");
4529                 return -ENOMEM;
4530         }
4531         if (unlikely(urb->interval != stream->interval &&
4532                         fotg210_port_speed(fotg210, 0) ==
4533                         USB_PORT_STAT_HIGH_SPEED)) {
4534                 fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4535                                 stream->interval, urb->interval);
4536                 goto done;
4537         }
4538
4539 #ifdef FOTG210_URB_TRACE
4540         fotg210_dbg(fotg210,
4541                         "%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4542                         __func__, urb->dev->devpath, urb,
4543                         usb_pipeendpoint(urb->pipe),
4544                         usb_pipein(urb->pipe) ? "in" : "out",
4545                         urb->transfer_buffer_length,
4546                         urb->number_of_packets, urb->interval,
4547                         stream);
4548 #endif
4549
4550         /* allocate ITDs w/o locking anything */
4551         status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4552         if (unlikely(status < 0)) {
4553                 fotg210_dbg(fotg210, "can't init itds\n");
4554                 goto done;
4555         }
4556
4557         /* schedule ... need to lock */
4558         spin_lock_irqsave(&fotg210->lock, flags);
4559         if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4560                 status = -ESHUTDOWN;
4561                 goto done_not_linked;
4562         }
4563         status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4564         if (unlikely(status))
4565                 goto done_not_linked;
4566         status = iso_stream_schedule(fotg210, urb, stream);
4567         if (likely(status == 0))
4568                 itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4569         else
4570                 usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4571 done_not_linked:
4572         spin_unlock_irqrestore(&fotg210->lock, flags);
4573 done:
4574         return status;
4575 }
4576
4577 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4578                 unsigned now_frame, bool live)
4579 {
4580         unsigned uf;
4581         bool modified;
4582         union fotg210_shadow q, *q_p;
4583         __hc32 type, *hw_p;
4584
4585         /* scan each element in frame's queue for completions */
4586         q_p = &fotg210->pshadow[frame];
4587         hw_p = &fotg210->periodic[frame];
4588         q.ptr = q_p->ptr;
4589         type = Q_NEXT_TYPE(fotg210, *hw_p);
4590         modified = false;
4591
4592         while (q.ptr) {
4593                 switch (hc32_to_cpu(fotg210, type)) {
4594                 case Q_TYPE_ITD:
4595                         /* If this ITD is still active, leave it for
4596                          * later processing ... check the next entry.
4597                          * No need to check for activity unless the
4598                          * frame is current.
4599                          */
4600                         if (frame == now_frame && live) {
4601                                 rmb();
4602                                 for (uf = 0; uf < 8; uf++) {
4603                                         if (q.itd->hw_transaction[uf] &
4604                                                         ITD_ACTIVE(fotg210))
4605                                                 break;
4606                                 }
4607                                 if (uf < 8) {
4608                                         q_p = &q.itd->itd_next;
4609                                         hw_p = &q.itd->hw_next;
4610                                         type = Q_NEXT_TYPE(fotg210,
4611                                                         q.itd->hw_next);
4612                                         q = *q_p;
4613                                         break;
4614                                 }
4615                         }
4616
4617                         /* Take finished ITDs out of the schedule
4618                          * and process them:  recycle, maybe report
4619                          * URB completion.  HC won't cache the
4620                          * pointer for much longer, if at all.
4621                          */
4622                         *q_p = q.itd->itd_next;
4623                         *hw_p = q.itd->hw_next;
4624                         type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4625                         wmb();
4626                         modified = itd_complete(fotg210, q.itd);
4627                         q = *q_p;
4628                         break;
4629                 default:
4630                         fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4631                                         type, frame, q.ptr);
4632                         /* FALL THROUGH */
4633                 case Q_TYPE_QH:
4634                 case Q_TYPE_FSTN:
4635                         /* End of the iTDs and siTDs */
4636                         q.ptr = NULL;
4637                         break;
4638                 }
4639
4640                 /* assume completion callbacks modify the queue */
4641                 if (unlikely(modified && fotg210->isoc_count > 0))
4642                         return -EINVAL;
4643         }
4644         return 0;
4645 }
4646
4647 static void scan_isoc(struct fotg210_hcd *fotg210)
4648 {
4649         unsigned uf, now_frame, frame, ret;
4650         unsigned fmask = fotg210->periodic_size - 1;
4651         bool live;
4652
4653         /*
4654          * When running, scan from last scan point up to "now"
4655          * else clean up by scanning everything that's left.
4656          * Touches as few pages as possible:  cache-friendly.
4657          */
4658         if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4659                 uf = fotg210_read_frame_index(fotg210);
4660                 now_frame = (uf >> 3) & fmask;
4661                 live = true;
4662         } else  {
4663                 now_frame = (fotg210->next_frame - 1) & fmask;
4664                 live = false;
4665         }
4666         fotg210->now_frame = now_frame;
4667
4668         frame = fotg210->next_frame;
4669         for (;;) {
4670                 ret = 1;
4671                 while (ret != 0)
4672                         ret = scan_frame_queue(fotg210, frame,
4673                                         now_frame, live);
4674
4675                 /* Stop when we have reached the current frame */
4676                 if (frame == now_frame)
4677                         break;
4678                 frame = (frame + 1) & fmask;
4679         }
4680         fotg210->next_frame = now_frame;
4681 }
4682
4683 /* Display / Set uframe_periodic_max
4684  */
4685 static ssize_t uframe_periodic_max_show(struct device *dev,
4686                 struct device_attribute *attr, char *buf)
4687 {
4688         struct fotg210_hcd *fotg210;
4689         int n;
4690
4691         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4692         n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4693         return n;
4694 }
4695
4696
4697 static ssize_t uframe_periodic_max_store(struct device *dev,
4698                 struct device_attribute *attr, const char *buf, size_t count)
4699 {
4700         struct fotg210_hcd *fotg210;
4701         unsigned uframe_periodic_max;
4702         unsigned frame, uframe;
4703         unsigned short allocated_max;
4704         unsigned long flags;
4705         ssize_t ret;
4706
4707         fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4708         if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4709                 return -EINVAL;
4710
4711         if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4712                 fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4713                                 uframe_periodic_max);
4714                 return -EINVAL;
4715         }
4716
4717         ret = -EINVAL;
4718
4719         /*
4720          * lock, so that our checking does not race with possible periodic
4721          * bandwidth allocation through submitting new urbs.
4722          */
4723         spin_lock_irqsave(&fotg210->lock, flags);
4724
4725         /*
4726          * for request to decrease max periodic bandwidth, we have to check
4727          * every microframe in the schedule to see whether the decrease is
4728          * possible.
4729          */
4730         if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4731                 allocated_max = 0;
4732
4733                 for (frame = 0; frame < fotg210->periodic_size; ++frame)
4734                         for (uframe = 0; uframe < 7; ++uframe)
4735                                 allocated_max = max(allocated_max,
4736                                                 periodic_usecs(fotg210, frame,
4737                                                 uframe));
4738
4739                 if (allocated_max > uframe_periodic_max) {
4740                         fotg210_info(fotg210,
4741                                         "cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4742                                         allocated_max, uframe_periodic_max);
4743                         goto out_unlock;
4744                 }
4745         }
4746
4747         /* increasing is always ok */
4748
4749         fotg210_info(fotg210,
4750                         "setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4751                         100 * uframe_periodic_max/125, uframe_periodic_max);
4752
4753         if (uframe_periodic_max != 100)
4754                 fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4755
4756         fotg210->uframe_periodic_max = uframe_periodic_max;
4757         ret = count;
4758
4759 out_unlock:
4760         spin_unlock_irqrestore(&fotg210->lock, flags);
4761         return ret;
4762 }
4763
4764 static DEVICE_ATTR_RW(uframe_periodic_max);
4765
4766 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4767 {
4768         struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4769
4770         return device_create_file(controller, &dev_attr_uframe_periodic_max);
4771 }
4772
4773 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4774 {
4775         struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4776
4777         device_remove_file(controller, &dev_attr_uframe_periodic_max);
4778 }
4779 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4780  * The firmware seems to think that powering off is a wakeup event!
4781  * This routine turns off remote wakeup and everything else, on all ports.
4782  */
4783 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4784 {
4785         u32 __iomem *status_reg = &fotg210->regs->port_status;
4786
4787         fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4788 }
4789
4790 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4791  * Must be called with interrupts enabled and the lock not held.
4792  */
4793 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4794 {
4795         fotg210_halt(fotg210);
4796
4797         spin_lock_irq(&fotg210->lock);
4798         fotg210->rh_state = FOTG210_RH_HALTED;
4799         fotg210_turn_off_all_ports(fotg210);
4800         spin_unlock_irq(&fotg210->lock);
4801 }
4802
4803 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4804  * This forcibly disables dma and IRQs, helping kexec and other cases
4805  * where the next system software may expect clean state.
4806  */
4807 static void fotg210_shutdown(struct usb_hcd *hcd)
4808 {
4809         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4810
4811         spin_lock_irq(&fotg210->lock);
4812         fotg210->shutdown = true;
4813         fotg210->rh_state = FOTG210_RH_STOPPING;
4814         fotg210->enabled_hrtimer_events = 0;
4815         spin_unlock_irq(&fotg210->lock);
4816
4817         fotg210_silence_controller(fotg210);
4818
4819         hrtimer_cancel(&fotg210->hrtimer);
4820 }
4821
4822 /* fotg210_work is called from some interrupts, timers, and so on.
4823  * it calls driver completion functions, after dropping fotg210->lock.
4824  */
4825 static void fotg210_work(struct fotg210_hcd *fotg210)
4826 {
4827         /* another CPU may drop fotg210->lock during a schedule scan while
4828          * it reports urb completions.  this flag guards against bogus
4829          * attempts at re-entrant schedule scanning.
4830          */
4831         if (fotg210->scanning) {
4832                 fotg210->need_rescan = true;
4833                 return;
4834         }
4835         fotg210->scanning = true;
4836
4837 rescan:
4838         fotg210->need_rescan = false;
4839         if (fotg210->async_count)
4840                 scan_async(fotg210);
4841         if (fotg210->intr_count > 0)
4842                 scan_intr(fotg210);
4843         if (fotg210->isoc_count > 0)
4844                 scan_isoc(fotg210);
4845         if (fotg210->need_rescan)
4846                 goto rescan;
4847         fotg210->scanning = false;
4848
4849         /* the IO watchdog guards against hardware or driver bugs that
4850          * misplace IRQs, and should let us run completely without IRQs.
4851          * such lossage has been observed on both VT6202 and VT8235.
4852          */
4853         turn_on_io_watchdog(fotg210);
4854 }
4855
4856 /* Called when the fotg210_hcd module is removed.
4857  */
4858 static void fotg210_stop(struct usb_hcd *hcd)
4859 {
4860         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4861
4862         fotg210_dbg(fotg210, "stop\n");
4863
4864         /* no more interrupts ... */
4865
4866         spin_lock_irq(&fotg210->lock);
4867         fotg210->enabled_hrtimer_events = 0;
4868         spin_unlock_irq(&fotg210->lock);
4869
4870         fotg210_quiesce(fotg210);
4871         fotg210_silence_controller(fotg210);
4872         fotg210_reset(fotg210);
4873
4874         hrtimer_cancel(&fotg210->hrtimer);
4875         remove_sysfs_files(fotg210);
4876         remove_debug_files(fotg210);
4877
4878         /* root hub is shut down separately (first, when possible) */
4879         spin_lock_irq(&fotg210->lock);
4880         end_free_itds(fotg210);
4881         spin_unlock_irq(&fotg210->lock);
4882         fotg210_mem_cleanup(fotg210);
4883
4884 #ifdef FOTG210_STATS
4885         fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4886                         fotg210->stats.normal, fotg210->stats.error,
4887                         fotg210->stats.iaa, fotg210->stats.lost_iaa);
4888         fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4889                         fotg210->stats.complete, fotg210->stats.unlink);
4890 #endif
4891
4892         dbg_status(fotg210, "fotg210_stop completed",
4893                         fotg210_readl(fotg210, &fotg210->regs->status));
4894 }
4895
4896 /* one-time init, only for memory state */
4897 static int hcd_fotg210_init(struct usb_hcd *hcd)
4898 {
4899         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4900         u32 temp;
4901         int retval;
4902         u32 hcc_params;
4903         struct fotg210_qh_hw *hw;
4904
4905         spin_lock_init(&fotg210->lock);
4906
4907         /*
4908          * keep io watchdog by default, those good HCDs could turn off it later
4909          */
4910         fotg210->need_io_watchdog = 1;
4911
4912         hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4913         fotg210->hrtimer.function = fotg210_hrtimer_func;
4914         fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4915
4916         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4917
4918         /*
4919          * by default set standard 80% (== 100 usec/uframe) max periodic
4920          * bandwidth as required by USB 2.0
4921          */
4922         fotg210->uframe_periodic_max = 100;
4923
4924         /*
4925          * hw default: 1K periodic list heads, one per frame.
4926          * periodic_size can shrink by USBCMD update if hcc_params allows.
4927          */
4928         fotg210->periodic_size = DEFAULT_I_TDPS;
4929         INIT_LIST_HEAD(&fotg210->intr_qh_list);
4930         INIT_LIST_HEAD(&fotg210->cached_itd_list);
4931
4932         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4933                 /* periodic schedule size can be smaller than default */
4934                 switch (FOTG210_TUNE_FLS) {
4935                 case 0:
4936                         fotg210->periodic_size = 1024;
4937                         break;
4938                 case 1:
4939                         fotg210->periodic_size = 512;
4940                         break;
4941                 case 2:
4942                         fotg210->periodic_size = 256;
4943                         break;
4944                 default:
4945                         BUG();
4946                 }
4947         }
4948         retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4949         if (retval < 0)
4950                 return retval;
4951
4952         /* controllers may cache some of the periodic schedule ... */
4953         fotg210->i_thresh = 2;
4954
4955         /*
4956          * dedicate a qh for the async ring head, since we couldn't unlink
4957          * a 'real' qh without stopping the async schedule [4.8].  use it
4958          * as the 'reclamation list head' too.
4959          * its dummy is used in hw_alt_next of many tds, to prevent the qh
4960          * from automatically advancing to the next td after short reads.
4961          */
4962         fotg210->async->qh_next.qh = NULL;
4963         hw = fotg210->async->hw;
4964         hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4965         hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4966         hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4967         hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4968         fotg210->async->qh_state = QH_STATE_LINKED;
4969         hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4970
4971         /* clear interrupt enables, set irq latency */
4972         if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4973                 log2_irq_thresh = 0;
4974         temp = 1 << (16 + log2_irq_thresh);
4975         if (HCC_CANPARK(hcc_params)) {
4976                 /* HW default park == 3, on hardware that supports it (like
4977                  * NVidia and ALI silicon), maximizes throughput on the async
4978                  * schedule by avoiding QH fetches between transfers.
4979                  *
4980                  * With fast usb storage devices and NForce2, "park" seems to
4981                  * make problems:  throughput reduction (!), data errors...
4982                  */
4983                 if (park) {
4984                         park = min_t(unsigned, park, 3);
4985                         temp |= CMD_PARK;
4986                         temp |= park << 8;
4987                 }
4988                 fotg210_dbg(fotg210, "park %d\n", park);
4989         }
4990         if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4991                 /* periodic schedule size can be smaller than default */
4992                 temp &= ~(3 << 2);
4993                 temp |= (FOTG210_TUNE_FLS << 2);
4994         }
4995         fotg210->command = temp;
4996
4997         /* Accept arbitrarily long scatter-gather lists */
4998         if (!(hcd->driver->flags & HCD_LOCAL_MEM))
4999                 hcd->self.sg_tablesize = ~0;
5000         return 0;
5001 }
5002
5003 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5004 static int fotg210_run(struct usb_hcd *hcd)
5005 {
5006         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5007         u32 temp;
5008         u32 hcc_params;
5009
5010         hcd->uses_new_polling = 1;
5011
5012         /* EHCI spec section 4.1 */
5013
5014         fotg210_writel(fotg210, fotg210->periodic_dma,
5015                         &fotg210->regs->frame_list);
5016         fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5017                         &fotg210->regs->async_next);
5018
5019         /*
5020          * hcc_params controls whether fotg210->regs->segment must (!!!)
5021          * be used; it constrains QH/ITD/SITD and QTD locations.
5022          * dma_pool consistent memory always uses segment zero.
5023          * streaming mappings for I/O buffers, like pci_map_single(),
5024          * can return segments above 4GB, if the device allows.
5025          *
5026          * NOTE:  the dma mask is visible through dev->dma_mask, so
5027          * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5028          * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5029          * host side drivers though.
5030          */
5031         hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5032
5033         /*
5034          * Philips, Intel, and maybe others need CMD_RUN before the
5035          * root hub will detect new devices (why?); NEC doesn't
5036          */
5037         fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5038         fotg210->command |= CMD_RUN;
5039         fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5040         dbg_cmd(fotg210, "init", fotg210->command);
5041
5042         /*
5043          * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5044          * are explicitly handed to companion controller(s), so no TT is
5045          * involved with the root hub.  (Except where one is integrated,
5046          * and there's no companion controller unless maybe for USB OTG.)
5047          *
5048          * Turning on the CF flag will transfer ownership of all ports
5049          * from the companions to the EHCI controller.  If any of the
5050          * companions are in the middle of a port reset at the time, it
5051          * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5052          * guarantees that no resets are in progress.  After we set CF,
5053          * a short delay lets the hardware catch up; new resets shouldn't
5054          * be started before the port switching actions could complete.
5055          */
5056         down_write(&ehci_cf_port_reset_rwsem);
5057         fotg210->rh_state = FOTG210_RH_RUNNING;
5058         /* unblock posted writes */
5059         fotg210_readl(fotg210, &fotg210->regs->command);
5060         usleep_range(5000, 10000);
5061         up_write(&ehci_cf_port_reset_rwsem);
5062         fotg210->last_periodic_enable = ktime_get_real();
5063
5064         temp = HC_VERSION(fotg210,
5065                         fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5066         fotg210_info(fotg210,
5067                         "USB %x.%x started, EHCI %x.%02x\n",
5068                         ((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5069                         temp >> 8, temp & 0xff);
5070
5071         fotg210_writel(fotg210, INTR_MASK,
5072                         &fotg210->regs->intr_enable); /* Turn On Interrupts */
5073
5074         /* GRR this is run-once init(), being done every time the HC starts.
5075          * So long as they're part of class devices, we can't do it init()
5076          * since the class device isn't created that early.
5077          */
5078         create_debug_files(fotg210);
5079         create_sysfs_files(fotg210);
5080
5081         return 0;
5082 }
5083
5084 static int fotg210_setup(struct usb_hcd *hcd)
5085 {
5086         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5087         int retval;
5088
5089         fotg210->regs = (void __iomem *)fotg210->caps +
5090                         HC_LENGTH(fotg210,
5091                         fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5092         dbg_hcs_params(fotg210, "reset");
5093         dbg_hcc_params(fotg210, "reset");
5094
5095         /* cache this readonly data; minimize chip reads */
5096         fotg210->hcs_params = fotg210_readl(fotg210,
5097                         &fotg210->caps->hcs_params);
5098
5099         fotg210->sbrn = HCD_USB2;
5100
5101         /* data structure init */
5102         retval = hcd_fotg210_init(hcd);
5103         if (retval)
5104                 return retval;
5105
5106         retval = fotg210_halt(fotg210);
5107         if (retval)
5108                 return retval;
5109
5110         fotg210_reset(fotg210);
5111
5112         return 0;
5113 }
5114
5115 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5116 {
5117         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5118         u32 status, masked_status, pcd_status = 0, cmd;
5119         int bh;
5120
5121         spin_lock(&fotg210->lock);
5122
5123         status = fotg210_readl(fotg210, &fotg210->regs->status);
5124
5125         /* e.g. cardbus physical eject */
5126         if (status == ~(u32) 0) {
5127                 fotg210_dbg(fotg210, "device removed\n");
5128                 goto dead;
5129         }
5130
5131         /*
5132          * We don't use STS_FLR, but some controllers don't like it to
5133          * remain on, so mask it out along with the other status bits.
5134          */
5135         masked_status = status & (INTR_MASK | STS_FLR);
5136
5137         /* Shared IRQ? */
5138         if (!masked_status ||
5139                         unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5140                 spin_unlock(&fotg210->lock);
5141                 return IRQ_NONE;
5142         }
5143
5144         /* clear (just) interrupts */
5145         fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5146         cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5147         bh = 0;
5148
5149         /* unrequested/ignored: Frame List Rollover */
5150         dbg_status(fotg210, "irq", status);
5151
5152         /* INT, ERR, and IAA interrupt rates can be throttled */
5153
5154         /* normal [4.15.1.2] or error [4.15.1.1] completion */
5155         if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5156                 if (likely((status & STS_ERR) == 0))
5157                         INCR(fotg210->stats.normal);
5158                 else
5159                         INCR(fotg210->stats.error);
5160                 bh = 1;
5161         }
5162
5163         /* complete the unlinking of some qh [4.15.2.3] */
5164         if (status & STS_IAA) {
5165
5166                 /* Turn off the IAA watchdog */
5167                 fotg210->enabled_hrtimer_events &=
5168                         ~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5169
5170                 /*
5171                  * Mild optimization: Allow another IAAD to reset the
5172                  * hrtimer, if one occurs before the next expiration.
5173                  * In theory we could always cancel the hrtimer, but
5174                  * tests show that about half the time it will be reset
5175                  * for some other event anyway.
5176                  */
5177                 if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5178                         ++fotg210->next_hrtimer_event;
5179
5180                 /* guard against (alleged) silicon errata */
5181                 if (cmd & CMD_IAAD)
5182                         fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5183                 if (fotg210->async_iaa) {
5184                         INCR(fotg210->stats.iaa);
5185                         end_unlink_async(fotg210);
5186                 } else
5187                         fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5188         }
5189
5190         /* remote wakeup [4.3.1] */
5191         if (status & STS_PCD) {
5192                 int pstatus;
5193                 u32 __iomem *status_reg = &fotg210->regs->port_status;
5194
5195                 /* kick root hub later */
5196                 pcd_status = status;
5197
5198                 /* resume root hub? */
5199                 if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5200                         usb_hcd_resume_root_hub(hcd);
5201
5202                 pstatus = fotg210_readl(fotg210, status_reg);
5203
5204                 if (test_bit(0, &fotg210->suspended_ports) &&
5205                                 ((pstatus & PORT_RESUME) ||
5206                                 !(pstatus & PORT_SUSPEND)) &&
5207                                 (pstatus & PORT_PE) &&
5208                                 fotg210->reset_done[0] == 0) {
5209
5210                         /* start 20 msec resume signaling from this port,
5211                          * and make hub_wq collect PORT_STAT_C_SUSPEND to
5212                          * stop that signaling.  Use 5 ms extra for safety,
5213                          * like usb_port_resume() does.
5214                          */
5215                         fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5216                         set_bit(0, &fotg210->resuming_ports);
5217                         fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5218                         mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5219                 }
5220         }
5221
5222         /* PCI errors [4.15.2.4] */
5223         if (unlikely((status & STS_FATAL) != 0)) {
5224                 fotg210_err(fotg210, "fatal error\n");
5225                 dbg_cmd(fotg210, "fatal", cmd);
5226                 dbg_status(fotg210, "fatal", status);
5227 dead:
5228                 usb_hc_died(hcd);
5229
5230                 /* Don't let the controller do anything more */
5231                 fotg210->shutdown = true;
5232                 fotg210->rh_state = FOTG210_RH_STOPPING;
5233                 fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5234                 fotg210_writel(fotg210, fotg210->command,
5235                                 &fotg210->regs->command);
5236                 fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5237                 fotg210_handle_controller_death(fotg210);
5238
5239                 /* Handle completions when the controller stops */
5240                 bh = 0;
5241         }
5242
5243         if (bh)
5244                 fotg210_work(fotg210);
5245         spin_unlock(&fotg210->lock);
5246         if (pcd_status)
5247                 usb_hcd_poll_rh_status(hcd);
5248         return IRQ_HANDLED;
5249 }
5250
5251 /* non-error returns are a promise to giveback() the urb later
5252  * we drop ownership so next owner (or urb unlink) can get it
5253  *
5254  * urb + dev is in hcd.self.controller.urb_list
5255  * we're queueing TDs onto software and hardware lists
5256  *
5257  * hcd-specific init for hcpriv hasn't been done yet
5258  *
5259  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5260  * to a (possibly active) QH, and the same QH scanning code.
5261  */
5262 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5263                 gfp_t mem_flags)
5264 {
5265         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5266         struct list_head qtd_list;
5267
5268         INIT_LIST_HEAD(&qtd_list);
5269
5270         switch (usb_pipetype(urb->pipe)) {
5271         case PIPE_CONTROL:
5272                 /* qh_completions() code doesn't handle all the fault cases
5273                  * in multi-TD control transfers.  Even 1KB is rare anyway.
5274                  */
5275                 if (urb->transfer_buffer_length > (16 * 1024))
5276                         return -EMSGSIZE;
5277                 /* FALLTHROUGH */
5278         /* case PIPE_BULK: */
5279         default:
5280                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5281                         return -ENOMEM;
5282                 return submit_async(fotg210, urb, &qtd_list, mem_flags);
5283
5284         case PIPE_INTERRUPT:
5285                 if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5286                         return -ENOMEM;
5287                 return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5288
5289         case PIPE_ISOCHRONOUS:
5290                 return itd_submit(fotg210, urb, mem_flags);
5291         }
5292 }
5293
5294 /* remove from hardware lists
5295  * completions normally happen asynchronously
5296  */
5297
5298 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5299 {
5300         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5301         struct fotg210_qh *qh;
5302         unsigned long flags;
5303         int rc;
5304
5305         spin_lock_irqsave(&fotg210->lock, flags);
5306         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5307         if (rc)
5308                 goto done;
5309
5310         switch (usb_pipetype(urb->pipe)) {
5311         /* case PIPE_CONTROL: */
5312         /* case PIPE_BULK:*/
5313         default:
5314                 qh = (struct fotg210_qh *) urb->hcpriv;
5315                 if (!qh)
5316                         break;
5317                 switch (qh->qh_state) {
5318                 case QH_STATE_LINKED:
5319                 case QH_STATE_COMPLETING:
5320                         start_unlink_async(fotg210, qh);
5321                         break;
5322                 case QH_STATE_UNLINK:
5323                 case QH_STATE_UNLINK_WAIT:
5324                         /* already started */
5325                         break;
5326                 case QH_STATE_IDLE:
5327                         /* QH might be waiting for a Clear-TT-Buffer */
5328                         qh_completions(fotg210, qh);
5329                         break;
5330                 }
5331                 break;
5332
5333         case PIPE_INTERRUPT:
5334                 qh = (struct fotg210_qh *) urb->hcpriv;
5335                 if (!qh)
5336                         break;
5337                 switch (qh->qh_state) {
5338                 case QH_STATE_LINKED:
5339                 case QH_STATE_COMPLETING:
5340                         start_unlink_intr(fotg210, qh);
5341                         break;
5342                 case QH_STATE_IDLE:
5343                         qh_completions(fotg210, qh);
5344                         break;
5345                 default:
5346                         fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5347                                         qh, qh->qh_state);
5348                         goto done;
5349                 }
5350                 break;
5351
5352         case PIPE_ISOCHRONOUS:
5353                 /* itd... */
5354
5355                 /* wait till next completion, do it then. */
5356                 /* completion irqs can wait up to 1024 msec, */
5357                 break;
5358         }
5359 done:
5360         spin_unlock_irqrestore(&fotg210->lock, flags);
5361         return rc;
5362 }
5363
5364 /* bulk qh holds the data toggle */
5365
5366 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5367                 struct usb_host_endpoint *ep)
5368 {
5369         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5370         unsigned long flags;
5371         struct fotg210_qh *qh, *tmp;
5372
5373         /* ASSERT:  any requests/urbs are being unlinked */
5374         /* ASSERT:  nobody can be submitting urbs for this any more */
5375
5376 rescan:
5377         spin_lock_irqsave(&fotg210->lock, flags);
5378         qh = ep->hcpriv;
5379         if (!qh)
5380                 goto done;
5381
5382         /* endpoints can be iso streams.  for now, we don't
5383          * accelerate iso completions ... so spin a while.
5384          */
5385         if (qh->hw == NULL) {
5386                 struct fotg210_iso_stream *stream = ep->hcpriv;
5387
5388                 if (!list_empty(&stream->td_list))
5389                         goto idle_timeout;
5390
5391                 /* BUG_ON(!list_empty(&stream->free_list)); */
5392                 kfree(stream);
5393                 goto done;
5394         }
5395
5396         if (fotg210->rh_state < FOTG210_RH_RUNNING)
5397                 qh->qh_state = QH_STATE_IDLE;
5398         switch (qh->qh_state) {
5399         case QH_STATE_LINKED:
5400         case QH_STATE_COMPLETING:
5401                 for (tmp = fotg210->async->qh_next.qh;
5402                                 tmp && tmp != qh;
5403                                 tmp = tmp->qh_next.qh)
5404                         continue;
5405                 /* periodic qh self-unlinks on empty, and a COMPLETING qh
5406                  * may already be unlinked.
5407                  */
5408                 if (tmp)
5409                         start_unlink_async(fotg210, qh);
5410                 /* FALL THROUGH */
5411         case QH_STATE_UNLINK:           /* wait for hw to finish? */
5412         case QH_STATE_UNLINK_WAIT:
5413 idle_timeout:
5414                 spin_unlock_irqrestore(&fotg210->lock, flags);
5415                 schedule_timeout_uninterruptible(1);
5416                 goto rescan;
5417         case QH_STATE_IDLE:             /* fully unlinked */
5418                 if (qh->clearing_tt)
5419                         goto idle_timeout;
5420                 if (list_empty(&qh->qtd_list)) {
5421                         qh_destroy(fotg210, qh);
5422                         break;
5423                 }
5424                 /* fall through */
5425         default:
5426                 /* caller was supposed to have unlinked any requests;
5427                  * that's not our job.  just leak this memory.
5428                  */
5429                 fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5430                                 qh, ep->desc.bEndpointAddress, qh->qh_state,
5431                                 list_empty(&qh->qtd_list) ? "" : "(has tds)");
5432                 break;
5433         }
5434 done:
5435         ep->hcpriv = NULL;
5436         spin_unlock_irqrestore(&fotg210->lock, flags);
5437 }
5438
5439 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5440                 struct usb_host_endpoint *ep)
5441 {
5442         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5443         struct fotg210_qh *qh;
5444         int eptype = usb_endpoint_type(&ep->desc);
5445         int epnum = usb_endpoint_num(&ep->desc);
5446         int is_out = usb_endpoint_dir_out(&ep->desc);
5447         unsigned long flags;
5448
5449         if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5450                 return;
5451
5452         spin_lock_irqsave(&fotg210->lock, flags);
5453         qh = ep->hcpriv;
5454
5455         /* For Bulk and Interrupt endpoints we maintain the toggle state
5456          * in the hardware; the toggle bits in udev aren't used at all.
5457          * When an endpoint is reset by usb_clear_halt() we must reset
5458          * the toggle bit in the QH.
5459          */
5460         if (qh) {
5461                 usb_settoggle(qh->dev, epnum, is_out, 0);
5462                 if (!list_empty(&qh->qtd_list)) {
5463                         WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5464                 } else if (qh->qh_state == QH_STATE_LINKED ||
5465                                 qh->qh_state == QH_STATE_COMPLETING) {
5466
5467                         /* The toggle value in the QH can't be updated
5468                          * while the QH is active.  Unlink it now;
5469                          * re-linking will call qh_refresh().
5470                          */
5471                         if (eptype == USB_ENDPOINT_XFER_BULK)
5472                                 start_unlink_async(fotg210, qh);
5473                         else
5474                                 start_unlink_intr(fotg210, qh);
5475                 }
5476         }
5477         spin_unlock_irqrestore(&fotg210->lock, flags);
5478 }
5479
5480 static int fotg210_get_frame(struct usb_hcd *hcd)
5481 {
5482         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5483
5484         return (fotg210_read_frame_index(fotg210) >> 3) %
5485                 fotg210->periodic_size;
5486 }
5487
5488 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5489  * because its registers (and irq) are shared between host/gadget/otg
5490  * functions  and in order to facilitate role switching we cannot
5491  * give the fotg210 driver exclusive access to those.
5492  */
5493 MODULE_DESCRIPTION(DRIVER_DESC);
5494 MODULE_AUTHOR(DRIVER_AUTHOR);
5495 MODULE_LICENSE("GPL");
5496
5497 static const struct hc_driver fotg210_fotg210_hc_driver = {
5498         .description            = hcd_name,
5499         .product_desc           = "Faraday USB2.0 Host Controller",
5500         .hcd_priv_size          = sizeof(struct fotg210_hcd),
5501
5502         /*
5503          * generic hardware linkage
5504          */
5505         .irq                    = fotg210_irq,
5506         .flags                  = HCD_MEMORY | HCD_USB2,
5507
5508         /*
5509          * basic lifecycle operations
5510          */
5511         .reset                  = hcd_fotg210_init,
5512         .start                  = fotg210_run,
5513         .stop                   = fotg210_stop,
5514         .shutdown               = fotg210_shutdown,
5515
5516         /*
5517          * managing i/o requests and associated device resources
5518          */
5519         .urb_enqueue            = fotg210_urb_enqueue,
5520         .urb_dequeue            = fotg210_urb_dequeue,
5521         .endpoint_disable       = fotg210_endpoint_disable,
5522         .endpoint_reset         = fotg210_endpoint_reset,
5523
5524         /*
5525          * scheduling support
5526          */
5527         .get_frame_number       = fotg210_get_frame,
5528
5529         /*
5530          * root hub support
5531          */
5532         .hub_status_data        = fotg210_hub_status_data,
5533         .hub_control            = fotg210_hub_control,
5534         .bus_suspend            = fotg210_bus_suspend,
5535         .bus_resume             = fotg210_bus_resume,
5536
5537         .relinquish_port        = fotg210_relinquish_port,
5538         .port_handed_over       = fotg210_port_handed_over,
5539
5540         .clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5541 };
5542
5543 static void fotg210_init(struct fotg210_hcd *fotg210)
5544 {
5545         u32 value;
5546
5547         iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5548                         &fotg210->regs->gmir);
5549
5550         value = ioread32(&fotg210->regs->otgcsr);
5551         value &= ~OTGCSR_A_BUS_DROP;
5552         value |= OTGCSR_A_BUS_REQ;
5553         iowrite32(value, &fotg210->regs->otgcsr);
5554 }
5555
5556 /**
5557  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5558  *
5559  * Allocates basic resources for this USB host controller, and
5560  * then invokes the start() method for the HCD associated with it
5561  * through the hotplug entry's driver_data.
5562  */
5563 static int fotg210_hcd_probe(struct platform_device *pdev)
5564 {
5565         struct device *dev = &pdev->dev;
5566         struct usb_hcd *hcd;
5567         struct resource *res;
5568         int irq;
5569         int retval = -ENODEV;
5570         struct fotg210_hcd *fotg210;
5571
5572         if (usb_disabled())
5573                 return -ENODEV;
5574
5575         pdev->dev.power.power_state = PMSG_ON;
5576
5577         res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5578         if (!res) {
5579                 dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5580                                 dev_name(dev));
5581                 return -ENODEV;
5582         }
5583
5584         irq = res->start;
5585
5586         hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5587                         dev_name(dev));
5588         if (!hcd) {
5589                 dev_err(dev, "failed to create hcd with err %d\n", retval);
5590                 retval = -ENOMEM;
5591                 goto fail_create_hcd;
5592         }
5593
5594         hcd->has_tt = 1;
5595
5596         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5597         hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5598         if (IS_ERR(hcd->regs)) {
5599                 retval = PTR_ERR(hcd->regs);
5600                 goto failed_put_hcd;
5601         }
5602
5603         hcd->rsrc_start = res->start;
5604         hcd->rsrc_len = resource_size(res);
5605
5606         fotg210 = hcd_to_fotg210(hcd);
5607
5608         fotg210->caps = hcd->regs;
5609
5610         /* It's OK not to supply this clock */
5611         fotg210->pclk = clk_get(dev, "PCLK");
5612         if (!IS_ERR(fotg210->pclk)) {
5613                 retval = clk_prepare_enable(fotg210->pclk);
5614                 if (retval) {
5615                         dev_err(dev, "failed to enable PCLK\n");
5616                         goto failed_put_hcd;
5617                 }
5618         } else if (PTR_ERR(fotg210->pclk) == -EPROBE_DEFER) {
5619                 /*
5620                  * Percolate deferrals, for anything else,
5621                  * just live without the clocking.
5622                  */
5623                 retval = PTR_ERR(fotg210->pclk);
5624                 goto failed_dis_clk;
5625         }
5626
5627         retval = fotg210_setup(hcd);
5628         if (retval)
5629                 goto failed_dis_clk;
5630
5631         fotg210_init(fotg210);
5632
5633         retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5634         if (retval) {
5635                 dev_err(dev, "failed to add hcd with err %d\n", retval);
5636                 goto failed_dis_clk;
5637         }
5638         device_wakeup_enable(hcd->self.controller);
5639         platform_set_drvdata(pdev, hcd);
5640
5641         return retval;
5642
5643 failed_dis_clk:
5644         if (!IS_ERR(fotg210->pclk))
5645                 clk_disable_unprepare(fotg210->pclk);
5646 failed_put_hcd:
5647         usb_put_hcd(hcd);
5648 fail_create_hcd:
5649         dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5650         return retval;
5651 }
5652
5653 /**
5654  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5655  * @dev: USB Host Controller being removed
5656  *
5657  */
5658 static int fotg210_hcd_remove(struct platform_device *pdev)
5659 {
5660         struct usb_hcd *hcd = platform_get_drvdata(pdev);
5661         struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5662
5663         if (!IS_ERR(fotg210->pclk))
5664                 clk_disable_unprepare(fotg210->pclk);
5665
5666         usb_remove_hcd(hcd);
5667         usb_put_hcd(hcd);
5668
5669         return 0;
5670 }
5671
5672 static struct platform_driver fotg210_hcd_driver = {
5673         .driver = {
5674                 .name   = "fotg210-hcd",
5675         },
5676         .probe  = fotg210_hcd_probe,
5677         .remove = fotg210_hcd_remove,
5678 };
5679
5680 static int __init fotg210_hcd_init(void)
5681 {
5682         int retval = 0;
5683
5684         if (usb_disabled())
5685                 return -ENODEV;
5686
5687         pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5688         set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5689         if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5690                         test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5691                 pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5692
5693         pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5694                         hcd_name, sizeof(struct fotg210_qh),
5695                         sizeof(struct fotg210_qtd),
5696                         sizeof(struct fotg210_itd));
5697
5698         fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5699
5700         retval = platform_driver_register(&fotg210_hcd_driver);
5701         if (retval < 0)
5702                 goto clean;
5703         return retval;
5704
5705 clean:
5706         debugfs_remove(fotg210_debug_root);
5707         fotg210_debug_root = NULL;
5708
5709         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5710         return retval;
5711 }
5712 module_init(fotg210_hcd_init);
5713
5714 static void __exit fotg210_hcd_cleanup(void)
5715 {
5716         platform_driver_unregister(&fotg210_hcd_driver);
5717         debugfs_remove(fotg210_debug_root);
5718         clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5719 }
5720 module_exit(fotg210_hcd_cleanup);