docs: Fix empty parallelism argument
[linux-2.6-microblaze.git] / drivers / usb / gadget / udc / udc-xilinx.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Xilinx USB peripheral controller driver
4  *
5  * Copyright (C) 2004 by Thomas Rathbone
6  * Copyright (C) 2005 by HP Labs
7  * Copyright (C) 2005 by David Brownell
8  * Copyright (C) 2010 - 2014 Xilinx, Inc.
9  *
10  * Some parts of this driver code is based on the driver for at91-series
11  * USB peripheral controller (at91_udc.c).
12  */
13
14 #include <linux/delay.h>
15 #include <linux/device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/module.h>
20 #include <linux/of_address.h>
21 #include <linux/of_device.h>
22 #include <linux/of_platform.h>
23 #include <linux/of_irq.h>
24 #include <linux/prefetch.h>
25 #include <linux/usb/ch9.h>
26 #include <linux/usb/gadget.h>
27
28 /* Register offsets for the USB device.*/
29 #define XUSB_EP0_CONFIG_OFFSET          0x0000  /* EP0 Config Reg Offset */
30 #define XUSB_SETUP_PKT_ADDR_OFFSET      0x0080  /* Setup Packet Address */
31 #define XUSB_ADDRESS_OFFSET             0x0100  /* Address Register */
32 #define XUSB_CONTROL_OFFSET             0x0104  /* Control Register */
33 #define XUSB_STATUS_OFFSET              0x0108  /* Status Register */
34 #define XUSB_FRAMENUM_OFFSET            0x010C  /* Frame Number Register */
35 #define XUSB_IER_OFFSET                 0x0110  /* Interrupt Enable Register */
36 #define XUSB_BUFFREADY_OFFSET           0x0114  /* Buffer Ready Register */
37 #define XUSB_TESTMODE_OFFSET            0x0118  /* Test Mode Register */
38 #define XUSB_DMA_RESET_OFFSET           0x0200  /* DMA Soft Reset Register */
39 #define XUSB_DMA_CONTROL_OFFSET         0x0204  /* DMA Control Register */
40 #define XUSB_DMA_DSAR_ADDR_OFFSET       0x0208  /* DMA source Address Reg */
41 #define XUSB_DMA_DDAR_ADDR_OFFSET       0x020C  /* DMA destination Addr Reg */
42 #define XUSB_DMA_LENGTH_OFFSET          0x0210  /* DMA Length Register */
43 #define XUSB_DMA_STATUS_OFFSET          0x0214  /* DMA Status Register */
44
45 /* Endpoint Configuration Space offsets */
46 #define XUSB_EP_CFGSTATUS_OFFSET        0x00    /* Endpoint Config Status  */
47 #define XUSB_EP_BUF0COUNT_OFFSET        0x08    /* Buffer 0 Count */
48 #define XUSB_EP_BUF1COUNT_OFFSET        0x0C    /* Buffer 1 Count */
49
50 #define XUSB_CONTROL_USB_READY_MASK     0x80000000 /* USB ready Mask */
51 #define XUSB_CONTROL_USB_RMTWAKE_MASK   0x40000000 /* Remote wake up mask */
52
53 /* Interrupt register related masks.*/
54 #define XUSB_STATUS_GLOBAL_INTR_MASK    0x80000000 /* Global Intr Enable */
55 #define XUSB_STATUS_DMADONE_MASK        0x04000000 /* DMA done Mask */
56 #define XUSB_STATUS_DMAERR_MASK         0x02000000 /* DMA Error Mask */
57 #define XUSB_STATUS_DMABUSY_MASK        0x80000000 /* DMA Error Mask */
58 #define XUSB_STATUS_RESUME_MASK         0x01000000 /* USB Resume Mask */
59 #define XUSB_STATUS_RESET_MASK          0x00800000 /* USB Reset Mask */
60 #define XUSB_STATUS_SUSPEND_MASK        0x00400000 /* USB Suspend Mask */
61 #define XUSB_STATUS_DISCONNECT_MASK     0x00200000 /* USB Disconnect Mask */
62 #define XUSB_STATUS_FIFO_BUFF_RDY_MASK  0x00100000 /* FIFO Buff Ready Mask */
63 #define XUSB_STATUS_FIFO_BUFF_FREE_MASK 0x00080000 /* FIFO Buff Free Mask */
64 #define XUSB_STATUS_SETUP_PACKET_MASK   0x00040000 /* Setup packet received */
65 #define XUSB_STATUS_EP1_BUFF2_COMP_MASK 0x00000200 /* EP 1 Buff 2 Processed */
66 #define XUSB_STATUS_EP1_BUFF1_COMP_MASK 0x00000002 /* EP 1 Buff 1 Processed */
67 #define XUSB_STATUS_EP0_BUFF2_COMP_MASK 0x00000100 /* EP 0 Buff 2 Processed */
68 #define XUSB_STATUS_EP0_BUFF1_COMP_MASK 0x00000001 /* EP 0 Buff 1 Processed */
69 #define XUSB_STATUS_HIGH_SPEED_MASK     0x00010000 /* USB Speed Mask */
70 /* Suspend,Reset,Suspend and Disconnect Mask */
71 #define XUSB_STATUS_INTR_EVENT_MASK     0x01E00000
72 /* Buffers  completion Mask */
73 #define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK     0x0000FEFF
74 /* Mask for buffer 0 and buffer 1 completion for all Endpoints */
75 #define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK   0x00000101
76 #define XUSB_STATUS_EP_BUFF2_SHIFT      8          /* EP buffer offset */
77
78 /* Endpoint Configuration Status Register */
79 #define XUSB_EP_CFG_VALID_MASK          0x80000000 /* Endpoint Valid bit */
80 #define XUSB_EP_CFG_STALL_MASK          0x40000000 /* Endpoint Stall bit */
81 #define XUSB_EP_CFG_DATA_TOGGLE_MASK    0x08000000 /* Endpoint Data toggle */
82
83 /* USB device specific global configuration constants.*/
84 #define XUSB_MAX_ENDPOINTS              8       /* Maximum End Points */
85 #define XUSB_EP_NUMBER_ZERO             0       /* End point Zero */
86 /* DPRAM is the source address for DMA transfer */
87 #define XUSB_DMA_READ_FROM_DPRAM        0x80000000
88 #define XUSB_DMA_DMASR_BUSY             0x80000000 /* DMA busy */
89 #define XUSB_DMA_DMASR_ERROR            0x40000000 /* DMA Error */
90 /*
91  * When this bit is set, the DMA buffer ready bit is set by hardware upon
92  * DMA transfer completion.
93  */
94 #define XUSB_DMA_BRR_CTRL               0x40000000 /* DMA bufready ctrl bit */
95 /* Phase States */
96 #define SETUP_PHASE                     0x0000  /* Setup Phase */
97 #define DATA_PHASE                      0x0001  /* Data Phase */
98 #define STATUS_PHASE                    0x0002  /* Status Phase */
99
100 #define EP0_MAX_PACKET          64 /* Endpoint 0 maximum packet length */
101 #define STATUSBUFF_SIZE         2  /* Buffer size for GET_STATUS command */
102 #define EPNAME_SIZE             4  /* Buffer size for endpoint name */
103
104 /* container_of helper macros */
105 #define to_udc(g)        container_of((g), struct xusb_udc, gadget)
106 #define to_xusb_ep(ep)   container_of((ep), struct xusb_ep, ep_usb)
107 #define to_xusb_req(req) container_of((req), struct xusb_req, usb_req)
108
109 /**
110  * struct xusb_req - Xilinx USB device request structure
111  * @usb_req: Linux usb request structure
112  * @queue: usb device request queue
113  * @ep: pointer to xusb_endpoint structure
114  */
115 struct xusb_req {
116         struct usb_request usb_req;
117         struct list_head queue;
118         struct xusb_ep *ep;
119 };
120
121 /**
122  * struct xusb_ep - USB end point structure.
123  * @ep_usb: usb endpoint instance
124  * @queue: endpoint message queue
125  * @udc: xilinx usb peripheral driver instance pointer
126  * @desc: pointer to the usb endpoint descriptor
127  * @rambase: the endpoint buffer address
128  * @offset: the endpoint register offset value
129  * @name: name of the endpoint
130  * @epnumber: endpoint number
131  * @maxpacket: maximum packet size the endpoint can store
132  * @buffer0count: the size of the packet recieved in the first buffer
133  * @buffer1count: the size of the packet received in the second buffer
134  * @curbufnum: current buffer of endpoint that will be processed next
135  * @buffer0ready: the busy state of first buffer
136  * @buffer1ready: the busy state of second buffer
137  * @is_in: endpoint direction (IN or OUT)
138  * @is_iso: endpoint type(isochronous or non isochronous)
139  */
140 struct xusb_ep {
141         struct usb_ep ep_usb;
142         struct list_head queue;
143         struct xusb_udc *udc;
144         const struct usb_endpoint_descriptor *desc;
145         u32  rambase;
146         u32  offset;
147         char name[4];
148         u16  epnumber;
149         u16  maxpacket;
150         u16  buffer0count;
151         u16  buffer1count;
152         u8   curbufnum;
153         bool buffer0ready;
154         bool buffer1ready;
155         bool is_in;
156         bool is_iso;
157 };
158
159 /**
160  * struct xusb_udc -  USB peripheral driver structure
161  * @gadget: USB gadget driver instance
162  * @ep: an array of endpoint structures
163  * @driver: pointer to the usb gadget driver instance
164  * @setup: usb_ctrlrequest structure for control requests
165  * @req: pointer to dummy request for get status command
166  * @dev: pointer to device structure in gadget
167  * @usb_state: device in suspended state or not
168  * @remote_wkp: remote wakeup enabled by host
169  * @setupseqtx: tx status
170  * @setupseqrx: rx status
171  * @addr: the usb device base address
172  * @lock: instance of spinlock
173  * @dma_enabled: flag indicating whether the dma is included in the system
174  * @read_fn: function pointer to read device registers
175  * @write_fn: function pointer to write to device registers
176  */
177 struct xusb_udc {
178         struct usb_gadget gadget;
179         struct xusb_ep ep[8];
180         struct usb_gadget_driver *driver;
181         struct usb_ctrlrequest setup;
182         struct xusb_req *req;
183         struct device *dev;
184         u32 usb_state;
185         u32 remote_wkp;
186         u32 setupseqtx;
187         u32 setupseqrx;
188         void __iomem *addr;
189         spinlock_t lock;
190         bool dma_enabled;
191
192         unsigned int (*read_fn)(void __iomem *);
193         void (*write_fn)(void __iomem *, u32, u32);
194 };
195
196 /* Endpoint buffer start addresses in the core */
197 static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500,
198                           0x1600 };
199
200 static const char driver_name[] = "xilinx-udc";
201 static const char ep0name[] = "ep0";
202
203 /* Control endpoint configuration.*/
204 static const struct usb_endpoint_descriptor config_bulk_out_desc = {
205         .bLength                = USB_DT_ENDPOINT_SIZE,
206         .bDescriptorType        = USB_DT_ENDPOINT,
207         .bEndpointAddress       = USB_DIR_OUT,
208         .bmAttributes           = USB_ENDPOINT_XFER_BULK,
209         .wMaxPacketSize         = cpu_to_le16(EP0_MAX_PACKET),
210 };
211
212 /**
213  * xudc_write32 - little endian write to device registers
214  * @addr: base addr of device registers
215  * @offset: register offset
216  * @val: data to be written
217  */
218 static void xudc_write32(void __iomem *addr, u32 offset, u32 val)
219 {
220         iowrite32(val, addr + offset);
221 }
222
223 /**
224  * xudc_read32 - little endian read from device registers
225  * @addr: addr of device register
226  * Return: value at addr
227  */
228 static unsigned int xudc_read32(void __iomem *addr)
229 {
230         return ioread32(addr);
231 }
232
233 /**
234  * xudc_write32_be - big endian write to device registers
235  * @addr: base addr of device registers
236  * @offset: register offset
237  * @val: data to be written
238  */
239 static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val)
240 {
241         iowrite32be(val, addr + offset);
242 }
243
244 /**
245  * xudc_read32_be - big endian read from device registers
246  * @addr: addr of device register
247  * Return: value at addr
248  */
249 static unsigned int xudc_read32_be(void __iomem *addr)
250 {
251         return ioread32be(addr);
252 }
253
254 /**
255  * xudc_wrstatus - Sets up the usb device status stages.
256  * @udc: pointer to the usb device controller structure.
257  */
258 static void xudc_wrstatus(struct xusb_udc *udc)
259 {
260         struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
261         u32 epcfgreg;
262
263         epcfgreg = udc->read_fn(udc->addr + ep0->offset)|
264                                 XUSB_EP_CFG_DATA_TOGGLE_MASK;
265         udc->write_fn(udc->addr, ep0->offset, epcfgreg);
266         udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0);
267         udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
268 }
269
270 /**
271  * xudc_epconfig - Configures the given endpoint.
272  * @ep: pointer to the usb device endpoint structure.
273  * @udc: pointer to the usb peripheral controller structure.
274  *
275  * This function configures a specific endpoint with the given configuration
276  * data.
277  */
278 static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc)
279 {
280         u32 epcfgreg;
281
282         /*
283          * Configure the end point direction, type, Max Packet Size and the
284          * EP buffer location.
285          */
286         epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) |
287                    (ep->ep_usb.maxpacket << 15) | (ep->rambase));
288         udc->write_fn(udc->addr, ep->offset, epcfgreg);
289
290         /* Set the Buffer count and the Buffer ready bits.*/
291         udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET,
292                       ep->buffer0count);
293         udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET,
294                       ep->buffer1count);
295         if (ep->buffer0ready)
296                 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
297                               1 << ep->epnumber);
298         if (ep->buffer1ready)
299                 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
300                               1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
301 }
302
303 /**
304  * xudc_start_dma - Starts DMA transfer.
305  * @ep: pointer to the usb device endpoint structure.
306  * @src: DMA source address.
307  * @dst: DMA destination address.
308  * @length: number of bytes to transfer.
309  *
310  * Return: 0 on success, error code on failure
311  *
312  * This function starts DMA transfer by writing to DMA source,
313  * destination and lenth registers.
314  */
315 static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src,
316                           dma_addr_t dst, u32 length)
317 {
318         struct xusb_udc *udc = ep->udc;
319         int rc = 0;
320         u32 timeout = 500;
321         u32 reg;
322
323         /*
324          * Set the addresses in the DMA source and
325          * destination registers and then set the length
326          * into the DMA length register.
327          */
328         udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src);
329         udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst);
330         udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length);
331
332         /*
333          * Wait till DMA transaction is complete and
334          * check whether the DMA transaction was
335          * successful.
336          */
337         do {
338                 reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET);
339                 if (!(reg &  XUSB_DMA_DMASR_BUSY))
340                         break;
341
342                 /*
343                  * We can't sleep here, because it's also called from
344                  * interrupt context.
345                  */
346                 timeout--;
347                 if (!timeout) {
348                         dev_err(udc->dev, "DMA timeout\n");
349                         return -ETIMEDOUT;
350                 }
351                 udelay(1);
352         } while (1);
353
354         if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) &
355                           XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){
356                 dev_err(udc->dev, "DMA Error\n");
357                 rc = -EINVAL;
358         }
359
360         return rc;
361 }
362
363 /**
364  * xudc_dma_send - Sends IN data using DMA.
365  * @ep: pointer to the usb device endpoint structure.
366  * @req: pointer to the usb request structure.
367  * @buffer: pointer to data to be sent.
368  * @length: number of bytes to send.
369  *
370  * Return: 0 on success, -EAGAIN if no buffer is free and error
371  *         code on failure.
372  *
373  * This function sends data using DMA.
374  */
375 static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req,
376                          u8 *buffer, u32 length)
377 {
378         u32 *eprambase;
379         dma_addr_t src;
380         dma_addr_t dst;
381         struct xusb_udc *udc = ep->udc;
382
383         src = req->usb_req.dma + req->usb_req.actual;
384         if (req->usb_req.length)
385                 dma_sync_single_for_device(udc->dev, src,
386                                            length, DMA_TO_DEVICE);
387         if (!ep->curbufnum && !ep->buffer0ready) {
388                 /* Get the Buffer address and copy the transmit data.*/
389                 eprambase = (u32 __force *)(udc->addr + ep->rambase);
390                 dst = virt_to_phys(eprambase);
391                 udc->write_fn(udc->addr, ep->offset +
392                               XUSB_EP_BUF0COUNT_OFFSET, length);
393                 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
394                               XUSB_DMA_BRR_CTRL | (1 << ep->epnumber));
395                 ep->buffer0ready = 1;
396                 ep->curbufnum = 1;
397         } else if (ep->curbufnum && !ep->buffer1ready) {
398                 /* Get the Buffer address and copy the transmit data.*/
399                 eprambase = (u32 __force *)(udc->addr + ep->rambase +
400                              ep->ep_usb.maxpacket);
401                 dst = virt_to_phys(eprambase);
402                 udc->write_fn(udc->addr, ep->offset +
403                               XUSB_EP_BUF1COUNT_OFFSET, length);
404                 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
405                               XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber +
406                               XUSB_STATUS_EP_BUFF2_SHIFT)));
407                 ep->buffer1ready = 1;
408                 ep->curbufnum = 0;
409         } else {
410                 /* None of ping pong buffers are ready currently .*/
411                 return -EAGAIN;
412         }
413
414         return xudc_start_dma(ep, src, dst, length);
415 }
416
417 /**
418  * xudc_dma_receive - Receives OUT data using DMA.
419  * @ep: pointer to the usb device endpoint structure.
420  * @req: pointer to the usb request structure.
421  * @buffer: pointer to storage buffer of received data.
422  * @length: number of bytes to receive.
423  *
424  * Return: 0 on success, -EAGAIN if no buffer is free and error
425  *         code on failure.
426  *
427  * This function receives data using DMA.
428  */
429 static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req,
430                             u8 *buffer, u32 length)
431 {
432         u32 *eprambase;
433         dma_addr_t src;
434         dma_addr_t dst;
435         struct xusb_udc *udc = ep->udc;
436
437         dst = req->usb_req.dma + req->usb_req.actual;
438         if (!ep->curbufnum && !ep->buffer0ready) {
439                 /* Get the Buffer address and copy the transmit data */
440                 eprambase = (u32 __force *)(udc->addr + ep->rambase);
441                 src = virt_to_phys(eprambase);
442                 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
443                               XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
444                               (1 << ep->epnumber));
445                 ep->buffer0ready = 1;
446                 ep->curbufnum = 1;
447         } else if (ep->curbufnum && !ep->buffer1ready) {
448                 /* Get the Buffer address and copy the transmit data */
449                 eprambase = (u32 __force *)(udc->addr +
450                              ep->rambase + ep->ep_usb.maxpacket);
451                 src = virt_to_phys(eprambase);
452                 udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
453                               XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
454                               (1 << (ep->epnumber +
455                               XUSB_STATUS_EP_BUFF2_SHIFT)));
456                 ep->buffer1ready = 1;
457                 ep->curbufnum = 0;
458         } else {
459                 /* None of the ping-pong buffers are ready currently */
460                 return -EAGAIN;
461         }
462
463         return xudc_start_dma(ep, src, dst, length);
464 }
465
466 /**
467  * xudc_eptxrx - Transmits or receives data to or from an endpoint.
468  * @ep: pointer to the usb endpoint configuration structure.
469  * @req: pointer to the usb request structure.
470  * @bufferptr: pointer to buffer containing the data to be sent.
471  * @bufferlen: The number of data bytes to be sent.
472  *
473  * Return: 0 on success, -EAGAIN if no buffer is free.
474  *
475  * This function copies the transmit/receive data to/from the end point buffer
476  * and enables the buffer for transmission/reception.
477  */
478 static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req,
479                        u8 *bufferptr, u32 bufferlen)
480 {
481         u32 *eprambase;
482         u32 bytestosend;
483         int rc = 0;
484         struct xusb_udc *udc = ep->udc;
485
486         bytestosend = bufferlen;
487         if (udc->dma_enabled) {
488                 if (ep->is_in)
489                         rc = xudc_dma_send(ep, req, bufferptr, bufferlen);
490                 else
491                         rc = xudc_dma_receive(ep, req, bufferptr, bufferlen);
492                 return rc;
493         }
494         /* Put the transmit buffer into the correct ping-pong buffer.*/
495         if (!ep->curbufnum && !ep->buffer0ready) {
496                 /* Get the Buffer address and copy the transmit data.*/
497                 eprambase = (u32 __force *)(udc->addr + ep->rambase);
498                 if (ep->is_in) {
499                         memcpy(eprambase, bufferptr, bytestosend);
500                         udc->write_fn(udc->addr, ep->offset +
501                                       XUSB_EP_BUF0COUNT_OFFSET, bufferlen);
502                 } else {
503                         memcpy(bufferptr, eprambase, bytestosend);
504                 }
505                 /*
506                  * Enable the buffer for transmission.
507                  */
508                 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
509                               1 << ep->epnumber);
510                 ep->buffer0ready = 1;
511                 ep->curbufnum = 1;
512         } else if (ep->curbufnum && !ep->buffer1ready) {
513                 /* Get the Buffer address and copy the transmit data.*/
514                 eprambase = (u32 __force *)(udc->addr + ep->rambase +
515                              ep->ep_usb.maxpacket);
516                 if (ep->is_in) {
517                         memcpy(eprambase, bufferptr, bytestosend);
518                         udc->write_fn(udc->addr, ep->offset +
519                                       XUSB_EP_BUF1COUNT_OFFSET, bufferlen);
520                 } else {
521                         memcpy(bufferptr, eprambase, bytestosend);
522                 }
523                 /*
524                  * Enable the buffer for transmission.
525                  */
526                 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
527                               1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
528                 ep->buffer1ready = 1;
529                 ep->curbufnum = 0;
530         } else {
531                 /* None of the ping-pong buffers are ready currently */
532                 return -EAGAIN;
533         }
534         return rc;
535 }
536
537 /**
538  * xudc_done - Exeutes the endpoint data transfer completion tasks.
539  * @ep: pointer to the usb device endpoint structure.
540  * @req: pointer to the usb request structure.
541  * @status: Status of the data transfer.
542  *
543  * Deletes the message from the queue and updates data transfer completion
544  * status.
545  */
546 static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status)
547 {
548         struct xusb_udc *udc = ep->udc;
549
550         list_del_init(&req->queue);
551
552         if (req->usb_req.status == -EINPROGRESS)
553                 req->usb_req.status = status;
554         else
555                 status = req->usb_req.status;
556
557         if (status && status != -ESHUTDOWN)
558                 dev_dbg(udc->dev, "%s done %p, status %d\n",
559                         ep->ep_usb.name, req, status);
560         /* unmap request if DMA is present*/
561         if (udc->dma_enabled && ep->epnumber && req->usb_req.length)
562                 usb_gadget_unmap_request(&udc->gadget, &req->usb_req,
563                                          ep->is_in);
564
565         if (req->usb_req.complete) {
566                 spin_unlock(&udc->lock);
567                 req->usb_req.complete(&ep->ep_usb, &req->usb_req);
568                 spin_lock(&udc->lock);
569         }
570 }
571
572 /**
573  * xudc_read_fifo - Reads the data from the given endpoint buffer.
574  * @ep: pointer to the usb device endpoint structure.
575  * @req: pointer to the usb request structure.
576  *
577  * Return: 0 if request is completed and -EAGAIN if not completed.
578  *
579  * Pulls OUT packet data from the endpoint buffer.
580  */
581 static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req)
582 {
583         u8 *buf;
584         u32 is_short, count, bufferspace;
585         u8 bufoffset;
586         u8 two_pkts = 0;
587         int ret;
588         int retval = -EAGAIN;
589         struct xusb_udc *udc = ep->udc;
590
591         if (ep->buffer0ready && ep->buffer1ready) {
592                 dev_dbg(udc->dev, "Packet NOT ready!\n");
593                 return retval;
594         }
595 top:
596         if (ep->curbufnum)
597                 bufoffset = XUSB_EP_BUF1COUNT_OFFSET;
598         else
599                 bufoffset = XUSB_EP_BUF0COUNT_OFFSET;
600
601         count = udc->read_fn(udc->addr + ep->offset + bufoffset);
602
603         if (!ep->buffer0ready && !ep->buffer1ready)
604                 two_pkts = 1;
605
606         buf = req->usb_req.buf + req->usb_req.actual;
607         prefetchw(buf);
608         bufferspace = req->usb_req.length - req->usb_req.actual;
609         is_short = count < ep->ep_usb.maxpacket;
610
611         if (unlikely(!bufferspace)) {
612                 /*
613                  * This happens when the driver's buffer
614                  * is smaller than what the host sent.
615                  * discard the extra data.
616                  */
617                 if (req->usb_req.status != -EOVERFLOW)
618                         dev_dbg(udc->dev, "%s overflow %d\n",
619                                 ep->ep_usb.name, count);
620                 req->usb_req.status = -EOVERFLOW;
621                 xudc_done(ep, req, -EOVERFLOW);
622                 return 0;
623         }
624
625         ret = xudc_eptxrx(ep, req, buf, count);
626         switch (ret) {
627         case 0:
628                 req->usb_req.actual += min(count, bufferspace);
629                 dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n",
630                         ep->ep_usb.name, count, is_short ? "/S" : "", req,
631                         req->usb_req.actual, req->usb_req.length);
632                 bufferspace -= count;
633                 /* Completion */
634                 if ((req->usb_req.actual == req->usb_req.length) || is_short) {
635                         if (udc->dma_enabled && req->usb_req.length)
636                                 dma_sync_single_for_cpu(udc->dev,
637                                                         req->usb_req.dma,
638                                                         req->usb_req.actual,
639                                                         DMA_FROM_DEVICE);
640                         xudc_done(ep, req, 0);
641                         return 0;
642                 }
643                 if (two_pkts) {
644                         two_pkts = 0;
645                         goto top;
646                 }
647                 break;
648         case -EAGAIN:
649                 dev_dbg(udc->dev, "receive busy\n");
650                 break;
651         case -EINVAL:
652         case -ETIMEDOUT:
653                 /* DMA error, dequeue the request */
654                 xudc_done(ep, req, -ECONNRESET);
655                 retval = 0;
656                 break;
657         }
658
659         return retval;
660 }
661
662 /**
663  * xudc_write_fifo - Writes data into the given endpoint buffer.
664  * @ep: pointer to the usb device endpoint structure.
665  * @req: pointer to the usb request structure.
666  *
667  * Return: 0 if request is completed and -EAGAIN if not completed.
668  *
669  * Loads endpoint buffer for an IN packet.
670  */
671 static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req)
672 {
673         u32 max;
674         u32 length;
675         int ret;
676         int retval = -EAGAIN;
677         struct xusb_udc *udc = ep->udc;
678         int is_last, is_short = 0;
679         u8 *buf;
680
681         max = le16_to_cpu(ep->desc->wMaxPacketSize);
682         buf = req->usb_req.buf + req->usb_req.actual;
683         prefetch(buf);
684         length = req->usb_req.length - req->usb_req.actual;
685         length = min(length, max);
686
687         ret = xudc_eptxrx(ep, req, buf, length);
688         switch (ret) {
689         case 0:
690                 req->usb_req.actual += length;
691                 if (unlikely(length != max)) {
692                         is_last = is_short = 1;
693                 } else {
694                         if (likely(req->usb_req.length !=
695                                    req->usb_req.actual) || req->usb_req.zero)
696                                 is_last = 0;
697                         else
698                                 is_last = 1;
699                 }
700                 dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n",
701                         __func__, ep->ep_usb.name, length, is_last ? "/L" : "",
702                         is_short ? "/S" : "",
703                         req->usb_req.length - req->usb_req.actual, req);
704                 /* completion */
705                 if (is_last) {
706                         xudc_done(ep, req, 0);
707                         retval = 0;
708                 }
709                 break;
710         case -EAGAIN:
711                 dev_dbg(udc->dev, "Send busy\n");
712                 break;
713         case -EINVAL:
714         case -ETIMEDOUT:
715                 /* DMA error, dequeue the request */
716                 xudc_done(ep, req, -ECONNRESET);
717                 retval = 0;
718                 break;
719         }
720
721         return retval;
722 }
723
724 /**
725  * xudc_nuke - Cleans up the data transfer message list.
726  * @ep: pointer to the usb device endpoint structure.
727  * @status: Status of the data transfer.
728  */
729 static void xudc_nuke(struct xusb_ep *ep, int status)
730 {
731         struct xusb_req *req;
732
733         while (!list_empty(&ep->queue)) {
734                 req = list_first_entry(&ep->queue, struct xusb_req, queue);
735                 xudc_done(ep, req, status);
736         }
737 }
738
739 /**
740  * xudc_ep_set_halt - Stalls/unstalls the given endpoint.
741  * @_ep: pointer to the usb device endpoint structure.
742  * @value: value to indicate stall/unstall.
743  *
744  * Return: 0 for success and error value on failure
745  */
746 static int xudc_ep_set_halt(struct usb_ep *_ep, int value)
747 {
748         struct xusb_ep *ep = to_xusb_ep(_ep);
749         struct xusb_udc *udc;
750         unsigned long flags;
751         u32 epcfgreg;
752
753         if (!_ep || (!ep->desc && ep->epnumber)) {
754                 pr_debug("%s: bad ep or descriptor\n", __func__);
755                 return -EINVAL;
756         }
757         udc = ep->udc;
758
759         if (ep->is_in && (!list_empty(&ep->queue)) && value) {
760                 dev_dbg(udc->dev, "requests pending can't halt\n");
761                 return -EAGAIN;
762         }
763
764         if (ep->buffer0ready || ep->buffer1ready) {
765                 dev_dbg(udc->dev, "HW buffers busy can't halt\n");
766                 return -EAGAIN;
767         }
768
769         spin_lock_irqsave(&udc->lock, flags);
770
771         if (value) {
772                 /* Stall the device.*/
773                 epcfgreg = udc->read_fn(udc->addr + ep->offset);
774                 epcfgreg |= XUSB_EP_CFG_STALL_MASK;
775                 udc->write_fn(udc->addr, ep->offset, epcfgreg);
776         } else {
777                 /* Unstall the device.*/
778                 epcfgreg = udc->read_fn(udc->addr + ep->offset);
779                 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
780                 udc->write_fn(udc->addr, ep->offset, epcfgreg);
781                 if (ep->epnumber) {
782                         /* Reset the toggle bit.*/
783                         epcfgreg = udc->read_fn(ep->udc->addr + ep->offset);
784                         epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
785                         udc->write_fn(udc->addr, ep->offset, epcfgreg);
786                 }
787         }
788
789         spin_unlock_irqrestore(&udc->lock, flags);
790         return 0;
791 }
792
793 /**
794  * xudc_ep_enable - Enables the given endpoint.
795  * @ep: pointer to the xusb endpoint structure.
796  * @desc: pointer to usb endpoint descriptor.
797  *
798  * Return: 0 for success and error value on failure
799  */
800 static int __xudc_ep_enable(struct xusb_ep *ep,
801                             const struct usb_endpoint_descriptor *desc)
802 {
803         struct xusb_udc *udc = ep->udc;
804         u32 tmp;
805         u32 epcfg;
806         u32 ier;
807         u16 maxpacket;
808
809         ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0);
810         /* Bit 3...0:endpoint number */
811         ep->epnumber = (desc->bEndpointAddress & 0x0f);
812         ep->desc = desc;
813         ep->ep_usb.desc = desc;
814         tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
815         ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize);
816
817         switch (tmp) {
818         case USB_ENDPOINT_XFER_CONTROL:
819                 dev_dbg(udc->dev, "only one control endpoint\n");
820                 /* NON- ISO */
821                 ep->is_iso = 0;
822                 return -EINVAL;
823         case USB_ENDPOINT_XFER_INT:
824                 /* NON- ISO */
825                 ep->is_iso = 0;
826                 if (maxpacket > 64) {
827                         dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
828                         return -EINVAL;
829                 }
830                 break;
831         case USB_ENDPOINT_XFER_BULK:
832                 /* NON- ISO */
833                 ep->is_iso = 0;
834                 if (!(is_power_of_2(maxpacket) && maxpacket >= 8 &&
835                                 maxpacket <= 512)) {
836                         dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
837                         return -EINVAL;
838                 }
839                 break;
840         case USB_ENDPOINT_XFER_ISOC:
841                 /* ISO */
842                 ep->is_iso = 1;
843                 break;
844         }
845
846         ep->buffer0ready = 0;
847         ep->buffer1ready = 0;
848         ep->curbufnum = 0;
849         ep->rambase = rambase[ep->epnumber];
850         xudc_epconfig(ep, udc);
851
852         dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n",
853                 ep->epnumber, maxpacket);
854
855         /* Enable the End point.*/
856         epcfg = udc->read_fn(udc->addr + ep->offset);
857         epcfg |= XUSB_EP_CFG_VALID_MASK;
858         udc->write_fn(udc->addr, ep->offset, epcfg);
859         if (ep->epnumber)
860                 ep->rambase <<= 2;
861
862         /* Enable buffer completion interrupts for endpoint */
863         ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
864         ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber);
865         udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
866
867         /* for OUT endpoint set buffers ready to receive */
868         if (ep->epnumber && !ep->is_in) {
869                 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
870                               1 << ep->epnumber);
871                 ep->buffer0ready = 1;
872                 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
873                              (1 << (ep->epnumber +
874                               XUSB_STATUS_EP_BUFF2_SHIFT)));
875                 ep->buffer1ready = 1;
876         }
877
878         return 0;
879 }
880
881 /**
882  * xudc_ep_enable - Enables the given endpoint.
883  * @_ep: pointer to the usb endpoint structure.
884  * @desc: pointer to usb endpoint descriptor.
885  *
886  * Return: 0 for success and error value on failure
887  */
888 static int xudc_ep_enable(struct usb_ep *_ep,
889                           const struct usb_endpoint_descriptor *desc)
890 {
891         struct xusb_ep *ep;
892         struct xusb_udc *udc;
893         unsigned long flags;
894         int ret;
895
896         if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) {
897                 pr_debug("%s: bad ep or descriptor\n", __func__);
898                 return -EINVAL;
899         }
900
901         ep = to_xusb_ep(_ep);
902         udc = ep->udc;
903
904         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
905                 dev_dbg(udc->dev, "bogus device state\n");
906                 return -ESHUTDOWN;
907         }
908
909         spin_lock_irqsave(&udc->lock, flags);
910         ret = __xudc_ep_enable(ep, desc);
911         spin_unlock_irqrestore(&udc->lock, flags);
912
913         return ret;
914 }
915
916 /**
917  * xudc_ep_disable - Disables the given endpoint.
918  * @_ep: pointer to the usb endpoint structure.
919  *
920  * Return: 0 for success and error value on failure
921  */
922 static int xudc_ep_disable(struct usb_ep *_ep)
923 {
924         struct xusb_ep *ep;
925         unsigned long flags;
926         u32 epcfg;
927         struct xusb_udc *udc;
928
929         if (!_ep) {
930                 pr_debug("%s: invalid ep\n", __func__);
931                 return -EINVAL;
932         }
933
934         ep = to_xusb_ep(_ep);
935         udc = ep->udc;
936
937         spin_lock_irqsave(&udc->lock, flags);
938
939         xudc_nuke(ep, -ESHUTDOWN);
940
941         /* Restore the endpoint's pristine config */
942         ep->desc = NULL;
943         ep->ep_usb.desc = NULL;
944
945         dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber);
946         /* Disable the endpoint.*/
947         epcfg = udc->read_fn(udc->addr + ep->offset);
948         epcfg &= ~XUSB_EP_CFG_VALID_MASK;
949         udc->write_fn(udc->addr, ep->offset, epcfg);
950
951         spin_unlock_irqrestore(&udc->lock, flags);
952         return 0;
953 }
954
955 /**
956  * xudc_ep_alloc_request - Initializes the request queue.
957  * @_ep: pointer to the usb endpoint structure.
958  * @gfp_flags: Flags related to the request call.
959  *
960  * Return: pointer to request structure on success and a NULL on failure.
961  */
962 static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep,
963                                                  gfp_t gfp_flags)
964 {
965         struct xusb_ep *ep = to_xusb_ep(_ep);
966         struct xusb_req *req;
967
968         req = kzalloc(sizeof(*req), gfp_flags);
969         if (!req)
970                 return NULL;
971
972         req->ep = ep;
973         INIT_LIST_HEAD(&req->queue);
974         return &req->usb_req;
975 }
976
977 /**
978  * xudc_free_request - Releases the request from queue.
979  * @_ep: pointer to the usb device endpoint structure.
980  * @_req: pointer to the usb request structure.
981  */
982 static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req)
983 {
984         struct xusb_req *req = to_xusb_req(_req);
985
986         kfree(req);
987 }
988
989 /**
990  * xudc_ep0_queue - Adds the request to endpoint 0 queue.
991  * @ep0: pointer to the xusb endpoint 0 structure.
992  * @req: pointer to the xusb request structure.
993  *
994  * Return: 0 for success and error value on failure
995  */
996 static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req)
997 {
998         struct xusb_udc *udc = ep0->udc;
999         u32 length;
1000         u8 *corebuf;
1001
1002         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1003                 dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1004                 return -EINVAL;
1005         }
1006         if (!list_empty(&ep0->queue)) {
1007                 dev_dbg(udc->dev, "%s:ep0 busy\n", __func__);
1008                 return -EBUSY;
1009         }
1010
1011         req->usb_req.status = -EINPROGRESS;
1012         req->usb_req.actual = 0;
1013
1014         list_add_tail(&req->queue, &ep0->queue);
1015
1016         if (udc->setup.bRequestType & USB_DIR_IN) {
1017                 prefetch(req->usb_req.buf);
1018                 length = req->usb_req.length;
1019                 corebuf = (void __force *) ((ep0->rambase << 2) +
1020                            udc->addr);
1021                 length = req->usb_req.actual = min_t(u32, length,
1022                                                      EP0_MAX_PACKET);
1023                 memcpy(corebuf, req->usb_req.buf, length);
1024                 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length);
1025                 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1026         } else {
1027                 if (udc->setup.wLength) {
1028                         /* Enable EP0 buffer to receive data */
1029                         udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1030                         udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1031                 } else {
1032                         xudc_wrstatus(udc);
1033                 }
1034         }
1035
1036         return 0;
1037 }
1038
1039 /**
1040  * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1041  * @_ep: pointer to the usb endpoint 0 structure.
1042  * @_req: pointer to the usb request structure.
1043  * @gfp_flags: Flags related to the request call.
1044  *
1045  * Return: 0 for success and error value on failure
1046  */
1047 static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req,
1048                           gfp_t gfp_flags)
1049 {
1050         struct xusb_req *req    = to_xusb_req(_req);
1051         struct xusb_ep  *ep0    = to_xusb_ep(_ep);
1052         struct xusb_udc *udc    = ep0->udc;
1053         unsigned long flags;
1054         int ret;
1055
1056         spin_lock_irqsave(&udc->lock, flags);
1057         ret = __xudc_ep0_queue(ep0, req);
1058         spin_unlock_irqrestore(&udc->lock, flags);
1059
1060         return ret;
1061 }
1062
1063 /**
1064  * xudc_ep_queue - Adds the request to endpoint queue.
1065  * @_ep: pointer to the usb endpoint structure.
1066  * @_req: pointer to the usb request structure.
1067  * @gfp_flags: Flags related to the request call.
1068  *
1069  * Return: 0 for success and error value on failure
1070  */
1071 static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1072                          gfp_t gfp_flags)
1073 {
1074         struct xusb_req *req = to_xusb_req(_req);
1075         struct xusb_ep  *ep  = to_xusb_ep(_ep);
1076         struct xusb_udc *udc = ep->udc;
1077         int  ret;
1078         unsigned long flags;
1079
1080         if (!ep->desc) {
1081                 dev_dbg(udc->dev, "%s: queuing request to disabled %s\n",
1082                         __func__, ep->name);
1083                 return -ESHUTDOWN;
1084         }
1085
1086         if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1087                 dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1088                 return -EINVAL;
1089         }
1090
1091         spin_lock_irqsave(&udc->lock, flags);
1092
1093         _req->status = -EINPROGRESS;
1094         _req->actual = 0;
1095
1096         if (udc->dma_enabled) {
1097                 ret = usb_gadget_map_request(&udc->gadget, &req->usb_req,
1098                                              ep->is_in);
1099                 if (ret) {
1100                         dev_dbg(udc->dev, "gadget_map failed ep%d\n",
1101                                 ep->epnumber);
1102                         spin_unlock_irqrestore(&udc->lock, flags);
1103                         return -EAGAIN;
1104                 }
1105         }
1106
1107         if (list_empty(&ep->queue)) {
1108                 if (ep->is_in) {
1109                         dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n");
1110                         if (!xudc_write_fifo(ep, req))
1111                                 req = NULL;
1112                 } else {
1113                         dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n");
1114                         if (!xudc_read_fifo(ep, req))
1115                                 req = NULL;
1116                 }
1117         }
1118
1119         if (req != NULL)
1120                 list_add_tail(&req->queue, &ep->queue);
1121
1122         spin_unlock_irqrestore(&udc->lock, flags);
1123         return 0;
1124 }
1125
1126 /**
1127  * xudc_ep_dequeue - Removes the request from the queue.
1128  * @_ep: pointer to the usb device endpoint structure.
1129  * @_req: pointer to the usb request structure.
1130  *
1131  * Return: 0 for success and error value on failure
1132  */
1133 static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1134 {
1135         struct xusb_ep *ep      = to_xusb_ep(_ep);
1136         struct xusb_req *req    = to_xusb_req(_req);
1137         struct xusb_udc *udc    = ep->udc;
1138         unsigned long flags;
1139
1140         spin_lock_irqsave(&udc->lock, flags);
1141         /* Make sure it's actually queued on this endpoint */
1142         list_for_each_entry(req, &ep->queue, queue) {
1143                 if (&req->usb_req == _req)
1144                         break;
1145         }
1146         if (&req->usb_req != _req) {
1147                 spin_unlock_irqrestore(&udc->lock, flags);
1148                 return -EINVAL;
1149         }
1150         xudc_done(ep, req, -ECONNRESET);
1151         spin_unlock_irqrestore(&udc->lock, flags);
1152
1153         return 0;
1154 }
1155
1156 /**
1157  * xudc_ep0_enable - Enables the given endpoint.
1158  * @ep: pointer to the usb endpoint structure.
1159  * @desc: pointer to usb endpoint descriptor.
1160  *
1161  * Return: error always.
1162  *
1163  * endpoint 0 enable should not be called by gadget layer.
1164  */
1165 static int xudc_ep0_enable(struct usb_ep *ep,
1166                            const struct usb_endpoint_descriptor *desc)
1167 {
1168         return -EINVAL;
1169 }
1170
1171 /**
1172  * xudc_ep0_disable - Disables the given endpoint.
1173  * @ep: pointer to the usb endpoint structure.
1174  *
1175  * Return: error always.
1176  *
1177  * endpoint 0 disable should not be called by gadget layer.
1178  */
1179 static int xudc_ep0_disable(struct usb_ep *ep)
1180 {
1181         return -EINVAL;
1182 }
1183
1184 static const struct usb_ep_ops xusb_ep0_ops = {
1185         .enable         = xudc_ep0_enable,
1186         .disable        = xudc_ep0_disable,
1187         .alloc_request  = xudc_ep_alloc_request,
1188         .free_request   = xudc_free_request,
1189         .queue          = xudc_ep0_queue,
1190         .dequeue        = xudc_ep_dequeue,
1191         .set_halt       = xudc_ep_set_halt,
1192 };
1193
1194 static const struct usb_ep_ops xusb_ep_ops = {
1195         .enable         = xudc_ep_enable,
1196         .disable        = xudc_ep_disable,
1197         .alloc_request  = xudc_ep_alloc_request,
1198         .free_request   = xudc_free_request,
1199         .queue          = xudc_ep_queue,
1200         .dequeue        = xudc_ep_dequeue,
1201         .set_halt       = xudc_ep_set_halt,
1202 };
1203
1204 /**
1205  * xudc_get_frame - Reads the current usb frame number.
1206  * @gadget: pointer to the usb gadget structure.
1207  *
1208  * Return: current frame number for success and error value on failure.
1209  */
1210 static int xudc_get_frame(struct usb_gadget *gadget)
1211 {
1212         struct xusb_udc *udc;
1213         int frame;
1214
1215         if (!gadget)
1216                 return -ENODEV;
1217
1218         udc = to_udc(gadget);
1219         frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET);
1220         return frame;
1221 }
1222
1223 /**
1224  * xudc_wakeup - Send remote wakeup signal to host
1225  * @gadget: pointer to the usb gadget structure.
1226  *
1227  * Return: 0 on success and error on failure
1228  */
1229 static int xudc_wakeup(struct usb_gadget *gadget)
1230 {
1231         struct xusb_udc *udc = to_udc(gadget);
1232         u32 crtlreg;
1233         int status = -EINVAL;
1234         unsigned long flags;
1235
1236         spin_lock_irqsave(&udc->lock, flags);
1237
1238         /* Remote wake up not enabled by host */
1239         if (!udc->remote_wkp)
1240                 goto done;
1241
1242         crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1243         crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK;
1244         /* set remote wake up bit */
1245         udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1246         /*
1247          * wait for a while and reset remote wake up bit since this bit
1248          * is not cleared by HW after sending remote wakeup to host.
1249          */
1250         mdelay(2);
1251
1252         crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK;
1253         udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1254         status = 0;
1255 done:
1256         spin_unlock_irqrestore(&udc->lock, flags);
1257         return status;
1258 }
1259
1260 /**
1261  * xudc_pullup - start/stop USB traffic
1262  * @gadget: pointer to the usb gadget structure.
1263  * @is_on: flag to start or stop
1264  *
1265  * Return: 0 always
1266  *
1267  * This function starts/stops SIE engine of IP based on is_on.
1268  */
1269 static int xudc_pullup(struct usb_gadget *gadget, int is_on)
1270 {
1271         struct xusb_udc *udc = to_udc(gadget);
1272         unsigned long flags;
1273         u32 crtlreg;
1274
1275         spin_lock_irqsave(&udc->lock, flags);
1276
1277         crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1278         if (is_on)
1279                 crtlreg |= XUSB_CONTROL_USB_READY_MASK;
1280         else
1281                 crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
1282
1283         udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1284
1285         spin_unlock_irqrestore(&udc->lock, flags);
1286
1287         return 0;
1288 }
1289
1290 /**
1291  * xudc_eps_init - initialize endpoints.
1292  * @udc: pointer to the usb device controller structure.
1293  */
1294 static void xudc_eps_init(struct xusb_udc *udc)
1295 {
1296         u32 ep_number;
1297
1298         INIT_LIST_HEAD(&udc->gadget.ep_list);
1299
1300         for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) {
1301                 struct xusb_ep *ep = &udc->ep[ep_number];
1302
1303                 if (ep_number) {
1304                         list_add_tail(&ep->ep_usb.ep_list,
1305                                       &udc->gadget.ep_list);
1306                         usb_ep_set_maxpacket_limit(&ep->ep_usb,
1307                                                   (unsigned short) ~0);
1308                         snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number);
1309                         ep->ep_usb.name = ep->name;
1310                         ep->ep_usb.ops = &xusb_ep_ops;
1311
1312                         ep->ep_usb.caps.type_iso = true;
1313                         ep->ep_usb.caps.type_bulk = true;
1314                         ep->ep_usb.caps.type_int = true;
1315                 } else {
1316                         ep->ep_usb.name = ep0name;
1317                         usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET);
1318                         ep->ep_usb.ops = &xusb_ep0_ops;
1319
1320                         ep->ep_usb.caps.type_control = true;
1321                 }
1322
1323                 ep->ep_usb.caps.dir_in = true;
1324                 ep->ep_usb.caps.dir_out = true;
1325
1326                 ep->udc = udc;
1327                 ep->epnumber = ep_number;
1328                 ep->desc = NULL;
1329                 /*
1330                  * The configuration register address offset between
1331                  * each endpoint is 0x10.
1332                  */
1333                 ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10);
1334                 ep->is_in = 0;
1335                 ep->is_iso = 0;
1336                 ep->maxpacket = 0;
1337                 xudc_epconfig(ep, udc);
1338
1339                 /* Initialize one queue per endpoint */
1340                 INIT_LIST_HEAD(&ep->queue);
1341         }
1342 }
1343
1344 /**
1345  * xudc_stop_activity - Stops any further activity on the device.
1346  * @udc: pointer to the usb device controller structure.
1347  */
1348 static void xudc_stop_activity(struct xusb_udc *udc)
1349 {
1350         int i;
1351         struct xusb_ep *ep;
1352
1353         for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1354                 ep = &udc->ep[i];
1355                 xudc_nuke(ep, -ESHUTDOWN);
1356         }
1357 }
1358
1359 /**
1360  * xudc_start - Starts the device.
1361  * @gadget: pointer to the usb gadget structure
1362  * @driver: pointer to gadget driver structure
1363  *
1364  * Return: zero on success and error on failure
1365  */
1366 static int xudc_start(struct usb_gadget *gadget,
1367                       struct usb_gadget_driver *driver)
1368 {
1369         struct xusb_udc *udc    = to_udc(gadget);
1370         struct xusb_ep *ep0     = &udc->ep[XUSB_EP_NUMBER_ZERO];
1371         const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc;
1372         unsigned long flags;
1373         int ret = 0;
1374
1375         spin_lock_irqsave(&udc->lock, flags);
1376
1377         if (udc->driver) {
1378                 dev_err(udc->dev, "%s is already bound to %s\n",
1379                         udc->gadget.name, udc->driver->driver.name);
1380                 ret = -EBUSY;
1381                 goto err;
1382         }
1383
1384         /* hook up the driver */
1385         udc->driver = driver;
1386         udc->gadget.speed = driver->max_speed;
1387
1388         /* Enable the control endpoint. */
1389         ret = __xudc_ep_enable(ep0, desc);
1390
1391         /* Set device address and remote wakeup to 0 */
1392         udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1393         udc->remote_wkp = 0;
1394 err:
1395         spin_unlock_irqrestore(&udc->lock, flags);
1396         return ret;
1397 }
1398
1399 /**
1400  * xudc_stop - stops the device.
1401  * @gadget: pointer to the usb gadget structure
1402  * @driver: pointer to usb gadget driver structure
1403  *
1404  * Return: zero always
1405  */
1406 static int xudc_stop(struct usb_gadget *gadget)
1407 {
1408         struct xusb_udc *udc = to_udc(gadget);
1409         unsigned long flags;
1410
1411         spin_lock_irqsave(&udc->lock, flags);
1412
1413         udc->gadget.speed = USB_SPEED_UNKNOWN;
1414         udc->driver = NULL;
1415
1416         /* Set device address and remote wakeup to 0 */
1417         udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1418         udc->remote_wkp = 0;
1419
1420         xudc_stop_activity(udc);
1421
1422         spin_unlock_irqrestore(&udc->lock, flags);
1423
1424         return 0;
1425 }
1426
1427 static const struct usb_gadget_ops xusb_udc_ops = {
1428         .get_frame      = xudc_get_frame,
1429         .wakeup         = xudc_wakeup,
1430         .pullup         = xudc_pullup,
1431         .udc_start      = xudc_start,
1432         .udc_stop       = xudc_stop,
1433 };
1434
1435 /**
1436  * xudc_clear_stall_all_ep - clears stall of every endpoint.
1437  * @udc: pointer to the udc structure.
1438  */
1439 static void xudc_clear_stall_all_ep(struct xusb_udc *udc)
1440 {
1441         struct xusb_ep *ep;
1442         u32 epcfgreg;
1443         int i;
1444
1445         for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1446                 ep = &udc->ep[i];
1447                 epcfgreg = udc->read_fn(udc->addr + ep->offset);
1448                 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1449                 udc->write_fn(udc->addr, ep->offset, epcfgreg);
1450                 if (ep->epnumber) {
1451                         /* Reset the toggle bit.*/
1452                         epcfgreg = udc->read_fn(udc->addr + ep->offset);
1453                         epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
1454                         udc->write_fn(udc->addr, ep->offset, epcfgreg);
1455                 }
1456         }
1457 }
1458
1459 /**
1460  * xudc_startup_handler - The usb device controller interrupt handler.
1461  * @udc: pointer to the udc structure.
1462  * @intrstatus: The mask value containing the interrupt sources.
1463  *
1464  * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts.
1465  */
1466 static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus)
1467 {
1468         u32 intrreg;
1469
1470         if (intrstatus & XUSB_STATUS_RESET_MASK) {
1471
1472                 dev_dbg(udc->dev, "Reset\n");
1473
1474                 if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK)
1475                         udc->gadget.speed = USB_SPEED_HIGH;
1476                 else
1477                         udc->gadget.speed = USB_SPEED_FULL;
1478
1479                 xudc_stop_activity(udc);
1480                 xudc_clear_stall_all_ep(udc);
1481                 udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
1482
1483                 /* Set device address and remote wakeup to 0 */
1484                 udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1485                 udc->remote_wkp = 0;
1486
1487                 /* Enable the suspend, resume and disconnect */
1488                 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1489                 intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK |
1490                            XUSB_STATUS_DISCONNECT_MASK;
1491                 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1492         }
1493         if (intrstatus & XUSB_STATUS_SUSPEND_MASK) {
1494
1495                 dev_dbg(udc->dev, "Suspend\n");
1496
1497                 /* Enable the reset, resume and disconnect */
1498                 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1499                 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1500                            XUSB_STATUS_DISCONNECT_MASK;
1501                 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1502
1503                 udc->usb_state = USB_STATE_SUSPENDED;
1504
1505                 if (udc->driver->suspend) {
1506                         spin_unlock(&udc->lock);
1507                         udc->driver->suspend(&udc->gadget);
1508                         spin_lock(&udc->lock);
1509                 }
1510         }
1511         if (intrstatus & XUSB_STATUS_RESUME_MASK) {
1512                 bool condition = (udc->usb_state != USB_STATE_SUSPENDED);
1513
1514                 dev_WARN_ONCE(udc->dev, condition,
1515                                 "Resume IRQ while not suspended\n");
1516
1517                 dev_dbg(udc->dev, "Resume\n");
1518
1519                 /* Enable the reset, suspend and disconnect */
1520                 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1521                 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK |
1522                            XUSB_STATUS_DISCONNECT_MASK;
1523                 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1524
1525                 udc->usb_state = 0;
1526
1527                 if (udc->driver->resume) {
1528                         spin_unlock(&udc->lock);
1529                         udc->driver->resume(&udc->gadget);
1530                         spin_lock(&udc->lock);
1531                 }
1532         }
1533         if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) {
1534
1535                 dev_dbg(udc->dev, "Disconnect\n");
1536
1537                 /* Enable the reset, resume and suspend */
1538                 intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1539                 intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1540                            XUSB_STATUS_SUSPEND_MASK;
1541                 udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1542
1543                 if (udc->driver && udc->driver->disconnect) {
1544                         spin_unlock(&udc->lock);
1545                         udc->driver->disconnect(&udc->gadget);
1546                         spin_lock(&udc->lock);
1547                 }
1548         }
1549 }
1550
1551 /**
1552  * xudc_ep0_stall - Stall endpoint zero.
1553  * @udc: pointer to the udc structure.
1554  *
1555  * This function stalls endpoint zero.
1556  */
1557 static void xudc_ep0_stall(struct xusb_udc *udc)
1558 {
1559         u32 epcfgreg;
1560         struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1561
1562         epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1563         epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1564         udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1565 }
1566
1567 /**
1568  * xudc_setaddress - executes SET_ADDRESS command
1569  * @udc: pointer to the udc structure.
1570  *
1571  * This function executes USB SET_ADDRESS command
1572  */
1573 static void xudc_setaddress(struct xusb_udc *udc)
1574 {
1575         struct xusb_ep *ep0     = &udc->ep[0];
1576         struct xusb_req *req    = udc->req;
1577         int ret;
1578
1579         req->usb_req.length = 0;
1580         ret = __xudc_ep0_queue(ep0, req);
1581         if (ret == 0)
1582                 return;
1583
1584         dev_err(udc->dev, "Can't respond to SET ADDRESS request\n");
1585         xudc_ep0_stall(udc);
1586 }
1587
1588 /**
1589  * xudc_getstatus - executes GET_STATUS command
1590  * @udc: pointer to the udc structure.
1591  *
1592  * This function executes USB GET_STATUS command
1593  */
1594 static void xudc_getstatus(struct xusb_udc *udc)
1595 {
1596         struct xusb_ep *ep0     = &udc->ep[0];
1597         struct xusb_req *req    = udc->req;
1598         struct xusb_ep *target_ep;
1599         u16 status = 0;
1600         u32 epcfgreg;
1601         int epnum;
1602         u32 halt;
1603         int ret;
1604
1605         switch (udc->setup.bRequestType & USB_RECIP_MASK) {
1606         case USB_RECIP_DEVICE:
1607                 /* Get device status */
1608                 status = 1 << USB_DEVICE_SELF_POWERED;
1609                 if (udc->remote_wkp)
1610                         status |= (1 << USB_DEVICE_REMOTE_WAKEUP);
1611                 break;
1612         case USB_RECIP_INTERFACE:
1613                 break;
1614         case USB_RECIP_ENDPOINT:
1615                 epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1616                 target_ep = &udc->ep[epnum];
1617                 epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1618                 halt = epcfgreg & XUSB_EP_CFG_STALL_MASK;
1619                 if (udc->setup.wIndex & USB_DIR_IN) {
1620                         if (!target_ep->is_in)
1621                                 goto stall;
1622                 } else {
1623                         if (target_ep->is_in)
1624                                 goto stall;
1625                 }
1626                 if (halt)
1627                         status = 1 << USB_ENDPOINT_HALT;
1628                 break;
1629         default:
1630                 goto stall;
1631         }
1632
1633         req->usb_req.length = 2;
1634         *(u16 *)req->usb_req.buf = cpu_to_le16(status);
1635         ret = __xudc_ep0_queue(ep0, req);
1636         if (ret == 0)
1637                 return;
1638 stall:
1639         dev_err(udc->dev, "Can't respond to getstatus request\n");
1640         xudc_ep0_stall(udc);
1641 }
1642
1643 /**
1644  * xudc_set_clear_feature - Executes the set feature and clear feature commands.
1645  * @udc: pointer to the usb device controller structure.
1646  *
1647  * Processes the SET_FEATURE and CLEAR_FEATURE commands.
1648  */
1649 static void xudc_set_clear_feature(struct xusb_udc *udc)
1650 {
1651         struct xusb_ep *ep0     = &udc->ep[0];
1652         struct xusb_req *req    = udc->req;
1653         struct xusb_ep *target_ep;
1654         u8 endpoint;
1655         u8 outinbit;
1656         u32 epcfgreg;
1657         int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0);
1658         int ret;
1659
1660         switch (udc->setup.bRequestType) {
1661         case USB_RECIP_DEVICE:
1662                 switch (udc->setup.wValue) {
1663                 case USB_DEVICE_TEST_MODE:
1664                         /*
1665                          * The Test Mode will be executed
1666                          * after the status phase.
1667                          */
1668                         break;
1669                 case USB_DEVICE_REMOTE_WAKEUP:
1670                         if (flag)
1671                                 udc->remote_wkp = 1;
1672                         else
1673                                 udc->remote_wkp = 0;
1674                         break;
1675                 default:
1676                         xudc_ep0_stall(udc);
1677                         break;
1678                 }
1679                 break;
1680         case USB_RECIP_ENDPOINT:
1681                 if (!udc->setup.wValue) {
1682                         endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1683                         target_ep = &udc->ep[endpoint];
1684                         outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK;
1685                         outinbit = outinbit >> 7;
1686
1687                         /* Make sure direction matches.*/
1688                         if (outinbit != target_ep->is_in) {
1689                                 xudc_ep0_stall(udc);
1690                                 return;
1691                         }
1692                         epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1693                         if (!endpoint) {
1694                                 /* Clear the stall.*/
1695                                 epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1696                                 udc->write_fn(udc->addr,
1697                                               target_ep->offset, epcfgreg);
1698                         } else {
1699                                 if (flag) {
1700                                         epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1701                                         udc->write_fn(udc->addr,
1702                                                       target_ep->offset,
1703                                                       epcfgreg);
1704                                 } else {
1705                                         /* Unstall the endpoint.*/
1706                                         epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK |
1707                                                 XUSB_EP_CFG_DATA_TOGGLE_MASK);
1708                                         udc->write_fn(udc->addr,
1709                                                       target_ep->offset,
1710                                                       epcfgreg);
1711                                 }
1712                         }
1713                 }
1714                 break;
1715         default:
1716                 xudc_ep0_stall(udc);
1717                 return;
1718         }
1719
1720         req->usb_req.length = 0;
1721         ret = __xudc_ep0_queue(ep0, req);
1722         if (ret == 0)
1723                 return;
1724
1725         dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n");
1726         xudc_ep0_stall(udc);
1727 }
1728
1729 /**
1730  * xudc_handle_setup - Processes the setup packet.
1731  * @udc: pointer to the usb device controller structure.
1732  *
1733  * Process setup packet and delegate to gadget layer.
1734  */
1735 static void xudc_handle_setup(struct xusb_udc *udc)
1736 {
1737         struct xusb_ep *ep0 = &udc->ep[0];
1738         struct usb_ctrlrequest setup;
1739         u32 *ep0rambase;
1740
1741         /* Load up the chapter 9 command buffer.*/
1742         ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET);
1743         memcpy(&setup, ep0rambase, 8);
1744
1745         udc->setup = setup;
1746         udc->setup.wValue = cpu_to_le16(setup.wValue);
1747         udc->setup.wIndex = cpu_to_le16(setup.wIndex);
1748         udc->setup.wLength = cpu_to_le16(setup.wLength);
1749
1750         /* Clear previous requests */
1751         xudc_nuke(ep0, -ECONNRESET);
1752
1753         if (udc->setup.bRequestType & USB_DIR_IN) {
1754                 /* Execute the get command.*/
1755                 udc->setupseqrx = STATUS_PHASE;
1756                 udc->setupseqtx = DATA_PHASE;
1757         } else {
1758                 /* Execute the put command.*/
1759                 udc->setupseqrx = DATA_PHASE;
1760                 udc->setupseqtx = STATUS_PHASE;
1761         }
1762
1763         switch (udc->setup.bRequest) {
1764         case USB_REQ_GET_STATUS:
1765                 /* Data+Status phase form udc */
1766                 if ((udc->setup.bRequestType &
1767                                 (USB_DIR_IN | USB_TYPE_MASK)) !=
1768                                 (USB_DIR_IN | USB_TYPE_STANDARD))
1769                         break;
1770                 xudc_getstatus(udc);
1771                 return;
1772         case USB_REQ_SET_ADDRESS:
1773                 /* Status phase from udc */
1774                 if (udc->setup.bRequestType != (USB_DIR_OUT |
1775                                 USB_TYPE_STANDARD | USB_RECIP_DEVICE))
1776                         break;
1777                 xudc_setaddress(udc);
1778                 return;
1779         case USB_REQ_CLEAR_FEATURE:
1780         case USB_REQ_SET_FEATURE:
1781                 /* Requests with no data phase, status phase from udc */
1782                 if ((udc->setup.bRequestType & USB_TYPE_MASK)
1783                                 != USB_TYPE_STANDARD)
1784                         break;
1785                 xudc_set_clear_feature(udc);
1786                 return;
1787         default:
1788                 break;
1789         }
1790
1791         spin_unlock(&udc->lock);
1792         if (udc->driver->setup(&udc->gadget, &setup) < 0)
1793                 xudc_ep0_stall(udc);
1794         spin_lock(&udc->lock);
1795 }
1796
1797 /**
1798  * xudc_ep0_out - Processes the endpoint 0 OUT token.
1799  * @udc: pointer to the usb device controller structure.
1800  */
1801 static void xudc_ep0_out(struct xusb_udc *udc)
1802 {
1803         struct xusb_ep *ep0 = &udc->ep[0];
1804         struct xusb_req *req;
1805         u8 *ep0rambase;
1806         unsigned int bytes_to_rx;
1807         void *buffer;
1808
1809         req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1810
1811         switch (udc->setupseqrx) {
1812         case STATUS_PHASE:
1813                 /*
1814                  * This resets both state machines for the next
1815                  * Setup packet.
1816                  */
1817                 udc->setupseqrx = SETUP_PHASE;
1818                 udc->setupseqtx = SETUP_PHASE;
1819                 req->usb_req.actual = req->usb_req.length;
1820                 xudc_done(ep0, req, 0);
1821                 break;
1822         case DATA_PHASE:
1823                 bytes_to_rx = udc->read_fn(udc->addr +
1824                                            XUSB_EP_BUF0COUNT_OFFSET);
1825                 /* Copy the data to be received from the DPRAM. */
1826                 ep0rambase = (u8 __force *) (udc->addr +
1827                              (ep0->rambase << 2));
1828                 buffer = req->usb_req.buf + req->usb_req.actual;
1829                 req->usb_req.actual = req->usb_req.actual + bytes_to_rx;
1830                 memcpy(buffer, ep0rambase, bytes_to_rx);
1831
1832                 if (req->usb_req.length == req->usb_req.actual) {
1833                         /* Data transfer completed get ready for Status stage */
1834                         xudc_wrstatus(udc);
1835                 } else {
1836                         /* Enable EP0 buffer to receive data */
1837                         udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1838                         udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1839                 }
1840                 break;
1841         default:
1842                 break;
1843         }
1844 }
1845
1846 /**
1847  * xudc_ep0_in - Processes the endpoint 0 IN token.
1848  * @udc: pointer to the usb device controller structure.
1849  */
1850 static void xudc_ep0_in(struct xusb_udc *udc)
1851 {
1852         struct xusb_ep *ep0 = &udc->ep[0];
1853         struct xusb_req *req;
1854         unsigned int bytes_to_tx;
1855         void *buffer;
1856         u32 epcfgreg;
1857         u16 count = 0;
1858         u16 length;
1859         u8 *ep0rambase;
1860         u8 test_mode = udc->setup.wIndex >> 8;
1861
1862         req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1863         bytes_to_tx = req->usb_req.length - req->usb_req.actual;
1864
1865         switch (udc->setupseqtx) {
1866         case STATUS_PHASE:
1867                 switch (udc->setup.bRequest) {
1868                 case USB_REQ_SET_ADDRESS:
1869                         /* Set the address of the device.*/
1870                         udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET,
1871                                       udc->setup.wValue);
1872                         break;
1873                 case USB_REQ_SET_FEATURE:
1874                         if (udc->setup.bRequestType ==
1875                                         USB_RECIP_DEVICE) {
1876                                 if (udc->setup.wValue ==
1877                                                 USB_DEVICE_TEST_MODE)
1878                                         udc->write_fn(udc->addr,
1879                                                       XUSB_TESTMODE_OFFSET,
1880                                                       test_mode);
1881                         }
1882                         break;
1883                 }
1884                 req->usb_req.actual = req->usb_req.length;
1885                 xudc_done(ep0, req, 0);
1886                 break;
1887         case DATA_PHASE:
1888                 if (!bytes_to_tx) {
1889                         /*
1890                          * We're done with data transfer, next
1891                          * will be zero length OUT with data toggle of
1892                          * 1. Setup data_toggle.
1893                          */
1894                         epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1895                         epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK;
1896                         udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1897                         udc->setupseqtx = STATUS_PHASE;
1898                 } else {
1899                         length = count = min_t(u32, bytes_to_tx,
1900                                                EP0_MAX_PACKET);
1901                         /* Copy the data to be transmitted into the DPRAM. */
1902                         ep0rambase = (u8 __force *) (udc->addr +
1903                                      (ep0->rambase << 2));
1904                         buffer = req->usb_req.buf + req->usb_req.actual;
1905                         req->usb_req.actual = req->usb_req.actual + length;
1906                         memcpy(ep0rambase, buffer, length);
1907                 }
1908                 udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count);
1909                 udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1910                 break;
1911         default:
1912                 break;
1913         }
1914 }
1915
1916 /**
1917  * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler.
1918  * @udc: pointer to the udc structure.
1919  * @intrstatus: It's the mask value for the interrupt sources on endpoint 0.
1920  *
1921  * Processes the commands received during enumeration phase.
1922  */
1923 static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus)
1924 {
1925
1926         if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) {
1927                 xudc_handle_setup(udc);
1928         } else {
1929                 if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK)
1930                         xudc_ep0_out(udc);
1931                 else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK)
1932                         xudc_ep0_in(udc);
1933         }
1934 }
1935
1936 /**
1937  * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler.
1938  * @udc: pointer to the udc structure.
1939  * @epnum: End point number for which the interrupt is to be processed
1940  * @intrstatus: mask value for interrupt sources of endpoints other
1941  *              than endpoint 0.
1942  *
1943  * Processes the buffer completion interrupts.
1944  */
1945 static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum,
1946                                     u32 intrstatus)
1947 {
1948
1949         struct xusb_req *req;
1950         struct xusb_ep *ep;
1951
1952         ep = &udc->ep[epnum];
1953         /* Process the End point interrupts.*/
1954         if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum))
1955                 ep->buffer0ready = 0;
1956         if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum))
1957                 ep->buffer1ready = 0;
1958
1959         if (list_empty(&ep->queue))
1960                 return;
1961
1962         req = list_first_entry(&ep->queue, struct xusb_req, queue);
1963
1964         if (ep->is_in)
1965                 xudc_write_fifo(ep, req);
1966         else
1967                 xudc_read_fifo(ep, req);
1968 }
1969
1970 /**
1971  * xudc_irq - The main interrupt handler.
1972  * @irq: The interrupt number.
1973  * @_udc: pointer to the usb device controller structure.
1974  *
1975  * Return: IRQ_HANDLED after the interrupt is handled.
1976  */
1977 static irqreturn_t xudc_irq(int irq, void *_udc)
1978 {
1979         struct xusb_udc *udc = _udc;
1980         u32 intrstatus;
1981         u32 ier;
1982         u8 index;
1983         u32 bufintr;
1984         unsigned long flags;
1985
1986         spin_lock_irqsave(&udc->lock, flags);
1987
1988         /*
1989          * Event interrupts are level sensitive hence first disable
1990          * IER, read ISR and figure out active interrupts.
1991          */
1992         ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1993         ier &= ~XUSB_STATUS_INTR_EVENT_MASK;
1994         udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
1995
1996         /* Read the Interrupt Status Register.*/
1997         intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET);
1998
1999         /* Call the handler for the event interrupt.*/
2000         if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) {
2001                 /*
2002                  * Check if there is any action to be done for :
2003                  * - USB Reset received {XUSB_STATUS_RESET_MASK}
2004                  * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK}
2005                  * - USB Resume received {XUSB_STATUS_RESUME_MASK}
2006                  * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK}
2007                  */
2008                 xudc_startup_handler(udc, intrstatus);
2009         }
2010
2011         /* Check the buffer completion interrupts */
2012         if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) {
2013                 /* Enable Reset, Suspend, Resume and Disconnect  */
2014                 ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2015                 ier |= XUSB_STATUS_INTR_EVENT_MASK;
2016                 udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2017
2018                 if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK)
2019                         xudc_ctrl_ep_handler(udc, intrstatus);
2020
2021                 for (index = 1; index < 8; index++) {
2022                         bufintr = ((intrstatus &
2023                                   (XUSB_STATUS_EP1_BUFF1_COMP_MASK <<
2024                                   (index - 1))) || (intrstatus &
2025                                   (XUSB_STATUS_EP1_BUFF2_COMP_MASK <<
2026                                   (index - 1))));
2027                         if (bufintr) {
2028                                 xudc_nonctrl_ep_handler(udc, index,
2029                                                         intrstatus);
2030                         }
2031                 }
2032         }
2033
2034         spin_unlock_irqrestore(&udc->lock, flags);
2035         return IRQ_HANDLED;
2036 }
2037
2038 /**
2039  * xudc_probe - The device probe function for driver initialization.
2040  * @pdev: pointer to the platform device structure.
2041  *
2042  * Return: 0 for success and error value on failure
2043  */
2044 static int xudc_probe(struct platform_device *pdev)
2045 {
2046         struct device_node *np = pdev->dev.of_node;
2047         struct resource *res;
2048         struct xusb_udc *udc;
2049         int irq;
2050         int ret;
2051         u32 ier;
2052         u8 *buff;
2053
2054         udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2055         if (!udc)
2056                 return -ENOMEM;
2057
2058         /* Create a dummy request for GET_STATUS, SET_ADDRESS */
2059         udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req),
2060                                 GFP_KERNEL);
2061         if (!udc->req)
2062                 return -ENOMEM;
2063
2064         buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL);
2065         if (!buff)
2066                 return -ENOMEM;
2067
2068         udc->req->usb_req.buf = buff;
2069
2070         /* Map the registers */
2071         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2072         udc->addr = devm_ioremap_resource(&pdev->dev, res);
2073         if (IS_ERR(udc->addr))
2074                 return PTR_ERR(udc->addr);
2075
2076         irq = platform_get_irq(pdev, 0);
2077         if (irq < 0)
2078                 return irq;
2079         ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0,
2080                                dev_name(&pdev->dev), udc);
2081         if (ret < 0) {
2082                 dev_dbg(&pdev->dev, "unable to request irq %d", irq);
2083                 goto fail;
2084         }
2085
2086         udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma");
2087
2088         /* Setup gadget structure */
2089         udc->gadget.ops = &xusb_udc_ops;
2090         udc->gadget.max_speed = USB_SPEED_HIGH;
2091         udc->gadget.speed = USB_SPEED_UNKNOWN;
2092         udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb;
2093         udc->gadget.name = driver_name;
2094
2095         spin_lock_init(&udc->lock);
2096
2097         /* Check for IP endianness */
2098         udc->write_fn = xudc_write32_be;
2099         udc->read_fn = xudc_read32_be;
2100         udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, TEST_J);
2101         if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET))
2102                         != TEST_J) {
2103                 udc->write_fn = xudc_write32;
2104                 udc->read_fn = xudc_read32;
2105         }
2106         udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
2107
2108         xudc_eps_init(udc);
2109
2110         /* Set device address to 0.*/
2111         udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
2112
2113         ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2114         if (ret)
2115                 goto fail;
2116
2117         udc->dev = &udc->gadget.dev;
2118
2119         /* Enable the interrupts.*/
2120         ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK |
2121               XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK |
2122               XUSB_STATUS_SETUP_PACKET_MASK |
2123               XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK;
2124
2125         udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2126
2127         platform_set_drvdata(pdev, udc);
2128
2129         dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n",
2130                  driver_name, (u32)res->start, udc->addr,
2131                  udc->dma_enabled ? "with DMA" : "without DMA");
2132
2133         return 0;
2134 fail:
2135         dev_err(&pdev->dev, "probe failed, %d\n", ret);
2136         return ret;
2137 }
2138
2139 /**
2140  * xudc_remove - Releases the resources allocated during the initialization.
2141  * @pdev: pointer to the platform device structure.
2142  *
2143  * Return: 0 always
2144  */
2145 static int xudc_remove(struct platform_device *pdev)
2146 {
2147         struct xusb_udc *udc = platform_get_drvdata(pdev);
2148
2149         usb_del_gadget_udc(&udc->gadget);
2150
2151         return 0;
2152 }
2153
2154 /* Match table for of_platform binding */
2155 static const struct of_device_id usb_of_match[] = {
2156         { .compatible = "xlnx,usb2-device-4.00.a", },
2157         { /* end of list */ },
2158 };
2159 MODULE_DEVICE_TABLE(of, usb_of_match);
2160
2161 static struct platform_driver xudc_driver = {
2162         .driver = {
2163                 .name = driver_name,
2164                 .of_match_table = usb_of_match,
2165         },
2166         .probe = xudc_probe,
2167         .remove = xudc_remove,
2168 };
2169
2170 module_platform_driver(xudc_driver);
2171
2172 MODULE_DESCRIPTION("Xilinx udc driver");
2173 MODULE_AUTHOR("Xilinx, Inc");
2174 MODULE_LICENSE("GPL");