Merge tag 'samsung-soc-5.10' of https://git.kernel.org/pub/scm/linux/kernel/git/krzk...
[linux-2.6-microblaze.git] / drivers / usb / gadget / udc / s3c-hsudc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* linux/drivers/usb/gadget/s3c-hsudc.c
3  *
4  * Copyright (c) 2010 Samsung Electronics Co., Ltd.
5  *              http://www.samsung.com/
6  *
7  * S3C24XX USB 2.0 High-speed USB controller gadget driver
8  *
9  * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints.
10  * Each endpoint can be configured as either in or out endpoint. Endpoints
11  * can be configured for Bulk or Interrupt transfer mode.
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/delay.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/clk.h>
24 #include <linux/err.h>
25 #include <linux/usb/ch9.h>
26 #include <linux/usb/gadget.h>
27 #include <linux/usb/otg.h>
28 #include <linux/prefetch.h>
29 #include <linux/platform_data/s3c-hsudc.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/pm_runtime.h>
32
33 #define S3C_HSUDC_REG(x)        (x)
34
35 /* Non-Indexed Registers */
36 #define S3C_IR                          S3C_HSUDC_REG(0x00) /* Index Register */
37 #define S3C_EIR                         S3C_HSUDC_REG(0x04) /* EP Intr Status */
38 #define S3C_EIR_EP0                     (1<<0)
39 #define S3C_EIER                        S3C_HSUDC_REG(0x08) /* EP Intr Enable */
40 #define S3C_FAR                         S3C_HSUDC_REG(0x0c) /* Gadget Address */
41 #define S3C_FNR                         S3C_HSUDC_REG(0x10) /* Frame Number */
42 #define S3C_EDR                         S3C_HSUDC_REG(0x14) /* EP Direction */
43 #define S3C_TR                          S3C_HSUDC_REG(0x18) /* Test Register */
44 #define S3C_SSR                         S3C_HSUDC_REG(0x1c) /* System Status */
45 #define S3C_SSR_DTZIEN_EN               (0xff8f)
46 #define S3C_SSR_ERR                     (0xff80)
47 #define S3C_SSR_VBUSON                  (1 << 8)
48 #define S3C_SSR_HSP                     (1 << 4)
49 #define S3C_SSR_SDE                     (1 << 3)
50 #define S3C_SSR_RESUME                  (1 << 2)
51 #define S3C_SSR_SUSPEND                 (1 << 1)
52 #define S3C_SSR_RESET                   (1 << 0)
53 #define S3C_SCR                         S3C_HSUDC_REG(0x20) /* System Control */
54 #define S3C_SCR_DTZIEN_EN               (1 << 14)
55 #define S3C_SCR_RRD_EN                  (1 << 5)
56 #define S3C_SCR_SUS_EN                  (1 << 1)
57 #define S3C_SCR_RST_EN                  (1 << 0)
58 #define S3C_EP0SR                       S3C_HSUDC_REG(0x24) /* EP0 Status */
59 #define S3C_EP0SR_EP0_LWO               (1 << 6)
60 #define S3C_EP0SR_STALL                 (1 << 4)
61 #define S3C_EP0SR_TX_SUCCESS            (1 << 1)
62 #define S3C_EP0SR_RX_SUCCESS            (1 << 0)
63 #define S3C_EP0CR                       S3C_HSUDC_REG(0x28) /* EP0 Control */
64 #define S3C_BR(_x)                      S3C_HSUDC_REG(0x60 + (_x * 4))
65
66 /* Indexed Registers */
67 #define S3C_ESR                         S3C_HSUDC_REG(0x2c) /* EPn Status */
68 #define S3C_ESR_FLUSH                   (1 << 6)
69 #define S3C_ESR_STALL                   (1 << 5)
70 #define S3C_ESR_LWO                     (1 << 4)
71 #define S3C_ESR_PSIF_ONE                (1 << 2)
72 #define S3C_ESR_PSIF_TWO                (2 << 2)
73 #define S3C_ESR_TX_SUCCESS              (1 << 1)
74 #define S3C_ESR_RX_SUCCESS              (1 << 0)
75 #define S3C_ECR                         S3C_HSUDC_REG(0x30) /* EPn Control */
76 #define S3C_ECR_DUEN                    (1 << 7)
77 #define S3C_ECR_FLUSH                   (1 << 6)
78 #define S3C_ECR_STALL                   (1 << 1)
79 #define S3C_ECR_IEMS                    (1 << 0)
80 #define S3C_BRCR                        S3C_HSUDC_REG(0x34) /* Read Count */
81 #define S3C_BWCR                        S3C_HSUDC_REG(0x38) /* Write Count */
82 #define S3C_MPR                         S3C_HSUDC_REG(0x3c) /* Max Pkt Size */
83
84 #define WAIT_FOR_SETUP                  (0)
85 #define DATA_STATE_XMIT                 (1)
86 #define DATA_STATE_RECV                 (2)
87
88 static const char * const s3c_hsudc_supply_names[] = {
89         "vdda",         /* analog phy supply, 3.3V */
90         "vddi",         /* digital phy supply, 1.2V */
91         "vddosc",       /* oscillator supply, 1.8V - 3.3V */
92 };
93
94 /**
95  * struct s3c_hsudc_ep - Endpoint representation used by driver.
96  * @ep: USB gadget layer representation of device endpoint.
97  * @name: Endpoint name (as required by ep autoconfiguration).
98  * @dev: Reference to the device controller to which this EP belongs.
99  * @desc: Endpoint descriptor obtained from the gadget driver.
100  * @queue: Transfer request queue for the endpoint.
101  * @stopped: Maintains state of endpoint, set if EP is halted.
102  * @bEndpointAddress: EP address (including direction bit).
103  * @fifo: Base address of EP FIFO.
104  */
105 struct s3c_hsudc_ep {
106         struct usb_ep ep;
107         char name[20];
108         struct s3c_hsudc *dev;
109         struct list_head queue;
110         u8 stopped;
111         u8 wedge;
112         u8 bEndpointAddress;
113         void __iomem *fifo;
114 };
115
116 /**
117  * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request.
118  * @req: Reference to USB gadget transfer request.
119  * @queue: Used for inserting this request to the endpoint request queue.
120  */
121 struct s3c_hsudc_req {
122         struct usb_request req;
123         struct list_head queue;
124 };
125
126 /**
127  * struct s3c_hsudc - Driver's abstraction of the device controller.
128  * @gadget: Instance of usb_gadget which is referenced by gadget driver.
129  * @driver: Reference to currenty active gadget driver.
130  * @dev: The device reference used by probe function.
131  * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed).
132  * @regs: Remapped base address of controller's register space.
133  * irq: IRQ number used by the controller.
134  * uclk: Reference to the controller clock.
135  * ep0state: Current state of EP0.
136  * ep: List of endpoints supported by the controller.
137  */
138 struct s3c_hsudc {
139         struct usb_gadget gadget;
140         struct usb_gadget_driver *driver;
141         struct device *dev;
142         struct s3c24xx_hsudc_platdata *pd;
143         struct usb_phy *transceiver;
144         struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)];
145         spinlock_t lock;
146         void __iomem *regs;
147         int irq;
148         struct clk *uclk;
149         int ep0state;
150         struct s3c_hsudc_ep ep[];
151 };
152
153 #define ep_maxpacket(_ep)       ((_ep)->ep.maxpacket)
154 #define ep_is_in(_ep)           ((_ep)->bEndpointAddress & USB_DIR_IN)
155 #define ep_index(_ep)           ((_ep)->bEndpointAddress & \
156                                         USB_ENDPOINT_NUMBER_MASK)
157
158 static const char driver_name[] = "s3c-udc";
159 static const char ep0name[] = "ep0-control";
160
161 static inline struct s3c_hsudc_req *our_req(struct usb_request *req)
162 {
163         return container_of(req, struct s3c_hsudc_req, req);
164 }
165
166 static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep)
167 {
168         return container_of(ep, struct s3c_hsudc_ep, ep);
169 }
170
171 static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget)
172 {
173         return container_of(gadget, struct s3c_hsudc, gadget);
174 }
175
176 static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr)
177 {
178         ep_addr &= USB_ENDPOINT_NUMBER_MASK;
179         writel(ep_addr, hsudc->regs + S3C_IR);
180 }
181
182 static inline void __orr32(void __iomem *ptr, u32 val)
183 {
184         writel(readl(ptr) | val, ptr);
185 }
186
187 /**
188  * s3c_hsudc_complete_request - Complete a transfer request.
189  * @hsep: Endpoint to which the request belongs.
190  * @hsreq: Transfer request to be completed.
191  * @status: Transfer completion status for the transfer request.
192  */
193 static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep,
194                                 struct s3c_hsudc_req *hsreq, int status)
195 {
196         unsigned int stopped = hsep->stopped;
197         struct s3c_hsudc *hsudc = hsep->dev;
198
199         list_del_init(&hsreq->queue);
200         hsreq->req.status = status;
201
202         if (!ep_index(hsep)) {
203                 hsudc->ep0state = WAIT_FOR_SETUP;
204                 hsep->bEndpointAddress &= ~USB_DIR_IN;
205         }
206
207         hsep->stopped = 1;
208         spin_unlock(&hsudc->lock);
209         usb_gadget_giveback_request(&hsep->ep, &hsreq->req);
210         spin_lock(&hsudc->lock);
211         hsep->stopped = stopped;
212 }
213
214 /**
215  * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint.
216  * @hsep: Endpoint for which queued requests have to be terminated.
217  * @status: Transfer completion status for the transfer request.
218  */
219 static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status)
220 {
221         struct s3c_hsudc_req *hsreq;
222
223         while (!list_empty(&hsep->queue)) {
224                 hsreq = list_entry(hsep->queue.next,
225                                 struct s3c_hsudc_req, queue);
226                 s3c_hsudc_complete_request(hsep, hsreq, status);
227         }
228 }
229
230 /**
231  * s3c_hsudc_stop_activity - Stop activity on all endpoints.
232  * @hsudc: Device controller for which EP activity is to be stopped.
233  *
234  * All the endpoints are stopped and any pending transfer requests if any on
235  * the endpoint are terminated.
236  */
237 static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc)
238 {
239         struct s3c_hsudc_ep *hsep;
240         int epnum;
241
242         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
243
244         for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) {
245                 hsep = &hsudc->ep[epnum];
246                 hsep->stopped = 1;
247                 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
248         }
249 }
250
251 /**
252  * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo.
253  * @hsudc: Device controller from which setup packet is to be read.
254  * @buf: The buffer into which the setup packet is read.
255  *
256  * The setup packet received in the EP0 fifo is read and stored into a
257  * given buffer address.
258  */
259
260 static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf)
261 {
262         int count;
263
264         count = readl(hsudc->regs + S3C_BRCR);
265         while (count--)
266                 *buf++ = (u16)readl(hsudc->regs + S3C_BR(0));
267
268         writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR);
269 }
270
271 /**
272  * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo.
273  * @hsep: Endpoint to which the data is to be written.
274  * @hsreq: Transfer request from which the next chunk of data is written.
275  *
276  * Write the next chunk of data from a transfer request to the endpoint FIFO.
277  * If the transfer request completes, 1 is returned, otherwise 0 is returned.
278  */
279 static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep,
280                                 struct s3c_hsudc_req *hsreq)
281 {
282         u16 *buf;
283         u32 max = ep_maxpacket(hsep);
284         u32 count, length;
285         bool is_last;
286         void __iomem *fifo = hsep->fifo;
287
288         buf = hsreq->req.buf + hsreq->req.actual;
289         prefetch(buf);
290
291         length = hsreq->req.length - hsreq->req.actual;
292         length = min(length, max);
293         hsreq->req.actual += length;
294
295         writel(length, hsep->dev->regs + S3C_BWCR);
296         for (count = 0; count < length; count += 2)
297                 writel(*buf++, fifo);
298
299         if (count != max) {
300                 is_last = true;
301         } else {
302                 if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero)
303                         is_last = false;
304                 else
305                         is_last = true;
306         }
307
308         if (is_last) {
309                 s3c_hsudc_complete_request(hsep, hsreq, 0);
310                 return 1;
311         }
312
313         return 0;
314 }
315
316 /**
317  * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo.
318  * @hsep: Endpoint from which the data is to be read.
319  * @hsreq: Transfer request to which the next chunk of data read is written.
320  *
321  * Read the next chunk of data from the endpoint FIFO and a write it to the
322  * transfer request buffer. If the transfer request completes, 1 is returned,
323  * otherwise 0 is returned.
324  */
325 static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep,
326                                 struct s3c_hsudc_req *hsreq)
327 {
328         struct s3c_hsudc *hsudc = hsep->dev;
329         u32 csr, offset;
330         u16 *buf, word;
331         u32 buflen, rcnt, rlen;
332         void __iomem *fifo = hsep->fifo;
333         u32 is_short = 0;
334
335         offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
336         csr = readl(hsudc->regs + offset);
337         if (!(csr & S3C_ESR_RX_SUCCESS))
338                 return -EINVAL;
339
340         buf = hsreq->req.buf + hsreq->req.actual;
341         prefetchw(buf);
342         buflen = hsreq->req.length - hsreq->req.actual;
343
344         rcnt = readl(hsudc->regs + S3C_BRCR);
345         rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2);
346
347         hsreq->req.actual += min(rlen, buflen);
348         is_short = (rlen < hsep->ep.maxpacket);
349
350         while (rcnt-- != 0) {
351                 word = (u16)readl(fifo);
352                 if (buflen) {
353                         *buf++ = word;
354                         buflen--;
355                 } else {
356                         hsreq->req.status = -EOVERFLOW;
357                 }
358         }
359
360         writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset);
361
362         if (is_short || hsreq->req.actual == hsreq->req.length) {
363                 s3c_hsudc_complete_request(hsep, hsreq, 0);
364                 return 1;
365         }
366
367         return 0;
368 }
369
370 /**
371  * s3c_hsudc_epin_intr - Handle in-endpoint interrupt.
372  * @hsudc - Device controller for which the interrupt is to be handled.
373  * @ep_idx - Endpoint number on which an interrupt is pending.
374  *
375  * Handles interrupt for a in-endpoint. The interrupts that are handled are
376  * stall and data transmit complete interrupt.
377  */
378 static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
379 {
380         struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
381         struct s3c_hsudc_req *hsreq;
382         u32 csr;
383
384         csr = readl(hsudc->regs + S3C_ESR);
385         if (csr & S3C_ESR_STALL) {
386                 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
387                 return;
388         }
389
390         if (csr & S3C_ESR_TX_SUCCESS) {
391                 writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR);
392                 if (list_empty(&hsep->queue))
393                         return;
394
395                 hsreq = list_entry(hsep->queue.next,
396                                 struct s3c_hsudc_req, queue);
397                 if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) &&
398                                 (csr & S3C_ESR_PSIF_TWO))
399                         s3c_hsudc_write_fifo(hsep, hsreq);
400         }
401 }
402
403 /**
404  * s3c_hsudc_epout_intr - Handle out-endpoint interrupt.
405  * @hsudc - Device controller for which the interrupt is to be handled.
406  * @ep_idx - Endpoint number on which an interrupt is pending.
407  *
408  * Handles interrupt for a out-endpoint. The interrupts that are handled are
409  * stall, flush and data ready interrupt.
410  */
411 static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx)
412 {
413         struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx];
414         struct s3c_hsudc_req *hsreq;
415         u32 csr;
416
417         csr = readl(hsudc->regs + S3C_ESR);
418         if (csr & S3C_ESR_STALL) {
419                 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR);
420                 return;
421         }
422
423         if (csr & S3C_ESR_FLUSH) {
424                 __orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH);
425                 return;
426         }
427
428         if (csr & S3C_ESR_RX_SUCCESS) {
429                 if (list_empty(&hsep->queue))
430                         return;
431
432                 hsreq = list_entry(hsep->queue.next,
433                                 struct s3c_hsudc_req, queue);
434                 if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) &&
435                                 (csr & S3C_ESR_PSIF_TWO))
436                         s3c_hsudc_read_fifo(hsep, hsreq);
437         }
438 }
439
440 /** s3c_hsudc_set_halt - Set or clear a endpoint halt.
441  * @_ep: Endpoint on which halt has to be set or cleared.
442  * @value: 1 for setting halt on endpoint, 0 to clear halt.
443  *
444  * Set or clear endpoint halt. If halt is set, the endpoint is stopped.
445  * If halt is cleared, for in-endpoints, if there are any pending
446  * transfer requests, transfers are started.
447  */
448 static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value)
449 {
450         struct s3c_hsudc_ep *hsep = our_ep(_ep);
451         struct s3c_hsudc *hsudc = hsep->dev;
452         struct s3c_hsudc_req *hsreq;
453         unsigned long irqflags;
454         u32 ecr;
455         u32 offset;
456
457         if (value && ep_is_in(hsep) && !list_empty(&hsep->queue))
458                 return -EAGAIN;
459
460         spin_lock_irqsave(&hsudc->lock, irqflags);
461         set_index(hsudc, ep_index(hsep));
462         offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR;
463         ecr = readl(hsudc->regs + offset);
464
465         if (value) {
466                 ecr |= S3C_ECR_STALL;
467                 if (ep_index(hsep))
468                         ecr |= S3C_ECR_FLUSH;
469                 hsep->stopped = 1;
470         } else {
471                 ecr &= ~S3C_ECR_STALL;
472                 hsep->stopped = hsep->wedge = 0;
473         }
474         writel(ecr, hsudc->regs + offset);
475
476         if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) {
477                 hsreq = list_entry(hsep->queue.next,
478                         struct s3c_hsudc_req, queue);
479                 if (hsreq)
480                         s3c_hsudc_write_fifo(hsep, hsreq);
481         }
482
483         spin_unlock_irqrestore(&hsudc->lock, irqflags);
484         return 0;
485 }
486
487 /** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored
488  * @_ep: Endpoint on which wedge has to be set.
489  *
490  * Sets the halt feature with the clear requests ignored.
491  */
492 static int s3c_hsudc_set_wedge(struct usb_ep *_ep)
493 {
494         struct s3c_hsudc_ep *hsep = our_ep(_ep);
495
496         if (!hsep)
497                 return -EINVAL;
498
499         hsep->wedge = 1;
500         return usb_ep_set_halt(_ep);
501 }
502
503 /** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests.
504  * @_ep: Device controller on which the set/clear feature needs to be handled.
505  * @ctrl: Control request as received on the endpoint 0.
506  *
507  * Handle set feature or clear feature control requests on the control endpoint.
508  */
509 static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc,
510                                         struct usb_ctrlrequest *ctrl)
511 {
512         struct s3c_hsudc_ep *hsep;
513         bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
514         u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK;
515
516         if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
517                 hsep = &hsudc->ep[ep_num];
518                 switch (le16_to_cpu(ctrl->wValue)) {
519                 case USB_ENDPOINT_HALT:
520                         if (set || !hsep->wedge)
521                                 s3c_hsudc_set_halt(&hsep->ep, set);
522                         return 0;
523                 }
524         }
525
526         return -ENOENT;
527 }
528
529 /**
530  * s3c_hsudc_process_req_status - Handle get status control request.
531  * @hsudc: Device controller on which get status request has be handled.
532  * @ctrl: Control request as received on the endpoint 0.
533  *
534  * Handle get status control request received on control endpoint.
535  */
536 static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc,
537                                         struct usb_ctrlrequest *ctrl)
538 {
539         struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0];
540         struct s3c_hsudc_req hsreq;
541         struct s3c_hsudc_ep *hsep;
542         __le16 reply;
543         u8 epnum;
544
545         switch (ctrl->bRequestType & USB_RECIP_MASK) {
546         case USB_RECIP_DEVICE:
547                 reply = cpu_to_le16(0);
548                 break;
549
550         case USB_RECIP_INTERFACE:
551                 reply = cpu_to_le16(0);
552                 break;
553
554         case USB_RECIP_ENDPOINT:
555                 epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK;
556                 hsep = &hsudc->ep[epnum];
557                 reply = cpu_to_le16(hsep->stopped ? 1 : 0);
558                 break;
559         }
560
561         INIT_LIST_HEAD(&hsreq.queue);
562         hsreq.req.length = 2;
563         hsreq.req.buf = &reply;
564         hsreq.req.actual = 0;
565         hsreq.req.complete = NULL;
566         s3c_hsudc_write_fifo(hsep0, &hsreq);
567 }
568
569 /**
570  * s3c_hsudc_process_setup - Process control request received on endpoint 0.
571  * @hsudc: Device controller on which control request has been received.
572  *
573  * Read the control request received on endpoint 0, decode it and handle
574  * the request.
575  */
576 static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc)
577 {
578         struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
579         struct usb_ctrlrequest ctrl = {0};
580         int ret;
581
582         s3c_hsudc_nuke_ep(hsep, -EPROTO);
583         s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl);
584
585         if (ctrl.bRequestType & USB_DIR_IN) {
586                 hsep->bEndpointAddress |= USB_DIR_IN;
587                 hsudc->ep0state = DATA_STATE_XMIT;
588         } else {
589                 hsep->bEndpointAddress &= ~USB_DIR_IN;
590                 hsudc->ep0state = DATA_STATE_RECV;
591         }
592
593         switch (ctrl.bRequest) {
594         case USB_REQ_SET_ADDRESS:
595                 if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
596                         break;
597                 hsudc->ep0state = WAIT_FOR_SETUP;
598                 return;
599
600         case USB_REQ_GET_STATUS:
601                 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
602                         break;
603                 s3c_hsudc_process_req_status(hsudc, &ctrl);
604                 return;
605
606         case USB_REQ_SET_FEATURE:
607         case USB_REQ_CLEAR_FEATURE:
608                 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD)
609                         break;
610                 s3c_hsudc_handle_reqfeat(hsudc, &ctrl);
611                 hsudc->ep0state = WAIT_FOR_SETUP;
612                 return;
613         }
614
615         if (hsudc->driver) {
616                 spin_unlock(&hsudc->lock);
617                 ret = hsudc->driver->setup(&hsudc->gadget, &ctrl);
618                 spin_lock(&hsudc->lock);
619
620                 if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) {
621                         hsep->bEndpointAddress &= ~USB_DIR_IN;
622                         hsudc->ep0state = WAIT_FOR_SETUP;
623                 }
624
625                 if (ret < 0) {
626                         dev_err(hsudc->dev, "setup failed, returned %d\n",
627                                                 ret);
628                         s3c_hsudc_set_halt(&hsep->ep, 1);
629                         hsudc->ep0state = WAIT_FOR_SETUP;
630                         hsep->bEndpointAddress &= ~USB_DIR_IN;
631                 }
632         }
633 }
634
635 /** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt.
636  * @hsudc: Device controller on which endpoint 0 interrupt has occured.
637  *
638  * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur
639  * when a stall handshake is sent to host or data is sent/received on
640  * endpoint 0.
641  */
642 static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc)
643 {
644         struct s3c_hsudc_ep *hsep = &hsudc->ep[0];
645         struct s3c_hsudc_req *hsreq;
646         u32 csr = readl(hsudc->regs + S3C_EP0SR);
647         u32 ecr;
648
649         if (csr & S3C_EP0SR_STALL) {
650                 ecr = readl(hsudc->regs + S3C_EP0CR);
651                 ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH);
652                 writel(ecr, hsudc->regs + S3C_EP0CR);
653
654                 writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR);
655                 hsep->stopped = 0;
656
657                 s3c_hsudc_nuke_ep(hsep, -ECONNABORTED);
658                 hsudc->ep0state = WAIT_FOR_SETUP;
659                 hsep->bEndpointAddress &= ~USB_DIR_IN;
660                 return;
661         }
662
663         if (csr & S3C_EP0SR_TX_SUCCESS) {
664                 writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR);
665                 if (ep_is_in(hsep)) {
666                         if (list_empty(&hsep->queue))
667                                 return;
668
669                         hsreq = list_entry(hsep->queue.next,
670                                         struct s3c_hsudc_req, queue);
671                         s3c_hsudc_write_fifo(hsep, hsreq);
672                 }
673         }
674
675         if (csr & S3C_EP0SR_RX_SUCCESS) {
676                 if (hsudc->ep0state == WAIT_FOR_SETUP)
677                         s3c_hsudc_process_setup(hsudc);
678                 else {
679                         if (!ep_is_in(hsep)) {
680                                 if (list_empty(&hsep->queue))
681                                         return;
682                                 hsreq = list_entry(hsep->queue.next,
683                                         struct s3c_hsudc_req, queue);
684                                 s3c_hsudc_read_fifo(hsep, hsreq);
685                         }
686                 }
687         }
688 }
689
690 /**
691  * s3c_hsudc_ep_enable - Enable a endpoint.
692  * @_ep: The endpoint to be enabled.
693  * @desc: Endpoint descriptor.
694  *
695  * Enables a endpoint when called from the gadget driver. Endpoint stall if
696  * any is cleared, transfer type is configured and endpoint interrupt is
697  * enabled.
698  */
699 static int s3c_hsudc_ep_enable(struct usb_ep *_ep,
700                                 const struct usb_endpoint_descriptor *desc)
701 {
702         struct s3c_hsudc_ep *hsep;
703         struct s3c_hsudc *hsudc;
704         unsigned long flags;
705         u32 ecr = 0;
706
707         hsep = our_ep(_ep);
708         if (!_ep || !desc || _ep->name == ep0name
709                 || desc->bDescriptorType != USB_DT_ENDPOINT
710                 || hsep->bEndpointAddress != desc->bEndpointAddress
711                 || ep_maxpacket(hsep) < usb_endpoint_maxp(desc))
712                 return -EINVAL;
713
714         if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK
715                 && usb_endpoint_maxp(desc) != ep_maxpacket(hsep))
716                 || !desc->wMaxPacketSize)
717                 return -ERANGE;
718
719         hsudc = hsep->dev;
720         if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
721                 return -ESHUTDOWN;
722
723         spin_lock_irqsave(&hsudc->lock, flags);
724
725         set_index(hsudc, hsep->bEndpointAddress);
726         ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN);
727         writel(ecr, hsudc->regs + S3C_ECR);
728
729         hsep->stopped = hsep->wedge = 0;
730         hsep->ep.desc = desc;
731         hsep->ep.maxpacket = usb_endpoint_maxp(desc);
732
733         s3c_hsudc_set_halt(_ep, 0);
734         __set_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
735
736         spin_unlock_irqrestore(&hsudc->lock, flags);
737         return 0;
738 }
739
740 /**
741  * s3c_hsudc_ep_disable - Disable a endpoint.
742  * @_ep: The endpoint to be disabled.
743  * @desc: Endpoint descriptor.
744  *
745  * Disables a endpoint when called from the gadget driver.
746  */
747 static int s3c_hsudc_ep_disable(struct usb_ep *_ep)
748 {
749         struct s3c_hsudc_ep *hsep = our_ep(_ep);
750         struct s3c_hsudc *hsudc = hsep->dev;
751         unsigned long flags;
752
753         if (!_ep || !hsep->ep.desc)
754                 return -EINVAL;
755
756         spin_lock_irqsave(&hsudc->lock, flags);
757
758         set_index(hsudc, hsep->bEndpointAddress);
759         __clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER);
760
761         s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN);
762
763         hsep->ep.desc = NULL;
764         hsep->stopped = 1;
765
766         spin_unlock_irqrestore(&hsudc->lock, flags);
767         return 0;
768 }
769
770 /**
771  * s3c_hsudc_alloc_request - Allocate a new request.
772  * @_ep: Endpoint for which request is allocated (not used).
773  * @gfp_flags: Flags used for the allocation.
774  *
775  * Allocates a single transfer request structure when called from gadget driver.
776  */
777 static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep,
778                                                 gfp_t gfp_flags)
779 {
780         struct s3c_hsudc_req *hsreq;
781
782         hsreq = kzalloc(sizeof(*hsreq), gfp_flags);
783         if (!hsreq)
784                 return NULL;
785
786         INIT_LIST_HEAD(&hsreq->queue);
787         return &hsreq->req;
788 }
789
790 /**
791  * s3c_hsudc_free_request - Deallocate a request.
792  * @ep: Endpoint for which request is deallocated (not used).
793  * @_req: Request to be deallocated.
794  *
795  * Allocates a single transfer request structure when called from gadget driver.
796  */
797 static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req)
798 {
799         struct s3c_hsudc_req *hsreq;
800
801         hsreq = our_req(_req);
802         WARN_ON(!list_empty(&hsreq->queue));
803         kfree(hsreq);
804 }
805
806 /**
807  * s3c_hsudc_queue - Queue a transfer request for the endpoint.
808  * @_ep: Endpoint for which the request is queued.
809  * @_req: Request to be queued.
810  * @gfp_flags: Not used.
811  *
812  * Start or enqueue a request for a endpoint when called from gadget driver.
813  */
814 static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req,
815                         gfp_t gfp_flags)
816 {
817         struct s3c_hsudc_req *hsreq;
818         struct s3c_hsudc_ep *hsep;
819         struct s3c_hsudc *hsudc;
820         unsigned long flags;
821         u32 offset;
822         u32 csr;
823
824         hsreq = our_req(_req);
825         if ((!_req || !_req->complete || !_req->buf ||
826                 !list_empty(&hsreq->queue)))
827                 return -EINVAL;
828
829         hsep = our_ep(_ep);
830         hsudc = hsep->dev;
831         if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN)
832                 return -ESHUTDOWN;
833
834         spin_lock_irqsave(&hsudc->lock, flags);
835         set_index(hsudc, hsep->bEndpointAddress);
836
837         _req->status = -EINPROGRESS;
838         _req->actual = 0;
839
840         if (!ep_index(hsep) && _req->length == 0) {
841                 hsudc->ep0state = WAIT_FOR_SETUP;
842                 s3c_hsudc_complete_request(hsep, hsreq, 0);
843                 spin_unlock_irqrestore(&hsudc->lock, flags);
844                 return 0;
845         }
846
847         if (list_empty(&hsep->queue) && !hsep->stopped) {
848                 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR;
849                 if (ep_is_in(hsep)) {
850                         csr = readl(hsudc->regs + offset);
851                         if (!(csr & S3C_ESR_TX_SUCCESS) &&
852                                 (s3c_hsudc_write_fifo(hsep, hsreq) == 1))
853                                 hsreq = NULL;
854                 } else {
855                         csr = readl(hsudc->regs + offset);
856                         if ((csr & S3C_ESR_RX_SUCCESS)
857                                    && (s3c_hsudc_read_fifo(hsep, hsreq) == 1))
858                                 hsreq = NULL;
859                 }
860         }
861
862         if (hsreq)
863                 list_add_tail(&hsreq->queue, &hsep->queue);
864
865         spin_unlock_irqrestore(&hsudc->lock, flags);
866         return 0;
867 }
868
869 /**
870  * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint.
871  * @_ep: Endpoint from which the request is dequeued.
872  * @_req: Request to be dequeued.
873  *
874  * Dequeue a request from a endpoint when called from gadget driver.
875  */
876 static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req)
877 {
878         struct s3c_hsudc_ep *hsep = our_ep(_ep);
879         struct s3c_hsudc *hsudc = hsep->dev;
880         struct s3c_hsudc_req *hsreq;
881         unsigned long flags;
882
883         hsep = our_ep(_ep);
884         if (!_ep || hsep->ep.name == ep0name)
885                 return -EINVAL;
886
887         spin_lock_irqsave(&hsudc->lock, flags);
888
889         list_for_each_entry(hsreq, &hsep->queue, queue) {
890                 if (&hsreq->req == _req)
891                         break;
892         }
893         if (&hsreq->req != _req) {
894                 spin_unlock_irqrestore(&hsudc->lock, flags);
895                 return -EINVAL;
896         }
897
898         set_index(hsudc, hsep->bEndpointAddress);
899         s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET);
900
901         spin_unlock_irqrestore(&hsudc->lock, flags);
902         return 0;
903 }
904
905 static const struct usb_ep_ops s3c_hsudc_ep_ops = {
906         .enable = s3c_hsudc_ep_enable,
907         .disable = s3c_hsudc_ep_disable,
908         .alloc_request = s3c_hsudc_alloc_request,
909         .free_request = s3c_hsudc_free_request,
910         .queue = s3c_hsudc_queue,
911         .dequeue = s3c_hsudc_dequeue,
912         .set_halt = s3c_hsudc_set_halt,
913         .set_wedge = s3c_hsudc_set_wedge,
914 };
915
916 /**
917  * s3c_hsudc_initep - Initialize a endpoint to default state.
918  * @hsudc - Reference to the device controller.
919  * @hsep - Endpoint to be initialized.
920  * @epnum - Address to be assigned to the endpoint.
921  *
922  * Initialize a endpoint with default configuration.
923  */
924 static void s3c_hsudc_initep(struct s3c_hsudc *hsudc,
925                                 struct s3c_hsudc_ep *hsep, int epnum)
926 {
927         char *dir;
928
929         if ((epnum % 2) == 0) {
930                 dir = "out";
931         } else {
932                 dir = "in";
933                 hsep->bEndpointAddress = USB_DIR_IN;
934         }
935
936         hsep->bEndpointAddress |= epnum;
937         if (epnum)
938                 snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir);
939         else
940                 snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name);
941
942         INIT_LIST_HEAD(&hsep->queue);
943         INIT_LIST_HEAD(&hsep->ep.ep_list);
944         if (epnum)
945                 list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list);
946
947         hsep->dev = hsudc;
948         hsep->ep.name = hsep->name;
949         usb_ep_set_maxpacket_limit(&hsep->ep, epnum ? 512 : 64);
950         hsep->ep.ops = &s3c_hsudc_ep_ops;
951         hsep->fifo = hsudc->regs + S3C_BR(epnum);
952         hsep->ep.desc = NULL;
953         hsep->stopped = 0;
954         hsep->wedge = 0;
955
956         if (epnum == 0) {
957                 hsep->ep.caps.type_control = true;
958                 hsep->ep.caps.dir_in = true;
959                 hsep->ep.caps.dir_out = true;
960         } else {
961                 hsep->ep.caps.type_iso = true;
962                 hsep->ep.caps.type_bulk = true;
963                 hsep->ep.caps.type_int = true;
964         }
965
966         if (epnum & 1)
967                 hsep->ep.caps.dir_in = true;
968         else
969                 hsep->ep.caps.dir_out = true;
970
971         set_index(hsudc, epnum);
972         writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR);
973 }
974
975 /**
976  * s3c_hsudc_setup_ep - Configure all endpoints to default state.
977  * @hsudc: Reference to device controller.
978  *
979  * Configures all endpoints to default state.
980  */
981 static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc)
982 {
983         int epnum;
984
985         hsudc->ep0state = WAIT_FOR_SETUP;
986         INIT_LIST_HEAD(&hsudc->gadget.ep_list);
987         for (epnum = 0; epnum < hsudc->pd->epnum; epnum++)
988                 s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum);
989 }
990
991 /**
992  * s3c_hsudc_reconfig - Reconfigure the device controller to default state.
993  * @hsudc: Reference to device controller.
994  *
995  * Reconfigures the device controller registers to a default state.
996  */
997 static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc)
998 {
999         writel(0xAA, hsudc->regs + S3C_EDR);
1000         writel(1, hsudc->regs + S3C_EIER);
1001         writel(0, hsudc->regs + S3C_TR);
1002         writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN |
1003                         S3C_SCR_RST_EN, hsudc->regs + S3C_SCR);
1004         writel(0, hsudc->regs + S3C_EP0CR);
1005
1006         s3c_hsudc_setup_ep(hsudc);
1007 }
1008
1009 /**
1010  * s3c_hsudc_irq - Interrupt handler for device controller.
1011  * @irq: Not used.
1012  * @_dev: Reference to the device controller.
1013  *
1014  * Interrupt handler for the device controller. This handler handles controller
1015  * interrupts and endpoint interrupts.
1016  */
1017 static irqreturn_t s3c_hsudc_irq(int irq, void *_dev)
1018 {
1019         struct s3c_hsudc *hsudc = _dev;
1020         struct s3c_hsudc_ep *hsep;
1021         u32 ep_intr;
1022         u32 sys_status;
1023         u32 ep_idx;
1024
1025         spin_lock(&hsudc->lock);
1026
1027         sys_status = readl(hsudc->regs + S3C_SSR);
1028         ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF;
1029
1030         if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) {
1031                 spin_unlock(&hsudc->lock);
1032                 return IRQ_HANDLED;
1033         }
1034
1035         if (sys_status) {
1036                 if (sys_status & S3C_SSR_VBUSON)
1037                         writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR);
1038
1039                 if (sys_status & S3C_SSR_ERR)
1040                         writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR);
1041
1042                 if (sys_status & S3C_SSR_SDE) {
1043                         writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR);
1044                         hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ?
1045                                 USB_SPEED_HIGH : USB_SPEED_FULL;
1046                 }
1047
1048                 if (sys_status & S3C_SSR_SUSPEND) {
1049                         writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR);
1050                         if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1051                                 && hsudc->driver && hsudc->driver->suspend)
1052                                 hsudc->driver->suspend(&hsudc->gadget);
1053                 }
1054
1055                 if (sys_status & S3C_SSR_RESUME) {
1056                         writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR);
1057                         if (hsudc->gadget.speed != USB_SPEED_UNKNOWN
1058                                 && hsudc->driver && hsudc->driver->resume)
1059                                 hsudc->driver->resume(&hsudc->gadget);
1060                 }
1061
1062                 if (sys_status & S3C_SSR_RESET) {
1063                         writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR);
1064                         for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) {
1065                                 hsep = &hsudc->ep[ep_idx];
1066                                 hsep->stopped = 1;
1067                                 s3c_hsudc_nuke_ep(hsep, -ECONNRESET);
1068                         }
1069                         s3c_hsudc_reconfig(hsudc);
1070                         hsudc->ep0state = WAIT_FOR_SETUP;
1071                 }
1072         }
1073
1074         if (ep_intr & S3C_EIR_EP0) {
1075                 writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR);
1076                 set_index(hsudc, 0);
1077                 s3c_hsudc_handle_ep0_intr(hsudc);
1078         }
1079
1080         ep_intr >>= 1;
1081         ep_idx = 1;
1082         while (ep_intr) {
1083                 if (ep_intr & 1)  {
1084                         hsep = &hsudc->ep[ep_idx];
1085                         set_index(hsudc, ep_idx);
1086                         writel(1 << ep_idx, hsudc->regs + S3C_EIR);
1087                         if (ep_is_in(hsep))
1088                                 s3c_hsudc_epin_intr(hsudc, ep_idx);
1089                         else
1090                                 s3c_hsudc_epout_intr(hsudc, ep_idx);
1091                 }
1092                 ep_intr >>= 1;
1093                 ep_idx++;
1094         }
1095
1096         spin_unlock(&hsudc->lock);
1097         return IRQ_HANDLED;
1098 }
1099
1100 static int s3c_hsudc_start(struct usb_gadget *gadget,
1101                 struct usb_gadget_driver *driver)
1102 {
1103         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1104         int ret;
1105
1106         if (!driver
1107                 || driver->max_speed < USB_SPEED_FULL
1108                 || !driver->setup)
1109                 return -EINVAL;
1110
1111         if (!hsudc)
1112                 return -ENODEV;
1113
1114         if (hsudc->driver)
1115                 return -EBUSY;
1116
1117         hsudc->driver = driver;
1118
1119         ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies),
1120                                     hsudc->supplies);
1121         if (ret != 0) {
1122                 dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret);
1123                 goto err_supplies;
1124         }
1125
1126         /* connect to bus through transceiver */
1127         if (!IS_ERR_OR_NULL(hsudc->transceiver)) {
1128                 ret = otg_set_peripheral(hsudc->transceiver->otg,
1129                                         &hsudc->gadget);
1130                 if (ret) {
1131                         dev_err(hsudc->dev, "%s: can't bind to transceiver\n",
1132                                         hsudc->gadget.name);
1133                         goto err_otg;
1134                 }
1135         }
1136
1137         enable_irq(hsudc->irq);
1138         s3c_hsudc_reconfig(hsudc);
1139
1140         pm_runtime_get_sync(hsudc->dev);
1141
1142         if (hsudc->pd->phy_init)
1143                 hsudc->pd->phy_init();
1144         if (hsudc->pd->gpio_init)
1145                 hsudc->pd->gpio_init();
1146
1147         return 0;
1148 err_otg:
1149         regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1150 err_supplies:
1151         hsudc->driver = NULL;
1152         return ret;
1153 }
1154
1155 static int s3c_hsudc_stop(struct usb_gadget *gadget)
1156 {
1157         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1158         unsigned long flags;
1159
1160         if (!hsudc)
1161                 return -ENODEV;
1162
1163         spin_lock_irqsave(&hsudc->lock, flags);
1164         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1165         if (hsudc->pd->phy_uninit)
1166                 hsudc->pd->phy_uninit();
1167
1168         pm_runtime_put(hsudc->dev);
1169
1170         if (hsudc->pd->gpio_uninit)
1171                 hsudc->pd->gpio_uninit();
1172         s3c_hsudc_stop_activity(hsudc);
1173         spin_unlock_irqrestore(&hsudc->lock, flags);
1174
1175         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1176                 (void) otg_set_peripheral(hsudc->transceiver->otg, NULL);
1177
1178         disable_irq(hsudc->irq);
1179
1180         regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies);
1181         hsudc->driver = NULL;
1182
1183         return 0;
1184 }
1185
1186 static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc)
1187 {
1188         return readl(hsudc->regs + S3C_FNR) & 0x3FF;
1189 }
1190
1191 static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget)
1192 {
1193         return s3c_hsudc_read_frameno(to_hsudc(gadget));
1194 }
1195
1196 static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA)
1197 {
1198         struct s3c_hsudc *hsudc = to_hsudc(gadget);
1199
1200         if (!hsudc)
1201                 return -ENODEV;
1202
1203         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1204                 return usb_phy_set_power(hsudc->transceiver, mA);
1205
1206         return -EOPNOTSUPP;
1207 }
1208
1209 static const struct usb_gadget_ops s3c_hsudc_gadget_ops = {
1210         .get_frame      = s3c_hsudc_gadget_getframe,
1211         .udc_start      = s3c_hsudc_start,
1212         .udc_stop       = s3c_hsudc_stop,
1213         .vbus_draw      = s3c_hsudc_vbus_draw,
1214 };
1215
1216 static int s3c_hsudc_probe(struct platform_device *pdev)
1217 {
1218         struct device *dev = &pdev->dev;
1219         struct s3c_hsudc *hsudc;
1220         struct s3c24xx_hsudc_platdata *pd = dev_get_platdata(&pdev->dev);
1221         int ret, i;
1222
1223         hsudc = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsudc) +
1224                         sizeof(struct s3c_hsudc_ep) * pd->epnum,
1225                         GFP_KERNEL);
1226         if (!hsudc)
1227                 return -ENOMEM;
1228
1229         platform_set_drvdata(pdev, dev);
1230         hsudc->dev = dev;
1231         hsudc->pd = dev_get_platdata(&pdev->dev);
1232
1233         hsudc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2);
1234
1235         for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++)
1236                 hsudc->supplies[i].supply = s3c_hsudc_supply_names[i];
1237
1238         ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies),
1239                                  hsudc->supplies);
1240         if (ret != 0) {
1241                 if (ret != -EPROBE_DEFER)
1242                         dev_err(dev, "failed to request supplies: %d\n", ret);
1243                 goto err_supplies;
1244         }
1245
1246         hsudc->regs = devm_platform_ioremap_resource(pdev, 0);
1247         if (IS_ERR(hsudc->regs)) {
1248                 ret = PTR_ERR(hsudc->regs);
1249                 goto err_res;
1250         }
1251
1252         spin_lock_init(&hsudc->lock);
1253
1254         hsudc->gadget.max_speed = USB_SPEED_HIGH;
1255         hsudc->gadget.ops = &s3c_hsudc_gadget_ops;
1256         hsudc->gadget.name = dev_name(dev);
1257         hsudc->gadget.ep0 = &hsudc->ep[0].ep;
1258         hsudc->gadget.is_otg = 0;
1259         hsudc->gadget.is_a_peripheral = 0;
1260         hsudc->gadget.speed = USB_SPEED_UNKNOWN;
1261
1262         s3c_hsudc_setup_ep(hsudc);
1263
1264         ret = platform_get_irq(pdev, 0);
1265         if (ret < 0)
1266                 goto err_res;
1267         hsudc->irq = ret;
1268
1269         ret = devm_request_irq(&pdev->dev, hsudc->irq, s3c_hsudc_irq, 0,
1270                                 driver_name, hsudc);
1271         if (ret < 0) {
1272                 dev_err(dev, "irq request failed\n");
1273                 goto err_res;
1274         }
1275
1276         hsudc->uclk = devm_clk_get(&pdev->dev, "usb-device");
1277         if (IS_ERR(hsudc->uclk)) {
1278                 dev_err(dev, "failed to find usb-device clock source\n");
1279                 ret = PTR_ERR(hsudc->uclk);
1280                 goto err_res;
1281         }
1282         clk_enable(hsudc->uclk);
1283
1284         local_irq_disable();
1285
1286         disable_irq(hsudc->irq);
1287         local_irq_enable();
1288
1289         ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget);
1290         if (ret)
1291                 goto err_add_udc;
1292
1293         pm_runtime_enable(dev);
1294
1295         return 0;
1296 err_add_udc:
1297         clk_disable(hsudc->uclk);
1298 err_res:
1299         if (!IS_ERR_OR_NULL(hsudc->transceiver))
1300                 usb_put_phy(hsudc->transceiver);
1301
1302 err_supplies:
1303         return ret;
1304 }
1305
1306 static struct platform_driver s3c_hsudc_driver = {
1307         .driver         = {
1308                 .name   = "s3c-hsudc",
1309         },
1310         .probe          = s3c_hsudc_probe,
1311 };
1312
1313 module_platform_driver(s3c_hsudc_driver);
1314
1315 MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver");
1316 MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>");
1317 MODULE_LICENSE("GPL");
1318 MODULE_ALIAS("platform:s3c-hsudc");