Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux-2.6-microblaze.git] / drivers / usb / dwc2 / hcd_queue.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd_queue.c - DesignWare HS OTG Controller host queuing routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37
38 /*
39  * This file contains the functions to manage Queue Heads and Queue
40  * Transfer Descriptors for Host mode
41  */
42 #include <linux/gcd.h>
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/io.h>
49 #include <linux/slab.h>
50 #include <linux/usb.h>
51
52 #include <linux/usb/hcd.h>
53 #include <linux/usb/ch11.h>
54
55 #include "core.h"
56 #include "hcd.h"
57
58 /* Wait this long before releasing periodic reservation */
59 #define DWC2_UNRESERVE_DELAY (msecs_to_jiffies(5))
60
61 /* If we get a NAK, wait this long before retrying */
62 #define DWC2_RETRY_WAIT_DELAY 1*1E6L
63
64 /**
65  * dwc2_periodic_channel_available() - Checks that a channel is available for a
66  * periodic transfer
67  *
68  * @hsotg: The HCD state structure for the DWC OTG controller
69  *
70  * Return: 0 if successful, negative error code otherwise
71  */
72 static int dwc2_periodic_channel_available(struct dwc2_hsotg *hsotg)
73 {
74         /*
75          * Currently assuming that there is a dedicated host channel for
76          * each periodic transaction plus at least one host channel for
77          * non-periodic transactions
78          */
79         int status;
80         int num_channels;
81
82         num_channels = hsotg->params.host_channels;
83         if ((hsotg->periodic_channels + hsotg->non_periodic_channels <
84              num_channels) && (hsotg->periodic_channels < num_channels - 1)) {
85                 status = 0;
86         } else {
87                 dev_dbg(hsotg->dev,
88                         "%s: Total channels: %d, Periodic: %d, Non-periodic: %d\n",
89                         __func__, num_channels,
90                         hsotg->periodic_channels, hsotg->non_periodic_channels);
91                 status = -ENOSPC;
92         }
93
94         return status;
95 }
96
97 /**
98  * dwc2_check_periodic_bandwidth() - Checks that there is sufficient bandwidth
99  * for the specified QH in the periodic schedule
100  *
101  * @hsotg: The HCD state structure for the DWC OTG controller
102  * @qh:    QH containing periodic bandwidth required
103  *
104  * Return: 0 if successful, negative error code otherwise
105  *
106  * For simplicity, this calculation assumes that all the transfers in the
107  * periodic schedule may occur in the same (micro)frame
108  */
109 static int dwc2_check_periodic_bandwidth(struct dwc2_hsotg *hsotg,
110                                          struct dwc2_qh *qh)
111 {
112         int status;
113         s16 max_claimed_usecs;
114
115         status = 0;
116
117         if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
118                 /*
119                  * High speed mode
120                  * Max periodic usecs is 80% x 125 usec = 100 usec
121                  */
122                 max_claimed_usecs = 100 - qh->host_us;
123         } else {
124                 /*
125                  * Full speed mode
126                  * Max periodic usecs is 90% x 1000 usec = 900 usec
127                  */
128                 max_claimed_usecs = 900 - qh->host_us;
129         }
130
131         if (hsotg->periodic_usecs > max_claimed_usecs) {
132                 dev_err(hsotg->dev,
133                         "%s: already claimed usecs %d, required usecs %d\n",
134                         __func__, hsotg->periodic_usecs, qh->host_us);
135                 status = -ENOSPC;
136         }
137
138         return status;
139 }
140
141 /**
142  * pmap_schedule() - Schedule time in a periodic bitmap (pmap).
143  *
144  * @map:             The bitmap representing the schedule; will be updated
145  *                   upon success.
146  * @bits_per_period: The schedule represents several periods.  This is how many
147  *                   bits are in each period.  It's assumed that the beginning
148  *                   of the schedule will repeat after its end.
149  * @periods_in_map:  The number of periods in the schedule.
150  * @num_bits:        The number of bits we need per period we want to reserve
151  *                   in this function call.
152  * @interval:        How often we need to be scheduled for the reservation this
153  *                   time.  1 means every period.  2 means every other period.
154  *                   ...you get the picture?
155  * @start:           The bit number to start at.  Normally 0.  Must be within
156  *                   the interval or we return failure right away.
157  * @only_one_period: Normally we'll allow picking a start anywhere within the
158  *                   first interval, since we can still make all repetition
159  *                   requirements by doing that.  However, if you pass true
160  *                   here then we'll return failure if we can't fit within
161  *                   the period that "start" is in.
162  *
163  * The idea here is that we want to schedule time for repeating events that all
164  * want the same resource.  The resource is divided into fixed-sized periods
165  * and the events want to repeat every "interval" periods.  The schedule
166  * granularity is one bit.
167  *
168  * To keep things "simple", we'll represent our schedule with a bitmap that
169  * contains a fixed number of periods.  This gets rid of a lot of complexity
170  * but does mean that we need to handle things specially (and non-ideally) if
171  * the number of the periods in the schedule doesn't match well with the
172  * intervals that we're trying to schedule.
173  *
174  * Here's an explanation of the scheme we'll implement, assuming 8 periods.
175  * - If interval is 1, we need to take up space in each of the 8
176  *   periods we're scheduling.  Easy.
177  * - If interval is 2, we need to take up space in half of the
178  *   periods.  Again, easy.
179  * - If interval is 3, we actually need to fall back to interval 1.
180  *   Why?  Because we might need time in any period.  AKA for the
181  *   first 8 periods, we'll be in slot 0, 3, 6.  Then we'll be
182  *   in slot 1, 4, 7.  Then we'll be in 2, 5.  Then we'll be back to
183  *   0, 3, and 6.  Since we could be in any frame we need to reserve
184  *   for all of them.  Sucks, but that's what you gotta do.  Note that
185  *   if we were instead scheduling 8 * 3 = 24 we'd do much better, but
186  *   then we need more memory and time to do scheduling.
187  * - If interval is 4, easy.
188  * - If interval is 5, we again need interval 1.  The schedule will be
189  *   0, 5, 2, 7, 4, 1, 6, 3, 0
190  * - If interval is 6, we need interval 2.  0, 6, 4, 2.
191  * - If interval is 7, we need interval 1.
192  * - If interval is 8, we need interval 8.
193  *
194  * If you do the math, you'll see that we need to pretend that interval is
195  * equal to the greatest_common_divisor(interval, periods_in_map).
196  *
197  * Note that at the moment this function tends to front-pack the schedule.
198  * In some cases that's really non-ideal (it's hard to schedule things that
199  * need to repeat every period).  In other cases it's perfect (you can easily
200  * schedule bigger, less often repeating things).
201  *
202  * Here's the algorithm in action (8 periods, 5 bits per period):
203  *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
204  *  |*****|  ***|*****|  ***|*****|  ***|*****|  ***|   OK 3 bits, intv 3 at 2
205  *  |*****|* ***|*****|  ***|*****|* ***|*****|  ***|   OK 1 bits, intv 4 at 5
206  *  |**   |*    |**   |     |**   |*    |**   |     | Remv 3 bits, intv 3 at 2
207  *  |***  |*    |***  |     |***  |*    |***  |     |   OK 1 bits, intv 6 at 2
208  *  |**** |*  * |**** |   * |**** |*  * |**** |   * |   OK 1 bits, intv 1 at 3
209  *  |**** |**** |**** | *** |**** |**** |**** | *** |   OK 2 bits, intv 2 at 6
210  *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 1 at 4
211  *  |*****|*****|*****| ****|*****|*****|*****| ****| FAIL 1 bits, intv 1
212  *  |  ***|*****|  ***| ****|  ***|*****|  ***| ****| Remv 2 bits, intv 2 at 0
213  *  |  ***| ****|  ***| ****|  ***| ****|  ***| ****| Remv 1 bits, intv 4 at 5
214  *  |   **| ****|   **| ****|   **| ****|   **| ****| Remv 1 bits, intv 6 at 2
215  *  |    *| ** *|    *| ** *|    *| ** *|    *| ** *| Remv 1 bits, intv 1 at 3
216  *  |    *|    *|    *|    *|    *|    *|    *|    *| Remv 2 bits, intv 2 at 6
217  *  |     |     |     |     |     |     |     |     | Remv 1 bits, intv 1 at 4
218  *  |**   |     |**   |     |**   |     |**   |     |   OK 2 bits, intv 2 at 0
219  *  |***  |     |**   |     |***  |     |**   |     |   OK 1 bits, intv 4 at 2
220  *  |*****|     |** **|     |*****|     |** **|     |   OK 2 bits, intv 2 at 3
221  *  |*****|*    |** **|     |*****|*    |** **|     |   OK 1 bits, intv 4 at 5
222  *  |*****|***  |** **| **  |*****|***  |** **| **  |   OK 2 bits, intv 2 at 6
223  *  |*****|*****|** **| ****|*****|*****|** **| ****|   OK 2 bits, intv 2 at 8
224  *  |*****|*****|*****| ****|*****|*****|*****| ****|   OK 1 bits, intv 4 at 12
225  *
226  * This function is pretty generic and could be easily abstracted if anything
227  * needed similar scheduling.
228  *
229  * Returns either -ENOSPC or a >= 0 start bit which should be passed to the
230  * unschedule routine.  The map bitmap will be updated on a non-error result.
231  */
232 static int pmap_schedule(unsigned long *map, int bits_per_period,
233                          int periods_in_map, int num_bits,
234                          int interval, int start, bool only_one_period)
235 {
236         int interval_bits;
237         int to_reserve;
238         int first_end;
239         int i;
240
241         if (num_bits > bits_per_period)
242                 return -ENOSPC;
243
244         /* Adjust interval as per description */
245         interval = gcd(interval, periods_in_map);
246
247         interval_bits = bits_per_period * interval;
248         to_reserve = periods_in_map / interval;
249
250         /* If start has gotten us past interval then we can't schedule */
251         if (start >= interval_bits)
252                 return -ENOSPC;
253
254         if (only_one_period)
255                 /* Must fit within same period as start; end at begin of next */
256                 first_end = (start / bits_per_period + 1) * bits_per_period;
257         else
258                 /* Can fit anywhere in the first interval */
259                 first_end = interval_bits;
260
261         /*
262          * We'll try to pick the first repetition, then see if that time
263          * is free for each of the subsequent repetitions.  If it's not
264          * we'll adjust the start time for the next search of the first
265          * repetition.
266          */
267         while (start + num_bits <= first_end) {
268                 int end;
269
270                 /* Need to stay within this period */
271                 end = (start / bits_per_period + 1) * bits_per_period;
272
273                 /* Look for num_bits us in this microframe starting at start */
274                 start = bitmap_find_next_zero_area(map, end, start, num_bits,
275                                                    0);
276
277                 /*
278                  * We should get start >= end if we fail.  We might be
279                  * able to check the next microframe depending on the
280                  * interval, so continue on (start already updated).
281                  */
282                 if (start >= end) {
283                         start = end;
284                         continue;
285                 }
286
287                 /* At this point we have a valid point for first one */
288                 for (i = 1; i < to_reserve; i++) {
289                         int ith_start = start + interval_bits * i;
290                         int ith_end = end + interval_bits * i;
291                         int ret;
292
293                         /* Use this as a dumb "check if bits are 0" */
294                         ret = bitmap_find_next_zero_area(
295                                 map, ith_start + num_bits, ith_start, num_bits,
296                                 0);
297
298                         /* We got the right place, continue checking */
299                         if (ret == ith_start)
300                                 continue;
301
302                         /* Move start up for next time and exit for loop */
303                         ith_start = bitmap_find_next_zero_area(
304                                 map, ith_end, ith_start, num_bits, 0);
305                         if (ith_start >= ith_end)
306                                 /* Need a while new period next time */
307                                 start = end;
308                         else
309                                 start = ith_start - interval_bits * i;
310                         break;
311                 }
312
313                 /* If didn't exit the for loop with a break, we have success */
314                 if (i == to_reserve)
315                         break;
316         }
317
318         if (start + num_bits > first_end)
319                 return -ENOSPC;
320
321         for (i = 0; i < to_reserve; i++) {
322                 int ith_start = start + interval_bits * i;
323
324                 bitmap_set(map, ith_start, num_bits);
325         }
326
327         return start;
328 }
329
330 /**
331  * pmap_unschedule() - Undo work done by pmap_schedule()
332  *
333  * @map:             See pmap_schedule().
334  * @bits_per_period: See pmap_schedule().
335  * @periods_in_map:  See pmap_schedule().
336  * @num_bits:        The number of bits that was passed to schedule.
337  * @interval:        The interval that was passed to schedule.
338  * @start:           The return value from pmap_schedule().
339  */
340 static void pmap_unschedule(unsigned long *map, int bits_per_period,
341                             int periods_in_map, int num_bits,
342                             int interval, int start)
343 {
344         int interval_bits;
345         int to_release;
346         int i;
347
348         /* Adjust interval as per description in pmap_schedule() */
349         interval = gcd(interval, periods_in_map);
350
351         interval_bits = bits_per_period * interval;
352         to_release = periods_in_map / interval;
353
354         for (i = 0; i < to_release; i++) {
355                 int ith_start = start + interval_bits * i;
356
357                 bitmap_clear(map, ith_start, num_bits);
358         }
359 }
360
361 /**
362  * dwc2_get_ls_map() - Get the map used for the given qh
363  *
364  * @hsotg: The HCD state structure for the DWC OTG controller.
365  * @qh:    QH for the periodic transfer.
366  *
367  * We'll always get the periodic map out of our TT.  Note that even if we're
368  * running the host straight in low speed / full speed mode it appears as if
369  * a TT is allocated for us, so we'll use it.  If that ever changes we can
370  * add logic here to get a map out of "hsotg" if !qh->do_split.
371  *
372  * Returns: the map or NULL if a map couldn't be found.
373  */
374 static unsigned long *dwc2_get_ls_map(struct dwc2_hsotg *hsotg,
375                                       struct dwc2_qh *qh)
376 {
377         unsigned long *map;
378
379         /* Don't expect to be missing a TT and be doing low speed scheduling */
380         if (WARN_ON(!qh->dwc_tt))
381                 return NULL;
382
383         /* Get the map and adjust if this is a multi_tt hub */
384         map = qh->dwc_tt->periodic_bitmaps;
385         if (qh->dwc_tt->usb_tt->multi)
386                 map += DWC2_ELEMENTS_PER_LS_BITMAP * (qh->ttport - 1);
387
388         return map;
389 }
390
391 #ifdef DWC2_PRINT_SCHEDULE
392 /*
393  * cat_printf() - A printf() + strcat() helper
394  *
395  * This is useful for concatenating a bunch of strings where each string is
396  * constructed using printf.
397  *
398  * @buf:   The destination buffer; will be updated to point after the printed
399  *         data.
400  * @size:  The number of bytes in the buffer (includes space for '\0').
401  * @fmt:   The format for printf.
402  * @...:   The args for printf.
403  */
404 static __printf(3, 4)
405 void cat_printf(char **buf, size_t *size, const char *fmt, ...)
406 {
407         va_list args;
408         int i;
409
410         if (*size == 0)
411                 return;
412
413         va_start(args, fmt);
414         i = vsnprintf(*buf, *size, fmt, args);
415         va_end(args);
416
417         if (i >= *size) {
418                 (*buf)[*size - 1] = '\0';
419                 *buf += *size;
420                 *size = 0;
421         } else {
422                 *buf += i;
423                 *size -= i;
424         }
425 }
426
427 /*
428  * pmap_print() - Print the given periodic map
429  *
430  * Will attempt to print out the periodic schedule.
431  *
432  * @map:             See pmap_schedule().
433  * @bits_per_period: See pmap_schedule().
434  * @periods_in_map:  See pmap_schedule().
435  * @period_name:     The name of 1 period, like "uFrame"
436  * @units:           The name of the units, like "us".
437  * @print_fn:        The function to call for printing.
438  * @print_data:      Opaque data to pass to the print function.
439  */
440 static void pmap_print(unsigned long *map, int bits_per_period,
441                        int periods_in_map, const char *period_name,
442                        const char *units,
443                        void (*print_fn)(const char *str, void *data),
444                        void *print_data)
445 {
446         int period;
447
448         for (period = 0; period < periods_in_map; period++) {
449                 char tmp[64];
450                 char *buf = tmp;
451                 size_t buf_size = sizeof(tmp);
452                 int period_start = period * bits_per_period;
453                 int period_end = period_start + bits_per_period;
454                 int start = 0;
455                 int count = 0;
456                 bool printed = false;
457                 int i;
458
459                 for (i = period_start; i < period_end + 1; i++) {
460                         /* Handle case when ith bit is set */
461                         if (i < period_end &&
462                             bitmap_find_next_zero_area(map, i + 1,
463                                                        i, 1, 0) != i) {
464                                 if (count == 0)
465                                         start = i - period_start;
466                                 count++;
467                                 continue;
468                         }
469
470                         /* ith bit isn't set; don't care if count == 0 */
471                         if (count == 0)
472                                 continue;
473
474                         if (!printed)
475                                 cat_printf(&buf, &buf_size, "%s %d: ",
476                                            period_name, period);
477                         else
478                                 cat_printf(&buf, &buf_size, ", ");
479                         printed = true;
480
481                         cat_printf(&buf, &buf_size, "%d %s -%3d %s", start,
482                                    units, start + count - 1, units);
483                         count = 0;
484                 }
485
486                 if (printed)
487                         print_fn(tmp, print_data);
488         }
489 }
490
491 struct dwc2_qh_print_data {
492         struct dwc2_hsotg *hsotg;
493         struct dwc2_qh *qh;
494 };
495
496 /**
497  * dwc2_qh_print() - Helper function for dwc2_qh_schedule_print()
498  *
499  * @str:  The string to print
500  * @data: A pointer to a struct dwc2_qh_print_data
501  */
502 static void dwc2_qh_print(const char *str, void *data)
503 {
504         struct dwc2_qh_print_data *print_data = data;
505
506         dwc2_sch_dbg(print_data->hsotg, "QH=%p ...%s\n", print_data->qh, str);
507 }
508
509 /**
510  * dwc2_qh_schedule_print() - Print the periodic schedule
511  *
512  * @hsotg: The HCD state structure for the DWC OTG controller.
513  * @qh:    QH to print.
514  */
515 static void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
516                                    struct dwc2_qh *qh)
517 {
518         struct dwc2_qh_print_data print_data = { hsotg, qh };
519         int i;
520
521         /*
522          * The printing functions are quite slow and inefficient.
523          * If we don't have tracing turned on, don't run unless the special
524          * define is turned on.
525          */
526
527         if (qh->schedule_low_speed) {
528                 unsigned long *map = dwc2_get_ls_map(hsotg, qh);
529
530                 dwc2_sch_dbg(hsotg, "QH=%p LS/FS trans: %d=>%d us @ %d us",
531                              qh, qh->device_us,
532                              DWC2_ROUND_US_TO_SLICE(qh->device_us),
533                              DWC2_US_PER_SLICE * qh->ls_start_schedule_slice);
534
535                 if (map) {
536                         dwc2_sch_dbg(hsotg,
537                                      "QH=%p Whole low/full speed map %p now:\n",
538                                      qh, map);
539                         pmap_print(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
540                                    DWC2_LS_SCHEDULE_FRAMES, "Frame ", "slices",
541                                    dwc2_qh_print, &print_data);
542                 }
543         }
544
545         for (i = 0; i < qh->num_hs_transfers; i++) {
546                 struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + i;
547                 int uframe = trans_time->start_schedule_us /
548                              DWC2_HS_PERIODIC_US_PER_UFRAME;
549                 int rel_us = trans_time->start_schedule_us %
550                              DWC2_HS_PERIODIC_US_PER_UFRAME;
551
552                 dwc2_sch_dbg(hsotg,
553                              "QH=%p HS trans #%d: %d us @ uFrame %d + %d us\n",
554                              qh, i, trans_time->duration_us, uframe, rel_us);
555         }
556         if (qh->num_hs_transfers) {
557                 dwc2_sch_dbg(hsotg, "QH=%p Whole high speed map now:\n", qh);
558                 pmap_print(hsotg->hs_periodic_bitmap,
559                            DWC2_HS_PERIODIC_US_PER_UFRAME,
560                            DWC2_HS_SCHEDULE_UFRAMES, "uFrame", "us",
561                            dwc2_qh_print, &print_data);
562         }
563 }
564 #else
565 static inline void dwc2_qh_schedule_print(struct dwc2_hsotg *hsotg,
566                                           struct dwc2_qh *qh) {};
567 #endif
568
569 /**
570  * dwc2_ls_pmap_schedule() - Schedule a low speed QH
571  *
572  * @hsotg:        The HCD state structure for the DWC OTG controller.
573  * @qh:           QH for the periodic transfer.
574  * @search_slice: We'll start trying to schedule at the passed slice.
575  *                Remember that slices are the units of the low speed
576  *                schedule (think 25us or so).
577  *
578  * Wraps pmap_schedule() with the right parameters for low speed scheduling.
579  *
580  * Normally we schedule low speed devices on the map associated with the TT.
581  *
582  * Returns: 0 for success or an error code.
583  */
584 static int dwc2_ls_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
585                                  int search_slice)
586 {
587         int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
588         unsigned long *map = dwc2_get_ls_map(hsotg, qh);
589         int slice;
590
591         if (!map)
592                 return -EINVAL;
593
594         /*
595          * Schedule on the proper low speed map with our low speed scheduling
596          * parameters.  Note that we use the "device_interval" here since
597          * we want the low speed interval and the only way we'd be in this
598          * function is if the device is low speed.
599          *
600          * If we happen to be doing low speed and high speed scheduling for the
601          * same transaction (AKA we have a split) we always do low speed first.
602          * That means we can always pass "false" for only_one_period (that
603          * parameters is only useful when we're trying to get one schedule to
604          * match what we already planned in the other schedule).
605          */
606         slice = pmap_schedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
607                               DWC2_LS_SCHEDULE_FRAMES, slices,
608                               qh->device_interval, search_slice, false);
609
610         if (slice < 0)
611                 return slice;
612
613         qh->ls_start_schedule_slice = slice;
614         return 0;
615 }
616
617 /**
618  * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_ls_pmap_schedule()
619  *
620  * @hsotg:       The HCD state structure for the DWC OTG controller.
621  * @qh:          QH for the periodic transfer.
622  */
623 static void dwc2_ls_pmap_unschedule(struct dwc2_hsotg *hsotg,
624                                     struct dwc2_qh *qh)
625 {
626         int slices = DIV_ROUND_UP(qh->device_us, DWC2_US_PER_SLICE);
627         unsigned long *map = dwc2_get_ls_map(hsotg, qh);
628
629         /* Schedule should have failed, so no worries about no error code */
630         if (!map)
631                 return;
632
633         pmap_unschedule(map, DWC2_LS_PERIODIC_SLICES_PER_FRAME,
634                         DWC2_LS_SCHEDULE_FRAMES, slices, qh->device_interval,
635                         qh->ls_start_schedule_slice);
636 }
637
638 /**
639  * dwc2_hs_pmap_schedule - Schedule in the main high speed schedule
640  *
641  * This will schedule something on the main dwc2 schedule.
642  *
643  * We'll start looking in qh->hs_transfers[index].start_schedule_us.  We'll
644  * update this with the result upon success.  We also use the duration from
645  * the same structure.
646  *
647  * @hsotg:           The HCD state structure for the DWC OTG controller.
648  * @qh:              QH for the periodic transfer.
649  * @only_one_period: If true we will limit ourselves to just looking at
650  *                   one period (aka one 100us chunk).  This is used if we have
651  *                   already scheduled something on the low speed schedule and
652  *                   need to find something that matches on the high speed one.
653  * @index:           The index into qh->hs_transfers that we're working with.
654  *
655  * Returns: 0 for success or an error code.  Upon success the
656  *          dwc2_hs_transfer_time specified by "index" will be updated.
657  */
658 static int dwc2_hs_pmap_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
659                                  bool only_one_period, int index)
660 {
661         struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
662         int us;
663
664         us = pmap_schedule(hsotg->hs_periodic_bitmap,
665                            DWC2_HS_PERIODIC_US_PER_UFRAME,
666                            DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
667                            qh->host_interval, trans_time->start_schedule_us,
668                            only_one_period);
669
670         if (us < 0)
671                 return us;
672
673         trans_time->start_schedule_us = us;
674         return 0;
675 }
676
677 /**
678  * dwc2_ls_pmap_unschedule() - Undo work done by dwc2_hs_pmap_schedule()
679  *
680  * @hsotg:       The HCD state structure for the DWC OTG controller.
681  * @qh:          QH for the periodic transfer.
682  * @index:       Transfer index
683  */
684 static void dwc2_hs_pmap_unschedule(struct dwc2_hsotg *hsotg,
685                                     struct dwc2_qh *qh, int index)
686 {
687         struct dwc2_hs_transfer_time *trans_time = qh->hs_transfers + index;
688
689         pmap_unschedule(hsotg->hs_periodic_bitmap,
690                         DWC2_HS_PERIODIC_US_PER_UFRAME,
691                         DWC2_HS_SCHEDULE_UFRAMES, trans_time->duration_us,
692                         qh->host_interval, trans_time->start_schedule_us);
693 }
694
695 /**
696  * dwc2_uframe_schedule_split - Schedule a QH for a periodic split xfer.
697  *
698  * This is the most complicated thing in USB.  We have to find matching time
699  * in both the global high speed schedule for the port and the low speed
700  * schedule for the TT associated with the given device.
701  *
702  * Being here means that the host must be running in high speed mode and the
703  * device is in low or full speed mode (and behind a hub).
704  *
705  * @hsotg:       The HCD state structure for the DWC OTG controller.
706  * @qh:          QH for the periodic transfer.
707  */
708 static int dwc2_uframe_schedule_split(struct dwc2_hsotg *hsotg,
709                                       struct dwc2_qh *qh)
710 {
711         int bytecount = qh->maxp_mult * qh->maxp;
712         int ls_search_slice;
713         int err = 0;
714         int host_interval_in_sched;
715
716         /*
717          * The interval (how often to repeat) in the actual host schedule.
718          * See pmap_schedule() for gcd() explanation.
719          */
720         host_interval_in_sched = gcd(qh->host_interval,
721                                      DWC2_HS_SCHEDULE_UFRAMES);
722
723         /*
724          * We always try to find space in the low speed schedule first, then
725          * try to find high speed time that matches.  If we don't, we'll bump
726          * up the place we start searching in the low speed schedule and try
727          * again.  To start we'll look right at the beginning of the low speed
728          * schedule.
729          *
730          * Note that this will tend to front-load the high speed schedule.
731          * We may eventually want to try to avoid this by either considering
732          * both schedules together or doing some sort of round robin.
733          */
734         ls_search_slice = 0;
735
736         while (ls_search_slice < DWC2_LS_SCHEDULE_SLICES) {
737                 int start_s_uframe;
738                 int ssplit_s_uframe;
739                 int second_s_uframe;
740                 int rel_uframe;
741                 int first_count;
742                 int middle_count;
743                 int end_count;
744                 int first_data_bytes;
745                 int other_data_bytes;
746                 int i;
747
748                 if (qh->schedule_low_speed) {
749                         err = dwc2_ls_pmap_schedule(hsotg, qh, ls_search_slice);
750
751                         /*
752                          * If we got an error here there's no other magic we
753                          * can do, so bail.  All the looping above is only
754                          * helpful to redo things if we got a low speed slot
755                          * and then couldn't find a matching high speed slot.
756                          */
757                         if (err)
758                                 return err;
759                 } else {
760                         /* Must be missing the tt structure?  Why? */
761                         WARN_ON_ONCE(1);
762                 }
763
764                 /*
765                  * This will give us a number 0 - 7 if
766                  * DWC2_LS_SCHEDULE_FRAMES == 1, or 0 - 15 if == 2, or ...
767                  */
768                 start_s_uframe = qh->ls_start_schedule_slice /
769                                  DWC2_SLICES_PER_UFRAME;
770
771                 /* Get a number that's always 0 - 7 */
772                 rel_uframe = (start_s_uframe % 8);
773
774                 /*
775                  * If we were going to start in uframe 7 then we would need to
776                  * issue a start split in uframe 6, which spec says is not OK.
777                  * Move on to the next full frame (assuming there is one).
778                  *
779                  * See 11.18.4 Host Split Transaction Scheduling Requirements
780                  * bullet 1.
781                  */
782                 if (rel_uframe == 7) {
783                         if (qh->schedule_low_speed)
784                                 dwc2_ls_pmap_unschedule(hsotg, qh);
785                         ls_search_slice =
786                                 (qh->ls_start_schedule_slice /
787                                  DWC2_LS_PERIODIC_SLICES_PER_FRAME + 1) *
788                                 DWC2_LS_PERIODIC_SLICES_PER_FRAME;
789                         continue;
790                 }
791
792                 /*
793                  * For ISOC in:
794                  * - start split            (frame -1)
795                  * - complete split w/ data (frame +1)
796                  * - complete split w/ data (frame +2)
797                  * - ...
798                  * - complete split w/ data (frame +num_data_packets)
799                  * - complete split w/ data (frame +num_data_packets+1)
800                  * - complete split w/ data (frame +num_data_packets+2, max 8)
801                  *   ...though if frame was "0" then max is 7...
802                  *
803                  * For ISOC out we might need to do:
804                  * - start split w/ data    (frame -1)
805                  * - start split w/ data    (frame +0)
806                  * - ...
807                  * - start split w/ data    (frame +num_data_packets-2)
808                  *
809                  * For INTERRUPT in we might need to do:
810                  * - start split            (frame -1)
811                  * - complete split w/ data (frame +1)
812                  * - complete split w/ data (frame +2)
813                  * - complete split w/ data (frame +3, max 8)
814                  *
815                  * For INTERRUPT out we might need to do:
816                  * - start split w/ data    (frame -1)
817                  * - complete split         (frame +1)
818                  * - complete split         (frame +2)
819                  * - complete split         (frame +3, max 8)
820                  *
821                  * Start adjusting!
822                  */
823                 ssplit_s_uframe = (start_s_uframe +
824                                    host_interval_in_sched - 1) %
825                                   host_interval_in_sched;
826                 if (qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in)
827                         second_s_uframe = start_s_uframe;
828                 else
829                         second_s_uframe = start_s_uframe + 1;
830
831                 /* First data transfer might not be all 188 bytes. */
832                 first_data_bytes = 188 -
833                         DIV_ROUND_UP(188 * (qh->ls_start_schedule_slice %
834                                             DWC2_SLICES_PER_UFRAME),
835                                      DWC2_SLICES_PER_UFRAME);
836                 if (first_data_bytes > bytecount)
837                         first_data_bytes = bytecount;
838                 other_data_bytes = bytecount - first_data_bytes;
839
840                 /*
841                  * For now, skip OUT xfers where first xfer is partial
842                  *
843                  * Main dwc2 code assumes:
844                  * - INT transfers never get split in two.
845                  * - ISOC transfers can always transfer 188 bytes the first
846                  *   time.
847                  *
848                  * Until that code is fixed, try again if the first transfer
849                  * couldn't transfer everything.
850                  *
851                  * This code can be removed if/when the rest of dwc2 handles
852                  * the above cases.  Until it's fixed we just won't be able
853                  * to schedule quite as tightly.
854                  */
855                 if (!qh->ep_is_in &&
856                     (first_data_bytes != min_t(int, 188, bytecount))) {
857                         dwc2_sch_dbg(hsotg,
858                                      "QH=%p avoiding broken 1st xfer (%d, %d)\n",
859                                      qh, first_data_bytes, bytecount);
860                         if (qh->schedule_low_speed)
861                                 dwc2_ls_pmap_unschedule(hsotg, qh);
862                         ls_search_slice = (start_s_uframe + 1) *
863                                 DWC2_SLICES_PER_UFRAME;
864                         continue;
865                 }
866
867                 /* Start by assuming transfers for the bytes */
868                 qh->num_hs_transfers = 1 + DIV_ROUND_UP(other_data_bytes, 188);
869
870                 /*
871                  * Everything except ISOC OUT has extra transfers.  Rules are
872                  * complicated.  See 11.18.4 Host Split Transaction Scheduling
873                  * Requirements bullet 3.
874                  */
875                 if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
876                         if (rel_uframe == 6)
877                                 qh->num_hs_transfers += 2;
878                         else
879                                 qh->num_hs_transfers += 3;
880
881                         if (qh->ep_is_in) {
882                                 /*
883                                  * First is start split, middle/end is data.
884                                  * Allocate full data bytes for all data.
885                                  */
886                                 first_count = 4;
887                                 middle_count = bytecount;
888                                 end_count = bytecount;
889                         } else {
890                                 /*
891                                  * First is data, middle/end is complete.
892                                  * First transfer and second can have data.
893                                  * Rest should just have complete split.
894                                  */
895                                 first_count = first_data_bytes;
896                                 middle_count = max_t(int, 4, other_data_bytes);
897                                 end_count = 4;
898                         }
899                 } else {
900                         if (qh->ep_is_in) {
901                                 int last;
902
903                                 /* Account for the start split */
904                                 qh->num_hs_transfers++;
905
906                                 /* Calculate "L" value from spec */
907                                 last = rel_uframe + qh->num_hs_transfers + 1;
908
909                                 /* Start with basic case */
910                                 if (last <= 6)
911                                         qh->num_hs_transfers += 2;
912                                 else
913                                         qh->num_hs_transfers += 1;
914
915                                 /* Adjust downwards */
916                                 if (last >= 6 && rel_uframe == 0)
917                                         qh->num_hs_transfers--;
918
919                                 /* 1st = start; rest can contain data */
920                                 first_count = 4;
921                                 middle_count = min_t(int, 188, bytecount);
922                                 end_count = middle_count;
923                         } else {
924                                 /* All contain data, last might be smaller */
925                                 first_count = first_data_bytes;
926                                 middle_count = min_t(int, 188,
927                                                      other_data_bytes);
928                                 end_count = other_data_bytes % 188;
929                         }
930                 }
931
932                 /* Assign durations per uFrame */
933                 qh->hs_transfers[0].duration_us = HS_USECS_ISO(first_count);
934                 for (i = 1; i < qh->num_hs_transfers - 1; i++)
935                         qh->hs_transfers[i].duration_us =
936                                 HS_USECS_ISO(middle_count);
937                 if (qh->num_hs_transfers > 1)
938                         qh->hs_transfers[qh->num_hs_transfers - 1].duration_us =
939                                 HS_USECS_ISO(end_count);
940
941                 /*
942                  * Assign start us.  The call below to dwc2_hs_pmap_schedule()
943                  * will start with these numbers but may adjust within the same
944                  * microframe.
945                  */
946                 qh->hs_transfers[0].start_schedule_us =
947                         ssplit_s_uframe * DWC2_HS_PERIODIC_US_PER_UFRAME;
948                 for (i = 1; i < qh->num_hs_transfers; i++)
949                         qh->hs_transfers[i].start_schedule_us =
950                                 ((second_s_uframe + i - 1) %
951                                  DWC2_HS_SCHEDULE_UFRAMES) *
952                                 DWC2_HS_PERIODIC_US_PER_UFRAME;
953
954                 /* Try to schedule with filled in hs_transfers above */
955                 for (i = 0; i < qh->num_hs_transfers; i++) {
956                         err = dwc2_hs_pmap_schedule(hsotg, qh, true, i);
957                         if (err)
958                                 break;
959                 }
960
961                 /* If we scheduled all w/out breaking out then we're all good */
962                 if (i == qh->num_hs_transfers)
963                         break;
964
965                 for (; i >= 0; i--)
966                         dwc2_hs_pmap_unschedule(hsotg, qh, i);
967
968                 if (qh->schedule_low_speed)
969                         dwc2_ls_pmap_unschedule(hsotg, qh);
970
971                 /* Try again starting in the next microframe */
972                 ls_search_slice = (start_s_uframe + 1) * DWC2_SLICES_PER_UFRAME;
973         }
974
975         if (ls_search_slice >= DWC2_LS_SCHEDULE_SLICES)
976                 return -ENOSPC;
977
978         return 0;
979 }
980
981 /**
982  * dwc2_uframe_schedule_hs - Schedule a QH for a periodic high speed xfer.
983  *
984  * Basically this just wraps dwc2_hs_pmap_schedule() to provide a clean
985  * interface.
986  *
987  * @hsotg:       The HCD state structure for the DWC OTG controller.
988  * @qh:          QH for the periodic transfer.
989  */
990 static int dwc2_uframe_schedule_hs(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
991 {
992         /* In non-split host and device time are the same */
993         WARN_ON(qh->host_us != qh->device_us);
994         WARN_ON(qh->host_interval != qh->device_interval);
995         WARN_ON(qh->num_hs_transfers != 1);
996
997         /* We'll have one transfer; init start to 0 before calling scheduler */
998         qh->hs_transfers[0].start_schedule_us = 0;
999         qh->hs_transfers[0].duration_us = qh->host_us;
1000
1001         return dwc2_hs_pmap_schedule(hsotg, qh, false, 0);
1002 }
1003
1004 /**
1005  * dwc2_uframe_schedule_ls - Schedule a QH for a periodic low/full speed xfer.
1006  *
1007  * Basically this just wraps dwc2_ls_pmap_schedule() to provide a clean
1008  * interface.
1009  *
1010  * @hsotg:       The HCD state structure for the DWC OTG controller.
1011  * @qh:          QH for the periodic transfer.
1012  */
1013 static int dwc2_uframe_schedule_ls(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1014 {
1015         /* In non-split host and device time are the same */
1016         WARN_ON(qh->host_us != qh->device_us);
1017         WARN_ON(qh->host_interval != qh->device_interval);
1018         WARN_ON(!qh->schedule_low_speed);
1019
1020         /* Run on the main low speed schedule (no split = no hub = no TT) */
1021         return dwc2_ls_pmap_schedule(hsotg, qh, 0);
1022 }
1023
1024 /**
1025  * dwc2_uframe_schedule - Schedule a QH for a periodic xfer.
1026  *
1027  * Calls one of the 3 sub-function depending on what type of transfer this QH
1028  * is for.  Also adds some printing.
1029  *
1030  * @hsotg:       The HCD state structure for the DWC OTG controller.
1031  * @qh:          QH for the periodic transfer.
1032  */
1033 static int dwc2_uframe_schedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1034 {
1035         int ret;
1036
1037         if (qh->dev_speed == USB_SPEED_HIGH)
1038                 ret = dwc2_uframe_schedule_hs(hsotg, qh);
1039         else if (!qh->do_split)
1040                 ret = dwc2_uframe_schedule_ls(hsotg, qh);
1041         else
1042                 ret = dwc2_uframe_schedule_split(hsotg, qh);
1043
1044         if (ret)
1045                 dwc2_sch_dbg(hsotg, "QH=%p Failed to schedule %d\n", qh, ret);
1046         else
1047                 dwc2_qh_schedule_print(hsotg, qh);
1048
1049         return ret;
1050 }
1051
1052 /**
1053  * dwc2_uframe_unschedule - Undoes dwc2_uframe_schedule().
1054  *
1055  * @hsotg:       The HCD state structure for the DWC OTG controller.
1056  * @qh:          QH for the periodic transfer.
1057  */
1058 static void dwc2_uframe_unschedule(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1059 {
1060         int i;
1061
1062         for (i = 0; i < qh->num_hs_transfers; i++)
1063                 dwc2_hs_pmap_unschedule(hsotg, qh, i);
1064
1065         if (qh->schedule_low_speed)
1066                 dwc2_ls_pmap_unschedule(hsotg, qh);
1067
1068         dwc2_sch_dbg(hsotg, "QH=%p Unscheduled\n", qh);
1069 }
1070
1071 /**
1072  * dwc2_pick_first_frame() - Choose 1st frame for qh that's already scheduled
1073  *
1074  * Takes a qh that has already been scheduled (which means we know we have the
1075  * bandwdith reserved for us) and set the next_active_frame and the
1076  * start_active_frame.
1077  *
1078  * This is expected to be called on qh's that weren't previously actively
1079  * running.  It just picks the next frame that we can fit into without any
1080  * thought about the past.
1081  *
1082  * @hsotg: The HCD state structure for the DWC OTG controller
1083  * @qh:    QH for a periodic endpoint
1084  *
1085  */
1086 static void dwc2_pick_first_frame(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1087 {
1088         u16 frame_number;
1089         u16 earliest_frame;
1090         u16 next_active_frame;
1091         u16 relative_frame;
1092         u16 interval;
1093
1094         /*
1095          * Use the real frame number rather than the cached value as of the
1096          * last SOF to give us a little extra slop.
1097          */
1098         frame_number = dwc2_hcd_get_frame_number(hsotg);
1099
1100         /*
1101          * We wouldn't want to start any earlier than the next frame just in
1102          * case the frame number ticks as we're doing this calculation.
1103          *
1104          * NOTE: if we could quantify how long till we actually get scheduled
1105          * we might be able to avoid the "+ 1" by looking at the upper part of
1106          * HFNUM (the FRREM field).  For now we'll just use the + 1 though.
1107          */
1108         earliest_frame = dwc2_frame_num_inc(frame_number, 1);
1109         next_active_frame = earliest_frame;
1110
1111         /* Get the "no microframe schduler" out of the way... */
1112         if (!hsotg->params.uframe_sched) {
1113                 if (qh->do_split)
1114                         /* Splits are active at microframe 0 minus 1 */
1115                         next_active_frame |= 0x7;
1116                 goto exit;
1117         }
1118
1119         if (qh->dev_speed == USB_SPEED_HIGH || qh->do_split) {
1120                 /*
1121                  * We're either at high speed or we're doing a split (which
1122                  * means we're talking high speed to a hub).  In any case
1123                  * the first frame should be based on when the first scheduled
1124                  * event is.
1125                  */
1126                 WARN_ON(qh->num_hs_transfers < 1);
1127
1128                 relative_frame = qh->hs_transfers[0].start_schedule_us /
1129                                  DWC2_HS_PERIODIC_US_PER_UFRAME;
1130
1131                 /* Adjust interval as per high speed schedule */
1132                 interval = gcd(qh->host_interval, DWC2_HS_SCHEDULE_UFRAMES);
1133
1134         } else {
1135                 /*
1136                  * Low or full speed directly on dwc2.  Just about the same
1137                  * as high speed but on a different schedule and with slightly
1138                  * different adjustments.  Note that this works because when
1139                  * the host and device are both low speed then frames in the
1140                  * controller tick at low speed.
1141                  */
1142                 relative_frame = qh->ls_start_schedule_slice /
1143                                  DWC2_LS_PERIODIC_SLICES_PER_FRAME;
1144                 interval = gcd(qh->host_interval, DWC2_LS_SCHEDULE_FRAMES);
1145         }
1146
1147         /* Scheduler messed up if frame is past interval */
1148         WARN_ON(relative_frame >= interval);
1149
1150         /*
1151          * We know interval must divide (HFNUM_MAX_FRNUM + 1) now that we've
1152          * done the gcd(), so it's safe to move to the beginning of the current
1153          * interval like this.
1154          *
1155          * After this we might be before earliest_frame, but don't worry,
1156          * we'll fix it...
1157          */
1158         next_active_frame = (next_active_frame / interval) * interval;
1159
1160         /*
1161          * Actually choose to start at the frame number we've been
1162          * scheduled for.
1163          */
1164         next_active_frame = dwc2_frame_num_inc(next_active_frame,
1165                                                relative_frame);
1166
1167         /*
1168          * We actually need 1 frame before since the next_active_frame is
1169          * the frame number we'll be put on the ready list and we won't be on
1170          * the bus until 1 frame later.
1171          */
1172         next_active_frame = dwc2_frame_num_dec(next_active_frame, 1);
1173
1174         /*
1175          * By now we might actually be before the earliest_frame.  Let's move
1176          * up intervals until we're not.
1177          */
1178         while (dwc2_frame_num_gt(earliest_frame, next_active_frame))
1179                 next_active_frame = dwc2_frame_num_inc(next_active_frame,
1180                                                        interval);
1181
1182 exit:
1183         qh->next_active_frame = next_active_frame;
1184         qh->start_active_frame = next_active_frame;
1185
1186         dwc2_sch_vdbg(hsotg, "QH=%p First fn=%04x nxt=%04x\n",
1187                       qh, frame_number, qh->next_active_frame);
1188 }
1189
1190 /**
1191  * dwc2_do_reserve() - Make a periodic reservation
1192  *
1193  * Try to allocate space in the periodic schedule.  Depending on parameters
1194  * this might use the microframe scheduler or the dumb scheduler.
1195  *
1196  * @hsotg: The HCD state structure for the DWC OTG controller
1197  * @qh:    QH for the periodic transfer.
1198  *
1199  * Returns: 0 upon success; error upon failure.
1200  */
1201 static int dwc2_do_reserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1202 {
1203         int status;
1204
1205         if (hsotg->params.uframe_sched) {
1206                 status = dwc2_uframe_schedule(hsotg, qh);
1207         } else {
1208                 status = dwc2_periodic_channel_available(hsotg);
1209                 if (status) {
1210                         dev_info(hsotg->dev,
1211                                  "%s: No host channel available for periodic transfer\n",
1212                                  __func__);
1213                         return status;
1214                 }
1215
1216                 status = dwc2_check_periodic_bandwidth(hsotg, qh);
1217         }
1218
1219         if (status) {
1220                 dev_dbg(hsotg->dev,
1221                         "%s: Insufficient periodic bandwidth for periodic transfer\n",
1222                         __func__);
1223                 return status;
1224         }
1225
1226         if (!hsotg->params.uframe_sched)
1227                 /* Reserve periodic channel */
1228                 hsotg->periodic_channels++;
1229
1230         /* Update claimed usecs per (micro)frame */
1231         hsotg->periodic_usecs += qh->host_us;
1232
1233         dwc2_pick_first_frame(hsotg, qh);
1234
1235         return 0;
1236 }
1237
1238 /**
1239  * dwc2_do_unreserve() - Actually release the periodic reservation
1240  *
1241  * This function actually releases the periodic bandwidth that was reserved
1242  * by the given qh.
1243  *
1244  * @hsotg: The HCD state structure for the DWC OTG controller
1245  * @qh:    QH for the periodic transfer.
1246  */
1247 static void dwc2_do_unreserve(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1248 {
1249         assert_spin_locked(&hsotg->lock);
1250
1251         WARN_ON(!qh->unreserve_pending);
1252
1253         /* No more unreserve pending--we're doing it */
1254         qh->unreserve_pending = false;
1255
1256         if (WARN_ON(!list_empty(&qh->qh_list_entry)))
1257                 list_del_init(&qh->qh_list_entry);
1258
1259         /* Update claimed usecs per (micro)frame */
1260         hsotg->periodic_usecs -= qh->host_us;
1261
1262         if (hsotg->params.uframe_sched) {
1263                 dwc2_uframe_unschedule(hsotg, qh);
1264         } else {
1265                 /* Release periodic channel reservation */
1266                 hsotg->periodic_channels--;
1267         }
1268 }
1269
1270 /**
1271  * dwc2_unreserve_timer_fn() - Timer function to release periodic reservation
1272  *
1273  * According to the kernel doc for usb_submit_urb() (specifically the part about
1274  * "Reserved Bandwidth Transfers"), we need to keep a reservation active as
1275  * long as a device driver keeps submitting.  Since we're using HCD_BH to give
1276  * back the URB we need to give the driver a little bit of time before we
1277  * release the reservation.  This worker is called after the appropriate
1278  * delay.
1279  *
1280  * @t: Address to a qh unreserve_work.
1281  */
1282 static void dwc2_unreserve_timer_fn(struct timer_list *t)
1283 {
1284         struct dwc2_qh *qh = from_timer(qh, t, unreserve_timer);
1285         struct dwc2_hsotg *hsotg = qh->hsotg;
1286         unsigned long flags;
1287
1288         /*
1289          * Wait for the lock, or for us to be scheduled again.  We
1290          * could be scheduled again if:
1291          * - We started executing but didn't get the lock yet.
1292          * - A new reservation came in, but cancel didn't take effect
1293          *   because we already started executing.
1294          * - The timer has been kicked again.
1295          * In that case cancel and wait for the next call.
1296          */
1297         while (!spin_trylock_irqsave(&hsotg->lock, flags)) {
1298                 if (timer_pending(&qh->unreserve_timer))
1299                         return;
1300         }
1301
1302         /*
1303          * Might be no more unreserve pending if:
1304          * - We started executing but didn't get the lock yet.
1305          * - A new reservation came in, but cancel didn't take effect
1306          *   because we already started executing.
1307          *
1308          * We can't put this in the loop above because unreserve_pending needs
1309          * to be accessed under lock, so we can only check it once we got the
1310          * lock.
1311          */
1312         if (qh->unreserve_pending)
1313                 dwc2_do_unreserve(hsotg, qh);
1314
1315         spin_unlock_irqrestore(&hsotg->lock, flags);
1316 }
1317
1318 /**
1319  * dwc2_check_max_xfer_size() - Checks that the max transfer size allowed in a
1320  * host channel is large enough to handle the maximum data transfer in a single
1321  * (micro)frame for a periodic transfer
1322  *
1323  * @hsotg: The HCD state structure for the DWC OTG controller
1324  * @qh:    QH for a periodic endpoint
1325  *
1326  * Return: 0 if successful, negative error code otherwise
1327  */
1328 static int dwc2_check_max_xfer_size(struct dwc2_hsotg *hsotg,
1329                                     struct dwc2_qh *qh)
1330 {
1331         u32 max_xfer_size;
1332         u32 max_channel_xfer_size;
1333         int status = 0;
1334
1335         max_xfer_size = qh->maxp * qh->maxp_mult;
1336         max_channel_xfer_size = hsotg->params.max_transfer_size;
1337
1338         if (max_xfer_size > max_channel_xfer_size) {
1339                 dev_err(hsotg->dev,
1340                         "%s: Periodic xfer length %d > max xfer length for channel %d\n",
1341                         __func__, max_xfer_size, max_channel_xfer_size);
1342                 status = -ENOSPC;
1343         }
1344
1345         return status;
1346 }
1347
1348 /**
1349  * dwc2_schedule_periodic() - Schedules an interrupt or isochronous transfer in
1350  * the periodic schedule
1351  *
1352  * @hsotg: The HCD state structure for the DWC OTG controller
1353  * @qh:    QH for the periodic transfer. The QH should already contain the
1354  *         scheduling information.
1355  *
1356  * Return: 0 if successful, negative error code otherwise
1357  */
1358 static int dwc2_schedule_periodic(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1359 {
1360         int status;
1361
1362         status = dwc2_check_max_xfer_size(hsotg, qh);
1363         if (status) {
1364                 dev_dbg(hsotg->dev,
1365                         "%s: Channel max transfer size too small for periodic transfer\n",
1366                         __func__);
1367                 return status;
1368         }
1369
1370         /* Cancel pending unreserve; if canceled OK, unreserve was pending */
1371         if (del_timer(&qh->unreserve_timer))
1372                 WARN_ON(!qh->unreserve_pending);
1373
1374         /*
1375          * Only need to reserve if there's not an unreserve pending, since if an
1376          * unreserve is pending then by definition our old reservation is still
1377          * valid.  Unreserve might still be pending even if we didn't cancel if
1378          * dwc2_unreserve_timer_fn() already started.  Code in the timer handles
1379          * that case.
1380          */
1381         if (!qh->unreserve_pending) {
1382                 status = dwc2_do_reserve(hsotg, qh);
1383                 if (status)
1384                         return status;
1385         } else {
1386                 /*
1387                  * It might have been a while, so make sure that frame_number
1388                  * is still good.  Note: we could also try to use the similar
1389                  * dwc2_next_periodic_start() but that schedules much more
1390                  * tightly and we might need to hurry and queue things up.
1391                  */
1392                 if (dwc2_frame_num_le(qh->next_active_frame,
1393                                       hsotg->frame_number))
1394                         dwc2_pick_first_frame(hsotg, qh);
1395         }
1396
1397         qh->unreserve_pending = 0;
1398
1399         if (hsotg->params.dma_desc_enable)
1400                 /* Don't rely on SOF and start in ready schedule */
1401                 list_add_tail(&qh->qh_list_entry, &hsotg->periodic_sched_ready);
1402         else
1403                 /* Always start in inactive schedule */
1404                 list_add_tail(&qh->qh_list_entry,
1405                               &hsotg->periodic_sched_inactive);
1406
1407         return 0;
1408 }
1409
1410 /**
1411  * dwc2_deschedule_periodic() - Removes an interrupt or isochronous transfer
1412  * from the periodic schedule
1413  *
1414  * @hsotg: The HCD state structure for the DWC OTG controller
1415  * @qh:    QH for the periodic transfer
1416  */
1417 static void dwc2_deschedule_periodic(struct dwc2_hsotg *hsotg,
1418                                      struct dwc2_qh *qh)
1419 {
1420         bool did_modify;
1421
1422         assert_spin_locked(&hsotg->lock);
1423
1424         /*
1425          * Schedule the unreserve to happen in a little bit.  Cases here:
1426          * - Unreserve worker might be sitting there waiting to grab the lock.
1427          *   In this case it will notice it's been schedule again and will
1428          *   quit.
1429          * - Unreserve worker might not be scheduled.
1430          *
1431          * We should never already be scheduled since dwc2_schedule_periodic()
1432          * should have canceled the scheduled unreserve timer (hence the
1433          * warning on did_modify).
1434          *
1435          * We add + 1 to the timer to guarantee that at least 1 jiffy has
1436          * passed (otherwise if the jiffy counter might tick right after we
1437          * read it and we'll get no delay).
1438          */
1439         did_modify = mod_timer(&qh->unreserve_timer,
1440                                jiffies + DWC2_UNRESERVE_DELAY + 1);
1441         WARN_ON(did_modify);
1442         qh->unreserve_pending = 1;
1443
1444         list_del_init(&qh->qh_list_entry);
1445 }
1446
1447 /**
1448  * dwc2_wait_timer_fn() - Timer function to re-queue after waiting
1449  *
1450  * As per the spec, a NAK indicates that "a function is temporarily unable to
1451  * transmit or receive data, but will eventually be able to do so without need
1452  * of host intervention".
1453  *
1454  * That means that when we encounter a NAK we're supposed to retry.
1455  *
1456  * ...but if we retry right away (from the interrupt handler that saw the NAK)
1457  * then we can end up with an interrupt storm (if the other side keeps NAKing
1458  * us) because on slow enough CPUs it could take us longer to get out of the
1459  * interrupt routine than it takes for the device to send another NAK.  That
1460  * leads to a constant stream of NAK interrupts and the CPU locks.
1461  *
1462  * ...so instead of retrying right away in the case of a NAK we'll set a timer
1463  * to retry some time later.  This function handles that timer and moves the
1464  * qh back to the "inactive" list, then queues transactions.
1465  *
1466  * @t: Pointer to wait_timer in a qh.
1467  *
1468  * Return: HRTIMER_NORESTART to not automatically restart this timer.
1469  */
1470 static enum hrtimer_restart dwc2_wait_timer_fn(struct hrtimer *t)
1471 {
1472         struct dwc2_qh *qh = container_of(t, struct dwc2_qh, wait_timer);
1473         struct dwc2_hsotg *hsotg = qh->hsotg;
1474         unsigned long flags;
1475
1476         spin_lock_irqsave(&hsotg->lock, flags);
1477
1478         /*
1479          * We'll set wait_timer_cancel to true if we want to cancel this
1480          * operation in dwc2_hcd_qh_unlink().
1481          */
1482         if (!qh->wait_timer_cancel) {
1483                 enum dwc2_transaction_type tr_type;
1484
1485                 qh->want_wait = false;
1486
1487                 list_move(&qh->qh_list_entry,
1488                           &hsotg->non_periodic_sched_inactive);
1489
1490                 tr_type = dwc2_hcd_select_transactions(hsotg);
1491                 if (tr_type != DWC2_TRANSACTION_NONE)
1492                         dwc2_hcd_queue_transactions(hsotg, tr_type);
1493         }
1494
1495         spin_unlock_irqrestore(&hsotg->lock, flags);
1496         return HRTIMER_NORESTART;
1497 }
1498
1499 /**
1500  * dwc2_qh_init() - Initializes a QH structure
1501  *
1502  * @hsotg: The HCD state structure for the DWC OTG controller
1503  * @qh:    The QH to init
1504  * @urb:   Holds the information about the device/endpoint needed to initialize
1505  *         the QH
1506  * @mem_flags: Flags for allocating memory.
1507  */
1508 static void dwc2_qh_init(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1509                          struct dwc2_hcd_urb *urb, gfp_t mem_flags)
1510 {
1511         int dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1512         u8 ep_type = dwc2_hcd_get_pipe_type(&urb->pipe_info);
1513         bool ep_is_in = !!dwc2_hcd_is_pipe_in(&urb->pipe_info);
1514         bool ep_is_isoc = (ep_type == USB_ENDPOINT_XFER_ISOC);
1515         bool ep_is_int = (ep_type == USB_ENDPOINT_XFER_INT);
1516         u32 hprt = dwc2_readl(hsotg, HPRT0);
1517         u32 prtspd = (hprt & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1518         bool do_split = (prtspd == HPRT0_SPD_HIGH_SPEED &&
1519                          dev_speed != USB_SPEED_HIGH);
1520         int maxp = dwc2_hcd_get_maxp(&urb->pipe_info);
1521         int maxp_mult = dwc2_hcd_get_maxp_mult(&urb->pipe_info);
1522         int bytecount = maxp_mult * maxp;
1523         char *speed, *type;
1524
1525         /* Initialize QH */
1526         qh->hsotg = hsotg;
1527         timer_setup(&qh->unreserve_timer, dwc2_unreserve_timer_fn, 0);
1528         hrtimer_init(&qh->wait_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1529         qh->wait_timer.function = &dwc2_wait_timer_fn;
1530         qh->ep_type = ep_type;
1531         qh->ep_is_in = ep_is_in;
1532
1533         qh->data_toggle = DWC2_HC_PID_DATA0;
1534         qh->maxp = maxp;
1535         qh->maxp_mult = maxp_mult;
1536         INIT_LIST_HEAD(&qh->qtd_list);
1537         INIT_LIST_HEAD(&qh->qh_list_entry);
1538
1539         qh->do_split = do_split;
1540         qh->dev_speed = dev_speed;
1541
1542         if (ep_is_int || ep_is_isoc) {
1543                 /* Compute scheduling parameters once and save them */
1544                 int host_speed = do_split ? USB_SPEED_HIGH : dev_speed;
1545                 struct dwc2_tt *dwc_tt = dwc2_host_get_tt_info(hsotg, urb->priv,
1546                                                                mem_flags,
1547                                                                &qh->ttport);
1548                 int device_ns;
1549
1550                 qh->dwc_tt = dwc_tt;
1551
1552                 qh->host_us = NS_TO_US(usb_calc_bus_time(host_speed, ep_is_in,
1553                                        ep_is_isoc, bytecount));
1554                 device_ns = usb_calc_bus_time(dev_speed, ep_is_in,
1555                                               ep_is_isoc, bytecount);
1556
1557                 if (do_split && dwc_tt)
1558                         device_ns += dwc_tt->usb_tt->think_time;
1559                 qh->device_us = NS_TO_US(device_ns);
1560
1561                 qh->device_interval = urb->interval;
1562                 qh->host_interval = urb->interval * (do_split ? 8 : 1);
1563
1564                 /*
1565                  * Schedule low speed if we're running the host in low or
1566                  * full speed OR if we've got a "TT" to deal with to access this
1567                  * device.
1568                  */
1569                 qh->schedule_low_speed = prtspd != HPRT0_SPD_HIGH_SPEED ||
1570                                          dwc_tt;
1571
1572                 if (do_split) {
1573                         /* We won't know num transfers until we schedule */
1574                         qh->num_hs_transfers = -1;
1575                 } else if (dev_speed == USB_SPEED_HIGH) {
1576                         qh->num_hs_transfers = 1;
1577                 } else {
1578                         qh->num_hs_transfers = 0;
1579                 }
1580
1581                 /* We'll schedule later when we have something to do */
1582         }
1583
1584         switch (dev_speed) {
1585         case USB_SPEED_LOW:
1586                 speed = "low";
1587                 break;
1588         case USB_SPEED_FULL:
1589                 speed = "full";
1590                 break;
1591         case USB_SPEED_HIGH:
1592                 speed = "high";
1593                 break;
1594         default:
1595                 speed = "?";
1596                 break;
1597         }
1598
1599         switch (qh->ep_type) {
1600         case USB_ENDPOINT_XFER_ISOC:
1601                 type = "isochronous";
1602                 break;
1603         case USB_ENDPOINT_XFER_INT:
1604                 type = "interrupt";
1605                 break;
1606         case USB_ENDPOINT_XFER_CONTROL:
1607                 type = "control";
1608                 break;
1609         case USB_ENDPOINT_XFER_BULK:
1610                 type = "bulk";
1611                 break;
1612         default:
1613                 type = "?";
1614                 break;
1615         }
1616
1617         dwc2_sch_dbg(hsotg, "QH=%p Init %s, %s speed, %d bytes:\n", qh, type,
1618                      speed, bytecount);
1619         dwc2_sch_dbg(hsotg, "QH=%p ...addr=%d, ep=%d, %s\n", qh,
1620                      dwc2_hcd_get_dev_addr(&urb->pipe_info),
1621                      dwc2_hcd_get_ep_num(&urb->pipe_info),
1622                      ep_is_in ? "IN" : "OUT");
1623         if (ep_is_int || ep_is_isoc) {
1624                 dwc2_sch_dbg(hsotg,
1625                              "QH=%p ...duration: host=%d us, device=%d us\n",
1626                              qh, qh->host_us, qh->device_us);
1627                 dwc2_sch_dbg(hsotg, "QH=%p ...interval: host=%d, device=%d\n",
1628                              qh, qh->host_interval, qh->device_interval);
1629                 if (qh->schedule_low_speed)
1630                         dwc2_sch_dbg(hsotg, "QH=%p ...low speed schedule=%p\n",
1631                                      qh, dwc2_get_ls_map(hsotg, qh));
1632         }
1633 }
1634
1635 /**
1636  * dwc2_hcd_qh_create() - Allocates and initializes a QH
1637  *
1638  * @hsotg:        The HCD state structure for the DWC OTG controller
1639  * @urb:          Holds the information about the device/endpoint needed
1640  *                to initialize the QH
1641  * @mem_flags:   Flags for allocating memory.
1642  *
1643  * Return: Pointer to the newly allocated QH, or NULL on error
1644  */
1645 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
1646                                    struct dwc2_hcd_urb *urb,
1647                                           gfp_t mem_flags)
1648 {
1649         struct dwc2_qh *qh;
1650
1651         if (!urb->priv)
1652                 return NULL;
1653
1654         /* Allocate memory */
1655         qh = kzalloc(sizeof(*qh), mem_flags);
1656         if (!qh)
1657                 return NULL;
1658
1659         dwc2_qh_init(hsotg, qh, urb, mem_flags);
1660
1661         if (hsotg->params.dma_desc_enable &&
1662             dwc2_hcd_qh_init_ddma(hsotg, qh, mem_flags) < 0) {
1663                 dwc2_hcd_qh_free(hsotg, qh);
1664                 return NULL;
1665         }
1666
1667         return qh;
1668 }
1669
1670 /**
1671  * dwc2_hcd_qh_free() - Frees the QH
1672  *
1673  * @hsotg: HCD instance
1674  * @qh:    The QH to free
1675  *
1676  * QH should already be removed from the list. QTD list should already be empty
1677  * if called from URB Dequeue.
1678  *
1679  * Must NOT be called with interrupt disabled or spinlock held
1680  */
1681 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1682 {
1683         /* Make sure any unreserve work is finished. */
1684         if (del_timer_sync(&qh->unreserve_timer)) {
1685                 unsigned long flags;
1686
1687                 spin_lock_irqsave(&hsotg->lock, flags);
1688                 dwc2_do_unreserve(hsotg, qh);
1689                 spin_unlock_irqrestore(&hsotg->lock, flags);
1690         }
1691
1692         /*
1693          * We don't have the lock so we can safely wait until the wait timer
1694          * finishes.  Of course, at this point in time we'd better have set
1695          * wait_timer_active to false so if this timer was still pending it
1696          * won't do anything anyway, but we want it to finish before we free
1697          * memory.
1698          */
1699         hrtimer_cancel(&qh->wait_timer);
1700
1701         dwc2_host_put_tt_info(hsotg, qh->dwc_tt);
1702
1703         if (qh->desc_list)
1704                 dwc2_hcd_qh_free_ddma(hsotg, qh);
1705         else if (hsotg->unaligned_cache && qh->dw_align_buf)
1706                 kmem_cache_free(hsotg->unaligned_cache, qh->dw_align_buf);
1707
1708         kfree(qh);
1709 }
1710
1711 /**
1712  * dwc2_hcd_qh_add() - Adds a QH to either the non periodic or periodic
1713  * schedule if it is not already in the schedule. If the QH is already in
1714  * the schedule, no action is taken.
1715  *
1716  * @hsotg: The HCD state structure for the DWC OTG controller
1717  * @qh:    The QH to add
1718  *
1719  * Return: 0 if successful, negative error code otherwise
1720  */
1721 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1722 {
1723         int status;
1724         u32 intr_mask;
1725         ktime_t delay;
1726
1727         if (dbg_qh(qh))
1728                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1729
1730         if (!list_empty(&qh->qh_list_entry))
1731                 /* QH already in a schedule */
1732                 return 0;
1733
1734         /* Add the new QH to the appropriate schedule */
1735         if (dwc2_qh_is_non_per(qh)) {
1736                 /* Schedule right away */
1737                 qh->start_active_frame = hsotg->frame_number;
1738                 qh->next_active_frame = qh->start_active_frame;
1739
1740                 if (qh->want_wait) {
1741                         list_add_tail(&qh->qh_list_entry,
1742                                       &hsotg->non_periodic_sched_waiting);
1743                         qh->wait_timer_cancel = false;
1744                         delay = ktime_set(0, DWC2_RETRY_WAIT_DELAY);
1745                         hrtimer_start(&qh->wait_timer, delay, HRTIMER_MODE_REL);
1746                 } else {
1747                         list_add_tail(&qh->qh_list_entry,
1748                                       &hsotg->non_periodic_sched_inactive);
1749                 }
1750                 return 0;
1751         }
1752
1753         status = dwc2_schedule_periodic(hsotg, qh);
1754         if (status)
1755                 return status;
1756         if (!hsotg->periodic_qh_count) {
1757                 intr_mask = dwc2_readl(hsotg, GINTMSK);
1758                 intr_mask |= GINTSTS_SOF;
1759                 dwc2_writel(hsotg, intr_mask, GINTMSK);
1760         }
1761         hsotg->periodic_qh_count++;
1762
1763         return 0;
1764 }
1765
1766 /**
1767  * dwc2_hcd_qh_unlink() - Removes a QH from either the non-periodic or periodic
1768  * schedule. Memory is not freed.
1769  *
1770  * @hsotg: The HCD state structure
1771  * @qh:    QH to remove from schedule
1772  */
1773 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
1774 {
1775         u32 intr_mask;
1776
1777         dev_vdbg(hsotg->dev, "%s()\n", __func__);
1778
1779         /* If the wait_timer is pending, this will stop it from acting */
1780         qh->wait_timer_cancel = true;
1781
1782         if (list_empty(&qh->qh_list_entry))
1783                 /* QH is not in a schedule */
1784                 return;
1785
1786         if (dwc2_qh_is_non_per(qh)) {
1787                 if (hsotg->non_periodic_qh_ptr == &qh->qh_list_entry)
1788                         hsotg->non_periodic_qh_ptr =
1789                                         hsotg->non_periodic_qh_ptr->next;
1790                 list_del_init(&qh->qh_list_entry);
1791                 return;
1792         }
1793
1794         dwc2_deschedule_periodic(hsotg, qh);
1795         hsotg->periodic_qh_count--;
1796         if (!hsotg->periodic_qh_count &&
1797             !hsotg->params.dma_desc_enable) {
1798                 intr_mask = dwc2_readl(hsotg, GINTMSK);
1799                 intr_mask &= ~GINTSTS_SOF;
1800                 dwc2_writel(hsotg, intr_mask, GINTMSK);
1801         }
1802 }
1803
1804 /**
1805  * dwc2_next_for_periodic_split() - Set next_active_frame midway thru a split.
1806  *
1807  * This is called for setting next_active_frame for periodic splits for all but
1808  * the first packet of the split.  Confusing?  I thought so...
1809  *
1810  * Periodic splits are single low/full speed transfers that we end up splitting
1811  * up into several high speed transfers.  They always fit into one full (1 ms)
1812  * frame but might be split over several microframes (125 us each).  We to put
1813  * each of the parts on a very specific high speed frame.
1814  *
1815  * This function figures out where the next active uFrame needs to be.
1816  *
1817  * @hsotg:        The HCD state structure
1818  * @qh:           QH for the periodic transfer.
1819  * @frame_number: The current frame number.
1820  *
1821  * Return: number missed by (or 0 if we didn't miss).
1822  */
1823 static int dwc2_next_for_periodic_split(struct dwc2_hsotg *hsotg,
1824                                         struct dwc2_qh *qh, u16 frame_number)
1825 {
1826         u16 old_frame = qh->next_active_frame;
1827         u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1828         int missed = 0;
1829         u16 incr;
1830
1831         /*
1832          * See dwc2_uframe_schedule_split() for split scheduling.
1833          *
1834          * Basically: increment 1 normally, but 2 right after the start split
1835          * (except for ISOC out).
1836          */
1837         if (old_frame == qh->start_active_frame &&
1838             !(qh->ep_type == USB_ENDPOINT_XFER_ISOC && !qh->ep_is_in))
1839                 incr = 2;
1840         else
1841                 incr = 1;
1842
1843         qh->next_active_frame = dwc2_frame_num_inc(old_frame, incr);
1844
1845         /*
1846          * Note that it's OK for frame_number to be 1 frame past
1847          * next_active_frame.  Remember that next_active_frame is supposed to
1848          * be 1 frame _before_ when we want to be scheduled.  If we're 1 frame
1849          * past it just means schedule ASAP.
1850          *
1851          * It's _not_ OK, however, if we're more than one frame past.
1852          */
1853         if (dwc2_frame_num_gt(prev_frame_number, qh->next_active_frame)) {
1854                 /*
1855                  * OOPS, we missed.  That's actually pretty bad since
1856                  * the hub will be unhappy; try ASAP I guess.
1857                  */
1858                 missed = dwc2_frame_num_dec(prev_frame_number,
1859                                             qh->next_active_frame);
1860                 qh->next_active_frame = frame_number;
1861         }
1862
1863         return missed;
1864 }
1865
1866 /**
1867  * dwc2_next_periodic_start() - Set next_active_frame for next transfer start
1868  *
1869  * This is called for setting next_active_frame for a periodic transfer for
1870  * all cases other than midway through a periodic split.  This will also update
1871  * start_active_frame.
1872  *
1873  * Since we _always_ keep start_active_frame as the start of the previous
1874  * transfer this is normally pretty easy: we just add our interval to
1875  * start_active_frame and we've got our answer.
1876  *
1877  * The tricks come into play if we miss.  In that case we'll look for the next
1878  * slot we can fit into.
1879  *
1880  * @hsotg:        The HCD state structure
1881  * @qh:           QH for the periodic transfer.
1882  * @frame_number: The current frame number.
1883  *
1884  * Return: number missed by (or 0 if we didn't miss).
1885  */
1886 static int dwc2_next_periodic_start(struct dwc2_hsotg *hsotg,
1887                                     struct dwc2_qh *qh, u16 frame_number)
1888 {
1889         int missed = 0;
1890         u16 interval = qh->host_interval;
1891         u16 prev_frame_number = dwc2_frame_num_dec(frame_number, 1);
1892
1893         qh->start_active_frame = dwc2_frame_num_inc(qh->start_active_frame,
1894                                                     interval);
1895
1896         /*
1897          * The dwc2_frame_num_gt() function used below won't work terribly well
1898          * with if we just incremented by a really large intervals since the
1899          * frame counter only goes to 0x3fff.  It's terribly unlikely that we
1900          * will have missed in this case anyway.  Just go to exit.  If we want
1901          * to try to do better we'll need to keep track of a bigger counter
1902          * somewhere in the driver and handle overflows.
1903          */
1904         if (interval >= 0x1000)
1905                 goto exit;
1906
1907         /*
1908          * Test for misses, which is when it's too late to schedule.
1909          *
1910          * A few things to note:
1911          * - We compare against prev_frame_number since start_active_frame
1912          *   and next_active_frame are always 1 frame before we want things
1913          *   to be active and we assume we can still get scheduled in the
1914          *   current frame number.
1915          * - It's possible for start_active_frame (now incremented) to be
1916          *   next_active_frame if we got an EO MISS (even_odd miss) which
1917          *   basically means that we detected there wasn't enough time for
1918          *   the last packet and dwc2_hc_set_even_odd_frame() rescheduled us
1919          *   at the last second.  We want to make sure we don't schedule
1920          *   another transfer for the same frame.  My test webcam doesn't seem
1921          *   terribly upset by missing a transfer but really doesn't like when
1922          *   we do two transfers in the same frame.
1923          * - Some misses are expected.  Specifically, in order to work
1924          *   perfectly dwc2 really needs quite spectacular interrupt latency
1925          *   requirements.  It needs to be able to handle its interrupts
1926          *   completely within 125 us of them being asserted. That not only
1927          *   means that the dwc2 interrupt handler needs to be fast but it
1928          *   means that nothing else in the system has to block dwc2 for a long
1929          *   time.  We can help with the dwc2 parts of this, but it's hard to
1930          *   guarantee that a system will have interrupt latency < 125 us, so
1931          *   we have to be robust to some misses.
1932          */
1933         if (qh->start_active_frame == qh->next_active_frame ||
1934             dwc2_frame_num_gt(prev_frame_number, qh->start_active_frame)) {
1935                 u16 ideal_start = qh->start_active_frame;
1936                 int periods_in_map;
1937
1938                 /*
1939                  * Adjust interval as per gcd with map size.
1940                  * See pmap_schedule() for more details here.
1941                  */
1942                 if (qh->do_split || qh->dev_speed == USB_SPEED_HIGH)
1943                         periods_in_map = DWC2_HS_SCHEDULE_UFRAMES;
1944                 else
1945                         periods_in_map = DWC2_LS_SCHEDULE_FRAMES;
1946                 interval = gcd(interval, periods_in_map);
1947
1948                 do {
1949                         qh->start_active_frame = dwc2_frame_num_inc(
1950                                 qh->start_active_frame, interval);
1951                 } while (dwc2_frame_num_gt(prev_frame_number,
1952                                            qh->start_active_frame));
1953
1954                 missed = dwc2_frame_num_dec(qh->start_active_frame,
1955                                             ideal_start);
1956         }
1957
1958 exit:
1959         qh->next_active_frame = qh->start_active_frame;
1960
1961         return missed;
1962 }
1963
1964 /*
1965  * Deactivates a QH. For non-periodic QHs, removes the QH from the active
1966  * non-periodic schedule. The QH is added to the inactive non-periodic
1967  * schedule if any QTDs are still attached to the QH.
1968  *
1969  * For periodic QHs, the QH is removed from the periodic queued schedule. If
1970  * there are any QTDs still attached to the QH, the QH is added to either the
1971  * periodic inactive schedule or the periodic ready schedule and its next
1972  * scheduled frame is calculated. The QH is placed in the ready schedule if
1973  * the scheduled frame has been reached already. Otherwise it's placed in the
1974  * inactive schedule. If there are no QTDs attached to the QH, the QH is
1975  * completely removed from the periodic schedule.
1976  */
1977 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
1978                             int sched_next_periodic_split)
1979 {
1980         u16 old_frame = qh->next_active_frame;
1981         u16 frame_number;
1982         int missed;
1983
1984         if (dbg_qh(qh))
1985                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1986
1987         if (dwc2_qh_is_non_per(qh)) {
1988                 dwc2_hcd_qh_unlink(hsotg, qh);
1989                 if (!list_empty(&qh->qtd_list))
1990                         /* Add back to inactive/waiting non-periodic schedule */
1991                         dwc2_hcd_qh_add(hsotg, qh);
1992                 return;
1993         }
1994
1995         /*
1996          * Use the real frame number rather than the cached value as of the
1997          * last SOF just to get us a little closer to reality.  Note that
1998          * means we don't actually know if we've already handled the SOF
1999          * interrupt for this frame.
2000          */
2001         frame_number = dwc2_hcd_get_frame_number(hsotg);
2002
2003         if (sched_next_periodic_split)
2004                 missed = dwc2_next_for_periodic_split(hsotg, qh, frame_number);
2005         else
2006                 missed = dwc2_next_periodic_start(hsotg, qh, frame_number);
2007
2008         dwc2_sch_vdbg(hsotg,
2009                       "QH=%p next(%d) fn=%04x, sch=%04x=>%04x (%+d) miss=%d %s\n",
2010                      qh, sched_next_periodic_split, frame_number, old_frame,
2011                      qh->next_active_frame,
2012                      dwc2_frame_num_dec(qh->next_active_frame, old_frame),
2013                 missed, missed ? "MISS" : "");
2014
2015         if (list_empty(&qh->qtd_list)) {
2016                 dwc2_hcd_qh_unlink(hsotg, qh);
2017                 return;
2018         }
2019
2020         /*
2021          * Remove from periodic_sched_queued and move to
2022          * appropriate queue
2023          *
2024          * Note: we purposely use the frame_number from the "hsotg" structure
2025          * since we know SOF interrupt will handle future frames.
2026          */
2027         if (dwc2_frame_num_le(qh->next_active_frame, hsotg->frame_number))
2028                 list_move_tail(&qh->qh_list_entry,
2029                                &hsotg->periodic_sched_ready);
2030         else
2031                 list_move_tail(&qh->qh_list_entry,
2032                                &hsotg->periodic_sched_inactive);
2033 }
2034
2035 /**
2036  * dwc2_hcd_qtd_init() - Initializes a QTD structure
2037  *
2038  * @qtd: The QTD to initialize
2039  * @urb: The associated URB
2040  */
2041 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2042 {
2043         qtd->urb = urb;
2044         if (dwc2_hcd_get_pipe_type(&urb->pipe_info) ==
2045                         USB_ENDPOINT_XFER_CONTROL) {
2046                 /*
2047                  * The only time the QTD data toggle is used is on the data
2048                  * phase of control transfers. This phase always starts with
2049                  * DATA1.
2050                  */
2051                 qtd->data_toggle = DWC2_HC_PID_DATA1;
2052                 qtd->control_phase = DWC2_CONTROL_SETUP;
2053         }
2054
2055         /* Start split */
2056         qtd->complete_split = 0;
2057         qtd->isoc_split_pos = DWC2_HCSPLT_XACTPOS_ALL;
2058         qtd->isoc_split_offset = 0;
2059         qtd->in_process = 0;
2060
2061         /* Store the qtd ptr in the urb to reference the QTD */
2062         urb->qtd = qtd;
2063 }
2064
2065 /**
2066  * dwc2_hcd_qtd_add() - Adds a QTD to the QTD-list of a QH
2067  *                      Caller must hold driver lock.
2068  *
2069  * @hsotg:        The DWC HCD structure
2070  * @qtd:          The QTD to add
2071  * @qh:           Queue head to add qtd to
2072  *
2073  * Return: 0 if successful, negative error code otherwise
2074  *
2075  * If the QH to which the QTD is added is not currently scheduled, it is placed
2076  * into the proper schedule based on its EP type.
2077  */
2078 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
2079                      struct dwc2_qh *qh)
2080 {
2081         int retval;
2082
2083         if (unlikely(!qh)) {
2084                 dev_err(hsotg->dev, "%s: Invalid QH\n", __func__);
2085                 retval = -EINVAL;
2086                 goto fail;
2087         }
2088
2089         retval = dwc2_hcd_qh_add(hsotg, qh);
2090         if (retval)
2091                 goto fail;
2092
2093         qtd->qh = qh;
2094         list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
2095
2096         return 0;
2097 fail:
2098         return retval;
2099 }