Merge branch 'i2c/for-current' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[linux-2.6-microblaze.git] / drivers / usb / dwc2 / hcd.c
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55
56 #include "core.h"
57 #include "hcd.h"
58
59 /*
60  * =========================================================================
61  *  Host Core Layer Functions
62  * =========================================================================
63  */
64
65 /**
66  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
67  * used in both device and host modes
68  *
69  * @hsotg: Programming view of the DWC_otg controller
70  */
71 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
72 {
73         u32 intmsk;
74
75         /* Clear any pending OTG Interrupts */
76         dwc2_writel(hsotg, 0xffffffff, GOTGINT);
77
78         /* Clear any pending interrupts */
79         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
80
81         /* Enable the interrupts in the GINTMSK */
82         intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
83
84         if (!hsotg->params.host_dma)
85                 intmsk |= GINTSTS_RXFLVL;
86         if (!hsotg->params.external_id_pin_ctl)
87                 intmsk |= GINTSTS_CONIDSTSCHNG;
88
89         intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
90                   GINTSTS_SESSREQINT;
91
92         if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
93                 intmsk |= GINTSTS_LPMTRANRCVD;
94
95         dwc2_writel(hsotg, intmsk, GINTMSK);
96 }
97
98 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
99 {
100         u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
101
102         switch (hsotg->hw_params.arch) {
103         case GHWCFG2_EXT_DMA_ARCH:
104                 dev_err(hsotg->dev, "External DMA Mode not supported\n");
105                 return -EINVAL;
106
107         case GHWCFG2_INT_DMA_ARCH:
108                 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
109                 if (hsotg->params.ahbcfg != -1) {
110                         ahbcfg &= GAHBCFG_CTRL_MASK;
111                         ahbcfg |= hsotg->params.ahbcfg &
112                                   ~GAHBCFG_CTRL_MASK;
113                 }
114                 break;
115
116         case GHWCFG2_SLAVE_ONLY_ARCH:
117         default:
118                 dev_dbg(hsotg->dev, "Slave Only Mode\n");
119                 break;
120         }
121
122         if (hsotg->params.host_dma)
123                 ahbcfg |= GAHBCFG_DMA_EN;
124         else
125                 hsotg->params.dma_desc_enable = false;
126
127         dwc2_writel(hsotg, ahbcfg, GAHBCFG);
128
129         return 0;
130 }
131
132 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
133 {
134         u32 usbcfg;
135
136         usbcfg = dwc2_readl(hsotg, GUSBCFG);
137         usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
138
139         switch (hsotg->hw_params.op_mode) {
140         case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
141                 if (hsotg->params.otg_cap ==
142                                 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
143                         usbcfg |= GUSBCFG_HNPCAP;
144                 if (hsotg->params.otg_cap !=
145                                 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
146                         usbcfg |= GUSBCFG_SRPCAP;
147                 break;
148
149         case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
150         case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
151         case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
152                 if (hsotg->params.otg_cap !=
153                                 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
154                         usbcfg |= GUSBCFG_SRPCAP;
155                 break;
156
157         case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
158         case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
159         case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
160         default:
161                 break;
162         }
163
164         dwc2_writel(hsotg, usbcfg, GUSBCFG);
165 }
166
167 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
168 {
169         if (hsotg->vbus_supply)
170                 return regulator_enable(hsotg->vbus_supply);
171
172         return 0;
173 }
174
175 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
176 {
177         if (hsotg->vbus_supply)
178                 return regulator_disable(hsotg->vbus_supply);
179
180         return 0;
181 }
182
183 /**
184  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
185  *
186  * @hsotg: Programming view of DWC_otg controller
187  */
188 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
189 {
190         u32 intmsk;
191
192         dev_dbg(hsotg->dev, "%s()\n", __func__);
193
194         /* Disable all interrupts */
195         dwc2_writel(hsotg, 0, GINTMSK);
196         dwc2_writel(hsotg, 0, HAINTMSK);
197
198         /* Enable the common interrupts */
199         dwc2_enable_common_interrupts(hsotg);
200
201         /* Enable host mode interrupts without disturbing common interrupts */
202         intmsk = dwc2_readl(hsotg, GINTMSK);
203         intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
204         dwc2_writel(hsotg, intmsk, GINTMSK);
205 }
206
207 /**
208  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
209  *
210  * @hsotg: Programming view of DWC_otg controller
211  */
212 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
213 {
214         u32 intmsk = dwc2_readl(hsotg, GINTMSK);
215
216         /* Disable host mode interrupts without disturbing common interrupts */
217         intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
218                     GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
219         dwc2_writel(hsotg, intmsk, GINTMSK);
220 }
221
222 /*
223  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
224  * For system that have a total fifo depth that is smaller than the default
225  * RX + TX fifo size.
226  *
227  * @hsotg: Programming view of DWC_otg controller
228  */
229 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
230 {
231         struct dwc2_core_params *params = &hsotg->params;
232         struct dwc2_hw_params *hw = &hsotg->hw_params;
233         u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
234
235         total_fifo_size = hw->total_fifo_size;
236         rxfsiz = params->host_rx_fifo_size;
237         nptxfsiz = params->host_nperio_tx_fifo_size;
238         ptxfsiz = params->host_perio_tx_fifo_size;
239
240         /*
241          * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
242          * allocation with support for high bandwidth endpoints. Synopsys
243          * defines MPS(Max Packet size) for a periodic EP=1024, and for
244          * non-periodic as 512.
245          */
246         if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
247                 /*
248                  * For Buffer DMA mode/Scatter Gather DMA mode
249                  * 2 * ((Largest Packet size / 4) + 1 + 1) + n
250                  * with n = number of host channel.
251                  * 2 * ((1024/4) + 2) = 516
252                  */
253                 rxfsiz = 516 + hw->host_channels;
254
255                 /*
256                  * min non-periodic tx fifo depth
257                  * 2 * (largest non-periodic USB packet used / 4)
258                  * 2 * (512/4) = 256
259                  */
260                 nptxfsiz = 256;
261
262                 /*
263                  * min periodic tx fifo depth
264                  * (largest packet size*MC)/4
265                  * (1024 * 3)/4 = 768
266                  */
267                 ptxfsiz = 768;
268
269                 params->host_rx_fifo_size = rxfsiz;
270                 params->host_nperio_tx_fifo_size = nptxfsiz;
271                 params->host_perio_tx_fifo_size = ptxfsiz;
272         }
273
274         /*
275          * If the summation of RX, NPTX and PTX fifo sizes is still
276          * bigger than the total_fifo_size, then we have a problem.
277          *
278          * We won't be able to allocate as many endpoints. Right now,
279          * we're just printing an error message, but ideally this FIFO
280          * allocation algorithm would be improved in the future.
281          *
282          * FIXME improve this FIFO allocation algorithm.
283          */
284         if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
285                 dev_err(hsotg->dev, "invalid fifo sizes\n");
286 }
287
288 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
289 {
290         struct dwc2_core_params *params = &hsotg->params;
291         u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
292
293         if (!params->enable_dynamic_fifo)
294                 return;
295
296         dwc2_calculate_dynamic_fifo(hsotg);
297
298         /* Rx FIFO */
299         grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
300         dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
301         grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
302         grxfsiz |= params->host_rx_fifo_size <<
303                    GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
304         dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
305         dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
306                 dwc2_readl(hsotg, GRXFSIZ));
307
308         /* Non-periodic Tx FIFO */
309         dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
310                 dwc2_readl(hsotg, GNPTXFSIZ));
311         nptxfsiz = params->host_nperio_tx_fifo_size <<
312                    FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
313         nptxfsiz |= params->host_rx_fifo_size <<
314                     FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
315         dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
316         dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
317                 dwc2_readl(hsotg, GNPTXFSIZ));
318
319         /* Periodic Tx FIFO */
320         dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
321                 dwc2_readl(hsotg, HPTXFSIZ));
322         hptxfsiz = params->host_perio_tx_fifo_size <<
323                    FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
324         hptxfsiz |= (params->host_rx_fifo_size +
325                      params->host_nperio_tx_fifo_size) <<
326                     FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
327         dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
328         dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
329                 dwc2_readl(hsotg, HPTXFSIZ));
330
331         if (hsotg->params.en_multiple_tx_fifo &&
332             hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
333                 /*
334                  * This feature was implemented in 2.91a version
335                  * Global DFIFOCFG calculation for Host mode -
336                  * include RxFIFO, NPTXFIFO and HPTXFIFO
337                  */
338                 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
339                 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
340                 dfifocfg |= (params->host_rx_fifo_size +
341                              params->host_nperio_tx_fifo_size +
342                              params->host_perio_tx_fifo_size) <<
343                             GDFIFOCFG_EPINFOBASE_SHIFT &
344                             GDFIFOCFG_EPINFOBASE_MASK;
345                 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
346         }
347 }
348
349 /**
350  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
351  * the HFIR register according to PHY type and speed
352  *
353  * @hsotg: Programming view of DWC_otg controller
354  *
355  * NOTE: The caller can modify the value of the HFIR register only after the
356  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
357  * has been set
358  */
359 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
360 {
361         u32 usbcfg;
362         u32 hprt0;
363         int clock = 60; /* default value */
364
365         usbcfg = dwc2_readl(hsotg, GUSBCFG);
366         hprt0 = dwc2_readl(hsotg, HPRT0);
367
368         if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
369             !(usbcfg & GUSBCFG_PHYIF16))
370                 clock = 60;
371         if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
372             GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
373                 clock = 48;
374         if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
375             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
376                 clock = 30;
377         if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
378             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
379                 clock = 60;
380         if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
381             !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
382                 clock = 48;
383         if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
384             hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
385                 clock = 48;
386         if ((usbcfg & GUSBCFG_PHYSEL) &&
387             hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
388                 clock = 48;
389
390         if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
391                 /* High speed case */
392                 return 125 * clock - 1;
393
394         /* FS/LS case */
395         return 1000 * clock - 1;
396 }
397
398 /**
399  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
400  * buffer
401  *
402  * @hsotg: Programming view of DWC_otg controller
403  * @dest:    Destination buffer for the packet
404  * @bytes:   Number of bytes to copy to the destination
405  */
406 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
407 {
408         u32 *data_buf = (u32 *)dest;
409         int word_count = (bytes + 3) / 4;
410         int i;
411
412         /*
413          * Todo: Account for the case where dest is not dword aligned. This
414          * requires reading data from the FIFO into a u32 temp buffer, then
415          * moving it into the data buffer.
416          */
417
418         dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
419
420         for (i = 0; i < word_count; i++, data_buf++)
421                 *data_buf = dwc2_readl(hsotg, HCFIFO(0));
422 }
423
424 /**
425  * dwc2_dump_channel_info() - Prints the state of a host channel
426  *
427  * @hsotg: Programming view of DWC_otg controller
428  * @chan:  Pointer to the channel to dump
429  *
430  * Must be called with interrupt disabled and spinlock held
431  *
432  * NOTE: This function will be removed once the peripheral controller code
433  * is integrated and the driver is stable
434  */
435 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
436                                    struct dwc2_host_chan *chan)
437 {
438 #ifdef VERBOSE_DEBUG
439         int num_channels = hsotg->params.host_channels;
440         struct dwc2_qh *qh;
441         u32 hcchar;
442         u32 hcsplt;
443         u32 hctsiz;
444         u32 hc_dma;
445         int i;
446
447         if (!chan)
448                 return;
449
450         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
451         hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
452         hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
453         hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
454
455         dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
456         dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
457                 hcchar, hcsplt);
458         dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
459                 hctsiz, hc_dma);
460         dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
461                 chan->dev_addr, chan->ep_num, chan->ep_is_in);
462         dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
463         dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
464         dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
465         dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
466         dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
467         dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
468         dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
469                 (unsigned long)chan->xfer_dma);
470         dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
471         dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
472         dev_dbg(hsotg->dev, "  NP inactive sched:\n");
473         list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
474                             qh_list_entry)
475                 dev_dbg(hsotg->dev, "    %p\n", qh);
476         dev_dbg(hsotg->dev, "  NP waiting sched:\n");
477         list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
478                             qh_list_entry)
479                 dev_dbg(hsotg->dev, "    %p\n", qh);
480         dev_dbg(hsotg->dev, "  NP active sched:\n");
481         list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
482                             qh_list_entry)
483                 dev_dbg(hsotg->dev, "    %p\n", qh);
484         dev_dbg(hsotg->dev, "  Channels:\n");
485         for (i = 0; i < num_channels; i++) {
486                 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
487
488                 dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
489         }
490 #endif /* VERBOSE_DEBUG */
491 }
492
493 static int _dwc2_hcd_start(struct usb_hcd *hcd);
494
495 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
496 {
497         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
498
499         hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
500         _dwc2_hcd_start(hcd);
501 }
502
503 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
504 {
505         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
506
507         hcd->self.is_b_host = 0;
508 }
509
510 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
511                                int *hub_addr, int *hub_port)
512 {
513         struct urb *urb = context;
514
515         if (urb->dev->tt)
516                 *hub_addr = urb->dev->tt->hub->devnum;
517         else
518                 *hub_addr = 0;
519         *hub_port = urb->dev->ttport;
520 }
521
522 /*
523  * =========================================================================
524  *  Low Level Host Channel Access Functions
525  * =========================================================================
526  */
527
528 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
529                                       struct dwc2_host_chan *chan)
530 {
531         u32 hcintmsk = HCINTMSK_CHHLTD;
532
533         switch (chan->ep_type) {
534         case USB_ENDPOINT_XFER_CONTROL:
535         case USB_ENDPOINT_XFER_BULK:
536                 dev_vdbg(hsotg->dev, "control/bulk\n");
537                 hcintmsk |= HCINTMSK_XFERCOMPL;
538                 hcintmsk |= HCINTMSK_STALL;
539                 hcintmsk |= HCINTMSK_XACTERR;
540                 hcintmsk |= HCINTMSK_DATATGLERR;
541                 if (chan->ep_is_in) {
542                         hcintmsk |= HCINTMSK_BBLERR;
543                 } else {
544                         hcintmsk |= HCINTMSK_NAK;
545                         hcintmsk |= HCINTMSK_NYET;
546                         if (chan->do_ping)
547                                 hcintmsk |= HCINTMSK_ACK;
548                 }
549
550                 if (chan->do_split) {
551                         hcintmsk |= HCINTMSK_NAK;
552                         if (chan->complete_split)
553                                 hcintmsk |= HCINTMSK_NYET;
554                         else
555                                 hcintmsk |= HCINTMSK_ACK;
556                 }
557
558                 if (chan->error_state)
559                         hcintmsk |= HCINTMSK_ACK;
560                 break;
561
562         case USB_ENDPOINT_XFER_INT:
563                 if (dbg_perio())
564                         dev_vdbg(hsotg->dev, "intr\n");
565                 hcintmsk |= HCINTMSK_XFERCOMPL;
566                 hcintmsk |= HCINTMSK_NAK;
567                 hcintmsk |= HCINTMSK_STALL;
568                 hcintmsk |= HCINTMSK_XACTERR;
569                 hcintmsk |= HCINTMSK_DATATGLERR;
570                 hcintmsk |= HCINTMSK_FRMOVRUN;
571
572                 if (chan->ep_is_in)
573                         hcintmsk |= HCINTMSK_BBLERR;
574                 if (chan->error_state)
575                         hcintmsk |= HCINTMSK_ACK;
576                 if (chan->do_split) {
577                         if (chan->complete_split)
578                                 hcintmsk |= HCINTMSK_NYET;
579                         else
580                                 hcintmsk |= HCINTMSK_ACK;
581                 }
582                 break;
583
584         case USB_ENDPOINT_XFER_ISOC:
585                 if (dbg_perio())
586                         dev_vdbg(hsotg->dev, "isoc\n");
587                 hcintmsk |= HCINTMSK_XFERCOMPL;
588                 hcintmsk |= HCINTMSK_FRMOVRUN;
589                 hcintmsk |= HCINTMSK_ACK;
590
591                 if (chan->ep_is_in) {
592                         hcintmsk |= HCINTMSK_XACTERR;
593                         hcintmsk |= HCINTMSK_BBLERR;
594                 }
595                 break;
596         default:
597                 dev_err(hsotg->dev, "## Unknown EP type ##\n");
598                 break;
599         }
600
601         dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
602         if (dbg_hc(chan))
603                 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
604 }
605
606 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
607                                     struct dwc2_host_chan *chan)
608 {
609         u32 hcintmsk = HCINTMSK_CHHLTD;
610
611         /*
612          * For Descriptor DMA mode core halts the channel on AHB error.
613          * Interrupt is not required.
614          */
615         if (!hsotg->params.dma_desc_enable) {
616                 if (dbg_hc(chan))
617                         dev_vdbg(hsotg->dev, "desc DMA disabled\n");
618                 hcintmsk |= HCINTMSK_AHBERR;
619         } else {
620                 if (dbg_hc(chan))
621                         dev_vdbg(hsotg->dev, "desc DMA enabled\n");
622                 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
623                         hcintmsk |= HCINTMSK_XFERCOMPL;
624         }
625
626         if (chan->error_state && !chan->do_split &&
627             chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
628                 if (dbg_hc(chan))
629                         dev_vdbg(hsotg->dev, "setting ACK\n");
630                 hcintmsk |= HCINTMSK_ACK;
631                 if (chan->ep_is_in) {
632                         hcintmsk |= HCINTMSK_DATATGLERR;
633                         if (chan->ep_type != USB_ENDPOINT_XFER_INT)
634                                 hcintmsk |= HCINTMSK_NAK;
635                 }
636         }
637
638         dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
639         if (dbg_hc(chan))
640                 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
641 }
642
643 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
644                                 struct dwc2_host_chan *chan)
645 {
646         u32 intmsk;
647
648         if (hsotg->params.host_dma) {
649                 if (dbg_hc(chan))
650                         dev_vdbg(hsotg->dev, "DMA enabled\n");
651                 dwc2_hc_enable_dma_ints(hsotg, chan);
652         } else {
653                 if (dbg_hc(chan))
654                         dev_vdbg(hsotg->dev, "DMA disabled\n");
655                 dwc2_hc_enable_slave_ints(hsotg, chan);
656         }
657
658         /* Enable the top level host channel interrupt */
659         intmsk = dwc2_readl(hsotg, HAINTMSK);
660         intmsk |= 1 << chan->hc_num;
661         dwc2_writel(hsotg, intmsk, HAINTMSK);
662         if (dbg_hc(chan))
663                 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
664
665         /* Make sure host channel interrupts are enabled */
666         intmsk = dwc2_readl(hsotg, GINTMSK);
667         intmsk |= GINTSTS_HCHINT;
668         dwc2_writel(hsotg, intmsk, GINTMSK);
669         if (dbg_hc(chan))
670                 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
671 }
672
673 /**
674  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
675  * a specific endpoint
676  *
677  * @hsotg: Programming view of DWC_otg controller
678  * @chan:  Information needed to initialize the host channel
679  *
680  * The HCCHARn register is set up with the characteristics specified in chan.
681  * Host channel interrupts that may need to be serviced while this transfer is
682  * in progress are enabled.
683  */
684 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
685 {
686         u8 hc_num = chan->hc_num;
687         u32 hcintmsk;
688         u32 hcchar;
689         u32 hcsplt = 0;
690
691         if (dbg_hc(chan))
692                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
693
694         /* Clear old interrupt conditions for this host channel */
695         hcintmsk = 0xffffffff;
696         hcintmsk &= ~HCINTMSK_RESERVED14_31;
697         dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
698
699         /* Enable channel interrupts required for this transfer */
700         dwc2_hc_enable_ints(hsotg, chan);
701
702         /*
703          * Program the HCCHARn register with the endpoint characteristics for
704          * the current transfer
705          */
706         hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
707         hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
708         if (chan->ep_is_in)
709                 hcchar |= HCCHAR_EPDIR;
710         if (chan->speed == USB_SPEED_LOW)
711                 hcchar |= HCCHAR_LSPDDEV;
712         hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
713         hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
714         dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
715         if (dbg_hc(chan)) {
716                 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
717                          hc_num, hcchar);
718
719                 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
720                          __func__, hc_num);
721                 dev_vdbg(hsotg->dev, "   Dev Addr: %d\n",
722                          chan->dev_addr);
723                 dev_vdbg(hsotg->dev, "   Ep Num: %d\n",
724                          chan->ep_num);
725                 dev_vdbg(hsotg->dev, "   Is In: %d\n",
726                          chan->ep_is_in);
727                 dev_vdbg(hsotg->dev, "   Is Low Speed: %d\n",
728                          chan->speed == USB_SPEED_LOW);
729                 dev_vdbg(hsotg->dev, "   Ep Type: %d\n",
730                          chan->ep_type);
731                 dev_vdbg(hsotg->dev, "   Max Pkt: %d\n",
732                          chan->max_packet);
733         }
734
735         /* Program the HCSPLT register for SPLITs */
736         if (chan->do_split) {
737                 if (dbg_hc(chan))
738                         dev_vdbg(hsotg->dev,
739                                  "Programming HC %d with split --> %s\n",
740                                  hc_num,
741                                  chan->complete_split ? "CSPLIT" : "SSPLIT");
742                 if (chan->complete_split)
743                         hcsplt |= HCSPLT_COMPSPLT;
744                 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
745                           HCSPLT_XACTPOS_MASK;
746                 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
747                           HCSPLT_HUBADDR_MASK;
748                 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
749                           HCSPLT_PRTADDR_MASK;
750                 if (dbg_hc(chan)) {
751                         dev_vdbg(hsotg->dev, "    comp split %d\n",
752                                  chan->complete_split);
753                         dev_vdbg(hsotg->dev, "    xact pos %d\n",
754                                  chan->xact_pos);
755                         dev_vdbg(hsotg->dev, "    hub addr %d\n",
756                                  chan->hub_addr);
757                         dev_vdbg(hsotg->dev, "    hub port %d\n",
758                                  chan->hub_port);
759                         dev_vdbg(hsotg->dev, "    is_in %d\n",
760                                  chan->ep_is_in);
761                         dev_vdbg(hsotg->dev, "    Max Pkt %d\n",
762                                  chan->max_packet);
763                         dev_vdbg(hsotg->dev, "    xferlen %d\n",
764                                  chan->xfer_len);
765                 }
766         }
767
768         dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
769 }
770
771 /**
772  * dwc2_hc_halt() - Attempts to halt a host channel
773  *
774  * @hsotg:       Controller register interface
775  * @chan:        Host channel to halt
776  * @halt_status: Reason for halting the channel
777  *
778  * This function should only be called in Slave mode or to abort a transfer in
779  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
780  * controller halts the channel when the transfer is complete or a condition
781  * occurs that requires application intervention.
782  *
783  * In slave mode, checks for a free request queue entry, then sets the Channel
784  * Enable and Channel Disable bits of the Host Channel Characteristics
785  * register of the specified channel to intiate the halt. If there is no free
786  * request queue entry, sets only the Channel Disable bit of the HCCHARn
787  * register to flush requests for this channel. In the latter case, sets a
788  * flag to indicate that the host channel needs to be halted when a request
789  * queue slot is open.
790  *
791  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
792  * HCCHARn register. The controller ensures there is space in the request
793  * queue before submitting the halt request.
794  *
795  * Some time may elapse before the core flushes any posted requests for this
796  * host channel and halts. The Channel Halted interrupt handler completes the
797  * deactivation of the host channel.
798  */
799 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
800                   enum dwc2_halt_status halt_status)
801 {
802         u32 nptxsts, hptxsts, hcchar;
803
804         if (dbg_hc(chan))
805                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
806
807         /*
808          * In buffer DMA or external DMA mode channel can't be halted
809          * for non-split periodic channels. At the end of the next
810          * uframe/frame (in the worst case), the core generates a channel
811          * halted and disables the channel automatically.
812          */
813         if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
814             hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
815                 if (!chan->do_split &&
816                     (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
817                      chan->ep_type == USB_ENDPOINT_XFER_INT)) {
818                         dev_err(hsotg->dev, "%s() Channel can't be halted\n",
819                                 __func__);
820                         return;
821                 }
822         }
823
824         if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
825                 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
826
827         if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
828             halt_status == DWC2_HC_XFER_AHB_ERR) {
829                 /*
830                  * Disable all channel interrupts except Ch Halted. The QTD
831                  * and QH state associated with this transfer has been cleared
832                  * (in the case of URB_DEQUEUE), so the channel needs to be
833                  * shut down carefully to prevent crashes.
834                  */
835                 u32 hcintmsk = HCINTMSK_CHHLTD;
836
837                 dev_vdbg(hsotg->dev, "dequeue/error\n");
838                 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
839
840                 /*
841                  * Make sure no other interrupts besides halt are currently
842                  * pending. Handling another interrupt could cause a crash due
843                  * to the QTD and QH state.
844                  */
845                 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
846
847                 /*
848                  * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
849                  * even if the channel was already halted for some other
850                  * reason
851                  */
852                 chan->halt_status = halt_status;
853
854                 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
855                 if (!(hcchar & HCCHAR_CHENA)) {
856                         /*
857                          * The channel is either already halted or it hasn't
858                          * started yet. In DMA mode, the transfer may halt if
859                          * it finishes normally or a condition occurs that
860                          * requires driver intervention. Don't want to halt
861                          * the channel again. In either Slave or DMA mode,
862                          * it's possible that the transfer has been assigned
863                          * to a channel, but not started yet when an URB is
864                          * dequeued. Don't want to halt a channel that hasn't
865                          * started yet.
866                          */
867                         return;
868                 }
869         }
870         if (chan->halt_pending) {
871                 /*
872                  * A halt has already been issued for this channel. This might
873                  * happen when a transfer is aborted by a higher level in
874                  * the stack.
875                  */
876                 dev_vdbg(hsotg->dev,
877                          "*** %s: Channel %d, chan->halt_pending already set ***\n",
878                          __func__, chan->hc_num);
879                 return;
880         }
881
882         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
883
884         /* No need to set the bit in DDMA for disabling the channel */
885         /* TODO check it everywhere channel is disabled */
886         if (!hsotg->params.dma_desc_enable) {
887                 if (dbg_hc(chan))
888                         dev_vdbg(hsotg->dev, "desc DMA disabled\n");
889                 hcchar |= HCCHAR_CHENA;
890         } else {
891                 if (dbg_hc(chan))
892                         dev_dbg(hsotg->dev, "desc DMA enabled\n");
893         }
894         hcchar |= HCCHAR_CHDIS;
895
896         if (!hsotg->params.host_dma) {
897                 if (dbg_hc(chan))
898                         dev_vdbg(hsotg->dev, "DMA not enabled\n");
899                 hcchar |= HCCHAR_CHENA;
900
901                 /* Check for space in the request queue to issue the halt */
902                 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
903                     chan->ep_type == USB_ENDPOINT_XFER_BULK) {
904                         dev_vdbg(hsotg->dev, "control/bulk\n");
905                         nptxsts = dwc2_readl(hsotg, GNPTXSTS);
906                         if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
907                                 dev_vdbg(hsotg->dev, "Disabling channel\n");
908                                 hcchar &= ~HCCHAR_CHENA;
909                         }
910                 } else {
911                         if (dbg_perio())
912                                 dev_vdbg(hsotg->dev, "isoc/intr\n");
913                         hptxsts = dwc2_readl(hsotg, HPTXSTS);
914                         if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
915                             hsotg->queuing_high_bandwidth) {
916                                 if (dbg_perio())
917                                         dev_vdbg(hsotg->dev, "Disabling channel\n");
918                                 hcchar &= ~HCCHAR_CHENA;
919                         }
920                 }
921         } else {
922                 if (dbg_hc(chan))
923                         dev_vdbg(hsotg->dev, "DMA enabled\n");
924         }
925
926         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
927         chan->halt_status = halt_status;
928
929         if (hcchar & HCCHAR_CHENA) {
930                 if (dbg_hc(chan))
931                         dev_vdbg(hsotg->dev, "Channel enabled\n");
932                 chan->halt_pending = 1;
933                 chan->halt_on_queue = 0;
934         } else {
935                 if (dbg_hc(chan))
936                         dev_vdbg(hsotg->dev, "Channel disabled\n");
937                 chan->halt_on_queue = 1;
938         }
939
940         if (dbg_hc(chan)) {
941                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
942                          chan->hc_num);
943                 dev_vdbg(hsotg->dev, "   hcchar: 0x%08x\n",
944                          hcchar);
945                 dev_vdbg(hsotg->dev, "   halt_pending: %d\n",
946                          chan->halt_pending);
947                 dev_vdbg(hsotg->dev, "   halt_on_queue: %d\n",
948                          chan->halt_on_queue);
949                 dev_vdbg(hsotg->dev, "   halt_status: %d\n",
950                          chan->halt_status);
951         }
952 }
953
954 /**
955  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
956  *
957  * @hsotg: Programming view of DWC_otg controller
958  * @chan:  Identifies the host channel to clean up
959  *
960  * This function is normally called after a transfer is done and the host
961  * channel is being released
962  */
963 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
964 {
965         u32 hcintmsk;
966
967         chan->xfer_started = 0;
968
969         list_del_init(&chan->split_order_list_entry);
970
971         /*
972          * Clear channel interrupt enables and any unhandled channel interrupt
973          * conditions
974          */
975         dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
976         hcintmsk = 0xffffffff;
977         hcintmsk &= ~HCINTMSK_RESERVED14_31;
978         dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
979 }
980
981 /**
982  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
983  * which frame a periodic transfer should occur
984  *
985  * @hsotg:  Programming view of DWC_otg controller
986  * @chan:   Identifies the host channel to set up and its properties
987  * @hcchar: Current value of the HCCHAR register for the specified host channel
988  *
989  * This function has no effect on non-periodic transfers
990  */
991 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
992                                        struct dwc2_host_chan *chan, u32 *hcchar)
993 {
994         if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
995             chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
996                 int host_speed;
997                 int xfer_ns;
998                 int xfer_us;
999                 int bytes_in_fifo;
1000                 u16 fifo_space;
1001                 u16 frame_number;
1002                 u16 wire_frame;
1003
1004                 /*
1005                  * Try to figure out if we're an even or odd frame. If we set
1006                  * even and the current frame number is even the the transfer
1007                  * will happen immediately.  Similar if both are odd. If one is
1008                  * even and the other is odd then the transfer will happen when
1009                  * the frame number ticks.
1010                  *
1011                  * There's a bit of a balancing act to get this right.
1012                  * Sometimes we may want to send data in the current frame (AK
1013                  * right away).  We might want to do this if the frame number
1014                  * _just_ ticked, but we might also want to do this in order
1015                  * to continue a split transaction that happened late in a
1016                  * microframe (so we didn't know to queue the next transfer
1017                  * until the frame number had ticked).  The problem is that we
1018                  * need a lot of knowledge to know if there's actually still
1019                  * time to send things or if it would be better to wait until
1020                  * the next frame.
1021                  *
1022                  * We can look at how much time is left in the current frame
1023                  * and make a guess about whether we'll have time to transfer.
1024                  * We'll do that.
1025                  */
1026
1027                 /* Get speed host is running at */
1028                 host_speed = (chan->speed != USB_SPEED_HIGH &&
1029                               !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1030
1031                 /* See how many bytes are in the periodic FIFO right now */
1032                 fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1033                               TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1034                 bytes_in_fifo = sizeof(u32) *
1035                                 (hsotg->params.host_perio_tx_fifo_size -
1036                                  fifo_space);
1037
1038                 /*
1039                  * Roughly estimate bus time for everything in the periodic
1040                  * queue + our new transfer.  This is "rough" because we're
1041                  * using a function that makes takes into account IN/OUT
1042                  * and INT/ISO and we're just slamming in one value for all
1043                  * transfers.  This should be an over-estimate and that should
1044                  * be OK, but we can probably tighten it.
1045                  */
1046                 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1047                                             chan->xfer_len + bytes_in_fifo);
1048                 xfer_us = NS_TO_US(xfer_ns);
1049
1050                 /* See what frame number we'll be at by the time we finish */
1051                 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1052
1053                 /* This is when we were scheduled to be on the wire */
1054                 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1055
1056                 /*
1057                  * If we'd finish _after_ the frame we're scheduled in then
1058                  * it's hopeless.  Just schedule right away and hope for the
1059                  * best.  Note that it _might_ be wise to call back into the
1060                  * scheduler to pick a better frame, but this is better than
1061                  * nothing.
1062                  */
1063                 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1064                         dwc2_sch_vdbg(hsotg,
1065                                       "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1066                                       chan->qh, wire_frame, frame_number,
1067                                       dwc2_frame_num_dec(frame_number,
1068                                                          wire_frame));
1069                         wire_frame = frame_number;
1070
1071                         /*
1072                          * We picked a different frame number; communicate this
1073                          * back to the scheduler so it doesn't try to schedule
1074                          * another in the same frame.
1075                          *
1076                          * Remember that next_active_frame is 1 before the wire
1077                          * frame.
1078                          */
1079                         chan->qh->next_active_frame =
1080                                 dwc2_frame_num_dec(frame_number, 1);
1081                 }
1082
1083                 if (wire_frame & 1)
1084                         *hcchar |= HCCHAR_ODDFRM;
1085                 else
1086                         *hcchar &= ~HCCHAR_ODDFRM;
1087         }
1088 }
1089
1090 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1091 {
1092         /* Set up the initial PID for the transfer */
1093         if (chan->speed == USB_SPEED_HIGH) {
1094                 if (chan->ep_is_in) {
1095                         if (chan->multi_count == 1)
1096                                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1097                         else if (chan->multi_count == 2)
1098                                 chan->data_pid_start = DWC2_HC_PID_DATA1;
1099                         else
1100                                 chan->data_pid_start = DWC2_HC_PID_DATA2;
1101                 } else {
1102                         if (chan->multi_count == 1)
1103                                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1104                         else
1105                                 chan->data_pid_start = DWC2_HC_PID_MDATA;
1106                 }
1107         } else {
1108                 chan->data_pid_start = DWC2_HC_PID_DATA0;
1109         }
1110 }
1111
1112 /**
1113  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1114  * the Host Channel
1115  *
1116  * @hsotg: Programming view of DWC_otg controller
1117  * @chan:  Information needed to initialize the host channel
1118  *
1119  * This function should only be called in Slave mode. For a channel associated
1120  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1121  * associated with a periodic EP, the periodic Tx FIFO is written.
1122  *
1123  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1124  * the number of bytes written to the Tx FIFO.
1125  */
1126 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1127                                  struct dwc2_host_chan *chan)
1128 {
1129         u32 i;
1130         u32 remaining_count;
1131         u32 byte_count;
1132         u32 dword_count;
1133         u32 *data_buf = (u32 *)chan->xfer_buf;
1134
1135         if (dbg_hc(chan))
1136                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1137
1138         remaining_count = chan->xfer_len - chan->xfer_count;
1139         if (remaining_count > chan->max_packet)
1140                 byte_count = chan->max_packet;
1141         else
1142                 byte_count = remaining_count;
1143
1144         dword_count = (byte_count + 3) / 4;
1145
1146         if (((unsigned long)data_buf & 0x3) == 0) {
1147                 /* xfer_buf is DWORD aligned */
1148                 for (i = 0; i < dword_count; i++, data_buf++)
1149                         dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1150         } else {
1151                 /* xfer_buf is not DWORD aligned */
1152                 for (i = 0; i < dword_count; i++, data_buf++) {
1153                         u32 data = data_buf[0] | data_buf[1] << 8 |
1154                                    data_buf[2] << 16 | data_buf[3] << 24;
1155                         dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1156                 }
1157         }
1158
1159         chan->xfer_count += byte_count;
1160         chan->xfer_buf += byte_count;
1161 }
1162
1163 /**
1164  * dwc2_hc_do_ping() - Starts a PING transfer
1165  *
1166  * @hsotg: Programming view of DWC_otg controller
1167  * @chan:  Information needed to initialize the host channel
1168  *
1169  * This function should only be called in Slave mode. The Do Ping bit is set in
1170  * the HCTSIZ register, then the channel is enabled.
1171  */
1172 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1173                             struct dwc2_host_chan *chan)
1174 {
1175         u32 hcchar;
1176         u32 hctsiz;
1177
1178         if (dbg_hc(chan))
1179                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1180                          chan->hc_num);
1181
1182         hctsiz = TSIZ_DOPNG;
1183         hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1184         dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1185
1186         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1187         hcchar |= HCCHAR_CHENA;
1188         hcchar &= ~HCCHAR_CHDIS;
1189         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1190 }
1191
1192 /**
1193  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1194  * channel and starts the transfer
1195  *
1196  * @hsotg: Programming view of DWC_otg controller
1197  * @chan:  Information needed to initialize the host channel. The xfer_len value
1198  *         may be reduced to accommodate the max widths of the XferSize and
1199  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1200  *         changed to reflect the final xfer_len value.
1201  *
1202  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1203  * the caller must ensure that there is sufficient space in the request queue
1204  * and Tx Data FIFO.
1205  *
1206  * For an OUT transfer in Slave mode, it loads a data packet into the
1207  * appropriate FIFO. If necessary, additional data packets are loaded in the
1208  * Host ISR.
1209  *
1210  * For an IN transfer in Slave mode, a data packet is requested. The data
1211  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1212  * additional data packets are requested in the Host ISR.
1213  *
1214  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1215  * register along with a packet count of 1 and the channel is enabled. This
1216  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1217  * simply set to 0 since no data transfer occurs in this case.
1218  *
1219  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1220  * all the information required to perform the subsequent data transfer. In
1221  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1222  * controller performs the entire PING protocol, then starts the data
1223  * transfer.
1224  */
1225 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1226                                    struct dwc2_host_chan *chan)
1227 {
1228         u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1229         u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1230         u32 hcchar;
1231         u32 hctsiz = 0;
1232         u16 num_packets;
1233         u32 ec_mc;
1234
1235         if (dbg_hc(chan))
1236                 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1237
1238         if (chan->do_ping) {
1239                 if (!hsotg->params.host_dma) {
1240                         if (dbg_hc(chan))
1241                                 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1242                         dwc2_hc_do_ping(hsotg, chan);
1243                         chan->xfer_started = 1;
1244                         return;
1245                 }
1246
1247                 if (dbg_hc(chan))
1248                         dev_vdbg(hsotg->dev, "ping, DMA\n");
1249
1250                 hctsiz |= TSIZ_DOPNG;
1251         }
1252
1253         if (chan->do_split) {
1254                 if (dbg_hc(chan))
1255                         dev_vdbg(hsotg->dev, "split\n");
1256                 num_packets = 1;
1257
1258                 if (chan->complete_split && !chan->ep_is_in)
1259                         /*
1260                          * For CSPLIT OUT Transfer, set the size to 0 so the
1261                          * core doesn't expect any data written to the FIFO
1262                          */
1263                         chan->xfer_len = 0;
1264                 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1265                         chan->xfer_len = chan->max_packet;
1266                 else if (!chan->ep_is_in && chan->xfer_len > 188)
1267                         chan->xfer_len = 188;
1268
1269                 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1270                           TSIZ_XFERSIZE_MASK;
1271
1272                 /* For split set ec_mc for immediate retries */
1273                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1274                     chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1275                         ec_mc = 3;
1276                 else
1277                         ec_mc = 1;
1278         } else {
1279                 if (dbg_hc(chan))
1280                         dev_vdbg(hsotg->dev, "no split\n");
1281                 /*
1282                  * Ensure that the transfer length and packet count will fit
1283                  * in the widths allocated for them in the HCTSIZn register
1284                  */
1285                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1286                     chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1287                         /*
1288                          * Make sure the transfer size is no larger than one
1289                          * (micro)frame's worth of data. (A check was done
1290                          * when the periodic transfer was accepted to ensure
1291                          * that a (micro)frame's worth of data can be
1292                          * programmed into a channel.)
1293                          */
1294                         u32 max_periodic_len =
1295                                 chan->multi_count * chan->max_packet;
1296
1297                         if (chan->xfer_len > max_periodic_len)
1298                                 chan->xfer_len = max_periodic_len;
1299                 } else if (chan->xfer_len > max_hc_xfer_size) {
1300                         /*
1301                          * Make sure that xfer_len is a multiple of max packet
1302                          * size
1303                          */
1304                         chan->xfer_len =
1305                                 max_hc_xfer_size - chan->max_packet + 1;
1306                 }
1307
1308                 if (chan->xfer_len > 0) {
1309                         num_packets = (chan->xfer_len + chan->max_packet - 1) /
1310                                         chan->max_packet;
1311                         if (num_packets > max_hc_pkt_count) {
1312                                 num_packets = max_hc_pkt_count;
1313                                 chan->xfer_len = num_packets * chan->max_packet;
1314                         } else if (chan->ep_is_in) {
1315                                 /*
1316                                  * Always program an integral # of max packets
1317                                  * for IN transfers.
1318                                  * Note: This assumes that the input buffer is
1319                                  * aligned and sized accordingly.
1320                                  */
1321                                 chan->xfer_len = num_packets * chan->max_packet;
1322                         }
1323                 } else {
1324                         /* Need 1 packet for transfer length of 0 */
1325                         num_packets = 1;
1326                 }
1327
1328                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1329                     chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1330                         /*
1331                          * Make sure that the multi_count field matches the
1332                          * actual transfer length
1333                          */
1334                         chan->multi_count = num_packets;
1335
1336                 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1337                         dwc2_set_pid_isoc(chan);
1338
1339                 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1340                           TSIZ_XFERSIZE_MASK;
1341
1342                 /* The ec_mc gets the multi_count for non-split */
1343                 ec_mc = chan->multi_count;
1344         }
1345
1346         chan->start_pkt_count = num_packets;
1347         hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1348         hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1349                   TSIZ_SC_MC_PID_MASK;
1350         dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1351         if (dbg_hc(chan)) {
1352                 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1353                          hctsiz, chan->hc_num);
1354
1355                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1356                          chan->hc_num);
1357                 dev_vdbg(hsotg->dev, "   Xfer Size: %d\n",
1358                          (hctsiz & TSIZ_XFERSIZE_MASK) >>
1359                          TSIZ_XFERSIZE_SHIFT);
1360                 dev_vdbg(hsotg->dev, "   Num Pkts: %d\n",
1361                          (hctsiz & TSIZ_PKTCNT_MASK) >>
1362                          TSIZ_PKTCNT_SHIFT);
1363                 dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1364                          (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1365                          TSIZ_SC_MC_PID_SHIFT);
1366         }
1367
1368         if (hsotg->params.host_dma) {
1369                 dma_addr_t dma_addr;
1370
1371                 if (chan->align_buf) {
1372                         if (dbg_hc(chan))
1373                                 dev_vdbg(hsotg->dev, "align_buf\n");
1374                         dma_addr = chan->align_buf;
1375                 } else {
1376                         dma_addr = chan->xfer_dma;
1377                 }
1378                 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1379
1380                 if (dbg_hc(chan))
1381                         dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1382                                  (unsigned long)dma_addr, chan->hc_num);
1383         }
1384
1385         /* Start the split */
1386         if (chan->do_split) {
1387                 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1388
1389                 hcsplt |= HCSPLT_SPLTENA;
1390                 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1391         }
1392
1393         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1394         hcchar &= ~HCCHAR_MULTICNT_MASK;
1395         hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1396         dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1397
1398         if (hcchar & HCCHAR_CHDIS)
1399                 dev_warn(hsotg->dev,
1400                          "%s: chdis set, channel %d, hcchar 0x%08x\n",
1401                          __func__, chan->hc_num, hcchar);
1402
1403         /* Set host channel enable after all other setup is complete */
1404         hcchar |= HCCHAR_CHENA;
1405         hcchar &= ~HCCHAR_CHDIS;
1406
1407         if (dbg_hc(chan))
1408                 dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1409                          (hcchar & HCCHAR_MULTICNT_MASK) >>
1410                          HCCHAR_MULTICNT_SHIFT);
1411
1412         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1413         if (dbg_hc(chan))
1414                 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1415                          chan->hc_num);
1416
1417         chan->xfer_started = 1;
1418         chan->requests++;
1419
1420         if (!hsotg->params.host_dma &&
1421             !chan->ep_is_in && chan->xfer_len > 0)
1422                 /* Load OUT packet into the appropriate Tx FIFO */
1423                 dwc2_hc_write_packet(hsotg, chan);
1424 }
1425
1426 /**
1427  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1428  * host channel and starts the transfer in Descriptor DMA mode
1429  *
1430  * @hsotg: Programming view of DWC_otg controller
1431  * @chan:  Information needed to initialize the host channel
1432  *
1433  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1434  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1435  * with micro-frame bitmap.
1436  *
1437  * Initializes HCDMA register with descriptor list address and CTD value then
1438  * starts the transfer via enabling the channel.
1439  */
1440 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1441                                  struct dwc2_host_chan *chan)
1442 {
1443         u32 hcchar;
1444         u32 hctsiz = 0;
1445
1446         if (chan->do_ping)
1447                 hctsiz |= TSIZ_DOPNG;
1448
1449         if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1450                 dwc2_set_pid_isoc(chan);
1451
1452         /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1453         hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1454                   TSIZ_SC_MC_PID_MASK;
1455
1456         /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1457         hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1458
1459         /* Non-zero only for high-speed interrupt endpoints */
1460         hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1461
1462         if (dbg_hc(chan)) {
1463                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1464                          chan->hc_num);
1465                 dev_vdbg(hsotg->dev, "   Start PID: %d\n",
1466                          chan->data_pid_start);
1467                 dev_vdbg(hsotg->dev, "   NTD: %d\n", chan->ntd - 1);
1468         }
1469
1470         dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1471
1472         dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1473                                    chan->desc_list_sz, DMA_TO_DEVICE);
1474
1475         dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1476
1477         if (dbg_hc(chan))
1478                 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1479                          &chan->desc_list_addr, chan->hc_num);
1480
1481         hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1482         hcchar &= ~HCCHAR_MULTICNT_MASK;
1483         hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1484                   HCCHAR_MULTICNT_MASK;
1485
1486         if (hcchar & HCCHAR_CHDIS)
1487                 dev_warn(hsotg->dev,
1488                          "%s: chdis set, channel %d, hcchar 0x%08x\n",
1489                          __func__, chan->hc_num, hcchar);
1490
1491         /* Set host channel enable after all other setup is complete */
1492         hcchar |= HCCHAR_CHENA;
1493         hcchar &= ~HCCHAR_CHDIS;
1494
1495         if (dbg_hc(chan))
1496                 dev_vdbg(hsotg->dev, "   Multi Cnt: %d\n",
1497                          (hcchar & HCCHAR_MULTICNT_MASK) >>
1498                          HCCHAR_MULTICNT_SHIFT);
1499
1500         dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1501         if (dbg_hc(chan))
1502                 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1503                          chan->hc_num);
1504
1505         chan->xfer_started = 1;
1506         chan->requests++;
1507 }
1508
1509 /**
1510  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1511  * a previous call to dwc2_hc_start_transfer()
1512  *
1513  * @hsotg: Programming view of DWC_otg controller
1514  * @chan:  Information needed to initialize the host channel
1515  *
1516  * The caller must ensure there is sufficient space in the request queue and Tx
1517  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1518  * the controller acts autonomously to complete transfers programmed to a host
1519  * channel.
1520  *
1521  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1522  * if there is any data remaining to be queued. For an IN transfer, another
1523  * data packet is always requested. For the SETUP phase of a control transfer,
1524  * this function does nothing.
1525  *
1526  * Return: 1 if a new request is queued, 0 if no more requests are required
1527  * for this transfer
1528  */
1529 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1530                                      struct dwc2_host_chan *chan)
1531 {
1532         if (dbg_hc(chan))
1533                 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1534                          chan->hc_num);
1535
1536         if (chan->do_split)
1537                 /* SPLITs always queue just once per channel */
1538                 return 0;
1539
1540         if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1541                 /* SETUPs are queued only once since they can't be NAK'd */
1542                 return 0;
1543
1544         if (chan->ep_is_in) {
1545                 /*
1546                  * Always queue another request for other IN transfers. If
1547                  * back-to-back INs are issued and NAKs are received for both,
1548                  * the driver may still be processing the first NAK when the
1549                  * second NAK is received. When the interrupt handler clears
1550                  * the NAK interrupt for the first NAK, the second NAK will
1551                  * not be seen. So we can't depend on the NAK interrupt
1552                  * handler to requeue a NAK'd request. Instead, IN requests
1553                  * are issued each time this function is called. When the
1554                  * transfer completes, the extra requests for the channel will
1555                  * be flushed.
1556                  */
1557                 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1558
1559                 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1560                 hcchar |= HCCHAR_CHENA;
1561                 hcchar &= ~HCCHAR_CHDIS;
1562                 if (dbg_hc(chan))
1563                         dev_vdbg(hsotg->dev, "   IN xfer: hcchar = 0x%08x\n",
1564                                  hcchar);
1565                 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1566                 chan->requests++;
1567                 return 1;
1568         }
1569
1570         /* OUT transfers */
1571
1572         if (chan->xfer_count < chan->xfer_len) {
1573                 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1574                     chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1575                         u32 hcchar = dwc2_readl(hsotg,
1576                                                 HCCHAR(chan->hc_num));
1577
1578                         dwc2_hc_set_even_odd_frame(hsotg, chan,
1579                                                    &hcchar);
1580                 }
1581
1582                 /* Load OUT packet into the appropriate Tx FIFO */
1583                 dwc2_hc_write_packet(hsotg, chan);
1584                 chan->requests++;
1585                 return 1;
1586         }
1587
1588         return 0;
1589 }
1590
1591 /*
1592  * =========================================================================
1593  *  HCD
1594  * =========================================================================
1595  */
1596
1597 /*
1598  * Processes all the URBs in a single list of QHs. Completes them with
1599  * -ETIMEDOUT and frees the QTD.
1600  *
1601  * Must be called with interrupt disabled and spinlock held
1602  */
1603 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1604                                       struct list_head *qh_list)
1605 {
1606         struct dwc2_qh *qh, *qh_tmp;
1607         struct dwc2_qtd *qtd, *qtd_tmp;
1608
1609         list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1610                 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1611                                          qtd_list_entry) {
1612                         dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1613                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1614                 }
1615         }
1616 }
1617
1618 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1619                               struct list_head *qh_list)
1620 {
1621         struct dwc2_qtd *qtd, *qtd_tmp;
1622         struct dwc2_qh *qh, *qh_tmp;
1623         unsigned long flags;
1624
1625         if (!qh_list->next)
1626                 /* The list hasn't been initialized yet */
1627                 return;
1628
1629         spin_lock_irqsave(&hsotg->lock, flags);
1630
1631         /* Ensure there are no QTDs or URBs left */
1632         dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1633
1634         list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1635                 dwc2_hcd_qh_unlink(hsotg, qh);
1636
1637                 /* Free each QTD in the QH's QTD list */
1638                 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1639                                          qtd_list_entry)
1640                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1641
1642                 if (qh->channel && qh->channel->qh == qh)
1643                         qh->channel->qh = NULL;
1644
1645                 spin_unlock_irqrestore(&hsotg->lock, flags);
1646                 dwc2_hcd_qh_free(hsotg, qh);
1647                 spin_lock_irqsave(&hsotg->lock, flags);
1648         }
1649
1650         spin_unlock_irqrestore(&hsotg->lock, flags);
1651 }
1652
1653 /*
1654  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1655  * and periodic schedules. The QTD associated with each URB is removed from
1656  * the schedule and freed. This function may be called when a disconnect is
1657  * detected or when the HCD is being stopped.
1658  *
1659  * Must be called with interrupt disabled and spinlock held
1660  */
1661 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1662 {
1663         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1664         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1665         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1666         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1667         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1668         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1669         dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1670 }
1671
1672 /**
1673  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1674  *
1675  * @hsotg: Pointer to struct dwc2_hsotg
1676  */
1677 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1678 {
1679         u32 hprt0;
1680
1681         if (hsotg->op_state == OTG_STATE_B_HOST) {
1682                 /*
1683                  * Reset the port. During a HNP mode switch the reset
1684                  * needs to occur within 1ms and have a duration of at
1685                  * least 50ms.
1686                  */
1687                 hprt0 = dwc2_read_hprt0(hsotg);
1688                 hprt0 |= HPRT0_RST;
1689                 dwc2_writel(hsotg, hprt0, HPRT0);
1690         }
1691
1692         queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1693                            msecs_to_jiffies(50));
1694 }
1695
1696 /* Must be called with interrupt disabled and spinlock held */
1697 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1698 {
1699         int num_channels = hsotg->params.host_channels;
1700         struct dwc2_host_chan *channel;
1701         u32 hcchar;
1702         int i;
1703
1704         if (!hsotg->params.host_dma) {
1705                 /* Flush out any channel requests in slave mode */
1706                 for (i = 0; i < num_channels; i++) {
1707                         channel = hsotg->hc_ptr_array[i];
1708                         if (!list_empty(&channel->hc_list_entry))
1709                                 continue;
1710                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
1711                         if (hcchar & HCCHAR_CHENA) {
1712                                 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1713                                 hcchar |= HCCHAR_CHDIS;
1714                                 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1715                         }
1716                 }
1717         }
1718
1719         for (i = 0; i < num_channels; i++) {
1720                 channel = hsotg->hc_ptr_array[i];
1721                 if (!list_empty(&channel->hc_list_entry))
1722                         continue;
1723                 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1724                 if (hcchar & HCCHAR_CHENA) {
1725                         /* Halt the channel */
1726                         hcchar |= HCCHAR_CHDIS;
1727                         dwc2_writel(hsotg, hcchar, HCCHAR(i));
1728                 }
1729
1730                 dwc2_hc_cleanup(hsotg, channel);
1731                 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1732                 /*
1733                  * Added for Descriptor DMA to prevent channel double cleanup in
1734                  * release_channel_ddma(), which is called from ep_disable when
1735                  * device disconnects
1736                  */
1737                 channel->qh = NULL;
1738         }
1739         /* All channels have been freed, mark them available */
1740         if (hsotg->params.uframe_sched) {
1741                 hsotg->available_host_channels =
1742                         hsotg->params.host_channels;
1743         } else {
1744                 hsotg->non_periodic_channels = 0;
1745                 hsotg->periodic_channels = 0;
1746         }
1747 }
1748
1749 /**
1750  * dwc2_hcd_connect() - Handles connect of the HCD
1751  *
1752  * @hsotg: Pointer to struct dwc2_hsotg
1753  *
1754  * Must be called with interrupt disabled and spinlock held
1755  */
1756 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1757 {
1758         if (hsotg->lx_state != DWC2_L0)
1759                 usb_hcd_resume_root_hub(hsotg->priv);
1760
1761         hsotg->flags.b.port_connect_status_change = 1;
1762         hsotg->flags.b.port_connect_status = 1;
1763 }
1764
1765 /**
1766  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1767  *
1768  * @hsotg: Pointer to struct dwc2_hsotg
1769  * @force: If true, we won't try to reconnect even if we see device connected.
1770  *
1771  * Must be called with interrupt disabled and spinlock held
1772  */
1773 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1774 {
1775         u32 intr;
1776         u32 hprt0;
1777
1778         /* Set status flags for the hub driver */
1779         hsotg->flags.b.port_connect_status_change = 1;
1780         hsotg->flags.b.port_connect_status = 0;
1781
1782         /*
1783          * Shutdown any transfers in process by clearing the Tx FIFO Empty
1784          * interrupt mask and status bits and disabling subsequent host
1785          * channel interrupts.
1786          */
1787         intr = dwc2_readl(hsotg, GINTMSK);
1788         intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1789         dwc2_writel(hsotg, intr, GINTMSK);
1790         intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1791         dwc2_writel(hsotg, intr, GINTSTS);
1792
1793         /*
1794          * Turn off the vbus power only if the core has transitioned to device
1795          * mode. If still in host mode, need to keep power on to detect a
1796          * reconnection.
1797          */
1798         if (dwc2_is_device_mode(hsotg)) {
1799                 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1800                         dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1801                         dwc2_writel(hsotg, 0, HPRT0);
1802                 }
1803
1804                 dwc2_disable_host_interrupts(hsotg);
1805         }
1806
1807         /* Respond with an error status to all URBs in the schedule */
1808         dwc2_kill_all_urbs(hsotg);
1809
1810         if (dwc2_is_host_mode(hsotg))
1811                 /* Clean up any host channels that were in use */
1812                 dwc2_hcd_cleanup_channels(hsotg);
1813
1814         dwc2_host_disconnect(hsotg);
1815
1816         /*
1817          * Add an extra check here to see if we're actually connected but
1818          * we don't have a detection interrupt pending.  This can happen if:
1819          *   1. hardware sees connect
1820          *   2. hardware sees disconnect
1821          *   3. hardware sees connect
1822          *   4. dwc2_port_intr() - clears connect interrupt
1823          *   5. dwc2_handle_common_intr() - calls here
1824          *
1825          * Without the extra check here we will end calling disconnect
1826          * and won't get any future interrupts to handle the connect.
1827          */
1828         if (!force) {
1829                 hprt0 = dwc2_readl(hsotg, HPRT0);
1830                 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1831                         dwc2_hcd_connect(hsotg);
1832         }
1833 }
1834
1835 /**
1836  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1837  *
1838  * @hsotg: Pointer to struct dwc2_hsotg
1839  */
1840 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1841 {
1842         if (hsotg->bus_suspended) {
1843                 hsotg->flags.b.port_suspend_change = 1;
1844                 usb_hcd_resume_root_hub(hsotg->priv);
1845         }
1846
1847         if (hsotg->lx_state == DWC2_L1)
1848                 hsotg->flags.b.port_l1_change = 1;
1849 }
1850
1851 /**
1852  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1853  *
1854  * @hsotg: Pointer to struct dwc2_hsotg
1855  *
1856  * Must be called with interrupt disabled and spinlock held
1857  */
1858 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1859 {
1860         dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1861
1862         /*
1863          * The root hub should be disconnected before this function is called.
1864          * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1865          * and the QH lists (via ..._hcd_endpoint_disable).
1866          */
1867
1868         /* Turn off all host-specific interrupts */
1869         dwc2_disable_host_interrupts(hsotg);
1870
1871         /* Turn off the vbus power */
1872         dev_dbg(hsotg->dev, "PortPower off\n");
1873         dwc2_writel(hsotg, 0, HPRT0);
1874 }
1875
1876 /* Caller must hold driver lock */
1877 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1878                                 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1879                                 struct dwc2_qtd *qtd)
1880 {
1881         u32 intr_mask;
1882         int retval;
1883         int dev_speed;
1884
1885         if (!hsotg->flags.b.port_connect_status) {
1886                 /* No longer connected */
1887                 dev_err(hsotg->dev, "Not connected\n");
1888                 return -ENODEV;
1889         }
1890
1891         dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1892
1893         /* Some configurations cannot support LS traffic on a FS root port */
1894         if ((dev_speed == USB_SPEED_LOW) &&
1895             (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1896             (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1897                 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1898                 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1899
1900                 if (prtspd == HPRT0_SPD_FULL_SPEED)
1901                         return -ENODEV;
1902         }
1903
1904         if (!qtd)
1905                 return -EINVAL;
1906
1907         dwc2_hcd_qtd_init(qtd, urb);
1908         retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1909         if (retval) {
1910                 dev_err(hsotg->dev,
1911                         "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1912                         retval);
1913                 return retval;
1914         }
1915
1916         intr_mask = dwc2_readl(hsotg, GINTMSK);
1917         if (!(intr_mask & GINTSTS_SOF)) {
1918                 enum dwc2_transaction_type tr_type;
1919
1920                 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1921                     !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1922                         /*
1923                          * Do not schedule SG transactions until qtd has
1924                          * URB_GIVEBACK_ASAP set
1925                          */
1926                         return 0;
1927
1928                 tr_type = dwc2_hcd_select_transactions(hsotg);
1929                 if (tr_type != DWC2_TRANSACTION_NONE)
1930                         dwc2_hcd_queue_transactions(hsotg, tr_type);
1931         }
1932
1933         return 0;
1934 }
1935
1936 /* Must be called with interrupt disabled and spinlock held */
1937 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1938                                 struct dwc2_hcd_urb *urb)
1939 {
1940         struct dwc2_qh *qh;
1941         struct dwc2_qtd *urb_qtd;
1942
1943         urb_qtd = urb->qtd;
1944         if (!urb_qtd) {
1945                 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1946                 return -EINVAL;
1947         }
1948
1949         qh = urb_qtd->qh;
1950         if (!qh) {
1951                 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1952                 return -EINVAL;
1953         }
1954
1955         urb->priv = NULL;
1956
1957         if (urb_qtd->in_process && qh->channel) {
1958                 dwc2_dump_channel_info(hsotg, qh->channel);
1959
1960                 /* The QTD is in process (it has been assigned to a channel) */
1961                 if (hsotg->flags.b.port_connect_status)
1962                         /*
1963                          * If still connected (i.e. in host mode), halt the
1964                          * channel so it can be used for other transfers. If
1965                          * no longer connected, the host registers can't be
1966                          * written to halt the channel since the core is in
1967                          * device mode.
1968                          */
1969                         dwc2_hc_halt(hsotg, qh->channel,
1970                                      DWC2_HC_XFER_URB_DEQUEUE);
1971         }
1972
1973         /*
1974          * Free the QTD and clean up the associated QH. Leave the QH in the
1975          * schedule if it has any remaining QTDs.
1976          */
1977         if (!hsotg->params.dma_desc_enable) {
1978                 u8 in_process = urb_qtd->in_process;
1979
1980                 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1981                 if (in_process) {
1982                         dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1983                         qh->channel = NULL;
1984                 } else if (list_empty(&qh->qtd_list)) {
1985                         dwc2_hcd_qh_unlink(hsotg, qh);
1986                 }
1987         } else {
1988                 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1989         }
1990
1991         return 0;
1992 }
1993
1994 /* Must NOT be called with interrupt disabled or spinlock held */
1995 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1996                                      struct usb_host_endpoint *ep, int retry)
1997 {
1998         struct dwc2_qtd *qtd, *qtd_tmp;
1999         struct dwc2_qh *qh;
2000         unsigned long flags;
2001         int rc;
2002
2003         spin_lock_irqsave(&hsotg->lock, flags);
2004
2005         qh = ep->hcpriv;
2006         if (!qh) {
2007                 rc = -EINVAL;
2008                 goto err;
2009         }
2010
2011         while (!list_empty(&qh->qtd_list) && retry--) {
2012                 if (retry == 0) {
2013                         dev_err(hsotg->dev,
2014                                 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2015                         rc = -EBUSY;
2016                         goto err;
2017                 }
2018
2019                 spin_unlock_irqrestore(&hsotg->lock, flags);
2020                 msleep(20);
2021                 spin_lock_irqsave(&hsotg->lock, flags);
2022                 qh = ep->hcpriv;
2023                 if (!qh) {
2024                         rc = -EINVAL;
2025                         goto err;
2026                 }
2027         }
2028
2029         dwc2_hcd_qh_unlink(hsotg, qh);
2030
2031         /* Free each QTD in the QH's QTD list */
2032         list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2033                 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2034
2035         ep->hcpriv = NULL;
2036
2037         if (qh->channel && qh->channel->qh == qh)
2038                 qh->channel->qh = NULL;
2039
2040         spin_unlock_irqrestore(&hsotg->lock, flags);
2041
2042         dwc2_hcd_qh_free(hsotg, qh);
2043
2044         return 0;
2045
2046 err:
2047         ep->hcpriv = NULL;
2048         spin_unlock_irqrestore(&hsotg->lock, flags);
2049
2050         return rc;
2051 }
2052
2053 /* Must be called with interrupt disabled and spinlock held */
2054 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2055                                    struct usb_host_endpoint *ep)
2056 {
2057         struct dwc2_qh *qh = ep->hcpriv;
2058
2059         if (!qh)
2060                 return -EINVAL;
2061
2062         qh->data_toggle = DWC2_HC_PID_DATA0;
2063
2064         return 0;
2065 }
2066
2067 /**
2068  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2069  * prepares the core for device mode or host mode operation
2070  *
2071  * @hsotg:         Programming view of the DWC_otg controller
2072  * @initial_setup: If true then this is the first init for this instance.
2073  */
2074 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2075 {
2076         u32 usbcfg, otgctl;
2077         int retval;
2078
2079         dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2080
2081         usbcfg = dwc2_readl(hsotg, GUSBCFG);
2082
2083         /* Set ULPI External VBUS bit if needed */
2084         usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2085         if (hsotg->params.phy_ulpi_ext_vbus)
2086                 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2087
2088         /* Set external TS Dline pulsing bit if needed */
2089         usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2090         if (hsotg->params.ts_dline)
2091                 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2092
2093         dwc2_writel(hsotg, usbcfg, GUSBCFG);
2094
2095         /*
2096          * Reset the Controller
2097          *
2098          * We only need to reset the controller if this is a re-init.
2099          * For the first init we know for sure that earlier code reset us (it
2100          * needed to in order to properly detect various parameters).
2101          */
2102         if (!initial_setup) {
2103                 retval = dwc2_core_reset(hsotg, false);
2104                 if (retval) {
2105                         dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2106                                 __func__);
2107                         return retval;
2108                 }
2109         }
2110
2111         /*
2112          * This needs to happen in FS mode before any other programming occurs
2113          */
2114         retval = dwc2_phy_init(hsotg, initial_setup);
2115         if (retval)
2116                 return retval;
2117
2118         /* Program the GAHBCFG Register */
2119         retval = dwc2_gahbcfg_init(hsotg);
2120         if (retval)
2121                 return retval;
2122
2123         /* Program the GUSBCFG register */
2124         dwc2_gusbcfg_init(hsotg);
2125
2126         /* Program the GOTGCTL register */
2127         otgctl = dwc2_readl(hsotg, GOTGCTL);
2128         otgctl &= ~GOTGCTL_OTGVER;
2129         dwc2_writel(hsotg, otgctl, GOTGCTL);
2130
2131         /* Clear the SRP success bit for FS-I2c */
2132         hsotg->srp_success = 0;
2133
2134         /* Enable common interrupts */
2135         dwc2_enable_common_interrupts(hsotg);
2136
2137         /*
2138          * Do device or host initialization based on mode during PCD and
2139          * HCD initialization
2140          */
2141         if (dwc2_is_host_mode(hsotg)) {
2142                 dev_dbg(hsotg->dev, "Host Mode\n");
2143                 hsotg->op_state = OTG_STATE_A_HOST;
2144         } else {
2145                 dev_dbg(hsotg->dev, "Device Mode\n");
2146                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2147         }
2148
2149         return 0;
2150 }
2151
2152 /**
2153  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2154  * Host mode
2155  *
2156  * @hsotg: Programming view of DWC_otg controller
2157  *
2158  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2159  * request queues. Host channels are reset to ensure that they are ready for
2160  * performing transfers.
2161  */
2162 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2163 {
2164         u32 hcfg, hfir, otgctl, usbcfg;
2165
2166         dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2167
2168         /* Set HS/FS Timeout Calibration to 7 (max available value).
2169          * The number of PHY clocks that the application programs in
2170          * this field is added to the high/full speed interpacket timeout
2171          * duration in the core to account for any additional delays
2172          * introduced by the PHY. This can be required, because the delay
2173          * introduced by the PHY in generating the linestate condition
2174          * can vary from one PHY to another.
2175          */
2176         usbcfg = dwc2_readl(hsotg, GUSBCFG);
2177         usbcfg |= GUSBCFG_TOUTCAL(7);
2178         dwc2_writel(hsotg, usbcfg, GUSBCFG);
2179
2180         /* Restart the Phy Clock */
2181         dwc2_writel(hsotg, 0, PCGCTL);
2182
2183         /* Initialize Host Configuration Register */
2184         dwc2_init_fs_ls_pclk_sel(hsotg);
2185         if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2186             hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2187                 hcfg = dwc2_readl(hsotg, HCFG);
2188                 hcfg |= HCFG_FSLSSUPP;
2189                 dwc2_writel(hsotg, hcfg, HCFG);
2190         }
2191
2192         /*
2193          * This bit allows dynamic reloading of the HFIR register during
2194          * runtime. This bit needs to be programmed during initial configuration
2195          * and its value must not be changed during runtime.
2196          */
2197         if (hsotg->params.reload_ctl) {
2198                 hfir = dwc2_readl(hsotg, HFIR);
2199                 hfir |= HFIR_RLDCTRL;
2200                 dwc2_writel(hsotg, hfir, HFIR);
2201         }
2202
2203         if (hsotg->params.dma_desc_enable) {
2204                 u32 op_mode = hsotg->hw_params.op_mode;
2205
2206                 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2207                     !hsotg->hw_params.dma_desc_enable ||
2208                     op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2209                     op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2210                     op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2211                         dev_err(hsotg->dev,
2212                                 "Hardware does not support descriptor DMA mode -\n");
2213                         dev_err(hsotg->dev,
2214                                 "falling back to buffer DMA mode.\n");
2215                         hsotg->params.dma_desc_enable = false;
2216                 } else {
2217                         hcfg = dwc2_readl(hsotg, HCFG);
2218                         hcfg |= HCFG_DESCDMA;
2219                         dwc2_writel(hsotg, hcfg, HCFG);
2220                 }
2221         }
2222
2223         /* Configure data FIFO sizes */
2224         dwc2_config_fifos(hsotg);
2225
2226         /* TODO - check this */
2227         /* Clear Host Set HNP Enable in the OTG Control Register */
2228         otgctl = dwc2_readl(hsotg, GOTGCTL);
2229         otgctl &= ~GOTGCTL_HSTSETHNPEN;
2230         dwc2_writel(hsotg, otgctl, GOTGCTL);
2231
2232         /* Make sure the FIFOs are flushed */
2233         dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2234         dwc2_flush_rx_fifo(hsotg);
2235
2236         /* Clear Host Set HNP Enable in the OTG Control Register */
2237         otgctl = dwc2_readl(hsotg, GOTGCTL);
2238         otgctl &= ~GOTGCTL_HSTSETHNPEN;
2239         dwc2_writel(hsotg, otgctl, GOTGCTL);
2240
2241         if (!hsotg->params.dma_desc_enable) {
2242                 int num_channels, i;
2243                 u32 hcchar;
2244
2245                 /* Flush out any leftover queued requests */
2246                 num_channels = hsotg->params.host_channels;
2247                 for (i = 0; i < num_channels; i++) {
2248                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
2249                         if (hcchar & HCCHAR_CHENA) {
2250                                 hcchar &= ~HCCHAR_CHENA;
2251                                 hcchar |= HCCHAR_CHDIS;
2252                                 hcchar &= ~HCCHAR_EPDIR;
2253                                 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2254                         }
2255                 }
2256
2257                 /* Halt all channels to put them into a known state */
2258                 for (i = 0; i < num_channels; i++) {
2259                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
2260                         if (hcchar & HCCHAR_CHENA) {
2261                                 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2262                                 hcchar &= ~HCCHAR_EPDIR;
2263                                 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2264                                 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2265                                         __func__, i);
2266
2267                                 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2268                                                               HCCHAR_CHENA,
2269                                                               1000)) {
2270                                         dev_warn(hsotg->dev,
2271                                                  "Unable to clear enable on channel %d\n",
2272                                                  i);
2273                                 }
2274                         }
2275                 }
2276         }
2277
2278         /* Enable ACG feature in host mode, if supported */
2279         dwc2_enable_acg(hsotg);
2280
2281         /* Turn on the vbus power */
2282         dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2283         if (hsotg->op_state == OTG_STATE_A_HOST) {
2284                 u32 hprt0 = dwc2_read_hprt0(hsotg);
2285
2286                 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2287                         !!(hprt0 & HPRT0_PWR));
2288                 if (!(hprt0 & HPRT0_PWR)) {
2289                         hprt0 |= HPRT0_PWR;
2290                         dwc2_writel(hsotg, hprt0, HPRT0);
2291                 }
2292         }
2293
2294         dwc2_enable_host_interrupts(hsotg);
2295 }
2296
2297 /*
2298  * Initializes dynamic portions of the DWC_otg HCD state
2299  *
2300  * Must be called with interrupt disabled and spinlock held
2301  */
2302 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2303 {
2304         struct dwc2_host_chan *chan, *chan_tmp;
2305         int num_channels;
2306         int i;
2307
2308         hsotg->flags.d32 = 0;
2309         hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2310
2311         if (hsotg->params.uframe_sched) {
2312                 hsotg->available_host_channels =
2313                         hsotg->params.host_channels;
2314         } else {
2315                 hsotg->non_periodic_channels = 0;
2316                 hsotg->periodic_channels = 0;
2317         }
2318
2319         /*
2320          * Put all channels in the free channel list and clean up channel
2321          * states
2322          */
2323         list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2324                                  hc_list_entry)
2325                 list_del_init(&chan->hc_list_entry);
2326
2327         num_channels = hsotg->params.host_channels;
2328         for (i = 0; i < num_channels; i++) {
2329                 chan = hsotg->hc_ptr_array[i];
2330                 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2331                 dwc2_hc_cleanup(hsotg, chan);
2332         }
2333
2334         /* Initialize the DWC core for host mode operation */
2335         dwc2_core_host_init(hsotg);
2336 }
2337
2338 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2339                                struct dwc2_host_chan *chan,
2340                                struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2341 {
2342         int hub_addr, hub_port;
2343
2344         chan->do_split = 1;
2345         chan->xact_pos = qtd->isoc_split_pos;
2346         chan->complete_split = qtd->complete_split;
2347         dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2348         chan->hub_addr = (u8)hub_addr;
2349         chan->hub_port = (u8)hub_port;
2350 }
2351
2352 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2353                               struct dwc2_host_chan *chan,
2354                               struct dwc2_qtd *qtd)
2355 {
2356         struct dwc2_hcd_urb *urb = qtd->urb;
2357         struct dwc2_hcd_iso_packet_desc *frame_desc;
2358
2359         switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2360         case USB_ENDPOINT_XFER_CONTROL:
2361                 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2362
2363                 switch (qtd->control_phase) {
2364                 case DWC2_CONTROL_SETUP:
2365                         dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2366                         chan->do_ping = 0;
2367                         chan->ep_is_in = 0;
2368                         chan->data_pid_start = DWC2_HC_PID_SETUP;
2369                         if (hsotg->params.host_dma)
2370                                 chan->xfer_dma = urb->setup_dma;
2371                         else
2372                                 chan->xfer_buf = urb->setup_packet;
2373                         chan->xfer_len = 8;
2374                         break;
2375
2376                 case DWC2_CONTROL_DATA:
2377                         dev_vdbg(hsotg->dev, "  Control data transaction\n");
2378                         chan->data_pid_start = qtd->data_toggle;
2379                         break;
2380
2381                 case DWC2_CONTROL_STATUS:
2382                         /*
2383                          * Direction is opposite of data direction or IN if no
2384                          * data
2385                          */
2386                         dev_vdbg(hsotg->dev, "  Control status transaction\n");
2387                         if (urb->length == 0)
2388                                 chan->ep_is_in = 1;
2389                         else
2390                                 chan->ep_is_in =
2391                                         dwc2_hcd_is_pipe_out(&urb->pipe_info);
2392                         if (chan->ep_is_in)
2393                                 chan->do_ping = 0;
2394                         chan->data_pid_start = DWC2_HC_PID_DATA1;
2395                         chan->xfer_len = 0;
2396                         if (hsotg->params.host_dma)
2397                                 chan->xfer_dma = hsotg->status_buf_dma;
2398                         else
2399                                 chan->xfer_buf = hsotg->status_buf;
2400                         break;
2401                 }
2402                 break;
2403
2404         case USB_ENDPOINT_XFER_BULK:
2405                 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2406                 break;
2407
2408         case USB_ENDPOINT_XFER_INT:
2409                 chan->ep_type = USB_ENDPOINT_XFER_INT;
2410                 break;
2411
2412         case USB_ENDPOINT_XFER_ISOC:
2413                 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2414                 if (hsotg->params.dma_desc_enable)
2415                         break;
2416
2417                 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2418                 frame_desc->status = 0;
2419
2420                 if (hsotg->params.host_dma) {
2421                         chan->xfer_dma = urb->dma;
2422                         chan->xfer_dma += frame_desc->offset +
2423                                         qtd->isoc_split_offset;
2424                 } else {
2425                         chan->xfer_buf = urb->buf;
2426                         chan->xfer_buf += frame_desc->offset +
2427                                         qtd->isoc_split_offset;
2428                 }
2429
2430                 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2431
2432                 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2433                         if (chan->xfer_len <= 188)
2434                                 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2435                         else
2436                                 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2437                 }
2438                 break;
2439         }
2440 }
2441
2442 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2443                                             struct dwc2_qh *qh,
2444                                             struct dwc2_host_chan *chan)
2445 {
2446         if (!hsotg->unaligned_cache ||
2447             chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2448                 return -ENOMEM;
2449
2450         if (!qh->dw_align_buf) {
2451                 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2452                                                     GFP_ATOMIC | GFP_DMA);
2453                 if (!qh->dw_align_buf)
2454                         return -ENOMEM;
2455         }
2456
2457         qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2458                                               DWC2_KMEM_UNALIGNED_BUF_SIZE,
2459                                               DMA_FROM_DEVICE);
2460
2461         if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2462                 dev_err(hsotg->dev, "can't map align_buf\n");
2463                 chan->align_buf = 0;
2464                 return -EINVAL;
2465         }
2466
2467         chan->align_buf = qh->dw_align_buf_dma;
2468         return 0;
2469 }
2470
2471 #define DWC2_USB_DMA_ALIGN 4
2472
2473 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2474 {
2475         void *stored_xfer_buffer;
2476         size_t length;
2477
2478         if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2479                 return;
2480
2481         /* Restore urb->transfer_buffer from the end of the allocated area */
2482         memcpy(&stored_xfer_buffer,
2483                PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2484                          dma_get_cache_alignment()),
2485                sizeof(urb->transfer_buffer));
2486
2487         if (usb_urb_dir_in(urb)) {
2488                 if (usb_pipeisoc(urb->pipe))
2489                         length = urb->transfer_buffer_length;
2490                 else
2491                         length = urb->actual_length;
2492
2493                 memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2494         }
2495         kfree(urb->transfer_buffer);
2496         urb->transfer_buffer = stored_xfer_buffer;
2497
2498         urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2499 }
2500
2501 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2502 {
2503         void *kmalloc_ptr;
2504         size_t kmalloc_size;
2505
2506         if (urb->num_sgs || urb->sg ||
2507             urb->transfer_buffer_length == 0 ||
2508             !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2509                 return 0;
2510
2511         /*
2512          * Allocate a buffer with enough padding for original transfer_buffer
2513          * pointer. This allocation is guaranteed to be aligned properly for
2514          * DMA
2515          */
2516         kmalloc_size = urb->transfer_buffer_length +
2517                 (dma_get_cache_alignment() - 1) +
2518                 sizeof(urb->transfer_buffer);
2519
2520         kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2521         if (!kmalloc_ptr)
2522                 return -ENOMEM;
2523
2524         /*
2525          * Position value of original urb->transfer_buffer pointer to the end
2526          * of allocation for later referencing
2527          */
2528         memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2529                          dma_get_cache_alignment()),
2530                &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2531
2532         if (usb_urb_dir_out(urb))
2533                 memcpy(kmalloc_ptr, urb->transfer_buffer,
2534                        urb->transfer_buffer_length);
2535         urb->transfer_buffer = kmalloc_ptr;
2536
2537         urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2538
2539         return 0;
2540 }
2541
2542 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2543                                 gfp_t mem_flags)
2544 {
2545         int ret;
2546
2547         /* We assume setup_dma is always aligned; warn if not */
2548         WARN_ON_ONCE(urb->setup_dma &&
2549                      (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2550
2551         ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2552         if (ret)
2553                 return ret;
2554
2555         ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2556         if (ret)
2557                 dwc2_free_dma_aligned_buffer(urb);
2558
2559         return ret;
2560 }
2561
2562 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2563 {
2564         usb_hcd_unmap_urb_for_dma(hcd, urb);
2565         dwc2_free_dma_aligned_buffer(urb);
2566 }
2567
2568 /**
2569  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2570  * channel and initializes the host channel to perform the transactions. The
2571  * host channel is removed from the free list.
2572  *
2573  * @hsotg: The HCD state structure
2574  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2575  *         to a free host channel
2576  */
2577 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2578 {
2579         struct dwc2_host_chan *chan;
2580         struct dwc2_hcd_urb *urb;
2581         struct dwc2_qtd *qtd;
2582
2583         if (dbg_qh(qh))
2584                 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2585
2586         if (list_empty(&qh->qtd_list)) {
2587                 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2588                 return -ENOMEM;
2589         }
2590
2591         if (list_empty(&hsotg->free_hc_list)) {
2592                 dev_dbg(hsotg->dev, "No free channel to assign\n");
2593                 return -ENOMEM;
2594         }
2595
2596         chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2597                                 hc_list_entry);
2598
2599         /* Remove host channel from free list */
2600         list_del_init(&chan->hc_list_entry);
2601
2602         qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2603         urb = qtd->urb;
2604         qh->channel = chan;
2605         qtd->in_process = 1;
2606
2607         /*
2608          * Use usb_pipedevice to determine device address. This address is
2609          * 0 before the SET_ADDRESS command and the correct address afterward.
2610          */
2611         chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2612         chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2613         chan->speed = qh->dev_speed;
2614         chan->max_packet = qh->maxp;
2615
2616         chan->xfer_started = 0;
2617         chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2618         chan->error_state = (qtd->error_count > 0);
2619         chan->halt_on_queue = 0;
2620         chan->halt_pending = 0;
2621         chan->requests = 0;
2622
2623         /*
2624          * The following values may be modified in the transfer type section
2625          * below. The xfer_len value may be reduced when the transfer is
2626          * started to accommodate the max widths of the XferSize and PktCnt
2627          * fields in the HCTSIZn register.
2628          */
2629
2630         chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2631         if (chan->ep_is_in)
2632                 chan->do_ping = 0;
2633         else
2634                 chan->do_ping = qh->ping_state;
2635
2636         chan->data_pid_start = qh->data_toggle;
2637         chan->multi_count = 1;
2638
2639         if (urb->actual_length > urb->length &&
2640             !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2641                 urb->actual_length = urb->length;
2642
2643         if (hsotg->params.host_dma)
2644                 chan->xfer_dma = urb->dma + urb->actual_length;
2645         else
2646                 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2647
2648         chan->xfer_len = urb->length - urb->actual_length;
2649         chan->xfer_count = 0;
2650
2651         /* Set the split attributes if required */
2652         if (qh->do_split)
2653                 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2654         else
2655                 chan->do_split = 0;
2656
2657         /* Set the transfer attributes */
2658         dwc2_hc_init_xfer(hsotg, chan, qtd);
2659
2660         /* For non-dword aligned buffers */
2661         if (hsotg->params.host_dma && qh->do_split &&
2662             chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2663                 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2664                 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2665                         dev_err(hsotg->dev,
2666                                 "Failed to allocate memory to handle non-aligned buffer\n");
2667                         /* Add channel back to free list */
2668                         chan->align_buf = 0;
2669                         chan->multi_count = 0;
2670                         list_add_tail(&chan->hc_list_entry,
2671                                       &hsotg->free_hc_list);
2672                         qtd->in_process = 0;
2673                         qh->channel = NULL;
2674                         return -ENOMEM;
2675                 }
2676         } else {
2677                 /*
2678                  * We assume that DMA is always aligned in non-split
2679                  * case or split out case. Warn if not.
2680                  */
2681                 WARN_ON_ONCE(hsotg->params.host_dma &&
2682                              (chan->xfer_dma & 0x3));
2683                 chan->align_buf = 0;
2684         }
2685
2686         if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2687             chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2688                 /*
2689                  * This value may be modified when the transfer is started
2690                  * to reflect the actual transfer length
2691                  */
2692                 chan->multi_count = qh->maxp_mult;
2693
2694         if (hsotg->params.dma_desc_enable) {
2695                 chan->desc_list_addr = qh->desc_list_dma;
2696                 chan->desc_list_sz = qh->desc_list_sz;
2697         }
2698
2699         dwc2_hc_init(hsotg, chan);
2700         chan->qh = qh;
2701
2702         return 0;
2703 }
2704
2705 /**
2706  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2707  * schedule and assigns them to available host channels. Called from the HCD
2708  * interrupt handler functions.
2709  *
2710  * @hsotg: The HCD state structure
2711  *
2712  * Return: The types of new transactions that were assigned to host channels
2713  */
2714 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2715                 struct dwc2_hsotg *hsotg)
2716 {
2717         enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2718         struct list_head *qh_ptr;
2719         struct dwc2_qh *qh;
2720         int num_channels;
2721
2722 #ifdef DWC2_DEBUG_SOF
2723         dev_vdbg(hsotg->dev, "  Select Transactions\n");
2724 #endif
2725
2726         /* Process entries in the periodic ready list */
2727         qh_ptr = hsotg->periodic_sched_ready.next;
2728         while (qh_ptr != &hsotg->periodic_sched_ready) {
2729                 if (list_empty(&hsotg->free_hc_list))
2730                         break;
2731                 if (hsotg->params.uframe_sched) {
2732                         if (hsotg->available_host_channels <= 1)
2733                                 break;
2734                         hsotg->available_host_channels--;
2735                 }
2736                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2737                 if (dwc2_assign_and_init_hc(hsotg, qh))
2738                         break;
2739
2740                 /*
2741                  * Move the QH from the periodic ready schedule to the
2742                  * periodic assigned schedule
2743                  */
2744                 qh_ptr = qh_ptr->next;
2745                 list_move_tail(&qh->qh_list_entry,
2746                                &hsotg->periodic_sched_assigned);
2747                 ret_val = DWC2_TRANSACTION_PERIODIC;
2748         }
2749
2750         /*
2751          * Process entries in the inactive portion of the non-periodic
2752          * schedule. Some free host channels may not be used if they are
2753          * reserved for periodic transfers.
2754          */
2755         num_channels = hsotg->params.host_channels;
2756         qh_ptr = hsotg->non_periodic_sched_inactive.next;
2757         while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2758                 if (!hsotg->params.uframe_sched &&
2759                     hsotg->non_periodic_channels >= num_channels -
2760                                                 hsotg->periodic_channels)
2761                         break;
2762                 if (list_empty(&hsotg->free_hc_list))
2763                         break;
2764                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2765                 if (hsotg->params.uframe_sched) {
2766                         if (hsotg->available_host_channels < 1)
2767                                 break;
2768                         hsotg->available_host_channels--;
2769                 }
2770
2771                 if (dwc2_assign_and_init_hc(hsotg, qh))
2772                         break;
2773
2774                 /*
2775                  * Move the QH from the non-periodic inactive schedule to the
2776                  * non-periodic active schedule
2777                  */
2778                 qh_ptr = qh_ptr->next;
2779                 list_move_tail(&qh->qh_list_entry,
2780                                &hsotg->non_periodic_sched_active);
2781
2782                 if (ret_val == DWC2_TRANSACTION_NONE)
2783                         ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2784                 else
2785                         ret_val = DWC2_TRANSACTION_ALL;
2786
2787                 if (!hsotg->params.uframe_sched)
2788                         hsotg->non_periodic_channels++;
2789         }
2790
2791         return ret_val;
2792 }
2793
2794 /**
2795  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2796  * a host channel associated with either a periodic or non-periodic transfer
2797  *
2798  * @hsotg: The HCD state structure
2799  * @chan:  Host channel descriptor associated with either a periodic or
2800  *         non-periodic transfer
2801  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2802  *                     for periodic transfers or the non-periodic Tx FIFO
2803  *                     for non-periodic transfers
2804  *
2805  * Return: 1 if a request is queued and more requests may be needed to
2806  * complete the transfer, 0 if no more requests are required for this
2807  * transfer, -1 if there is insufficient space in the Tx FIFO
2808  *
2809  * This function assumes that there is space available in the appropriate
2810  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2811  * it checks whether space is available in the appropriate Tx FIFO.
2812  *
2813  * Must be called with interrupt disabled and spinlock held
2814  */
2815 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2816                                   struct dwc2_host_chan *chan,
2817                                   u16 fifo_dwords_avail)
2818 {
2819         int retval = 0;
2820
2821         if (chan->do_split)
2822                 /* Put ourselves on the list to keep order straight */
2823                 list_move_tail(&chan->split_order_list_entry,
2824                                &hsotg->split_order);
2825
2826         if (hsotg->params.host_dma && chan->qh) {
2827                 if (hsotg->params.dma_desc_enable) {
2828                         if (!chan->xfer_started ||
2829                             chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2830                                 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2831                                 chan->qh->ping_state = 0;
2832                         }
2833                 } else if (!chan->xfer_started) {
2834                         dwc2_hc_start_transfer(hsotg, chan);
2835                         chan->qh->ping_state = 0;
2836                 }
2837         } else if (chan->halt_pending) {
2838                 /* Don't queue a request if the channel has been halted */
2839         } else if (chan->halt_on_queue) {
2840                 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2841         } else if (chan->do_ping) {
2842                 if (!chan->xfer_started)
2843                         dwc2_hc_start_transfer(hsotg, chan);
2844         } else if (!chan->ep_is_in ||
2845                    chan->data_pid_start == DWC2_HC_PID_SETUP) {
2846                 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2847                         if (!chan->xfer_started) {
2848                                 dwc2_hc_start_transfer(hsotg, chan);
2849                                 retval = 1;
2850                         } else {
2851                                 retval = dwc2_hc_continue_transfer(hsotg, chan);
2852                         }
2853                 } else {
2854                         retval = -1;
2855                 }
2856         } else {
2857                 if (!chan->xfer_started) {
2858                         dwc2_hc_start_transfer(hsotg, chan);
2859                         retval = 1;
2860                 } else {
2861                         retval = dwc2_hc_continue_transfer(hsotg, chan);
2862                 }
2863         }
2864
2865         return retval;
2866 }
2867
2868 /*
2869  * Processes periodic channels for the next frame and queues transactions for
2870  * these channels to the DWC_otg controller. After queueing transactions, the
2871  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2872  * to queue as Periodic Tx FIFO or request queue space becomes available.
2873  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2874  *
2875  * Must be called with interrupt disabled and spinlock held
2876  */
2877 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2878 {
2879         struct list_head *qh_ptr;
2880         struct dwc2_qh *qh;
2881         u32 tx_status;
2882         u32 fspcavail;
2883         u32 gintmsk;
2884         int status;
2885         bool no_queue_space = false;
2886         bool no_fifo_space = false;
2887         u32 qspcavail;
2888
2889         /* If empty list then just adjust interrupt enables */
2890         if (list_empty(&hsotg->periodic_sched_assigned))
2891                 goto exit;
2892
2893         if (dbg_perio())
2894                 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2895
2896         tx_status = dwc2_readl(hsotg, HPTXSTS);
2897         qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2898                     TXSTS_QSPCAVAIL_SHIFT;
2899         fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2900                     TXSTS_FSPCAVAIL_SHIFT;
2901
2902         if (dbg_perio()) {
2903                 dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
2904                          qspcavail);
2905                 dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
2906                          fspcavail);
2907         }
2908
2909         qh_ptr = hsotg->periodic_sched_assigned.next;
2910         while (qh_ptr != &hsotg->periodic_sched_assigned) {
2911                 tx_status = dwc2_readl(hsotg, HPTXSTS);
2912                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2913                             TXSTS_QSPCAVAIL_SHIFT;
2914                 if (qspcavail == 0) {
2915                         no_queue_space = true;
2916                         break;
2917                 }
2918
2919                 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2920                 if (!qh->channel) {
2921                         qh_ptr = qh_ptr->next;
2922                         continue;
2923                 }
2924
2925                 /* Make sure EP's TT buffer is clean before queueing qtds */
2926                 if (qh->tt_buffer_dirty) {
2927                         qh_ptr = qh_ptr->next;
2928                         continue;
2929                 }
2930
2931                 /*
2932                  * Set a flag if we're queuing high-bandwidth in slave mode.
2933                  * The flag prevents any halts to get into the request queue in
2934                  * the middle of multiple high-bandwidth packets getting queued.
2935                  */
2936                 if (!hsotg->params.host_dma &&
2937                     qh->channel->multi_count > 1)
2938                         hsotg->queuing_high_bandwidth = 1;
2939
2940                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2941                             TXSTS_FSPCAVAIL_SHIFT;
2942                 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2943                 if (status < 0) {
2944                         no_fifo_space = true;
2945                         break;
2946                 }
2947
2948                 /*
2949                  * In Slave mode, stay on the current transfer until there is
2950                  * nothing more to do or the high-bandwidth request count is
2951                  * reached. In DMA mode, only need to queue one request. The
2952                  * controller automatically handles multiple packets for
2953                  * high-bandwidth transfers.
2954                  */
2955                 if (hsotg->params.host_dma || status == 0 ||
2956                     qh->channel->requests == qh->channel->multi_count) {
2957                         qh_ptr = qh_ptr->next;
2958                         /*
2959                          * Move the QH from the periodic assigned schedule to
2960                          * the periodic queued schedule
2961                          */
2962                         list_move_tail(&qh->qh_list_entry,
2963                                        &hsotg->periodic_sched_queued);
2964
2965                         /* done queuing high bandwidth */
2966                         hsotg->queuing_high_bandwidth = 0;
2967                 }
2968         }
2969
2970 exit:
2971         if (no_queue_space || no_fifo_space ||
2972             (!hsotg->params.host_dma &&
2973              !list_empty(&hsotg->periodic_sched_assigned))) {
2974                 /*
2975                  * May need to queue more transactions as the request
2976                  * queue or Tx FIFO empties. Enable the periodic Tx
2977                  * FIFO empty interrupt. (Always use the half-empty
2978                  * level to ensure that new requests are loaded as
2979                  * soon as possible.)
2980                  */
2981                 gintmsk = dwc2_readl(hsotg, GINTMSK);
2982                 if (!(gintmsk & GINTSTS_PTXFEMP)) {
2983                         gintmsk |= GINTSTS_PTXFEMP;
2984                         dwc2_writel(hsotg, gintmsk, GINTMSK);
2985                 }
2986         } else {
2987                 /*
2988                  * Disable the Tx FIFO empty interrupt since there are
2989                  * no more transactions that need to be queued right
2990                  * now. This function is called from interrupt
2991                  * handlers to queue more transactions as transfer
2992                  * states change.
2993                  */
2994                 gintmsk = dwc2_readl(hsotg, GINTMSK);
2995                 if (gintmsk & GINTSTS_PTXFEMP) {
2996                         gintmsk &= ~GINTSTS_PTXFEMP;
2997                         dwc2_writel(hsotg, gintmsk, GINTMSK);
2998                 }
2999         }
3000 }
3001
3002 /*
3003  * Processes active non-periodic channels and queues transactions for these
3004  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3005  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3006  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3007  * FIFO Empty interrupt is disabled.
3008  *
3009  * Must be called with interrupt disabled and spinlock held
3010  */
3011 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3012 {
3013         struct list_head *orig_qh_ptr;
3014         struct dwc2_qh *qh;
3015         u32 tx_status;
3016         u32 qspcavail;
3017         u32 fspcavail;
3018         u32 gintmsk;
3019         int status;
3020         int no_queue_space = 0;
3021         int no_fifo_space = 0;
3022         int more_to_do = 0;
3023
3024         dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3025
3026         tx_status = dwc2_readl(hsotg, GNPTXSTS);
3027         qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3028                     TXSTS_QSPCAVAIL_SHIFT;
3029         fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3030                     TXSTS_FSPCAVAIL_SHIFT;
3031         dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3032                  qspcavail);
3033         dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3034                  fspcavail);
3035
3036         /*
3037          * Keep track of the starting point. Skip over the start-of-list
3038          * entry.
3039          */
3040         if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3041                 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3042         orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3043
3044         /*
3045          * Process once through the active list or until no more space is
3046          * available in the request queue or the Tx FIFO
3047          */
3048         do {
3049                 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3050                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3051                             TXSTS_QSPCAVAIL_SHIFT;
3052                 if (!hsotg->params.host_dma && qspcavail == 0) {
3053                         no_queue_space = 1;
3054                         break;
3055                 }
3056
3057                 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3058                                 qh_list_entry);
3059                 if (!qh->channel)
3060                         goto next;
3061
3062                 /* Make sure EP's TT buffer is clean before queueing qtds */
3063                 if (qh->tt_buffer_dirty)
3064                         goto next;
3065
3066                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3067                             TXSTS_FSPCAVAIL_SHIFT;
3068                 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3069
3070                 if (status > 0) {
3071                         more_to_do = 1;
3072                 } else if (status < 0) {
3073                         no_fifo_space = 1;
3074                         break;
3075                 }
3076 next:
3077                 /* Advance to next QH, skipping start-of-list entry */
3078                 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3079                 if (hsotg->non_periodic_qh_ptr ==
3080                                 &hsotg->non_periodic_sched_active)
3081                         hsotg->non_periodic_qh_ptr =
3082                                         hsotg->non_periodic_qh_ptr->next;
3083         } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3084
3085         if (!hsotg->params.host_dma) {
3086                 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3087                 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3088                             TXSTS_QSPCAVAIL_SHIFT;
3089                 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3090                             TXSTS_FSPCAVAIL_SHIFT;
3091                 dev_vdbg(hsotg->dev,
3092                          "  NP Tx Req Queue Space Avail (after queue): %d\n",
3093                          qspcavail);
3094                 dev_vdbg(hsotg->dev,
3095                          "  NP Tx FIFO Space Avail (after queue): %d\n",
3096                          fspcavail);
3097
3098                 if (more_to_do || no_queue_space || no_fifo_space) {
3099                         /*
3100                          * May need to queue more transactions as the request
3101                          * queue or Tx FIFO empties. Enable the non-periodic
3102                          * Tx FIFO empty interrupt. (Always use the half-empty
3103                          * level to ensure that new requests are loaded as
3104                          * soon as possible.)
3105                          */
3106                         gintmsk = dwc2_readl(hsotg, GINTMSK);
3107                         gintmsk |= GINTSTS_NPTXFEMP;
3108                         dwc2_writel(hsotg, gintmsk, GINTMSK);
3109                 } else {
3110                         /*
3111                          * Disable the Tx FIFO empty interrupt since there are
3112                          * no more transactions that need to be queued right
3113                          * now. This function is called from interrupt
3114                          * handlers to queue more transactions as transfer
3115                          * states change.
3116                          */
3117                         gintmsk = dwc2_readl(hsotg, GINTMSK);
3118                         gintmsk &= ~GINTSTS_NPTXFEMP;
3119                         dwc2_writel(hsotg, gintmsk, GINTMSK);
3120                 }
3121         }
3122 }
3123
3124 /**
3125  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3126  * and queues transactions for these channels to the DWC_otg controller. Called
3127  * from the HCD interrupt handler functions.
3128  *
3129  * @hsotg:   The HCD state structure
3130  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3131  *           or both)
3132  *
3133  * Must be called with interrupt disabled and spinlock held
3134  */
3135 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3136                                  enum dwc2_transaction_type tr_type)
3137 {
3138 #ifdef DWC2_DEBUG_SOF
3139         dev_vdbg(hsotg->dev, "Queue Transactions\n");
3140 #endif
3141         /* Process host channels associated with periodic transfers */
3142         if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3143             tr_type == DWC2_TRANSACTION_ALL)
3144                 dwc2_process_periodic_channels(hsotg);
3145
3146         /* Process host channels associated with non-periodic transfers */
3147         if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3148             tr_type == DWC2_TRANSACTION_ALL) {
3149                 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3150                         dwc2_process_non_periodic_channels(hsotg);
3151                 } else {
3152                         /*
3153                          * Ensure NP Tx FIFO empty interrupt is disabled when
3154                          * there are no non-periodic transfers to process
3155                          */
3156                         u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3157
3158                         gintmsk &= ~GINTSTS_NPTXFEMP;
3159                         dwc2_writel(hsotg, gintmsk, GINTMSK);
3160                 }
3161         }
3162 }
3163
3164 static void dwc2_conn_id_status_change(struct work_struct *work)
3165 {
3166         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3167                                                 wf_otg);
3168         u32 count = 0;
3169         u32 gotgctl;
3170         unsigned long flags;
3171
3172         dev_dbg(hsotg->dev, "%s()\n", __func__);
3173
3174         gotgctl = dwc2_readl(hsotg, GOTGCTL);
3175         dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3176         dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3177                 !!(gotgctl & GOTGCTL_CONID_B));
3178
3179         /* B-Device connector (Device Mode) */
3180         if (gotgctl & GOTGCTL_CONID_B) {
3181                 dwc2_vbus_supply_exit(hsotg);
3182                 /* Wait for switch to device mode */
3183                 dev_dbg(hsotg->dev, "connId B\n");
3184                 if (hsotg->bus_suspended) {
3185                         dev_info(hsotg->dev,
3186                                  "Do port resume before switching to device mode\n");
3187                         dwc2_port_resume(hsotg);
3188                 }
3189                 while (!dwc2_is_device_mode(hsotg)) {
3190                         dev_info(hsotg->dev,
3191                                  "Waiting for Peripheral Mode, Mode=%s\n",
3192                                  dwc2_is_host_mode(hsotg) ? "Host" :
3193                                  "Peripheral");
3194                         msleep(20);
3195                         /*
3196                          * Sometimes the initial GOTGCTRL read is wrong, so
3197                          * check it again and jump to host mode if that was
3198                          * the case.
3199                          */
3200                         gotgctl = dwc2_readl(hsotg, GOTGCTL);
3201                         if (!(gotgctl & GOTGCTL_CONID_B))
3202                                 goto host;
3203                         if (++count > 250)
3204                                 break;
3205                 }
3206                 if (count > 250)
3207                         dev_err(hsotg->dev,
3208                                 "Connection id status change timed out\n");
3209
3210                 /*
3211                  * Exit Partial Power Down without restoring registers.
3212                  * No need to check the return value as registers
3213                  * are not being restored.
3214                  */
3215                 if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3216                         dwc2_exit_partial_power_down(hsotg, 0, false);
3217
3218                 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3219                 dwc2_core_init(hsotg, false);
3220                 dwc2_enable_global_interrupts(hsotg);
3221                 spin_lock_irqsave(&hsotg->lock, flags);
3222                 dwc2_hsotg_core_init_disconnected(hsotg, false);
3223                 spin_unlock_irqrestore(&hsotg->lock, flags);
3224                 /* Enable ACG feature in device mode,if supported */
3225                 dwc2_enable_acg(hsotg);
3226                 dwc2_hsotg_core_connect(hsotg);
3227         } else {
3228 host:
3229                 /* A-Device connector (Host Mode) */
3230                 dev_dbg(hsotg->dev, "connId A\n");
3231                 while (!dwc2_is_host_mode(hsotg)) {
3232                         dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3233                                  dwc2_is_host_mode(hsotg) ?
3234                                  "Host" : "Peripheral");
3235                         msleep(20);
3236                         if (++count > 250)
3237                                 break;
3238                 }
3239                 if (count > 250)
3240                         dev_err(hsotg->dev,
3241                                 "Connection id status change timed out\n");
3242
3243                 spin_lock_irqsave(&hsotg->lock, flags);
3244                 dwc2_hsotg_disconnect(hsotg);
3245                 spin_unlock_irqrestore(&hsotg->lock, flags);
3246
3247                 hsotg->op_state = OTG_STATE_A_HOST;
3248                 /* Initialize the Core for Host mode */
3249                 dwc2_core_init(hsotg, false);
3250                 dwc2_enable_global_interrupts(hsotg);
3251                 dwc2_hcd_start(hsotg);
3252         }
3253 }
3254
3255 static void dwc2_wakeup_detected(struct timer_list *t)
3256 {
3257         struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3258         u32 hprt0;
3259
3260         dev_dbg(hsotg->dev, "%s()\n", __func__);
3261
3262         /*
3263          * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3264          * so that OPT tests pass with all PHYs.)
3265          */
3266         hprt0 = dwc2_read_hprt0(hsotg);
3267         dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3268         hprt0 &= ~HPRT0_RES;
3269         dwc2_writel(hsotg, hprt0, HPRT0);
3270         dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3271                 dwc2_readl(hsotg, HPRT0));
3272
3273         dwc2_hcd_rem_wakeup(hsotg);
3274         hsotg->bus_suspended = false;
3275
3276         /* Change to L0 state */
3277         hsotg->lx_state = DWC2_L0;
3278 }
3279
3280 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3281 {
3282         struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3283
3284         return hcd->self.b_hnp_enable;
3285 }
3286
3287 /**
3288  * dwc2_port_suspend() - Put controller in suspend mode for host.
3289  *
3290  * @hsotg: Programming view of the DWC_otg controller
3291  * @windex: The control request wIndex field
3292  *
3293  * Return: non-zero if failed to enter suspend mode for host.
3294  *
3295  * This function is for entering Host mode suspend.
3296  * Must NOT be called with interrupt disabled or spinlock held.
3297  */
3298 int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3299 {
3300         unsigned long flags;
3301         u32 pcgctl;
3302         u32 gotgctl;
3303         int ret = 0;
3304
3305         dev_dbg(hsotg->dev, "%s()\n", __func__);
3306
3307         spin_lock_irqsave(&hsotg->lock, flags);
3308
3309         if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3310                 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3311                 gotgctl |= GOTGCTL_HSTSETHNPEN;
3312                 dwc2_writel(hsotg, gotgctl, GOTGCTL);
3313                 hsotg->op_state = OTG_STATE_A_SUSPEND;
3314         }
3315
3316         switch (hsotg->params.power_down) {
3317         case DWC2_POWER_DOWN_PARAM_PARTIAL:
3318                 ret = dwc2_enter_partial_power_down(hsotg);
3319                 if (ret)
3320                         dev_err(hsotg->dev,
3321                                 "enter partial_power_down failed.\n");
3322                 break;
3323         case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3324                 /*
3325                  * Perform spin unlock and lock because in
3326                  * "dwc2_host_enter_hibernation()" function there is a spinlock
3327                  * logic which prevents servicing of any IRQ during entering
3328                  * hibernation.
3329                  */
3330                 spin_unlock_irqrestore(&hsotg->lock, flags);
3331                 ret = dwc2_enter_hibernation(hsotg, 1);
3332                 if (ret)
3333                         dev_err(hsotg->dev, "enter hibernation failed.\n");
3334                 spin_lock_irqsave(&hsotg->lock, flags);
3335                 break;
3336         case DWC2_POWER_DOWN_PARAM_NONE:
3337                 /*
3338                  * If not hibernation nor partial power down are supported,
3339                  * clock gating is used to save power.
3340                  */
3341                 if (!hsotg->params.no_clock_gating)
3342                         dwc2_host_enter_clock_gating(hsotg);
3343                 break;
3344         }
3345
3346         /* For HNP the bus must be suspended for at least 200ms */
3347         if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3348                 pcgctl = dwc2_readl(hsotg, PCGCTL);
3349                 pcgctl &= ~PCGCTL_STOPPCLK;
3350                 dwc2_writel(hsotg, pcgctl, PCGCTL);
3351
3352                 spin_unlock_irqrestore(&hsotg->lock, flags);
3353
3354                 msleep(200);
3355         } else {
3356                 spin_unlock_irqrestore(&hsotg->lock, flags);
3357         }
3358
3359         return ret;
3360 }
3361
3362 /**
3363  * dwc2_port_resume() - Exit controller from suspend mode for host.
3364  *
3365  * @hsotg: Programming view of the DWC_otg controller
3366  *
3367  * Return: non-zero if failed to exit suspend mode for host.
3368  *
3369  * This function is for exiting Host mode suspend.
3370  * Must NOT be called with interrupt disabled or spinlock held.
3371  */
3372 int dwc2_port_resume(struct dwc2_hsotg *hsotg)
3373 {
3374         unsigned long flags;
3375         int ret = 0;
3376
3377         spin_lock_irqsave(&hsotg->lock, flags);
3378
3379         switch (hsotg->params.power_down) {
3380         case DWC2_POWER_DOWN_PARAM_PARTIAL:
3381                 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
3382                 if (ret)
3383                         dev_err(hsotg->dev,
3384                                 "exit partial_power_down failed.\n");
3385                 break;
3386         case DWC2_POWER_DOWN_PARAM_HIBERNATION:
3387                 /* Exit host hibernation. */
3388                 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
3389                 if (ret)
3390                         dev_err(hsotg->dev, "exit hibernation failed.\n");
3391                 break;
3392         case DWC2_POWER_DOWN_PARAM_NONE:
3393                 /*
3394                  * If not hibernation nor partial power down are supported,
3395                  * port resume is done using the clock gating programming flow.
3396                  */
3397                 spin_unlock_irqrestore(&hsotg->lock, flags);
3398                 dwc2_host_exit_clock_gating(hsotg, 0);
3399                 spin_lock_irqsave(&hsotg->lock, flags);
3400                 break;
3401         }
3402
3403         spin_unlock_irqrestore(&hsotg->lock, flags);
3404
3405         return ret;
3406 }
3407
3408 /* Handles hub class-specific requests */
3409 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3410                                 u16 wvalue, u16 windex, char *buf, u16 wlength)
3411 {
3412         struct usb_hub_descriptor *hub_desc;
3413         int retval = 0;
3414         u32 hprt0;
3415         u32 port_status;
3416         u32 speed;
3417         u32 pcgctl;
3418         u32 pwr;
3419
3420         switch (typereq) {
3421         case ClearHubFeature:
3422                 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3423
3424                 switch (wvalue) {
3425                 case C_HUB_LOCAL_POWER:
3426                 case C_HUB_OVER_CURRENT:
3427                         /* Nothing required here */
3428                         break;
3429
3430                 default:
3431                         retval = -EINVAL;
3432                         dev_err(hsotg->dev,
3433                                 "ClearHubFeature request %1xh unknown\n",
3434                                 wvalue);
3435                 }
3436                 break;
3437
3438         case ClearPortFeature:
3439                 if (wvalue != USB_PORT_FEAT_L1)
3440                         if (!windex || windex > 1)
3441                                 goto error;
3442                 switch (wvalue) {
3443                 case USB_PORT_FEAT_ENABLE:
3444                         dev_dbg(hsotg->dev,
3445                                 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3446                         hprt0 = dwc2_read_hprt0(hsotg);
3447                         hprt0 |= HPRT0_ENA;
3448                         dwc2_writel(hsotg, hprt0, HPRT0);
3449                         break;
3450
3451                 case USB_PORT_FEAT_SUSPEND:
3452                         dev_dbg(hsotg->dev,
3453                                 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3454
3455                         if (hsotg->bus_suspended)
3456                                 retval = dwc2_port_resume(hsotg);
3457                         break;
3458
3459                 case USB_PORT_FEAT_POWER:
3460                         dev_dbg(hsotg->dev,
3461                                 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3462                         hprt0 = dwc2_read_hprt0(hsotg);
3463                         pwr = hprt0 & HPRT0_PWR;
3464                         hprt0 &= ~HPRT0_PWR;
3465                         dwc2_writel(hsotg, hprt0, HPRT0);
3466                         if (pwr)
3467                                 dwc2_vbus_supply_exit(hsotg);
3468                         break;
3469
3470                 case USB_PORT_FEAT_INDICATOR:
3471                         dev_dbg(hsotg->dev,
3472                                 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3473                         /* Port indicator not supported */
3474                         break;
3475
3476                 case USB_PORT_FEAT_C_CONNECTION:
3477                         /*
3478                          * Clears driver's internal Connect Status Change flag
3479                          */
3480                         dev_dbg(hsotg->dev,
3481                                 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3482                         hsotg->flags.b.port_connect_status_change = 0;
3483                         break;
3484
3485                 case USB_PORT_FEAT_C_RESET:
3486                         /* Clears driver's internal Port Reset Change flag */
3487                         dev_dbg(hsotg->dev,
3488                                 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3489                         hsotg->flags.b.port_reset_change = 0;
3490                         break;
3491
3492                 case USB_PORT_FEAT_C_ENABLE:
3493                         /*
3494                          * Clears the driver's internal Port Enable/Disable
3495                          * Change flag
3496                          */
3497                         dev_dbg(hsotg->dev,
3498                                 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3499                         hsotg->flags.b.port_enable_change = 0;
3500                         break;
3501
3502                 case USB_PORT_FEAT_C_SUSPEND:
3503                         /*
3504                          * Clears the driver's internal Port Suspend Change
3505                          * flag, which is set when resume signaling on the host
3506                          * port is complete
3507                          */
3508                         dev_dbg(hsotg->dev,
3509                                 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3510                         hsotg->flags.b.port_suspend_change = 0;
3511                         break;
3512
3513                 case USB_PORT_FEAT_C_PORT_L1:
3514                         dev_dbg(hsotg->dev,
3515                                 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3516                         hsotg->flags.b.port_l1_change = 0;
3517                         break;
3518
3519                 case USB_PORT_FEAT_C_OVER_CURRENT:
3520                         dev_dbg(hsotg->dev,
3521                                 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3522                         hsotg->flags.b.port_over_current_change = 0;
3523                         break;
3524
3525                 default:
3526                         retval = -EINVAL;
3527                         dev_err(hsotg->dev,
3528                                 "ClearPortFeature request %1xh unknown or unsupported\n",
3529                                 wvalue);
3530                 }
3531                 break;
3532
3533         case GetHubDescriptor:
3534                 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3535                 hub_desc = (struct usb_hub_descriptor *)buf;
3536                 hub_desc->bDescLength = 9;
3537                 hub_desc->bDescriptorType = USB_DT_HUB;
3538                 hub_desc->bNbrPorts = 1;
3539                 hub_desc->wHubCharacteristics =
3540                         cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3541                                     HUB_CHAR_INDV_PORT_OCPM);
3542                 hub_desc->bPwrOn2PwrGood = 1;
3543                 hub_desc->bHubContrCurrent = 0;
3544                 hub_desc->u.hs.DeviceRemovable[0] = 0;
3545                 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3546                 break;
3547
3548         case GetHubStatus:
3549                 dev_dbg(hsotg->dev, "GetHubStatus\n");
3550                 memset(buf, 0, 4);
3551                 break;
3552
3553         case GetPortStatus:
3554                 dev_vdbg(hsotg->dev,
3555                          "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3556                          hsotg->flags.d32);
3557                 if (!windex || windex > 1)
3558                         goto error;
3559
3560                 port_status = 0;
3561                 if (hsotg->flags.b.port_connect_status_change)
3562                         port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3563                 if (hsotg->flags.b.port_enable_change)
3564                         port_status |= USB_PORT_STAT_C_ENABLE << 16;
3565                 if (hsotg->flags.b.port_suspend_change)
3566                         port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3567                 if (hsotg->flags.b.port_l1_change)
3568                         port_status |= USB_PORT_STAT_C_L1 << 16;
3569                 if (hsotg->flags.b.port_reset_change)
3570                         port_status |= USB_PORT_STAT_C_RESET << 16;
3571                 if (hsotg->flags.b.port_over_current_change) {
3572                         dev_warn(hsotg->dev, "Overcurrent change detected\n");
3573                         port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3574                 }
3575
3576                 if (!hsotg->flags.b.port_connect_status) {
3577                         /*
3578                          * The port is disconnected, which means the core is
3579                          * either in device mode or it soon will be. Just
3580                          * return 0's for the remainder of the port status
3581                          * since the port register can't be read if the core
3582                          * is in device mode.
3583                          */
3584                         *(__le32 *)buf = cpu_to_le32(port_status);
3585                         break;
3586                 }
3587
3588                 hprt0 = dwc2_readl(hsotg, HPRT0);
3589                 dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3590
3591                 if (hprt0 & HPRT0_CONNSTS)
3592                         port_status |= USB_PORT_STAT_CONNECTION;
3593                 if (hprt0 & HPRT0_ENA)
3594                         port_status |= USB_PORT_STAT_ENABLE;
3595                 if (hprt0 & HPRT0_SUSP)
3596                         port_status |= USB_PORT_STAT_SUSPEND;
3597                 if (hprt0 & HPRT0_OVRCURRACT)
3598                         port_status |= USB_PORT_STAT_OVERCURRENT;
3599                 if (hprt0 & HPRT0_RST)
3600                         port_status |= USB_PORT_STAT_RESET;
3601                 if (hprt0 & HPRT0_PWR)
3602                         port_status |= USB_PORT_STAT_POWER;
3603
3604                 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3605                 if (speed == HPRT0_SPD_HIGH_SPEED)
3606                         port_status |= USB_PORT_STAT_HIGH_SPEED;
3607                 else if (speed == HPRT0_SPD_LOW_SPEED)
3608                         port_status |= USB_PORT_STAT_LOW_SPEED;
3609
3610                 if (hprt0 & HPRT0_TSTCTL_MASK)
3611                         port_status |= USB_PORT_STAT_TEST;
3612                 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3613
3614                 if (hsotg->params.dma_desc_fs_enable) {
3615                         /*
3616                          * Enable descriptor DMA only if a full speed
3617                          * device is connected.
3618                          */
3619                         if (hsotg->new_connection &&
3620                             ((port_status &
3621                               (USB_PORT_STAT_CONNECTION |
3622                                USB_PORT_STAT_HIGH_SPEED |
3623                                USB_PORT_STAT_LOW_SPEED)) ==
3624                                USB_PORT_STAT_CONNECTION)) {
3625                                 u32 hcfg;
3626
3627                                 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3628                                 hsotg->params.dma_desc_enable = true;
3629                                 hcfg = dwc2_readl(hsotg, HCFG);
3630                                 hcfg |= HCFG_DESCDMA;
3631                                 dwc2_writel(hsotg, hcfg, HCFG);
3632                                 hsotg->new_connection = false;
3633                         }
3634                 }
3635
3636                 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3637                 *(__le32 *)buf = cpu_to_le32(port_status);
3638                 break;
3639
3640         case SetHubFeature:
3641                 dev_dbg(hsotg->dev, "SetHubFeature\n");
3642                 /* No HUB features supported */
3643                 break;
3644
3645         case SetPortFeature:
3646                 dev_dbg(hsotg->dev, "SetPortFeature\n");
3647                 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3648                         goto error;
3649
3650                 if (!hsotg->flags.b.port_connect_status) {
3651                         /*
3652                          * The port is disconnected, which means the core is
3653                          * either in device mode or it soon will be. Just
3654                          * return without doing anything since the port
3655                          * register can't be written if the core is in device
3656                          * mode.
3657                          */
3658                         break;
3659                 }
3660
3661                 switch (wvalue) {
3662                 case USB_PORT_FEAT_SUSPEND:
3663                         dev_dbg(hsotg->dev,
3664                                 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3665                         if (windex != hsotg->otg_port)
3666                                 goto error;
3667                         if (!hsotg->bus_suspended)
3668                                 retval = dwc2_port_suspend(hsotg, windex);
3669                         break;
3670
3671                 case USB_PORT_FEAT_POWER:
3672                         dev_dbg(hsotg->dev,
3673                                 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3674                         hprt0 = dwc2_read_hprt0(hsotg);
3675                         pwr = hprt0 & HPRT0_PWR;
3676                         hprt0 |= HPRT0_PWR;
3677                         dwc2_writel(hsotg, hprt0, HPRT0);
3678                         if (!pwr)
3679                                 dwc2_vbus_supply_init(hsotg);
3680                         break;
3681
3682                 case USB_PORT_FEAT_RESET:
3683                         dev_dbg(hsotg->dev,
3684                                 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3685
3686                         hprt0 = dwc2_read_hprt0(hsotg);
3687
3688                         if (hsotg->hibernated) {
3689                                 retval = dwc2_exit_hibernation(hsotg, 0, 1, 1);
3690                                 if (retval)
3691                                         dev_err(hsotg->dev,
3692                                                 "exit hibernation failed\n");
3693                         }
3694
3695                         if (hsotg->in_ppd) {
3696                                 retval = dwc2_exit_partial_power_down(hsotg, 1,
3697                                                                       true);
3698                                 if (retval)
3699                                         dev_err(hsotg->dev,
3700                                                 "exit partial_power_down failed\n");
3701                         }
3702
3703                         if (hsotg->params.power_down ==
3704                             DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended)
3705                                 dwc2_host_exit_clock_gating(hsotg, 0);
3706
3707                         pcgctl = dwc2_readl(hsotg, PCGCTL);
3708                         pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3709                         dwc2_writel(hsotg, pcgctl, PCGCTL);
3710                         /* ??? Original driver does this */
3711                         dwc2_writel(hsotg, 0, PCGCTL);
3712
3713                         hprt0 = dwc2_read_hprt0(hsotg);
3714                         pwr = hprt0 & HPRT0_PWR;
3715                         /* Clear suspend bit if resetting from suspend state */
3716                         hprt0 &= ~HPRT0_SUSP;
3717
3718                         /*
3719                          * When B-Host the Port reset bit is set in the Start
3720                          * HCD Callback function, so that the reset is started
3721                          * within 1ms of the HNP success interrupt
3722                          */
3723                         if (!dwc2_hcd_is_b_host(hsotg)) {
3724                                 hprt0 |= HPRT0_PWR | HPRT0_RST;
3725                                 dev_dbg(hsotg->dev,
3726                                         "In host mode, hprt0=%08x\n", hprt0);
3727                                 dwc2_writel(hsotg, hprt0, HPRT0);
3728                                 if (!pwr)
3729                                         dwc2_vbus_supply_init(hsotg);
3730                         }
3731
3732                         /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3733                         msleep(50);
3734                         hprt0 &= ~HPRT0_RST;
3735                         dwc2_writel(hsotg, hprt0, HPRT0);
3736                         hsotg->lx_state = DWC2_L0; /* Now back to On state */
3737                         break;
3738
3739                 case USB_PORT_FEAT_INDICATOR:
3740                         dev_dbg(hsotg->dev,
3741                                 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3742                         /* Not supported */
3743                         break;
3744
3745                 case USB_PORT_FEAT_TEST:
3746                         hprt0 = dwc2_read_hprt0(hsotg);
3747                         dev_dbg(hsotg->dev,
3748                                 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3749                         hprt0 &= ~HPRT0_TSTCTL_MASK;
3750                         hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3751                         dwc2_writel(hsotg, hprt0, HPRT0);
3752                         break;
3753
3754                 default:
3755                         retval = -EINVAL;
3756                         dev_err(hsotg->dev,
3757                                 "SetPortFeature %1xh unknown or unsupported\n",
3758                                 wvalue);
3759                         break;
3760                 }
3761                 break;
3762
3763         default:
3764 error:
3765                 retval = -EINVAL;
3766                 dev_dbg(hsotg->dev,
3767                         "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3768                         typereq, windex, wvalue);
3769                 break;
3770         }
3771
3772         return retval;
3773 }
3774
3775 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3776 {
3777         int retval;
3778
3779         if (port != 1)
3780                 return -EINVAL;
3781
3782         retval = (hsotg->flags.b.port_connect_status_change ||
3783                   hsotg->flags.b.port_reset_change ||
3784                   hsotg->flags.b.port_enable_change ||
3785                   hsotg->flags.b.port_suspend_change ||
3786                   hsotg->flags.b.port_over_current_change);
3787
3788         if (retval) {
3789                 dev_dbg(hsotg->dev,
3790                         "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3791                 dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3792                         hsotg->flags.b.port_connect_status_change);
3793                 dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3794                         hsotg->flags.b.port_reset_change);
3795                 dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3796                         hsotg->flags.b.port_enable_change);
3797                 dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3798                         hsotg->flags.b.port_suspend_change);
3799                 dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3800                         hsotg->flags.b.port_over_current_change);
3801         }
3802
3803         return retval;
3804 }
3805
3806 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3807 {
3808         u32 hfnum = dwc2_readl(hsotg, HFNUM);
3809
3810 #ifdef DWC2_DEBUG_SOF
3811         dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3812                  (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3813 #endif
3814         return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3815 }
3816
3817 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3818 {
3819         u32 hprt = dwc2_readl(hsotg, HPRT0);
3820         u32 hfir = dwc2_readl(hsotg, HFIR);
3821         u32 hfnum = dwc2_readl(hsotg, HFNUM);
3822         unsigned int us_per_frame;
3823         unsigned int frame_number;
3824         unsigned int remaining;
3825         unsigned int interval;
3826         unsigned int phy_clks;
3827
3828         /* High speed has 125 us per (micro) frame; others are 1 ms per */
3829         us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3830
3831         /* Extract fields */
3832         frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3833         remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3834         interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3835
3836         /*
3837          * Number of phy clocks since the last tick of the frame number after
3838          * "us" has passed.
3839          */
3840         phy_clks = (interval - remaining) +
3841                    DIV_ROUND_UP(interval * us, us_per_frame);
3842
3843         return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3844 }
3845
3846 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3847 {
3848         return hsotg->op_state == OTG_STATE_B_HOST;
3849 }
3850
3851 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3852                                                int iso_desc_count,
3853                                                gfp_t mem_flags)
3854 {
3855         struct dwc2_hcd_urb *urb;
3856
3857         urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3858         if (urb)
3859                 urb->packet_count = iso_desc_count;
3860         return urb;
3861 }
3862
3863 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3864                                       struct dwc2_hcd_urb *urb, u8 dev_addr,
3865                                       u8 ep_num, u8 ep_type, u8 ep_dir,
3866                                       u16 maxp, u16 maxp_mult)
3867 {
3868         if (dbg_perio() ||
3869             ep_type == USB_ENDPOINT_XFER_BULK ||
3870             ep_type == USB_ENDPOINT_XFER_CONTROL)
3871                 dev_vdbg(hsotg->dev,
3872                          "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3873                          dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3874         urb->pipe_info.dev_addr = dev_addr;
3875         urb->pipe_info.ep_num = ep_num;
3876         urb->pipe_info.pipe_type = ep_type;
3877         urb->pipe_info.pipe_dir = ep_dir;
3878         urb->pipe_info.maxp = maxp;
3879         urb->pipe_info.maxp_mult = maxp_mult;
3880 }
3881
3882 /*
3883  * NOTE: This function will be removed once the peripheral controller code
3884  * is integrated and the driver is stable
3885  */
3886 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3887 {
3888 #ifdef DEBUG
3889         struct dwc2_host_chan *chan;
3890         struct dwc2_hcd_urb *urb;
3891         struct dwc2_qtd *qtd;
3892         int num_channels;
3893         u32 np_tx_status;
3894         u32 p_tx_status;
3895         int i;
3896
3897         num_channels = hsotg->params.host_channels;
3898         dev_dbg(hsotg->dev, "\n");
3899         dev_dbg(hsotg->dev,
3900                 "************************************************************\n");
3901         dev_dbg(hsotg->dev, "HCD State:\n");
3902         dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
3903
3904         for (i = 0; i < num_channels; i++) {
3905                 chan = hsotg->hc_ptr_array[i];
3906                 dev_dbg(hsotg->dev, "  Channel %d:\n", i);
3907                 dev_dbg(hsotg->dev,
3908                         "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3909                         chan->dev_addr, chan->ep_num, chan->ep_is_in);
3910                 dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
3911                 dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
3912                 dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
3913                 dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
3914                         chan->data_pid_start);
3915                 dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
3916                 dev_dbg(hsotg->dev, "    xfer_started: %d\n",
3917                         chan->xfer_started);
3918                 dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
3919                 dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
3920                         (unsigned long)chan->xfer_dma);
3921                 dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
3922                 dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
3923                 dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
3924                         chan->halt_on_queue);
3925                 dev_dbg(hsotg->dev, "    halt_pending: %d\n",
3926                         chan->halt_pending);
3927                 dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
3928                 dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
3929                 dev_dbg(hsotg->dev, "    complete_split: %d\n",
3930                         chan->complete_split);
3931                 dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
3932                 dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
3933                 dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
3934                 dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
3935                 dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
3936
3937                 if (chan->xfer_started) {
3938                         u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3939
3940                         hfnum = dwc2_readl(hsotg, HFNUM);
3941                         hcchar = dwc2_readl(hsotg, HCCHAR(i));
3942                         hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3943                         hcint = dwc2_readl(hsotg, HCINT(i));
3944                         hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3945                         dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
3946                         dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
3947                         dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
3948                         dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
3949                         dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
3950                 }
3951
3952                 if (!(chan->xfer_started && chan->qh))
3953                         continue;
3954
3955                 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3956                         if (!qtd->in_process)
3957                                 break;
3958                         urb = qtd->urb;
3959                         dev_dbg(hsotg->dev, "    URB Info:\n");
3960                         dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
3961                                 qtd, urb);
3962                         if (urb) {
3963                                 dev_dbg(hsotg->dev,
3964                                         "      Dev: %d, EP: %d %s\n",
3965                                         dwc2_hcd_get_dev_addr(&urb->pipe_info),
3966                                         dwc2_hcd_get_ep_num(&urb->pipe_info),
3967                                         dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3968                                         "IN" : "OUT");
3969                                 dev_dbg(hsotg->dev,
3970                                         "      Max packet size: %d (%d mult)\n",
3971                                         dwc2_hcd_get_maxp(&urb->pipe_info),
3972                                         dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3973                                 dev_dbg(hsotg->dev,
3974                                         "      transfer_buffer: %p\n",
3975                                         urb->buf);
3976                                 dev_dbg(hsotg->dev,
3977                                         "      transfer_dma: %08lx\n",
3978                                         (unsigned long)urb->dma);
3979                                 dev_dbg(hsotg->dev,
3980                                         "      transfer_buffer_length: %d\n",
3981                                         urb->length);
3982                                 dev_dbg(hsotg->dev, "      actual_length: %d\n",
3983                                         urb->actual_length);
3984                         }
3985                 }
3986         }
3987
3988         dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
3989                 hsotg->non_periodic_channels);
3990         dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
3991                 hsotg->periodic_channels);
3992         dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
3993         np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3994         dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
3995                 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3996         dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
3997                 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3998         p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3999         dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
4000                 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4001         dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
4002                 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4003         dwc2_dump_global_registers(hsotg);
4004         dwc2_dump_host_registers(hsotg);
4005         dev_dbg(hsotg->dev,
4006                 "************************************************************\n");
4007         dev_dbg(hsotg->dev, "\n");
4008 #endif
4009 }
4010
4011 struct wrapper_priv_data {
4012         struct dwc2_hsotg *hsotg;
4013 };
4014
4015 /* Gets the dwc2_hsotg from a usb_hcd */
4016 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4017 {
4018         struct wrapper_priv_data *p;
4019
4020         p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4021         return p->hsotg;
4022 }
4023
4024 /**
4025  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4026  *
4027  * This will get the dwc2_tt structure (and ttport) associated with the given
4028  * context (which is really just a struct urb pointer).
4029  *
4030  * The first time this is called for a given TT we allocate memory for our
4031  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4032  * then the refcount for the structure will go to 0 and we'll free it.
4033  *
4034  * @hsotg:     The HCD state structure for the DWC OTG controller.
4035  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4036  * @mem_flags: Flags for allocating memory.
4037  * @ttport:    We'll return this device's port number here.  That's used to
4038  *             reference into the bitmap if we're on a multi_tt hub.
4039  *
4040  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4041  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4042  */
4043
4044 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4045                                       gfp_t mem_flags, int *ttport)
4046 {
4047         struct urb *urb = context;
4048         struct dwc2_tt *dwc_tt = NULL;
4049
4050         if (urb->dev->tt) {
4051                 *ttport = urb->dev->ttport;
4052
4053                 dwc_tt = urb->dev->tt->hcpriv;
4054                 if (!dwc_tt) {
4055                         size_t bitmap_size;
4056
4057                         /*
4058                          * For single_tt we need one schedule.  For multi_tt
4059                          * we need one per port.
4060                          */
4061                         bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4062                                       sizeof(dwc_tt->periodic_bitmaps[0]);
4063                         if (urb->dev->tt->multi)
4064                                 bitmap_size *= urb->dev->tt->hub->maxchild;
4065
4066                         dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4067                                          mem_flags);
4068                         if (!dwc_tt)
4069                                 return NULL;
4070
4071                         dwc_tt->usb_tt = urb->dev->tt;
4072                         dwc_tt->usb_tt->hcpriv = dwc_tt;
4073                 }
4074
4075                 dwc_tt->refcount++;
4076         }
4077
4078         return dwc_tt;
4079 }
4080
4081 /**
4082  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4083  *
4084  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4085  * of the structure are done.
4086  *
4087  * It's OK to call this with NULL.
4088  *
4089  * @hsotg:     The HCD state structure for the DWC OTG controller.
4090  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4091  */
4092 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4093 {
4094         /* Model kfree and make put of NULL a no-op */
4095         if (!dwc_tt)
4096                 return;
4097
4098         WARN_ON(dwc_tt->refcount < 1);
4099
4100         dwc_tt->refcount--;
4101         if (!dwc_tt->refcount) {
4102                 dwc_tt->usb_tt->hcpriv = NULL;
4103                 kfree(dwc_tt);
4104         }
4105 }
4106
4107 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4108 {
4109         struct urb *urb = context;
4110
4111         return urb->dev->speed;
4112 }
4113
4114 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4115                                         struct urb *urb)
4116 {
4117         struct usb_bus *bus = hcd_to_bus(hcd);
4118
4119         if (urb->interval)
4120                 bus->bandwidth_allocated += bw / urb->interval;
4121         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4122                 bus->bandwidth_isoc_reqs++;
4123         else
4124                 bus->bandwidth_int_reqs++;
4125 }
4126
4127 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4128                                     struct urb *urb)
4129 {
4130         struct usb_bus *bus = hcd_to_bus(hcd);
4131
4132         if (urb->interval)
4133                 bus->bandwidth_allocated -= bw / urb->interval;
4134         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4135                 bus->bandwidth_isoc_reqs--;
4136         else
4137                 bus->bandwidth_int_reqs--;
4138 }
4139
4140 /*
4141  * Sets the final status of an URB and returns it to the upper layer. Any
4142  * required cleanup of the URB is performed.
4143  *
4144  * Must be called with interrupt disabled and spinlock held
4145  */
4146 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4147                         int status)
4148 {
4149         struct urb *urb;
4150         int i;
4151
4152         if (!qtd) {
4153                 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4154                 return;
4155         }
4156
4157         if (!qtd->urb) {
4158                 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4159                 return;
4160         }
4161
4162         urb = qtd->urb->priv;
4163         if (!urb) {
4164                 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4165                 return;
4166         }
4167
4168         urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4169
4170         if (dbg_urb(urb))
4171                 dev_vdbg(hsotg->dev,
4172                          "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4173                          __func__, urb, usb_pipedevice(urb->pipe),
4174                          usb_pipeendpoint(urb->pipe),
4175                          usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4176                          urb->actual_length);
4177
4178         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4179                 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4180                 for (i = 0; i < urb->number_of_packets; ++i) {
4181                         urb->iso_frame_desc[i].actual_length =
4182                                 dwc2_hcd_urb_get_iso_desc_actual_length(
4183                                                 qtd->urb, i);
4184                         urb->iso_frame_desc[i].status =
4185                                 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4186                 }
4187         }
4188
4189         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4190                 for (i = 0; i < urb->number_of_packets; i++)
4191                         dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4192                                  i, urb->iso_frame_desc[i].status);
4193         }
4194
4195         urb->status = status;
4196         if (!status) {
4197                 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4198                     urb->actual_length < urb->transfer_buffer_length)
4199                         urb->status = -EREMOTEIO;
4200         }
4201
4202         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4203             usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4204                 struct usb_host_endpoint *ep = urb->ep;
4205
4206                 if (ep)
4207                         dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4208                                         dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4209                                         urb);
4210         }
4211
4212         usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4213         urb->hcpriv = NULL;
4214         kfree(qtd->urb);
4215         qtd->urb = NULL;
4216
4217         usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4218 }
4219
4220 /*
4221  * Work queue function for starting the HCD when A-Cable is connected
4222  */
4223 static void dwc2_hcd_start_func(struct work_struct *work)
4224 {
4225         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4226                                                 start_work.work);
4227
4228         dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4229         dwc2_host_start(hsotg);
4230 }
4231
4232 /*
4233  * Reset work queue function
4234  */
4235 static void dwc2_hcd_reset_func(struct work_struct *work)
4236 {
4237         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4238                                                 reset_work.work);
4239         unsigned long flags;
4240         u32 hprt0;
4241
4242         dev_dbg(hsotg->dev, "USB RESET function called\n");
4243
4244         spin_lock_irqsave(&hsotg->lock, flags);
4245
4246         hprt0 = dwc2_read_hprt0(hsotg);
4247         hprt0 &= ~HPRT0_RST;
4248         dwc2_writel(hsotg, hprt0, HPRT0);
4249         hsotg->flags.b.port_reset_change = 1;
4250
4251         spin_unlock_irqrestore(&hsotg->lock, flags);
4252 }
4253
4254 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4255 {
4256         struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4257                                                 phy_reset_work);
4258         int ret;
4259
4260         ret = phy_reset(hsotg->phy);
4261         if (ret)
4262                 dev_warn(hsotg->dev, "PHY reset failed\n");
4263 }
4264
4265 /*
4266  * =========================================================================
4267  *  Linux HC Driver Functions
4268  * =========================================================================
4269  */
4270
4271 /*
4272  * Initializes the DWC_otg controller and its root hub and prepares it for host
4273  * mode operation. Activates the root port. Returns 0 on success and a negative
4274  * error code on failure.
4275  */
4276 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4277 {
4278         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4279         struct usb_bus *bus = hcd_to_bus(hcd);
4280         unsigned long flags;
4281         u32 hprt0;
4282         int ret;
4283
4284         dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4285
4286         spin_lock_irqsave(&hsotg->lock, flags);
4287         hsotg->lx_state = DWC2_L0;
4288         hcd->state = HC_STATE_RUNNING;
4289         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4290
4291         if (dwc2_is_device_mode(hsotg)) {
4292                 spin_unlock_irqrestore(&hsotg->lock, flags);
4293                 return 0;       /* why 0 ?? */
4294         }
4295
4296         dwc2_hcd_reinit(hsotg);
4297
4298         hprt0 = dwc2_read_hprt0(hsotg);
4299         /* Has vbus power been turned on in dwc2_core_host_init ? */
4300         if (hprt0 & HPRT0_PWR) {
4301                 /* Enable external vbus supply before resuming root hub */
4302                 spin_unlock_irqrestore(&hsotg->lock, flags);
4303                 ret = dwc2_vbus_supply_init(hsotg);
4304                 if (ret)
4305                         return ret;
4306                 spin_lock_irqsave(&hsotg->lock, flags);
4307         }
4308
4309         /* Initialize and connect root hub if one is not already attached */
4310         if (bus->root_hub) {
4311                 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4312                 /* Inform the HUB driver to resume */
4313                 usb_hcd_resume_root_hub(hcd);
4314         }
4315
4316         spin_unlock_irqrestore(&hsotg->lock, flags);
4317
4318         return 0;
4319 }
4320
4321 /*
4322  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4323  * stopped.
4324  */
4325 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4326 {
4327         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4328         unsigned long flags;
4329         u32 hprt0;
4330
4331         /* Turn off all host-specific interrupts */
4332         dwc2_disable_host_interrupts(hsotg);
4333
4334         /* Wait for interrupt processing to finish */
4335         synchronize_irq(hcd->irq);
4336
4337         spin_lock_irqsave(&hsotg->lock, flags);
4338         hprt0 = dwc2_read_hprt0(hsotg);
4339         /* Ensure hcd is disconnected */
4340         dwc2_hcd_disconnect(hsotg, true);
4341         dwc2_hcd_stop(hsotg);
4342         hsotg->lx_state = DWC2_L3;
4343         hcd->state = HC_STATE_HALT;
4344         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4345         spin_unlock_irqrestore(&hsotg->lock, flags);
4346
4347         /* keep balanced supply init/exit by checking HPRT0_PWR */
4348         if (hprt0 & HPRT0_PWR)
4349                 dwc2_vbus_supply_exit(hsotg);
4350
4351         usleep_range(1000, 3000);
4352 }
4353
4354 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4355 {
4356         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4357         unsigned long flags;
4358         int ret = 0;
4359
4360         spin_lock_irqsave(&hsotg->lock, flags);
4361
4362         if (dwc2_is_device_mode(hsotg))
4363                 goto unlock;
4364
4365         if (hsotg->lx_state != DWC2_L0)
4366                 goto unlock;
4367
4368         if (!HCD_HW_ACCESSIBLE(hcd))
4369                 goto unlock;
4370
4371         if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4372                 goto unlock;
4373
4374         if (hsotg->bus_suspended)
4375                 goto skip_power_saving;
4376
4377         if (hsotg->flags.b.port_connect_status == 0)
4378                 goto skip_power_saving;
4379
4380         switch (hsotg->params.power_down) {
4381         case DWC2_POWER_DOWN_PARAM_PARTIAL:
4382                 /* Enter partial_power_down */
4383                 ret = dwc2_enter_partial_power_down(hsotg);
4384                 if (ret)
4385                         dev_err(hsotg->dev,
4386                                 "enter partial_power_down failed\n");
4387                 /* After entering suspend, hardware is not accessible */
4388                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4389                 break;
4390         case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4391                 /* Enter hibernation */
4392                 spin_unlock_irqrestore(&hsotg->lock, flags);
4393                 ret = dwc2_enter_hibernation(hsotg, 1);
4394                 if (ret)
4395                         dev_err(hsotg->dev, "enter hibernation failed\n");
4396                 spin_lock_irqsave(&hsotg->lock, flags);
4397
4398                 /* After entering suspend, hardware is not accessible */
4399                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4400                 break;
4401         case DWC2_POWER_DOWN_PARAM_NONE:
4402                 /*
4403                  * If not hibernation nor partial power down are supported,
4404                  * clock gating is used to save power.
4405                  */
4406                 if (!hsotg->params.no_clock_gating)
4407                         dwc2_host_enter_clock_gating(hsotg);
4408
4409                 /* After entering suspend, hardware is not accessible */
4410                 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4411                 break;
4412         default:
4413                 goto skip_power_saving;
4414         }
4415
4416         spin_unlock_irqrestore(&hsotg->lock, flags);
4417         dwc2_vbus_supply_exit(hsotg);
4418         spin_lock_irqsave(&hsotg->lock, flags);
4419
4420         /* Ask phy to be suspended */
4421         if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4422                 spin_unlock_irqrestore(&hsotg->lock, flags);
4423                 usb_phy_set_suspend(hsotg->uphy, true);
4424                 spin_lock_irqsave(&hsotg->lock, flags);
4425         }
4426
4427 skip_power_saving:
4428         hsotg->lx_state = DWC2_L2;
4429 unlock:
4430         spin_unlock_irqrestore(&hsotg->lock, flags);
4431
4432         return ret;
4433 }
4434
4435 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4436 {
4437         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4438         unsigned long flags;
4439         u32 hprt0;
4440         int ret = 0;
4441
4442         spin_lock_irqsave(&hsotg->lock, flags);
4443
4444         if (dwc2_is_device_mode(hsotg))
4445                 goto unlock;
4446
4447         if (hsotg->lx_state != DWC2_L2)
4448                 goto unlock;
4449
4450         hprt0 = dwc2_read_hprt0(hsotg);
4451
4452         /*
4453          * Added port connection status checking which prevents exiting from
4454          * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial
4455          * Power Down mode.
4456          */
4457         if (hprt0 & HPRT0_CONNSTS) {
4458                 hsotg->lx_state = DWC2_L0;
4459                 goto unlock;
4460         }
4461
4462         switch (hsotg->params.power_down) {
4463         case DWC2_POWER_DOWN_PARAM_PARTIAL:
4464                 ret = dwc2_exit_partial_power_down(hsotg, 0, true);
4465                 if (ret)
4466                         dev_err(hsotg->dev,
4467                                 "exit partial_power_down failed\n");
4468                 /*
4469                  * Set HW accessible bit before powering on the controller
4470                  * since an interrupt may rise.
4471                  */
4472                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4473                 break;
4474         case DWC2_POWER_DOWN_PARAM_HIBERNATION:
4475                 ret = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4476                 if (ret)
4477                         dev_err(hsotg->dev, "exit hibernation failed.\n");
4478
4479                 /*
4480                  * Set HW accessible bit before powering on the controller
4481                  * since an interrupt may rise.
4482                  */
4483                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4484                 break;
4485         case DWC2_POWER_DOWN_PARAM_NONE:
4486                 /*
4487                  * If not hibernation nor partial power down are supported,
4488                  * port resume is done using the clock gating programming flow.
4489                  */
4490                 spin_unlock_irqrestore(&hsotg->lock, flags);
4491                 dwc2_host_exit_clock_gating(hsotg, 0);
4492
4493                 /*
4494                  * Initialize the Core for Host mode, as after system resume
4495                  * the global interrupts are disabled.
4496                  */
4497                 dwc2_core_init(hsotg, false);
4498                 dwc2_enable_global_interrupts(hsotg);
4499                 dwc2_hcd_reinit(hsotg);
4500                 spin_lock_irqsave(&hsotg->lock, flags);
4501
4502                 /*
4503                  * Set HW accessible bit before powering on the controller
4504                  * since an interrupt may rise.
4505                  */
4506                 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4507                 break;
4508         default:
4509                 hsotg->lx_state = DWC2_L0;
4510                 goto unlock;
4511         }
4512
4513         /* Change Root port status, as port status change occurred after resume.*/
4514         hsotg->flags.b.port_suspend_change = 1;
4515
4516         /*
4517          * Enable power if not already done.
4518          * This must not be spinlocked since duration
4519          * of this call is unknown.
4520          */
4521         if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4522                 spin_unlock_irqrestore(&hsotg->lock, flags);
4523                 usb_phy_set_suspend(hsotg->uphy, false);
4524                 spin_lock_irqsave(&hsotg->lock, flags);
4525         }
4526
4527         /* Enable external vbus supply after resuming the port. */
4528         spin_unlock_irqrestore(&hsotg->lock, flags);
4529         dwc2_vbus_supply_init(hsotg);
4530
4531         /* Wait for controller to correctly update D+/D- level */
4532         usleep_range(3000, 5000);
4533         spin_lock_irqsave(&hsotg->lock, flags);
4534
4535         /*
4536          * Clear Port Enable and Port Status changes.
4537          * Enable Port Power.
4538          */
4539         dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4540                         HPRT0_ENACHG, HPRT0);
4541
4542         /* Wait for controller to detect Port Connect */
4543         spin_unlock_irqrestore(&hsotg->lock, flags);
4544         usleep_range(5000, 7000);
4545         spin_lock_irqsave(&hsotg->lock, flags);
4546 unlock:
4547         spin_unlock_irqrestore(&hsotg->lock, flags);
4548
4549         return ret;
4550 }
4551
4552 /* Returns the current frame number */
4553 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4554 {
4555         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4556
4557         return dwc2_hcd_get_frame_number(hsotg);
4558 }
4559
4560 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4561                                char *fn_name)
4562 {
4563 #ifdef VERBOSE_DEBUG
4564         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4565         char *pipetype = NULL;
4566         char *speed = NULL;
4567
4568         dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4569         dev_vdbg(hsotg->dev, "  Device address: %d\n",
4570                  usb_pipedevice(urb->pipe));
4571         dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4572                  usb_pipeendpoint(urb->pipe),
4573                  usb_pipein(urb->pipe) ? "IN" : "OUT");
4574
4575         switch (usb_pipetype(urb->pipe)) {
4576         case PIPE_CONTROL:
4577                 pipetype = "CONTROL";
4578                 break;
4579         case PIPE_BULK:
4580                 pipetype = "BULK";
4581                 break;
4582         case PIPE_INTERRUPT:
4583                 pipetype = "INTERRUPT";
4584                 break;
4585         case PIPE_ISOCHRONOUS:
4586                 pipetype = "ISOCHRONOUS";
4587                 break;
4588         }
4589
4590         dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4591                  usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4592                  "IN" : "OUT");
4593
4594         switch (urb->dev->speed) {
4595         case USB_SPEED_HIGH:
4596                 speed = "HIGH";
4597                 break;
4598         case USB_SPEED_FULL:
4599                 speed = "FULL";
4600                 break;
4601         case USB_SPEED_LOW:
4602                 speed = "LOW";
4603                 break;
4604         default:
4605                 speed = "UNKNOWN";
4606                 break;
4607         }
4608
4609         dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4610         dev_vdbg(hsotg->dev, "  Max packet size: %d (%d mult)\n",
4611                  usb_endpoint_maxp(&urb->ep->desc),
4612                  usb_endpoint_maxp_mult(&urb->ep->desc));
4613
4614         dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4615                  urb->transfer_buffer_length);
4616         dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4617                  urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4618         dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4619                  urb->setup_packet, (unsigned long)urb->setup_dma);
4620         dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4621
4622         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4623                 int i;
4624
4625                 for (i = 0; i < urb->number_of_packets; i++) {
4626                         dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4627                         dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4628                                  urb->iso_frame_desc[i].offset,
4629                                  urb->iso_frame_desc[i].length);
4630                 }
4631         }
4632 #endif
4633 }
4634
4635 /*
4636  * Starts processing a USB transfer request specified by a USB Request Block
4637  * (URB). mem_flags indicates the type of memory allocation to use while
4638  * processing this URB.
4639  */
4640 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4641                                  gfp_t mem_flags)
4642 {
4643         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4644         struct usb_host_endpoint *ep = urb->ep;
4645         struct dwc2_hcd_urb *dwc2_urb;
4646         int i;
4647         int retval;
4648         int alloc_bandwidth = 0;
4649         u8 ep_type = 0;
4650         u32 tflags = 0;
4651         void *buf;
4652         unsigned long flags;
4653         struct dwc2_qh *qh;
4654         bool qh_allocated = false;
4655         struct dwc2_qtd *qtd;
4656         struct dwc2_gregs_backup *gr;
4657
4658         gr = &hsotg->gr_backup;
4659
4660         if (dbg_urb(urb)) {
4661                 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4662                 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4663         }
4664
4665         if (hsotg->hibernated) {
4666                 if (gr->gotgctl & GOTGCTL_CURMODE_HOST)
4667                         retval = dwc2_exit_hibernation(hsotg, 0, 0, 1);
4668                 else
4669                         retval = dwc2_exit_hibernation(hsotg, 0, 0, 0);
4670
4671                 if (retval)
4672                         dev_err(hsotg->dev,
4673                                 "exit hibernation failed.\n");
4674         }
4675
4676         if (hsotg->in_ppd) {
4677                 retval = dwc2_exit_partial_power_down(hsotg, 0, true);
4678                 if (retval)
4679                         dev_err(hsotg->dev,
4680                                 "exit partial_power_down failed\n");
4681         }
4682
4683         if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE &&
4684             hsotg->bus_suspended) {
4685                 if (dwc2_is_device_mode(hsotg))
4686                         dwc2_gadget_exit_clock_gating(hsotg, 0);
4687                 else
4688                         dwc2_host_exit_clock_gating(hsotg, 0);
4689         }
4690
4691         if (!ep)
4692                 return -EINVAL;
4693
4694         if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4695             usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4696                 spin_lock_irqsave(&hsotg->lock, flags);
4697                 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4698                         alloc_bandwidth = 1;
4699                 spin_unlock_irqrestore(&hsotg->lock, flags);
4700         }
4701
4702         switch (usb_pipetype(urb->pipe)) {
4703         case PIPE_CONTROL:
4704                 ep_type = USB_ENDPOINT_XFER_CONTROL;
4705                 break;
4706         case PIPE_ISOCHRONOUS:
4707                 ep_type = USB_ENDPOINT_XFER_ISOC;
4708                 break;
4709         case PIPE_BULK:
4710                 ep_type = USB_ENDPOINT_XFER_BULK;
4711                 break;
4712         case PIPE_INTERRUPT:
4713                 ep_type = USB_ENDPOINT_XFER_INT;
4714                 break;
4715         }
4716
4717         dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4718                                       mem_flags);
4719         if (!dwc2_urb)
4720                 return -ENOMEM;
4721
4722         dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4723                                   usb_pipeendpoint(urb->pipe), ep_type,
4724                                   usb_pipein(urb->pipe),
4725                                   usb_endpoint_maxp(&ep->desc),
4726                                   usb_endpoint_maxp_mult(&ep->desc));
4727
4728         buf = urb->transfer_buffer;
4729
4730         if (hcd_uses_dma(hcd)) {
4731                 if (!buf && (urb->transfer_dma & 3)) {
4732                         dev_err(hsotg->dev,
4733                                 "%s: unaligned transfer with no transfer_buffer",
4734                                 __func__);
4735                         retval = -EINVAL;
4736                         goto fail0;
4737                 }
4738         }
4739
4740         if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4741                 tflags |= URB_GIVEBACK_ASAP;
4742         if (urb->transfer_flags & URB_ZERO_PACKET)
4743                 tflags |= URB_SEND_ZERO_PACKET;
4744
4745         dwc2_urb->priv = urb;
4746         dwc2_urb->buf = buf;
4747         dwc2_urb->dma = urb->transfer_dma;
4748         dwc2_urb->length = urb->transfer_buffer_length;
4749         dwc2_urb->setup_packet = urb->setup_packet;
4750         dwc2_urb->setup_dma = urb->setup_dma;
4751         dwc2_urb->flags = tflags;
4752         dwc2_urb->interval = urb->interval;
4753         dwc2_urb->status = -EINPROGRESS;
4754
4755         for (i = 0; i < urb->number_of_packets; ++i)
4756                 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4757                                                  urb->iso_frame_desc[i].offset,
4758                                                  urb->iso_frame_desc[i].length);
4759
4760         urb->hcpriv = dwc2_urb;
4761         qh = (struct dwc2_qh *)ep->hcpriv;
4762         /* Create QH for the endpoint if it doesn't exist */
4763         if (!qh) {
4764                 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4765                 if (!qh) {
4766                         retval = -ENOMEM;
4767                         goto fail0;
4768                 }
4769                 ep->hcpriv = qh;
4770                 qh_allocated = true;
4771         }
4772
4773         qtd = kzalloc(sizeof(*qtd), mem_flags);
4774         if (!qtd) {
4775                 retval = -ENOMEM;
4776                 goto fail1;
4777         }
4778
4779         spin_lock_irqsave(&hsotg->lock, flags);
4780         retval = usb_hcd_link_urb_to_ep(hcd, urb);
4781         if (retval)
4782                 goto fail2;
4783
4784         retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4785         if (retval)
4786                 goto fail3;
4787
4788         if (alloc_bandwidth) {
4789                 dwc2_allocate_bus_bandwidth(hcd,
4790                                 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4791                                 urb);
4792         }
4793
4794         spin_unlock_irqrestore(&hsotg->lock, flags);
4795
4796         return 0;
4797
4798 fail3:
4799         dwc2_urb->priv = NULL;
4800         usb_hcd_unlink_urb_from_ep(hcd, urb);
4801         if (qh_allocated && qh->channel && qh->channel->qh == qh)
4802                 qh->channel->qh = NULL;
4803 fail2:
4804         spin_unlock_irqrestore(&hsotg->lock, flags);
4805         urb->hcpriv = NULL;
4806         kfree(qtd);
4807 fail1:
4808         if (qh_allocated) {
4809                 struct dwc2_qtd *qtd2, *qtd2_tmp;
4810
4811                 ep->hcpriv = NULL;
4812                 dwc2_hcd_qh_unlink(hsotg, qh);
4813                 /* Free each QTD in the QH's QTD list */
4814                 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4815                                          qtd_list_entry)
4816                         dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4817                 dwc2_hcd_qh_free(hsotg, qh);
4818         }
4819 fail0:
4820         kfree(dwc2_urb);
4821
4822         return retval;
4823 }
4824
4825 /*
4826  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4827  */
4828 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4829                                  int status)
4830 {
4831         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4832         int rc;
4833         unsigned long flags;
4834
4835         dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4836         dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4837
4838         spin_lock_irqsave(&hsotg->lock, flags);
4839
4840         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4841         if (rc)
4842                 goto out;
4843
4844         if (!urb->hcpriv) {
4845                 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4846                 goto out;
4847         }
4848
4849         rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4850
4851         usb_hcd_unlink_urb_from_ep(hcd, urb);
4852
4853         kfree(urb->hcpriv);
4854         urb->hcpriv = NULL;
4855
4856         /* Higher layer software sets URB status */
4857         spin_unlock(&hsotg->lock);
4858         usb_hcd_giveback_urb(hcd, urb, status);
4859         spin_lock(&hsotg->lock);
4860
4861         dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4862         dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4863 out:
4864         spin_unlock_irqrestore(&hsotg->lock, flags);
4865
4866         return rc;
4867 }
4868
4869 /*
4870  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4871  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4872  * must already be dequeued.
4873  */
4874 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4875                                        struct usb_host_endpoint *ep)
4876 {
4877         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4878
4879         dev_dbg(hsotg->dev,
4880                 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4881                 ep->desc.bEndpointAddress, ep->hcpriv);
4882         dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4883 }
4884
4885 /*
4886  * Resets endpoint specific parameter values, in current version used to reset
4887  * the data toggle (as a WA). This function can be called from usb_clear_halt
4888  * routine.
4889  */
4890 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4891                                      struct usb_host_endpoint *ep)
4892 {
4893         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4894         unsigned long flags;
4895
4896         dev_dbg(hsotg->dev,
4897                 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4898                 ep->desc.bEndpointAddress);
4899
4900         spin_lock_irqsave(&hsotg->lock, flags);
4901         dwc2_hcd_endpoint_reset(hsotg, ep);
4902         spin_unlock_irqrestore(&hsotg->lock, flags);
4903 }
4904
4905 /*
4906  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4907  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4908  * interrupt.
4909  *
4910  * This function is called by the USB core when an interrupt occurs
4911  */
4912 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4913 {
4914         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4915
4916         return dwc2_handle_hcd_intr(hsotg);
4917 }
4918
4919 /*
4920  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4921  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4922  * is the status change indicator for the single root port. Returns 1 if either
4923  * change indicator is 1, otherwise returns 0.
4924  */
4925 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4926 {
4927         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4928
4929         buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4930         return buf[0] != 0;
4931 }
4932
4933 /* Handles hub class-specific requests */
4934 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4935                                  u16 windex, char *buf, u16 wlength)
4936 {
4937         int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4938                                           wvalue, windex, buf, wlength);
4939         return retval;
4940 }
4941
4942 /* Handles hub TT buffer clear completions */
4943 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4944                                                struct usb_host_endpoint *ep)
4945 {
4946         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4947         struct dwc2_qh *qh;
4948         unsigned long flags;
4949
4950         qh = ep->hcpriv;
4951         if (!qh)
4952                 return;
4953
4954         spin_lock_irqsave(&hsotg->lock, flags);
4955         qh->tt_buffer_dirty = 0;
4956
4957         if (hsotg->flags.b.port_connect_status)
4958                 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4959
4960         spin_unlock_irqrestore(&hsotg->lock, flags);
4961 }
4962
4963 /*
4964  * HPRT0_SPD_HIGH_SPEED: high speed
4965  * HPRT0_SPD_FULL_SPEED: full speed
4966  */
4967 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4968 {
4969         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4970
4971         if (hsotg->params.speed == speed)
4972                 return;
4973
4974         hsotg->params.speed = speed;
4975         queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4976 }
4977
4978 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4979 {
4980         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4981
4982         if (!hsotg->params.change_speed_quirk)
4983                 return;
4984
4985         /*
4986          * On removal, set speed to default high-speed.
4987          */
4988         if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4989             udev->parent->speed < USB_SPEED_HIGH) {
4990                 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4991                 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4992         }
4993 }
4994
4995 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4996 {
4997         struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4998
4999         if (!hsotg->params.change_speed_quirk)
5000                 return 0;
5001
5002         if (udev->speed == USB_SPEED_HIGH) {
5003                 dev_info(hsotg->dev, "Set speed to high-speed\n");
5004                 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5005         } else if ((udev->speed == USB_SPEED_FULL ||
5006                                 udev->speed == USB_SPEED_LOW)) {
5007                 /*
5008                  * Change speed setting to full-speed if there's
5009                  * a full-speed or low-speed device plugged in.
5010                  */
5011                 dev_info(hsotg->dev, "Set speed to full-speed\n");
5012                 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5013         }
5014
5015         return 0;
5016 }
5017
5018 static struct hc_driver dwc2_hc_driver = {
5019         .description = "dwc2_hsotg",
5020         .product_desc = "DWC OTG Controller",
5021         .hcd_priv_size = sizeof(struct wrapper_priv_data),
5022
5023         .irq = _dwc2_hcd_irq,
5024         .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5025
5026         .start = _dwc2_hcd_start,
5027         .stop = _dwc2_hcd_stop,
5028         .urb_enqueue = _dwc2_hcd_urb_enqueue,
5029         .urb_dequeue = _dwc2_hcd_urb_dequeue,
5030         .endpoint_disable = _dwc2_hcd_endpoint_disable,
5031         .endpoint_reset = _dwc2_hcd_endpoint_reset,
5032         .get_frame_number = _dwc2_hcd_get_frame_number,
5033
5034         .hub_status_data = _dwc2_hcd_hub_status_data,
5035         .hub_control = _dwc2_hcd_hub_control,
5036         .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5037
5038         .bus_suspend = _dwc2_hcd_suspend,
5039         .bus_resume = _dwc2_hcd_resume,
5040
5041         .map_urb_for_dma        = dwc2_map_urb_for_dma,
5042         .unmap_urb_for_dma      = dwc2_unmap_urb_for_dma,
5043 };
5044
5045 /*
5046  * Frees secondary storage associated with the dwc2_hsotg structure contained
5047  * in the struct usb_hcd field
5048  */
5049 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5050 {
5051         u32 ahbcfg;
5052         u32 dctl;
5053         int i;
5054
5055         dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5056
5057         /* Free memory for QH/QTD lists */
5058         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5059         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5060         dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5061         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5062         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5063         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5064         dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5065
5066         /* Free memory for the host channels */
5067         for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5068                 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5069
5070                 if (chan) {
5071                         dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5072                                 i, chan);
5073                         hsotg->hc_ptr_array[i] = NULL;
5074                         kfree(chan);
5075                 }
5076         }
5077
5078         if (hsotg->params.host_dma) {
5079                 if (hsotg->status_buf) {
5080                         dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5081                                           hsotg->status_buf,
5082                                           hsotg->status_buf_dma);
5083                         hsotg->status_buf = NULL;
5084                 }
5085         } else {
5086                 kfree(hsotg->status_buf);
5087                 hsotg->status_buf = NULL;
5088         }
5089
5090         ahbcfg = dwc2_readl(hsotg, GAHBCFG);
5091
5092         /* Disable all interrupts */
5093         ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5094         dwc2_writel(hsotg, ahbcfg, GAHBCFG);
5095         dwc2_writel(hsotg, 0, GINTMSK);
5096
5097         if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5098                 dctl = dwc2_readl(hsotg, DCTL);
5099                 dctl |= DCTL_SFTDISCON;
5100                 dwc2_writel(hsotg, dctl, DCTL);
5101         }
5102
5103         if (hsotg->wq_otg) {
5104                 if (!cancel_work_sync(&hsotg->wf_otg))
5105                         flush_workqueue(hsotg->wq_otg);
5106                 destroy_workqueue(hsotg->wq_otg);
5107         }
5108
5109         cancel_work_sync(&hsotg->phy_reset_work);
5110
5111         del_timer(&hsotg->wkp_timer);
5112 }
5113
5114 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5115 {
5116         /* Turn off all host-specific interrupts */
5117         dwc2_disable_host_interrupts(hsotg);
5118
5119         dwc2_hcd_free(hsotg);
5120 }
5121
5122 /*
5123  * Initializes the HCD. This function allocates memory for and initializes the
5124  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5125  * USB bus with the core and calls the hc_driver->start() function. It returns
5126  * a negative error on failure.
5127  */
5128 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5129 {
5130         struct platform_device *pdev = to_platform_device(hsotg->dev);
5131         struct resource *res;
5132         struct usb_hcd *hcd;
5133         struct dwc2_host_chan *channel;
5134         u32 hcfg;
5135         int i, num_channels;
5136         int retval;
5137
5138         if (usb_disabled())
5139                 return -ENODEV;
5140
5141         dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5142
5143         retval = -ENOMEM;
5144
5145         hcfg = dwc2_readl(hsotg, HCFG);
5146         dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5147
5148 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5149         hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5150                                          sizeof(*hsotg->frame_num_array),
5151                                          GFP_KERNEL);
5152         if (!hsotg->frame_num_array)
5153                 goto error1;
5154         hsotg->last_frame_num_array =
5155                 kcalloc(FRAME_NUM_ARRAY_SIZE,
5156                         sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5157         if (!hsotg->last_frame_num_array)
5158                 goto error1;
5159 #endif
5160         hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5161
5162         /* Check if the bus driver or platform code has setup a dma_mask */
5163         if (hsotg->params.host_dma &&
5164             !hsotg->dev->dma_mask) {
5165                 dev_warn(hsotg->dev,
5166                          "dma_mask not set, disabling DMA\n");
5167                 hsotg->params.host_dma = false;
5168                 hsotg->params.dma_desc_enable = false;
5169         }
5170
5171         /* Set device flags indicating whether the HCD supports DMA */
5172         if (hsotg->params.host_dma) {
5173                 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5174                         dev_warn(hsotg->dev, "can't set DMA mask\n");
5175                 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5176                         dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5177         }
5178
5179         if (hsotg->params.change_speed_quirk) {
5180                 dwc2_hc_driver.free_dev = dwc2_free_dev;
5181                 dwc2_hc_driver.reset_device = dwc2_reset_device;
5182         }
5183
5184         if (hsotg->params.host_dma)
5185                 dwc2_hc_driver.flags |= HCD_DMA;
5186
5187         hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5188         if (!hcd)
5189                 goto error1;
5190
5191         hcd->has_tt = 1;
5192
5193         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5194         hcd->rsrc_start = res->start;
5195         hcd->rsrc_len = resource_size(res);
5196
5197         ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5198         hsotg->priv = hcd;
5199
5200         /*
5201          * Disable the global interrupt until all the interrupt handlers are
5202          * installed
5203          */
5204         dwc2_disable_global_interrupts(hsotg);
5205
5206         /* Initialize the DWC_otg core, and select the Phy type */
5207         retval = dwc2_core_init(hsotg, true);
5208         if (retval)
5209                 goto error2;
5210
5211         /* Create new workqueue and init work */
5212         retval = -ENOMEM;
5213         hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5214         if (!hsotg->wq_otg) {
5215                 dev_err(hsotg->dev, "Failed to create workqueue\n");
5216                 goto error2;
5217         }
5218         INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5219
5220         timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5221
5222         /* Initialize the non-periodic schedule */
5223         INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5224         INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5225         INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5226
5227         /* Initialize the periodic schedule */
5228         INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5229         INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5230         INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5231         INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5232
5233         INIT_LIST_HEAD(&hsotg->split_order);
5234
5235         /*
5236          * Create a host channel descriptor for each host channel implemented
5237          * in the controller. Initialize the channel descriptor array.
5238          */
5239         INIT_LIST_HEAD(&hsotg->free_hc_list);
5240         num_channels = hsotg->params.host_channels;
5241         memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5242
5243         for (i = 0; i < num_channels; i++) {
5244                 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5245                 if (!channel)
5246                         goto error3;
5247                 channel->hc_num = i;
5248                 INIT_LIST_HEAD(&channel->split_order_list_entry);
5249                 hsotg->hc_ptr_array[i] = channel;
5250         }
5251
5252         /* Initialize work */
5253         INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5254         INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5255         INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5256
5257         /*
5258          * Allocate space for storing data on status transactions. Normally no
5259          * data is sent, but this space acts as a bit bucket. This must be
5260          * done after usb_add_hcd since that function allocates the DMA buffer
5261          * pool.
5262          */
5263         if (hsotg->params.host_dma)
5264                 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5265                                         DWC2_HCD_STATUS_BUF_SIZE,
5266                                         &hsotg->status_buf_dma, GFP_KERNEL);
5267         else
5268                 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5269                                           GFP_KERNEL);
5270
5271         if (!hsotg->status_buf)
5272                 goto error3;
5273
5274         /*
5275          * Create kmem caches to handle descriptor buffers in descriptor
5276          * DMA mode.
5277          * Alignment must be set to 512 bytes.
5278          */
5279         if (hsotg->params.dma_desc_enable ||
5280             hsotg->params.dma_desc_fs_enable) {
5281                 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5282                                 sizeof(struct dwc2_dma_desc) *
5283                                 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5284                                 NULL);
5285                 if (!hsotg->desc_gen_cache) {
5286                         dev_err(hsotg->dev,
5287                                 "unable to create dwc2 generic desc cache\n");
5288
5289                         /*
5290                          * Disable descriptor dma mode since it will not be
5291                          * usable.
5292                          */
5293                         hsotg->params.dma_desc_enable = false;
5294                         hsotg->params.dma_desc_fs_enable = false;
5295                 }
5296
5297                 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5298                                 sizeof(struct dwc2_dma_desc) *
5299                                 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5300                 if (!hsotg->desc_hsisoc_cache) {
5301                         dev_err(hsotg->dev,
5302                                 "unable to create dwc2 hs isoc desc cache\n");
5303
5304                         kmem_cache_destroy(hsotg->desc_gen_cache);
5305
5306                         /*
5307                          * Disable descriptor dma mode since it will not be
5308                          * usable.
5309                          */
5310                         hsotg->params.dma_desc_enable = false;
5311                         hsotg->params.dma_desc_fs_enable = false;
5312                 }
5313         }
5314
5315         if (hsotg->params.host_dma) {
5316                 /*
5317                  * Create kmem caches to handle non-aligned buffer
5318                  * in Buffer DMA mode.
5319                  */
5320                 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5321                                                 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5322                                                 SLAB_CACHE_DMA, NULL);
5323                 if (!hsotg->unaligned_cache)
5324                         dev_err(hsotg->dev,
5325                                 "unable to create dwc2 unaligned cache\n");
5326         }
5327
5328         hsotg->otg_port = 1;
5329         hsotg->frame_list = NULL;
5330         hsotg->frame_list_dma = 0;
5331         hsotg->periodic_qh_count = 0;
5332
5333         /* Initiate lx_state to L3 disconnected state */
5334         hsotg->lx_state = DWC2_L3;
5335
5336         hcd->self.otg_port = hsotg->otg_port;
5337
5338         /* Don't support SG list at this point */
5339         hcd->self.sg_tablesize = 0;
5340
5341         if (!IS_ERR_OR_NULL(hsotg->uphy))
5342                 otg_set_host(hsotg->uphy->otg, &hcd->self);
5343
5344         /*
5345          * Finish generic HCD initialization and start the HCD. This function
5346          * allocates the DMA buffer pool, registers the USB bus, requests the
5347          * IRQ line, and calls hcd_start method.
5348          */
5349         retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5350         if (retval < 0)
5351                 goto error4;
5352
5353         device_wakeup_enable(hcd->self.controller);
5354
5355         dwc2_hcd_dump_state(hsotg);
5356
5357         dwc2_enable_global_interrupts(hsotg);
5358
5359         return 0;
5360
5361 error4:
5362         kmem_cache_destroy(hsotg->unaligned_cache);
5363         kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5364         kmem_cache_destroy(hsotg->desc_gen_cache);
5365 error3:
5366         dwc2_hcd_release(hsotg);
5367 error2:
5368         usb_put_hcd(hcd);
5369 error1:
5370
5371 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5372         kfree(hsotg->last_frame_num_array);
5373         kfree(hsotg->frame_num_array);
5374 #endif
5375
5376         dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5377         return retval;
5378 }
5379
5380 /*
5381  * Removes the HCD.
5382  * Frees memory and resources associated with the HCD and deregisters the bus.
5383  */
5384 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5385 {
5386         struct usb_hcd *hcd;
5387
5388         dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5389
5390         hcd = dwc2_hsotg_to_hcd(hsotg);
5391         dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5392
5393         if (!hcd) {
5394                 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5395                         __func__);
5396                 return;
5397         }
5398
5399         if (!IS_ERR_OR_NULL(hsotg->uphy))
5400                 otg_set_host(hsotg->uphy->otg, NULL);
5401
5402         usb_remove_hcd(hcd);
5403         hsotg->priv = NULL;
5404
5405         kmem_cache_destroy(hsotg->unaligned_cache);
5406         kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5407         kmem_cache_destroy(hsotg->desc_gen_cache);
5408
5409         dwc2_hcd_release(hsotg);
5410         usb_put_hcd(hcd);
5411
5412 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5413         kfree(hsotg->last_frame_num_array);
5414         kfree(hsotg->frame_num_array);
5415 #endif
5416 }
5417
5418 /**
5419  * dwc2_backup_host_registers() - Backup controller host registers.
5420  * When suspending usb bus, registers needs to be backuped
5421  * if controller power is disabled once suspended.
5422  *
5423  * @hsotg: Programming view of the DWC_otg controller
5424  */
5425 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5426 {
5427         struct dwc2_hregs_backup *hr;
5428         int i;
5429
5430         dev_dbg(hsotg->dev, "%s\n", __func__);
5431
5432         /* Backup Host regs */
5433         hr = &hsotg->hr_backup;
5434         hr->hcfg = dwc2_readl(hsotg, HCFG);
5435         hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5436         for (i = 0; i < hsotg->params.host_channels; ++i)
5437                 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5438
5439         hr->hprt0 = dwc2_read_hprt0(hsotg);
5440         hr->hfir = dwc2_readl(hsotg, HFIR);
5441         hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5442         hr->valid = true;
5443
5444         return 0;
5445 }
5446
5447 /**
5448  * dwc2_restore_host_registers() - Restore controller host registers.
5449  * When resuming usb bus, device registers needs to be restored
5450  * if controller power were disabled.
5451  *
5452  * @hsotg: Programming view of the DWC_otg controller
5453  */
5454 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5455 {
5456         struct dwc2_hregs_backup *hr;
5457         int i;
5458
5459         dev_dbg(hsotg->dev, "%s\n", __func__);
5460
5461         /* Restore host regs */
5462         hr = &hsotg->hr_backup;
5463         if (!hr->valid) {
5464                 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5465                         __func__);
5466                 return -EINVAL;
5467         }
5468         hr->valid = false;
5469
5470         dwc2_writel(hsotg, hr->hcfg, HCFG);
5471         dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5472
5473         for (i = 0; i < hsotg->params.host_channels; ++i)
5474                 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5475
5476         dwc2_writel(hsotg, hr->hprt0, HPRT0);
5477         dwc2_writel(hsotg, hr->hfir, HFIR);
5478         dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5479         hsotg->frame_number = 0;
5480
5481         return 0;
5482 }
5483
5484 /**
5485  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5486  *
5487  * @hsotg: Programming view of the DWC_otg controller
5488  */
5489 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5490 {
5491         unsigned long flags;
5492         int ret = 0;
5493         u32 hprt0;
5494         u32 pcgcctl;
5495         u32 gusbcfg;
5496         u32 gpwrdn;
5497
5498         dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5499         ret = dwc2_backup_global_registers(hsotg);
5500         if (ret) {
5501                 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5502                         __func__);
5503                 return ret;
5504         }
5505         ret = dwc2_backup_host_registers(hsotg);
5506         if (ret) {
5507                 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5508                         __func__);
5509                 return ret;
5510         }
5511
5512         /* Enter USB Suspend Mode */
5513         hprt0 = dwc2_readl(hsotg, HPRT0);
5514         hprt0 |= HPRT0_SUSP;
5515         hprt0 &= ~HPRT0_ENA;
5516         dwc2_writel(hsotg, hprt0, HPRT0);
5517
5518         /* Wait for the HPRT0.PrtSusp register field to be set */
5519         if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000))
5520                 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5521
5522         /*
5523          * We need to disable interrupts to prevent servicing of any IRQ
5524          * during going to hibernation
5525          */
5526         spin_lock_irqsave(&hsotg->lock, flags);
5527         hsotg->lx_state = DWC2_L2;
5528
5529         gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5530         if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5531                 /* ULPI interface */
5532                 /* Suspend the Phy Clock */
5533                 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5534                 pcgcctl |= PCGCTL_STOPPCLK;
5535                 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5536                 udelay(10);
5537
5538                 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5539                 gpwrdn |= GPWRDN_PMUACTV;
5540                 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5541                 udelay(10);
5542         } else {
5543                 /* UTMI+ Interface */
5544                 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5545                 gpwrdn |= GPWRDN_PMUACTV;
5546                 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5547                 udelay(10);
5548
5549                 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5550                 pcgcctl |= PCGCTL_STOPPCLK;
5551                 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5552                 udelay(10);
5553         }
5554
5555         /* Enable interrupts from wake up logic */
5556         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5557         gpwrdn |= GPWRDN_PMUINTSEL;
5558         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5559         udelay(10);
5560
5561         /* Unmask host mode interrupts in GPWRDN */
5562         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5563         gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5564         gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5565         gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5566         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5567         udelay(10);
5568
5569         /* Enable Power Down Clamp */
5570         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5571         gpwrdn |= GPWRDN_PWRDNCLMP;
5572         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5573         udelay(10);
5574
5575         /* Switch off VDD */
5576         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5577         gpwrdn |= GPWRDN_PWRDNSWTCH;
5578         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5579
5580         hsotg->hibernated = 1;
5581         hsotg->bus_suspended = 1;
5582         dev_dbg(hsotg->dev, "Host hibernation completed\n");
5583         spin_unlock_irqrestore(&hsotg->lock, flags);
5584         return ret;
5585 }
5586
5587 /*
5588  * dwc2_host_exit_hibernation()
5589  *
5590  * @hsotg: Programming view of the DWC_otg controller
5591  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5592  * @param reset: indicates whether resume is initiated by Reset.
5593  *
5594  * Return: non-zero if failed to enter to hibernation.
5595  *
5596  * This function is for exiting from Host mode hibernation by
5597  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5598  */
5599 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5600                                int reset)
5601 {
5602         u32 gpwrdn;
5603         u32 hprt0;
5604         int ret = 0;
5605         struct dwc2_gregs_backup *gr;
5606         struct dwc2_hregs_backup *hr;
5607
5608         gr = &hsotg->gr_backup;
5609         hr = &hsotg->hr_backup;
5610
5611         dev_dbg(hsotg->dev,
5612                 "%s: called with rem_wakeup = %d reset = %d\n",
5613                 __func__, rem_wakeup, reset);
5614
5615         dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5616         hsotg->hibernated = 0;
5617
5618         /*
5619          * This step is not described in functional spec but if not wait for
5620          * this delay, mismatch interrupts occurred because just after restore
5621          * core is in Device mode(gintsts.curmode == 0)
5622          */
5623         mdelay(100);
5624
5625         /* Clear all pending interupts */
5626         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5627
5628         /* De-assert Restore */
5629         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5630         gpwrdn &= ~GPWRDN_RESTORE;
5631         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5632         udelay(10);
5633
5634         /* Restore GUSBCFG, HCFG */
5635         dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5636         dwc2_writel(hsotg, hr->hcfg, HCFG);
5637
5638         /* De-assert Wakeup Logic */
5639         gpwrdn = dwc2_readl(hsotg, GPWRDN);
5640         gpwrdn &= ~GPWRDN_PMUACTV;
5641         dwc2_writel(hsotg, gpwrdn, GPWRDN);
5642         udelay(10);
5643
5644         hprt0 = hr->hprt0;
5645         hprt0 |= HPRT0_PWR;
5646         hprt0 &= ~HPRT0_ENA;
5647         hprt0 &= ~HPRT0_SUSP;
5648         dwc2_writel(hsotg, hprt0, HPRT0);
5649
5650         hprt0 = hr->hprt0;
5651         hprt0 |= HPRT0_PWR;
5652         hprt0 &= ~HPRT0_ENA;
5653         hprt0 &= ~HPRT0_SUSP;
5654
5655         if (reset) {
5656                 hprt0 |= HPRT0_RST;
5657                 dwc2_writel(hsotg, hprt0, HPRT0);
5658
5659                 /* Wait for Resume time and then program HPRT again */
5660                 mdelay(60);
5661                 hprt0 &= ~HPRT0_RST;
5662                 dwc2_writel(hsotg, hprt0, HPRT0);
5663         } else {
5664                 hprt0 |= HPRT0_RES;
5665                 dwc2_writel(hsotg, hprt0, HPRT0);
5666
5667                 /* Wait for Resume time and then program HPRT again */
5668                 mdelay(100);
5669                 hprt0 &= ~HPRT0_RES;
5670                 dwc2_writel(hsotg, hprt0, HPRT0);
5671         }
5672         /* Clear all interrupt status */
5673         hprt0 = dwc2_readl(hsotg, HPRT0);
5674         hprt0 |= HPRT0_CONNDET;
5675         hprt0 |= HPRT0_ENACHG;
5676         hprt0 &= ~HPRT0_ENA;
5677         dwc2_writel(hsotg, hprt0, HPRT0);
5678
5679         hprt0 = dwc2_readl(hsotg, HPRT0);
5680
5681         /* Clear all pending interupts */
5682         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5683
5684         /* Restore global registers */
5685         ret = dwc2_restore_global_registers(hsotg);
5686         if (ret) {
5687                 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5688                         __func__);
5689                 return ret;
5690         }
5691
5692         /* Restore host registers */
5693         ret = dwc2_restore_host_registers(hsotg);
5694         if (ret) {
5695                 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5696                         __func__);
5697                 return ret;
5698         }
5699
5700         if (rem_wakeup) {
5701                 dwc2_hcd_rem_wakeup(hsotg);
5702                 /*
5703                  * Change "port_connect_status_change" flag to re-enumerate,
5704                  * because after exit from hibernation port connection status
5705                  * is not detected.
5706                  */
5707                 hsotg->flags.b.port_connect_status_change = 1;
5708         }
5709
5710         hsotg->hibernated = 0;
5711         hsotg->bus_suspended = 0;
5712         hsotg->lx_state = DWC2_L0;
5713         dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5714         return ret;
5715 }
5716
5717 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5718 {
5719         struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5720
5721         /* If the controller isn't allowed to wakeup then we can power off. */
5722         if (!device_may_wakeup(dwc2->dev))
5723                 return true;
5724
5725         /*
5726          * We don't want to power off the PHY if something under the
5727          * root hub has wakeup enabled.
5728          */
5729         if (usb_wakeup_enabled_descendants(root_hub))
5730                 return false;
5731
5732         /* No reason to keep the PHY powered, so allow poweroff */
5733         return true;
5734 }
5735
5736 /**
5737  * dwc2_host_enter_partial_power_down() - Put controller in partial
5738  * power down.
5739  *
5740  * @hsotg: Programming view of the DWC_otg controller
5741  *
5742  * Return: non-zero if failed to enter host partial power down.
5743  *
5744  * This function is for entering Host mode partial power down.
5745  */
5746 int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5747 {
5748         u32 pcgcctl;
5749         u32 hprt0;
5750         int ret = 0;
5751
5752         dev_dbg(hsotg->dev, "Entering host partial power down started.\n");
5753
5754         /* Put this port in suspend mode. */
5755         hprt0 = dwc2_read_hprt0(hsotg);
5756         hprt0 |= HPRT0_SUSP;
5757         dwc2_writel(hsotg, hprt0, HPRT0);
5758         udelay(5);
5759
5760         /* Wait for the HPRT0.PrtSusp register field to be set */
5761         if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5762                 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5763
5764         /* Backup all registers */
5765         ret = dwc2_backup_global_registers(hsotg);
5766         if (ret) {
5767                 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5768                         __func__);
5769                 return ret;
5770         }
5771
5772         ret = dwc2_backup_host_registers(hsotg);
5773         if (ret) {
5774                 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5775                         __func__);
5776                 return ret;
5777         }
5778
5779         /*
5780          * Clear any pending interrupts since dwc2 will not be able to
5781          * clear them after entering partial_power_down.
5782          */
5783         dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5784
5785         /* Put the controller in low power state */
5786         pcgcctl = dwc2_readl(hsotg, PCGCTL);
5787
5788         pcgcctl |= PCGCTL_PWRCLMP;
5789         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5790         udelay(5);
5791
5792         pcgcctl |= PCGCTL_RSTPDWNMODULE;
5793         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5794         udelay(5);
5795
5796         pcgcctl |= PCGCTL_STOPPCLK;
5797         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5798
5799         /* Set in_ppd flag to 1 as here core enters suspend. */
5800         hsotg->in_ppd = 1;
5801         hsotg->lx_state = DWC2_L2;
5802         hsotg->bus_suspended = true;
5803
5804         dev_dbg(hsotg->dev, "Entering host partial power down completed.\n");
5805
5806         return ret;
5807 }
5808
5809 /*
5810  * dwc2_host_exit_partial_power_down() - Exit controller from host partial
5811  * power down.
5812  *
5813  * @hsotg: Programming view of the DWC_otg controller
5814  * @rem_wakeup: indicates whether resume is initiated by Reset.
5815  * @restore: indicates whether need to restore the registers or not.
5816  *
5817  * Return: non-zero if failed to exit host partial power down.
5818  *
5819  * This function is for exiting from Host mode partial power down.
5820  */
5821 int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5822                                       int rem_wakeup, bool restore)
5823 {
5824         u32 pcgcctl;
5825         int ret = 0;
5826         u32 hprt0;
5827
5828         dev_dbg(hsotg->dev, "Exiting host partial power down started.\n");
5829
5830         pcgcctl = dwc2_readl(hsotg, PCGCTL);
5831         pcgcctl &= ~PCGCTL_STOPPCLK;
5832         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5833         udelay(5);
5834
5835         pcgcctl = dwc2_readl(hsotg, PCGCTL);
5836         pcgcctl &= ~PCGCTL_PWRCLMP;
5837         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5838         udelay(5);
5839
5840         pcgcctl = dwc2_readl(hsotg, PCGCTL);
5841         pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5842         dwc2_writel(hsotg, pcgcctl, PCGCTL);
5843
5844         udelay(100);
5845         if (restore) {
5846                 ret = dwc2_restore_global_registers(hsotg);
5847                 if (ret) {
5848                         dev_err(hsotg->dev, "%s: failed to restore registers\n",
5849                                 __func__);
5850                         return ret;
5851                 }
5852
5853                 ret = dwc2_restore_host_registers(hsotg);
5854                 if (ret) {
5855                         dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5856                                 __func__);
5857                         return ret;
5858                 }
5859         }
5860
5861         /* Drive resume signaling and exit suspend mode on the port. */
5862         hprt0 = dwc2_read_hprt0(hsotg);
5863         hprt0 |= HPRT0_RES;
5864         hprt0 &= ~HPRT0_SUSP;
5865         dwc2_writel(hsotg, hprt0, HPRT0);
5866         udelay(5);
5867
5868         if (!rem_wakeup) {
5869                 /* Stop driveing resume signaling on the port. */
5870                 hprt0 = dwc2_read_hprt0(hsotg);
5871                 hprt0 &= ~HPRT0_RES;
5872                 dwc2_writel(hsotg, hprt0, HPRT0);
5873
5874                 hsotg->bus_suspended = false;
5875         } else {
5876                 /* Turn on the port power bit. */
5877                 hprt0 = dwc2_read_hprt0(hsotg);
5878                 hprt0 |= HPRT0_PWR;
5879                 dwc2_writel(hsotg, hprt0, HPRT0);
5880
5881                 /* Connect hcd. */
5882                 dwc2_hcd_connect(hsotg);
5883
5884                 mod_timer(&hsotg->wkp_timer,
5885                           jiffies + msecs_to_jiffies(71));
5886         }
5887
5888         /* Set lx_state to and in_ppd to 0 as here core exits from suspend. */
5889         hsotg->in_ppd = 0;
5890         hsotg->lx_state = DWC2_L0;
5891
5892         dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n");
5893         return ret;
5894 }
5895
5896 /**
5897  * dwc2_host_enter_clock_gating() - Put controller in clock gating.
5898  *
5899  * @hsotg: Programming view of the DWC_otg controller
5900  *
5901  * This function is for entering Host mode clock gating.
5902  */
5903 void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg)
5904 {
5905         u32 hprt0;
5906         u32 pcgctl;
5907
5908         dev_dbg(hsotg->dev, "Entering host clock gating.\n");
5909
5910         /* Put this port in suspend mode. */
5911         hprt0 = dwc2_read_hprt0(hsotg);
5912         hprt0 |= HPRT0_SUSP;
5913         dwc2_writel(hsotg, hprt0, HPRT0);
5914
5915         /* Set the Phy Clock bit as suspend is received. */
5916         pcgctl = dwc2_readl(hsotg, PCGCTL);
5917         pcgctl |= PCGCTL_STOPPCLK;
5918         dwc2_writel(hsotg, pcgctl, PCGCTL);
5919         udelay(5);
5920
5921         /* Set the Gate hclk as suspend is received. */
5922         pcgctl = dwc2_readl(hsotg, PCGCTL);
5923         pcgctl |= PCGCTL_GATEHCLK;
5924         dwc2_writel(hsotg, pcgctl, PCGCTL);
5925         udelay(5);
5926
5927         hsotg->bus_suspended = true;
5928         hsotg->lx_state = DWC2_L2;
5929 }
5930
5931 /**
5932  * dwc2_host_exit_clock_gating() - Exit controller from clock gating.
5933  *
5934  * @hsotg: Programming view of the DWC_otg controller
5935  * @rem_wakeup: indicates whether resume is initiated by remote wakeup
5936  *
5937  * This function is for exiting Host mode clock gating.
5938  */
5939 void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5940 {
5941         u32 hprt0;
5942         u32 pcgctl;
5943
5944         dev_dbg(hsotg->dev, "Exiting host clock gating.\n");
5945
5946         /* Clear the Gate hclk. */
5947         pcgctl = dwc2_readl(hsotg, PCGCTL);
5948         pcgctl &= ~PCGCTL_GATEHCLK;
5949         dwc2_writel(hsotg, pcgctl, PCGCTL);
5950         udelay(5);
5951
5952         /* Phy Clock bit. */
5953         pcgctl = dwc2_readl(hsotg, PCGCTL);
5954         pcgctl &= ~PCGCTL_STOPPCLK;
5955         dwc2_writel(hsotg, pcgctl, PCGCTL);
5956         udelay(5);
5957
5958         /* Drive resume signaling and exit suspend mode on the port. */
5959         hprt0 = dwc2_read_hprt0(hsotg);
5960         hprt0 |= HPRT0_RES;
5961         hprt0 &= ~HPRT0_SUSP;
5962         dwc2_writel(hsotg, hprt0, HPRT0);
5963         udelay(5);
5964
5965         if (!rem_wakeup) {
5966                 /* In case of port resume need to wait for 40 ms */
5967                 msleep(USB_RESUME_TIMEOUT);
5968
5969                 /* Stop driveing resume signaling on the port. */
5970                 hprt0 = dwc2_read_hprt0(hsotg);
5971                 hprt0 &= ~HPRT0_RES;
5972                 dwc2_writel(hsotg, hprt0, HPRT0);
5973
5974                 hsotg->bus_suspended = false;
5975                 hsotg->lx_state = DWC2_L0;
5976         } else {
5977                 mod_timer(&hsotg->wkp_timer,
5978                           jiffies + msecs_to_jiffies(71));
5979         }
5980 }