1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
3 * hcd.c - DesignWare HS OTG Controller host-mode routines
5 * Copyright (C) 2004-2013 Synopsys, Inc.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions, and the following disclaimer,
12 * without modification.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. The names of the above-listed copyright holders may not be used
17 * to endorse or promote products derived from this software without
18 * specific prior written permission.
20 * ALTERNATIVELY, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") as published by the Free Software
22 * Foundation; either version 2 of the License, or (at your option) any
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 * This file contains the core HCD code, and implements the Linux hc_driver
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
62 * =========================================================================
63 * Host Core Layer Functions
64 * =========================================================================
68 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69 * used in both device and host modes
71 * @hsotg: Programming view of the DWC_otg controller
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
77 /* Clear any pending OTG Interrupts */
78 dwc2_writel(hsotg, 0xffffffff, GOTGINT);
80 /* Clear any pending interrupts */
81 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
83 /* Enable the interrupts in the GINTMSK */
84 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
86 if (!hsotg->params.host_dma)
87 intmsk |= GINTSTS_RXFLVL;
88 if (!hsotg->params.external_id_pin_ctl)
89 intmsk |= GINTSTS_CONIDSTSCHNG;
91 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
94 if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95 intmsk |= GINTSTS_LPMTRANRCVD;
97 dwc2_writel(hsotg, intmsk, GINTMSK);
100 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
102 u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
104 switch (hsotg->hw_params.arch) {
105 case GHWCFG2_EXT_DMA_ARCH:
106 dev_err(hsotg->dev, "External DMA Mode not supported\n");
109 case GHWCFG2_INT_DMA_ARCH:
110 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
111 if (hsotg->params.ahbcfg != -1) {
112 ahbcfg &= GAHBCFG_CTRL_MASK;
113 ahbcfg |= hsotg->params.ahbcfg &
118 case GHWCFG2_SLAVE_ONLY_ARCH:
120 dev_dbg(hsotg->dev, "Slave Only Mode\n");
124 if (hsotg->params.host_dma)
125 ahbcfg |= GAHBCFG_DMA_EN;
127 hsotg->params.dma_desc_enable = false;
129 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
134 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
138 usbcfg = dwc2_readl(hsotg, GUSBCFG);
139 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
141 switch (hsotg->hw_params.op_mode) {
142 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
143 if (hsotg->params.otg_cap ==
144 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
145 usbcfg |= GUSBCFG_HNPCAP;
146 if (hsotg->params.otg_cap !=
147 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
148 usbcfg |= GUSBCFG_SRPCAP;
151 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
152 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
153 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
154 if (hsotg->params.otg_cap !=
155 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
156 usbcfg |= GUSBCFG_SRPCAP;
159 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
160 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
161 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
166 dwc2_writel(hsotg, usbcfg, GUSBCFG);
169 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
171 if (hsotg->vbus_supply)
172 return regulator_enable(hsotg->vbus_supply);
177 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
179 if (hsotg->vbus_supply)
180 return regulator_disable(hsotg->vbus_supply);
186 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
188 * @hsotg: Programming view of DWC_otg controller
190 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
194 dev_dbg(hsotg->dev, "%s()\n", __func__);
196 /* Disable all interrupts */
197 dwc2_writel(hsotg, 0, GINTMSK);
198 dwc2_writel(hsotg, 0, HAINTMSK);
200 /* Enable the common interrupts */
201 dwc2_enable_common_interrupts(hsotg);
203 /* Enable host mode interrupts without disturbing common interrupts */
204 intmsk = dwc2_readl(hsotg, GINTMSK);
205 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
206 dwc2_writel(hsotg, intmsk, GINTMSK);
210 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
212 * @hsotg: Programming view of DWC_otg controller
214 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
216 u32 intmsk = dwc2_readl(hsotg, GINTMSK);
218 /* Disable host mode interrupts without disturbing common interrupts */
219 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
220 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
221 dwc2_writel(hsotg, intmsk, GINTMSK);
225 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
226 * For system that have a total fifo depth that is smaller than the default
229 * @hsotg: Programming view of DWC_otg controller
231 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
233 struct dwc2_core_params *params = &hsotg->params;
234 struct dwc2_hw_params *hw = &hsotg->hw_params;
235 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
237 total_fifo_size = hw->total_fifo_size;
238 rxfsiz = params->host_rx_fifo_size;
239 nptxfsiz = params->host_nperio_tx_fifo_size;
240 ptxfsiz = params->host_perio_tx_fifo_size;
243 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
244 * allocation with support for high bandwidth endpoints. Synopsys
245 * defines MPS(Max Packet size) for a periodic EP=1024, and for
246 * non-periodic as 512.
248 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
250 * For Buffer DMA mode/Scatter Gather DMA mode
251 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
252 * with n = number of host channel.
253 * 2 * ((1024/4) + 2) = 516
255 rxfsiz = 516 + hw->host_channels;
258 * min non-periodic tx fifo depth
259 * 2 * (largest non-periodic USB packet used / 4)
265 * min periodic tx fifo depth
266 * (largest packet size*MC)/4
271 params->host_rx_fifo_size = rxfsiz;
272 params->host_nperio_tx_fifo_size = nptxfsiz;
273 params->host_perio_tx_fifo_size = ptxfsiz;
277 * If the summation of RX, NPTX and PTX fifo sizes is still
278 * bigger than the total_fifo_size, then we have a problem.
280 * We won't be able to allocate as many endpoints. Right now,
281 * we're just printing an error message, but ideally this FIFO
282 * allocation algorithm would be improved in the future.
284 * FIXME improve this FIFO allocation algorithm.
286 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
287 dev_err(hsotg->dev, "invalid fifo sizes\n");
290 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
292 struct dwc2_core_params *params = &hsotg->params;
293 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
295 if (!params->enable_dynamic_fifo)
298 dwc2_calculate_dynamic_fifo(hsotg);
301 grxfsiz = dwc2_readl(hsotg, GRXFSIZ);
302 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
303 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
304 grxfsiz |= params->host_rx_fifo_size <<
305 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
306 dwc2_writel(hsotg, grxfsiz, GRXFSIZ);
307 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
308 dwc2_readl(hsotg, GRXFSIZ));
310 /* Non-periodic Tx FIFO */
311 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
312 dwc2_readl(hsotg, GNPTXFSIZ));
313 nptxfsiz = params->host_nperio_tx_fifo_size <<
314 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
315 nptxfsiz |= params->host_rx_fifo_size <<
316 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
317 dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ);
318 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
319 dwc2_readl(hsotg, GNPTXFSIZ));
321 /* Periodic Tx FIFO */
322 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
323 dwc2_readl(hsotg, HPTXFSIZ));
324 hptxfsiz = params->host_perio_tx_fifo_size <<
325 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
326 hptxfsiz |= (params->host_rx_fifo_size +
327 params->host_nperio_tx_fifo_size) <<
328 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
329 dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ);
330 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
331 dwc2_readl(hsotg, HPTXFSIZ));
333 if (hsotg->params.en_multiple_tx_fifo &&
334 hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
336 * This feature was implemented in 2.91a version
337 * Global DFIFOCFG calculation for Host mode -
338 * include RxFIFO, NPTXFIFO and HPTXFIFO
340 dfifocfg = dwc2_readl(hsotg, GDFIFOCFG);
341 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
342 dfifocfg |= (params->host_rx_fifo_size +
343 params->host_nperio_tx_fifo_size +
344 params->host_perio_tx_fifo_size) <<
345 GDFIFOCFG_EPINFOBASE_SHIFT &
346 GDFIFOCFG_EPINFOBASE_MASK;
347 dwc2_writel(hsotg, dfifocfg, GDFIFOCFG);
352 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
353 * the HFIR register according to PHY type and speed
355 * @hsotg: Programming view of DWC_otg controller
357 * NOTE: The caller can modify the value of the HFIR register only after the
358 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
361 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
365 int clock = 60; /* default value */
367 usbcfg = dwc2_readl(hsotg, GUSBCFG);
368 hprt0 = dwc2_readl(hsotg, HPRT0);
370 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
371 !(usbcfg & GUSBCFG_PHYIF16))
373 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
374 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
376 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
377 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
379 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
380 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
382 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
383 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
385 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
386 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
388 if ((usbcfg & GUSBCFG_PHYSEL) &&
389 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
392 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
393 /* High speed case */
394 return 125 * clock - 1;
397 return 1000 * clock - 1;
401 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
404 * @hsotg: Programming view of DWC_otg controller
405 * @dest: Destination buffer for the packet
406 * @bytes: Number of bytes to copy to the destination
408 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
410 u32 *data_buf = (u32 *)dest;
411 int word_count = (bytes + 3) / 4;
415 * Todo: Account for the case where dest is not dword aligned. This
416 * requires reading data from the FIFO into a u32 temp buffer, then
417 * moving it into the data buffer.
420 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
422 for (i = 0; i < word_count; i++, data_buf++)
423 *data_buf = dwc2_readl(hsotg, HCFIFO(0));
427 * dwc2_dump_channel_info() - Prints the state of a host channel
429 * @hsotg: Programming view of DWC_otg controller
430 * @chan: Pointer to the channel to dump
432 * Must be called with interrupt disabled and spinlock held
434 * NOTE: This function will be removed once the peripheral controller code
435 * is integrated and the driver is stable
437 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
438 struct dwc2_host_chan *chan)
441 int num_channels = hsotg->params.host_channels;
452 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
453 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
454 hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num));
455 hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num));
457 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
458 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
460 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
462 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
463 chan->dev_addr, chan->ep_num, chan->ep_is_in);
464 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
465 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
466 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
467 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
468 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
469 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
470 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
471 (unsigned long)chan->xfer_dma);
472 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
473 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
474 dev_dbg(hsotg->dev, " NP inactive sched:\n");
475 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
477 dev_dbg(hsotg->dev, " %p\n", qh);
478 dev_dbg(hsotg->dev, " NP waiting sched:\n");
479 list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
481 dev_dbg(hsotg->dev, " %p\n", qh);
482 dev_dbg(hsotg->dev, " NP active sched:\n");
483 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
485 dev_dbg(hsotg->dev, " %p\n", qh);
486 dev_dbg(hsotg->dev, " Channels:\n");
487 for (i = 0; i < num_channels; i++) {
488 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
490 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
492 #endif /* VERBOSE_DEBUG */
495 static int _dwc2_hcd_start(struct usb_hcd *hcd);
497 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
499 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
501 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
502 _dwc2_hcd_start(hcd);
505 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
507 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
509 hcd->self.is_b_host = 0;
512 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
513 int *hub_addr, int *hub_port)
515 struct urb *urb = context;
518 *hub_addr = urb->dev->tt->hub->devnum;
521 *hub_port = urb->dev->ttport;
525 * =========================================================================
526 * Low Level Host Channel Access Functions
527 * =========================================================================
530 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
531 struct dwc2_host_chan *chan)
533 u32 hcintmsk = HCINTMSK_CHHLTD;
535 switch (chan->ep_type) {
536 case USB_ENDPOINT_XFER_CONTROL:
537 case USB_ENDPOINT_XFER_BULK:
538 dev_vdbg(hsotg->dev, "control/bulk\n");
539 hcintmsk |= HCINTMSK_XFERCOMPL;
540 hcintmsk |= HCINTMSK_STALL;
541 hcintmsk |= HCINTMSK_XACTERR;
542 hcintmsk |= HCINTMSK_DATATGLERR;
543 if (chan->ep_is_in) {
544 hcintmsk |= HCINTMSK_BBLERR;
546 hcintmsk |= HCINTMSK_NAK;
547 hcintmsk |= HCINTMSK_NYET;
549 hcintmsk |= HCINTMSK_ACK;
552 if (chan->do_split) {
553 hcintmsk |= HCINTMSK_NAK;
554 if (chan->complete_split)
555 hcintmsk |= HCINTMSK_NYET;
557 hcintmsk |= HCINTMSK_ACK;
560 if (chan->error_state)
561 hcintmsk |= HCINTMSK_ACK;
564 case USB_ENDPOINT_XFER_INT:
566 dev_vdbg(hsotg->dev, "intr\n");
567 hcintmsk |= HCINTMSK_XFERCOMPL;
568 hcintmsk |= HCINTMSK_NAK;
569 hcintmsk |= HCINTMSK_STALL;
570 hcintmsk |= HCINTMSK_XACTERR;
571 hcintmsk |= HCINTMSK_DATATGLERR;
572 hcintmsk |= HCINTMSK_FRMOVRUN;
575 hcintmsk |= HCINTMSK_BBLERR;
576 if (chan->error_state)
577 hcintmsk |= HCINTMSK_ACK;
578 if (chan->do_split) {
579 if (chan->complete_split)
580 hcintmsk |= HCINTMSK_NYET;
582 hcintmsk |= HCINTMSK_ACK;
586 case USB_ENDPOINT_XFER_ISOC:
588 dev_vdbg(hsotg->dev, "isoc\n");
589 hcintmsk |= HCINTMSK_XFERCOMPL;
590 hcintmsk |= HCINTMSK_FRMOVRUN;
591 hcintmsk |= HCINTMSK_ACK;
593 if (chan->ep_is_in) {
594 hcintmsk |= HCINTMSK_XACTERR;
595 hcintmsk |= HCINTMSK_BBLERR;
599 dev_err(hsotg->dev, "## Unknown EP type ##\n");
603 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
605 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
608 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
609 struct dwc2_host_chan *chan)
611 u32 hcintmsk = HCINTMSK_CHHLTD;
614 * For Descriptor DMA mode core halts the channel on AHB error.
615 * Interrupt is not required.
617 if (!hsotg->params.dma_desc_enable) {
619 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
620 hcintmsk |= HCINTMSK_AHBERR;
623 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
624 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
625 hcintmsk |= HCINTMSK_XFERCOMPL;
628 if (chan->error_state && !chan->do_split &&
629 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
631 dev_vdbg(hsotg->dev, "setting ACK\n");
632 hcintmsk |= HCINTMSK_ACK;
633 if (chan->ep_is_in) {
634 hcintmsk |= HCINTMSK_DATATGLERR;
635 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
636 hcintmsk |= HCINTMSK_NAK;
640 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
642 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
645 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
646 struct dwc2_host_chan *chan)
650 if (hsotg->params.host_dma) {
652 dev_vdbg(hsotg->dev, "DMA enabled\n");
653 dwc2_hc_enable_dma_ints(hsotg, chan);
656 dev_vdbg(hsotg->dev, "DMA disabled\n");
657 dwc2_hc_enable_slave_ints(hsotg, chan);
660 /* Enable the top level host channel interrupt */
661 intmsk = dwc2_readl(hsotg, HAINTMSK);
662 intmsk |= 1 << chan->hc_num;
663 dwc2_writel(hsotg, intmsk, HAINTMSK);
665 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
667 /* Make sure host channel interrupts are enabled */
668 intmsk = dwc2_readl(hsotg, GINTMSK);
669 intmsk |= GINTSTS_HCHINT;
670 dwc2_writel(hsotg, intmsk, GINTMSK);
672 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
676 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
677 * a specific endpoint
679 * @hsotg: Programming view of DWC_otg controller
680 * @chan: Information needed to initialize the host channel
682 * The HCCHARn register is set up with the characteristics specified in chan.
683 * Host channel interrupts that may need to be serviced while this transfer is
684 * in progress are enabled.
686 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
688 u8 hc_num = chan->hc_num;
694 dev_vdbg(hsotg->dev, "%s()\n", __func__);
696 /* Clear old interrupt conditions for this host channel */
697 hcintmsk = 0xffffffff;
698 hcintmsk &= ~HCINTMSK_RESERVED14_31;
699 dwc2_writel(hsotg, hcintmsk, HCINT(hc_num));
701 /* Enable channel interrupts required for this transfer */
702 dwc2_hc_enable_ints(hsotg, chan);
705 * Program the HCCHARn register with the endpoint characteristics for
706 * the current transfer
708 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
709 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
711 hcchar |= HCCHAR_EPDIR;
712 if (chan->speed == USB_SPEED_LOW)
713 hcchar |= HCCHAR_LSPDDEV;
714 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
715 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
716 dwc2_writel(hsotg, hcchar, HCCHAR(hc_num));
718 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
721 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
723 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
725 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
727 dev_vdbg(hsotg->dev, " Is In: %d\n",
729 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
730 chan->speed == USB_SPEED_LOW);
731 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
733 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
737 /* Program the HCSPLT register for SPLITs */
738 if (chan->do_split) {
741 "Programming HC %d with split --> %s\n",
743 chan->complete_split ? "CSPLIT" : "SSPLIT");
744 if (chan->complete_split)
745 hcsplt |= HCSPLT_COMPSPLT;
746 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
748 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
750 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
753 dev_vdbg(hsotg->dev, " comp split %d\n",
754 chan->complete_split);
755 dev_vdbg(hsotg->dev, " xact pos %d\n",
757 dev_vdbg(hsotg->dev, " hub addr %d\n",
759 dev_vdbg(hsotg->dev, " hub port %d\n",
761 dev_vdbg(hsotg->dev, " is_in %d\n",
763 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
765 dev_vdbg(hsotg->dev, " xferlen %d\n",
770 dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num));
774 * dwc2_hc_halt() - Attempts to halt a host channel
776 * @hsotg: Controller register interface
777 * @chan: Host channel to halt
778 * @halt_status: Reason for halting the channel
780 * This function should only be called in Slave mode or to abort a transfer in
781 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
782 * controller halts the channel when the transfer is complete or a condition
783 * occurs that requires application intervention.
785 * In slave mode, checks for a free request queue entry, then sets the Channel
786 * Enable and Channel Disable bits of the Host Channel Characteristics
787 * register of the specified channel to intiate the halt. If there is no free
788 * request queue entry, sets only the Channel Disable bit of the HCCHARn
789 * register to flush requests for this channel. In the latter case, sets a
790 * flag to indicate that the host channel needs to be halted when a request
791 * queue slot is open.
793 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
794 * HCCHARn register. The controller ensures there is space in the request
795 * queue before submitting the halt request.
797 * Some time may elapse before the core flushes any posted requests for this
798 * host channel and halts. The Channel Halted interrupt handler completes the
799 * deactivation of the host channel.
801 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
802 enum dwc2_halt_status halt_status)
804 u32 nptxsts, hptxsts, hcchar;
807 dev_vdbg(hsotg->dev, "%s()\n", __func__);
810 * In buffer DMA or external DMA mode channel can't be halted
811 * for non-split periodic channels. At the end of the next
812 * uframe/frame (in the worst case), the core generates a channel
813 * halted and disables the channel automatically.
815 if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
816 hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
817 if (!chan->do_split &&
818 (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
819 chan->ep_type == USB_ENDPOINT_XFER_INT)) {
820 dev_err(hsotg->dev, "%s() Channel can't be halted\n",
826 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
827 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
829 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
830 halt_status == DWC2_HC_XFER_AHB_ERR) {
832 * Disable all channel interrupts except Ch Halted. The QTD
833 * and QH state associated with this transfer has been cleared
834 * (in the case of URB_DEQUEUE), so the channel needs to be
835 * shut down carefully to prevent crashes.
837 u32 hcintmsk = HCINTMSK_CHHLTD;
839 dev_vdbg(hsotg->dev, "dequeue/error\n");
840 dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num));
843 * Make sure no other interrupts besides halt are currently
844 * pending. Handling another interrupt could cause a crash due
845 * to the QTD and QH state.
847 dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num));
850 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
851 * even if the channel was already halted for some other
854 chan->halt_status = halt_status;
856 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
857 if (!(hcchar & HCCHAR_CHENA)) {
859 * The channel is either already halted or it hasn't
860 * started yet. In DMA mode, the transfer may halt if
861 * it finishes normally or a condition occurs that
862 * requires driver intervention. Don't want to halt
863 * the channel again. In either Slave or DMA mode,
864 * it's possible that the transfer has been assigned
865 * to a channel, but not started yet when an URB is
866 * dequeued. Don't want to halt a channel that hasn't
872 if (chan->halt_pending) {
874 * A halt has already been issued for this channel. This might
875 * happen when a transfer is aborted by a higher level in
879 "*** %s: Channel %d, chan->halt_pending already set ***\n",
880 __func__, chan->hc_num);
884 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
886 /* No need to set the bit in DDMA for disabling the channel */
887 /* TODO check it everywhere channel is disabled */
888 if (!hsotg->params.dma_desc_enable) {
890 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
891 hcchar |= HCCHAR_CHENA;
894 dev_dbg(hsotg->dev, "desc DMA enabled\n");
896 hcchar |= HCCHAR_CHDIS;
898 if (!hsotg->params.host_dma) {
900 dev_vdbg(hsotg->dev, "DMA not enabled\n");
901 hcchar |= HCCHAR_CHENA;
903 /* Check for space in the request queue to issue the halt */
904 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
905 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
906 dev_vdbg(hsotg->dev, "control/bulk\n");
907 nptxsts = dwc2_readl(hsotg, GNPTXSTS);
908 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
909 dev_vdbg(hsotg->dev, "Disabling channel\n");
910 hcchar &= ~HCCHAR_CHENA;
914 dev_vdbg(hsotg->dev, "isoc/intr\n");
915 hptxsts = dwc2_readl(hsotg, HPTXSTS);
916 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
917 hsotg->queuing_high_bandwidth) {
919 dev_vdbg(hsotg->dev, "Disabling channel\n");
920 hcchar &= ~HCCHAR_CHENA;
925 dev_vdbg(hsotg->dev, "DMA enabled\n");
928 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
929 chan->halt_status = halt_status;
931 if (hcchar & HCCHAR_CHENA) {
933 dev_vdbg(hsotg->dev, "Channel enabled\n");
934 chan->halt_pending = 1;
935 chan->halt_on_queue = 0;
938 dev_vdbg(hsotg->dev, "Channel disabled\n");
939 chan->halt_on_queue = 1;
943 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
945 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
947 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
949 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
950 chan->halt_on_queue);
951 dev_vdbg(hsotg->dev, " halt_status: %d\n",
957 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
959 * @hsotg: Programming view of DWC_otg controller
960 * @chan: Identifies the host channel to clean up
962 * This function is normally called after a transfer is done and the host
963 * channel is being released
965 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
969 chan->xfer_started = 0;
971 list_del_init(&chan->split_order_list_entry);
974 * Clear channel interrupt enables and any unhandled channel interrupt
977 dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num));
978 hcintmsk = 0xffffffff;
979 hcintmsk &= ~HCINTMSK_RESERVED14_31;
980 dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num));
984 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
985 * which frame a periodic transfer should occur
987 * @hsotg: Programming view of DWC_otg controller
988 * @chan: Identifies the host channel to set up and its properties
989 * @hcchar: Current value of the HCCHAR register for the specified host channel
991 * This function has no effect on non-periodic transfers
993 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
994 struct dwc2_host_chan *chan, u32 *hcchar)
996 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
997 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1007 * Try to figure out if we're an even or odd frame. If we set
1008 * even and the current frame number is even the the transfer
1009 * will happen immediately. Similar if both are odd. If one is
1010 * even and the other is odd then the transfer will happen when
1011 * the frame number ticks.
1013 * There's a bit of a balancing act to get this right.
1014 * Sometimes we may want to send data in the current frame (AK
1015 * right away). We might want to do this if the frame number
1016 * _just_ ticked, but we might also want to do this in order
1017 * to continue a split transaction that happened late in a
1018 * microframe (so we didn't know to queue the next transfer
1019 * until the frame number had ticked). The problem is that we
1020 * need a lot of knowledge to know if there's actually still
1021 * time to send things or if it would be better to wait until
1024 * We can look at how much time is left in the current frame
1025 * and make a guess about whether we'll have time to transfer.
1029 /* Get speed host is running at */
1030 host_speed = (chan->speed != USB_SPEED_HIGH &&
1031 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1033 /* See how many bytes are in the periodic FIFO right now */
1034 fifo_space = (dwc2_readl(hsotg, HPTXSTS) &
1035 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1036 bytes_in_fifo = sizeof(u32) *
1037 (hsotg->params.host_perio_tx_fifo_size -
1041 * Roughly estimate bus time for everything in the periodic
1042 * queue + our new transfer. This is "rough" because we're
1043 * using a function that makes takes into account IN/OUT
1044 * and INT/ISO and we're just slamming in one value for all
1045 * transfers. This should be an over-estimate and that should
1046 * be OK, but we can probably tighten it.
1048 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1049 chan->xfer_len + bytes_in_fifo);
1050 xfer_us = NS_TO_US(xfer_ns);
1052 /* See what frame number we'll be at by the time we finish */
1053 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1055 /* This is when we were scheduled to be on the wire */
1056 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1059 * If we'd finish _after_ the frame we're scheduled in then
1060 * it's hopeless. Just schedule right away and hope for the
1061 * best. Note that it _might_ be wise to call back into the
1062 * scheduler to pick a better frame, but this is better than
1065 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1066 dwc2_sch_vdbg(hsotg,
1067 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1068 chan->qh, wire_frame, frame_number,
1069 dwc2_frame_num_dec(frame_number,
1071 wire_frame = frame_number;
1074 * We picked a different frame number; communicate this
1075 * back to the scheduler so it doesn't try to schedule
1076 * another in the same frame.
1078 * Remember that next_active_frame is 1 before the wire
1081 chan->qh->next_active_frame =
1082 dwc2_frame_num_dec(frame_number, 1);
1086 *hcchar |= HCCHAR_ODDFRM;
1088 *hcchar &= ~HCCHAR_ODDFRM;
1092 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1094 /* Set up the initial PID for the transfer */
1095 if (chan->speed == USB_SPEED_HIGH) {
1096 if (chan->ep_is_in) {
1097 if (chan->multi_count == 1)
1098 chan->data_pid_start = DWC2_HC_PID_DATA0;
1099 else if (chan->multi_count == 2)
1100 chan->data_pid_start = DWC2_HC_PID_DATA1;
1102 chan->data_pid_start = DWC2_HC_PID_DATA2;
1104 if (chan->multi_count == 1)
1105 chan->data_pid_start = DWC2_HC_PID_DATA0;
1107 chan->data_pid_start = DWC2_HC_PID_MDATA;
1110 chan->data_pid_start = DWC2_HC_PID_DATA0;
1115 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1118 * @hsotg: Programming view of DWC_otg controller
1119 * @chan: Information needed to initialize the host channel
1121 * This function should only be called in Slave mode. For a channel associated
1122 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1123 * associated with a periodic EP, the periodic Tx FIFO is written.
1125 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1126 * the number of bytes written to the Tx FIFO.
1128 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1129 struct dwc2_host_chan *chan)
1132 u32 remaining_count;
1135 u32 *data_buf = (u32 *)chan->xfer_buf;
1138 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1140 remaining_count = chan->xfer_len - chan->xfer_count;
1141 if (remaining_count > chan->max_packet)
1142 byte_count = chan->max_packet;
1144 byte_count = remaining_count;
1146 dword_count = (byte_count + 3) / 4;
1148 if (((unsigned long)data_buf & 0x3) == 0) {
1149 /* xfer_buf is DWORD aligned */
1150 for (i = 0; i < dword_count; i++, data_buf++)
1151 dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num));
1153 /* xfer_buf is not DWORD aligned */
1154 for (i = 0; i < dword_count; i++, data_buf++) {
1155 u32 data = data_buf[0] | data_buf[1] << 8 |
1156 data_buf[2] << 16 | data_buf[3] << 24;
1157 dwc2_writel(hsotg, data, HCFIFO(chan->hc_num));
1161 chan->xfer_count += byte_count;
1162 chan->xfer_buf += byte_count;
1166 * dwc2_hc_do_ping() - Starts a PING transfer
1168 * @hsotg: Programming view of DWC_otg controller
1169 * @chan: Information needed to initialize the host channel
1171 * This function should only be called in Slave mode. The Do Ping bit is set in
1172 * the HCTSIZ register, then the channel is enabled.
1174 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1175 struct dwc2_host_chan *chan)
1181 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1184 hctsiz = TSIZ_DOPNG;
1185 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1186 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1188 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1189 hcchar |= HCCHAR_CHENA;
1190 hcchar &= ~HCCHAR_CHDIS;
1191 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1195 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1196 * channel and starts the transfer
1198 * @hsotg: Programming view of DWC_otg controller
1199 * @chan: Information needed to initialize the host channel. The xfer_len value
1200 * may be reduced to accommodate the max widths of the XferSize and
1201 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1202 * changed to reflect the final xfer_len value.
1204 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1205 * the caller must ensure that there is sufficient space in the request queue
1208 * For an OUT transfer in Slave mode, it loads a data packet into the
1209 * appropriate FIFO. If necessary, additional data packets are loaded in the
1212 * For an IN transfer in Slave mode, a data packet is requested. The data
1213 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1214 * additional data packets are requested in the Host ISR.
1216 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1217 * register along with a packet count of 1 and the channel is enabled. This
1218 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1219 * simply set to 0 since no data transfer occurs in this case.
1221 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1222 * all the information required to perform the subsequent data transfer. In
1223 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1224 * controller performs the entire PING protocol, then starts the data
1227 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1228 struct dwc2_host_chan *chan)
1230 u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1231 u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1238 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1240 if (chan->do_ping) {
1241 if (!hsotg->params.host_dma) {
1243 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1244 dwc2_hc_do_ping(hsotg, chan);
1245 chan->xfer_started = 1;
1250 dev_vdbg(hsotg->dev, "ping, DMA\n");
1252 hctsiz |= TSIZ_DOPNG;
1255 if (chan->do_split) {
1257 dev_vdbg(hsotg->dev, "split\n");
1260 if (chan->complete_split && !chan->ep_is_in)
1262 * For CSPLIT OUT Transfer, set the size to 0 so the
1263 * core doesn't expect any data written to the FIFO
1266 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1267 chan->xfer_len = chan->max_packet;
1268 else if (!chan->ep_is_in && chan->xfer_len > 188)
1269 chan->xfer_len = 188;
1271 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1274 /* For split set ec_mc for immediate retries */
1275 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1276 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1282 dev_vdbg(hsotg->dev, "no split\n");
1284 * Ensure that the transfer length and packet count will fit
1285 * in the widths allocated for them in the HCTSIZn register
1287 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1288 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1290 * Make sure the transfer size is no larger than one
1291 * (micro)frame's worth of data. (A check was done
1292 * when the periodic transfer was accepted to ensure
1293 * that a (micro)frame's worth of data can be
1294 * programmed into a channel.)
1296 u32 max_periodic_len =
1297 chan->multi_count * chan->max_packet;
1299 if (chan->xfer_len > max_periodic_len)
1300 chan->xfer_len = max_periodic_len;
1301 } else if (chan->xfer_len > max_hc_xfer_size) {
1303 * Make sure that xfer_len is a multiple of max packet
1307 max_hc_xfer_size - chan->max_packet + 1;
1310 if (chan->xfer_len > 0) {
1311 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1313 if (num_packets > max_hc_pkt_count) {
1314 num_packets = max_hc_pkt_count;
1315 chan->xfer_len = num_packets * chan->max_packet;
1316 } else if (chan->ep_is_in) {
1318 * Always program an integral # of max packets
1320 * Note: This assumes that the input buffer is
1321 * aligned and sized accordingly.
1323 chan->xfer_len = num_packets * chan->max_packet;
1326 /* Need 1 packet for transfer length of 0 */
1330 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1331 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1333 * Make sure that the multi_count field matches the
1334 * actual transfer length
1336 chan->multi_count = num_packets;
1338 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1339 dwc2_set_pid_isoc(chan);
1341 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1344 /* The ec_mc gets the multi_count for non-split */
1345 ec_mc = chan->multi_count;
1348 chan->start_pkt_count = num_packets;
1349 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1350 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1351 TSIZ_SC_MC_PID_MASK;
1352 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1354 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1355 hctsiz, chan->hc_num);
1357 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1359 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1360 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1361 TSIZ_XFERSIZE_SHIFT);
1362 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1363 (hctsiz & TSIZ_PKTCNT_MASK) >>
1365 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1366 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1367 TSIZ_SC_MC_PID_SHIFT);
1370 if (hsotg->params.host_dma) {
1371 dma_addr_t dma_addr;
1373 if (chan->align_buf) {
1375 dev_vdbg(hsotg->dev, "align_buf\n");
1376 dma_addr = chan->align_buf;
1378 dma_addr = chan->xfer_dma;
1380 dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num));
1383 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1384 (unsigned long)dma_addr, chan->hc_num);
1387 /* Start the split */
1388 if (chan->do_split) {
1389 u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num));
1391 hcsplt |= HCSPLT_SPLTENA;
1392 dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num));
1395 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1396 hcchar &= ~HCCHAR_MULTICNT_MASK;
1397 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1398 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1400 if (hcchar & HCCHAR_CHDIS)
1401 dev_warn(hsotg->dev,
1402 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1403 __func__, chan->hc_num, hcchar);
1405 /* Set host channel enable after all other setup is complete */
1406 hcchar |= HCCHAR_CHENA;
1407 hcchar &= ~HCCHAR_CHDIS;
1410 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1411 (hcchar & HCCHAR_MULTICNT_MASK) >>
1412 HCCHAR_MULTICNT_SHIFT);
1414 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1416 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1419 chan->xfer_started = 1;
1422 if (!hsotg->params.host_dma &&
1423 !chan->ep_is_in && chan->xfer_len > 0)
1424 /* Load OUT packet into the appropriate Tx FIFO */
1425 dwc2_hc_write_packet(hsotg, chan);
1429 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1430 * host channel and starts the transfer in Descriptor DMA mode
1432 * @hsotg: Programming view of DWC_otg controller
1433 * @chan: Information needed to initialize the host channel
1435 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1436 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1437 * with micro-frame bitmap.
1439 * Initializes HCDMA register with descriptor list address and CTD value then
1440 * starts the transfer via enabling the channel.
1442 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1443 struct dwc2_host_chan *chan)
1449 hctsiz |= TSIZ_DOPNG;
1451 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1452 dwc2_set_pid_isoc(chan);
1454 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1455 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1456 TSIZ_SC_MC_PID_MASK;
1458 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1459 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1461 /* Non-zero only for high-speed interrupt endpoints */
1462 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1465 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1467 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1468 chan->data_pid_start);
1469 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1472 dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num));
1474 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1475 chan->desc_list_sz, DMA_TO_DEVICE);
1477 dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num));
1480 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1481 &chan->desc_list_addr, chan->hc_num);
1483 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1484 hcchar &= ~HCCHAR_MULTICNT_MASK;
1485 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1486 HCCHAR_MULTICNT_MASK;
1488 if (hcchar & HCCHAR_CHDIS)
1489 dev_warn(hsotg->dev,
1490 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1491 __func__, chan->hc_num, hcchar);
1493 /* Set host channel enable after all other setup is complete */
1494 hcchar |= HCCHAR_CHENA;
1495 hcchar &= ~HCCHAR_CHDIS;
1498 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1499 (hcchar & HCCHAR_MULTICNT_MASK) >>
1500 HCCHAR_MULTICNT_SHIFT);
1502 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1504 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1507 chan->xfer_started = 1;
1512 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1513 * a previous call to dwc2_hc_start_transfer()
1515 * @hsotg: Programming view of DWC_otg controller
1516 * @chan: Information needed to initialize the host channel
1518 * The caller must ensure there is sufficient space in the request queue and Tx
1519 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1520 * the controller acts autonomously to complete transfers programmed to a host
1523 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1524 * if there is any data remaining to be queued. For an IN transfer, another
1525 * data packet is always requested. For the SETUP phase of a control transfer,
1526 * this function does nothing.
1528 * Return: 1 if a new request is queued, 0 if no more requests are required
1531 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1532 struct dwc2_host_chan *chan)
1535 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1539 /* SPLITs always queue just once per channel */
1542 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1543 /* SETUPs are queued only once since they can't be NAK'd */
1546 if (chan->ep_is_in) {
1548 * Always queue another request for other IN transfers. If
1549 * back-to-back INs are issued and NAKs are received for both,
1550 * the driver may still be processing the first NAK when the
1551 * second NAK is received. When the interrupt handler clears
1552 * the NAK interrupt for the first NAK, the second NAK will
1553 * not be seen. So we can't depend on the NAK interrupt
1554 * handler to requeue a NAK'd request. Instead, IN requests
1555 * are issued each time this function is called. When the
1556 * transfer completes, the extra requests for the channel will
1559 u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num));
1561 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1562 hcchar |= HCCHAR_CHENA;
1563 hcchar &= ~HCCHAR_CHDIS;
1565 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1567 dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num));
1574 if (chan->xfer_count < chan->xfer_len) {
1575 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1576 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1577 u32 hcchar = dwc2_readl(hsotg,
1578 HCCHAR(chan->hc_num));
1580 dwc2_hc_set_even_odd_frame(hsotg, chan,
1584 /* Load OUT packet into the appropriate Tx FIFO */
1585 dwc2_hc_write_packet(hsotg, chan);
1594 * =========================================================================
1596 * =========================================================================
1600 * Processes all the URBs in a single list of QHs. Completes them with
1601 * -ETIMEDOUT and frees the QTD.
1603 * Must be called with interrupt disabled and spinlock held
1605 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1606 struct list_head *qh_list)
1608 struct dwc2_qh *qh, *qh_tmp;
1609 struct dwc2_qtd *qtd, *qtd_tmp;
1611 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1612 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1614 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1615 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1620 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1621 struct list_head *qh_list)
1623 struct dwc2_qtd *qtd, *qtd_tmp;
1624 struct dwc2_qh *qh, *qh_tmp;
1625 unsigned long flags;
1628 /* The list hasn't been initialized yet */
1631 spin_lock_irqsave(&hsotg->lock, flags);
1633 /* Ensure there are no QTDs or URBs left */
1634 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1636 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1637 dwc2_hcd_qh_unlink(hsotg, qh);
1639 /* Free each QTD in the QH's QTD list */
1640 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1642 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1644 if (qh->channel && qh->channel->qh == qh)
1645 qh->channel->qh = NULL;
1647 spin_unlock_irqrestore(&hsotg->lock, flags);
1648 dwc2_hcd_qh_free(hsotg, qh);
1649 spin_lock_irqsave(&hsotg->lock, flags);
1652 spin_unlock_irqrestore(&hsotg->lock, flags);
1656 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1657 * and periodic schedules. The QTD associated with each URB is removed from
1658 * the schedule and freed. This function may be called when a disconnect is
1659 * detected or when the HCD is being stopped.
1661 * Must be called with interrupt disabled and spinlock held
1663 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1665 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1666 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1667 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1668 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1669 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1670 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1671 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1675 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1677 * @hsotg: Pointer to struct dwc2_hsotg
1679 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1683 if (hsotg->op_state == OTG_STATE_B_HOST) {
1685 * Reset the port. During a HNP mode switch the reset
1686 * needs to occur within 1ms and have a duration of at
1689 hprt0 = dwc2_read_hprt0(hsotg);
1691 dwc2_writel(hsotg, hprt0, HPRT0);
1694 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1695 msecs_to_jiffies(50));
1698 /* Must be called with interrupt disabled and spinlock held */
1699 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1701 int num_channels = hsotg->params.host_channels;
1702 struct dwc2_host_chan *channel;
1706 if (!hsotg->params.host_dma) {
1707 /* Flush out any channel requests in slave mode */
1708 for (i = 0; i < num_channels; i++) {
1709 channel = hsotg->hc_ptr_array[i];
1710 if (!list_empty(&channel->hc_list_entry))
1712 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1713 if (hcchar & HCCHAR_CHENA) {
1714 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1715 hcchar |= HCCHAR_CHDIS;
1716 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1721 for (i = 0; i < num_channels; i++) {
1722 channel = hsotg->hc_ptr_array[i];
1723 if (!list_empty(&channel->hc_list_entry))
1725 hcchar = dwc2_readl(hsotg, HCCHAR(i));
1726 if (hcchar & HCCHAR_CHENA) {
1727 /* Halt the channel */
1728 hcchar |= HCCHAR_CHDIS;
1729 dwc2_writel(hsotg, hcchar, HCCHAR(i));
1732 dwc2_hc_cleanup(hsotg, channel);
1733 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1735 * Added for Descriptor DMA to prevent channel double cleanup in
1736 * release_channel_ddma(), which is called from ep_disable when
1737 * device disconnects
1741 /* All channels have been freed, mark them available */
1742 if (hsotg->params.uframe_sched) {
1743 hsotg->available_host_channels =
1744 hsotg->params.host_channels;
1746 hsotg->non_periodic_channels = 0;
1747 hsotg->periodic_channels = 0;
1752 * dwc2_hcd_connect() - Handles connect of the HCD
1754 * @hsotg: Pointer to struct dwc2_hsotg
1756 * Must be called with interrupt disabled and spinlock held
1758 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1760 if (hsotg->lx_state != DWC2_L0)
1761 usb_hcd_resume_root_hub(hsotg->priv);
1763 hsotg->flags.b.port_connect_status_change = 1;
1764 hsotg->flags.b.port_connect_status = 1;
1768 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1770 * @hsotg: Pointer to struct dwc2_hsotg
1771 * @force: If true, we won't try to reconnect even if we see device connected.
1773 * Must be called with interrupt disabled and spinlock held
1775 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1780 /* Set status flags for the hub driver */
1781 hsotg->flags.b.port_connect_status_change = 1;
1782 hsotg->flags.b.port_connect_status = 0;
1785 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1786 * interrupt mask and status bits and disabling subsequent host
1787 * channel interrupts.
1789 intr = dwc2_readl(hsotg, GINTMSK);
1790 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1791 dwc2_writel(hsotg, intr, GINTMSK);
1792 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1793 dwc2_writel(hsotg, intr, GINTSTS);
1796 * Turn off the vbus power only if the core has transitioned to device
1797 * mode. If still in host mode, need to keep power on to detect a
1800 if (dwc2_is_device_mode(hsotg)) {
1801 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1802 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1803 dwc2_writel(hsotg, 0, HPRT0);
1806 dwc2_disable_host_interrupts(hsotg);
1809 /* Respond with an error status to all URBs in the schedule */
1810 dwc2_kill_all_urbs(hsotg);
1812 if (dwc2_is_host_mode(hsotg))
1813 /* Clean up any host channels that were in use */
1814 dwc2_hcd_cleanup_channels(hsotg);
1816 dwc2_host_disconnect(hsotg);
1819 * Add an extra check here to see if we're actually connected but
1820 * we don't have a detection interrupt pending. This can happen if:
1821 * 1. hardware sees connect
1822 * 2. hardware sees disconnect
1823 * 3. hardware sees connect
1824 * 4. dwc2_port_intr() - clears connect interrupt
1825 * 5. dwc2_handle_common_intr() - calls here
1827 * Without the extra check here we will end calling disconnect
1828 * and won't get any future interrupts to handle the connect.
1831 hprt0 = dwc2_readl(hsotg, HPRT0);
1832 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1833 dwc2_hcd_connect(hsotg);
1838 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1840 * @hsotg: Pointer to struct dwc2_hsotg
1842 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1844 if (hsotg->bus_suspended) {
1845 hsotg->flags.b.port_suspend_change = 1;
1846 usb_hcd_resume_root_hub(hsotg->priv);
1849 if (hsotg->lx_state == DWC2_L1)
1850 hsotg->flags.b.port_l1_change = 1;
1854 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1856 * @hsotg: Pointer to struct dwc2_hsotg
1858 * Must be called with interrupt disabled and spinlock held
1860 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1862 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1865 * The root hub should be disconnected before this function is called.
1866 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1867 * and the QH lists (via ..._hcd_endpoint_disable).
1870 /* Turn off all host-specific interrupts */
1871 dwc2_disable_host_interrupts(hsotg);
1873 /* Turn off the vbus power */
1874 dev_dbg(hsotg->dev, "PortPower off\n");
1875 dwc2_writel(hsotg, 0, HPRT0);
1878 /* Caller must hold driver lock */
1879 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1880 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1881 struct dwc2_qtd *qtd)
1887 if (!hsotg->flags.b.port_connect_status) {
1888 /* No longer connected */
1889 dev_err(hsotg->dev, "Not connected\n");
1893 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1895 /* Some configurations cannot support LS traffic on a FS root port */
1896 if ((dev_speed == USB_SPEED_LOW) &&
1897 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1898 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
1899 u32 hprt0 = dwc2_readl(hsotg, HPRT0);
1900 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
1902 if (prtspd == HPRT0_SPD_FULL_SPEED)
1909 dwc2_hcd_qtd_init(qtd, urb);
1910 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
1913 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
1918 intr_mask = dwc2_readl(hsotg, GINTMSK);
1919 if (!(intr_mask & GINTSTS_SOF)) {
1920 enum dwc2_transaction_type tr_type;
1922 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
1923 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
1925 * Do not schedule SG transactions until qtd has
1926 * URB_GIVEBACK_ASAP set
1930 tr_type = dwc2_hcd_select_transactions(hsotg);
1931 if (tr_type != DWC2_TRANSACTION_NONE)
1932 dwc2_hcd_queue_transactions(hsotg, tr_type);
1938 /* Must be called with interrupt disabled and spinlock held */
1939 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
1940 struct dwc2_hcd_urb *urb)
1943 struct dwc2_qtd *urb_qtd;
1947 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
1953 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
1959 if (urb_qtd->in_process && qh->channel) {
1960 dwc2_dump_channel_info(hsotg, qh->channel);
1962 /* The QTD is in process (it has been assigned to a channel) */
1963 if (hsotg->flags.b.port_connect_status)
1965 * If still connected (i.e. in host mode), halt the
1966 * channel so it can be used for other transfers. If
1967 * no longer connected, the host registers can't be
1968 * written to halt the channel since the core is in
1971 dwc2_hc_halt(hsotg, qh->channel,
1972 DWC2_HC_XFER_URB_DEQUEUE);
1976 * Free the QTD and clean up the associated QH. Leave the QH in the
1977 * schedule if it has any remaining QTDs.
1979 if (!hsotg->params.dma_desc_enable) {
1980 u8 in_process = urb_qtd->in_process;
1982 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1984 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
1986 } else if (list_empty(&qh->qtd_list)) {
1987 dwc2_hcd_qh_unlink(hsotg, qh);
1990 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
1996 /* Must NOT be called with interrupt disabled or spinlock held */
1997 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
1998 struct usb_host_endpoint *ep, int retry)
2000 struct dwc2_qtd *qtd, *qtd_tmp;
2002 unsigned long flags;
2005 spin_lock_irqsave(&hsotg->lock, flags);
2013 while (!list_empty(&qh->qtd_list) && retry--) {
2016 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2021 spin_unlock_irqrestore(&hsotg->lock, flags);
2023 spin_lock_irqsave(&hsotg->lock, flags);
2031 dwc2_hcd_qh_unlink(hsotg, qh);
2033 /* Free each QTD in the QH's QTD list */
2034 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2035 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2039 if (qh->channel && qh->channel->qh == qh)
2040 qh->channel->qh = NULL;
2042 spin_unlock_irqrestore(&hsotg->lock, flags);
2044 dwc2_hcd_qh_free(hsotg, qh);
2050 spin_unlock_irqrestore(&hsotg->lock, flags);
2055 /* Must be called with interrupt disabled and spinlock held */
2056 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2057 struct usb_host_endpoint *ep)
2059 struct dwc2_qh *qh = ep->hcpriv;
2064 qh->data_toggle = DWC2_HC_PID_DATA0;
2070 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2071 * prepares the core for device mode or host mode operation
2073 * @hsotg: Programming view of the DWC_otg controller
2074 * @initial_setup: If true then this is the first init for this instance.
2076 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2081 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2083 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2085 /* Set ULPI External VBUS bit if needed */
2086 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2087 if (hsotg->params.phy_ulpi_ext_vbus)
2088 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2090 /* Set external TS Dline pulsing bit if needed */
2091 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2092 if (hsotg->params.ts_dline)
2093 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2095 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2098 * Reset the Controller
2100 * We only need to reset the controller if this is a re-init.
2101 * For the first init we know for sure that earlier code reset us (it
2102 * needed to in order to properly detect various parameters).
2104 if (!initial_setup) {
2105 retval = dwc2_core_reset(hsotg, false);
2107 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2114 * This needs to happen in FS mode before any other programming occurs
2116 retval = dwc2_phy_init(hsotg, initial_setup);
2120 /* Program the GAHBCFG Register */
2121 retval = dwc2_gahbcfg_init(hsotg);
2125 /* Program the GUSBCFG register */
2126 dwc2_gusbcfg_init(hsotg);
2128 /* Program the GOTGCTL register */
2129 otgctl = dwc2_readl(hsotg, GOTGCTL);
2130 otgctl &= ~GOTGCTL_OTGVER;
2131 dwc2_writel(hsotg, otgctl, GOTGCTL);
2133 /* Clear the SRP success bit for FS-I2c */
2134 hsotg->srp_success = 0;
2136 /* Enable common interrupts */
2137 dwc2_enable_common_interrupts(hsotg);
2140 * Do device or host initialization based on mode during PCD and
2141 * HCD initialization
2143 if (dwc2_is_host_mode(hsotg)) {
2144 dev_dbg(hsotg->dev, "Host Mode\n");
2145 hsotg->op_state = OTG_STATE_A_HOST;
2147 dev_dbg(hsotg->dev, "Device Mode\n");
2148 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2155 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2158 * @hsotg: Programming view of DWC_otg controller
2160 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2161 * request queues. Host channels are reset to ensure that they are ready for
2162 * performing transfers.
2164 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2166 u32 hcfg, hfir, otgctl, usbcfg;
2168 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2170 /* Set HS/FS Timeout Calibration to 7 (max available value).
2171 * The number of PHY clocks that the application programs in
2172 * this field is added to the high/full speed interpacket timeout
2173 * duration in the core to account for any additional delays
2174 * introduced by the PHY. This can be required, because the delay
2175 * introduced by the PHY in generating the linestate condition
2176 * can vary from one PHY to another.
2178 usbcfg = dwc2_readl(hsotg, GUSBCFG);
2179 usbcfg |= GUSBCFG_TOUTCAL(7);
2180 dwc2_writel(hsotg, usbcfg, GUSBCFG);
2182 /* Restart the Phy Clock */
2183 dwc2_writel(hsotg, 0, PCGCTL);
2185 /* Initialize Host Configuration Register */
2186 dwc2_init_fs_ls_pclk_sel(hsotg);
2187 if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2188 hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2189 hcfg = dwc2_readl(hsotg, HCFG);
2190 hcfg |= HCFG_FSLSSUPP;
2191 dwc2_writel(hsotg, hcfg, HCFG);
2195 * This bit allows dynamic reloading of the HFIR register during
2196 * runtime. This bit needs to be programmed during initial configuration
2197 * and its value must not be changed during runtime.
2199 if (hsotg->params.reload_ctl) {
2200 hfir = dwc2_readl(hsotg, HFIR);
2201 hfir |= HFIR_RLDCTRL;
2202 dwc2_writel(hsotg, hfir, HFIR);
2205 if (hsotg->params.dma_desc_enable) {
2206 u32 op_mode = hsotg->hw_params.op_mode;
2208 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2209 !hsotg->hw_params.dma_desc_enable ||
2210 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2211 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2212 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2214 "Hardware does not support descriptor DMA mode -\n");
2216 "falling back to buffer DMA mode.\n");
2217 hsotg->params.dma_desc_enable = false;
2219 hcfg = dwc2_readl(hsotg, HCFG);
2220 hcfg |= HCFG_DESCDMA;
2221 dwc2_writel(hsotg, hcfg, HCFG);
2225 /* Configure data FIFO sizes */
2226 dwc2_config_fifos(hsotg);
2228 /* TODO - check this */
2229 /* Clear Host Set HNP Enable in the OTG Control Register */
2230 otgctl = dwc2_readl(hsotg, GOTGCTL);
2231 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2232 dwc2_writel(hsotg, otgctl, GOTGCTL);
2234 /* Make sure the FIFOs are flushed */
2235 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2236 dwc2_flush_rx_fifo(hsotg);
2238 /* Clear Host Set HNP Enable in the OTG Control Register */
2239 otgctl = dwc2_readl(hsotg, GOTGCTL);
2240 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2241 dwc2_writel(hsotg, otgctl, GOTGCTL);
2243 if (!hsotg->params.dma_desc_enable) {
2244 int num_channels, i;
2247 /* Flush out any leftover queued requests */
2248 num_channels = hsotg->params.host_channels;
2249 for (i = 0; i < num_channels; i++) {
2250 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2251 if (hcchar & HCCHAR_CHENA) {
2252 hcchar &= ~HCCHAR_CHENA;
2253 hcchar |= HCCHAR_CHDIS;
2254 hcchar &= ~HCCHAR_EPDIR;
2255 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2259 /* Halt all channels to put them into a known state */
2260 for (i = 0; i < num_channels; i++) {
2261 hcchar = dwc2_readl(hsotg, HCCHAR(i));
2262 if (hcchar & HCCHAR_CHENA) {
2263 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2264 hcchar &= ~HCCHAR_EPDIR;
2265 dwc2_writel(hsotg, hcchar, HCCHAR(i));
2266 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2269 if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2272 dev_warn(hsotg->dev,
2273 "Unable to clear enable on channel %d\n",
2280 /* Enable ACG feature in host mode, if supported */
2281 dwc2_enable_acg(hsotg);
2283 /* Turn on the vbus power */
2284 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2285 if (hsotg->op_state == OTG_STATE_A_HOST) {
2286 u32 hprt0 = dwc2_read_hprt0(hsotg);
2288 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2289 !!(hprt0 & HPRT0_PWR));
2290 if (!(hprt0 & HPRT0_PWR)) {
2292 dwc2_writel(hsotg, hprt0, HPRT0);
2296 dwc2_enable_host_interrupts(hsotg);
2300 * Initializes dynamic portions of the DWC_otg HCD state
2302 * Must be called with interrupt disabled and spinlock held
2304 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2306 struct dwc2_host_chan *chan, *chan_tmp;
2310 hsotg->flags.d32 = 0;
2311 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2313 if (hsotg->params.uframe_sched) {
2314 hsotg->available_host_channels =
2315 hsotg->params.host_channels;
2317 hsotg->non_periodic_channels = 0;
2318 hsotg->periodic_channels = 0;
2322 * Put all channels in the free channel list and clean up channel
2325 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2327 list_del_init(&chan->hc_list_entry);
2329 num_channels = hsotg->params.host_channels;
2330 for (i = 0; i < num_channels; i++) {
2331 chan = hsotg->hc_ptr_array[i];
2332 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2333 dwc2_hc_cleanup(hsotg, chan);
2336 /* Initialize the DWC core for host mode operation */
2337 dwc2_core_host_init(hsotg);
2340 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2341 struct dwc2_host_chan *chan,
2342 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2344 int hub_addr, hub_port;
2347 chan->xact_pos = qtd->isoc_split_pos;
2348 chan->complete_split = qtd->complete_split;
2349 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2350 chan->hub_addr = (u8)hub_addr;
2351 chan->hub_port = (u8)hub_port;
2354 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2355 struct dwc2_host_chan *chan,
2356 struct dwc2_qtd *qtd)
2358 struct dwc2_hcd_urb *urb = qtd->urb;
2359 struct dwc2_hcd_iso_packet_desc *frame_desc;
2361 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2362 case USB_ENDPOINT_XFER_CONTROL:
2363 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2365 switch (qtd->control_phase) {
2366 case DWC2_CONTROL_SETUP:
2367 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2370 chan->data_pid_start = DWC2_HC_PID_SETUP;
2371 if (hsotg->params.host_dma)
2372 chan->xfer_dma = urb->setup_dma;
2374 chan->xfer_buf = urb->setup_packet;
2378 case DWC2_CONTROL_DATA:
2379 dev_vdbg(hsotg->dev, " Control data transaction\n");
2380 chan->data_pid_start = qtd->data_toggle;
2383 case DWC2_CONTROL_STATUS:
2385 * Direction is opposite of data direction or IN if no
2388 dev_vdbg(hsotg->dev, " Control status transaction\n");
2389 if (urb->length == 0)
2393 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2396 chan->data_pid_start = DWC2_HC_PID_DATA1;
2398 if (hsotg->params.host_dma)
2399 chan->xfer_dma = hsotg->status_buf_dma;
2401 chan->xfer_buf = hsotg->status_buf;
2406 case USB_ENDPOINT_XFER_BULK:
2407 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2410 case USB_ENDPOINT_XFER_INT:
2411 chan->ep_type = USB_ENDPOINT_XFER_INT;
2414 case USB_ENDPOINT_XFER_ISOC:
2415 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2416 if (hsotg->params.dma_desc_enable)
2419 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2420 frame_desc->status = 0;
2422 if (hsotg->params.host_dma) {
2423 chan->xfer_dma = urb->dma;
2424 chan->xfer_dma += frame_desc->offset +
2425 qtd->isoc_split_offset;
2427 chan->xfer_buf = urb->buf;
2428 chan->xfer_buf += frame_desc->offset +
2429 qtd->isoc_split_offset;
2432 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2434 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2435 if (chan->xfer_len <= 188)
2436 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2438 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2444 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2446 struct dwc2_host_chan *chan)
2448 if (!hsotg->unaligned_cache ||
2449 chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2452 if (!qh->dw_align_buf) {
2453 qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2454 GFP_ATOMIC | GFP_DMA);
2455 if (!qh->dw_align_buf)
2459 qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2460 DWC2_KMEM_UNALIGNED_BUF_SIZE,
2463 if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2464 dev_err(hsotg->dev, "can't map align_buf\n");
2465 chan->align_buf = 0;
2469 chan->align_buf = qh->dw_align_buf_dma;
2473 #define DWC2_USB_DMA_ALIGN 4
2475 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2477 void *stored_xfer_buffer;
2480 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2483 /* Restore urb->transfer_buffer from the end of the allocated area */
2484 memcpy(&stored_xfer_buffer,
2485 PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length,
2486 dma_get_cache_alignment()),
2487 sizeof(urb->transfer_buffer));
2489 if (usb_urb_dir_in(urb)) {
2490 if (usb_pipeisoc(urb->pipe))
2491 length = urb->transfer_buffer_length;
2493 length = urb->actual_length;
2495 memcpy(stored_xfer_buffer, urb->transfer_buffer, length);
2497 kfree(urb->transfer_buffer);
2498 urb->transfer_buffer = stored_xfer_buffer;
2500 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2503 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2506 size_t kmalloc_size;
2508 if (urb->num_sgs || urb->sg ||
2509 urb->transfer_buffer_length == 0 ||
2510 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2514 * Allocate a buffer with enough padding for original transfer_buffer
2515 * pointer. This allocation is guaranteed to be aligned properly for
2518 kmalloc_size = urb->transfer_buffer_length +
2519 (dma_get_cache_alignment() - 1) +
2520 sizeof(urb->transfer_buffer);
2522 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2527 * Position value of original urb->transfer_buffer pointer to the end
2528 * of allocation for later referencing
2530 memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length,
2531 dma_get_cache_alignment()),
2532 &urb->transfer_buffer, sizeof(urb->transfer_buffer));
2534 if (usb_urb_dir_out(urb))
2535 memcpy(kmalloc_ptr, urb->transfer_buffer,
2536 urb->transfer_buffer_length);
2537 urb->transfer_buffer = kmalloc_ptr;
2539 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2544 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2549 /* We assume setup_dma is always aligned; warn if not */
2550 WARN_ON_ONCE(urb->setup_dma &&
2551 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2553 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2557 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2559 dwc2_free_dma_aligned_buffer(urb);
2564 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2566 usb_hcd_unmap_urb_for_dma(hcd, urb);
2567 dwc2_free_dma_aligned_buffer(urb);
2571 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2572 * channel and initializes the host channel to perform the transactions. The
2573 * host channel is removed from the free list.
2575 * @hsotg: The HCD state structure
2576 * @qh: Transactions from the first QTD for this QH are selected and assigned
2577 * to a free host channel
2579 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2581 struct dwc2_host_chan *chan;
2582 struct dwc2_hcd_urb *urb;
2583 struct dwc2_qtd *qtd;
2586 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2588 if (list_empty(&qh->qtd_list)) {
2589 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2593 if (list_empty(&hsotg->free_hc_list)) {
2594 dev_dbg(hsotg->dev, "No free channel to assign\n");
2598 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2601 /* Remove host channel from free list */
2602 list_del_init(&chan->hc_list_entry);
2604 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2607 qtd->in_process = 1;
2610 * Use usb_pipedevice to determine device address. This address is
2611 * 0 before the SET_ADDRESS command and the correct address afterward.
2613 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2614 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2615 chan->speed = qh->dev_speed;
2616 chan->max_packet = qh->maxp;
2618 chan->xfer_started = 0;
2619 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2620 chan->error_state = (qtd->error_count > 0);
2621 chan->halt_on_queue = 0;
2622 chan->halt_pending = 0;
2626 * The following values may be modified in the transfer type section
2627 * below. The xfer_len value may be reduced when the transfer is
2628 * started to accommodate the max widths of the XferSize and PktCnt
2629 * fields in the HCTSIZn register.
2632 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2636 chan->do_ping = qh->ping_state;
2638 chan->data_pid_start = qh->data_toggle;
2639 chan->multi_count = 1;
2641 if (urb->actual_length > urb->length &&
2642 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2643 urb->actual_length = urb->length;
2645 if (hsotg->params.host_dma)
2646 chan->xfer_dma = urb->dma + urb->actual_length;
2648 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2650 chan->xfer_len = urb->length - urb->actual_length;
2651 chan->xfer_count = 0;
2653 /* Set the split attributes if required */
2655 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2659 /* Set the transfer attributes */
2660 dwc2_hc_init_xfer(hsotg, chan, qtd);
2662 /* For non-dword aligned buffers */
2663 if (hsotg->params.host_dma && qh->do_split &&
2664 chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2665 dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2666 if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2668 "Failed to allocate memory to handle non-aligned buffer\n");
2669 /* Add channel back to free list */
2670 chan->align_buf = 0;
2671 chan->multi_count = 0;
2672 list_add_tail(&chan->hc_list_entry,
2673 &hsotg->free_hc_list);
2674 qtd->in_process = 0;
2680 * We assume that DMA is always aligned in non-split
2681 * case or split out case. Warn if not.
2683 WARN_ON_ONCE(hsotg->params.host_dma &&
2684 (chan->xfer_dma & 0x3));
2685 chan->align_buf = 0;
2688 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2689 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2691 * This value may be modified when the transfer is started
2692 * to reflect the actual transfer length
2694 chan->multi_count = qh->maxp_mult;
2696 if (hsotg->params.dma_desc_enable) {
2697 chan->desc_list_addr = qh->desc_list_dma;
2698 chan->desc_list_sz = qh->desc_list_sz;
2701 dwc2_hc_init(hsotg, chan);
2708 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2709 * schedule and assigns them to available host channels. Called from the HCD
2710 * interrupt handler functions.
2712 * @hsotg: The HCD state structure
2714 * Return: The types of new transactions that were assigned to host channels
2716 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2717 struct dwc2_hsotg *hsotg)
2719 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2720 struct list_head *qh_ptr;
2724 #ifdef DWC2_DEBUG_SOF
2725 dev_vdbg(hsotg->dev, " Select Transactions\n");
2728 /* Process entries in the periodic ready list */
2729 qh_ptr = hsotg->periodic_sched_ready.next;
2730 while (qh_ptr != &hsotg->periodic_sched_ready) {
2731 if (list_empty(&hsotg->free_hc_list))
2733 if (hsotg->params.uframe_sched) {
2734 if (hsotg->available_host_channels <= 1)
2736 hsotg->available_host_channels--;
2738 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2739 if (dwc2_assign_and_init_hc(hsotg, qh))
2743 * Move the QH from the periodic ready schedule to the
2744 * periodic assigned schedule
2746 qh_ptr = qh_ptr->next;
2747 list_move_tail(&qh->qh_list_entry,
2748 &hsotg->periodic_sched_assigned);
2749 ret_val = DWC2_TRANSACTION_PERIODIC;
2753 * Process entries in the inactive portion of the non-periodic
2754 * schedule. Some free host channels may not be used if they are
2755 * reserved for periodic transfers.
2757 num_channels = hsotg->params.host_channels;
2758 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2759 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2760 if (!hsotg->params.uframe_sched &&
2761 hsotg->non_periodic_channels >= num_channels -
2762 hsotg->periodic_channels)
2764 if (list_empty(&hsotg->free_hc_list))
2766 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2767 if (hsotg->params.uframe_sched) {
2768 if (hsotg->available_host_channels < 1)
2770 hsotg->available_host_channels--;
2773 if (dwc2_assign_and_init_hc(hsotg, qh))
2777 * Move the QH from the non-periodic inactive schedule to the
2778 * non-periodic active schedule
2780 qh_ptr = qh_ptr->next;
2781 list_move_tail(&qh->qh_list_entry,
2782 &hsotg->non_periodic_sched_active);
2784 if (ret_val == DWC2_TRANSACTION_NONE)
2785 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2787 ret_val = DWC2_TRANSACTION_ALL;
2789 if (!hsotg->params.uframe_sched)
2790 hsotg->non_periodic_channels++;
2797 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2798 * a host channel associated with either a periodic or non-periodic transfer
2800 * @hsotg: The HCD state structure
2801 * @chan: Host channel descriptor associated with either a periodic or
2802 * non-periodic transfer
2803 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2804 * for periodic transfers or the non-periodic Tx FIFO
2805 * for non-periodic transfers
2807 * Return: 1 if a request is queued and more requests may be needed to
2808 * complete the transfer, 0 if no more requests are required for this
2809 * transfer, -1 if there is insufficient space in the Tx FIFO
2811 * This function assumes that there is space available in the appropriate
2812 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2813 * it checks whether space is available in the appropriate Tx FIFO.
2815 * Must be called with interrupt disabled and spinlock held
2817 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2818 struct dwc2_host_chan *chan,
2819 u16 fifo_dwords_avail)
2824 /* Put ourselves on the list to keep order straight */
2825 list_move_tail(&chan->split_order_list_entry,
2826 &hsotg->split_order);
2828 if (hsotg->params.host_dma && chan->qh) {
2829 if (hsotg->params.dma_desc_enable) {
2830 if (!chan->xfer_started ||
2831 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2832 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2833 chan->qh->ping_state = 0;
2835 } else if (!chan->xfer_started) {
2836 dwc2_hc_start_transfer(hsotg, chan);
2837 chan->qh->ping_state = 0;
2839 } else if (chan->halt_pending) {
2840 /* Don't queue a request if the channel has been halted */
2841 } else if (chan->halt_on_queue) {
2842 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2843 } else if (chan->do_ping) {
2844 if (!chan->xfer_started)
2845 dwc2_hc_start_transfer(hsotg, chan);
2846 } else if (!chan->ep_is_in ||
2847 chan->data_pid_start == DWC2_HC_PID_SETUP) {
2848 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2849 if (!chan->xfer_started) {
2850 dwc2_hc_start_transfer(hsotg, chan);
2853 retval = dwc2_hc_continue_transfer(hsotg, chan);
2859 if (!chan->xfer_started) {
2860 dwc2_hc_start_transfer(hsotg, chan);
2863 retval = dwc2_hc_continue_transfer(hsotg, chan);
2871 * Processes periodic channels for the next frame and queues transactions for
2872 * these channels to the DWC_otg controller. After queueing transactions, the
2873 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2874 * to queue as Periodic Tx FIFO or request queue space becomes available.
2875 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2877 * Must be called with interrupt disabled and spinlock held
2879 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2881 struct list_head *qh_ptr;
2887 bool no_queue_space = false;
2888 bool no_fifo_space = false;
2891 /* If empty list then just adjust interrupt enables */
2892 if (list_empty(&hsotg->periodic_sched_assigned))
2896 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2898 tx_status = dwc2_readl(hsotg, HPTXSTS);
2899 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2900 TXSTS_QSPCAVAIL_SHIFT;
2901 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2902 TXSTS_FSPCAVAIL_SHIFT;
2905 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
2907 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
2911 qh_ptr = hsotg->periodic_sched_assigned.next;
2912 while (qh_ptr != &hsotg->periodic_sched_assigned) {
2913 tx_status = dwc2_readl(hsotg, HPTXSTS);
2914 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2915 TXSTS_QSPCAVAIL_SHIFT;
2916 if (qspcavail == 0) {
2917 no_queue_space = true;
2921 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2923 qh_ptr = qh_ptr->next;
2927 /* Make sure EP's TT buffer is clean before queueing qtds */
2928 if (qh->tt_buffer_dirty) {
2929 qh_ptr = qh_ptr->next;
2934 * Set a flag if we're queuing high-bandwidth in slave mode.
2935 * The flag prevents any halts to get into the request queue in
2936 * the middle of multiple high-bandwidth packets getting queued.
2938 if (!hsotg->params.host_dma &&
2939 qh->channel->multi_count > 1)
2940 hsotg->queuing_high_bandwidth = 1;
2942 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2943 TXSTS_FSPCAVAIL_SHIFT;
2944 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2946 no_fifo_space = true;
2951 * In Slave mode, stay on the current transfer until there is
2952 * nothing more to do or the high-bandwidth request count is
2953 * reached. In DMA mode, only need to queue one request. The
2954 * controller automatically handles multiple packets for
2955 * high-bandwidth transfers.
2957 if (hsotg->params.host_dma || status == 0 ||
2958 qh->channel->requests == qh->channel->multi_count) {
2959 qh_ptr = qh_ptr->next;
2961 * Move the QH from the periodic assigned schedule to
2962 * the periodic queued schedule
2964 list_move_tail(&qh->qh_list_entry,
2965 &hsotg->periodic_sched_queued);
2967 /* done queuing high bandwidth */
2968 hsotg->queuing_high_bandwidth = 0;
2973 if (no_queue_space || no_fifo_space ||
2974 (!hsotg->params.host_dma &&
2975 !list_empty(&hsotg->periodic_sched_assigned))) {
2977 * May need to queue more transactions as the request
2978 * queue or Tx FIFO empties. Enable the periodic Tx
2979 * FIFO empty interrupt. (Always use the half-empty
2980 * level to ensure that new requests are loaded as
2981 * soon as possible.)
2983 gintmsk = dwc2_readl(hsotg, GINTMSK);
2984 if (!(gintmsk & GINTSTS_PTXFEMP)) {
2985 gintmsk |= GINTSTS_PTXFEMP;
2986 dwc2_writel(hsotg, gintmsk, GINTMSK);
2990 * Disable the Tx FIFO empty interrupt since there are
2991 * no more transactions that need to be queued right
2992 * now. This function is called from interrupt
2993 * handlers to queue more transactions as transfer
2996 gintmsk = dwc2_readl(hsotg, GINTMSK);
2997 if (gintmsk & GINTSTS_PTXFEMP) {
2998 gintmsk &= ~GINTSTS_PTXFEMP;
2999 dwc2_writel(hsotg, gintmsk, GINTMSK);
3005 * Processes active non-periodic channels and queues transactions for these
3006 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3007 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3008 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3009 * FIFO Empty interrupt is disabled.
3011 * Must be called with interrupt disabled and spinlock held
3013 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3015 struct list_head *orig_qh_ptr;
3022 int no_queue_space = 0;
3023 int no_fifo_space = 0;
3026 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3028 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3029 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3030 TXSTS_QSPCAVAIL_SHIFT;
3031 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3032 TXSTS_FSPCAVAIL_SHIFT;
3033 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
3035 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3039 * Keep track of the starting point. Skip over the start-of-list
3042 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3043 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3044 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3047 * Process once through the active list or until no more space is
3048 * available in the request queue or the Tx FIFO
3051 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3052 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3053 TXSTS_QSPCAVAIL_SHIFT;
3054 if (!hsotg->params.host_dma && qspcavail == 0) {
3059 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3064 /* Make sure EP's TT buffer is clean before queueing qtds */
3065 if (qh->tt_buffer_dirty)
3068 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3069 TXSTS_FSPCAVAIL_SHIFT;
3070 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3074 } else if (status < 0) {
3079 /* Advance to next QH, skipping start-of-list entry */
3080 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3081 if (hsotg->non_periodic_qh_ptr ==
3082 &hsotg->non_periodic_sched_active)
3083 hsotg->non_periodic_qh_ptr =
3084 hsotg->non_periodic_qh_ptr->next;
3085 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3087 if (!hsotg->params.host_dma) {
3088 tx_status = dwc2_readl(hsotg, GNPTXSTS);
3089 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3090 TXSTS_QSPCAVAIL_SHIFT;
3091 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3092 TXSTS_FSPCAVAIL_SHIFT;
3093 dev_vdbg(hsotg->dev,
3094 " NP Tx Req Queue Space Avail (after queue): %d\n",
3096 dev_vdbg(hsotg->dev,
3097 " NP Tx FIFO Space Avail (after queue): %d\n",
3100 if (more_to_do || no_queue_space || no_fifo_space) {
3102 * May need to queue more transactions as the request
3103 * queue or Tx FIFO empties. Enable the non-periodic
3104 * Tx FIFO empty interrupt. (Always use the half-empty
3105 * level to ensure that new requests are loaded as
3106 * soon as possible.)
3108 gintmsk = dwc2_readl(hsotg, GINTMSK);
3109 gintmsk |= GINTSTS_NPTXFEMP;
3110 dwc2_writel(hsotg, gintmsk, GINTMSK);
3113 * Disable the Tx FIFO empty interrupt since there are
3114 * no more transactions that need to be queued right
3115 * now. This function is called from interrupt
3116 * handlers to queue more transactions as transfer
3119 gintmsk = dwc2_readl(hsotg, GINTMSK);
3120 gintmsk &= ~GINTSTS_NPTXFEMP;
3121 dwc2_writel(hsotg, gintmsk, GINTMSK);
3127 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3128 * and queues transactions for these channels to the DWC_otg controller. Called
3129 * from the HCD interrupt handler functions.
3131 * @hsotg: The HCD state structure
3132 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3135 * Must be called with interrupt disabled and spinlock held
3137 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3138 enum dwc2_transaction_type tr_type)
3140 #ifdef DWC2_DEBUG_SOF
3141 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3143 /* Process host channels associated with periodic transfers */
3144 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3145 tr_type == DWC2_TRANSACTION_ALL)
3146 dwc2_process_periodic_channels(hsotg);
3148 /* Process host channels associated with non-periodic transfers */
3149 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3150 tr_type == DWC2_TRANSACTION_ALL) {
3151 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3152 dwc2_process_non_periodic_channels(hsotg);
3155 * Ensure NP Tx FIFO empty interrupt is disabled when
3156 * there are no non-periodic transfers to process
3158 u32 gintmsk = dwc2_readl(hsotg, GINTMSK);
3160 gintmsk &= ~GINTSTS_NPTXFEMP;
3161 dwc2_writel(hsotg, gintmsk, GINTMSK);
3166 static void dwc2_conn_id_status_change(struct work_struct *work)
3168 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3172 unsigned long flags;
3174 dev_dbg(hsotg->dev, "%s()\n", __func__);
3176 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3177 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3178 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3179 !!(gotgctl & GOTGCTL_CONID_B));
3181 /* B-Device connector (Device Mode) */
3182 if (gotgctl & GOTGCTL_CONID_B) {
3183 dwc2_vbus_supply_exit(hsotg);
3184 /* Wait for switch to device mode */
3185 dev_dbg(hsotg->dev, "connId B\n");
3186 if (hsotg->bus_suspended) {
3187 dev_info(hsotg->dev,
3188 "Do port resume before switching to device mode\n");
3189 dwc2_port_resume(hsotg);
3191 while (!dwc2_is_device_mode(hsotg)) {
3192 dev_info(hsotg->dev,
3193 "Waiting for Peripheral Mode, Mode=%s\n",
3194 dwc2_is_host_mode(hsotg) ? "Host" :
3198 * Sometimes the initial GOTGCTRL read is wrong, so
3199 * check it again and jump to host mode if that was
3202 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3203 if (!(gotgctl & GOTGCTL_CONID_B))
3210 "Connection id status change timed out\n");
3211 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3212 dwc2_core_init(hsotg, false);
3213 dwc2_enable_global_interrupts(hsotg);
3214 spin_lock_irqsave(&hsotg->lock, flags);
3215 dwc2_hsotg_core_init_disconnected(hsotg, false);
3216 spin_unlock_irqrestore(&hsotg->lock, flags);
3217 /* Enable ACG feature in device mode,if supported */
3218 dwc2_enable_acg(hsotg);
3219 dwc2_hsotg_core_connect(hsotg);
3222 /* A-Device connector (Host Mode) */
3223 dev_dbg(hsotg->dev, "connId A\n");
3224 while (!dwc2_is_host_mode(hsotg)) {
3225 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3226 dwc2_is_host_mode(hsotg) ?
3227 "Host" : "Peripheral");
3234 "Connection id status change timed out\n");
3236 spin_lock_irqsave(&hsotg->lock, flags);
3237 dwc2_hsotg_disconnect(hsotg);
3238 spin_unlock_irqrestore(&hsotg->lock, flags);
3240 hsotg->op_state = OTG_STATE_A_HOST;
3241 /* Initialize the Core for Host mode */
3242 dwc2_core_init(hsotg, false);
3243 dwc2_enable_global_interrupts(hsotg);
3244 dwc2_hcd_start(hsotg);
3248 static void dwc2_wakeup_detected(struct timer_list *t)
3250 struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3253 dev_dbg(hsotg->dev, "%s()\n", __func__);
3256 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3257 * so that OPT tests pass with all PHYs.)
3259 hprt0 = dwc2_read_hprt0(hsotg);
3260 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3261 hprt0 &= ~HPRT0_RES;
3262 dwc2_writel(hsotg, hprt0, HPRT0);
3263 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3264 dwc2_readl(hsotg, HPRT0));
3266 dwc2_hcd_rem_wakeup(hsotg);
3267 hsotg->bus_suspended = false;
3269 /* Change to L0 state */
3270 hsotg->lx_state = DWC2_L0;
3273 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3275 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3277 return hcd->self.b_hnp_enable;
3280 /* Must NOT be called with interrupt disabled or spinlock held */
3281 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3283 unsigned long flags;
3288 dev_dbg(hsotg->dev, "%s()\n", __func__);
3290 spin_lock_irqsave(&hsotg->lock, flags);
3292 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3293 gotgctl = dwc2_readl(hsotg, GOTGCTL);
3294 gotgctl |= GOTGCTL_HSTSETHNPEN;
3295 dwc2_writel(hsotg, gotgctl, GOTGCTL);
3296 hsotg->op_state = OTG_STATE_A_SUSPEND;
3299 hprt0 = dwc2_read_hprt0(hsotg);
3300 hprt0 |= HPRT0_SUSP;
3301 dwc2_writel(hsotg, hprt0, HPRT0);
3303 hsotg->bus_suspended = true;
3306 * If power_down is supported, Phy clock will be suspended
3307 * after registers are backuped.
3309 if (!hsotg->params.power_down) {
3310 /* Suspend the Phy Clock */
3311 pcgctl = dwc2_readl(hsotg, PCGCTL);
3312 pcgctl |= PCGCTL_STOPPCLK;
3313 dwc2_writel(hsotg, pcgctl, PCGCTL);
3317 /* For HNP the bus must be suspended for at least 200ms */
3318 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3319 pcgctl = dwc2_readl(hsotg, PCGCTL);
3320 pcgctl &= ~PCGCTL_STOPPCLK;
3321 dwc2_writel(hsotg, pcgctl, PCGCTL);
3323 spin_unlock_irqrestore(&hsotg->lock, flags);
3327 spin_unlock_irqrestore(&hsotg->lock, flags);
3331 /* Must NOT be called with interrupt disabled or spinlock held */
3332 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3334 unsigned long flags;
3338 spin_lock_irqsave(&hsotg->lock, flags);
3341 * If power_down is supported, Phy clock is already resumed
3342 * after registers restore.
3344 if (!hsotg->params.power_down) {
3345 pcgctl = dwc2_readl(hsotg, PCGCTL);
3346 pcgctl &= ~PCGCTL_STOPPCLK;
3347 dwc2_writel(hsotg, pcgctl, PCGCTL);
3348 spin_unlock_irqrestore(&hsotg->lock, flags);
3350 spin_lock_irqsave(&hsotg->lock, flags);
3353 hprt0 = dwc2_read_hprt0(hsotg);
3355 hprt0 &= ~HPRT0_SUSP;
3356 dwc2_writel(hsotg, hprt0, HPRT0);
3357 spin_unlock_irqrestore(&hsotg->lock, flags);
3359 msleep(USB_RESUME_TIMEOUT);
3361 spin_lock_irqsave(&hsotg->lock, flags);
3362 hprt0 = dwc2_read_hprt0(hsotg);
3363 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3364 dwc2_writel(hsotg, hprt0, HPRT0);
3365 hsotg->bus_suspended = false;
3366 spin_unlock_irqrestore(&hsotg->lock, flags);
3369 /* Handles hub class-specific requests */
3370 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3371 u16 wvalue, u16 windex, char *buf, u16 wlength)
3373 struct usb_hub_descriptor *hub_desc;
3382 case ClearHubFeature:
3383 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3386 case C_HUB_LOCAL_POWER:
3387 case C_HUB_OVER_CURRENT:
3388 /* Nothing required here */
3394 "ClearHubFeature request %1xh unknown\n",
3399 case ClearPortFeature:
3400 if (wvalue != USB_PORT_FEAT_L1)
3401 if (!windex || windex > 1)
3404 case USB_PORT_FEAT_ENABLE:
3406 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3407 hprt0 = dwc2_read_hprt0(hsotg);
3409 dwc2_writel(hsotg, hprt0, HPRT0);
3412 case USB_PORT_FEAT_SUSPEND:
3414 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3416 if (hsotg->bus_suspended) {
3417 if (hsotg->hibernated)
3418 dwc2_exit_hibernation(hsotg, 0, 0, 1);
3420 dwc2_port_resume(hsotg);
3424 case USB_PORT_FEAT_POWER:
3426 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3427 hprt0 = dwc2_read_hprt0(hsotg);
3428 pwr = hprt0 & HPRT0_PWR;
3429 hprt0 &= ~HPRT0_PWR;
3430 dwc2_writel(hsotg, hprt0, HPRT0);
3432 dwc2_vbus_supply_exit(hsotg);
3435 case USB_PORT_FEAT_INDICATOR:
3437 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3438 /* Port indicator not supported */
3441 case USB_PORT_FEAT_C_CONNECTION:
3443 * Clears driver's internal Connect Status Change flag
3446 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3447 hsotg->flags.b.port_connect_status_change = 0;
3450 case USB_PORT_FEAT_C_RESET:
3451 /* Clears driver's internal Port Reset Change flag */
3453 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3454 hsotg->flags.b.port_reset_change = 0;
3457 case USB_PORT_FEAT_C_ENABLE:
3459 * Clears the driver's internal Port Enable/Disable
3463 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3464 hsotg->flags.b.port_enable_change = 0;
3467 case USB_PORT_FEAT_C_SUSPEND:
3469 * Clears the driver's internal Port Suspend Change
3470 * flag, which is set when resume signaling on the host
3474 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3475 hsotg->flags.b.port_suspend_change = 0;
3478 case USB_PORT_FEAT_C_PORT_L1:
3480 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3481 hsotg->flags.b.port_l1_change = 0;
3484 case USB_PORT_FEAT_C_OVER_CURRENT:
3486 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3487 hsotg->flags.b.port_over_current_change = 0;
3493 "ClearPortFeature request %1xh unknown or unsupported\n",
3498 case GetHubDescriptor:
3499 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3500 hub_desc = (struct usb_hub_descriptor *)buf;
3501 hub_desc->bDescLength = 9;
3502 hub_desc->bDescriptorType = USB_DT_HUB;
3503 hub_desc->bNbrPorts = 1;
3504 hub_desc->wHubCharacteristics =
3505 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3506 HUB_CHAR_INDV_PORT_OCPM);
3507 hub_desc->bPwrOn2PwrGood = 1;
3508 hub_desc->bHubContrCurrent = 0;
3509 hub_desc->u.hs.DeviceRemovable[0] = 0;
3510 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3514 dev_dbg(hsotg->dev, "GetHubStatus\n");
3519 dev_vdbg(hsotg->dev,
3520 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3522 if (!windex || windex > 1)
3526 if (hsotg->flags.b.port_connect_status_change)
3527 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3528 if (hsotg->flags.b.port_enable_change)
3529 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3530 if (hsotg->flags.b.port_suspend_change)
3531 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3532 if (hsotg->flags.b.port_l1_change)
3533 port_status |= USB_PORT_STAT_C_L1 << 16;
3534 if (hsotg->flags.b.port_reset_change)
3535 port_status |= USB_PORT_STAT_C_RESET << 16;
3536 if (hsotg->flags.b.port_over_current_change) {
3537 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3538 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3541 if (!hsotg->flags.b.port_connect_status) {
3543 * The port is disconnected, which means the core is
3544 * either in device mode or it soon will be. Just
3545 * return 0's for the remainder of the port status
3546 * since the port register can't be read if the core
3547 * is in device mode.
3549 *(__le32 *)buf = cpu_to_le32(port_status);
3553 hprt0 = dwc2_readl(hsotg, HPRT0);
3554 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3556 if (hprt0 & HPRT0_CONNSTS)
3557 port_status |= USB_PORT_STAT_CONNECTION;
3558 if (hprt0 & HPRT0_ENA)
3559 port_status |= USB_PORT_STAT_ENABLE;
3560 if (hprt0 & HPRT0_SUSP)
3561 port_status |= USB_PORT_STAT_SUSPEND;
3562 if (hprt0 & HPRT0_OVRCURRACT)
3563 port_status |= USB_PORT_STAT_OVERCURRENT;
3564 if (hprt0 & HPRT0_RST)
3565 port_status |= USB_PORT_STAT_RESET;
3566 if (hprt0 & HPRT0_PWR)
3567 port_status |= USB_PORT_STAT_POWER;
3569 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3570 if (speed == HPRT0_SPD_HIGH_SPEED)
3571 port_status |= USB_PORT_STAT_HIGH_SPEED;
3572 else if (speed == HPRT0_SPD_LOW_SPEED)
3573 port_status |= USB_PORT_STAT_LOW_SPEED;
3575 if (hprt0 & HPRT0_TSTCTL_MASK)
3576 port_status |= USB_PORT_STAT_TEST;
3577 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3579 if (hsotg->params.dma_desc_fs_enable) {
3581 * Enable descriptor DMA only if a full speed
3582 * device is connected.
3584 if (hsotg->new_connection &&
3586 (USB_PORT_STAT_CONNECTION |
3587 USB_PORT_STAT_HIGH_SPEED |
3588 USB_PORT_STAT_LOW_SPEED)) ==
3589 USB_PORT_STAT_CONNECTION)) {
3592 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3593 hsotg->params.dma_desc_enable = true;
3594 hcfg = dwc2_readl(hsotg, HCFG);
3595 hcfg |= HCFG_DESCDMA;
3596 dwc2_writel(hsotg, hcfg, HCFG);
3597 hsotg->new_connection = false;
3601 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3602 *(__le32 *)buf = cpu_to_le32(port_status);
3606 dev_dbg(hsotg->dev, "SetHubFeature\n");
3607 /* No HUB features supported */
3610 case SetPortFeature:
3611 dev_dbg(hsotg->dev, "SetPortFeature\n");
3612 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3615 if (!hsotg->flags.b.port_connect_status) {
3617 * The port is disconnected, which means the core is
3618 * either in device mode or it soon will be. Just
3619 * return without doing anything since the port
3620 * register can't be written if the core is in device
3627 case USB_PORT_FEAT_SUSPEND:
3629 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3630 if (windex != hsotg->otg_port)
3632 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_HIBERNATION)
3633 dwc2_enter_hibernation(hsotg, 1);
3635 dwc2_port_suspend(hsotg, windex);
3638 case USB_PORT_FEAT_POWER:
3640 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3641 hprt0 = dwc2_read_hprt0(hsotg);
3642 pwr = hprt0 & HPRT0_PWR;
3644 dwc2_writel(hsotg, hprt0, HPRT0);
3646 dwc2_vbus_supply_init(hsotg);
3649 case USB_PORT_FEAT_RESET:
3650 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_HIBERNATION &&
3652 dwc2_exit_hibernation(hsotg, 0, 1, 1);
3653 hprt0 = dwc2_read_hprt0(hsotg);
3655 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3656 pcgctl = dwc2_readl(hsotg, PCGCTL);
3657 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3658 dwc2_writel(hsotg, pcgctl, PCGCTL);
3659 /* ??? Original driver does this */
3660 dwc2_writel(hsotg, 0, PCGCTL);
3662 hprt0 = dwc2_read_hprt0(hsotg);
3663 pwr = hprt0 & HPRT0_PWR;
3664 /* Clear suspend bit if resetting from suspend state */
3665 hprt0 &= ~HPRT0_SUSP;
3668 * When B-Host the Port reset bit is set in the Start
3669 * HCD Callback function, so that the reset is started
3670 * within 1ms of the HNP success interrupt
3672 if (!dwc2_hcd_is_b_host(hsotg)) {
3673 hprt0 |= HPRT0_PWR | HPRT0_RST;
3675 "In host mode, hprt0=%08x\n", hprt0);
3676 dwc2_writel(hsotg, hprt0, HPRT0);
3678 dwc2_vbus_supply_init(hsotg);
3681 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3683 hprt0 &= ~HPRT0_RST;
3684 dwc2_writel(hsotg, hprt0, HPRT0);
3685 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3688 case USB_PORT_FEAT_INDICATOR:
3690 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3694 case USB_PORT_FEAT_TEST:
3695 hprt0 = dwc2_read_hprt0(hsotg);
3697 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3698 hprt0 &= ~HPRT0_TSTCTL_MASK;
3699 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3700 dwc2_writel(hsotg, hprt0, HPRT0);
3706 "SetPortFeature %1xh unknown or unsupported\n",
3716 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3717 typereq, windex, wvalue);
3724 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3731 retval = (hsotg->flags.b.port_connect_status_change ||
3732 hsotg->flags.b.port_reset_change ||
3733 hsotg->flags.b.port_enable_change ||
3734 hsotg->flags.b.port_suspend_change ||
3735 hsotg->flags.b.port_over_current_change);
3739 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3740 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3741 hsotg->flags.b.port_connect_status_change);
3742 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3743 hsotg->flags.b.port_reset_change);
3744 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3745 hsotg->flags.b.port_enable_change);
3746 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3747 hsotg->flags.b.port_suspend_change);
3748 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3749 hsotg->flags.b.port_over_current_change);
3755 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3757 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3759 #ifdef DWC2_DEBUG_SOF
3760 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3761 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3763 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3766 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3768 u32 hprt = dwc2_readl(hsotg, HPRT0);
3769 u32 hfir = dwc2_readl(hsotg, HFIR);
3770 u32 hfnum = dwc2_readl(hsotg, HFNUM);
3771 unsigned int us_per_frame;
3772 unsigned int frame_number;
3773 unsigned int remaining;
3774 unsigned int interval;
3775 unsigned int phy_clks;
3777 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3778 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3780 /* Extract fields */
3781 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3782 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3783 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3786 * Number of phy clocks since the last tick of the frame number after
3789 phy_clks = (interval - remaining) +
3790 DIV_ROUND_UP(interval * us, us_per_frame);
3792 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3795 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3797 return hsotg->op_state == OTG_STATE_B_HOST;
3800 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3804 struct dwc2_hcd_urb *urb;
3806 urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags);
3808 urb->packet_count = iso_desc_count;
3812 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3813 struct dwc2_hcd_urb *urb, u8 dev_addr,
3814 u8 ep_num, u8 ep_type, u8 ep_dir,
3815 u16 maxp, u16 maxp_mult)
3818 ep_type == USB_ENDPOINT_XFER_BULK ||
3819 ep_type == USB_ENDPOINT_XFER_CONTROL)
3820 dev_vdbg(hsotg->dev,
3821 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n",
3822 dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult);
3823 urb->pipe_info.dev_addr = dev_addr;
3824 urb->pipe_info.ep_num = ep_num;
3825 urb->pipe_info.pipe_type = ep_type;
3826 urb->pipe_info.pipe_dir = ep_dir;
3827 urb->pipe_info.maxp = maxp;
3828 urb->pipe_info.maxp_mult = maxp_mult;
3832 * NOTE: This function will be removed once the peripheral controller code
3833 * is integrated and the driver is stable
3835 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3838 struct dwc2_host_chan *chan;
3839 struct dwc2_hcd_urb *urb;
3840 struct dwc2_qtd *qtd;
3846 num_channels = hsotg->params.host_channels;
3847 dev_dbg(hsotg->dev, "\n");
3849 "************************************************************\n");
3850 dev_dbg(hsotg->dev, "HCD State:\n");
3851 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
3853 for (i = 0; i < num_channels; i++) {
3854 chan = hsotg->hc_ptr_array[i];
3855 dev_dbg(hsotg->dev, " Channel %d:\n", i);
3857 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3858 chan->dev_addr, chan->ep_num, chan->ep_is_in);
3859 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
3860 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
3861 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
3862 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
3863 chan->data_pid_start);
3864 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
3865 dev_dbg(hsotg->dev, " xfer_started: %d\n",
3866 chan->xfer_started);
3867 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
3868 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
3869 (unsigned long)chan->xfer_dma);
3870 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
3871 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
3872 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
3873 chan->halt_on_queue);
3874 dev_dbg(hsotg->dev, " halt_pending: %d\n",
3875 chan->halt_pending);
3876 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
3877 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
3878 dev_dbg(hsotg->dev, " complete_split: %d\n",
3879 chan->complete_split);
3880 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
3881 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
3882 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
3883 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
3884 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
3886 if (chan->xfer_started) {
3887 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3889 hfnum = dwc2_readl(hsotg, HFNUM);
3890 hcchar = dwc2_readl(hsotg, HCCHAR(i));
3891 hctsiz = dwc2_readl(hsotg, HCTSIZ(i));
3892 hcint = dwc2_readl(hsotg, HCINT(i));
3893 hcintmsk = dwc2_readl(hsotg, HCINTMSK(i));
3894 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
3895 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
3896 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
3897 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
3898 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
3901 if (!(chan->xfer_started && chan->qh))
3904 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3905 if (!qtd->in_process)
3908 dev_dbg(hsotg->dev, " URB Info:\n");
3909 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
3913 " Dev: %d, EP: %d %s\n",
3914 dwc2_hcd_get_dev_addr(&urb->pipe_info),
3915 dwc2_hcd_get_ep_num(&urb->pipe_info),
3916 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3919 " Max packet size: %d (%d mult)\n",
3920 dwc2_hcd_get_maxp(&urb->pipe_info),
3921 dwc2_hcd_get_maxp_mult(&urb->pipe_info));
3923 " transfer_buffer: %p\n",
3926 " transfer_dma: %08lx\n",
3927 (unsigned long)urb->dma);
3929 " transfer_buffer_length: %d\n",
3931 dev_dbg(hsotg->dev, " actual_length: %d\n",
3932 urb->actual_length);
3937 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
3938 hsotg->non_periodic_channels);
3939 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
3940 hsotg->periodic_channels);
3941 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
3942 np_tx_status = dwc2_readl(hsotg, GNPTXSTS);
3943 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
3944 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3945 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
3946 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3947 p_tx_status = dwc2_readl(hsotg, HPTXSTS);
3948 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
3949 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3950 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
3951 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3952 dwc2_dump_global_registers(hsotg);
3953 dwc2_dump_host_registers(hsotg);
3955 "************************************************************\n");
3956 dev_dbg(hsotg->dev, "\n");
3960 struct wrapper_priv_data {
3961 struct dwc2_hsotg *hsotg;
3964 /* Gets the dwc2_hsotg from a usb_hcd */
3965 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
3967 struct wrapper_priv_data *p;
3969 p = (struct wrapper_priv_data *)&hcd->hcd_priv;
3974 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
3976 * This will get the dwc2_tt structure (and ttport) associated with the given
3977 * context (which is really just a struct urb pointer).
3979 * The first time this is called for a given TT we allocate memory for our
3980 * structure. When everyone is done and has called dwc2_host_put_tt_info()
3981 * then the refcount for the structure will go to 0 and we'll free it.
3983 * @hsotg: The HCD state structure for the DWC OTG controller.
3984 * @context: The priv pointer from a struct dwc2_hcd_urb.
3985 * @mem_flags: Flags for allocating memory.
3986 * @ttport: We'll return this device's port number here. That's used to
3987 * reference into the bitmap if we're on a multi_tt hub.
3989 * Return: a pointer to a struct dwc2_tt. Don't forget to call
3990 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
3993 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
3994 gfp_t mem_flags, int *ttport)
3996 struct urb *urb = context;
3997 struct dwc2_tt *dwc_tt = NULL;
4000 *ttport = urb->dev->ttport;
4002 dwc_tt = urb->dev->tt->hcpriv;
4007 * For single_tt we need one schedule. For multi_tt
4008 * we need one per port.
4010 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4011 sizeof(dwc_tt->periodic_bitmaps[0]);
4012 if (urb->dev->tt->multi)
4013 bitmap_size *= urb->dev->tt->hub->maxchild;
4015 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4020 dwc_tt->usb_tt = urb->dev->tt;
4021 dwc_tt->usb_tt->hcpriv = dwc_tt;
4031 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4033 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4034 * of the structure are done.
4036 * It's OK to call this with NULL.
4038 * @hsotg: The HCD state structure for the DWC OTG controller.
4039 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4041 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4043 /* Model kfree and make put of NULL a no-op */
4047 WARN_ON(dwc_tt->refcount < 1);
4050 if (!dwc_tt->refcount) {
4051 dwc_tt->usb_tt->hcpriv = NULL;
4056 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4058 struct urb *urb = context;
4060 return urb->dev->speed;
4063 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4066 struct usb_bus *bus = hcd_to_bus(hcd);
4069 bus->bandwidth_allocated += bw / urb->interval;
4070 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4071 bus->bandwidth_isoc_reqs++;
4073 bus->bandwidth_int_reqs++;
4076 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4079 struct usb_bus *bus = hcd_to_bus(hcd);
4082 bus->bandwidth_allocated -= bw / urb->interval;
4083 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4084 bus->bandwidth_isoc_reqs--;
4086 bus->bandwidth_int_reqs--;
4090 * Sets the final status of an URB and returns it to the upper layer. Any
4091 * required cleanup of the URB is performed.
4093 * Must be called with interrupt disabled and spinlock held
4095 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4102 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4107 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4111 urb = qtd->urb->priv;
4113 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4117 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4120 dev_vdbg(hsotg->dev,
4121 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4122 __func__, urb, usb_pipedevice(urb->pipe),
4123 usb_pipeendpoint(urb->pipe),
4124 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4125 urb->actual_length);
4127 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4128 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4129 for (i = 0; i < urb->number_of_packets; ++i) {
4130 urb->iso_frame_desc[i].actual_length =
4131 dwc2_hcd_urb_get_iso_desc_actual_length(
4133 urb->iso_frame_desc[i].status =
4134 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4138 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4139 for (i = 0; i < urb->number_of_packets; i++)
4140 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4141 i, urb->iso_frame_desc[i].status);
4144 urb->status = status;
4146 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4147 urb->actual_length < urb->transfer_buffer_length)
4148 urb->status = -EREMOTEIO;
4151 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4152 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4153 struct usb_host_endpoint *ep = urb->ep;
4156 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4157 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4161 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4166 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4170 * Work queue function for starting the HCD when A-Cable is connected
4172 static void dwc2_hcd_start_func(struct work_struct *work)
4174 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4177 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4178 dwc2_host_start(hsotg);
4182 * Reset work queue function
4184 static void dwc2_hcd_reset_func(struct work_struct *work)
4186 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4188 unsigned long flags;
4191 dev_dbg(hsotg->dev, "USB RESET function called\n");
4193 spin_lock_irqsave(&hsotg->lock, flags);
4195 hprt0 = dwc2_read_hprt0(hsotg);
4196 hprt0 &= ~HPRT0_RST;
4197 dwc2_writel(hsotg, hprt0, HPRT0);
4198 hsotg->flags.b.port_reset_change = 1;
4200 spin_unlock_irqrestore(&hsotg->lock, flags);
4203 static void dwc2_hcd_phy_reset_func(struct work_struct *work)
4205 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4209 ret = phy_reset(hsotg->phy);
4211 dev_warn(hsotg->dev, "PHY reset failed\n");
4215 * =========================================================================
4216 * Linux HC Driver Functions
4217 * =========================================================================
4221 * Initializes the DWC_otg controller and its root hub and prepares it for host
4222 * mode operation. Activates the root port. Returns 0 on success and a negative
4223 * error code on failure.
4225 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4227 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4228 struct usb_bus *bus = hcd_to_bus(hcd);
4229 unsigned long flags;
4233 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4235 spin_lock_irqsave(&hsotg->lock, flags);
4236 hsotg->lx_state = DWC2_L0;
4237 hcd->state = HC_STATE_RUNNING;
4238 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4240 if (dwc2_is_device_mode(hsotg)) {
4241 spin_unlock_irqrestore(&hsotg->lock, flags);
4242 return 0; /* why 0 ?? */
4245 dwc2_hcd_reinit(hsotg);
4247 hprt0 = dwc2_read_hprt0(hsotg);
4248 /* Has vbus power been turned on in dwc2_core_host_init ? */
4249 if (hprt0 & HPRT0_PWR) {
4250 /* Enable external vbus supply before resuming root hub */
4251 spin_unlock_irqrestore(&hsotg->lock, flags);
4252 ret = dwc2_vbus_supply_init(hsotg);
4255 spin_lock_irqsave(&hsotg->lock, flags);
4258 /* Initialize and connect root hub if one is not already attached */
4259 if (bus->root_hub) {
4260 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4261 /* Inform the HUB driver to resume */
4262 usb_hcd_resume_root_hub(hcd);
4265 spin_unlock_irqrestore(&hsotg->lock, flags);
4271 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4274 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4276 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4277 unsigned long flags;
4280 /* Turn off all host-specific interrupts */
4281 dwc2_disable_host_interrupts(hsotg);
4283 /* Wait for interrupt processing to finish */
4284 synchronize_irq(hcd->irq);
4286 spin_lock_irqsave(&hsotg->lock, flags);
4287 hprt0 = dwc2_read_hprt0(hsotg);
4288 /* Ensure hcd is disconnected */
4289 dwc2_hcd_disconnect(hsotg, true);
4290 dwc2_hcd_stop(hsotg);
4291 hsotg->lx_state = DWC2_L3;
4292 hcd->state = HC_STATE_HALT;
4293 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4294 spin_unlock_irqrestore(&hsotg->lock, flags);
4296 /* keep balanced supply init/exit by checking HPRT0_PWR */
4297 if (hprt0 & HPRT0_PWR)
4298 dwc2_vbus_supply_exit(hsotg);
4300 usleep_range(1000, 3000);
4303 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4305 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4306 unsigned long flags;
4311 spin_lock_irqsave(&hsotg->lock, flags);
4313 if (dwc2_is_device_mode(hsotg))
4316 if (hsotg->lx_state != DWC2_L0)
4319 if (!HCD_HW_ACCESSIBLE(hcd))
4322 if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4325 if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL)
4326 goto skip_power_saving;
4329 * Drive USB suspend and disable port Power
4330 * if usb bus is not suspended.
4332 if (!hsotg->bus_suspended) {
4333 hprt0 = dwc2_read_hprt0(hsotg);
4334 if (hprt0 & HPRT0_CONNSTS) {
4335 hprt0 |= HPRT0_SUSP;
4336 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL)
4337 hprt0 &= ~HPRT0_PWR;
4338 dwc2_writel(hsotg, hprt0, HPRT0);
4340 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4341 spin_unlock_irqrestore(&hsotg->lock, flags);
4342 dwc2_vbus_supply_exit(hsotg);
4343 spin_lock_irqsave(&hsotg->lock, flags);
4345 pcgctl = readl(hsotg->regs + PCGCTL);
4346 pcgctl |= PCGCTL_STOPPCLK;
4347 writel(pcgctl, hsotg->regs + PCGCTL);
4351 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4352 /* Enter partial_power_down */
4353 ret = dwc2_enter_partial_power_down(hsotg);
4355 if (ret != -ENOTSUPP)
4357 "enter partial_power_down failed\n");
4358 goto skip_power_saving;
4361 /* After entering partial_power_down, hardware is no more accessible */
4362 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4365 /* Ask phy to be suspended */
4366 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4367 spin_unlock_irqrestore(&hsotg->lock, flags);
4368 usb_phy_set_suspend(hsotg->uphy, true);
4369 spin_lock_irqsave(&hsotg->lock, flags);
4373 hsotg->lx_state = DWC2_L2;
4375 spin_unlock_irqrestore(&hsotg->lock, flags);
4380 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4382 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4383 unsigned long flags;
4387 spin_lock_irqsave(&hsotg->lock, flags);
4389 if (dwc2_is_device_mode(hsotg))
4392 if (hsotg->lx_state != DWC2_L2)
4395 if (hsotg->params.power_down > DWC2_POWER_DOWN_PARAM_PARTIAL) {
4396 hsotg->lx_state = DWC2_L0;
4401 * Enable power if not already done.
4402 * This must not be spinlocked since duration
4403 * of this call is unknown.
4405 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4406 spin_unlock_irqrestore(&hsotg->lock, flags);
4407 usb_phy_set_suspend(hsotg->uphy, false);
4408 spin_lock_irqsave(&hsotg->lock, flags);
4411 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4413 * Set HW accessible bit before powering on the controller
4414 * since an interrupt may rise.
4416 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4419 /* Exit partial_power_down */
4420 ret = dwc2_exit_partial_power_down(hsotg, true);
4421 if (ret && (ret != -ENOTSUPP))
4422 dev_err(hsotg->dev, "exit partial_power_down failed\n");
4424 pcgctl = readl(hsotg->regs + PCGCTL);
4425 pcgctl &= ~PCGCTL_STOPPCLK;
4426 writel(pcgctl, hsotg->regs + PCGCTL);
4429 hsotg->lx_state = DWC2_L0;
4431 spin_unlock_irqrestore(&hsotg->lock, flags);
4433 if (hsotg->bus_suspended) {
4434 spin_lock_irqsave(&hsotg->lock, flags);
4435 hsotg->flags.b.port_suspend_change = 1;
4436 spin_unlock_irqrestore(&hsotg->lock, flags);
4437 dwc2_port_resume(hsotg);
4439 if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_PARTIAL) {
4440 dwc2_vbus_supply_init(hsotg);
4442 /* Wait for controller to correctly update D+/D- level */
4443 usleep_range(3000, 5000);
4447 * Clear Port Enable and Port Status changes.
4448 * Enable Port Power.
4450 dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET |
4451 HPRT0_ENACHG, HPRT0);
4452 /* Wait for controller to detect Port Connect */
4453 usleep_range(5000, 7000);
4458 spin_unlock_irqrestore(&hsotg->lock, flags);
4463 /* Returns the current frame number */
4464 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4466 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4468 return dwc2_hcd_get_frame_number(hsotg);
4471 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4474 #ifdef VERBOSE_DEBUG
4475 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4476 char *pipetype = NULL;
4479 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4480 dev_vdbg(hsotg->dev, " Device address: %d\n",
4481 usb_pipedevice(urb->pipe));
4482 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4483 usb_pipeendpoint(urb->pipe),
4484 usb_pipein(urb->pipe) ? "IN" : "OUT");
4486 switch (usb_pipetype(urb->pipe)) {
4488 pipetype = "CONTROL";
4493 case PIPE_INTERRUPT:
4494 pipetype = "INTERRUPT";
4496 case PIPE_ISOCHRONOUS:
4497 pipetype = "ISOCHRONOUS";
4501 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4502 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4505 switch (urb->dev->speed) {
4506 case USB_SPEED_HIGH:
4509 case USB_SPEED_FULL:
4520 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4521 dev_vdbg(hsotg->dev, " Max packet size: %d (%d mult)\n",
4522 usb_endpoint_maxp(&urb->ep->desc),
4523 usb_endpoint_maxp_mult(&urb->ep->desc));
4525 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4526 urb->transfer_buffer_length);
4527 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4528 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4529 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4530 urb->setup_packet, (unsigned long)urb->setup_dma);
4531 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4533 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4536 for (i = 0; i < urb->number_of_packets; i++) {
4537 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4538 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4539 urb->iso_frame_desc[i].offset,
4540 urb->iso_frame_desc[i].length);
4547 * Starts processing a USB transfer request specified by a USB Request Block
4548 * (URB). mem_flags indicates the type of memory allocation to use while
4549 * processing this URB.
4551 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4554 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4555 struct usb_host_endpoint *ep = urb->ep;
4556 struct dwc2_hcd_urb *dwc2_urb;
4559 int alloc_bandwidth = 0;
4563 unsigned long flags;
4565 bool qh_allocated = false;
4566 struct dwc2_qtd *qtd;
4569 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4570 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4576 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4577 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4578 spin_lock_irqsave(&hsotg->lock, flags);
4579 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4580 alloc_bandwidth = 1;
4581 spin_unlock_irqrestore(&hsotg->lock, flags);
4584 switch (usb_pipetype(urb->pipe)) {
4586 ep_type = USB_ENDPOINT_XFER_CONTROL;
4588 case PIPE_ISOCHRONOUS:
4589 ep_type = USB_ENDPOINT_XFER_ISOC;
4592 ep_type = USB_ENDPOINT_XFER_BULK;
4594 case PIPE_INTERRUPT:
4595 ep_type = USB_ENDPOINT_XFER_INT;
4599 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4604 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4605 usb_pipeendpoint(urb->pipe), ep_type,
4606 usb_pipein(urb->pipe),
4607 usb_endpoint_maxp(&ep->desc),
4608 usb_endpoint_maxp_mult(&ep->desc));
4610 buf = urb->transfer_buffer;
4612 if (hcd_uses_dma(hcd)) {
4613 if (!buf && (urb->transfer_dma & 3)) {
4615 "%s: unaligned transfer with no transfer_buffer",
4622 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4623 tflags |= URB_GIVEBACK_ASAP;
4624 if (urb->transfer_flags & URB_ZERO_PACKET)
4625 tflags |= URB_SEND_ZERO_PACKET;
4627 dwc2_urb->priv = urb;
4628 dwc2_urb->buf = buf;
4629 dwc2_urb->dma = urb->transfer_dma;
4630 dwc2_urb->length = urb->transfer_buffer_length;
4631 dwc2_urb->setup_packet = urb->setup_packet;
4632 dwc2_urb->setup_dma = urb->setup_dma;
4633 dwc2_urb->flags = tflags;
4634 dwc2_urb->interval = urb->interval;
4635 dwc2_urb->status = -EINPROGRESS;
4637 for (i = 0; i < urb->number_of_packets; ++i)
4638 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4639 urb->iso_frame_desc[i].offset,
4640 urb->iso_frame_desc[i].length);
4642 urb->hcpriv = dwc2_urb;
4643 qh = (struct dwc2_qh *)ep->hcpriv;
4644 /* Create QH for the endpoint if it doesn't exist */
4646 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4652 qh_allocated = true;
4655 qtd = kzalloc(sizeof(*qtd), mem_flags);
4661 spin_lock_irqsave(&hsotg->lock, flags);
4662 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4666 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4670 if (alloc_bandwidth) {
4671 dwc2_allocate_bus_bandwidth(hcd,
4672 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4676 spin_unlock_irqrestore(&hsotg->lock, flags);
4681 dwc2_urb->priv = NULL;
4682 usb_hcd_unlink_urb_from_ep(hcd, urb);
4683 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4684 qh->channel->qh = NULL;
4686 spin_unlock_irqrestore(&hsotg->lock, flags);
4691 struct dwc2_qtd *qtd2, *qtd2_tmp;
4694 dwc2_hcd_qh_unlink(hsotg, qh);
4695 /* Free each QTD in the QH's QTD list */
4696 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4698 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4699 dwc2_hcd_qh_free(hsotg, qh);
4708 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4710 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4713 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4715 unsigned long flags;
4717 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4718 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4720 spin_lock_irqsave(&hsotg->lock, flags);
4722 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4727 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4731 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4733 usb_hcd_unlink_urb_from_ep(hcd, urb);
4738 /* Higher layer software sets URB status */
4739 spin_unlock(&hsotg->lock);
4740 usb_hcd_giveback_urb(hcd, urb, status);
4741 spin_lock(&hsotg->lock);
4743 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4744 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4746 spin_unlock_irqrestore(&hsotg->lock, flags);
4752 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4753 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4754 * must already be dequeued.
4756 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4757 struct usb_host_endpoint *ep)
4759 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4762 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4763 ep->desc.bEndpointAddress, ep->hcpriv);
4764 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4768 * Resets endpoint specific parameter values, in current version used to reset
4769 * the data toggle (as a WA). This function can be called from usb_clear_halt
4772 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4773 struct usb_host_endpoint *ep)
4775 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4776 unsigned long flags;
4779 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4780 ep->desc.bEndpointAddress);
4782 spin_lock_irqsave(&hsotg->lock, flags);
4783 dwc2_hcd_endpoint_reset(hsotg, ep);
4784 spin_unlock_irqrestore(&hsotg->lock, flags);
4788 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4789 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4792 * This function is called by the USB core when an interrupt occurs
4794 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4796 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4798 return dwc2_handle_hcd_intr(hsotg);
4802 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4803 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4804 * is the status change indicator for the single root port. Returns 1 if either
4805 * change indicator is 1, otherwise returns 0.
4807 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4809 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4811 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4815 /* Handles hub class-specific requests */
4816 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4817 u16 windex, char *buf, u16 wlength)
4819 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4820 wvalue, windex, buf, wlength);
4824 /* Handles hub TT buffer clear completions */
4825 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4826 struct usb_host_endpoint *ep)
4828 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4830 unsigned long flags;
4836 spin_lock_irqsave(&hsotg->lock, flags);
4837 qh->tt_buffer_dirty = 0;
4839 if (hsotg->flags.b.port_connect_status)
4840 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4842 spin_unlock_irqrestore(&hsotg->lock, flags);
4846 * HPRT0_SPD_HIGH_SPEED: high speed
4847 * HPRT0_SPD_FULL_SPEED: full speed
4849 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4851 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4853 if (hsotg->params.speed == speed)
4856 hsotg->params.speed = speed;
4857 queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4860 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4862 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4864 if (!hsotg->params.change_speed_quirk)
4868 * On removal, set speed to default high-speed.
4870 if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4871 udev->parent->speed < USB_SPEED_HIGH) {
4872 dev_info(hsotg->dev, "Set speed to default high-speed\n");
4873 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4877 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4879 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4881 if (!hsotg->params.change_speed_quirk)
4884 if (udev->speed == USB_SPEED_HIGH) {
4885 dev_info(hsotg->dev, "Set speed to high-speed\n");
4886 dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4887 } else if ((udev->speed == USB_SPEED_FULL ||
4888 udev->speed == USB_SPEED_LOW)) {
4890 * Change speed setting to full-speed if there's
4891 * a full-speed or low-speed device plugged in.
4893 dev_info(hsotg->dev, "Set speed to full-speed\n");
4894 dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
4900 static struct hc_driver dwc2_hc_driver = {
4901 .description = "dwc2_hsotg",
4902 .product_desc = "DWC OTG Controller",
4903 .hcd_priv_size = sizeof(struct wrapper_priv_data),
4905 .irq = _dwc2_hcd_irq,
4906 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4908 .start = _dwc2_hcd_start,
4909 .stop = _dwc2_hcd_stop,
4910 .urb_enqueue = _dwc2_hcd_urb_enqueue,
4911 .urb_dequeue = _dwc2_hcd_urb_dequeue,
4912 .endpoint_disable = _dwc2_hcd_endpoint_disable,
4913 .endpoint_reset = _dwc2_hcd_endpoint_reset,
4914 .get_frame_number = _dwc2_hcd_get_frame_number,
4916 .hub_status_data = _dwc2_hcd_hub_status_data,
4917 .hub_control = _dwc2_hcd_hub_control,
4918 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4920 .bus_suspend = _dwc2_hcd_suspend,
4921 .bus_resume = _dwc2_hcd_resume,
4923 .map_urb_for_dma = dwc2_map_urb_for_dma,
4924 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
4928 * Frees secondary storage associated with the dwc2_hsotg structure contained
4929 * in the struct usb_hcd field
4931 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4937 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4939 /* Free memory for QH/QTD lists */
4940 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4941 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
4942 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4943 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4944 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4945 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4946 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4948 /* Free memory for the host channels */
4949 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4950 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4953 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4955 hsotg->hc_ptr_array[i] = NULL;
4960 if (hsotg->params.host_dma) {
4961 if (hsotg->status_buf) {
4962 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4964 hsotg->status_buf_dma);
4965 hsotg->status_buf = NULL;
4968 kfree(hsotg->status_buf);
4969 hsotg->status_buf = NULL;
4972 ahbcfg = dwc2_readl(hsotg, GAHBCFG);
4974 /* Disable all interrupts */
4975 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4976 dwc2_writel(hsotg, ahbcfg, GAHBCFG);
4977 dwc2_writel(hsotg, 0, GINTMSK);
4979 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4980 dctl = dwc2_readl(hsotg, DCTL);
4981 dctl |= DCTL_SFTDISCON;
4982 dwc2_writel(hsotg, dctl, DCTL);
4985 if (hsotg->wq_otg) {
4986 if (!cancel_work_sync(&hsotg->wf_otg))
4987 flush_workqueue(hsotg->wq_otg);
4988 destroy_workqueue(hsotg->wq_otg);
4991 cancel_work_sync(&hsotg->phy_reset_work);
4993 del_timer(&hsotg->wkp_timer);
4996 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4998 /* Turn off all host-specific interrupts */
4999 dwc2_disable_host_interrupts(hsotg);
5001 dwc2_hcd_free(hsotg);
5005 * Initializes the HCD. This function allocates memory for and initializes the
5006 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5007 * USB bus with the core and calls the hc_driver->start() function. It returns
5008 * a negative error on failure.
5010 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5012 struct platform_device *pdev = to_platform_device(hsotg->dev);
5013 struct resource *res;
5014 struct usb_hcd *hcd;
5015 struct dwc2_host_chan *channel;
5017 int i, num_channels;
5023 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5027 hcfg = dwc2_readl(hsotg, HCFG);
5028 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5030 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5031 hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5032 sizeof(*hsotg->frame_num_array),
5034 if (!hsotg->frame_num_array)
5036 hsotg->last_frame_num_array =
5037 kcalloc(FRAME_NUM_ARRAY_SIZE,
5038 sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5039 if (!hsotg->last_frame_num_array)
5042 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5044 /* Check if the bus driver or platform code has setup a dma_mask */
5045 if (hsotg->params.host_dma &&
5046 !hsotg->dev->dma_mask) {
5047 dev_warn(hsotg->dev,
5048 "dma_mask not set, disabling DMA\n");
5049 hsotg->params.host_dma = false;
5050 hsotg->params.dma_desc_enable = false;
5053 /* Set device flags indicating whether the HCD supports DMA */
5054 if (hsotg->params.host_dma) {
5055 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5056 dev_warn(hsotg->dev, "can't set DMA mask\n");
5057 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5058 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5061 if (hsotg->params.change_speed_quirk) {
5062 dwc2_hc_driver.free_dev = dwc2_free_dev;
5063 dwc2_hc_driver.reset_device = dwc2_reset_device;
5066 if (hsotg->params.host_dma)
5067 dwc2_hc_driver.flags |= HCD_DMA;
5069 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5075 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5076 hcd->rsrc_start = res->start;
5077 hcd->rsrc_len = resource_size(res);
5079 ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5083 * Disable the global interrupt until all the interrupt handlers are
5086 dwc2_disable_global_interrupts(hsotg);
5088 /* Initialize the DWC_otg core, and select the Phy type */
5089 retval = dwc2_core_init(hsotg, true);
5093 /* Create new workqueue and init work */
5095 hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5096 if (!hsotg->wq_otg) {
5097 dev_err(hsotg->dev, "Failed to create workqueue\n");
5100 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5102 timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5104 /* Initialize the non-periodic schedule */
5105 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5106 INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5107 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5109 /* Initialize the periodic schedule */
5110 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5111 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5112 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5113 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5115 INIT_LIST_HEAD(&hsotg->split_order);
5118 * Create a host channel descriptor for each host channel implemented
5119 * in the controller. Initialize the channel descriptor array.
5121 INIT_LIST_HEAD(&hsotg->free_hc_list);
5122 num_channels = hsotg->params.host_channels;
5123 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5125 for (i = 0; i < num_channels; i++) {
5126 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5129 channel->hc_num = i;
5130 INIT_LIST_HEAD(&channel->split_order_list_entry);
5131 hsotg->hc_ptr_array[i] = channel;
5134 /* Initialize work */
5135 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5136 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5137 INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func);
5140 * Allocate space for storing data on status transactions. Normally no
5141 * data is sent, but this space acts as a bit bucket. This must be
5142 * done after usb_add_hcd since that function allocates the DMA buffer
5145 if (hsotg->params.host_dma)
5146 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5147 DWC2_HCD_STATUS_BUF_SIZE,
5148 &hsotg->status_buf_dma, GFP_KERNEL);
5150 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5153 if (!hsotg->status_buf)
5157 * Create kmem caches to handle descriptor buffers in descriptor
5159 * Alignment must be set to 512 bytes.
5161 if (hsotg->params.dma_desc_enable ||
5162 hsotg->params.dma_desc_fs_enable) {
5163 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5164 sizeof(struct dwc2_dma_desc) *
5165 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5167 if (!hsotg->desc_gen_cache) {
5169 "unable to create dwc2 generic desc cache\n");
5172 * Disable descriptor dma mode since it will not be
5175 hsotg->params.dma_desc_enable = false;
5176 hsotg->params.dma_desc_fs_enable = false;
5179 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5180 sizeof(struct dwc2_dma_desc) *
5181 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5182 if (!hsotg->desc_hsisoc_cache) {
5184 "unable to create dwc2 hs isoc desc cache\n");
5186 kmem_cache_destroy(hsotg->desc_gen_cache);
5189 * Disable descriptor dma mode since it will not be
5192 hsotg->params.dma_desc_enable = false;
5193 hsotg->params.dma_desc_fs_enable = false;
5197 if (hsotg->params.host_dma) {
5199 * Create kmem caches to handle non-aligned buffer
5200 * in Buffer DMA mode.
5202 hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5203 DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5204 SLAB_CACHE_DMA, NULL);
5205 if (!hsotg->unaligned_cache)
5207 "unable to create dwc2 unaligned cache\n");
5210 hsotg->otg_port = 1;
5211 hsotg->frame_list = NULL;
5212 hsotg->frame_list_dma = 0;
5213 hsotg->periodic_qh_count = 0;
5215 /* Initiate lx_state to L3 disconnected state */
5216 hsotg->lx_state = DWC2_L3;
5218 hcd->self.otg_port = hsotg->otg_port;
5220 /* Don't support SG list at this point */
5221 hcd->self.sg_tablesize = 0;
5223 if (!IS_ERR_OR_NULL(hsotg->uphy))
5224 otg_set_host(hsotg->uphy->otg, &hcd->self);
5227 * Finish generic HCD initialization and start the HCD. This function
5228 * allocates the DMA buffer pool, registers the USB bus, requests the
5229 * IRQ line, and calls hcd_start method.
5231 retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5235 device_wakeup_enable(hcd->self.controller);
5237 dwc2_hcd_dump_state(hsotg);
5239 dwc2_enable_global_interrupts(hsotg);
5244 kmem_cache_destroy(hsotg->unaligned_cache);
5245 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5246 kmem_cache_destroy(hsotg->desc_gen_cache);
5248 dwc2_hcd_release(hsotg);
5253 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5254 kfree(hsotg->last_frame_num_array);
5255 kfree(hsotg->frame_num_array);
5258 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5264 * Frees memory and resources associated with the HCD and deregisters the bus.
5266 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5268 struct usb_hcd *hcd;
5270 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5272 hcd = dwc2_hsotg_to_hcd(hsotg);
5273 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5276 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5281 if (!IS_ERR_OR_NULL(hsotg->uphy))
5282 otg_set_host(hsotg->uphy->otg, NULL);
5284 usb_remove_hcd(hcd);
5287 kmem_cache_destroy(hsotg->unaligned_cache);
5288 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5289 kmem_cache_destroy(hsotg->desc_gen_cache);
5291 dwc2_hcd_release(hsotg);
5294 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5295 kfree(hsotg->last_frame_num_array);
5296 kfree(hsotg->frame_num_array);
5301 * dwc2_backup_host_registers() - Backup controller host registers.
5302 * When suspending usb bus, registers needs to be backuped
5303 * if controller power is disabled once suspended.
5305 * @hsotg: Programming view of the DWC_otg controller
5307 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5309 struct dwc2_hregs_backup *hr;
5312 dev_dbg(hsotg->dev, "%s\n", __func__);
5314 /* Backup Host regs */
5315 hr = &hsotg->hr_backup;
5316 hr->hcfg = dwc2_readl(hsotg, HCFG);
5317 hr->haintmsk = dwc2_readl(hsotg, HAINTMSK);
5318 for (i = 0; i < hsotg->params.host_channels; ++i)
5319 hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i));
5321 hr->hprt0 = dwc2_read_hprt0(hsotg);
5322 hr->hfir = dwc2_readl(hsotg, HFIR);
5323 hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ);
5330 * dwc2_restore_host_registers() - Restore controller host registers.
5331 * When resuming usb bus, device registers needs to be restored
5332 * if controller power were disabled.
5334 * @hsotg: Programming view of the DWC_otg controller
5336 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5338 struct dwc2_hregs_backup *hr;
5341 dev_dbg(hsotg->dev, "%s\n", __func__);
5343 /* Restore host regs */
5344 hr = &hsotg->hr_backup;
5346 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5352 dwc2_writel(hsotg, hr->hcfg, HCFG);
5353 dwc2_writel(hsotg, hr->haintmsk, HAINTMSK);
5355 for (i = 0; i < hsotg->params.host_channels; ++i)
5356 dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i));
5358 dwc2_writel(hsotg, hr->hprt0, HPRT0);
5359 dwc2_writel(hsotg, hr->hfir, HFIR);
5360 dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ);
5361 hsotg->frame_number = 0;
5367 * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5369 * @hsotg: Programming view of the DWC_otg controller
5371 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5373 unsigned long flags;
5380 dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5381 ret = dwc2_backup_global_registers(hsotg);
5383 dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5387 ret = dwc2_backup_host_registers(hsotg);
5389 dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5394 /* Enter USB Suspend Mode */
5395 hprt0 = dwc2_readl(hsotg, HPRT0);
5396 hprt0 |= HPRT0_SUSP;
5397 hprt0 &= ~HPRT0_ENA;
5398 dwc2_writel(hsotg, hprt0, HPRT0);
5400 /* Wait for the HPRT0.PrtSusp register field to be set */
5401 if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5402 dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5405 * We need to disable interrupts to prevent servicing of any IRQ
5406 * during going to hibernation
5408 spin_lock_irqsave(&hsotg->lock, flags);
5409 hsotg->lx_state = DWC2_L2;
5411 gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5412 if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5413 /* ULPI interface */
5414 /* Suspend the Phy Clock */
5415 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5416 pcgcctl |= PCGCTL_STOPPCLK;
5417 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5420 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5421 gpwrdn |= GPWRDN_PMUACTV;
5422 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5425 /* UTMI+ Interface */
5426 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5427 gpwrdn |= GPWRDN_PMUACTV;
5428 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5431 pcgcctl = dwc2_readl(hsotg, PCGCTL);
5432 pcgcctl |= PCGCTL_STOPPCLK;
5433 dwc2_writel(hsotg, pcgcctl, PCGCTL);
5437 /* Enable interrupts from wake up logic */
5438 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5439 gpwrdn |= GPWRDN_PMUINTSEL;
5440 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5443 /* Unmask host mode interrupts in GPWRDN */
5444 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5445 gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5446 gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5447 gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5448 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5451 /* Enable Power Down Clamp */
5452 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5453 gpwrdn |= GPWRDN_PWRDNCLMP;
5454 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5457 /* Switch off VDD */
5458 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5459 gpwrdn |= GPWRDN_PWRDNSWTCH;
5460 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5462 hsotg->hibernated = 1;
5463 hsotg->bus_suspended = 1;
5464 dev_dbg(hsotg->dev, "Host hibernation completed\n");
5465 spin_unlock_irqrestore(&hsotg->lock, flags);
5470 * dwc2_host_exit_hibernation()
5472 * @hsotg: Programming view of the DWC_otg controller
5473 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5474 * @param reset: indicates whether resume is initiated by Reset.
5476 * Return: non-zero if failed to enter to hibernation.
5478 * This function is for exiting from Host mode hibernation by
5479 * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5481 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5487 struct dwc2_gregs_backup *gr;
5488 struct dwc2_hregs_backup *hr;
5490 gr = &hsotg->gr_backup;
5491 hr = &hsotg->hr_backup;
5494 "%s: called with rem_wakeup = %d reset = %d\n",
5495 __func__, rem_wakeup, reset);
5497 dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5498 hsotg->hibernated = 0;
5501 * This step is not described in functional spec but if not wait for
5502 * this delay, mismatch interrupts occurred because just after restore
5503 * core is in Device mode(gintsts.curmode == 0)
5507 /* Clear all pending interupts */
5508 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5510 /* De-assert Restore */
5511 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5512 gpwrdn &= ~GPWRDN_RESTORE;
5513 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5516 /* Restore GUSBCFG, HCFG */
5517 dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5518 dwc2_writel(hsotg, hr->hcfg, HCFG);
5520 /* De-assert Wakeup Logic */
5521 gpwrdn = dwc2_readl(hsotg, GPWRDN);
5522 gpwrdn &= ~GPWRDN_PMUACTV;
5523 dwc2_writel(hsotg, gpwrdn, GPWRDN);
5528 hprt0 &= ~HPRT0_ENA;
5529 hprt0 &= ~HPRT0_SUSP;
5530 dwc2_writel(hsotg, hprt0, HPRT0);
5534 hprt0 &= ~HPRT0_ENA;
5535 hprt0 &= ~HPRT0_SUSP;
5539 dwc2_writel(hsotg, hprt0, HPRT0);
5541 /* Wait for Resume time and then program HPRT again */
5543 hprt0 &= ~HPRT0_RST;
5544 dwc2_writel(hsotg, hprt0, HPRT0);
5547 dwc2_writel(hsotg, hprt0, HPRT0);
5549 /* Wait for Resume time and then program HPRT again */
5551 hprt0 &= ~HPRT0_RES;
5552 dwc2_writel(hsotg, hprt0, HPRT0);
5554 /* Clear all interrupt status */
5555 hprt0 = dwc2_readl(hsotg, HPRT0);
5556 hprt0 |= HPRT0_CONNDET;
5557 hprt0 |= HPRT0_ENACHG;
5558 hprt0 &= ~HPRT0_ENA;
5559 dwc2_writel(hsotg, hprt0, HPRT0);
5561 hprt0 = dwc2_readl(hsotg, HPRT0);
5563 /* Clear all pending interupts */
5564 dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5566 /* Restore global registers */
5567 ret = dwc2_restore_global_registers(hsotg);
5569 dev_err(hsotg->dev, "%s: failed to restore registers\n",
5574 /* Restore host registers */
5575 ret = dwc2_restore_host_registers(hsotg);
5577 dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5582 dwc2_hcd_rem_wakeup(hsotg);
5584 hsotg->hibernated = 0;
5585 hsotg->bus_suspended = 0;
5586 hsotg->lx_state = DWC2_L0;
5587 dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5591 bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2)
5593 struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub;
5595 /* If the controller isn't allowed to wakeup then we can power off. */
5596 if (!device_may_wakeup(dwc2->dev))
5600 * We don't want to power off the PHY if something under the
5601 * root hub has wakeup enabled.
5603 if (usb_wakeup_enabled_descendants(root_hub))
5606 /* No reason to keep the PHY powered, so allow poweroff */