Merge tag 'dmaengine-4.14-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[linux-2.6-microblaze.git] / drivers / usb / core / usb.c
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * Released under the GPLv2 only.
16  * SPDX-License-Identifier: GPL-2.0
17  *
18  * NOTE! This is not actually a driver at all, rather this is
19  * just a collection of helper routines that implement the
20  * generic USB things that the real drivers can use..
21  *
22  * Think of this as a "USB library" rather than anything else.
23  * It should be considered a slave, with no callbacks. Callbacks
24  * are evil.
25  */
26
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/string.h>
30 #include <linux/bitops.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>  /* for in_interrupt() */
33 #include <linux/kmod.h>
34 #include <linux/init.h>
35 #include <linux/spinlock.h>
36 #include <linux/errno.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/mutex.h>
40 #include <linux/workqueue.h>
41 #include <linux/debugfs.h>
42 #include <linux/usb/of.h>
43
44 #include <asm/io.h>
45 #include <linux/scatterlist.h>
46 #include <linux/mm.h>
47 #include <linux/dma-mapping.h>
48
49 #include "usb.h"
50
51
52 const char *usbcore_name = "usbcore";
53
54 static bool nousb;      /* Disable USB when built into kernel image */
55
56 module_param(nousb, bool, 0444);
57
58 /*
59  * for external read access to <nousb>
60  */
61 int usb_disabled(void)
62 {
63         return nousb;
64 }
65 EXPORT_SYMBOL_GPL(usb_disabled);
66
67 #ifdef  CONFIG_PM
68 static int usb_autosuspend_delay = 2;           /* Default delay value,
69                                                  * in seconds */
70 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
71 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
72
73 #else
74 #define usb_autosuspend_delay           0
75 #endif
76
77 static bool match_endpoint(struct usb_endpoint_descriptor *epd,
78                 struct usb_endpoint_descriptor **bulk_in,
79                 struct usb_endpoint_descriptor **bulk_out,
80                 struct usb_endpoint_descriptor **int_in,
81                 struct usb_endpoint_descriptor **int_out)
82 {
83         switch (usb_endpoint_type(epd)) {
84         case USB_ENDPOINT_XFER_BULK:
85                 if (usb_endpoint_dir_in(epd)) {
86                         if (bulk_in && !*bulk_in) {
87                                 *bulk_in = epd;
88                                 break;
89                         }
90                 } else {
91                         if (bulk_out && !*bulk_out) {
92                                 *bulk_out = epd;
93                                 break;
94                         }
95                 }
96
97                 return false;
98         case USB_ENDPOINT_XFER_INT:
99                 if (usb_endpoint_dir_in(epd)) {
100                         if (int_in && !*int_in) {
101                                 *int_in = epd;
102                                 break;
103                         }
104                 } else {
105                         if (int_out && !*int_out) {
106                                 *int_out = epd;
107                                 break;
108                         }
109                 }
110
111                 return false;
112         default:
113                 return false;
114         }
115
116         return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
117                         (!int_in || *int_in) && (!int_out || *int_out);
118 }
119
120 /**
121  * usb_find_common_endpoints() -- look up common endpoint descriptors
122  * @alt:        alternate setting to search
123  * @bulk_in:    pointer to descriptor pointer, or NULL
124  * @bulk_out:   pointer to descriptor pointer, or NULL
125  * @int_in:     pointer to descriptor pointer, or NULL
126  * @int_out:    pointer to descriptor pointer, or NULL
127  *
128  * Search the alternate setting's endpoint descriptors for the first bulk-in,
129  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
130  * provided pointers (unless they are NULL).
131  *
132  * If a requested endpoint is not found, the corresponding pointer is set to
133  * NULL.
134  *
135  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
136  */
137 int usb_find_common_endpoints(struct usb_host_interface *alt,
138                 struct usb_endpoint_descriptor **bulk_in,
139                 struct usb_endpoint_descriptor **bulk_out,
140                 struct usb_endpoint_descriptor **int_in,
141                 struct usb_endpoint_descriptor **int_out)
142 {
143         struct usb_endpoint_descriptor *epd;
144         int i;
145
146         if (bulk_in)
147                 *bulk_in = NULL;
148         if (bulk_out)
149                 *bulk_out = NULL;
150         if (int_in)
151                 *int_in = NULL;
152         if (int_out)
153                 *int_out = NULL;
154
155         for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
156                 epd = &alt->endpoint[i].desc;
157
158                 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
159                         return 0;
160         }
161
162         return -ENXIO;
163 }
164 EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
165
166 /**
167  * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
168  * @alt:        alternate setting to search
169  * @bulk_in:    pointer to descriptor pointer, or NULL
170  * @bulk_out:   pointer to descriptor pointer, or NULL
171  * @int_in:     pointer to descriptor pointer, or NULL
172  * @int_out:    pointer to descriptor pointer, or NULL
173  *
174  * Search the alternate setting's endpoint descriptors for the last bulk-in,
175  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
176  * provided pointers (unless they are NULL).
177  *
178  * If a requested endpoint is not found, the corresponding pointer is set to
179  * NULL.
180  *
181  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
182  */
183 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
184                 struct usb_endpoint_descriptor **bulk_in,
185                 struct usb_endpoint_descriptor **bulk_out,
186                 struct usb_endpoint_descriptor **int_in,
187                 struct usb_endpoint_descriptor **int_out)
188 {
189         struct usb_endpoint_descriptor *epd;
190         int i;
191
192         if (bulk_in)
193                 *bulk_in = NULL;
194         if (bulk_out)
195                 *bulk_out = NULL;
196         if (int_in)
197                 *int_in = NULL;
198         if (int_out)
199                 *int_out = NULL;
200
201         for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
202                 epd = &alt->endpoint[i].desc;
203
204                 if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
205                         return 0;
206         }
207
208         return -ENXIO;
209 }
210 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
211
212 /**
213  * usb_find_alt_setting() - Given a configuration, find the alternate setting
214  * for the given interface.
215  * @config: the configuration to search (not necessarily the current config).
216  * @iface_num: interface number to search in
217  * @alt_num: alternate interface setting number to search for.
218  *
219  * Search the configuration's interface cache for the given alt setting.
220  *
221  * Return: The alternate setting, if found. %NULL otherwise.
222  */
223 struct usb_host_interface *usb_find_alt_setting(
224                 struct usb_host_config *config,
225                 unsigned int iface_num,
226                 unsigned int alt_num)
227 {
228         struct usb_interface_cache *intf_cache = NULL;
229         int i;
230
231         for (i = 0; i < config->desc.bNumInterfaces; i++) {
232                 if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
233                                 == iface_num) {
234                         intf_cache = config->intf_cache[i];
235                         break;
236                 }
237         }
238         if (!intf_cache)
239                 return NULL;
240         for (i = 0; i < intf_cache->num_altsetting; i++)
241                 if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
242                         return &intf_cache->altsetting[i];
243
244         printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
245                         "config %u\n", alt_num, iface_num,
246                         config->desc.bConfigurationValue);
247         return NULL;
248 }
249 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
250
251 /**
252  * usb_ifnum_to_if - get the interface object with a given interface number
253  * @dev: the device whose current configuration is considered
254  * @ifnum: the desired interface
255  *
256  * This walks the device descriptor for the currently active configuration
257  * to find the interface object with the particular interface number.
258  *
259  * Note that configuration descriptors are not required to assign interface
260  * numbers sequentially, so that it would be incorrect to assume that
261  * the first interface in that descriptor corresponds to interface zero.
262  * This routine helps device drivers avoid such mistakes.
263  * However, you should make sure that you do the right thing with any
264  * alternate settings available for this interfaces.
265  *
266  * Don't call this function unless you are bound to one of the interfaces
267  * on this device or you have locked the device!
268  *
269  * Return: A pointer to the interface that has @ifnum as interface number,
270  * if found. %NULL otherwise.
271  */
272 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
273                                       unsigned ifnum)
274 {
275         struct usb_host_config *config = dev->actconfig;
276         int i;
277
278         if (!config)
279                 return NULL;
280         for (i = 0; i < config->desc.bNumInterfaces; i++)
281                 if (config->interface[i]->altsetting[0]
282                                 .desc.bInterfaceNumber == ifnum)
283                         return config->interface[i];
284
285         return NULL;
286 }
287 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
288
289 /**
290  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
291  * @intf: the interface containing the altsetting in question
292  * @altnum: the desired alternate setting number
293  *
294  * This searches the altsetting array of the specified interface for
295  * an entry with the correct bAlternateSetting value.
296  *
297  * Note that altsettings need not be stored sequentially by number, so
298  * it would be incorrect to assume that the first altsetting entry in
299  * the array corresponds to altsetting zero.  This routine helps device
300  * drivers avoid such mistakes.
301  *
302  * Don't call this function unless you are bound to the intf interface
303  * or you have locked the device!
304  *
305  * Return: A pointer to the entry of the altsetting array of @intf that
306  * has @altnum as the alternate setting number. %NULL if not found.
307  */
308 struct usb_host_interface *usb_altnum_to_altsetting(
309                                         const struct usb_interface *intf,
310                                         unsigned int altnum)
311 {
312         int i;
313
314         for (i = 0; i < intf->num_altsetting; i++) {
315                 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
316                         return &intf->altsetting[i];
317         }
318         return NULL;
319 }
320 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
321
322 struct find_interface_arg {
323         int minor;
324         struct device_driver *drv;
325 };
326
327 static int __find_interface(struct device *dev, void *data)
328 {
329         struct find_interface_arg *arg = data;
330         struct usb_interface *intf;
331
332         if (!is_usb_interface(dev))
333                 return 0;
334
335         if (dev->driver != arg->drv)
336                 return 0;
337         intf = to_usb_interface(dev);
338         return intf->minor == arg->minor;
339 }
340
341 /**
342  * usb_find_interface - find usb_interface pointer for driver and device
343  * @drv: the driver whose current configuration is considered
344  * @minor: the minor number of the desired device
345  *
346  * This walks the bus device list and returns a pointer to the interface
347  * with the matching minor and driver.  Note, this only works for devices
348  * that share the USB major number.
349  *
350  * Return: A pointer to the interface with the matching major and @minor.
351  */
352 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
353 {
354         struct find_interface_arg argb;
355         struct device *dev;
356
357         argb.minor = minor;
358         argb.drv = &drv->drvwrap.driver;
359
360         dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
361
362         /* Drop reference count from bus_find_device */
363         put_device(dev);
364
365         return dev ? to_usb_interface(dev) : NULL;
366 }
367 EXPORT_SYMBOL_GPL(usb_find_interface);
368
369 struct each_dev_arg {
370         void *data;
371         int (*fn)(struct usb_device *, void *);
372 };
373
374 static int __each_dev(struct device *dev, void *data)
375 {
376         struct each_dev_arg *arg = (struct each_dev_arg *)data;
377
378         /* There are struct usb_interface on the same bus, filter them out */
379         if (!is_usb_device(dev))
380                 return 0;
381
382         return arg->fn(to_usb_device(dev), arg->data);
383 }
384
385 /**
386  * usb_for_each_dev - iterate over all USB devices in the system
387  * @data: data pointer that will be handed to the callback function
388  * @fn: callback function to be called for each USB device
389  *
390  * Iterate over all USB devices and call @fn for each, passing it @data. If it
391  * returns anything other than 0, we break the iteration prematurely and return
392  * that value.
393  */
394 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
395 {
396         struct each_dev_arg arg = {data, fn};
397
398         return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
399 }
400 EXPORT_SYMBOL_GPL(usb_for_each_dev);
401
402 /**
403  * usb_release_dev - free a usb device structure when all users of it are finished.
404  * @dev: device that's been disconnected
405  *
406  * Will be called only by the device core when all users of this usb device are
407  * done.
408  */
409 static void usb_release_dev(struct device *dev)
410 {
411         struct usb_device *udev;
412         struct usb_hcd *hcd;
413
414         udev = to_usb_device(dev);
415         hcd = bus_to_hcd(udev->bus);
416
417         usb_destroy_configuration(udev);
418         usb_release_bos_descriptor(udev);
419         of_node_put(dev->of_node);
420         usb_put_hcd(hcd);
421         kfree(udev->product);
422         kfree(udev->manufacturer);
423         kfree(udev->serial);
424         kfree(udev);
425 }
426
427 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
428 {
429         struct usb_device *usb_dev;
430
431         usb_dev = to_usb_device(dev);
432
433         if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
434                 return -ENOMEM;
435
436         if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
437                 return -ENOMEM;
438
439         return 0;
440 }
441
442 #ifdef  CONFIG_PM
443
444 /* USB device Power-Management thunks.
445  * There's no need to distinguish here between quiescing a USB device
446  * and powering it down; the generic_suspend() routine takes care of
447  * it by skipping the usb_port_suspend() call for a quiesce.  And for
448  * USB interfaces there's no difference at all.
449  */
450
451 static int usb_dev_prepare(struct device *dev)
452 {
453         return 0;               /* Implement eventually? */
454 }
455
456 static void usb_dev_complete(struct device *dev)
457 {
458         /* Currently used only for rebinding interfaces */
459         usb_resume_complete(dev);
460 }
461
462 static int usb_dev_suspend(struct device *dev)
463 {
464         return usb_suspend(dev, PMSG_SUSPEND);
465 }
466
467 static int usb_dev_resume(struct device *dev)
468 {
469         return usb_resume(dev, PMSG_RESUME);
470 }
471
472 static int usb_dev_freeze(struct device *dev)
473 {
474         return usb_suspend(dev, PMSG_FREEZE);
475 }
476
477 static int usb_dev_thaw(struct device *dev)
478 {
479         return usb_resume(dev, PMSG_THAW);
480 }
481
482 static int usb_dev_poweroff(struct device *dev)
483 {
484         return usb_suspend(dev, PMSG_HIBERNATE);
485 }
486
487 static int usb_dev_restore(struct device *dev)
488 {
489         return usb_resume(dev, PMSG_RESTORE);
490 }
491
492 static const struct dev_pm_ops usb_device_pm_ops = {
493         .prepare =      usb_dev_prepare,
494         .complete =     usb_dev_complete,
495         .suspend =      usb_dev_suspend,
496         .resume =       usb_dev_resume,
497         .freeze =       usb_dev_freeze,
498         .thaw =         usb_dev_thaw,
499         .poweroff =     usb_dev_poweroff,
500         .restore =      usb_dev_restore,
501         .runtime_suspend =      usb_runtime_suspend,
502         .runtime_resume =       usb_runtime_resume,
503         .runtime_idle =         usb_runtime_idle,
504 };
505
506 #endif  /* CONFIG_PM */
507
508
509 static char *usb_devnode(struct device *dev,
510                          umode_t *mode, kuid_t *uid, kgid_t *gid)
511 {
512         struct usb_device *usb_dev;
513
514         usb_dev = to_usb_device(dev);
515         return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
516                          usb_dev->bus->busnum, usb_dev->devnum);
517 }
518
519 struct device_type usb_device_type = {
520         .name =         "usb_device",
521         .release =      usb_release_dev,
522         .uevent =       usb_dev_uevent,
523         .devnode =      usb_devnode,
524 #ifdef CONFIG_PM
525         .pm =           &usb_device_pm_ops,
526 #endif
527 };
528
529
530 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
531 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
532 {
533         struct usb_hcd *hcd = bus_to_hcd(bus);
534         return hcd->wireless;
535 }
536
537
538 /**
539  * usb_alloc_dev - usb device constructor (usbcore-internal)
540  * @parent: hub to which device is connected; null to allocate a root hub
541  * @bus: bus used to access the device
542  * @port1: one-based index of port; ignored for root hubs
543  * Context: !in_interrupt()
544  *
545  * Only hub drivers (including virtual root hub drivers for host
546  * controllers) should ever call this.
547  *
548  * This call may not be used in a non-sleeping context.
549  *
550  * Return: On success, a pointer to the allocated usb device. %NULL on
551  * failure.
552  */
553 struct usb_device *usb_alloc_dev(struct usb_device *parent,
554                                  struct usb_bus *bus, unsigned port1)
555 {
556         struct usb_device *dev;
557         struct usb_hcd *usb_hcd = bus_to_hcd(bus);
558         unsigned root_hub = 0;
559         unsigned raw_port = port1;
560
561         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
562         if (!dev)
563                 return NULL;
564
565         if (!usb_get_hcd(usb_hcd)) {
566                 kfree(dev);
567                 return NULL;
568         }
569         /* Root hubs aren't true devices, so don't allocate HCD resources */
570         if (usb_hcd->driver->alloc_dev && parent &&
571                 !usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
572                 usb_put_hcd(bus_to_hcd(bus));
573                 kfree(dev);
574                 return NULL;
575         }
576
577         device_initialize(&dev->dev);
578         dev->dev.bus = &usb_bus_type;
579         dev->dev.type = &usb_device_type;
580         dev->dev.groups = usb_device_groups;
581         /*
582          * Fake a dma_mask/offset for the USB device:
583          * We cannot really use the dma-mapping API (dma_alloc_* and
584          * dma_map_*) for USB devices but instead need to use
585          * usb_alloc_coherent and pass data in 'urb's, but some subsystems
586          * manually look into the mask/offset pair to determine whether
587          * they need bounce buffers.
588          * Note: calling dma_set_mask() on a USB device would set the
589          * mask for the entire HCD, so don't do that.
590          */
591         dev->dev.dma_mask = bus->sysdev->dma_mask;
592         dev->dev.dma_pfn_offset = bus->sysdev->dma_pfn_offset;
593         set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
594         dev->state = USB_STATE_ATTACHED;
595         dev->lpm_disable_count = 1;
596         atomic_set(&dev->urbnum, 0);
597
598         INIT_LIST_HEAD(&dev->ep0.urb_list);
599         dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
600         dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
601         /* ep0 maxpacket comes later, from device descriptor */
602         usb_enable_endpoint(dev, &dev->ep0, false);
603         dev->can_submit = 1;
604
605         /* Save readable and stable topology id, distinguishing devices
606          * by location for diagnostics, tools, driver model, etc.  The
607          * string is a path along hub ports, from the root.  Each device's
608          * dev->devpath will be stable until USB is re-cabled, and hubs
609          * are often labeled with these port numbers.  The name isn't
610          * as stable:  bus->busnum changes easily from modprobe order,
611          * cardbus or pci hotplugging, and so on.
612          */
613         if (unlikely(!parent)) {
614                 dev->devpath[0] = '0';
615                 dev->route = 0;
616
617                 dev->dev.parent = bus->controller;
618                 device_set_of_node_from_dev(&dev->dev, bus->sysdev);
619                 dev_set_name(&dev->dev, "usb%d", bus->busnum);
620                 root_hub = 1;
621         } else {
622                 /* match any labeling on the hubs; it's one-based */
623                 if (parent->devpath[0] == '0') {
624                         snprintf(dev->devpath, sizeof dev->devpath,
625                                 "%d", port1);
626                         /* Root ports are not counted in route string */
627                         dev->route = 0;
628                 } else {
629                         snprintf(dev->devpath, sizeof dev->devpath,
630                                 "%s.%d", parent->devpath, port1);
631                         /* Route string assumes hubs have less than 16 ports */
632                         if (port1 < 15)
633                                 dev->route = parent->route +
634                                         (port1 << ((parent->level - 1)*4));
635                         else
636                                 dev->route = parent->route +
637                                         (15 << ((parent->level - 1)*4));
638                 }
639
640                 dev->dev.parent = &parent->dev;
641                 dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
642
643                 if (!parent->parent) {
644                         /* device under root hub's port */
645                         raw_port = usb_hcd_find_raw_port_number(usb_hcd,
646                                 port1);
647                 }
648                 dev->dev.of_node = usb_of_get_child_node(parent->dev.of_node,
649                                 raw_port);
650
651                 /* hub driver sets up TT records */
652         }
653
654         dev->portnum = port1;
655         dev->bus = bus;
656         dev->parent = parent;
657         INIT_LIST_HEAD(&dev->filelist);
658
659 #ifdef  CONFIG_PM
660         pm_runtime_set_autosuspend_delay(&dev->dev,
661                         usb_autosuspend_delay * 1000);
662         dev->connect_time = jiffies;
663         dev->active_duration = -jiffies;
664 #endif
665         if (root_hub)   /* Root hub always ok [and always wired] */
666                 dev->authorized = 1;
667         else {
668                 dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd);
669                 dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
670         }
671         return dev;
672 }
673 EXPORT_SYMBOL_GPL(usb_alloc_dev);
674
675 /**
676  * usb_get_dev - increments the reference count of the usb device structure
677  * @dev: the device being referenced
678  *
679  * Each live reference to a device should be refcounted.
680  *
681  * Drivers for USB interfaces should normally record such references in
682  * their probe() methods, when they bind to an interface, and release
683  * them by calling usb_put_dev(), in their disconnect() methods.
684  *
685  * Return: A pointer to the device with the incremented reference counter.
686  */
687 struct usb_device *usb_get_dev(struct usb_device *dev)
688 {
689         if (dev)
690                 get_device(&dev->dev);
691         return dev;
692 }
693 EXPORT_SYMBOL_GPL(usb_get_dev);
694
695 /**
696  * usb_put_dev - release a use of the usb device structure
697  * @dev: device that's been disconnected
698  *
699  * Must be called when a user of a device is finished with it.  When the last
700  * user of the device calls this function, the memory of the device is freed.
701  */
702 void usb_put_dev(struct usb_device *dev)
703 {
704         if (dev)
705                 put_device(&dev->dev);
706 }
707 EXPORT_SYMBOL_GPL(usb_put_dev);
708
709 /**
710  * usb_get_intf - increments the reference count of the usb interface structure
711  * @intf: the interface being referenced
712  *
713  * Each live reference to a interface must be refcounted.
714  *
715  * Drivers for USB interfaces should normally record such references in
716  * their probe() methods, when they bind to an interface, and release
717  * them by calling usb_put_intf(), in their disconnect() methods.
718  *
719  * Return: A pointer to the interface with the incremented reference counter.
720  */
721 struct usb_interface *usb_get_intf(struct usb_interface *intf)
722 {
723         if (intf)
724                 get_device(&intf->dev);
725         return intf;
726 }
727 EXPORT_SYMBOL_GPL(usb_get_intf);
728
729 /**
730  * usb_put_intf - release a use of the usb interface structure
731  * @intf: interface that's been decremented
732  *
733  * Must be called when a user of an interface is finished with it.  When the
734  * last user of the interface calls this function, the memory of the interface
735  * is freed.
736  */
737 void usb_put_intf(struct usb_interface *intf)
738 {
739         if (intf)
740                 put_device(&intf->dev);
741 }
742 EXPORT_SYMBOL_GPL(usb_put_intf);
743
744 /*                      USB device locking
745  *
746  * USB devices and interfaces are locked using the semaphore in their
747  * embedded struct device.  The hub driver guarantees that whenever a
748  * device is connected or disconnected, drivers are called with the
749  * USB device locked as well as their particular interface.
750  *
751  * Complications arise when several devices are to be locked at the same
752  * time.  Only hub-aware drivers that are part of usbcore ever have to
753  * do this; nobody else needs to worry about it.  The rule for locking
754  * is simple:
755  *
756  *      When locking both a device and its parent, always lock the
757  *      the parent first.
758  */
759
760 /**
761  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
762  * @udev: device that's being locked
763  * @iface: interface bound to the driver making the request (optional)
764  *
765  * Attempts to acquire the device lock, but fails if the device is
766  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
767  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
768  * lock, the routine polls repeatedly.  This is to prevent deadlock with
769  * disconnect; in some drivers (such as usb-storage) the disconnect()
770  * or suspend() method will block waiting for a device reset to complete.
771  *
772  * Return: A negative error code for failure, otherwise 0.
773  */
774 int usb_lock_device_for_reset(struct usb_device *udev,
775                               const struct usb_interface *iface)
776 {
777         unsigned long jiffies_expire = jiffies + HZ;
778
779         if (udev->state == USB_STATE_NOTATTACHED)
780                 return -ENODEV;
781         if (udev->state == USB_STATE_SUSPENDED)
782                 return -EHOSTUNREACH;
783         if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
784                         iface->condition == USB_INTERFACE_UNBOUND))
785                 return -EINTR;
786
787         while (!usb_trylock_device(udev)) {
788
789                 /* If we can't acquire the lock after waiting one second,
790                  * we're probably deadlocked */
791                 if (time_after(jiffies, jiffies_expire))
792                         return -EBUSY;
793
794                 msleep(15);
795                 if (udev->state == USB_STATE_NOTATTACHED)
796                         return -ENODEV;
797                 if (udev->state == USB_STATE_SUSPENDED)
798                         return -EHOSTUNREACH;
799                 if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
800                                 iface->condition == USB_INTERFACE_UNBOUND))
801                         return -EINTR;
802         }
803         return 0;
804 }
805 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
806
807 /**
808  * usb_get_current_frame_number - return current bus frame number
809  * @dev: the device whose bus is being queried
810  *
811  * Return: The current frame number for the USB host controller used
812  * with the given USB device. This can be used when scheduling
813  * isochronous requests.
814  *
815  * Note: Different kinds of host controller have different "scheduling
816  * horizons". While one type might support scheduling only 32 frames
817  * into the future, others could support scheduling up to 1024 frames
818  * into the future.
819  *
820  */
821 int usb_get_current_frame_number(struct usb_device *dev)
822 {
823         return usb_hcd_get_frame_number(dev);
824 }
825 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
826
827 /*-------------------------------------------------------------------*/
828 /*
829  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
830  * extra field of the interface and endpoint descriptor structs.
831  */
832
833 int __usb_get_extra_descriptor(char *buffer, unsigned size,
834                                unsigned char type, void **ptr)
835 {
836         struct usb_descriptor_header *header;
837
838         while (size >= sizeof(struct usb_descriptor_header)) {
839                 header = (struct usb_descriptor_header *)buffer;
840
841                 if (header->bLength < 2) {
842                         printk(KERN_ERR
843                                 "%s: bogus descriptor, type %d length %d\n",
844                                 usbcore_name,
845                                 header->bDescriptorType,
846                                 header->bLength);
847                         return -1;
848                 }
849
850                 if (header->bDescriptorType == type) {
851                         *ptr = header;
852                         return 0;
853                 }
854
855                 buffer += header->bLength;
856                 size -= header->bLength;
857         }
858         return -1;
859 }
860 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
861
862 /**
863  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
864  * @dev: device the buffer will be used with
865  * @size: requested buffer size
866  * @mem_flags: affect whether allocation may block
867  * @dma: used to return DMA address of buffer
868  *
869  * Return: Either null (indicating no buffer could be allocated), or the
870  * cpu-space pointer to a buffer that may be used to perform DMA to the
871  * specified device.  Such cpu-space buffers are returned along with the DMA
872  * address (through the pointer provided).
873  *
874  * Note:
875  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
876  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
877  * hardware during URB completion/resubmit.  The implementation varies between
878  * platforms, depending on details of how DMA will work to this device.
879  * Using these buffers also eliminates cacheline sharing problems on
880  * architectures where CPU caches are not DMA-coherent.  On systems without
881  * bus-snooping caches, these buffers are uncached.
882  *
883  * When the buffer is no longer used, free it with usb_free_coherent().
884  */
885 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
886                          dma_addr_t *dma)
887 {
888         if (!dev || !dev->bus)
889                 return NULL;
890         return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
891 }
892 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
893
894 /**
895  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
896  * @dev: device the buffer was used with
897  * @size: requested buffer size
898  * @addr: CPU address of buffer
899  * @dma: DMA address of buffer
900  *
901  * This reclaims an I/O buffer, letting it be reused.  The memory must have
902  * been allocated using usb_alloc_coherent(), and the parameters must match
903  * those provided in that allocation request.
904  */
905 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
906                        dma_addr_t dma)
907 {
908         if (!dev || !dev->bus)
909                 return;
910         if (!addr)
911                 return;
912         hcd_buffer_free(dev->bus, size, addr, dma);
913 }
914 EXPORT_SYMBOL_GPL(usb_free_coherent);
915
916 /**
917  * usb_buffer_map - create DMA mapping(s) for an urb
918  * @urb: urb whose transfer_buffer/setup_packet will be mapped
919  *
920  * URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
921  * succeeds. If the device is connected to this system through a non-DMA
922  * controller, this operation always succeeds.
923  *
924  * This call would normally be used for an urb which is reused, perhaps
925  * as the target of a large periodic transfer, with usb_buffer_dmasync()
926  * calls to synchronize memory and dma state.
927  *
928  * Reverse the effect of this call with usb_buffer_unmap().
929  *
930  * Return: Either %NULL (indicating no buffer could be mapped), or @urb.
931  *
932  */
933 #if 0
934 struct urb *usb_buffer_map(struct urb *urb)
935 {
936         struct usb_bus          *bus;
937         struct device           *controller;
938
939         if (!urb
940                         || !urb->dev
941                         || !(bus = urb->dev->bus)
942                         || !(controller = bus->sysdev))
943                 return NULL;
944
945         if (controller->dma_mask) {
946                 urb->transfer_dma = dma_map_single(controller,
947                         urb->transfer_buffer, urb->transfer_buffer_length,
948                         usb_pipein(urb->pipe)
949                                 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
950         /* FIXME generic api broken like pci, can't report errors */
951         /* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
952         } else
953                 urb->transfer_dma = ~0;
954         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
955         return urb;
956 }
957 EXPORT_SYMBOL_GPL(usb_buffer_map);
958 #endif  /*  0  */
959
960 /* XXX DISABLED, no users currently.  If you wish to re-enable this
961  * XXX please determine whether the sync is to transfer ownership of
962  * XXX the buffer from device to cpu or vice verse, and thusly use the
963  * XXX appropriate _for_{cpu,device}() method.  -DaveM
964  */
965 #if 0
966
967 /**
968  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
969  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
970  */
971 void usb_buffer_dmasync(struct urb *urb)
972 {
973         struct usb_bus          *bus;
974         struct device           *controller;
975
976         if (!urb
977                         || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
978                         || !urb->dev
979                         || !(bus = urb->dev->bus)
980                         || !(controller = bus->sysdev))
981                 return;
982
983         if (controller->dma_mask) {
984                 dma_sync_single_for_cpu(controller,
985                         urb->transfer_dma, urb->transfer_buffer_length,
986                         usb_pipein(urb->pipe)
987                                 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
988                 if (usb_pipecontrol(urb->pipe))
989                         dma_sync_single_for_cpu(controller,
990                                         urb->setup_dma,
991                                         sizeof(struct usb_ctrlrequest),
992                                         DMA_TO_DEVICE);
993         }
994 }
995 EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
996 #endif
997
998 /**
999  * usb_buffer_unmap - free DMA mapping(s) for an urb
1000  * @urb: urb whose transfer_buffer will be unmapped
1001  *
1002  * Reverses the effect of usb_buffer_map().
1003  */
1004 #if 0
1005 void usb_buffer_unmap(struct urb *urb)
1006 {
1007         struct usb_bus          *bus;
1008         struct device           *controller;
1009
1010         if (!urb
1011                         || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1012                         || !urb->dev
1013                         || !(bus = urb->dev->bus)
1014                         || !(controller = bus->sysdev))
1015                 return;
1016
1017         if (controller->dma_mask) {
1018                 dma_unmap_single(controller,
1019                         urb->transfer_dma, urb->transfer_buffer_length,
1020                         usb_pipein(urb->pipe)
1021                                 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1022         }
1023         urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
1024 }
1025 EXPORT_SYMBOL_GPL(usb_buffer_unmap);
1026 #endif  /*  0  */
1027
1028 #if 0
1029 /**
1030  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1031  * @dev: device to which the scatterlist will be mapped
1032  * @is_in: mapping transfer direction
1033  * @sg: the scatterlist to map
1034  * @nents: the number of entries in the scatterlist
1035  *
1036  * Return: Either < 0 (indicating no buffers could be mapped), or the
1037  * number of DMA mapping array entries in the scatterlist.
1038  *
1039  * Note:
1040  * The caller is responsible for placing the resulting DMA addresses from
1041  * the scatterlist into URB transfer buffer pointers, and for setting the
1042  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1043  *
1044  * Top I/O rates come from queuing URBs, instead of waiting for each one
1045  * to complete before starting the next I/O.   This is particularly easy
1046  * to do with scatterlists.  Just allocate and submit one URB for each DMA
1047  * mapping entry returned, stopping on the first error or when all succeed.
1048  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1049  *
1050  * This call would normally be used when translating scatterlist requests,
1051  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1052  * may be able to coalesce mappings for improved I/O efficiency.
1053  *
1054  * Reverse the effect of this call with usb_buffer_unmap_sg().
1055  */
1056 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1057                       struct scatterlist *sg, int nents)
1058 {
1059         struct usb_bus          *bus;
1060         struct device           *controller;
1061
1062         if (!dev
1063                         || !(bus = dev->bus)
1064                         || !(controller = bus->sysdev)
1065                         || !controller->dma_mask)
1066                 return -EINVAL;
1067
1068         /* FIXME generic api broken like pci, can't report errors */
1069         return dma_map_sg(controller, sg, nents,
1070                         is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
1071 }
1072 EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
1073 #endif
1074
1075 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1076  * XXX please determine whether the sync is to transfer ownership of
1077  * XXX the buffer from device to cpu or vice verse, and thusly use the
1078  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1079  */
1080 #if 0
1081
1082 /**
1083  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1084  * @dev: device to which the scatterlist will be mapped
1085  * @is_in: mapping transfer direction
1086  * @sg: the scatterlist to synchronize
1087  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1088  *
1089  * Use this when you are re-using a scatterlist's data buffers for
1090  * another USB request.
1091  */
1092 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1093                            struct scatterlist *sg, int n_hw_ents)
1094 {
1095         struct usb_bus          *bus;
1096         struct device           *controller;
1097
1098         if (!dev
1099                         || !(bus = dev->bus)
1100                         || !(controller = bus->sysdev)
1101                         || !controller->dma_mask)
1102                 return;
1103
1104         dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
1105                             is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1106 }
1107 EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
1108 #endif
1109
1110 #if 0
1111 /**
1112  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1113  * @dev: device to which the scatterlist will be mapped
1114  * @is_in: mapping transfer direction
1115  * @sg: the scatterlist to unmap
1116  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1117  *
1118  * Reverses the effect of usb_buffer_map_sg().
1119  */
1120 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1121                          struct scatterlist *sg, int n_hw_ents)
1122 {
1123         struct usb_bus          *bus;
1124         struct device           *controller;
1125
1126         if (!dev
1127                         || !(bus = dev->bus)
1128                         || !(controller = bus->sysdev)
1129                         || !controller->dma_mask)
1130                 return;
1131
1132         dma_unmap_sg(controller, sg, n_hw_ents,
1133                         is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1134 }
1135 EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
1136 #endif
1137
1138 /*
1139  * Notifications of device and interface registration
1140  */
1141 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1142                 void *data)
1143 {
1144         struct device *dev = data;
1145
1146         switch (action) {
1147         case BUS_NOTIFY_ADD_DEVICE:
1148                 if (dev->type == &usb_device_type)
1149                         (void) usb_create_sysfs_dev_files(to_usb_device(dev));
1150                 else if (dev->type == &usb_if_device_type)
1151                         usb_create_sysfs_intf_files(to_usb_interface(dev));
1152                 break;
1153
1154         case BUS_NOTIFY_DEL_DEVICE:
1155                 if (dev->type == &usb_device_type)
1156                         usb_remove_sysfs_dev_files(to_usb_device(dev));
1157                 else if (dev->type == &usb_if_device_type)
1158                         usb_remove_sysfs_intf_files(to_usb_interface(dev));
1159                 break;
1160         }
1161         return 0;
1162 }
1163
1164 static struct notifier_block usb_bus_nb = {
1165         .notifier_call = usb_bus_notify,
1166 };
1167
1168 struct dentry *usb_debug_root;
1169 EXPORT_SYMBOL_GPL(usb_debug_root);
1170
1171 static struct dentry *usb_debug_devices;
1172
1173 static int usb_debugfs_init(void)
1174 {
1175         usb_debug_root = debugfs_create_dir("usb", NULL);
1176         if (!usb_debug_root)
1177                 return -ENOENT;
1178
1179         usb_debug_devices = debugfs_create_file("devices", 0444,
1180                                                 usb_debug_root, NULL,
1181                                                 &usbfs_devices_fops);
1182         if (!usb_debug_devices) {
1183                 debugfs_remove(usb_debug_root);
1184                 usb_debug_root = NULL;
1185                 return -ENOENT;
1186         }
1187
1188         return 0;
1189 }
1190
1191 static void usb_debugfs_cleanup(void)
1192 {
1193         debugfs_remove(usb_debug_devices);
1194         debugfs_remove(usb_debug_root);
1195 }
1196
1197 /*
1198  * Init
1199  */
1200 static int __init usb_init(void)
1201 {
1202         int retval;
1203         if (usb_disabled()) {
1204                 pr_info("%s: USB support disabled\n", usbcore_name);
1205                 return 0;
1206         }
1207         usb_init_pool_max();
1208
1209         retval = usb_debugfs_init();
1210         if (retval)
1211                 goto out;
1212
1213         usb_acpi_register();
1214         retval = bus_register(&usb_bus_type);
1215         if (retval)
1216                 goto bus_register_failed;
1217         retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1218         if (retval)
1219                 goto bus_notifier_failed;
1220         retval = usb_major_init();
1221         if (retval)
1222                 goto major_init_failed;
1223         retval = usb_register(&usbfs_driver);
1224         if (retval)
1225                 goto driver_register_failed;
1226         retval = usb_devio_init();
1227         if (retval)
1228                 goto usb_devio_init_failed;
1229         retval = usb_hub_init();
1230         if (retval)
1231                 goto hub_init_failed;
1232         retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1233         if (!retval)
1234                 goto out;
1235
1236         usb_hub_cleanup();
1237 hub_init_failed:
1238         usb_devio_cleanup();
1239 usb_devio_init_failed:
1240         usb_deregister(&usbfs_driver);
1241 driver_register_failed:
1242         usb_major_cleanup();
1243 major_init_failed:
1244         bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1245 bus_notifier_failed:
1246         bus_unregister(&usb_bus_type);
1247 bus_register_failed:
1248         usb_acpi_unregister();
1249         usb_debugfs_cleanup();
1250 out:
1251         return retval;
1252 }
1253
1254 /*
1255  * Cleanup
1256  */
1257 static void __exit usb_exit(void)
1258 {
1259         /* This will matter if shutdown/reboot does exitcalls. */
1260         if (usb_disabled())
1261                 return;
1262
1263         usb_deregister_device_driver(&usb_generic_driver);
1264         usb_major_cleanup();
1265         usb_deregister(&usbfs_driver);
1266         usb_devio_cleanup();
1267         usb_hub_cleanup();
1268         bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1269         bus_unregister(&usb_bus_type);
1270         usb_acpi_unregister();
1271         usb_debugfs_cleanup();
1272         idr_destroy(&usb_bus_idr);
1273 }
1274
1275 subsys_initcall(usb_init);
1276 module_exit(usb_exit);
1277 MODULE_LICENSE("GPL");