Merge tag 'denywrite-for-5.15' of git://github.com/davidhildenbrand/linux
[linux-2.6-microblaze.git] / drivers / thunderbolt / nhi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20
21 #include "nhi.h"
22 #include "nhi_regs.h"
23 #include "tb.h"
24
25 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
26
27 #define RING_FIRST_USABLE_HOPID 1
28
29 /*
30  * Minimal number of vectors when we use MSI-X. Two for control channel
31  * Rx/Tx and the rest four are for cross domain DMA paths.
32  */
33 #define MSIX_MIN_VECS           6
34 #define MSIX_MAX_VECS           16
35
36 #define NHI_MAILBOX_TIMEOUT     500 /* ms */
37
38 #define QUIRK_AUTO_CLEAR_INT    BIT(0)
39
40 static int ring_interrupt_index(struct tb_ring *ring)
41 {
42         int bit = ring->hop;
43         if (!ring->is_tx)
44                 bit += ring->nhi->hop_count;
45         return bit;
46 }
47
48 /*
49  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
50  *
51  * ring->nhi->lock must be held.
52  */
53 static void ring_interrupt_active(struct tb_ring *ring, bool active)
54 {
55         int reg = REG_RING_INTERRUPT_BASE +
56                   ring_interrupt_index(ring) / 32 * 4;
57         int bit = ring_interrupt_index(ring) & 31;
58         int mask = 1 << bit;
59         u32 old, new;
60
61         if (ring->irq > 0) {
62                 u32 step, shift, ivr, misc;
63                 void __iomem *ivr_base;
64                 int index;
65
66                 if (ring->is_tx)
67                         index = ring->hop;
68                 else
69                         index = ring->hop + ring->nhi->hop_count;
70
71                 if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT) {
72                         /*
73                          * Ask the hardware to clear interrupt status
74                          * bits automatically since we already know
75                          * which interrupt was triggered.
76                          */
77                         misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
78                         if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
79                                 misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
80                                 iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
81                         }
82                 }
83
84                 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
85                 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
86                 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
87                 ivr = ioread32(ivr_base + step);
88                 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
89                 if (active)
90                         ivr |= ring->vector << shift;
91                 iowrite32(ivr, ivr_base + step);
92         }
93
94         old = ioread32(ring->nhi->iobase + reg);
95         if (active)
96                 new = old | mask;
97         else
98                 new = old & ~mask;
99
100         dev_dbg(&ring->nhi->pdev->dev,
101                 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
102                 active ? "enabling" : "disabling", reg, bit, old, new);
103
104         if (new == old)
105                 dev_WARN(&ring->nhi->pdev->dev,
106                                          "interrupt for %s %d is already %s\n",
107                                          RING_TYPE(ring), ring->hop,
108                                          active ? "enabled" : "disabled");
109         iowrite32(new, ring->nhi->iobase + reg);
110 }
111
112 /*
113  * nhi_disable_interrupts() - disable interrupts for all rings
114  *
115  * Use only during init and shutdown.
116  */
117 static void nhi_disable_interrupts(struct tb_nhi *nhi)
118 {
119         int i = 0;
120         /* disable interrupts */
121         for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
122                 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
123
124         /* clear interrupt status bits */
125         for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
126                 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
127 }
128
129 /* ring helper methods */
130
131 static void __iomem *ring_desc_base(struct tb_ring *ring)
132 {
133         void __iomem *io = ring->nhi->iobase;
134         io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
135         io += ring->hop * 16;
136         return io;
137 }
138
139 static void __iomem *ring_options_base(struct tb_ring *ring)
140 {
141         void __iomem *io = ring->nhi->iobase;
142         io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
143         io += ring->hop * 32;
144         return io;
145 }
146
147 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
148 {
149         /*
150          * The other 16-bits in the register is read-only and writes to it
151          * are ignored by the hardware so we can save one ioread32() by
152          * filling the read-only bits with zeroes.
153          */
154         iowrite32(cons, ring_desc_base(ring) + 8);
155 }
156
157 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
158 {
159         /* See ring_iowrite_cons() above for explanation */
160         iowrite32(prod << 16, ring_desc_base(ring) + 8);
161 }
162
163 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
164 {
165         iowrite32(value, ring_desc_base(ring) + offset);
166 }
167
168 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
169 {
170         iowrite32(value, ring_desc_base(ring) + offset);
171         iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
172 }
173
174 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
175 {
176         iowrite32(value, ring_options_base(ring) + offset);
177 }
178
179 static bool ring_full(struct tb_ring *ring)
180 {
181         return ((ring->head + 1) % ring->size) == ring->tail;
182 }
183
184 static bool ring_empty(struct tb_ring *ring)
185 {
186         return ring->head == ring->tail;
187 }
188
189 /*
190  * ring_write_descriptors() - post frames from ring->queue to the controller
191  *
192  * ring->lock is held.
193  */
194 static void ring_write_descriptors(struct tb_ring *ring)
195 {
196         struct ring_frame *frame, *n;
197         struct ring_desc *descriptor;
198         list_for_each_entry_safe(frame, n, &ring->queue, list) {
199                 if (ring_full(ring))
200                         break;
201                 list_move_tail(&frame->list, &ring->in_flight);
202                 descriptor = &ring->descriptors[ring->head];
203                 descriptor->phys = frame->buffer_phy;
204                 descriptor->time = 0;
205                 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
206                 if (ring->is_tx) {
207                         descriptor->length = frame->size;
208                         descriptor->eof = frame->eof;
209                         descriptor->sof = frame->sof;
210                 }
211                 ring->head = (ring->head + 1) % ring->size;
212                 if (ring->is_tx)
213                         ring_iowrite_prod(ring, ring->head);
214                 else
215                         ring_iowrite_cons(ring, ring->head);
216         }
217 }
218
219 /*
220  * ring_work() - progress completed frames
221  *
222  * If the ring is shutting down then all frames are marked as canceled and
223  * their callbacks are invoked.
224  *
225  * Otherwise we collect all completed frame from the ring buffer, write new
226  * frame to the ring buffer and invoke the callbacks for the completed frames.
227  */
228 static void ring_work(struct work_struct *work)
229 {
230         struct tb_ring *ring = container_of(work, typeof(*ring), work);
231         struct ring_frame *frame;
232         bool canceled = false;
233         unsigned long flags;
234         LIST_HEAD(done);
235
236         spin_lock_irqsave(&ring->lock, flags);
237
238         if (!ring->running) {
239                 /*  Move all frames to done and mark them as canceled. */
240                 list_splice_tail_init(&ring->in_flight, &done);
241                 list_splice_tail_init(&ring->queue, &done);
242                 canceled = true;
243                 goto invoke_callback;
244         }
245
246         while (!ring_empty(ring)) {
247                 if (!(ring->descriptors[ring->tail].flags
248                                 & RING_DESC_COMPLETED))
249                         break;
250                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
251                                          list);
252                 list_move_tail(&frame->list, &done);
253                 if (!ring->is_tx) {
254                         frame->size = ring->descriptors[ring->tail].length;
255                         frame->eof = ring->descriptors[ring->tail].eof;
256                         frame->sof = ring->descriptors[ring->tail].sof;
257                         frame->flags = ring->descriptors[ring->tail].flags;
258                 }
259                 ring->tail = (ring->tail + 1) % ring->size;
260         }
261         ring_write_descriptors(ring);
262
263 invoke_callback:
264         /* allow callbacks to schedule new work */
265         spin_unlock_irqrestore(&ring->lock, flags);
266         while (!list_empty(&done)) {
267                 frame = list_first_entry(&done, typeof(*frame), list);
268                 /*
269                  * The callback may reenqueue or delete frame.
270                  * Do not hold on to it.
271                  */
272                 list_del_init(&frame->list);
273                 if (frame->callback)
274                         frame->callback(ring, frame, canceled);
275         }
276 }
277
278 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
279 {
280         unsigned long flags;
281         int ret = 0;
282
283         spin_lock_irqsave(&ring->lock, flags);
284         if (ring->running) {
285                 list_add_tail(&frame->list, &ring->queue);
286                 ring_write_descriptors(ring);
287         } else {
288                 ret = -ESHUTDOWN;
289         }
290         spin_unlock_irqrestore(&ring->lock, flags);
291         return ret;
292 }
293 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
294
295 /**
296  * tb_ring_poll() - Poll one completed frame from the ring
297  * @ring: Ring to poll
298  *
299  * This function can be called when @start_poll callback of the @ring
300  * has been called. It will read one completed frame from the ring and
301  * return it to the caller. Returns %NULL if there is no more completed
302  * frames.
303  */
304 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
305 {
306         struct ring_frame *frame = NULL;
307         unsigned long flags;
308
309         spin_lock_irqsave(&ring->lock, flags);
310         if (!ring->running)
311                 goto unlock;
312         if (ring_empty(ring))
313                 goto unlock;
314
315         if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
316                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
317                                          list);
318                 list_del_init(&frame->list);
319
320                 if (!ring->is_tx) {
321                         frame->size = ring->descriptors[ring->tail].length;
322                         frame->eof = ring->descriptors[ring->tail].eof;
323                         frame->sof = ring->descriptors[ring->tail].sof;
324                         frame->flags = ring->descriptors[ring->tail].flags;
325                 }
326
327                 ring->tail = (ring->tail + 1) % ring->size;
328         }
329
330 unlock:
331         spin_unlock_irqrestore(&ring->lock, flags);
332         return frame;
333 }
334 EXPORT_SYMBOL_GPL(tb_ring_poll);
335
336 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
337 {
338         int idx = ring_interrupt_index(ring);
339         int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
340         int bit = idx % 32;
341         u32 val;
342
343         val = ioread32(ring->nhi->iobase + reg);
344         if (mask)
345                 val &= ~BIT(bit);
346         else
347                 val |= BIT(bit);
348         iowrite32(val, ring->nhi->iobase + reg);
349 }
350
351 /* Both @nhi->lock and @ring->lock should be held */
352 static void __ring_interrupt(struct tb_ring *ring)
353 {
354         if (!ring->running)
355                 return;
356
357         if (ring->start_poll) {
358                 __ring_interrupt_mask(ring, true);
359                 ring->start_poll(ring->poll_data);
360         } else {
361                 schedule_work(&ring->work);
362         }
363 }
364
365 /**
366  * tb_ring_poll_complete() - Re-start interrupt for the ring
367  * @ring: Ring to re-start the interrupt
368  *
369  * This will re-start (unmask) the ring interrupt once the user is done
370  * with polling.
371  */
372 void tb_ring_poll_complete(struct tb_ring *ring)
373 {
374         unsigned long flags;
375
376         spin_lock_irqsave(&ring->nhi->lock, flags);
377         spin_lock(&ring->lock);
378         if (ring->start_poll)
379                 __ring_interrupt_mask(ring, false);
380         spin_unlock(&ring->lock);
381         spin_unlock_irqrestore(&ring->nhi->lock, flags);
382 }
383 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
384
385 static void ring_clear_msix(const struct tb_ring *ring)
386 {
387         if (ring->nhi->quirks & QUIRK_AUTO_CLEAR_INT)
388                 return;
389
390         if (ring->is_tx)
391                 ioread32(ring->nhi->iobase + REG_RING_NOTIFY_BASE);
392         else
393                 ioread32(ring->nhi->iobase + REG_RING_NOTIFY_BASE +
394                          4 * (ring->nhi->hop_count / 32));
395 }
396
397 static irqreturn_t ring_msix(int irq, void *data)
398 {
399         struct tb_ring *ring = data;
400
401         spin_lock(&ring->nhi->lock);
402         ring_clear_msix(ring);
403         spin_lock(&ring->lock);
404         __ring_interrupt(ring);
405         spin_unlock(&ring->lock);
406         spin_unlock(&ring->nhi->lock);
407
408         return IRQ_HANDLED;
409 }
410
411 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
412 {
413         struct tb_nhi *nhi = ring->nhi;
414         unsigned long irqflags;
415         int ret;
416
417         if (!nhi->pdev->msix_enabled)
418                 return 0;
419
420         ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
421         if (ret < 0)
422                 return ret;
423
424         ring->vector = ret;
425
426         ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
427         if (ret < 0)
428                 goto err_ida_remove;
429
430         ring->irq = ret;
431
432         irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
433         ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
434         if (ret)
435                 goto err_ida_remove;
436
437         return 0;
438
439 err_ida_remove:
440         ida_simple_remove(&nhi->msix_ida, ring->vector);
441
442         return ret;
443 }
444
445 static void ring_release_msix(struct tb_ring *ring)
446 {
447         if (ring->irq <= 0)
448                 return;
449
450         free_irq(ring->irq, ring);
451         ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
452         ring->vector = 0;
453         ring->irq = 0;
454 }
455
456 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
457 {
458         int ret = 0;
459
460         spin_lock_irq(&nhi->lock);
461
462         if (ring->hop < 0) {
463                 unsigned int i;
464
465                 /*
466                  * Automatically allocate HopID from the non-reserved
467                  * range 1 .. hop_count - 1.
468                  */
469                 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
470                         if (ring->is_tx) {
471                                 if (!nhi->tx_rings[i]) {
472                                         ring->hop = i;
473                                         break;
474                                 }
475                         } else {
476                                 if (!nhi->rx_rings[i]) {
477                                         ring->hop = i;
478                                         break;
479                                 }
480                         }
481                 }
482         }
483
484         if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
485                 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
486                 ret = -EINVAL;
487                 goto err_unlock;
488         }
489         if (ring->is_tx && nhi->tx_rings[ring->hop]) {
490                 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
491                          ring->hop);
492                 ret = -EBUSY;
493                 goto err_unlock;
494         } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
495                 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
496                          ring->hop);
497                 ret = -EBUSY;
498                 goto err_unlock;
499         }
500
501         if (ring->is_tx)
502                 nhi->tx_rings[ring->hop] = ring;
503         else
504                 nhi->rx_rings[ring->hop] = ring;
505
506 err_unlock:
507         spin_unlock_irq(&nhi->lock);
508
509         return ret;
510 }
511
512 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
513                                      bool transmit, unsigned int flags,
514                                      int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
515                                      void (*start_poll)(void *),
516                                      void *poll_data)
517 {
518         struct tb_ring *ring = NULL;
519
520         dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
521                 transmit ? "TX" : "RX", hop, size);
522
523         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
524         if (!ring)
525                 return NULL;
526
527         spin_lock_init(&ring->lock);
528         INIT_LIST_HEAD(&ring->queue);
529         INIT_LIST_HEAD(&ring->in_flight);
530         INIT_WORK(&ring->work, ring_work);
531
532         ring->nhi = nhi;
533         ring->hop = hop;
534         ring->is_tx = transmit;
535         ring->size = size;
536         ring->flags = flags;
537         ring->e2e_tx_hop = e2e_tx_hop;
538         ring->sof_mask = sof_mask;
539         ring->eof_mask = eof_mask;
540         ring->head = 0;
541         ring->tail = 0;
542         ring->running = false;
543         ring->start_poll = start_poll;
544         ring->poll_data = poll_data;
545
546         ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
547                         size * sizeof(*ring->descriptors),
548                         &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
549         if (!ring->descriptors)
550                 goto err_free_ring;
551
552         if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
553                 goto err_free_descs;
554
555         if (nhi_alloc_hop(nhi, ring))
556                 goto err_release_msix;
557
558         return ring;
559
560 err_release_msix:
561         ring_release_msix(ring);
562 err_free_descs:
563         dma_free_coherent(&ring->nhi->pdev->dev,
564                           ring->size * sizeof(*ring->descriptors),
565                           ring->descriptors, ring->descriptors_dma);
566 err_free_ring:
567         kfree(ring);
568
569         return NULL;
570 }
571
572 /**
573  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
574  * @nhi: Pointer to the NHI the ring is to be allocated
575  * @hop: HopID (ring) to allocate
576  * @size: Number of entries in the ring
577  * @flags: Flags for the ring
578  */
579 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
580                                  unsigned int flags)
581 {
582         return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
583 }
584 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
585
586 /**
587  * tb_ring_alloc_rx() - Allocate DMA ring for receive
588  * @nhi: Pointer to the NHI the ring is to be allocated
589  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
590  * @size: Number of entries in the ring
591  * @flags: Flags for the ring
592  * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
593  * @sof_mask: Mask of PDF values that start a frame
594  * @eof_mask: Mask of PDF values that end a frame
595  * @start_poll: If not %NULL the ring will call this function when an
596  *              interrupt is triggered and masked, instead of callback
597  *              in each Rx frame.
598  * @poll_data: Optional data passed to @start_poll
599  */
600 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
601                                  unsigned int flags, int e2e_tx_hop,
602                                  u16 sof_mask, u16 eof_mask,
603                                  void (*start_poll)(void *), void *poll_data)
604 {
605         return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
606                              start_poll, poll_data);
607 }
608 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
609
610 /**
611  * tb_ring_start() - enable a ring
612  * @ring: Ring to start
613  *
614  * Must not be invoked in parallel with tb_ring_stop().
615  */
616 void tb_ring_start(struct tb_ring *ring)
617 {
618         u16 frame_size;
619         u32 flags;
620
621         spin_lock_irq(&ring->nhi->lock);
622         spin_lock(&ring->lock);
623         if (ring->nhi->going_away)
624                 goto err;
625         if (ring->running) {
626                 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
627                 goto err;
628         }
629         dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
630                 RING_TYPE(ring), ring->hop);
631
632         if (ring->flags & RING_FLAG_FRAME) {
633                 /* Means 4096 */
634                 frame_size = 0;
635                 flags = RING_FLAG_ENABLE;
636         } else {
637                 frame_size = TB_FRAME_SIZE;
638                 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
639         }
640
641         ring_iowrite64desc(ring, ring->descriptors_dma, 0);
642         if (ring->is_tx) {
643                 ring_iowrite32desc(ring, ring->size, 12);
644                 ring_iowrite32options(ring, 0, 4); /* time releated ? */
645                 ring_iowrite32options(ring, flags, 0);
646         } else {
647                 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
648
649                 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
650                 ring_iowrite32options(ring, sof_eof_mask, 4);
651                 ring_iowrite32options(ring, flags, 0);
652         }
653
654         /*
655          * Now that the ring valid bit is set we can configure E2E if
656          * enabled for the ring.
657          */
658         if (ring->flags & RING_FLAG_E2E) {
659                 if (!ring->is_tx) {
660                         u32 hop;
661
662                         hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
663                         hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
664                         flags |= hop;
665
666                         dev_dbg(&ring->nhi->pdev->dev,
667                                 "enabling E2E for %s %d with TX HopID %d\n",
668                                 RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
669                 } else {
670                         dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
671                                 RING_TYPE(ring), ring->hop);
672                 }
673
674                 flags |= RING_FLAG_E2E_FLOW_CONTROL;
675                 ring_iowrite32options(ring, flags, 0);
676         }
677
678         ring_interrupt_active(ring, true);
679         ring->running = true;
680 err:
681         spin_unlock(&ring->lock);
682         spin_unlock_irq(&ring->nhi->lock);
683 }
684 EXPORT_SYMBOL_GPL(tb_ring_start);
685
686 /**
687  * tb_ring_stop() - shutdown a ring
688  * @ring: Ring to stop
689  *
690  * Must not be invoked from a callback.
691  *
692  * This method will disable the ring. Further calls to
693  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
694  * called.
695  *
696  * All enqueued frames will be canceled and their callbacks will be executed
697  * with frame->canceled set to true (on the callback thread). This method
698  * returns only after all callback invocations have finished.
699  */
700 void tb_ring_stop(struct tb_ring *ring)
701 {
702         spin_lock_irq(&ring->nhi->lock);
703         spin_lock(&ring->lock);
704         dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
705                 RING_TYPE(ring), ring->hop);
706         if (ring->nhi->going_away)
707                 goto err;
708         if (!ring->running) {
709                 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
710                          RING_TYPE(ring), ring->hop);
711                 goto err;
712         }
713         ring_interrupt_active(ring, false);
714
715         ring_iowrite32options(ring, 0, 0);
716         ring_iowrite64desc(ring, 0, 0);
717         ring_iowrite32desc(ring, 0, 8);
718         ring_iowrite32desc(ring, 0, 12);
719         ring->head = 0;
720         ring->tail = 0;
721         ring->running = false;
722
723 err:
724         spin_unlock(&ring->lock);
725         spin_unlock_irq(&ring->nhi->lock);
726
727         /*
728          * schedule ring->work to invoke callbacks on all remaining frames.
729          */
730         schedule_work(&ring->work);
731         flush_work(&ring->work);
732 }
733 EXPORT_SYMBOL_GPL(tb_ring_stop);
734
735 /*
736  * tb_ring_free() - free ring
737  *
738  * When this method returns all invocations of ring->callback will have
739  * finished.
740  *
741  * Ring must be stopped.
742  *
743  * Must NOT be called from ring_frame->callback!
744  */
745 void tb_ring_free(struct tb_ring *ring)
746 {
747         spin_lock_irq(&ring->nhi->lock);
748         /*
749          * Dissociate the ring from the NHI. This also ensures that
750          * nhi_interrupt_work cannot reschedule ring->work.
751          */
752         if (ring->is_tx)
753                 ring->nhi->tx_rings[ring->hop] = NULL;
754         else
755                 ring->nhi->rx_rings[ring->hop] = NULL;
756
757         if (ring->running) {
758                 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
759                          RING_TYPE(ring), ring->hop);
760         }
761         spin_unlock_irq(&ring->nhi->lock);
762
763         ring_release_msix(ring);
764
765         dma_free_coherent(&ring->nhi->pdev->dev,
766                           ring->size * sizeof(*ring->descriptors),
767                           ring->descriptors, ring->descriptors_dma);
768
769         ring->descriptors = NULL;
770         ring->descriptors_dma = 0;
771
772
773         dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
774                 ring->hop);
775
776         /*
777          * ring->work can no longer be scheduled (it is scheduled only
778          * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
779          * to finish before freeing the ring.
780          */
781         flush_work(&ring->work);
782         kfree(ring);
783 }
784 EXPORT_SYMBOL_GPL(tb_ring_free);
785
786 /**
787  * nhi_mailbox_cmd() - Send a command through NHI mailbox
788  * @nhi: Pointer to the NHI structure
789  * @cmd: Command to send
790  * @data: Data to be send with the command
791  *
792  * Sends mailbox command to the firmware running on NHI. Returns %0 in
793  * case of success and negative errno in case of failure.
794  */
795 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
796 {
797         ktime_t timeout;
798         u32 val;
799
800         iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
801
802         val = ioread32(nhi->iobase + REG_INMAIL_CMD);
803         val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
804         val |= REG_INMAIL_OP_REQUEST | cmd;
805         iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
806
807         timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
808         do {
809                 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
810                 if (!(val & REG_INMAIL_OP_REQUEST))
811                         break;
812                 usleep_range(10, 20);
813         } while (ktime_before(ktime_get(), timeout));
814
815         if (val & REG_INMAIL_OP_REQUEST)
816                 return -ETIMEDOUT;
817         if (val & REG_INMAIL_ERROR)
818                 return -EIO;
819
820         return 0;
821 }
822
823 /**
824  * nhi_mailbox_mode() - Return current firmware operation mode
825  * @nhi: Pointer to the NHI structure
826  *
827  * The function reads current firmware operation mode using NHI mailbox
828  * registers and returns it to the caller.
829  */
830 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
831 {
832         u32 val;
833
834         val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
835         val &= REG_OUTMAIL_CMD_OPMODE_MASK;
836         val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
837
838         return (enum nhi_fw_mode)val;
839 }
840
841 static void nhi_interrupt_work(struct work_struct *work)
842 {
843         struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
844         int value = 0; /* Suppress uninitialized usage warning. */
845         int bit;
846         int hop = -1;
847         int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
848         struct tb_ring *ring;
849
850         spin_lock_irq(&nhi->lock);
851
852         /*
853          * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
854          * (TX, RX, RX overflow). We iterate over the bits and read a new
855          * dwords as required. The registers are cleared on read.
856          */
857         for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
858                 if (bit % 32 == 0)
859                         value = ioread32(nhi->iobase
860                                          + REG_RING_NOTIFY_BASE
861                                          + 4 * (bit / 32));
862                 if (++hop == nhi->hop_count) {
863                         hop = 0;
864                         type++;
865                 }
866                 if ((value & (1 << (bit % 32))) == 0)
867                         continue;
868                 if (type == 2) {
869                         dev_warn(&nhi->pdev->dev,
870                                  "RX overflow for ring %d\n",
871                                  hop);
872                         continue;
873                 }
874                 if (type == 0)
875                         ring = nhi->tx_rings[hop];
876                 else
877                         ring = nhi->rx_rings[hop];
878                 if (ring == NULL) {
879                         dev_warn(&nhi->pdev->dev,
880                                  "got interrupt for inactive %s ring %d\n",
881                                  type ? "RX" : "TX",
882                                  hop);
883                         continue;
884                 }
885
886                 spin_lock(&ring->lock);
887                 __ring_interrupt(ring);
888                 spin_unlock(&ring->lock);
889         }
890         spin_unlock_irq(&nhi->lock);
891 }
892
893 static irqreturn_t nhi_msi(int irq, void *data)
894 {
895         struct tb_nhi *nhi = data;
896         schedule_work(&nhi->interrupt_work);
897         return IRQ_HANDLED;
898 }
899
900 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
901 {
902         struct pci_dev *pdev = to_pci_dev(dev);
903         struct tb *tb = pci_get_drvdata(pdev);
904         struct tb_nhi *nhi = tb->nhi;
905         int ret;
906
907         ret = tb_domain_suspend_noirq(tb);
908         if (ret)
909                 return ret;
910
911         if (nhi->ops && nhi->ops->suspend_noirq) {
912                 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
913                 if (ret)
914                         return ret;
915         }
916
917         return 0;
918 }
919
920 static int nhi_suspend_noirq(struct device *dev)
921 {
922         return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
923 }
924
925 static int nhi_freeze_noirq(struct device *dev)
926 {
927         struct pci_dev *pdev = to_pci_dev(dev);
928         struct tb *tb = pci_get_drvdata(pdev);
929
930         return tb_domain_freeze_noirq(tb);
931 }
932
933 static int nhi_thaw_noirq(struct device *dev)
934 {
935         struct pci_dev *pdev = to_pci_dev(dev);
936         struct tb *tb = pci_get_drvdata(pdev);
937
938         return tb_domain_thaw_noirq(tb);
939 }
940
941 static bool nhi_wake_supported(struct pci_dev *pdev)
942 {
943         u8 val;
944
945         /*
946          * If power rails are sustainable for wakeup from S4 this
947          * property is set by the BIOS.
948          */
949         if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
950                 return !!val;
951
952         return true;
953 }
954
955 static int nhi_poweroff_noirq(struct device *dev)
956 {
957         struct pci_dev *pdev = to_pci_dev(dev);
958         bool wakeup;
959
960         wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
961         return __nhi_suspend_noirq(dev, wakeup);
962 }
963
964 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
965 {
966         /* Throttling is specified in 256ns increments */
967         u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
968         unsigned int i;
969
970         /*
971          * Configure interrupt throttling for all vectors even if we
972          * only use few.
973          */
974         for (i = 0; i < MSIX_MAX_VECS; i++) {
975                 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
976                 iowrite32(throttle, nhi->iobase + reg);
977         }
978 }
979
980 static int nhi_resume_noirq(struct device *dev)
981 {
982         struct pci_dev *pdev = to_pci_dev(dev);
983         struct tb *tb = pci_get_drvdata(pdev);
984         struct tb_nhi *nhi = tb->nhi;
985         int ret;
986
987         /*
988          * Check that the device is still there. It may be that the user
989          * unplugged last device which causes the host controller to go
990          * away on PCs.
991          */
992         if (!pci_device_is_present(pdev)) {
993                 nhi->going_away = true;
994         } else {
995                 if (nhi->ops && nhi->ops->resume_noirq) {
996                         ret = nhi->ops->resume_noirq(nhi);
997                         if (ret)
998                                 return ret;
999                 }
1000                 nhi_enable_int_throttling(tb->nhi);
1001         }
1002
1003         return tb_domain_resume_noirq(tb);
1004 }
1005
1006 static int nhi_suspend(struct device *dev)
1007 {
1008         struct pci_dev *pdev = to_pci_dev(dev);
1009         struct tb *tb = pci_get_drvdata(pdev);
1010
1011         return tb_domain_suspend(tb);
1012 }
1013
1014 static void nhi_complete(struct device *dev)
1015 {
1016         struct pci_dev *pdev = to_pci_dev(dev);
1017         struct tb *tb = pci_get_drvdata(pdev);
1018
1019         /*
1020          * If we were runtime suspended when system suspend started,
1021          * schedule runtime resume now. It should bring the domain back
1022          * to functional state.
1023          */
1024         if (pm_runtime_suspended(&pdev->dev))
1025                 pm_runtime_resume(&pdev->dev);
1026         else
1027                 tb_domain_complete(tb);
1028 }
1029
1030 static int nhi_runtime_suspend(struct device *dev)
1031 {
1032         struct pci_dev *pdev = to_pci_dev(dev);
1033         struct tb *tb = pci_get_drvdata(pdev);
1034         struct tb_nhi *nhi = tb->nhi;
1035         int ret;
1036
1037         ret = tb_domain_runtime_suspend(tb);
1038         if (ret)
1039                 return ret;
1040
1041         if (nhi->ops && nhi->ops->runtime_suspend) {
1042                 ret = nhi->ops->runtime_suspend(tb->nhi);
1043                 if (ret)
1044                         return ret;
1045         }
1046         return 0;
1047 }
1048
1049 static int nhi_runtime_resume(struct device *dev)
1050 {
1051         struct pci_dev *pdev = to_pci_dev(dev);
1052         struct tb *tb = pci_get_drvdata(pdev);
1053         struct tb_nhi *nhi = tb->nhi;
1054         int ret;
1055
1056         if (nhi->ops && nhi->ops->runtime_resume) {
1057                 ret = nhi->ops->runtime_resume(nhi);
1058                 if (ret)
1059                         return ret;
1060         }
1061
1062         nhi_enable_int_throttling(nhi);
1063         return tb_domain_runtime_resume(tb);
1064 }
1065
1066 static void nhi_shutdown(struct tb_nhi *nhi)
1067 {
1068         int i;
1069
1070         dev_dbg(&nhi->pdev->dev, "shutdown\n");
1071
1072         for (i = 0; i < nhi->hop_count; i++) {
1073                 if (nhi->tx_rings[i])
1074                         dev_WARN(&nhi->pdev->dev,
1075                                  "TX ring %d is still active\n", i);
1076                 if (nhi->rx_rings[i])
1077                         dev_WARN(&nhi->pdev->dev,
1078                                  "RX ring %d is still active\n", i);
1079         }
1080         nhi_disable_interrupts(nhi);
1081         /*
1082          * We have to release the irq before calling flush_work. Otherwise an
1083          * already executing IRQ handler could call schedule_work again.
1084          */
1085         if (!nhi->pdev->msix_enabled) {
1086                 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1087                 flush_work(&nhi->interrupt_work);
1088         }
1089         ida_destroy(&nhi->msix_ida);
1090
1091         if (nhi->ops && nhi->ops->shutdown)
1092                 nhi->ops->shutdown(nhi);
1093 }
1094
1095 static void nhi_check_quirks(struct tb_nhi *nhi)
1096 {
1097         /*
1098          * Intel hardware supports auto clear of the interrupt status
1099          * reqister right after interrupt is being issued.
1100          */
1101         if (nhi->pdev->vendor == PCI_VENDOR_ID_INTEL)
1102                 nhi->quirks |= QUIRK_AUTO_CLEAR_INT;
1103 }
1104
1105 static int nhi_init_msi(struct tb_nhi *nhi)
1106 {
1107         struct pci_dev *pdev = nhi->pdev;
1108         int res, irq, nvec;
1109
1110         /* In case someone left them on. */
1111         nhi_disable_interrupts(nhi);
1112
1113         nhi_enable_int_throttling(nhi);
1114
1115         ida_init(&nhi->msix_ida);
1116
1117         /*
1118          * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1119          * get all MSI-X vectors and if we succeed, each ring will have
1120          * one MSI-X. If for some reason that does not work out, we
1121          * fallback to a single MSI.
1122          */
1123         nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1124                                      PCI_IRQ_MSIX);
1125         if (nvec < 0) {
1126                 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1127                 if (nvec < 0)
1128                         return nvec;
1129
1130                 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1131
1132                 irq = pci_irq_vector(nhi->pdev, 0);
1133                 if (irq < 0)
1134                         return irq;
1135
1136                 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1137                                        IRQF_NO_SUSPEND, "thunderbolt", nhi);
1138                 if (res) {
1139                         dev_err(&pdev->dev, "request_irq failed, aborting\n");
1140                         return res;
1141                 }
1142         }
1143
1144         return 0;
1145 }
1146
1147 static bool nhi_imr_valid(struct pci_dev *pdev)
1148 {
1149         u8 val;
1150
1151         if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1152                 return !!val;
1153
1154         return true;
1155 }
1156
1157 static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1158 {
1159         struct tb *tb;
1160
1161         /*
1162          * USB4 case is simple. If we got control of any of the
1163          * capabilities, we use software CM.
1164          */
1165         if (tb_acpi_is_native())
1166                 return tb_probe(nhi);
1167
1168         /*
1169          * Either firmware based CM is running (we did not get control
1170          * from the firmware) or this is pre-USB4 PC so try first
1171          * firmware CM and then fallback to software CM.
1172          */
1173         tb = icm_probe(nhi);
1174         if (!tb)
1175                 tb = tb_probe(nhi);
1176
1177         return tb;
1178 }
1179
1180 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1181 {
1182         struct tb_nhi *nhi;
1183         struct tb *tb;
1184         int res;
1185
1186         if (!nhi_imr_valid(pdev)) {
1187                 dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1188                 return -ENODEV;
1189         }
1190
1191         res = pcim_enable_device(pdev);
1192         if (res) {
1193                 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1194                 return res;
1195         }
1196
1197         res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1198         if (res) {
1199                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1200                 return res;
1201         }
1202
1203         nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1204         if (!nhi)
1205                 return -ENOMEM;
1206
1207         nhi->pdev = pdev;
1208         nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1209         /* cannot fail - table is allocated bin pcim_iomap_regions */
1210         nhi->iobase = pcim_iomap_table(pdev)[0];
1211         nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1212         dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1213
1214         nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1215                                      sizeof(*nhi->tx_rings), GFP_KERNEL);
1216         nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1217                                      sizeof(*nhi->rx_rings), GFP_KERNEL);
1218         if (!nhi->tx_rings || !nhi->rx_rings)
1219                 return -ENOMEM;
1220
1221         nhi_check_quirks(nhi);
1222
1223         res = nhi_init_msi(nhi);
1224         if (res) {
1225                 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1226                 return res;
1227         }
1228
1229         spin_lock_init(&nhi->lock);
1230
1231         res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1232         if (res)
1233                 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1234         if (res) {
1235                 dev_err(&pdev->dev, "failed to set DMA mask\n");
1236                 return res;
1237         }
1238
1239         pci_set_master(pdev);
1240
1241         if (nhi->ops && nhi->ops->init) {
1242                 res = nhi->ops->init(nhi);
1243                 if (res)
1244                         return res;
1245         }
1246
1247         tb = nhi_select_cm(nhi);
1248         if (!tb) {
1249                 dev_err(&nhi->pdev->dev,
1250                         "failed to determine connection manager, aborting\n");
1251                 return -ENODEV;
1252         }
1253
1254         dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1255
1256         res = tb_domain_add(tb);
1257         if (res) {
1258                 /*
1259                  * At this point the RX/TX rings might already have been
1260                  * activated. Do a proper shutdown.
1261                  */
1262                 tb_domain_put(tb);
1263                 nhi_shutdown(nhi);
1264                 return res;
1265         }
1266         pci_set_drvdata(pdev, tb);
1267
1268         device_wakeup_enable(&pdev->dev);
1269
1270         pm_runtime_allow(&pdev->dev);
1271         pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1272         pm_runtime_use_autosuspend(&pdev->dev);
1273         pm_runtime_put_autosuspend(&pdev->dev);
1274
1275         return 0;
1276 }
1277
1278 static void nhi_remove(struct pci_dev *pdev)
1279 {
1280         struct tb *tb = pci_get_drvdata(pdev);
1281         struct tb_nhi *nhi = tb->nhi;
1282
1283         pm_runtime_get_sync(&pdev->dev);
1284         pm_runtime_dont_use_autosuspend(&pdev->dev);
1285         pm_runtime_forbid(&pdev->dev);
1286
1287         tb_domain_remove(tb);
1288         nhi_shutdown(nhi);
1289 }
1290
1291 /*
1292  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1293  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1294  * resume_noirq until we are done.
1295  */
1296 static const struct dev_pm_ops nhi_pm_ops = {
1297         .suspend_noirq = nhi_suspend_noirq,
1298         .resume_noirq = nhi_resume_noirq,
1299         .freeze_noirq = nhi_freeze_noirq,  /*
1300                                             * we just disable hotplug, the
1301                                             * pci-tunnels stay alive.
1302                                             */
1303         .thaw_noirq = nhi_thaw_noirq,
1304         .restore_noirq = nhi_resume_noirq,
1305         .suspend = nhi_suspend,
1306         .poweroff_noirq = nhi_poweroff_noirq,
1307         .poweroff = nhi_suspend,
1308         .complete = nhi_complete,
1309         .runtime_suspend = nhi_runtime_suspend,
1310         .runtime_resume = nhi_runtime_resume,
1311 };
1312
1313 static struct pci_device_id nhi_ids[] = {
1314         /*
1315          * We have to specify class, the TB bridges use the same device and
1316          * vendor (sub)id on gen 1 and gen 2 controllers.
1317          */
1318         {
1319                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1320                 .vendor = PCI_VENDOR_ID_INTEL,
1321                 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1322                 .subvendor = 0x2222, .subdevice = 0x1111,
1323         },
1324         {
1325                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1326                 .vendor = PCI_VENDOR_ID_INTEL,
1327                 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1328                 .subvendor = 0x2222, .subdevice = 0x1111,
1329         },
1330         {
1331                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1332                 .vendor = PCI_VENDOR_ID_INTEL,
1333                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1334                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1335         },
1336         {
1337                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1338                 .vendor = PCI_VENDOR_ID_INTEL,
1339                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1340                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1341         },
1342
1343         /* Thunderbolt 3 */
1344         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1345         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1346         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1347         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1348         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1349         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1350         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1351         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1352         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1353         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1354         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1355           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1356         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1357           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1358         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1359           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1360         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1361           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1362         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1363           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1364         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1365           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1366         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
1367           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1368         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
1369           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1370
1371         /* Any USB4 compliant host */
1372         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1373
1374         { 0,}
1375 };
1376
1377 MODULE_DEVICE_TABLE(pci, nhi_ids);
1378 MODULE_LICENSE("GPL");
1379
1380 static struct pci_driver nhi_driver = {
1381         .name = "thunderbolt",
1382         .id_table = nhi_ids,
1383         .probe = nhi_probe,
1384         .remove = nhi_remove,
1385         .shutdown = nhi_remove,
1386         .driver.pm = &nhi_pm_ops,
1387 };
1388
1389 static int __init nhi_init(void)
1390 {
1391         int ret;
1392
1393         ret = tb_domain_init();
1394         if (ret)
1395                 return ret;
1396         ret = pci_register_driver(&nhi_driver);
1397         if (ret)
1398                 tb_domain_exit();
1399         return ret;
1400 }
1401
1402 static void __exit nhi_unload(void)
1403 {
1404         pci_unregister_driver(&nhi_driver);
1405         tb_domain_exit();
1406 }
1407
1408 rootfs_initcall(nhi_init);
1409 module_exit(nhi_unload);