Merge tag 'mips_4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[linux-2.6-microblaze.git] / drivers / thunderbolt / nhi.c
1 /*
2  * Thunderbolt Cactus Ridge driver - NHI driver
3  *
4  * The NHI (native host interface) is the pci device that allows us to send and
5  * receive frames from the thunderbolt bus.
6  *
7  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
8  */
9
10 #include <linux/pm_runtime.h>
11 #include <linux/slab.h>
12 #include <linux/errno.h>
13 #include <linux/pci.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17
18 #include "nhi.h"
19 #include "nhi_regs.h"
20 #include "tb.h"
21
22 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
23
24 /*
25  * Used to enable end-to-end workaround for missing RX packets. Do not
26  * use this ring for anything else.
27  */
28 #define RING_E2E_UNUSED_HOPID   2
29 /* HopIDs 0-7 are reserved by the Thunderbolt protocol */
30 #define RING_FIRST_USABLE_HOPID 8
31
32 /*
33  * Minimal number of vectors when we use MSI-X. Two for control channel
34  * Rx/Tx and the rest four are for cross domain DMA paths.
35  */
36 #define MSIX_MIN_VECS           6
37 #define MSIX_MAX_VECS           16
38
39 #define NHI_MAILBOX_TIMEOUT     500 /* ms */
40
41 static int ring_interrupt_index(struct tb_ring *ring)
42 {
43         int bit = ring->hop;
44         if (!ring->is_tx)
45                 bit += ring->nhi->hop_count;
46         return bit;
47 }
48
49 /**
50  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
51  *
52  * ring->nhi->lock must be held.
53  */
54 static void ring_interrupt_active(struct tb_ring *ring, bool active)
55 {
56         int reg = REG_RING_INTERRUPT_BASE +
57                   ring_interrupt_index(ring) / 32 * 4;
58         int bit = ring_interrupt_index(ring) & 31;
59         int mask = 1 << bit;
60         u32 old, new;
61
62         if (ring->irq > 0) {
63                 u32 step, shift, ivr, misc;
64                 void __iomem *ivr_base;
65                 int index;
66
67                 if (ring->is_tx)
68                         index = ring->hop;
69                 else
70                         index = ring->hop + ring->nhi->hop_count;
71
72                 /*
73                  * Ask the hardware to clear interrupt status bits automatically
74                  * since we already know which interrupt was triggered.
75                  */
76                 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
77                 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
78                         misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
79                         iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
80                 }
81
82                 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
83                 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
84                 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
85                 ivr = ioread32(ivr_base + step);
86                 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
87                 if (active)
88                         ivr |= ring->vector << shift;
89                 iowrite32(ivr, ivr_base + step);
90         }
91
92         old = ioread32(ring->nhi->iobase + reg);
93         if (active)
94                 new = old | mask;
95         else
96                 new = old & ~mask;
97
98         dev_info(&ring->nhi->pdev->dev,
99                  "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
100                  active ? "enabling" : "disabling", reg, bit, old, new);
101
102         if (new == old)
103                 dev_WARN(&ring->nhi->pdev->dev,
104                                          "interrupt for %s %d is already %s\n",
105                                          RING_TYPE(ring), ring->hop,
106                                          active ? "enabled" : "disabled");
107         iowrite32(new, ring->nhi->iobase + reg);
108 }
109
110 /**
111  * nhi_disable_interrupts() - disable interrupts for all rings
112  *
113  * Use only during init and shutdown.
114  */
115 static void nhi_disable_interrupts(struct tb_nhi *nhi)
116 {
117         int i = 0;
118         /* disable interrupts */
119         for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
120                 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
121
122         /* clear interrupt status bits */
123         for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
124                 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
125 }
126
127 /* ring helper methods */
128
129 static void __iomem *ring_desc_base(struct tb_ring *ring)
130 {
131         void __iomem *io = ring->nhi->iobase;
132         io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
133         io += ring->hop * 16;
134         return io;
135 }
136
137 static void __iomem *ring_options_base(struct tb_ring *ring)
138 {
139         void __iomem *io = ring->nhi->iobase;
140         io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
141         io += ring->hop * 32;
142         return io;
143 }
144
145 static void ring_iowrite16desc(struct tb_ring *ring, u32 value, u32 offset)
146 {
147         iowrite16(value, ring_desc_base(ring) + offset);
148 }
149
150 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
151 {
152         iowrite32(value, ring_desc_base(ring) + offset);
153 }
154
155 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
156 {
157         iowrite32(value, ring_desc_base(ring) + offset);
158         iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
159 }
160
161 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
162 {
163         iowrite32(value, ring_options_base(ring) + offset);
164 }
165
166 static bool ring_full(struct tb_ring *ring)
167 {
168         return ((ring->head + 1) % ring->size) == ring->tail;
169 }
170
171 static bool ring_empty(struct tb_ring *ring)
172 {
173         return ring->head == ring->tail;
174 }
175
176 /**
177  * ring_write_descriptors() - post frames from ring->queue to the controller
178  *
179  * ring->lock is held.
180  */
181 static void ring_write_descriptors(struct tb_ring *ring)
182 {
183         struct ring_frame *frame, *n;
184         struct ring_desc *descriptor;
185         list_for_each_entry_safe(frame, n, &ring->queue, list) {
186                 if (ring_full(ring))
187                         break;
188                 list_move_tail(&frame->list, &ring->in_flight);
189                 descriptor = &ring->descriptors[ring->head];
190                 descriptor->phys = frame->buffer_phy;
191                 descriptor->time = 0;
192                 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
193                 if (ring->is_tx) {
194                         descriptor->length = frame->size;
195                         descriptor->eof = frame->eof;
196                         descriptor->sof = frame->sof;
197                 }
198                 ring->head = (ring->head + 1) % ring->size;
199                 ring_iowrite16desc(ring, ring->head, ring->is_tx ? 10 : 8);
200         }
201 }
202
203 /**
204  * ring_work() - progress completed frames
205  *
206  * If the ring is shutting down then all frames are marked as canceled and
207  * their callbacks are invoked.
208  *
209  * Otherwise we collect all completed frame from the ring buffer, write new
210  * frame to the ring buffer and invoke the callbacks for the completed frames.
211  */
212 static void ring_work(struct work_struct *work)
213 {
214         struct tb_ring *ring = container_of(work, typeof(*ring), work);
215         struct ring_frame *frame;
216         bool canceled = false;
217         unsigned long flags;
218         LIST_HEAD(done);
219
220         spin_lock_irqsave(&ring->lock, flags);
221
222         if (!ring->running) {
223                 /*  Move all frames to done and mark them as canceled. */
224                 list_splice_tail_init(&ring->in_flight, &done);
225                 list_splice_tail_init(&ring->queue, &done);
226                 canceled = true;
227                 goto invoke_callback;
228         }
229
230         while (!ring_empty(ring)) {
231                 if (!(ring->descriptors[ring->tail].flags
232                                 & RING_DESC_COMPLETED))
233                         break;
234                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
235                                          list);
236                 list_move_tail(&frame->list, &done);
237                 if (!ring->is_tx) {
238                         frame->size = ring->descriptors[ring->tail].length;
239                         frame->eof = ring->descriptors[ring->tail].eof;
240                         frame->sof = ring->descriptors[ring->tail].sof;
241                         frame->flags = ring->descriptors[ring->tail].flags;
242                 }
243                 ring->tail = (ring->tail + 1) % ring->size;
244         }
245         ring_write_descriptors(ring);
246
247 invoke_callback:
248         /* allow callbacks to schedule new work */
249         spin_unlock_irqrestore(&ring->lock, flags);
250         while (!list_empty(&done)) {
251                 frame = list_first_entry(&done, typeof(*frame), list);
252                 /*
253                  * The callback may reenqueue or delete frame.
254                  * Do not hold on to it.
255                  */
256                 list_del_init(&frame->list);
257                 if (frame->callback)
258                         frame->callback(ring, frame, canceled);
259         }
260 }
261
262 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
263 {
264         unsigned long flags;
265         int ret = 0;
266
267         spin_lock_irqsave(&ring->lock, flags);
268         if (ring->running) {
269                 list_add_tail(&frame->list, &ring->queue);
270                 ring_write_descriptors(ring);
271         } else {
272                 ret = -ESHUTDOWN;
273         }
274         spin_unlock_irqrestore(&ring->lock, flags);
275         return ret;
276 }
277 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
278
279 /**
280  * tb_ring_poll() - Poll one completed frame from the ring
281  * @ring: Ring to poll
282  *
283  * This function can be called when @start_poll callback of the @ring
284  * has been called. It will read one completed frame from the ring and
285  * return it to the caller. Returns %NULL if there is no more completed
286  * frames.
287  */
288 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
289 {
290         struct ring_frame *frame = NULL;
291         unsigned long flags;
292
293         spin_lock_irqsave(&ring->lock, flags);
294         if (!ring->running)
295                 goto unlock;
296         if (ring_empty(ring))
297                 goto unlock;
298
299         if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
300                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
301                                          list);
302                 list_del_init(&frame->list);
303
304                 if (!ring->is_tx) {
305                         frame->size = ring->descriptors[ring->tail].length;
306                         frame->eof = ring->descriptors[ring->tail].eof;
307                         frame->sof = ring->descriptors[ring->tail].sof;
308                         frame->flags = ring->descriptors[ring->tail].flags;
309                 }
310
311                 ring->tail = (ring->tail + 1) % ring->size;
312         }
313
314 unlock:
315         spin_unlock_irqrestore(&ring->lock, flags);
316         return frame;
317 }
318 EXPORT_SYMBOL_GPL(tb_ring_poll);
319
320 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
321 {
322         int idx = ring_interrupt_index(ring);
323         int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
324         int bit = idx % 32;
325         u32 val;
326
327         val = ioread32(ring->nhi->iobase + reg);
328         if (mask)
329                 val &= ~BIT(bit);
330         else
331                 val |= BIT(bit);
332         iowrite32(val, ring->nhi->iobase + reg);
333 }
334
335 /* Both @nhi->lock and @ring->lock should be held */
336 static void __ring_interrupt(struct tb_ring *ring)
337 {
338         if (!ring->running)
339                 return;
340
341         if (ring->start_poll) {
342                 __ring_interrupt_mask(ring, true);
343                 ring->start_poll(ring->poll_data);
344         } else {
345                 schedule_work(&ring->work);
346         }
347 }
348
349 /**
350  * tb_ring_poll_complete() - Re-start interrupt for the ring
351  * @ring: Ring to re-start the interrupt
352  *
353  * This will re-start (unmask) the ring interrupt once the user is done
354  * with polling.
355  */
356 void tb_ring_poll_complete(struct tb_ring *ring)
357 {
358         unsigned long flags;
359
360         spin_lock_irqsave(&ring->nhi->lock, flags);
361         spin_lock(&ring->lock);
362         if (ring->start_poll)
363                 __ring_interrupt_mask(ring, false);
364         spin_unlock(&ring->lock);
365         spin_unlock_irqrestore(&ring->nhi->lock, flags);
366 }
367 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
368
369 static irqreturn_t ring_msix(int irq, void *data)
370 {
371         struct tb_ring *ring = data;
372
373         spin_lock(&ring->nhi->lock);
374         spin_lock(&ring->lock);
375         __ring_interrupt(ring);
376         spin_unlock(&ring->lock);
377         spin_unlock(&ring->nhi->lock);
378
379         return IRQ_HANDLED;
380 }
381
382 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
383 {
384         struct tb_nhi *nhi = ring->nhi;
385         unsigned long irqflags;
386         int ret;
387
388         if (!nhi->pdev->msix_enabled)
389                 return 0;
390
391         ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
392         if (ret < 0)
393                 return ret;
394
395         ring->vector = ret;
396
397         ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
398         if (ring->irq < 0)
399                 return ring->irq;
400
401         irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
402         return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
403 }
404
405 static void ring_release_msix(struct tb_ring *ring)
406 {
407         if (ring->irq <= 0)
408                 return;
409
410         free_irq(ring->irq, ring);
411         ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
412         ring->vector = 0;
413         ring->irq = 0;
414 }
415
416 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
417 {
418         int ret = 0;
419
420         spin_lock_irq(&nhi->lock);
421
422         if (ring->hop < 0) {
423                 unsigned int i;
424
425                 /*
426                  * Automatically allocate HopID from the non-reserved
427                  * range 8 .. hop_count - 1.
428                  */
429                 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
430                         if (ring->is_tx) {
431                                 if (!nhi->tx_rings[i]) {
432                                         ring->hop = i;
433                                         break;
434                                 }
435                         } else {
436                                 if (!nhi->rx_rings[i]) {
437                                         ring->hop = i;
438                                         break;
439                                 }
440                         }
441                 }
442         }
443
444         if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
445                 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
446                 ret = -EINVAL;
447                 goto err_unlock;
448         }
449         if (ring->is_tx && nhi->tx_rings[ring->hop]) {
450                 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
451                          ring->hop);
452                 ret = -EBUSY;
453                 goto err_unlock;
454         } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
455                 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
456                          ring->hop);
457                 ret = -EBUSY;
458                 goto err_unlock;
459         }
460
461         if (ring->is_tx)
462                 nhi->tx_rings[ring->hop] = ring;
463         else
464                 nhi->rx_rings[ring->hop] = ring;
465
466 err_unlock:
467         spin_unlock_irq(&nhi->lock);
468
469         return ret;
470 }
471
472 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
473                                      bool transmit, unsigned int flags,
474                                      u16 sof_mask, u16 eof_mask,
475                                      void (*start_poll)(void *),
476                                      void *poll_data)
477 {
478         struct tb_ring *ring = NULL;
479         dev_info(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
480                  transmit ? "TX" : "RX", hop, size);
481
482         /* Tx Ring 2 is reserved for E2E workaround */
483         if (transmit && hop == RING_E2E_UNUSED_HOPID)
484                 return NULL;
485
486         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
487         if (!ring)
488                 return NULL;
489
490         spin_lock_init(&ring->lock);
491         INIT_LIST_HEAD(&ring->queue);
492         INIT_LIST_HEAD(&ring->in_flight);
493         INIT_WORK(&ring->work, ring_work);
494
495         ring->nhi = nhi;
496         ring->hop = hop;
497         ring->is_tx = transmit;
498         ring->size = size;
499         ring->flags = flags;
500         ring->sof_mask = sof_mask;
501         ring->eof_mask = eof_mask;
502         ring->head = 0;
503         ring->tail = 0;
504         ring->running = false;
505         ring->start_poll = start_poll;
506         ring->poll_data = poll_data;
507
508         ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
509                         size * sizeof(*ring->descriptors),
510                         &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
511         if (!ring->descriptors)
512                 goto err_free_ring;
513
514         if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
515                 goto err_free_descs;
516
517         if (nhi_alloc_hop(nhi, ring))
518                 goto err_release_msix;
519
520         return ring;
521
522 err_release_msix:
523         ring_release_msix(ring);
524 err_free_descs:
525         dma_free_coherent(&ring->nhi->pdev->dev,
526                           ring->size * sizeof(*ring->descriptors),
527                           ring->descriptors, ring->descriptors_dma);
528 err_free_ring:
529         kfree(ring);
530
531         return NULL;
532 }
533
534 /**
535  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
536  * @nhi: Pointer to the NHI the ring is to be allocated
537  * @hop: HopID (ring) to allocate
538  * @size: Number of entries in the ring
539  * @flags: Flags for the ring
540  */
541 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
542                                  unsigned int flags)
543 {
544         return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
545 }
546 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
547
548 /**
549  * tb_ring_alloc_rx() - Allocate DMA ring for receive
550  * @nhi: Pointer to the NHI the ring is to be allocated
551  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
552  * @size: Number of entries in the ring
553  * @flags: Flags for the ring
554  * @sof_mask: Mask of PDF values that start a frame
555  * @eof_mask: Mask of PDF values that end a frame
556  * @start_poll: If not %NULL the ring will call this function when an
557  *              interrupt is triggered and masked, instead of callback
558  *              in each Rx frame.
559  * @poll_data: Optional data passed to @start_poll
560  */
561 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
562                                  unsigned int flags, u16 sof_mask, u16 eof_mask,
563                                  void (*start_poll)(void *), void *poll_data)
564 {
565         return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
566                              start_poll, poll_data);
567 }
568 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
569
570 /**
571  * tb_ring_start() - enable a ring
572  *
573  * Must not be invoked in parallel with tb_ring_stop().
574  */
575 void tb_ring_start(struct tb_ring *ring)
576 {
577         u16 frame_size;
578         u32 flags;
579
580         spin_lock_irq(&ring->nhi->lock);
581         spin_lock(&ring->lock);
582         if (ring->nhi->going_away)
583                 goto err;
584         if (ring->running) {
585                 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
586                 goto err;
587         }
588         dev_info(&ring->nhi->pdev->dev, "starting %s %d\n",
589                  RING_TYPE(ring), ring->hop);
590
591         if (ring->flags & RING_FLAG_FRAME) {
592                 /* Means 4096 */
593                 frame_size = 0;
594                 flags = RING_FLAG_ENABLE;
595         } else {
596                 frame_size = TB_FRAME_SIZE;
597                 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
598         }
599
600         if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
601                 u32 hop;
602
603                 /*
604                  * In order not to lose Rx packets we enable end-to-end
605                  * workaround which transfers Rx credits to an unused Tx
606                  * HopID.
607                  */
608                 hop = RING_E2E_UNUSED_HOPID << REG_RX_OPTIONS_E2E_HOP_SHIFT;
609                 hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
610                 flags |= hop | RING_FLAG_E2E_FLOW_CONTROL;
611         }
612
613         ring_iowrite64desc(ring, ring->descriptors_dma, 0);
614         if (ring->is_tx) {
615                 ring_iowrite32desc(ring, ring->size, 12);
616                 ring_iowrite32options(ring, 0, 4); /* time releated ? */
617                 ring_iowrite32options(ring, flags, 0);
618         } else {
619                 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
620
621                 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
622                 ring_iowrite32options(ring, sof_eof_mask, 4);
623                 ring_iowrite32options(ring, flags, 0);
624         }
625         ring_interrupt_active(ring, true);
626         ring->running = true;
627 err:
628         spin_unlock(&ring->lock);
629         spin_unlock_irq(&ring->nhi->lock);
630 }
631 EXPORT_SYMBOL_GPL(tb_ring_start);
632
633 /**
634  * tb_ring_stop() - shutdown a ring
635  *
636  * Must not be invoked from a callback.
637  *
638  * This method will disable the ring. Further calls to
639  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
640  * called.
641  *
642  * All enqueued frames will be canceled and their callbacks will be executed
643  * with frame->canceled set to true (on the callback thread). This method
644  * returns only after all callback invocations have finished.
645  */
646 void tb_ring_stop(struct tb_ring *ring)
647 {
648         spin_lock_irq(&ring->nhi->lock);
649         spin_lock(&ring->lock);
650         dev_info(&ring->nhi->pdev->dev, "stopping %s %d\n",
651                  RING_TYPE(ring), ring->hop);
652         if (ring->nhi->going_away)
653                 goto err;
654         if (!ring->running) {
655                 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
656                          RING_TYPE(ring), ring->hop);
657                 goto err;
658         }
659         ring_interrupt_active(ring, false);
660
661         ring_iowrite32options(ring, 0, 0);
662         ring_iowrite64desc(ring, 0, 0);
663         ring_iowrite16desc(ring, 0, ring->is_tx ? 10 : 8);
664         ring_iowrite32desc(ring, 0, 12);
665         ring->head = 0;
666         ring->tail = 0;
667         ring->running = false;
668
669 err:
670         spin_unlock(&ring->lock);
671         spin_unlock_irq(&ring->nhi->lock);
672
673         /*
674          * schedule ring->work to invoke callbacks on all remaining frames.
675          */
676         schedule_work(&ring->work);
677         flush_work(&ring->work);
678 }
679 EXPORT_SYMBOL_GPL(tb_ring_stop);
680
681 /*
682  * tb_ring_free() - free ring
683  *
684  * When this method returns all invocations of ring->callback will have
685  * finished.
686  *
687  * Ring must be stopped.
688  *
689  * Must NOT be called from ring_frame->callback!
690  */
691 void tb_ring_free(struct tb_ring *ring)
692 {
693         spin_lock_irq(&ring->nhi->lock);
694         /*
695          * Dissociate the ring from the NHI. This also ensures that
696          * nhi_interrupt_work cannot reschedule ring->work.
697          */
698         if (ring->is_tx)
699                 ring->nhi->tx_rings[ring->hop] = NULL;
700         else
701                 ring->nhi->rx_rings[ring->hop] = NULL;
702
703         if (ring->running) {
704                 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
705                          RING_TYPE(ring), ring->hop);
706         }
707         spin_unlock_irq(&ring->nhi->lock);
708
709         ring_release_msix(ring);
710
711         dma_free_coherent(&ring->nhi->pdev->dev,
712                           ring->size * sizeof(*ring->descriptors),
713                           ring->descriptors, ring->descriptors_dma);
714
715         ring->descriptors = NULL;
716         ring->descriptors_dma = 0;
717
718
719         dev_info(&ring->nhi->pdev->dev,
720                  "freeing %s %d\n",
721                  RING_TYPE(ring),
722                  ring->hop);
723
724         /**
725          * ring->work can no longer be scheduled (it is scheduled only
726          * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
727          * to finish before freeing the ring.
728          */
729         flush_work(&ring->work);
730         kfree(ring);
731 }
732 EXPORT_SYMBOL_GPL(tb_ring_free);
733
734 /**
735  * nhi_mailbox_cmd() - Send a command through NHI mailbox
736  * @nhi: Pointer to the NHI structure
737  * @cmd: Command to send
738  * @data: Data to be send with the command
739  *
740  * Sends mailbox command to the firmware running on NHI. Returns %0 in
741  * case of success and negative errno in case of failure.
742  */
743 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
744 {
745         ktime_t timeout;
746         u32 val;
747
748         iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
749
750         val = ioread32(nhi->iobase + REG_INMAIL_CMD);
751         val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
752         val |= REG_INMAIL_OP_REQUEST | cmd;
753         iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
754
755         timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
756         do {
757                 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
758                 if (!(val & REG_INMAIL_OP_REQUEST))
759                         break;
760                 usleep_range(10, 20);
761         } while (ktime_before(ktime_get(), timeout));
762
763         if (val & REG_INMAIL_OP_REQUEST)
764                 return -ETIMEDOUT;
765         if (val & REG_INMAIL_ERROR)
766                 return -EIO;
767
768         return 0;
769 }
770
771 /**
772  * nhi_mailbox_mode() - Return current firmware operation mode
773  * @nhi: Pointer to the NHI structure
774  *
775  * The function reads current firmware operation mode using NHI mailbox
776  * registers and returns it to the caller.
777  */
778 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
779 {
780         u32 val;
781
782         val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
783         val &= REG_OUTMAIL_CMD_OPMODE_MASK;
784         val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
785
786         return (enum nhi_fw_mode)val;
787 }
788
789 static void nhi_interrupt_work(struct work_struct *work)
790 {
791         struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
792         int value = 0; /* Suppress uninitialized usage warning. */
793         int bit;
794         int hop = -1;
795         int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
796         struct tb_ring *ring;
797
798         spin_lock_irq(&nhi->lock);
799
800         /*
801          * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
802          * (TX, RX, RX overflow). We iterate over the bits and read a new
803          * dwords as required. The registers are cleared on read.
804          */
805         for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
806                 if (bit % 32 == 0)
807                         value = ioread32(nhi->iobase
808                                          + REG_RING_NOTIFY_BASE
809                                          + 4 * (bit / 32));
810                 if (++hop == nhi->hop_count) {
811                         hop = 0;
812                         type++;
813                 }
814                 if ((value & (1 << (bit % 32))) == 0)
815                         continue;
816                 if (type == 2) {
817                         dev_warn(&nhi->pdev->dev,
818                                  "RX overflow for ring %d\n",
819                                  hop);
820                         continue;
821                 }
822                 if (type == 0)
823                         ring = nhi->tx_rings[hop];
824                 else
825                         ring = nhi->rx_rings[hop];
826                 if (ring == NULL) {
827                         dev_warn(&nhi->pdev->dev,
828                                  "got interrupt for inactive %s ring %d\n",
829                                  type ? "RX" : "TX",
830                                  hop);
831                         continue;
832                 }
833
834                 spin_lock(&ring->lock);
835                 __ring_interrupt(ring);
836                 spin_unlock(&ring->lock);
837         }
838         spin_unlock_irq(&nhi->lock);
839 }
840
841 static irqreturn_t nhi_msi(int irq, void *data)
842 {
843         struct tb_nhi *nhi = data;
844         schedule_work(&nhi->interrupt_work);
845         return IRQ_HANDLED;
846 }
847
848 static int nhi_suspend_noirq(struct device *dev)
849 {
850         struct pci_dev *pdev = to_pci_dev(dev);
851         struct tb *tb = pci_get_drvdata(pdev);
852
853         return tb_domain_suspend_noirq(tb);
854 }
855
856 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
857 {
858         /* Throttling is specified in 256ns increments */
859         u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
860         unsigned int i;
861
862         /*
863          * Configure interrupt throttling for all vectors even if we
864          * only use few.
865          */
866         for (i = 0; i < MSIX_MAX_VECS; i++) {
867                 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
868                 iowrite32(throttle, nhi->iobase + reg);
869         }
870 }
871
872 static int nhi_resume_noirq(struct device *dev)
873 {
874         struct pci_dev *pdev = to_pci_dev(dev);
875         struct tb *tb = pci_get_drvdata(pdev);
876
877         /*
878          * Check that the device is still there. It may be that the user
879          * unplugged last device which causes the host controller to go
880          * away on PCs.
881          */
882         if (!pci_device_is_present(pdev))
883                 tb->nhi->going_away = true;
884         else
885                 nhi_enable_int_throttling(tb->nhi);
886
887         return tb_domain_resume_noirq(tb);
888 }
889
890 static int nhi_suspend(struct device *dev)
891 {
892         struct pci_dev *pdev = to_pci_dev(dev);
893         struct tb *tb = pci_get_drvdata(pdev);
894
895         return tb_domain_suspend(tb);
896 }
897
898 static void nhi_complete(struct device *dev)
899 {
900         struct pci_dev *pdev = to_pci_dev(dev);
901         struct tb *tb = pci_get_drvdata(pdev);
902
903         tb_domain_complete(tb);
904 }
905
906 static void nhi_shutdown(struct tb_nhi *nhi)
907 {
908         int i;
909         dev_info(&nhi->pdev->dev, "shutdown\n");
910
911         for (i = 0; i < nhi->hop_count; i++) {
912                 if (nhi->tx_rings[i])
913                         dev_WARN(&nhi->pdev->dev,
914                                  "TX ring %d is still active\n", i);
915                 if (nhi->rx_rings[i])
916                         dev_WARN(&nhi->pdev->dev,
917                                  "RX ring %d is still active\n", i);
918         }
919         nhi_disable_interrupts(nhi);
920         /*
921          * We have to release the irq before calling flush_work. Otherwise an
922          * already executing IRQ handler could call schedule_work again.
923          */
924         if (!nhi->pdev->msix_enabled) {
925                 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
926                 flush_work(&nhi->interrupt_work);
927         }
928         ida_destroy(&nhi->msix_ida);
929 }
930
931 static int nhi_init_msi(struct tb_nhi *nhi)
932 {
933         struct pci_dev *pdev = nhi->pdev;
934         int res, irq, nvec;
935
936         /* In case someone left them on. */
937         nhi_disable_interrupts(nhi);
938
939         nhi_enable_int_throttling(nhi);
940
941         ida_init(&nhi->msix_ida);
942
943         /*
944          * The NHI has 16 MSI-X vectors or a single MSI. We first try to
945          * get all MSI-X vectors and if we succeed, each ring will have
946          * one MSI-X. If for some reason that does not work out, we
947          * fallback to a single MSI.
948          */
949         nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
950                                      PCI_IRQ_MSIX);
951         if (nvec < 0) {
952                 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
953                 if (nvec < 0)
954                         return nvec;
955
956                 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
957
958                 irq = pci_irq_vector(nhi->pdev, 0);
959                 if (irq < 0)
960                         return irq;
961
962                 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
963                                        IRQF_NO_SUSPEND, "thunderbolt", nhi);
964                 if (res) {
965                         dev_err(&pdev->dev, "request_irq failed, aborting\n");
966                         return res;
967                 }
968         }
969
970         return 0;
971 }
972
973 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
974 {
975         struct tb_nhi *nhi;
976         struct tb *tb;
977         int res;
978
979         res = pcim_enable_device(pdev);
980         if (res) {
981                 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
982                 return res;
983         }
984
985         res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
986         if (res) {
987                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
988                 return res;
989         }
990
991         nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
992         if (!nhi)
993                 return -ENOMEM;
994
995         nhi->pdev = pdev;
996         /* cannot fail - table is allocated bin pcim_iomap_regions */
997         nhi->iobase = pcim_iomap_table(pdev)[0];
998         nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
999         if (nhi->hop_count != 12 && nhi->hop_count != 32)
1000                 dev_warn(&pdev->dev, "unexpected hop count: %d\n",
1001                          nhi->hop_count);
1002
1003         nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1004                                      sizeof(*nhi->tx_rings), GFP_KERNEL);
1005         nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1006                                      sizeof(*nhi->rx_rings), GFP_KERNEL);
1007         if (!nhi->tx_rings || !nhi->rx_rings)
1008                 return -ENOMEM;
1009
1010         res = nhi_init_msi(nhi);
1011         if (res) {
1012                 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1013                 return res;
1014         }
1015
1016         spin_lock_init(&nhi->lock);
1017
1018         pci_set_master(pdev);
1019
1020         tb = icm_probe(nhi);
1021         if (!tb)
1022                 tb = tb_probe(nhi);
1023         if (!tb) {
1024                 dev_err(&nhi->pdev->dev,
1025                         "failed to determine connection manager, aborting\n");
1026                 return -ENODEV;
1027         }
1028
1029         dev_info(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1030
1031         res = tb_domain_add(tb);
1032         if (res) {
1033                 /*
1034                  * At this point the RX/TX rings might already have been
1035                  * activated. Do a proper shutdown.
1036                  */
1037                 tb_domain_put(tb);
1038                 nhi_shutdown(nhi);
1039                 return res;
1040         }
1041         pci_set_drvdata(pdev, tb);
1042
1043         return 0;
1044 }
1045
1046 static void nhi_remove(struct pci_dev *pdev)
1047 {
1048         struct tb *tb = pci_get_drvdata(pdev);
1049         struct tb_nhi *nhi = tb->nhi;
1050
1051         tb_domain_remove(tb);
1052         nhi_shutdown(nhi);
1053 }
1054
1055 /*
1056  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1057  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1058  * resume_noirq until we are done.
1059  */
1060 static const struct dev_pm_ops nhi_pm_ops = {
1061         .suspend_noirq = nhi_suspend_noirq,
1062         .resume_noirq = nhi_resume_noirq,
1063         .freeze_noirq = nhi_suspend_noirq, /*
1064                                             * we just disable hotplug, the
1065                                             * pci-tunnels stay alive.
1066                                             */
1067         .thaw_noirq = nhi_resume_noirq,
1068         .restore_noirq = nhi_resume_noirq,
1069         .suspend = nhi_suspend,
1070         .freeze = nhi_suspend,
1071         .poweroff = nhi_suspend,
1072         .complete = nhi_complete,
1073 };
1074
1075 static struct pci_device_id nhi_ids[] = {
1076         /*
1077          * We have to specify class, the TB bridges use the same device and
1078          * vendor (sub)id on gen 1 and gen 2 controllers.
1079          */
1080         {
1081                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1082                 .vendor = PCI_VENDOR_ID_INTEL,
1083                 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1084                 .subvendor = 0x2222, .subdevice = 0x1111,
1085         },
1086         {
1087                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1088                 .vendor = PCI_VENDOR_ID_INTEL,
1089                 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1090                 .subvendor = 0x2222, .subdevice = 0x1111,
1091         },
1092         {
1093                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1094                 .vendor = PCI_VENDOR_ID_INTEL,
1095                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1096                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1097         },
1098         {
1099                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1100                 .vendor = PCI_VENDOR_ID_INTEL,
1101                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1102                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1103         },
1104
1105         /* Thunderbolt 3 */
1106         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1107         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1108         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1109         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1110         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1111         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1112         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1113         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1114         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1115         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1116
1117         { 0,}
1118 };
1119
1120 MODULE_DEVICE_TABLE(pci, nhi_ids);
1121 MODULE_LICENSE("GPL");
1122
1123 static struct pci_driver nhi_driver = {
1124         .name = "thunderbolt",
1125         .id_table = nhi_ids,
1126         .probe = nhi_probe,
1127         .remove = nhi_remove,
1128         .driver.pm = &nhi_pm_ops,
1129 };
1130
1131 static int __init nhi_init(void)
1132 {
1133         int ret;
1134
1135         ret = tb_domain_init();
1136         if (ret)
1137                 return ret;
1138         ret = pci_register_driver(&nhi_driver);
1139         if (ret)
1140                 tb_domain_exit();
1141         return ret;
1142 }
1143
1144 static void __exit nhi_unload(void)
1145 {
1146         pci_unregister_driver(&nhi_driver);
1147         tb_domain_exit();
1148 }
1149
1150 fs_initcall(nhi_init);
1151 module_exit(nhi_unload);