Merge tag 'armsoc-defconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / thunderbolt / nhi.c
1 /*
2  * Thunderbolt driver - NHI driver
3  *
4  * The NHI (native host interface) is the pci device that allows us to send and
5  * receive frames from the thunderbolt bus.
6  *
7  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
8  * Copyright (C) 2018, Intel Corporation
9  */
10
11 #include <linux/pm_runtime.h>
12 #include <linux/slab.h>
13 #include <linux/errno.h>
14 #include <linux/pci.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/delay.h>
18
19 #include "nhi.h"
20 #include "nhi_regs.h"
21 #include "tb.h"
22
23 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
24
25 /*
26  * Used to enable end-to-end workaround for missing RX packets. Do not
27  * use this ring for anything else.
28  */
29 #define RING_E2E_UNUSED_HOPID   2
30 #define RING_FIRST_USABLE_HOPID TB_PATH_MIN_HOPID
31
32 /*
33  * Minimal number of vectors when we use MSI-X. Two for control channel
34  * Rx/Tx and the rest four are for cross domain DMA paths.
35  */
36 #define MSIX_MIN_VECS           6
37 #define MSIX_MAX_VECS           16
38
39 #define NHI_MAILBOX_TIMEOUT     500 /* ms */
40
41 static int ring_interrupt_index(struct tb_ring *ring)
42 {
43         int bit = ring->hop;
44         if (!ring->is_tx)
45                 bit += ring->nhi->hop_count;
46         return bit;
47 }
48
49 /**
50  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
51  *
52  * ring->nhi->lock must be held.
53  */
54 static void ring_interrupt_active(struct tb_ring *ring, bool active)
55 {
56         int reg = REG_RING_INTERRUPT_BASE +
57                   ring_interrupt_index(ring) / 32 * 4;
58         int bit = ring_interrupt_index(ring) & 31;
59         int mask = 1 << bit;
60         u32 old, new;
61
62         if (ring->irq > 0) {
63                 u32 step, shift, ivr, misc;
64                 void __iomem *ivr_base;
65                 int index;
66
67                 if (ring->is_tx)
68                         index = ring->hop;
69                 else
70                         index = ring->hop + ring->nhi->hop_count;
71
72                 /*
73                  * Ask the hardware to clear interrupt status bits automatically
74                  * since we already know which interrupt was triggered.
75                  */
76                 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
77                 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
78                         misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
79                         iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
80                 }
81
82                 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
83                 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
84                 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
85                 ivr = ioread32(ivr_base + step);
86                 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
87                 if (active)
88                         ivr |= ring->vector << shift;
89                 iowrite32(ivr, ivr_base + step);
90         }
91
92         old = ioread32(ring->nhi->iobase + reg);
93         if (active)
94                 new = old | mask;
95         else
96                 new = old & ~mask;
97
98         dev_dbg(&ring->nhi->pdev->dev,
99                 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
100                 active ? "enabling" : "disabling", reg, bit, old, new);
101
102         if (new == old)
103                 dev_WARN(&ring->nhi->pdev->dev,
104                                          "interrupt for %s %d is already %s\n",
105                                          RING_TYPE(ring), ring->hop,
106                                          active ? "enabled" : "disabled");
107         iowrite32(new, ring->nhi->iobase + reg);
108 }
109
110 /**
111  * nhi_disable_interrupts() - disable interrupts for all rings
112  *
113  * Use only during init and shutdown.
114  */
115 static void nhi_disable_interrupts(struct tb_nhi *nhi)
116 {
117         int i = 0;
118         /* disable interrupts */
119         for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
120                 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
121
122         /* clear interrupt status bits */
123         for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
124                 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
125 }
126
127 /* ring helper methods */
128
129 static void __iomem *ring_desc_base(struct tb_ring *ring)
130 {
131         void __iomem *io = ring->nhi->iobase;
132         io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
133         io += ring->hop * 16;
134         return io;
135 }
136
137 static void __iomem *ring_options_base(struct tb_ring *ring)
138 {
139         void __iomem *io = ring->nhi->iobase;
140         io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
141         io += ring->hop * 32;
142         return io;
143 }
144
145 static void ring_iowrite16desc(struct tb_ring *ring, u32 value, u32 offset)
146 {
147         iowrite16(value, ring_desc_base(ring) + offset);
148 }
149
150 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
151 {
152         iowrite32(value, ring_desc_base(ring) + offset);
153 }
154
155 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
156 {
157         iowrite32(value, ring_desc_base(ring) + offset);
158         iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
159 }
160
161 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
162 {
163         iowrite32(value, ring_options_base(ring) + offset);
164 }
165
166 static bool ring_full(struct tb_ring *ring)
167 {
168         return ((ring->head + 1) % ring->size) == ring->tail;
169 }
170
171 static bool ring_empty(struct tb_ring *ring)
172 {
173         return ring->head == ring->tail;
174 }
175
176 /**
177  * ring_write_descriptors() - post frames from ring->queue to the controller
178  *
179  * ring->lock is held.
180  */
181 static void ring_write_descriptors(struct tb_ring *ring)
182 {
183         struct ring_frame *frame, *n;
184         struct ring_desc *descriptor;
185         list_for_each_entry_safe(frame, n, &ring->queue, list) {
186                 if (ring_full(ring))
187                         break;
188                 list_move_tail(&frame->list, &ring->in_flight);
189                 descriptor = &ring->descriptors[ring->head];
190                 descriptor->phys = frame->buffer_phy;
191                 descriptor->time = 0;
192                 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
193                 if (ring->is_tx) {
194                         descriptor->length = frame->size;
195                         descriptor->eof = frame->eof;
196                         descriptor->sof = frame->sof;
197                 }
198                 ring->head = (ring->head + 1) % ring->size;
199                 ring_iowrite16desc(ring, ring->head, ring->is_tx ? 10 : 8);
200         }
201 }
202
203 /**
204  * ring_work() - progress completed frames
205  *
206  * If the ring is shutting down then all frames are marked as canceled and
207  * their callbacks are invoked.
208  *
209  * Otherwise we collect all completed frame from the ring buffer, write new
210  * frame to the ring buffer and invoke the callbacks for the completed frames.
211  */
212 static void ring_work(struct work_struct *work)
213 {
214         struct tb_ring *ring = container_of(work, typeof(*ring), work);
215         struct ring_frame *frame;
216         bool canceled = false;
217         unsigned long flags;
218         LIST_HEAD(done);
219
220         spin_lock_irqsave(&ring->lock, flags);
221
222         if (!ring->running) {
223                 /*  Move all frames to done and mark them as canceled. */
224                 list_splice_tail_init(&ring->in_flight, &done);
225                 list_splice_tail_init(&ring->queue, &done);
226                 canceled = true;
227                 goto invoke_callback;
228         }
229
230         while (!ring_empty(ring)) {
231                 if (!(ring->descriptors[ring->tail].flags
232                                 & RING_DESC_COMPLETED))
233                         break;
234                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
235                                          list);
236                 list_move_tail(&frame->list, &done);
237                 if (!ring->is_tx) {
238                         frame->size = ring->descriptors[ring->tail].length;
239                         frame->eof = ring->descriptors[ring->tail].eof;
240                         frame->sof = ring->descriptors[ring->tail].sof;
241                         frame->flags = ring->descriptors[ring->tail].flags;
242                 }
243                 ring->tail = (ring->tail + 1) % ring->size;
244         }
245         ring_write_descriptors(ring);
246
247 invoke_callback:
248         /* allow callbacks to schedule new work */
249         spin_unlock_irqrestore(&ring->lock, flags);
250         while (!list_empty(&done)) {
251                 frame = list_first_entry(&done, typeof(*frame), list);
252                 /*
253                  * The callback may reenqueue or delete frame.
254                  * Do not hold on to it.
255                  */
256                 list_del_init(&frame->list);
257                 if (frame->callback)
258                         frame->callback(ring, frame, canceled);
259         }
260 }
261
262 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
263 {
264         unsigned long flags;
265         int ret = 0;
266
267         spin_lock_irqsave(&ring->lock, flags);
268         if (ring->running) {
269                 list_add_tail(&frame->list, &ring->queue);
270                 ring_write_descriptors(ring);
271         } else {
272                 ret = -ESHUTDOWN;
273         }
274         spin_unlock_irqrestore(&ring->lock, flags);
275         return ret;
276 }
277 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
278
279 /**
280  * tb_ring_poll() - Poll one completed frame from the ring
281  * @ring: Ring to poll
282  *
283  * This function can be called when @start_poll callback of the @ring
284  * has been called. It will read one completed frame from the ring and
285  * return it to the caller. Returns %NULL if there is no more completed
286  * frames.
287  */
288 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
289 {
290         struct ring_frame *frame = NULL;
291         unsigned long flags;
292
293         spin_lock_irqsave(&ring->lock, flags);
294         if (!ring->running)
295                 goto unlock;
296         if (ring_empty(ring))
297                 goto unlock;
298
299         if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
300                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
301                                          list);
302                 list_del_init(&frame->list);
303
304                 if (!ring->is_tx) {
305                         frame->size = ring->descriptors[ring->tail].length;
306                         frame->eof = ring->descriptors[ring->tail].eof;
307                         frame->sof = ring->descriptors[ring->tail].sof;
308                         frame->flags = ring->descriptors[ring->tail].flags;
309                 }
310
311                 ring->tail = (ring->tail + 1) % ring->size;
312         }
313
314 unlock:
315         spin_unlock_irqrestore(&ring->lock, flags);
316         return frame;
317 }
318 EXPORT_SYMBOL_GPL(tb_ring_poll);
319
320 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
321 {
322         int idx = ring_interrupt_index(ring);
323         int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
324         int bit = idx % 32;
325         u32 val;
326
327         val = ioread32(ring->nhi->iobase + reg);
328         if (mask)
329                 val &= ~BIT(bit);
330         else
331                 val |= BIT(bit);
332         iowrite32(val, ring->nhi->iobase + reg);
333 }
334
335 /* Both @nhi->lock and @ring->lock should be held */
336 static void __ring_interrupt(struct tb_ring *ring)
337 {
338         if (!ring->running)
339                 return;
340
341         if (ring->start_poll) {
342                 __ring_interrupt_mask(ring, true);
343                 ring->start_poll(ring->poll_data);
344         } else {
345                 schedule_work(&ring->work);
346         }
347 }
348
349 /**
350  * tb_ring_poll_complete() - Re-start interrupt for the ring
351  * @ring: Ring to re-start the interrupt
352  *
353  * This will re-start (unmask) the ring interrupt once the user is done
354  * with polling.
355  */
356 void tb_ring_poll_complete(struct tb_ring *ring)
357 {
358         unsigned long flags;
359
360         spin_lock_irqsave(&ring->nhi->lock, flags);
361         spin_lock(&ring->lock);
362         if (ring->start_poll)
363                 __ring_interrupt_mask(ring, false);
364         spin_unlock(&ring->lock);
365         spin_unlock_irqrestore(&ring->nhi->lock, flags);
366 }
367 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
368
369 static irqreturn_t ring_msix(int irq, void *data)
370 {
371         struct tb_ring *ring = data;
372
373         spin_lock(&ring->nhi->lock);
374         spin_lock(&ring->lock);
375         __ring_interrupt(ring);
376         spin_unlock(&ring->lock);
377         spin_unlock(&ring->nhi->lock);
378
379         return IRQ_HANDLED;
380 }
381
382 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
383 {
384         struct tb_nhi *nhi = ring->nhi;
385         unsigned long irqflags;
386         int ret;
387
388         if (!nhi->pdev->msix_enabled)
389                 return 0;
390
391         ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
392         if (ret < 0)
393                 return ret;
394
395         ring->vector = ret;
396
397         ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
398         if (ring->irq < 0)
399                 return ring->irq;
400
401         irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
402         return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
403 }
404
405 static void ring_release_msix(struct tb_ring *ring)
406 {
407         if (ring->irq <= 0)
408                 return;
409
410         free_irq(ring->irq, ring);
411         ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
412         ring->vector = 0;
413         ring->irq = 0;
414 }
415
416 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
417 {
418         int ret = 0;
419
420         spin_lock_irq(&nhi->lock);
421
422         if (ring->hop < 0) {
423                 unsigned int i;
424
425                 /*
426                  * Automatically allocate HopID from the non-reserved
427                  * range 8 .. hop_count - 1.
428                  */
429                 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
430                         if (ring->is_tx) {
431                                 if (!nhi->tx_rings[i]) {
432                                         ring->hop = i;
433                                         break;
434                                 }
435                         } else {
436                                 if (!nhi->rx_rings[i]) {
437                                         ring->hop = i;
438                                         break;
439                                 }
440                         }
441                 }
442         }
443
444         if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
445                 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
446                 ret = -EINVAL;
447                 goto err_unlock;
448         }
449         if (ring->is_tx && nhi->tx_rings[ring->hop]) {
450                 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
451                          ring->hop);
452                 ret = -EBUSY;
453                 goto err_unlock;
454         } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
455                 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
456                          ring->hop);
457                 ret = -EBUSY;
458                 goto err_unlock;
459         }
460
461         if (ring->is_tx)
462                 nhi->tx_rings[ring->hop] = ring;
463         else
464                 nhi->rx_rings[ring->hop] = ring;
465
466 err_unlock:
467         spin_unlock_irq(&nhi->lock);
468
469         return ret;
470 }
471
472 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
473                                      bool transmit, unsigned int flags,
474                                      u16 sof_mask, u16 eof_mask,
475                                      void (*start_poll)(void *),
476                                      void *poll_data)
477 {
478         struct tb_ring *ring = NULL;
479
480         dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
481                 transmit ? "TX" : "RX", hop, size);
482
483         /* Tx Ring 2 is reserved for E2E workaround */
484         if (transmit && hop == RING_E2E_UNUSED_HOPID)
485                 return NULL;
486
487         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
488         if (!ring)
489                 return NULL;
490
491         spin_lock_init(&ring->lock);
492         INIT_LIST_HEAD(&ring->queue);
493         INIT_LIST_HEAD(&ring->in_flight);
494         INIT_WORK(&ring->work, ring_work);
495
496         ring->nhi = nhi;
497         ring->hop = hop;
498         ring->is_tx = transmit;
499         ring->size = size;
500         ring->flags = flags;
501         ring->sof_mask = sof_mask;
502         ring->eof_mask = eof_mask;
503         ring->head = 0;
504         ring->tail = 0;
505         ring->running = false;
506         ring->start_poll = start_poll;
507         ring->poll_data = poll_data;
508
509         ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
510                         size * sizeof(*ring->descriptors),
511                         &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
512         if (!ring->descriptors)
513                 goto err_free_ring;
514
515         if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
516                 goto err_free_descs;
517
518         if (nhi_alloc_hop(nhi, ring))
519                 goto err_release_msix;
520
521         return ring;
522
523 err_release_msix:
524         ring_release_msix(ring);
525 err_free_descs:
526         dma_free_coherent(&ring->nhi->pdev->dev,
527                           ring->size * sizeof(*ring->descriptors),
528                           ring->descriptors, ring->descriptors_dma);
529 err_free_ring:
530         kfree(ring);
531
532         return NULL;
533 }
534
535 /**
536  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
537  * @nhi: Pointer to the NHI the ring is to be allocated
538  * @hop: HopID (ring) to allocate
539  * @size: Number of entries in the ring
540  * @flags: Flags for the ring
541  */
542 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
543                                  unsigned int flags)
544 {
545         return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
546 }
547 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
548
549 /**
550  * tb_ring_alloc_rx() - Allocate DMA ring for receive
551  * @nhi: Pointer to the NHI the ring is to be allocated
552  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
553  * @size: Number of entries in the ring
554  * @flags: Flags for the ring
555  * @sof_mask: Mask of PDF values that start a frame
556  * @eof_mask: Mask of PDF values that end a frame
557  * @start_poll: If not %NULL the ring will call this function when an
558  *              interrupt is triggered and masked, instead of callback
559  *              in each Rx frame.
560  * @poll_data: Optional data passed to @start_poll
561  */
562 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
563                                  unsigned int flags, u16 sof_mask, u16 eof_mask,
564                                  void (*start_poll)(void *), void *poll_data)
565 {
566         return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
567                              start_poll, poll_data);
568 }
569 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
570
571 /**
572  * tb_ring_start() - enable a ring
573  *
574  * Must not be invoked in parallel with tb_ring_stop().
575  */
576 void tb_ring_start(struct tb_ring *ring)
577 {
578         u16 frame_size;
579         u32 flags;
580
581         spin_lock_irq(&ring->nhi->lock);
582         spin_lock(&ring->lock);
583         if (ring->nhi->going_away)
584                 goto err;
585         if (ring->running) {
586                 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
587                 goto err;
588         }
589         dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
590                 RING_TYPE(ring), ring->hop);
591
592         if (ring->flags & RING_FLAG_FRAME) {
593                 /* Means 4096 */
594                 frame_size = 0;
595                 flags = RING_FLAG_ENABLE;
596         } else {
597                 frame_size = TB_FRAME_SIZE;
598                 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
599         }
600
601         if (ring->flags & RING_FLAG_E2E && !ring->is_tx) {
602                 u32 hop;
603
604                 /*
605                  * In order not to lose Rx packets we enable end-to-end
606                  * workaround which transfers Rx credits to an unused Tx
607                  * HopID.
608                  */
609                 hop = RING_E2E_UNUSED_HOPID << REG_RX_OPTIONS_E2E_HOP_SHIFT;
610                 hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
611                 flags |= hop | RING_FLAG_E2E_FLOW_CONTROL;
612         }
613
614         ring_iowrite64desc(ring, ring->descriptors_dma, 0);
615         if (ring->is_tx) {
616                 ring_iowrite32desc(ring, ring->size, 12);
617                 ring_iowrite32options(ring, 0, 4); /* time releated ? */
618                 ring_iowrite32options(ring, flags, 0);
619         } else {
620                 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
621
622                 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
623                 ring_iowrite32options(ring, sof_eof_mask, 4);
624                 ring_iowrite32options(ring, flags, 0);
625         }
626         ring_interrupt_active(ring, true);
627         ring->running = true;
628 err:
629         spin_unlock(&ring->lock);
630         spin_unlock_irq(&ring->nhi->lock);
631 }
632 EXPORT_SYMBOL_GPL(tb_ring_start);
633
634 /**
635  * tb_ring_stop() - shutdown a ring
636  *
637  * Must not be invoked from a callback.
638  *
639  * This method will disable the ring. Further calls to
640  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
641  * called.
642  *
643  * All enqueued frames will be canceled and their callbacks will be executed
644  * with frame->canceled set to true (on the callback thread). This method
645  * returns only after all callback invocations have finished.
646  */
647 void tb_ring_stop(struct tb_ring *ring)
648 {
649         spin_lock_irq(&ring->nhi->lock);
650         spin_lock(&ring->lock);
651         dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
652                 RING_TYPE(ring), ring->hop);
653         if (ring->nhi->going_away)
654                 goto err;
655         if (!ring->running) {
656                 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
657                          RING_TYPE(ring), ring->hop);
658                 goto err;
659         }
660         ring_interrupt_active(ring, false);
661
662         ring_iowrite32options(ring, 0, 0);
663         ring_iowrite64desc(ring, 0, 0);
664         ring_iowrite16desc(ring, 0, ring->is_tx ? 10 : 8);
665         ring_iowrite32desc(ring, 0, 12);
666         ring->head = 0;
667         ring->tail = 0;
668         ring->running = false;
669
670 err:
671         spin_unlock(&ring->lock);
672         spin_unlock_irq(&ring->nhi->lock);
673
674         /*
675          * schedule ring->work to invoke callbacks on all remaining frames.
676          */
677         schedule_work(&ring->work);
678         flush_work(&ring->work);
679 }
680 EXPORT_SYMBOL_GPL(tb_ring_stop);
681
682 /*
683  * tb_ring_free() - free ring
684  *
685  * When this method returns all invocations of ring->callback will have
686  * finished.
687  *
688  * Ring must be stopped.
689  *
690  * Must NOT be called from ring_frame->callback!
691  */
692 void tb_ring_free(struct tb_ring *ring)
693 {
694         spin_lock_irq(&ring->nhi->lock);
695         /*
696          * Dissociate the ring from the NHI. This also ensures that
697          * nhi_interrupt_work cannot reschedule ring->work.
698          */
699         if (ring->is_tx)
700                 ring->nhi->tx_rings[ring->hop] = NULL;
701         else
702                 ring->nhi->rx_rings[ring->hop] = NULL;
703
704         if (ring->running) {
705                 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
706                          RING_TYPE(ring), ring->hop);
707         }
708         spin_unlock_irq(&ring->nhi->lock);
709
710         ring_release_msix(ring);
711
712         dma_free_coherent(&ring->nhi->pdev->dev,
713                           ring->size * sizeof(*ring->descriptors),
714                           ring->descriptors, ring->descriptors_dma);
715
716         ring->descriptors = NULL;
717         ring->descriptors_dma = 0;
718
719
720         dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
721                 ring->hop);
722
723         /**
724          * ring->work can no longer be scheduled (it is scheduled only
725          * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
726          * to finish before freeing the ring.
727          */
728         flush_work(&ring->work);
729         kfree(ring);
730 }
731 EXPORT_SYMBOL_GPL(tb_ring_free);
732
733 /**
734  * nhi_mailbox_cmd() - Send a command through NHI mailbox
735  * @nhi: Pointer to the NHI structure
736  * @cmd: Command to send
737  * @data: Data to be send with the command
738  *
739  * Sends mailbox command to the firmware running on NHI. Returns %0 in
740  * case of success and negative errno in case of failure.
741  */
742 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
743 {
744         ktime_t timeout;
745         u32 val;
746
747         iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
748
749         val = ioread32(nhi->iobase + REG_INMAIL_CMD);
750         val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
751         val |= REG_INMAIL_OP_REQUEST | cmd;
752         iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
753
754         timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
755         do {
756                 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
757                 if (!(val & REG_INMAIL_OP_REQUEST))
758                         break;
759                 usleep_range(10, 20);
760         } while (ktime_before(ktime_get(), timeout));
761
762         if (val & REG_INMAIL_OP_REQUEST)
763                 return -ETIMEDOUT;
764         if (val & REG_INMAIL_ERROR)
765                 return -EIO;
766
767         return 0;
768 }
769
770 /**
771  * nhi_mailbox_mode() - Return current firmware operation mode
772  * @nhi: Pointer to the NHI structure
773  *
774  * The function reads current firmware operation mode using NHI mailbox
775  * registers and returns it to the caller.
776  */
777 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
778 {
779         u32 val;
780
781         val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
782         val &= REG_OUTMAIL_CMD_OPMODE_MASK;
783         val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
784
785         return (enum nhi_fw_mode)val;
786 }
787
788 static void nhi_interrupt_work(struct work_struct *work)
789 {
790         struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
791         int value = 0; /* Suppress uninitialized usage warning. */
792         int bit;
793         int hop = -1;
794         int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
795         struct tb_ring *ring;
796
797         spin_lock_irq(&nhi->lock);
798
799         /*
800          * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
801          * (TX, RX, RX overflow). We iterate over the bits and read a new
802          * dwords as required. The registers are cleared on read.
803          */
804         for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
805                 if (bit % 32 == 0)
806                         value = ioread32(nhi->iobase
807                                          + REG_RING_NOTIFY_BASE
808                                          + 4 * (bit / 32));
809                 if (++hop == nhi->hop_count) {
810                         hop = 0;
811                         type++;
812                 }
813                 if ((value & (1 << (bit % 32))) == 0)
814                         continue;
815                 if (type == 2) {
816                         dev_warn(&nhi->pdev->dev,
817                                  "RX overflow for ring %d\n",
818                                  hop);
819                         continue;
820                 }
821                 if (type == 0)
822                         ring = nhi->tx_rings[hop];
823                 else
824                         ring = nhi->rx_rings[hop];
825                 if (ring == NULL) {
826                         dev_warn(&nhi->pdev->dev,
827                                  "got interrupt for inactive %s ring %d\n",
828                                  type ? "RX" : "TX",
829                                  hop);
830                         continue;
831                 }
832
833                 spin_lock(&ring->lock);
834                 __ring_interrupt(ring);
835                 spin_unlock(&ring->lock);
836         }
837         spin_unlock_irq(&nhi->lock);
838 }
839
840 static irqreturn_t nhi_msi(int irq, void *data)
841 {
842         struct tb_nhi *nhi = data;
843         schedule_work(&nhi->interrupt_work);
844         return IRQ_HANDLED;
845 }
846
847 static int nhi_suspend_noirq(struct device *dev)
848 {
849         struct pci_dev *pdev = to_pci_dev(dev);
850         struct tb *tb = pci_get_drvdata(pdev);
851
852         return tb_domain_suspend_noirq(tb);
853 }
854
855 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
856 {
857         /* Throttling is specified in 256ns increments */
858         u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
859         unsigned int i;
860
861         /*
862          * Configure interrupt throttling for all vectors even if we
863          * only use few.
864          */
865         for (i = 0; i < MSIX_MAX_VECS; i++) {
866                 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
867                 iowrite32(throttle, nhi->iobase + reg);
868         }
869 }
870
871 static int nhi_resume_noirq(struct device *dev)
872 {
873         struct pci_dev *pdev = to_pci_dev(dev);
874         struct tb *tb = pci_get_drvdata(pdev);
875
876         /*
877          * Check that the device is still there. It may be that the user
878          * unplugged last device which causes the host controller to go
879          * away on PCs.
880          */
881         if (!pci_device_is_present(pdev))
882                 tb->nhi->going_away = true;
883         else
884                 nhi_enable_int_throttling(tb->nhi);
885
886         return tb_domain_resume_noirq(tb);
887 }
888
889 static int nhi_suspend(struct device *dev)
890 {
891         struct pci_dev *pdev = to_pci_dev(dev);
892         struct tb *tb = pci_get_drvdata(pdev);
893
894         return tb_domain_suspend(tb);
895 }
896
897 static void nhi_complete(struct device *dev)
898 {
899         struct pci_dev *pdev = to_pci_dev(dev);
900         struct tb *tb = pci_get_drvdata(pdev);
901
902         /*
903          * If we were runtime suspended when system suspend started,
904          * schedule runtime resume now. It should bring the domain back
905          * to functional state.
906          */
907         if (pm_runtime_suspended(&pdev->dev))
908                 pm_runtime_resume(&pdev->dev);
909         else
910                 tb_domain_complete(tb);
911 }
912
913 static int nhi_runtime_suspend(struct device *dev)
914 {
915         struct pci_dev *pdev = to_pci_dev(dev);
916         struct tb *tb = pci_get_drvdata(pdev);
917
918         return tb_domain_runtime_suspend(tb);
919 }
920
921 static int nhi_runtime_resume(struct device *dev)
922 {
923         struct pci_dev *pdev = to_pci_dev(dev);
924         struct tb *tb = pci_get_drvdata(pdev);
925
926         nhi_enable_int_throttling(tb->nhi);
927         return tb_domain_runtime_resume(tb);
928 }
929
930 static void nhi_shutdown(struct tb_nhi *nhi)
931 {
932         int i;
933
934         dev_dbg(&nhi->pdev->dev, "shutdown\n");
935
936         for (i = 0; i < nhi->hop_count; i++) {
937                 if (nhi->tx_rings[i])
938                         dev_WARN(&nhi->pdev->dev,
939                                  "TX ring %d is still active\n", i);
940                 if (nhi->rx_rings[i])
941                         dev_WARN(&nhi->pdev->dev,
942                                  "RX ring %d is still active\n", i);
943         }
944         nhi_disable_interrupts(nhi);
945         /*
946          * We have to release the irq before calling flush_work. Otherwise an
947          * already executing IRQ handler could call schedule_work again.
948          */
949         if (!nhi->pdev->msix_enabled) {
950                 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
951                 flush_work(&nhi->interrupt_work);
952         }
953         ida_destroy(&nhi->msix_ida);
954 }
955
956 static int nhi_init_msi(struct tb_nhi *nhi)
957 {
958         struct pci_dev *pdev = nhi->pdev;
959         int res, irq, nvec;
960
961         /* In case someone left them on. */
962         nhi_disable_interrupts(nhi);
963
964         nhi_enable_int_throttling(nhi);
965
966         ida_init(&nhi->msix_ida);
967
968         /*
969          * The NHI has 16 MSI-X vectors or a single MSI. We first try to
970          * get all MSI-X vectors and if we succeed, each ring will have
971          * one MSI-X. If for some reason that does not work out, we
972          * fallback to a single MSI.
973          */
974         nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
975                                      PCI_IRQ_MSIX);
976         if (nvec < 0) {
977                 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
978                 if (nvec < 0)
979                         return nvec;
980
981                 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
982
983                 irq = pci_irq_vector(nhi->pdev, 0);
984                 if (irq < 0)
985                         return irq;
986
987                 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
988                                        IRQF_NO_SUSPEND, "thunderbolt", nhi);
989                 if (res) {
990                         dev_err(&pdev->dev, "request_irq failed, aborting\n");
991                         return res;
992                 }
993         }
994
995         return 0;
996 }
997
998 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
999 {
1000         struct tb_nhi *nhi;
1001         struct tb *tb;
1002         int res;
1003
1004         res = pcim_enable_device(pdev);
1005         if (res) {
1006                 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1007                 return res;
1008         }
1009
1010         res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1011         if (res) {
1012                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1013                 return res;
1014         }
1015
1016         nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1017         if (!nhi)
1018                 return -ENOMEM;
1019
1020         nhi->pdev = pdev;
1021         /* cannot fail - table is allocated bin pcim_iomap_regions */
1022         nhi->iobase = pcim_iomap_table(pdev)[0];
1023         nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1024         if (nhi->hop_count != 12 && nhi->hop_count != 32)
1025                 dev_warn(&pdev->dev, "unexpected hop count: %d\n",
1026                          nhi->hop_count);
1027
1028         nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1029                                      sizeof(*nhi->tx_rings), GFP_KERNEL);
1030         nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1031                                      sizeof(*nhi->rx_rings), GFP_KERNEL);
1032         if (!nhi->tx_rings || !nhi->rx_rings)
1033                 return -ENOMEM;
1034
1035         res = nhi_init_msi(nhi);
1036         if (res) {
1037                 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1038                 return res;
1039         }
1040
1041         spin_lock_init(&nhi->lock);
1042
1043         res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1044         if (res)
1045                 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1046         if (res) {
1047                 dev_err(&pdev->dev, "failed to set DMA mask\n");
1048                 return res;
1049         }
1050
1051         pci_set_master(pdev);
1052
1053         tb = icm_probe(nhi);
1054         if (!tb)
1055                 tb = tb_probe(nhi);
1056         if (!tb) {
1057                 dev_err(&nhi->pdev->dev,
1058                         "failed to determine connection manager, aborting\n");
1059                 return -ENODEV;
1060         }
1061
1062         dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1063
1064         res = tb_domain_add(tb);
1065         if (res) {
1066                 /*
1067                  * At this point the RX/TX rings might already have been
1068                  * activated. Do a proper shutdown.
1069                  */
1070                 tb_domain_put(tb);
1071                 nhi_shutdown(nhi);
1072                 return res;
1073         }
1074         pci_set_drvdata(pdev, tb);
1075
1076         pm_runtime_allow(&pdev->dev);
1077         pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1078         pm_runtime_use_autosuspend(&pdev->dev);
1079         pm_runtime_put_autosuspend(&pdev->dev);
1080
1081         return 0;
1082 }
1083
1084 static void nhi_remove(struct pci_dev *pdev)
1085 {
1086         struct tb *tb = pci_get_drvdata(pdev);
1087         struct tb_nhi *nhi = tb->nhi;
1088
1089         pm_runtime_get_sync(&pdev->dev);
1090         pm_runtime_dont_use_autosuspend(&pdev->dev);
1091         pm_runtime_forbid(&pdev->dev);
1092
1093         tb_domain_remove(tb);
1094         nhi_shutdown(nhi);
1095 }
1096
1097 /*
1098  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1099  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1100  * resume_noirq until we are done.
1101  */
1102 static const struct dev_pm_ops nhi_pm_ops = {
1103         .suspend_noirq = nhi_suspend_noirq,
1104         .resume_noirq = nhi_resume_noirq,
1105         .freeze_noirq = nhi_suspend_noirq, /*
1106                                             * we just disable hotplug, the
1107                                             * pci-tunnels stay alive.
1108                                             */
1109         .thaw_noirq = nhi_resume_noirq,
1110         .restore_noirq = nhi_resume_noirq,
1111         .suspend = nhi_suspend,
1112         .freeze = nhi_suspend,
1113         .poweroff = nhi_suspend,
1114         .complete = nhi_complete,
1115         .runtime_suspend = nhi_runtime_suspend,
1116         .runtime_resume = nhi_runtime_resume,
1117 };
1118
1119 static struct pci_device_id nhi_ids[] = {
1120         /*
1121          * We have to specify class, the TB bridges use the same device and
1122          * vendor (sub)id on gen 1 and gen 2 controllers.
1123          */
1124         {
1125                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1126                 .vendor = PCI_VENDOR_ID_INTEL,
1127                 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1128                 .subvendor = 0x2222, .subdevice = 0x1111,
1129         },
1130         {
1131                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1132                 .vendor = PCI_VENDOR_ID_INTEL,
1133                 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1134                 .subvendor = 0x2222, .subdevice = 0x1111,
1135         },
1136         {
1137                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1138                 .vendor = PCI_VENDOR_ID_INTEL,
1139                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1140                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1141         },
1142         {
1143                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1144                 .vendor = PCI_VENDOR_ID_INTEL,
1145                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1146                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1147         },
1148
1149         /* Thunderbolt 3 */
1150         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1151         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1152         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1153         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1154         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1155         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1156         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1157         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1158         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1159         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1160
1161         { 0,}
1162 };
1163
1164 MODULE_DEVICE_TABLE(pci, nhi_ids);
1165 MODULE_LICENSE("GPL");
1166
1167 static struct pci_driver nhi_driver = {
1168         .name = "thunderbolt",
1169         .id_table = nhi_ids,
1170         .probe = nhi_probe,
1171         .remove = nhi_remove,
1172         .driver.pm = &nhi_pm_ops,
1173 };
1174
1175 static int __init nhi_init(void)
1176 {
1177         int ret;
1178
1179         ret = tb_domain_init();
1180         if (ret)
1181                 return ret;
1182         ret = pci_register_driver(&nhi_driver);
1183         if (ret)
1184                 tb_domain_exit();
1185         return ret;
1186 }
1187
1188 static void __exit nhi_unload(void)
1189 {
1190         pci_unregister_driver(&nhi_driver);
1191         tb_domain_exit();
1192 }
1193
1194 rootfs_initcall(nhi_init);
1195 module_exit(nhi_unload);