Merge tag 'mvebu-fixes-5.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/gcleme...
[linux-2.6-microblaze.git] / drivers / thunderbolt / nhi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20 #include <linux/platform_data/x86/apple.h>
21
22 #include "nhi.h"
23 #include "nhi_regs.h"
24 #include "tb.h"
25
26 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
27
28 #define RING_FIRST_USABLE_HOPID 1
29
30 /*
31  * Minimal number of vectors when we use MSI-X. Two for control channel
32  * Rx/Tx and the rest four are for cross domain DMA paths.
33  */
34 #define MSIX_MIN_VECS           6
35 #define MSIX_MAX_VECS           16
36
37 #define NHI_MAILBOX_TIMEOUT     500 /* ms */
38
39 static int ring_interrupt_index(struct tb_ring *ring)
40 {
41         int bit = ring->hop;
42         if (!ring->is_tx)
43                 bit += ring->nhi->hop_count;
44         return bit;
45 }
46
47 /**
48  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
49  *
50  * ring->nhi->lock must be held.
51  */
52 static void ring_interrupt_active(struct tb_ring *ring, bool active)
53 {
54         int reg = REG_RING_INTERRUPT_BASE +
55                   ring_interrupt_index(ring) / 32 * 4;
56         int bit = ring_interrupt_index(ring) & 31;
57         int mask = 1 << bit;
58         u32 old, new;
59
60         if (ring->irq > 0) {
61                 u32 step, shift, ivr, misc;
62                 void __iomem *ivr_base;
63                 int index;
64
65                 if (ring->is_tx)
66                         index = ring->hop;
67                 else
68                         index = ring->hop + ring->nhi->hop_count;
69
70                 /*
71                  * Ask the hardware to clear interrupt status bits automatically
72                  * since we already know which interrupt was triggered.
73                  */
74                 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
75                 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
76                         misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
77                         iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
78                 }
79
80                 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
81                 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
82                 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
83                 ivr = ioread32(ivr_base + step);
84                 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
85                 if (active)
86                         ivr |= ring->vector << shift;
87                 iowrite32(ivr, ivr_base + step);
88         }
89
90         old = ioread32(ring->nhi->iobase + reg);
91         if (active)
92                 new = old | mask;
93         else
94                 new = old & ~mask;
95
96         dev_dbg(&ring->nhi->pdev->dev,
97                 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
98                 active ? "enabling" : "disabling", reg, bit, old, new);
99
100         if (new == old)
101                 dev_WARN(&ring->nhi->pdev->dev,
102                                          "interrupt for %s %d is already %s\n",
103                                          RING_TYPE(ring), ring->hop,
104                                          active ? "enabled" : "disabled");
105         iowrite32(new, ring->nhi->iobase + reg);
106 }
107
108 /**
109  * nhi_disable_interrupts() - disable interrupts for all rings
110  *
111  * Use only during init and shutdown.
112  */
113 static void nhi_disable_interrupts(struct tb_nhi *nhi)
114 {
115         int i = 0;
116         /* disable interrupts */
117         for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
118                 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
119
120         /* clear interrupt status bits */
121         for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
122                 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
123 }
124
125 /* ring helper methods */
126
127 static void __iomem *ring_desc_base(struct tb_ring *ring)
128 {
129         void __iomem *io = ring->nhi->iobase;
130         io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
131         io += ring->hop * 16;
132         return io;
133 }
134
135 static void __iomem *ring_options_base(struct tb_ring *ring)
136 {
137         void __iomem *io = ring->nhi->iobase;
138         io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
139         io += ring->hop * 32;
140         return io;
141 }
142
143 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
144 {
145         /*
146          * The other 16-bits in the register is read-only and writes to it
147          * are ignored by the hardware so we can save one ioread32() by
148          * filling the read-only bits with zeroes.
149          */
150         iowrite32(cons, ring_desc_base(ring) + 8);
151 }
152
153 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
154 {
155         /* See ring_iowrite_cons() above for explanation */
156         iowrite32(prod << 16, ring_desc_base(ring) + 8);
157 }
158
159 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
160 {
161         iowrite32(value, ring_desc_base(ring) + offset);
162 }
163
164 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
165 {
166         iowrite32(value, ring_desc_base(ring) + offset);
167         iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
168 }
169
170 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
171 {
172         iowrite32(value, ring_options_base(ring) + offset);
173 }
174
175 static bool ring_full(struct tb_ring *ring)
176 {
177         return ((ring->head + 1) % ring->size) == ring->tail;
178 }
179
180 static bool ring_empty(struct tb_ring *ring)
181 {
182         return ring->head == ring->tail;
183 }
184
185 /**
186  * ring_write_descriptors() - post frames from ring->queue to the controller
187  *
188  * ring->lock is held.
189  */
190 static void ring_write_descriptors(struct tb_ring *ring)
191 {
192         struct ring_frame *frame, *n;
193         struct ring_desc *descriptor;
194         list_for_each_entry_safe(frame, n, &ring->queue, list) {
195                 if (ring_full(ring))
196                         break;
197                 list_move_tail(&frame->list, &ring->in_flight);
198                 descriptor = &ring->descriptors[ring->head];
199                 descriptor->phys = frame->buffer_phy;
200                 descriptor->time = 0;
201                 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
202                 if (ring->is_tx) {
203                         descriptor->length = frame->size;
204                         descriptor->eof = frame->eof;
205                         descriptor->sof = frame->sof;
206                 }
207                 ring->head = (ring->head + 1) % ring->size;
208                 if (ring->is_tx)
209                         ring_iowrite_prod(ring, ring->head);
210                 else
211                         ring_iowrite_cons(ring, ring->head);
212         }
213 }
214
215 /**
216  * ring_work() - progress completed frames
217  *
218  * If the ring is shutting down then all frames are marked as canceled and
219  * their callbacks are invoked.
220  *
221  * Otherwise we collect all completed frame from the ring buffer, write new
222  * frame to the ring buffer and invoke the callbacks for the completed frames.
223  */
224 static void ring_work(struct work_struct *work)
225 {
226         struct tb_ring *ring = container_of(work, typeof(*ring), work);
227         struct ring_frame *frame;
228         bool canceled = false;
229         unsigned long flags;
230         LIST_HEAD(done);
231
232         spin_lock_irqsave(&ring->lock, flags);
233
234         if (!ring->running) {
235                 /*  Move all frames to done and mark them as canceled. */
236                 list_splice_tail_init(&ring->in_flight, &done);
237                 list_splice_tail_init(&ring->queue, &done);
238                 canceled = true;
239                 goto invoke_callback;
240         }
241
242         while (!ring_empty(ring)) {
243                 if (!(ring->descriptors[ring->tail].flags
244                                 & RING_DESC_COMPLETED))
245                         break;
246                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
247                                          list);
248                 list_move_tail(&frame->list, &done);
249                 if (!ring->is_tx) {
250                         frame->size = ring->descriptors[ring->tail].length;
251                         frame->eof = ring->descriptors[ring->tail].eof;
252                         frame->sof = ring->descriptors[ring->tail].sof;
253                         frame->flags = ring->descriptors[ring->tail].flags;
254                 }
255                 ring->tail = (ring->tail + 1) % ring->size;
256         }
257         ring_write_descriptors(ring);
258
259 invoke_callback:
260         /* allow callbacks to schedule new work */
261         spin_unlock_irqrestore(&ring->lock, flags);
262         while (!list_empty(&done)) {
263                 frame = list_first_entry(&done, typeof(*frame), list);
264                 /*
265                  * The callback may reenqueue or delete frame.
266                  * Do not hold on to it.
267                  */
268                 list_del_init(&frame->list);
269                 if (frame->callback)
270                         frame->callback(ring, frame, canceled);
271         }
272 }
273
274 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
275 {
276         unsigned long flags;
277         int ret = 0;
278
279         spin_lock_irqsave(&ring->lock, flags);
280         if (ring->running) {
281                 list_add_tail(&frame->list, &ring->queue);
282                 ring_write_descriptors(ring);
283         } else {
284                 ret = -ESHUTDOWN;
285         }
286         spin_unlock_irqrestore(&ring->lock, flags);
287         return ret;
288 }
289 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
290
291 /**
292  * tb_ring_poll() - Poll one completed frame from the ring
293  * @ring: Ring to poll
294  *
295  * This function can be called when @start_poll callback of the @ring
296  * has been called. It will read one completed frame from the ring and
297  * return it to the caller. Returns %NULL if there is no more completed
298  * frames.
299  */
300 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
301 {
302         struct ring_frame *frame = NULL;
303         unsigned long flags;
304
305         spin_lock_irqsave(&ring->lock, flags);
306         if (!ring->running)
307                 goto unlock;
308         if (ring_empty(ring))
309                 goto unlock;
310
311         if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
312                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
313                                          list);
314                 list_del_init(&frame->list);
315
316                 if (!ring->is_tx) {
317                         frame->size = ring->descriptors[ring->tail].length;
318                         frame->eof = ring->descriptors[ring->tail].eof;
319                         frame->sof = ring->descriptors[ring->tail].sof;
320                         frame->flags = ring->descriptors[ring->tail].flags;
321                 }
322
323                 ring->tail = (ring->tail + 1) % ring->size;
324         }
325
326 unlock:
327         spin_unlock_irqrestore(&ring->lock, flags);
328         return frame;
329 }
330 EXPORT_SYMBOL_GPL(tb_ring_poll);
331
332 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
333 {
334         int idx = ring_interrupt_index(ring);
335         int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
336         int bit = idx % 32;
337         u32 val;
338
339         val = ioread32(ring->nhi->iobase + reg);
340         if (mask)
341                 val &= ~BIT(bit);
342         else
343                 val |= BIT(bit);
344         iowrite32(val, ring->nhi->iobase + reg);
345 }
346
347 /* Both @nhi->lock and @ring->lock should be held */
348 static void __ring_interrupt(struct tb_ring *ring)
349 {
350         if (!ring->running)
351                 return;
352
353         if (ring->start_poll) {
354                 __ring_interrupt_mask(ring, true);
355                 ring->start_poll(ring->poll_data);
356         } else {
357                 schedule_work(&ring->work);
358         }
359 }
360
361 /**
362  * tb_ring_poll_complete() - Re-start interrupt for the ring
363  * @ring: Ring to re-start the interrupt
364  *
365  * This will re-start (unmask) the ring interrupt once the user is done
366  * with polling.
367  */
368 void tb_ring_poll_complete(struct tb_ring *ring)
369 {
370         unsigned long flags;
371
372         spin_lock_irqsave(&ring->nhi->lock, flags);
373         spin_lock(&ring->lock);
374         if (ring->start_poll)
375                 __ring_interrupt_mask(ring, false);
376         spin_unlock(&ring->lock);
377         spin_unlock_irqrestore(&ring->nhi->lock, flags);
378 }
379 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
380
381 static irqreturn_t ring_msix(int irq, void *data)
382 {
383         struct tb_ring *ring = data;
384
385         spin_lock(&ring->nhi->lock);
386         spin_lock(&ring->lock);
387         __ring_interrupt(ring);
388         spin_unlock(&ring->lock);
389         spin_unlock(&ring->nhi->lock);
390
391         return IRQ_HANDLED;
392 }
393
394 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
395 {
396         struct tb_nhi *nhi = ring->nhi;
397         unsigned long irqflags;
398         int ret;
399
400         if (!nhi->pdev->msix_enabled)
401                 return 0;
402
403         ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
404         if (ret < 0)
405                 return ret;
406
407         ring->vector = ret;
408
409         ring->irq = pci_irq_vector(ring->nhi->pdev, ring->vector);
410         if (ring->irq < 0)
411                 return ring->irq;
412
413         irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
414         return request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
415 }
416
417 static void ring_release_msix(struct tb_ring *ring)
418 {
419         if (ring->irq <= 0)
420                 return;
421
422         free_irq(ring->irq, ring);
423         ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
424         ring->vector = 0;
425         ring->irq = 0;
426 }
427
428 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
429 {
430         int ret = 0;
431
432         spin_lock_irq(&nhi->lock);
433
434         if (ring->hop < 0) {
435                 unsigned int i;
436
437                 /*
438                  * Automatically allocate HopID from the non-reserved
439                  * range 1 .. hop_count - 1.
440                  */
441                 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
442                         if (ring->is_tx) {
443                                 if (!nhi->tx_rings[i]) {
444                                         ring->hop = i;
445                                         break;
446                                 }
447                         } else {
448                                 if (!nhi->rx_rings[i]) {
449                                         ring->hop = i;
450                                         break;
451                                 }
452                         }
453                 }
454         }
455
456         if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
457                 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
458                 ret = -EINVAL;
459                 goto err_unlock;
460         }
461         if (ring->is_tx && nhi->tx_rings[ring->hop]) {
462                 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
463                          ring->hop);
464                 ret = -EBUSY;
465                 goto err_unlock;
466         } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
467                 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
468                          ring->hop);
469                 ret = -EBUSY;
470                 goto err_unlock;
471         }
472
473         if (ring->is_tx)
474                 nhi->tx_rings[ring->hop] = ring;
475         else
476                 nhi->rx_rings[ring->hop] = ring;
477
478 err_unlock:
479         spin_unlock_irq(&nhi->lock);
480
481         return ret;
482 }
483
484 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
485                                      bool transmit, unsigned int flags,
486                                      u16 sof_mask, u16 eof_mask,
487                                      void (*start_poll)(void *),
488                                      void *poll_data)
489 {
490         struct tb_ring *ring = NULL;
491
492         dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
493                 transmit ? "TX" : "RX", hop, size);
494
495         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
496         if (!ring)
497                 return NULL;
498
499         spin_lock_init(&ring->lock);
500         INIT_LIST_HEAD(&ring->queue);
501         INIT_LIST_HEAD(&ring->in_flight);
502         INIT_WORK(&ring->work, ring_work);
503
504         ring->nhi = nhi;
505         ring->hop = hop;
506         ring->is_tx = transmit;
507         ring->size = size;
508         ring->flags = flags;
509         ring->sof_mask = sof_mask;
510         ring->eof_mask = eof_mask;
511         ring->head = 0;
512         ring->tail = 0;
513         ring->running = false;
514         ring->start_poll = start_poll;
515         ring->poll_data = poll_data;
516
517         ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
518                         size * sizeof(*ring->descriptors),
519                         &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
520         if (!ring->descriptors)
521                 goto err_free_ring;
522
523         if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
524                 goto err_free_descs;
525
526         if (nhi_alloc_hop(nhi, ring))
527                 goto err_release_msix;
528
529         return ring;
530
531 err_release_msix:
532         ring_release_msix(ring);
533 err_free_descs:
534         dma_free_coherent(&ring->nhi->pdev->dev,
535                           ring->size * sizeof(*ring->descriptors),
536                           ring->descriptors, ring->descriptors_dma);
537 err_free_ring:
538         kfree(ring);
539
540         return NULL;
541 }
542
543 /**
544  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
545  * @nhi: Pointer to the NHI the ring is to be allocated
546  * @hop: HopID (ring) to allocate
547  * @size: Number of entries in the ring
548  * @flags: Flags for the ring
549  */
550 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
551                                  unsigned int flags)
552 {
553         return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, NULL, NULL);
554 }
555 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
556
557 /**
558  * tb_ring_alloc_rx() - Allocate DMA ring for receive
559  * @nhi: Pointer to the NHI the ring is to be allocated
560  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
561  * @size: Number of entries in the ring
562  * @flags: Flags for the ring
563  * @sof_mask: Mask of PDF values that start a frame
564  * @eof_mask: Mask of PDF values that end a frame
565  * @start_poll: If not %NULL the ring will call this function when an
566  *              interrupt is triggered and masked, instead of callback
567  *              in each Rx frame.
568  * @poll_data: Optional data passed to @start_poll
569  */
570 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
571                                  unsigned int flags, u16 sof_mask, u16 eof_mask,
572                                  void (*start_poll)(void *), void *poll_data)
573 {
574         return tb_ring_alloc(nhi, hop, size, false, flags, sof_mask, eof_mask,
575                              start_poll, poll_data);
576 }
577 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
578
579 /**
580  * tb_ring_start() - enable a ring
581  *
582  * Must not be invoked in parallel with tb_ring_stop().
583  */
584 void tb_ring_start(struct tb_ring *ring)
585 {
586         u16 frame_size;
587         u32 flags;
588
589         spin_lock_irq(&ring->nhi->lock);
590         spin_lock(&ring->lock);
591         if (ring->nhi->going_away)
592                 goto err;
593         if (ring->running) {
594                 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
595                 goto err;
596         }
597         dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
598                 RING_TYPE(ring), ring->hop);
599
600         if (ring->flags & RING_FLAG_FRAME) {
601                 /* Means 4096 */
602                 frame_size = 0;
603                 flags = RING_FLAG_ENABLE;
604         } else {
605                 frame_size = TB_FRAME_SIZE;
606                 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
607         }
608
609         ring_iowrite64desc(ring, ring->descriptors_dma, 0);
610         if (ring->is_tx) {
611                 ring_iowrite32desc(ring, ring->size, 12);
612                 ring_iowrite32options(ring, 0, 4); /* time releated ? */
613                 ring_iowrite32options(ring, flags, 0);
614         } else {
615                 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
616
617                 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
618                 ring_iowrite32options(ring, sof_eof_mask, 4);
619                 ring_iowrite32options(ring, flags, 0);
620         }
621         ring_interrupt_active(ring, true);
622         ring->running = true;
623 err:
624         spin_unlock(&ring->lock);
625         spin_unlock_irq(&ring->nhi->lock);
626 }
627 EXPORT_SYMBOL_GPL(tb_ring_start);
628
629 /**
630  * tb_ring_stop() - shutdown a ring
631  *
632  * Must not be invoked from a callback.
633  *
634  * This method will disable the ring. Further calls to
635  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
636  * called.
637  *
638  * All enqueued frames will be canceled and their callbacks will be executed
639  * with frame->canceled set to true (on the callback thread). This method
640  * returns only after all callback invocations have finished.
641  */
642 void tb_ring_stop(struct tb_ring *ring)
643 {
644         spin_lock_irq(&ring->nhi->lock);
645         spin_lock(&ring->lock);
646         dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
647                 RING_TYPE(ring), ring->hop);
648         if (ring->nhi->going_away)
649                 goto err;
650         if (!ring->running) {
651                 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
652                          RING_TYPE(ring), ring->hop);
653                 goto err;
654         }
655         ring_interrupt_active(ring, false);
656
657         ring_iowrite32options(ring, 0, 0);
658         ring_iowrite64desc(ring, 0, 0);
659         ring_iowrite32desc(ring, 0, 8);
660         ring_iowrite32desc(ring, 0, 12);
661         ring->head = 0;
662         ring->tail = 0;
663         ring->running = false;
664
665 err:
666         spin_unlock(&ring->lock);
667         spin_unlock_irq(&ring->nhi->lock);
668
669         /*
670          * schedule ring->work to invoke callbacks on all remaining frames.
671          */
672         schedule_work(&ring->work);
673         flush_work(&ring->work);
674 }
675 EXPORT_SYMBOL_GPL(tb_ring_stop);
676
677 /*
678  * tb_ring_free() - free ring
679  *
680  * When this method returns all invocations of ring->callback will have
681  * finished.
682  *
683  * Ring must be stopped.
684  *
685  * Must NOT be called from ring_frame->callback!
686  */
687 void tb_ring_free(struct tb_ring *ring)
688 {
689         spin_lock_irq(&ring->nhi->lock);
690         /*
691          * Dissociate the ring from the NHI. This also ensures that
692          * nhi_interrupt_work cannot reschedule ring->work.
693          */
694         if (ring->is_tx)
695                 ring->nhi->tx_rings[ring->hop] = NULL;
696         else
697                 ring->nhi->rx_rings[ring->hop] = NULL;
698
699         if (ring->running) {
700                 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
701                          RING_TYPE(ring), ring->hop);
702         }
703         spin_unlock_irq(&ring->nhi->lock);
704
705         ring_release_msix(ring);
706
707         dma_free_coherent(&ring->nhi->pdev->dev,
708                           ring->size * sizeof(*ring->descriptors),
709                           ring->descriptors, ring->descriptors_dma);
710
711         ring->descriptors = NULL;
712         ring->descriptors_dma = 0;
713
714
715         dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
716                 ring->hop);
717
718         /**
719          * ring->work can no longer be scheduled (it is scheduled only
720          * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
721          * to finish before freeing the ring.
722          */
723         flush_work(&ring->work);
724         kfree(ring);
725 }
726 EXPORT_SYMBOL_GPL(tb_ring_free);
727
728 /**
729  * nhi_mailbox_cmd() - Send a command through NHI mailbox
730  * @nhi: Pointer to the NHI structure
731  * @cmd: Command to send
732  * @data: Data to be send with the command
733  *
734  * Sends mailbox command to the firmware running on NHI. Returns %0 in
735  * case of success and negative errno in case of failure.
736  */
737 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
738 {
739         ktime_t timeout;
740         u32 val;
741
742         iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
743
744         val = ioread32(nhi->iobase + REG_INMAIL_CMD);
745         val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
746         val |= REG_INMAIL_OP_REQUEST | cmd;
747         iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
748
749         timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
750         do {
751                 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
752                 if (!(val & REG_INMAIL_OP_REQUEST))
753                         break;
754                 usleep_range(10, 20);
755         } while (ktime_before(ktime_get(), timeout));
756
757         if (val & REG_INMAIL_OP_REQUEST)
758                 return -ETIMEDOUT;
759         if (val & REG_INMAIL_ERROR)
760                 return -EIO;
761
762         return 0;
763 }
764
765 /**
766  * nhi_mailbox_mode() - Return current firmware operation mode
767  * @nhi: Pointer to the NHI structure
768  *
769  * The function reads current firmware operation mode using NHI mailbox
770  * registers and returns it to the caller.
771  */
772 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
773 {
774         u32 val;
775
776         val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
777         val &= REG_OUTMAIL_CMD_OPMODE_MASK;
778         val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
779
780         return (enum nhi_fw_mode)val;
781 }
782
783 static void nhi_interrupt_work(struct work_struct *work)
784 {
785         struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
786         int value = 0; /* Suppress uninitialized usage warning. */
787         int bit;
788         int hop = -1;
789         int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
790         struct tb_ring *ring;
791
792         spin_lock_irq(&nhi->lock);
793
794         /*
795          * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
796          * (TX, RX, RX overflow). We iterate over the bits and read a new
797          * dwords as required. The registers are cleared on read.
798          */
799         for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
800                 if (bit % 32 == 0)
801                         value = ioread32(nhi->iobase
802                                          + REG_RING_NOTIFY_BASE
803                                          + 4 * (bit / 32));
804                 if (++hop == nhi->hop_count) {
805                         hop = 0;
806                         type++;
807                 }
808                 if ((value & (1 << (bit % 32))) == 0)
809                         continue;
810                 if (type == 2) {
811                         dev_warn(&nhi->pdev->dev,
812                                  "RX overflow for ring %d\n",
813                                  hop);
814                         continue;
815                 }
816                 if (type == 0)
817                         ring = nhi->tx_rings[hop];
818                 else
819                         ring = nhi->rx_rings[hop];
820                 if (ring == NULL) {
821                         dev_warn(&nhi->pdev->dev,
822                                  "got interrupt for inactive %s ring %d\n",
823                                  type ? "RX" : "TX",
824                                  hop);
825                         continue;
826                 }
827
828                 spin_lock(&ring->lock);
829                 __ring_interrupt(ring);
830                 spin_unlock(&ring->lock);
831         }
832         spin_unlock_irq(&nhi->lock);
833 }
834
835 static irqreturn_t nhi_msi(int irq, void *data)
836 {
837         struct tb_nhi *nhi = data;
838         schedule_work(&nhi->interrupt_work);
839         return IRQ_HANDLED;
840 }
841
842 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
843 {
844         struct pci_dev *pdev = to_pci_dev(dev);
845         struct tb *tb = pci_get_drvdata(pdev);
846         struct tb_nhi *nhi = tb->nhi;
847         int ret;
848
849         ret = tb_domain_suspend_noirq(tb);
850         if (ret)
851                 return ret;
852
853         if (nhi->ops && nhi->ops->suspend_noirq) {
854                 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
855                 if (ret)
856                         return ret;
857         }
858
859         return 0;
860 }
861
862 static int nhi_suspend_noirq(struct device *dev)
863 {
864         return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
865 }
866
867 static int nhi_freeze_noirq(struct device *dev)
868 {
869         struct pci_dev *pdev = to_pci_dev(dev);
870         struct tb *tb = pci_get_drvdata(pdev);
871
872         return tb_domain_freeze_noirq(tb);
873 }
874
875 static int nhi_thaw_noirq(struct device *dev)
876 {
877         struct pci_dev *pdev = to_pci_dev(dev);
878         struct tb *tb = pci_get_drvdata(pdev);
879
880         return tb_domain_thaw_noirq(tb);
881 }
882
883 static bool nhi_wake_supported(struct pci_dev *pdev)
884 {
885         u8 val;
886
887         /*
888          * If power rails are sustainable for wakeup from S4 this
889          * property is set by the BIOS.
890          */
891         if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
892                 return !!val;
893
894         return true;
895 }
896
897 static int nhi_poweroff_noirq(struct device *dev)
898 {
899         struct pci_dev *pdev = to_pci_dev(dev);
900         bool wakeup;
901
902         wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
903         return __nhi_suspend_noirq(dev, wakeup);
904 }
905
906 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
907 {
908         /* Throttling is specified in 256ns increments */
909         u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
910         unsigned int i;
911
912         /*
913          * Configure interrupt throttling for all vectors even if we
914          * only use few.
915          */
916         for (i = 0; i < MSIX_MAX_VECS; i++) {
917                 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
918                 iowrite32(throttle, nhi->iobase + reg);
919         }
920 }
921
922 static int nhi_resume_noirq(struct device *dev)
923 {
924         struct pci_dev *pdev = to_pci_dev(dev);
925         struct tb *tb = pci_get_drvdata(pdev);
926         struct tb_nhi *nhi = tb->nhi;
927         int ret;
928
929         /*
930          * Check that the device is still there. It may be that the user
931          * unplugged last device which causes the host controller to go
932          * away on PCs.
933          */
934         if (!pci_device_is_present(pdev)) {
935                 nhi->going_away = true;
936         } else {
937                 if (nhi->ops && nhi->ops->resume_noirq) {
938                         ret = nhi->ops->resume_noirq(nhi);
939                         if (ret)
940                                 return ret;
941                 }
942                 nhi_enable_int_throttling(tb->nhi);
943         }
944
945         return tb_domain_resume_noirq(tb);
946 }
947
948 static int nhi_suspend(struct device *dev)
949 {
950         struct pci_dev *pdev = to_pci_dev(dev);
951         struct tb *tb = pci_get_drvdata(pdev);
952
953         return tb_domain_suspend(tb);
954 }
955
956 static void nhi_complete(struct device *dev)
957 {
958         struct pci_dev *pdev = to_pci_dev(dev);
959         struct tb *tb = pci_get_drvdata(pdev);
960
961         /*
962          * If we were runtime suspended when system suspend started,
963          * schedule runtime resume now. It should bring the domain back
964          * to functional state.
965          */
966         if (pm_runtime_suspended(&pdev->dev))
967                 pm_runtime_resume(&pdev->dev);
968         else
969                 tb_domain_complete(tb);
970 }
971
972 static int nhi_runtime_suspend(struct device *dev)
973 {
974         struct pci_dev *pdev = to_pci_dev(dev);
975         struct tb *tb = pci_get_drvdata(pdev);
976         struct tb_nhi *nhi = tb->nhi;
977         int ret;
978
979         ret = tb_domain_runtime_suspend(tb);
980         if (ret)
981                 return ret;
982
983         if (nhi->ops && nhi->ops->runtime_suspend) {
984                 ret = nhi->ops->runtime_suspend(tb->nhi);
985                 if (ret)
986                         return ret;
987         }
988         return 0;
989 }
990
991 static int nhi_runtime_resume(struct device *dev)
992 {
993         struct pci_dev *pdev = to_pci_dev(dev);
994         struct tb *tb = pci_get_drvdata(pdev);
995         struct tb_nhi *nhi = tb->nhi;
996         int ret;
997
998         if (nhi->ops && nhi->ops->runtime_resume) {
999                 ret = nhi->ops->runtime_resume(nhi);
1000                 if (ret)
1001                         return ret;
1002         }
1003
1004         nhi_enable_int_throttling(nhi);
1005         return tb_domain_runtime_resume(tb);
1006 }
1007
1008 static void nhi_shutdown(struct tb_nhi *nhi)
1009 {
1010         int i;
1011
1012         dev_dbg(&nhi->pdev->dev, "shutdown\n");
1013
1014         for (i = 0; i < nhi->hop_count; i++) {
1015                 if (nhi->tx_rings[i])
1016                         dev_WARN(&nhi->pdev->dev,
1017                                  "TX ring %d is still active\n", i);
1018                 if (nhi->rx_rings[i])
1019                         dev_WARN(&nhi->pdev->dev,
1020                                  "RX ring %d is still active\n", i);
1021         }
1022         nhi_disable_interrupts(nhi);
1023         /*
1024          * We have to release the irq before calling flush_work. Otherwise an
1025          * already executing IRQ handler could call schedule_work again.
1026          */
1027         if (!nhi->pdev->msix_enabled) {
1028                 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1029                 flush_work(&nhi->interrupt_work);
1030         }
1031         ida_destroy(&nhi->msix_ida);
1032
1033         if (nhi->ops && nhi->ops->shutdown)
1034                 nhi->ops->shutdown(nhi);
1035 }
1036
1037 static int nhi_init_msi(struct tb_nhi *nhi)
1038 {
1039         struct pci_dev *pdev = nhi->pdev;
1040         int res, irq, nvec;
1041
1042         /* In case someone left them on. */
1043         nhi_disable_interrupts(nhi);
1044
1045         nhi_enable_int_throttling(nhi);
1046
1047         ida_init(&nhi->msix_ida);
1048
1049         /*
1050          * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1051          * get all MSI-X vectors and if we succeed, each ring will have
1052          * one MSI-X. If for some reason that does not work out, we
1053          * fallback to a single MSI.
1054          */
1055         nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1056                                      PCI_IRQ_MSIX);
1057         if (nvec < 0) {
1058                 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1059                 if (nvec < 0)
1060                         return nvec;
1061
1062                 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1063
1064                 irq = pci_irq_vector(nhi->pdev, 0);
1065                 if (irq < 0)
1066                         return irq;
1067
1068                 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1069                                        IRQF_NO_SUSPEND, "thunderbolt", nhi);
1070                 if (res) {
1071                         dev_err(&pdev->dev, "request_irq failed, aborting\n");
1072                         return res;
1073                 }
1074         }
1075
1076         return 0;
1077 }
1078
1079 static bool nhi_imr_valid(struct pci_dev *pdev)
1080 {
1081         u8 val;
1082
1083         if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1084                 return !!val;
1085
1086         return true;
1087 }
1088
1089 /*
1090  * During suspend the Thunderbolt controller is reset and all PCIe
1091  * tunnels are lost. The NHI driver will try to reestablish all tunnels
1092  * during resume. This adds device links between the tunneled PCIe
1093  * downstream ports and the NHI so that the device core will make sure
1094  * NHI is resumed first before the rest.
1095  */
1096 static void tb_apple_add_links(struct tb_nhi *nhi)
1097 {
1098         struct pci_dev *upstream, *pdev;
1099
1100         if (!x86_apple_machine)
1101                 return;
1102
1103         switch (nhi->pdev->device) {
1104         case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1105         case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1106         case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
1107         case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
1108                 break;
1109         default:
1110                 return;
1111         }
1112
1113         upstream = pci_upstream_bridge(nhi->pdev);
1114         while (upstream) {
1115                 if (!pci_is_pcie(upstream))
1116                         return;
1117                 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
1118                         break;
1119                 upstream = pci_upstream_bridge(upstream);
1120         }
1121
1122         if (!upstream)
1123                 return;
1124
1125         /*
1126          * For each hotplug downstream port, create add device link
1127          * back to NHI so that PCIe tunnels can be re-established after
1128          * sleep.
1129          */
1130         for_each_pci_bridge(pdev, upstream->subordinate) {
1131                 const struct device_link *link;
1132
1133                 if (!pci_is_pcie(pdev))
1134                         continue;
1135                 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
1136                     !pdev->is_hotplug_bridge)
1137                         continue;
1138
1139                 link = device_link_add(&pdev->dev, &nhi->pdev->dev,
1140                                        DL_FLAG_AUTOREMOVE_SUPPLIER |
1141                                        DL_FLAG_PM_RUNTIME);
1142                 if (link) {
1143                         dev_dbg(&nhi->pdev->dev, "created link from %s\n",
1144                                 dev_name(&pdev->dev));
1145                 } else {
1146                         dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
1147                                  dev_name(&pdev->dev));
1148                 }
1149         }
1150 }
1151
1152 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1153 {
1154         struct tb_nhi *nhi;
1155         struct tb *tb;
1156         int res;
1157
1158         if (!nhi_imr_valid(pdev)) {
1159                 dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1160                 return -ENODEV;
1161         }
1162
1163         res = pcim_enable_device(pdev);
1164         if (res) {
1165                 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1166                 return res;
1167         }
1168
1169         res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1170         if (res) {
1171                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1172                 return res;
1173         }
1174
1175         nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1176         if (!nhi)
1177                 return -ENOMEM;
1178
1179         nhi->pdev = pdev;
1180         nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1181         /* cannot fail - table is allocated bin pcim_iomap_regions */
1182         nhi->iobase = pcim_iomap_table(pdev)[0];
1183         nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1184         dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1185
1186         nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1187                                      sizeof(*nhi->tx_rings), GFP_KERNEL);
1188         nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1189                                      sizeof(*nhi->rx_rings), GFP_KERNEL);
1190         if (!nhi->tx_rings || !nhi->rx_rings)
1191                 return -ENOMEM;
1192
1193         res = nhi_init_msi(nhi);
1194         if (res) {
1195                 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1196                 return res;
1197         }
1198
1199         spin_lock_init(&nhi->lock);
1200
1201         res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1202         if (res)
1203                 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1204         if (res) {
1205                 dev_err(&pdev->dev, "failed to set DMA mask\n");
1206                 return res;
1207         }
1208
1209         pci_set_master(pdev);
1210
1211         if (nhi->ops && nhi->ops->init) {
1212                 res = nhi->ops->init(nhi);
1213                 if (res)
1214                         return res;
1215         }
1216
1217         tb_apple_add_links(nhi);
1218         tb_acpi_add_links(nhi);
1219
1220         tb = icm_probe(nhi);
1221         if (!tb)
1222                 tb = tb_probe(nhi);
1223         if (!tb) {
1224                 dev_err(&nhi->pdev->dev,
1225                         "failed to determine connection manager, aborting\n");
1226                 return -ENODEV;
1227         }
1228
1229         dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1230
1231         res = tb_domain_add(tb);
1232         if (res) {
1233                 /*
1234                  * At this point the RX/TX rings might already have been
1235                  * activated. Do a proper shutdown.
1236                  */
1237                 tb_domain_put(tb);
1238                 nhi_shutdown(nhi);
1239                 return res;
1240         }
1241         pci_set_drvdata(pdev, tb);
1242
1243         device_wakeup_enable(&pdev->dev);
1244
1245         pm_runtime_allow(&pdev->dev);
1246         pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1247         pm_runtime_use_autosuspend(&pdev->dev);
1248         pm_runtime_put_autosuspend(&pdev->dev);
1249
1250         return 0;
1251 }
1252
1253 static void nhi_remove(struct pci_dev *pdev)
1254 {
1255         struct tb *tb = pci_get_drvdata(pdev);
1256         struct tb_nhi *nhi = tb->nhi;
1257
1258         pm_runtime_get_sync(&pdev->dev);
1259         pm_runtime_dont_use_autosuspend(&pdev->dev);
1260         pm_runtime_forbid(&pdev->dev);
1261
1262         tb_domain_remove(tb);
1263         nhi_shutdown(nhi);
1264 }
1265
1266 /*
1267  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1268  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1269  * resume_noirq until we are done.
1270  */
1271 static const struct dev_pm_ops nhi_pm_ops = {
1272         .suspend_noirq = nhi_suspend_noirq,
1273         .resume_noirq = nhi_resume_noirq,
1274         .freeze_noirq = nhi_freeze_noirq,  /*
1275                                             * we just disable hotplug, the
1276                                             * pci-tunnels stay alive.
1277                                             */
1278         .thaw_noirq = nhi_thaw_noirq,
1279         .restore_noirq = nhi_resume_noirq,
1280         .suspend = nhi_suspend,
1281         .poweroff_noirq = nhi_poweroff_noirq,
1282         .poweroff = nhi_suspend,
1283         .complete = nhi_complete,
1284         .runtime_suspend = nhi_runtime_suspend,
1285         .runtime_resume = nhi_runtime_resume,
1286 };
1287
1288 static struct pci_device_id nhi_ids[] = {
1289         /*
1290          * We have to specify class, the TB bridges use the same device and
1291          * vendor (sub)id on gen 1 and gen 2 controllers.
1292          */
1293         {
1294                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1295                 .vendor = PCI_VENDOR_ID_INTEL,
1296                 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1297                 .subvendor = 0x2222, .subdevice = 0x1111,
1298         },
1299         {
1300                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1301                 .vendor = PCI_VENDOR_ID_INTEL,
1302                 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1303                 .subvendor = 0x2222, .subdevice = 0x1111,
1304         },
1305         {
1306                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1307                 .vendor = PCI_VENDOR_ID_INTEL,
1308                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1309                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1310         },
1311         {
1312                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1313                 .vendor = PCI_VENDOR_ID_INTEL,
1314                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1315                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1316         },
1317
1318         /* Thunderbolt 3 */
1319         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1320         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1321         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1322         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1323         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1324         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1325         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1326         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1327         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1328         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1329         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1330           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1331         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1332           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1333         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1334           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1335         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1336           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1337
1338         /* Any USB4 compliant host */
1339         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1340
1341         { 0,}
1342 };
1343
1344 MODULE_DEVICE_TABLE(pci, nhi_ids);
1345 MODULE_LICENSE("GPL");
1346
1347 static struct pci_driver nhi_driver = {
1348         .name = "thunderbolt",
1349         .id_table = nhi_ids,
1350         .probe = nhi_probe,
1351         .remove = nhi_remove,
1352         .shutdown = nhi_remove,
1353         .driver.pm = &nhi_pm_ops,
1354 };
1355
1356 static int __init nhi_init(void)
1357 {
1358         int ret;
1359
1360         ret = tb_domain_init();
1361         if (ret)
1362                 return ret;
1363         ret = pci_register_driver(&nhi_driver);
1364         if (ret)
1365                 tb_domain_exit();
1366         return ret;
1367 }
1368
1369 static void __exit nhi_unload(void)
1370 {
1371         pci_unregister_driver(&nhi_driver);
1372         tb_domain_exit();
1373 }
1374
1375 rootfs_initcall(nhi_init);
1376 module_exit(nhi_unload);