Merge tag 'tty-6.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[linux-2.6-microblaze.git] / drivers / thermal / tegra / soctherm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2014 - 2018, NVIDIA CORPORATION.  All rights reserved.
4  *
5  * Author:
6  *      Mikko Perttunen <mperttunen@nvidia.com>
7  *
8  * This software is licensed under the terms of the GNU General Public
9  * License version 2, as published by the Free Software Foundation, and
10  * may be copied, distributed, and modified under those terms.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  */
18
19 #include <linux/debugfs.h>
20 #include <linux/bitops.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/err.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/platform_device.h>
31 #include <linux/reset.h>
32 #include <linux/thermal.h>
33
34 #include <dt-bindings/thermal/tegra124-soctherm.h>
35
36 #include "../thermal_core.h"
37 #include "soctherm.h"
38
39 #define SENSOR_CONFIG0                          0
40 #define SENSOR_CONFIG0_STOP                     BIT(0)
41 #define SENSOR_CONFIG0_CPTR_OVER                BIT(2)
42 #define SENSOR_CONFIG0_OVER                     BIT(3)
43 #define SENSOR_CONFIG0_TCALC_OVER               BIT(4)
44 #define SENSOR_CONFIG0_TALL_MASK                (0xfffff << 8)
45 #define SENSOR_CONFIG0_TALL_SHIFT               8
46
47 #define SENSOR_CONFIG1                          4
48 #define SENSOR_CONFIG1_TSAMPLE_MASK             0x3ff
49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT            0
50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK            (0x3f << 15)
51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT           15
52 #define SENSOR_CONFIG1_TEN_COUNT_MASK           (0x3f << 24)
53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT          24
54 #define SENSOR_CONFIG1_TEMP_ENABLE              BIT(31)
55
56 /*
57  * SENSOR_CONFIG2 is defined in soctherm.h
58  * because, it will be used by tegra_soctherm_fuse.c
59  */
60
61 #define SENSOR_STATUS0                          0xc
62 #define SENSOR_STATUS0_VALID_MASK               BIT(31)
63 #define SENSOR_STATUS0_CAPTURE_MASK             0xffff
64
65 #define SENSOR_STATUS1                          0x10
66 #define SENSOR_STATUS1_TEMP_VALID_MASK          BIT(31)
67 #define SENSOR_STATUS1_TEMP_MASK                0xffff
68
69 #define READBACK_VALUE_MASK                     0xff00
70 #define READBACK_VALUE_SHIFT                    8
71 #define READBACK_ADD_HALF                       BIT(7)
72 #define READBACK_NEGATE                         BIT(0)
73
74 /*
75  * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
76  * because it will be used by tegraxxx_soctherm.c
77  */
78 #define THERMCTL_LVL0_CPU0_EN_MASK              BIT(8)
79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK       (0x3 << 5)
80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT      0x1
81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY      0x2
82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK       (0x3 << 3)
83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT      0x1
84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY      0x2
85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK       BIT(2)
86 #define THERMCTL_LVL0_CPU0_STATUS_MASK          0x3
87
88 #define THERMCTL_LVL0_UP_STATS                  0x10
89 #define THERMCTL_LVL0_DN_STATS                  0x14
90
91 #define THERMCTL_INTR_STATUS                    0x84
92
93 #define TH_INTR_MD0_MASK                        BIT(25)
94 #define TH_INTR_MU0_MASK                        BIT(24)
95 #define TH_INTR_GD0_MASK                        BIT(17)
96 #define TH_INTR_GU0_MASK                        BIT(16)
97 #define TH_INTR_CD0_MASK                        BIT(9)
98 #define TH_INTR_CU0_MASK                        BIT(8)
99 #define TH_INTR_PD0_MASK                        BIT(1)
100 #define TH_INTR_PU0_MASK                        BIT(0)
101 #define TH_INTR_IGNORE_MASK                     0xFCFCFCFC
102
103 #define THERMCTL_STATS_CTL                      0x94
104 #define STATS_CTL_CLR_DN                        0x8
105 #define STATS_CTL_EN_DN                         0x4
106 #define STATS_CTL_CLR_UP                        0x2
107 #define STATS_CTL_EN_UP                         0x1
108
109 #define OC1_CFG                                 0x310
110 #define OC1_CFG_LONG_LATENCY_MASK               BIT(6)
111 #define OC1_CFG_HW_RESTORE_MASK                 BIT(5)
112 #define OC1_CFG_PWR_GOOD_MASK_MASK              BIT(4)
113 #define OC1_CFG_THROTTLE_MODE_MASK              (0x3 << 2)
114 #define OC1_CFG_ALARM_POLARITY_MASK             BIT(1)
115 #define OC1_CFG_EN_THROTTLE_MASK                BIT(0)
116
117 #define OC1_CNT_THRESHOLD                       0x314
118 #define OC1_THROTTLE_PERIOD                     0x318
119 #define OC1_ALARM_COUNT                         0x31c
120 #define OC1_FILTER                              0x320
121 #define OC1_STATS                               0x3a8
122
123 #define OC_INTR_STATUS                          0x39c
124 #define OC_INTR_ENABLE                          0x3a0
125 #define OC_INTR_DISABLE                         0x3a4
126 #define OC_STATS_CTL                            0x3c4
127 #define OC_STATS_CTL_CLR_ALL                    0x2
128 #define OC_STATS_CTL_EN_ALL                     0x1
129
130 #define OC_INTR_OC1_MASK                        BIT(0)
131 #define OC_INTR_OC2_MASK                        BIT(1)
132 #define OC_INTR_OC3_MASK                        BIT(2)
133 #define OC_INTR_OC4_MASK                        BIT(3)
134 #define OC_INTR_OC5_MASK                        BIT(4)
135
136 #define THROT_GLOBAL_CFG                        0x400
137 #define THROT_GLOBAL_ENB_MASK                   BIT(0)
138
139 #define CPU_PSKIP_STATUS                        0x418
140 #define XPU_PSKIP_STATUS_M_MASK                 (0xff << 12)
141 #define XPU_PSKIP_STATUS_N_MASK                 (0xff << 4)
142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK       BIT(1)
143 #define XPU_PSKIP_STATUS_ENABLED_MASK           BIT(0)
144
145 #define THROT_PRIORITY_LOCK                     0x424
146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK       0xff
147
148 #define THROT_STATUS                            0x428
149 #define THROT_STATUS_BREACH_MASK                BIT(12)
150 #define THROT_STATUS_STATE_MASK                 (0xff << 4)
151 #define THROT_STATUS_ENABLED_MASK               BIT(0)
152
153 #define THROT_PSKIP_CTRL_LITE_CPU               0x430
154 #define THROT_PSKIP_CTRL_ENABLE_MASK            BIT(31)
155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK          (0xff << 8)
156 #define THROT_PSKIP_CTRL_DIVISOR_MASK           0xff
157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK          (0x7 << 16)
158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK          (0x7 << 8)
159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK         0x7
160
161 #define THROT_VECT_NONE                         0x0 /* 3'b000 */
162 #define THROT_VECT_LOW                          0x1 /* 3'b001 */
163 #define THROT_VECT_MED                          0x3 /* 3'b011 */
164 #define THROT_VECT_HIGH                         0x7 /* 3'b111 */
165
166 #define THROT_PSKIP_RAMP_LITE_CPU               0x434
167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK   BIT(31)
168 #define THROT_PSKIP_RAMP_DURATION_MASK          (0xffff << 8)
169 #define THROT_PSKIP_RAMP_STEP_MASK              0xff
170
171 #define THROT_PRIORITY_LITE                     0x444
172 #define THROT_PRIORITY_LITE_PRIO_MASK           0xff
173
174 #define THROT_DELAY_LITE                        0x448
175 #define THROT_DELAY_LITE_DELAY_MASK             0xff
176
177 /* car register offsets needed for enabling HW throttling */
178 #define CAR_SUPER_CCLKG_DIVIDER                 0x36c
179 #define CDIVG_USE_THERM_CONTROLS_MASK           BIT(30)
180
181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */
182 #define CCROC_SUPER_CCLKG_DIVIDER               0x024
183
184 #define CCROC_GLOBAL_CFG                        0x148
185
186 #define CCROC_THROT_PSKIP_RAMP_CPU              0x150
187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK     BIT(31)
188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK    (0xffff << 8)
189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK        0xff
190
191 #define CCROC_THROT_PSKIP_CTRL_CPU              0x154
192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK         BIT(31)
193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK    (0xff << 8)
194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK     0xff
195
196 /* get val from register(r) mask bits(m) */
197 #define REG_GET_MASK(r, m)      (((r) & (m)) >> (ffs(m) - 1))
198 /* set val(v) to mask bits(m) of register(r) */
199 #define REG_SET_MASK(r, m, v)   (((r) & ~(m)) | \
200                                  (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
201
202 /* get dividend from the depth */
203 #define THROT_DEPTH_DIVIDEND(depth)     ((256 * (100 - (depth)) / 100) - 1)
204
205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h
206  * level        vector
207  * NONE         3'b000
208  * LOW          3'b001
209  * MED          3'b011
210  * HIGH         3'b111
211  */
212 #define THROT_LEVEL_TO_DEPTH(level)     ((0x1 << (level)) - 1)
213
214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
215 #define THROT_OFFSET                    0x30
216 #define THROT_PSKIP_CTRL(throt, dev)    (THROT_PSKIP_CTRL_LITE_CPU + \
217                                         (THROT_OFFSET * throt) + (8 * dev))
218 #define THROT_PSKIP_RAMP(throt, dev)    (THROT_PSKIP_RAMP_LITE_CPU + \
219                                         (THROT_OFFSET * throt) + (8 * dev))
220
221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
222 #define THROT_PRIORITY_CTRL(throt)      (THROT_PRIORITY_LITE + \
223                                         (THROT_OFFSET * throt))
224 #define THROT_DELAY_CTRL(throt)         (THROT_DELAY_LITE + \
225                                         (THROT_OFFSET * throt))
226
227 #define ALARM_OFFSET                    0x14
228 #define ALARM_CFG(throt)                (OC1_CFG + \
229                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
230
231 #define ALARM_CNT_THRESHOLD(throt)      (OC1_CNT_THRESHOLD + \
232                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
233
234 #define ALARM_THROTTLE_PERIOD(throt)    (OC1_THROTTLE_PERIOD + \
235                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
236
237 #define ALARM_ALARM_COUNT(throt)        (OC1_ALARM_COUNT + \
238                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
239
240 #define ALARM_FILTER(throt)             (OC1_FILTER + \
241                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
242
243 #define ALARM_STATS(throt)              (OC1_STATS + \
244                                         (4 * (throt - THROTTLE_OC1)))
245
246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
247 #define CCROC_THROT_OFFSET                      0x0c
248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect)    (CCROC_THROT_PSKIP_CTRL_CPU + \
249                                                 (CCROC_THROT_OFFSET * vect))
250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect)    (CCROC_THROT_PSKIP_RAMP_CPU + \
251                                                 (CCROC_THROT_OFFSET * vect))
252
253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
254 #define THERMCTL_LVL_REGS_SIZE          0x20
255 #define THERMCTL_LVL_REG(rg, lv)        ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
256
257 #define OC_THROTTLE_MODE_DISABLED       0
258 #define OC_THROTTLE_MODE_BRIEF          2
259
260 static const int min_low_temp = -127000;
261 static const int max_high_temp = 127000;
262
263 enum soctherm_throttle_id {
264         THROTTLE_LIGHT = 0,
265         THROTTLE_HEAVY,
266         THROTTLE_OC1,
267         THROTTLE_OC2,
268         THROTTLE_OC3,
269         THROTTLE_OC4,
270         THROTTLE_OC5, /* OC5 is reserved */
271         THROTTLE_SIZE,
272 };
273
274 enum soctherm_oc_irq_id {
275         TEGRA_SOC_OC_IRQ_1,
276         TEGRA_SOC_OC_IRQ_2,
277         TEGRA_SOC_OC_IRQ_3,
278         TEGRA_SOC_OC_IRQ_4,
279         TEGRA_SOC_OC_IRQ_5,
280         TEGRA_SOC_OC_IRQ_MAX,
281 };
282
283 enum soctherm_throttle_dev_id {
284         THROTTLE_DEV_CPU = 0,
285         THROTTLE_DEV_GPU,
286         THROTTLE_DEV_SIZE,
287 };
288
289 static const char *const throt_names[] = {
290         [THROTTLE_LIGHT] = "light",
291         [THROTTLE_HEAVY] = "heavy",
292         [THROTTLE_OC1]   = "oc1",
293         [THROTTLE_OC2]   = "oc2",
294         [THROTTLE_OC3]   = "oc3",
295         [THROTTLE_OC4]   = "oc4",
296         [THROTTLE_OC5]   = "oc5",
297 };
298
299 struct tegra_soctherm;
300 struct tegra_thermctl_zone {
301         void __iomem *reg;
302         struct device *dev;
303         struct tegra_soctherm *ts;
304         struct thermal_zone_device *tz;
305         const struct tegra_tsensor_group *sg;
306 };
307
308 struct soctherm_oc_cfg {
309         u32 active_low;
310         u32 throt_period;
311         u32 alarm_cnt_thresh;
312         u32 alarm_filter;
313         u32 mode;
314         bool intr_en;
315 };
316
317 struct soctherm_throt_cfg {
318         const char *name;
319         unsigned int id;
320         u8 priority;
321         u8 cpu_throt_level;
322         u32 cpu_throt_depth;
323         u32 gpu_throt_level;
324         struct soctherm_oc_cfg oc_cfg;
325         struct thermal_cooling_device *cdev;
326         bool init;
327 };
328
329 struct tegra_soctherm {
330         struct reset_control *reset;
331         struct clk *clock_tsensor;
332         struct clk *clock_soctherm;
333         void __iomem *regs;
334         void __iomem *clk_regs;
335         void __iomem *ccroc_regs;
336
337         int thermal_irq;
338         int edp_irq;
339
340         u32 *calib;
341         struct thermal_zone_device **thermctl_tzs;
342         struct tegra_soctherm_soc *soc;
343
344         struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
345
346         struct dentry *debugfs_dir;
347
348         struct mutex thermctl_lock;
349 };
350
351 struct soctherm_oc_irq_chip_data {
352         struct mutex            irq_lock; /* serialize OC IRQs */
353         struct irq_chip         irq_chip;
354         struct irq_domain       *domain;
355         int                     irq_enable;
356 };
357
358 static struct soctherm_oc_irq_chip_data soc_irq_cdata;
359
360 /**
361  * ccroc_writel() - writes a value to a CCROC register
362  * @ts: pointer to a struct tegra_soctherm
363  * @value: the value to write
364  * @reg: the register offset
365  *
366  * Writes @v to @reg.  No return value.
367  */
368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
369 {
370         writel(value, (ts->ccroc_regs + reg));
371 }
372
373 /**
374  * ccroc_readl() - reads specified register from CCROC IP block
375  * @ts: pointer to a struct tegra_soctherm
376  * @reg: register address to be read
377  *
378  * Return: the value of the register
379  */
380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
381 {
382         return readl(ts->ccroc_regs + reg);
383 }
384
385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
386 {
387         const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
388         void __iomem *base = tegra->regs + sensor->base;
389         unsigned int val;
390
391         val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
392         writel(val, base + SENSOR_CONFIG0);
393
394         val  = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
395         val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
396         val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
397         val |= SENSOR_CONFIG1_TEMP_ENABLE;
398         writel(val, base + SENSOR_CONFIG1);
399
400         writel(tegra->calib[i], base + SENSOR_CONFIG2);
401 }
402
403 /*
404  * Translate from soctherm readback format to millicelsius.
405  * The soctherm readback format in bits is as follows:
406  *   TTTTTTTT H______N
407  * where T's contain the temperature in Celsius,
408  * H denotes an addition of 0.5 Celsius and N denotes negation
409  * of the final value.
410  */
411 static int translate_temp(u16 val)
412 {
413         int t;
414
415         t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
416         if (val & READBACK_ADD_HALF)
417                 t += 500;
418         if (val & READBACK_NEGATE)
419                 t *= -1;
420
421         return t;
422 }
423
424 static int tegra_thermctl_get_temp(struct thermal_zone_device *tz, int *out_temp)
425 {
426         struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
427         u32 val;
428
429         val = readl(zone->reg);
430         val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
431         *out_temp = translate_temp(val);
432
433         return 0;
434 }
435
436 /**
437  * enforce_temp_range() - check and enforce temperature range [min, max]
438  * @dev: struct device * of the SOC_THERM instance
439  * @trip_temp: the trip temperature to check
440  *
441  * Checks and enforces the permitted temperature range that SOC_THERM
442  * HW can support This is
443  * done while taking care of precision.
444  *
445  * Return: The precision adjusted capped temperature in millicelsius.
446  */
447 static int enforce_temp_range(struct device *dev, int trip_temp)
448 {
449         int temp;
450
451         temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
452         if (temp != trip_temp)
453                 dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n",
454                         trip_temp, temp);
455         return temp;
456 }
457
458 /**
459  * thermtrip_program() - Configures the hardware to shut down the
460  * system if a given sensor group reaches a given temperature
461  * @dev: ptr to the struct device for the SOC_THERM IP block
462  * @sg: pointer to the sensor group to set the thermtrip temperature for
463  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
464  *
465  * Sets the thermal trip threshold of the given sensor group to be the
466  * @trip_temp.  If this threshold is crossed, the hardware will shut
467  * down.
468  *
469  * Note that, although @trip_temp is specified in millicelsius, the
470  * hardware is programmed in degrees Celsius.
471  *
472  * Return: 0 upon success, or %-EINVAL upon failure.
473  */
474 static int thermtrip_program(struct device *dev,
475                              const struct tegra_tsensor_group *sg,
476                              int trip_temp)
477 {
478         struct tegra_soctherm *ts = dev_get_drvdata(dev);
479         int temp;
480         u32 r;
481
482         if (!sg || !sg->thermtrip_threshold_mask)
483                 return -EINVAL;
484
485         temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
486
487         r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
488         r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
489         r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
490         r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
491         writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
492
493         return 0;
494 }
495
496 /**
497  * throttrip_program() - Configures the hardware to throttle the
498  * pulse if a given sensor group reaches a given temperature
499  * @dev: ptr to the struct device for the SOC_THERM IP block
500  * @sg: pointer to the sensor group to set the thermtrip temperature for
501  * @stc: pointer to the throttle need to be triggered
502  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
503  *
504  * Sets the thermal trip threshold and throttle event of the given sensor
505  * group. If this threshold is crossed, the hardware will trigger the
506  * throttle.
507  *
508  * Note that, although @trip_temp is specified in millicelsius, the
509  * hardware is programmed in degrees Celsius.
510  *
511  * Return: 0 upon success, or %-EINVAL upon failure.
512  */
513 static int throttrip_program(struct device *dev,
514                              const struct tegra_tsensor_group *sg,
515                              struct soctherm_throt_cfg *stc,
516                              int trip_temp)
517 {
518         struct tegra_soctherm *ts = dev_get_drvdata(dev);
519         int temp, cpu_throt, gpu_throt;
520         unsigned int throt;
521         u32 r, reg_off;
522
523         if (!sg || !stc || !stc->init)
524                 return -EINVAL;
525
526         temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
527
528         /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
529         throt = stc->id;
530         reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
531
532         if (throt == THROTTLE_LIGHT) {
533                 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
534                 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
535         } else {
536                 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
537                 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
538                 if (throt != THROTTLE_HEAVY)
539                         dev_warn(dev,
540                                  "invalid throt id %d - assuming HEAVY",
541                                  throt);
542         }
543
544         r = readl(ts->regs + reg_off);
545         r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
546         r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
547         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
548         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
549         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
550         writel(r, ts->regs + reg_off);
551
552         return 0;
553 }
554
555 static struct soctherm_throt_cfg *
556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
557 {
558         unsigned int i;
559
560         for (i = 0; ts->throt_cfgs[i].name; i++)
561                 if (!strcmp(ts->throt_cfgs[i].name, name))
562                         return &ts->throt_cfgs[i];
563
564         return NULL;
565 }
566
567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
568 {
569         int i, temp = min_low_temp;
570         struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
571
572         if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
573                 return temp;
574
575         if (tt) {
576                 for (i = 0; i < ts->soc->num_ttgs; i++) {
577                         if (tt[i].id == id)
578                                 return tt[i].temp;
579                 }
580         }
581
582         return temp;
583 }
584
585 static int tegra_thermctl_set_trip_temp(struct thermal_zone_device *tz, int trip_id, int temp)
586 {
587         struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
588         struct tegra_soctherm *ts = zone->ts;
589         struct thermal_trip trip;
590         const struct tegra_tsensor_group *sg = zone->sg;
591         struct device *dev = zone->dev;
592         int ret;
593
594         if (!tz)
595                 return -EINVAL;
596
597         ret = __thermal_zone_get_trip(tz, trip_id, &trip);
598         if (ret)
599                 return ret;
600
601         if (trip.type == THERMAL_TRIP_CRITICAL) {
602                 /*
603                  * If thermtrips property is set in DT,
604                  * doesn't need to program critical type trip to HW,
605                  * if not, program critical trip to HW.
606                  */
607                 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
608                         return thermtrip_program(dev, sg, temp);
609                 else
610                         return 0;
611
612         } else if (trip.type == THERMAL_TRIP_HOT) {
613                 int i;
614
615                 for (i = 0; i < THROTTLE_SIZE; i++) {
616                         struct thermal_cooling_device *cdev;
617                         struct soctherm_throt_cfg *stc;
618
619                         if (!ts->throt_cfgs[i].init)
620                                 continue;
621
622                         cdev = ts->throt_cfgs[i].cdev;
623                         if (get_thermal_instance(tz, cdev, trip_id))
624                                 stc = find_throttle_cfg_by_name(ts, cdev->type);
625                         else
626                                 continue;
627
628                         return throttrip_program(dev, sg, stc, temp);
629                 }
630         }
631
632         return 0;
633 }
634
635 static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
636 {
637         u32 r;
638
639         /* multiple zones could be handling and setting trips at once */
640         mutex_lock(&zn->ts->thermctl_lock);
641         r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
642         r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
643         writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
644         mutex_unlock(&zn->ts->thermctl_lock);
645 }
646
647 static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
648 {
649         u32 r;
650
651         /* multiple zones could be handling and setting trips at once */
652         mutex_lock(&zn->ts->thermctl_lock);
653         r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
654         r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
655         writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
656         mutex_unlock(&zn->ts->thermctl_lock);
657 }
658
659 static int tegra_thermctl_set_trips(struct thermal_zone_device *tz, int lo, int hi)
660 {
661         struct tegra_thermctl_zone *zone = thermal_zone_device_priv(tz);
662         u32 r;
663
664         thermal_irq_disable(zone);
665
666         r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
667         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
668         writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
669
670         lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
671         hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
672         dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
673
674         r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
675         r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
676         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
677         writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
678
679         thermal_irq_enable(zone);
680
681         return 0;
682 }
683
684 static const struct thermal_zone_device_ops tegra_of_thermal_ops = {
685         .get_temp = tegra_thermctl_get_temp,
686         .set_trip_temp = tegra_thermctl_set_trip_temp,
687         .set_trips = tegra_thermctl_set_trips,
688 };
689
690 static int get_hot_temp(struct thermal_zone_device *tz, int *trip_id, int *temp)
691 {
692         int i, ret;
693         struct thermal_trip trip;
694
695         for (i = 0; i < thermal_zone_get_num_trips(tz); i++) {
696
697                 ret = thermal_zone_get_trip(tz, i, &trip);
698                 if (ret)
699                         return -EINVAL;
700
701                 if (trip.type == THERMAL_TRIP_HOT) {
702                         *trip_id = i;
703                         return 0;
704                 }
705         }
706
707         return -EINVAL;
708 }
709
710 /**
711  * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
712  * @dev: struct device * of the SOC_THERM instance
713  * @sg: pointer to the sensor group to set the thermtrip temperature for
714  * @tz: struct thermal_zone_device *
715  *
716  * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
717  * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
718  * type trip_temp
719  * from thermal zone.
720  * After they have been configured, THERMTRIP or THROTTLE will take
721  * action when the configured SoC thermal sensor group reaches a
722  * certain temperature.
723  *
724  * Return: 0 upon success, or a negative error code on failure.
725  * "Success" does not mean that trips was enabled; it could also
726  * mean that no node was found in DT.
727  * THERMTRIP has been enabled successfully when a message similar to
728  * this one appears on the serial console:
729  * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
730  * THROTTLE has been enabled successfully when a message similar to
731  * this one appears on the serial console:
732  * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
733  */
734 static int tegra_soctherm_set_hwtrips(struct device *dev,
735                                       const struct tegra_tsensor_group *sg,
736                                       struct thermal_zone_device *tz)
737 {
738         struct tegra_soctherm *ts = dev_get_drvdata(dev);
739         struct soctherm_throt_cfg *stc;
740         int i, trip, temperature, ret;
741
742         /* Get thermtrips. If missing, try to get critical trips. */
743         temperature = tsensor_group_thermtrip_get(ts, sg->id);
744         if (min_low_temp == temperature)
745                 if (thermal_zone_get_crit_temp(tz, &temperature))
746                         temperature = max_high_temp;
747
748         ret = thermtrip_program(dev, sg, temperature);
749         if (ret) {
750                 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
751                 return ret;
752         }
753
754         dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
755                  sg->name, temperature);
756
757         ret = get_hot_temp(tz, &trip, &temperature);
758         if (ret) {
759                 dev_info(dev, "throttrip: %s: missing hot temperature\n",
760                          sg->name);
761                 return 0;
762         }
763
764         for (i = 0; i < THROTTLE_OC1; i++) {
765                 struct thermal_cooling_device *cdev;
766
767                 if (!ts->throt_cfgs[i].init)
768                         continue;
769
770                 cdev = ts->throt_cfgs[i].cdev;
771                 if (get_thermal_instance(tz, cdev, trip))
772                         stc = find_throttle_cfg_by_name(ts, cdev->type);
773                 else
774                         continue;
775
776                 ret = throttrip_program(dev, sg, stc, temperature);
777                 if (ret) {
778                         dev_err(dev, "throttrip: %s: error during enable\n",
779                                 sg->name);
780                         return ret;
781                 }
782
783                 dev_info(dev,
784                          "throttrip: will throttle when %s reaches %d mC\n",
785                          sg->name, temperature);
786                 break;
787         }
788
789         if (i == THROTTLE_SIZE)
790                 dev_info(dev, "throttrip: %s: missing throttle cdev\n",
791                          sg->name);
792
793         return 0;
794 }
795
796 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
797 {
798         struct tegra_soctherm *ts = dev_id;
799         u32 r;
800
801         /* Case for no lock:
802          * Although interrupts are enabled in set_trips, there is still no need
803          * to lock here because the interrupts are disabled before programming
804          * new trip points. Hence there cant be a interrupt on the same sensor.
805          * An interrupt can however occur on a sensor while trips are being
806          * programmed on a different one. This beign a LEVEL interrupt won't
807          * cause a new interrupt but this is taken care of by the re-reading of
808          * the STATUS register in the thread function.
809          */
810         r = readl(ts->regs + THERMCTL_INTR_STATUS);
811         writel(r, ts->regs + THERMCTL_INTR_DISABLE);
812
813         return IRQ_WAKE_THREAD;
814 }
815
816 /**
817  * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
818  * @irq:       The interrupt number being requested; not used
819  * @dev_id:    Opaque pointer to tegra_soctherm;
820  *
821  * Clears the interrupt status register if there are expected
822  * interrupt bits set.
823  * The interrupt(s) are then handled by updating the corresponding
824  * thermal zones.
825  *
826  * An error is logged if any unexpected interrupt bits are set.
827  *
828  * Disabled interrupts are re-enabled.
829  *
830  * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
831  * is needed.
832  */
833 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
834 {
835         struct tegra_soctherm *ts = dev_id;
836         struct thermal_zone_device *tz;
837         u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
838
839         st = readl(ts->regs + THERMCTL_INTR_STATUS);
840
841         /* deliberately clear expected interrupts handled in SW */
842         cp |= st & TH_INTR_CD0_MASK;
843         cp |= st & TH_INTR_CU0_MASK;
844
845         gp |= st & TH_INTR_GD0_MASK;
846         gp |= st & TH_INTR_GU0_MASK;
847
848         pl |= st & TH_INTR_PD0_MASK;
849         pl |= st & TH_INTR_PU0_MASK;
850
851         me |= st & TH_INTR_MD0_MASK;
852         me |= st & TH_INTR_MU0_MASK;
853
854         ex |= cp | gp | pl | me;
855         if (ex) {
856                 writel(ex, ts->regs + THERMCTL_INTR_STATUS);
857                 st &= ~ex;
858
859                 if (cp) {
860                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
861                         thermal_zone_device_update(tz,
862                                                    THERMAL_EVENT_UNSPECIFIED);
863                 }
864
865                 if (gp) {
866                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
867                         thermal_zone_device_update(tz,
868                                                    THERMAL_EVENT_UNSPECIFIED);
869                 }
870
871                 if (pl) {
872                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
873                         thermal_zone_device_update(tz,
874                                                    THERMAL_EVENT_UNSPECIFIED);
875                 }
876
877                 if (me) {
878                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
879                         thermal_zone_device_update(tz,
880                                                    THERMAL_EVENT_UNSPECIFIED);
881                 }
882         }
883
884         /* deliberately ignore expected interrupts NOT handled in SW */
885         ex |= TH_INTR_IGNORE_MASK;
886         st &= ~ex;
887
888         if (st) {
889                 /* Whine about any other unexpected INTR bits still set */
890                 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
891                 writel(st, ts->regs + THERMCTL_INTR_STATUS);
892         }
893
894         return IRQ_HANDLED;
895 }
896
897 /**
898  * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
899  * @ts:         pointer to a struct tegra_soctherm
900  * @alarm:              The soctherm throttle id
901  * @enable:             Flag indicating enable the soctherm over-current
902  *                      interrupt or disable it
903  *
904  * Enables a specific over-current pins @alarm to raise an interrupt if the flag
905  * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
906  */
907 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
908                                     enum soctherm_throttle_id alarm,
909                                     bool enable)
910 {
911         u32 r;
912
913         if (!enable)
914                 return;
915
916         r = readl(ts->regs + OC_INTR_ENABLE);
917         switch (alarm) {
918         case THROTTLE_OC1:
919                 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
920                 break;
921         case THROTTLE_OC2:
922                 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
923                 break;
924         case THROTTLE_OC3:
925                 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
926                 break;
927         case THROTTLE_OC4:
928                 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
929                 break;
930         default:
931                 r = 0;
932                 break;
933         }
934         writel(r, ts->regs + OC_INTR_ENABLE);
935 }
936
937 /**
938  * soctherm_handle_alarm() - Handles soctherm alarms
939  * @alarm:              The soctherm throttle id
940  *
941  * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
942  * a warning or informative message.
943  *
944  * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
945  */
946 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
947 {
948         int rv = -EINVAL;
949
950         switch (alarm) {
951         case THROTTLE_OC1:
952                 pr_debug("soctherm: Successfully handled OC1 alarm\n");
953                 rv = 0;
954                 break;
955
956         case THROTTLE_OC2:
957                 pr_debug("soctherm: Successfully handled OC2 alarm\n");
958                 rv = 0;
959                 break;
960
961         case THROTTLE_OC3:
962                 pr_debug("soctherm: Successfully handled OC3 alarm\n");
963                 rv = 0;
964                 break;
965
966         case THROTTLE_OC4:
967                 pr_debug("soctherm: Successfully handled OC4 alarm\n");
968                 rv = 0;
969                 break;
970
971         default:
972                 break;
973         }
974
975         if (rv)
976                 pr_err("soctherm: ERROR in handling %s alarm\n",
977                        throt_names[alarm]);
978
979         return rv;
980 }
981
982 /**
983  * soctherm_edp_isr_thread() - log an over-current interrupt request
984  * @irq:        OC irq number. Currently not being used. See description
985  * @arg:        a void pointer for callback, currently not being used
986  *
987  * Over-current events are handled in hardware. This function is called to log
988  * and handle any OC events that happened. Additionally, it checks every
989  * over-current interrupt registers for registers are set but
990  * was not expected (i.e. any discrepancy in interrupt status) by the function,
991  * the discrepancy will logged.
992  *
993  * Return: %IRQ_HANDLED
994  */
995 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
996 {
997         struct tegra_soctherm *ts = arg;
998         u32 st, ex, oc1, oc2, oc3, oc4;
999
1000         st = readl(ts->regs + OC_INTR_STATUS);
1001
1002         /* deliberately clear expected interrupts handled in SW */
1003         oc1 = st & OC_INTR_OC1_MASK;
1004         oc2 = st & OC_INTR_OC2_MASK;
1005         oc3 = st & OC_INTR_OC3_MASK;
1006         oc4 = st & OC_INTR_OC4_MASK;
1007         ex = oc1 | oc2 | oc3 | oc4;
1008
1009         pr_err("soctherm: OC ALARM 0x%08x\n", ex);
1010         if (ex) {
1011                 writel(st, ts->regs + OC_INTR_STATUS);
1012                 st &= ~ex;
1013
1014                 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
1015                         soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
1016
1017                 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
1018                         soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
1019
1020                 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
1021                         soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
1022
1023                 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
1024                         soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
1025
1026                 if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
1027                         handle_nested_irq(
1028                                 irq_find_mapping(soc_irq_cdata.domain, 0));
1029
1030                 if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
1031                         handle_nested_irq(
1032                                 irq_find_mapping(soc_irq_cdata.domain, 1));
1033
1034                 if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
1035                         handle_nested_irq(
1036                                 irq_find_mapping(soc_irq_cdata.domain, 2));
1037
1038                 if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
1039                         handle_nested_irq(
1040                                 irq_find_mapping(soc_irq_cdata.domain, 3));
1041         }
1042
1043         if (st) {
1044                 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
1045                 writel(st, ts->regs + OC_INTR_STATUS);
1046         }
1047
1048         return IRQ_HANDLED;
1049 }
1050
1051 /**
1052  * soctherm_edp_isr() - Disables any active interrupts
1053  * @irq:        The interrupt request number
1054  * @arg:        Opaque pointer to an argument
1055  *
1056  * Writes to the OC_INTR_DISABLE register the over current interrupt status,
1057  * masking any asserted interrupts. Doing this prevents the same interrupts
1058  * from triggering this isr repeatedly. The thread woken by this isr will
1059  * handle asserted interrupts and subsequently unmask/re-enable them.
1060  *
1061  * The OC_INTR_DISABLE register indicates which OC interrupts
1062  * have been disabled.
1063  *
1064  * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
1065  */
1066 static irqreturn_t soctherm_edp_isr(int irq, void *arg)
1067 {
1068         struct tegra_soctherm *ts = arg;
1069         u32 r;
1070
1071         if (!ts)
1072                 return IRQ_NONE;
1073
1074         r = readl(ts->regs + OC_INTR_STATUS);
1075         writel(r, ts->regs + OC_INTR_DISABLE);
1076
1077         return IRQ_WAKE_THREAD;
1078 }
1079
1080 /**
1081  * soctherm_oc_irq_lock() - locks the over-current interrupt request
1082  * @data:       Interrupt request data
1083  *
1084  * Looks up the chip data from @data and locks the mutex associated with
1085  * a particular over-current interrupt request.
1086  */
1087 static void soctherm_oc_irq_lock(struct irq_data *data)
1088 {
1089         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1090
1091         mutex_lock(&d->irq_lock);
1092 }
1093
1094 /**
1095  * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
1096  * @data:               Interrupt request data
1097  *
1098  * Looks up the interrupt request data @data and unlocks the mutex associated
1099  * with a particular over-current interrupt request.
1100  */
1101 static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
1102 {
1103         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1104
1105         mutex_unlock(&d->irq_lock);
1106 }
1107
1108 /**
1109  * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
1110  * @data:       irq_data structure of the chip
1111  *
1112  * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
1113  * to respond to over-current interrupts.
1114  *
1115  */
1116 static void soctherm_oc_irq_enable(struct irq_data *data)
1117 {
1118         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1119
1120         d->irq_enable |= BIT(data->hwirq);
1121 }
1122
1123 /**
1124  * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
1125  * @data:       The interrupt request information
1126  *
1127  * Clears the interrupt request enable bit of the overcurrent
1128  * interrupt request chip data.
1129  *
1130  * Return: Nothing is returned (void)
1131  */
1132 static void soctherm_oc_irq_disable(struct irq_data *data)
1133 {
1134         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1135
1136         d->irq_enable &= ~BIT(data->hwirq);
1137 }
1138
1139 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
1140 {
1141         return 0;
1142 }
1143
1144 /**
1145  * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
1146  * @h:          Interrupt request domain
1147  * @virq:       Virtual interrupt request number
1148  * @hw:         Hardware interrupt request number
1149  *
1150  * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
1151  * interrupt request is called, the irq_domain takes the request's virtual
1152  * request number (much like a virtual memory address) and maps it to a
1153  * physical hardware request number.
1154  *
1155  * When a mapping doesn't already exist for a virtual request number, the
1156  * irq_domain calls this function to associate the virtual request number with
1157  * a hardware request number.
1158  *
1159  * Return: 0
1160  */
1161 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
1162                 irq_hw_number_t hw)
1163 {
1164         struct soctherm_oc_irq_chip_data *data = h->host_data;
1165
1166         irq_set_chip_data(virq, data);
1167         irq_set_chip(virq, &data->irq_chip);
1168         irq_set_nested_thread(virq, 1);
1169         return 0;
1170 }
1171
1172 /**
1173  * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
1174  * @d:      Interrupt request domain
1175  * @ctrlr:      Controller device tree node
1176  * @intspec:    Array of u32s from DTs "interrupt" property
1177  * @intsize:    Number of values inside the intspec array
1178  * @out_hwirq:  HW IRQ value associated with this interrupt
1179  * @out_type:   The IRQ SENSE type for this interrupt.
1180  *
1181  * This Device Tree IRQ specifier translation function will translate a
1182  * specific "interrupt" as defined by 2 DT values where the cell values map
1183  * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
1184  * number, this function will subtract 1 from the value listed in DT.
1185  *
1186  * Return: 0
1187  */
1188 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
1189         struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
1190         irq_hw_number_t *out_hwirq, unsigned int *out_type)
1191 {
1192         if (WARN_ON(intsize < 2))
1193                 return -EINVAL;
1194
1195         /*
1196          * The HW value is 1 index less than the DT IRQ values.
1197          * i.e. OC4 goes to HW index 3.
1198          */
1199         *out_hwirq = intspec[0] - 1;
1200         *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
1201         return 0;
1202 }
1203
1204 static const struct irq_domain_ops soctherm_oc_domain_ops = {
1205         .map    = soctherm_oc_irq_map,
1206         .xlate  = soctherm_irq_domain_xlate_twocell,
1207 };
1208
1209 /**
1210  * soctherm_oc_int_init() - Initial enabling of the over
1211  * current interrupts
1212  * @np: The devicetree node for soctherm
1213  * @num_irqs:   The number of new interrupt requests
1214  *
1215  * Sets the over current interrupt request chip data
1216  *
1217  * Return: 0 on success or if overcurrent interrupts are not enabled,
1218  * -ENOMEM (out of memory), or irq_base if the function failed to
1219  * allocate the irqs
1220  */
1221 static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
1222 {
1223         if (!num_irqs) {
1224                 pr_info("%s(): OC interrupts are not enabled\n", __func__);
1225                 return 0;
1226         }
1227
1228         mutex_init(&soc_irq_cdata.irq_lock);
1229         soc_irq_cdata.irq_enable = 0;
1230
1231         soc_irq_cdata.irq_chip.name = "soc_therm_oc";
1232         soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
1233         soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
1234                 soctherm_oc_irq_sync_unlock;
1235         soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
1236         soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
1237         soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
1238         soc_irq_cdata.irq_chip.irq_set_wake = NULL;
1239
1240         soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
1241                                                      &soctherm_oc_domain_ops,
1242                                                      &soc_irq_cdata);
1243
1244         if (!soc_irq_cdata.domain) {
1245                 pr_err("%s: Failed to create IRQ domain\n", __func__);
1246                 return -ENOMEM;
1247         }
1248
1249         pr_debug("%s(): OC interrupts enabled successful\n", __func__);
1250         return 0;
1251 }
1252
1253 #ifdef CONFIG_DEBUG_FS
1254 static int regs_show(struct seq_file *s, void *data)
1255 {
1256         struct platform_device *pdev = s->private;
1257         struct tegra_soctherm *ts = platform_get_drvdata(pdev);
1258         const struct tegra_tsensor *tsensors = ts->soc->tsensors;
1259         const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
1260         u32 r, state;
1261         int i, level;
1262
1263         seq_puts(s, "-----TSENSE (convert HW)-----\n");
1264
1265         for (i = 0; i < ts->soc->num_tsensors; i++) {
1266                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
1267                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
1268
1269                 seq_printf(s, "%s: ", tsensors[i].name);
1270                 seq_printf(s, "En(%d) ", state);
1271
1272                 if (!state) {
1273                         seq_puts(s, "\n");
1274                         continue;
1275                 }
1276
1277                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
1278                 seq_printf(s, "tiddq(%d) ", state);
1279                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
1280                 seq_printf(s, "ten_count(%d) ", state);
1281                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
1282                 seq_printf(s, "tsample(%d) ", state + 1);
1283
1284                 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
1285                 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
1286                 seq_printf(s, "Temp(%d/", state);
1287                 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
1288                 seq_printf(s, "%d) ", translate_temp(state));
1289
1290                 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
1291                 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
1292                 seq_printf(s, "Capture(%d/", state);
1293                 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
1294                 seq_printf(s, "%d) ", state);
1295
1296                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
1297                 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
1298                 seq_printf(s, "Stop(%d) ", state);
1299                 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
1300                 seq_printf(s, "Tall(%d) ", state);
1301                 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
1302                 seq_printf(s, "Over(%d/", state);
1303                 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
1304                 seq_printf(s, "%d/", state);
1305                 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
1306                 seq_printf(s, "%d) ", state);
1307
1308                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
1309                 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
1310                 seq_printf(s, "Therm_A/B(%d/", state);
1311                 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
1312                 seq_printf(s, "%d)\n", (s16)state);
1313         }
1314
1315         r = readl(ts->regs + SENSOR_PDIV);
1316         seq_printf(s, "PDIV: 0x%x\n", r);
1317
1318         r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
1319         seq_printf(s, "HOTSPOT: 0x%x\n", r);
1320
1321         seq_puts(s, "\n");
1322         seq_puts(s, "-----SOC_THERM-----\n");
1323
1324         r = readl(ts->regs + SENSOR_TEMP1);
1325         state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
1326         seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
1327         state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
1328         seq_printf(s, " GPU(%d) ", translate_temp(state));
1329         r = readl(ts->regs + SENSOR_TEMP2);
1330         state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
1331         seq_printf(s, " PLLX(%d) ", translate_temp(state));
1332         state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
1333         seq_printf(s, " MEM(%d)\n", translate_temp(state));
1334
1335         for (i = 0; i < ts->soc->num_ttgs; i++) {
1336                 seq_printf(s, "%s:\n", ttgs[i]->name);
1337                 for (level = 0; level < 4; level++) {
1338                         s32 v;
1339                         u32 mask;
1340                         u16 off = ttgs[i]->thermctl_lvl0_offset;
1341
1342                         r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1343
1344                         mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
1345                         state = REG_GET_MASK(r, mask);
1346                         v = sign_extend32(state, ts->soc->bptt - 1);
1347                         v *= ts->soc->thresh_grain;
1348                         seq_printf(s, "   %d: Up/Dn(%d /", level, v);
1349
1350                         mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
1351                         state = REG_GET_MASK(r, mask);
1352                         v = sign_extend32(state, ts->soc->bptt - 1);
1353                         v *= ts->soc->thresh_grain;
1354                         seq_printf(s, "%d ) ", v);
1355
1356                         mask = THERMCTL_LVL0_CPU0_EN_MASK;
1357                         state = REG_GET_MASK(r, mask);
1358                         seq_printf(s, "En(%d) ", state);
1359
1360                         mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
1361                         state = REG_GET_MASK(r, mask);
1362                         seq_puts(s, "CPU Throt");
1363                         if (!state)
1364                                 seq_printf(s, "(%s) ", "none");
1365                         else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
1366                                 seq_printf(s, "(%s) ", "L");
1367                         else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
1368                                 seq_printf(s, "(%s) ", "H");
1369                         else
1370                                 seq_printf(s, "(%s) ", "H+L");
1371
1372                         mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
1373                         state = REG_GET_MASK(r, mask);
1374                         seq_puts(s, "GPU Throt");
1375                         if (!state)
1376                                 seq_printf(s, "(%s) ", "none");
1377                         else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
1378                                 seq_printf(s, "(%s) ", "L");
1379                         else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
1380                                 seq_printf(s, "(%s) ", "H");
1381                         else
1382                                 seq_printf(s, "(%s) ", "H+L");
1383
1384                         mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
1385                         state = REG_GET_MASK(r, mask);
1386                         seq_printf(s, "Status(%s)\n",
1387                                    state == 0 ? "LO" :
1388                                    state == 1 ? "In" :
1389                                    state == 2 ? "Res" : "HI");
1390                 }
1391         }
1392
1393         r = readl(ts->regs + THERMCTL_STATS_CTL);
1394         seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
1395                    r & STATS_CTL_EN_UP ? "En" : "--",
1396                    r & STATS_CTL_EN_DN ? "En" : "--");
1397
1398         for (level = 0; level < 4; level++) {
1399                 u16 off;
1400
1401                 off = THERMCTL_LVL0_UP_STATS;
1402                 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1403                 seq_printf(s, "  Level_%d Up(%d) ", level, r);
1404
1405                 off = THERMCTL_LVL0_DN_STATS;
1406                 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1407                 seq_printf(s, "Dn(%d)\n", r);
1408         }
1409
1410         r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
1411         state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
1412         seq_printf(s, "Thermtrip Any En(%d)\n", state);
1413         for (i = 0; i < ts->soc->num_ttgs; i++) {
1414                 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
1415                 seq_printf(s, "     %s En(%d) ", ttgs[i]->name, state);
1416                 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
1417                 state *= ts->soc->thresh_grain;
1418                 seq_printf(s, "Thresh(%d)\n", state);
1419         }
1420
1421         r = readl(ts->regs + THROT_GLOBAL_CFG);
1422         seq_puts(s, "\n");
1423         seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
1424
1425         seq_puts(s, "---------------------------------------------------\n");
1426         r = readl(ts->regs + THROT_STATUS);
1427         state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
1428         seq_printf(s, "THROT STATUS: breach(%d) ", state);
1429         state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
1430         seq_printf(s, "state(%d) ", state);
1431         state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
1432         seq_printf(s, "enabled(%d)\n", state);
1433
1434         r = readl(ts->regs + CPU_PSKIP_STATUS);
1435         if (ts->soc->use_ccroc) {
1436                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1437                 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
1438         } else {
1439                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
1440                 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
1441                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
1442                 seq_printf(s, "N(%d) ", state);
1443                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1444                 seq_printf(s, "enabled(%d)\n", state);
1445         }
1446
1447         return 0;
1448 }
1449
1450 DEFINE_SHOW_ATTRIBUTE(regs);
1451
1452 static void soctherm_debug_init(struct platform_device *pdev)
1453 {
1454         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1455         struct dentry *root;
1456
1457         root = debugfs_create_dir("soctherm", NULL);
1458
1459         tegra->debugfs_dir = root;
1460
1461         debugfs_create_file("reg_contents", 0644, root, pdev, &regs_fops);
1462 }
1463 #else
1464 static inline void soctherm_debug_init(struct platform_device *pdev) {}
1465 #endif
1466
1467 static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
1468 {
1469         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1470         int err;
1471
1472         if (!tegra->clock_soctherm || !tegra->clock_tsensor)
1473                 return -EINVAL;
1474
1475         reset_control_assert(tegra->reset);
1476
1477         if (enable) {
1478                 err = clk_prepare_enable(tegra->clock_soctherm);
1479                 if (err) {
1480                         reset_control_deassert(tegra->reset);
1481                         return err;
1482                 }
1483
1484                 err = clk_prepare_enable(tegra->clock_tsensor);
1485                 if (err) {
1486                         clk_disable_unprepare(tegra->clock_soctherm);
1487                         reset_control_deassert(tegra->reset);
1488                         return err;
1489                 }
1490         } else {
1491                 clk_disable_unprepare(tegra->clock_tsensor);
1492                 clk_disable_unprepare(tegra->clock_soctherm);
1493         }
1494
1495         reset_control_deassert(tegra->reset);
1496
1497         return 0;
1498 }
1499
1500 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
1501                                     unsigned long *max_state)
1502 {
1503         *max_state = 1;
1504         return 0;
1505 }
1506
1507 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
1508                                     unsigned long *cur_state)
1509 {
1510         struct tegra_soctherm *ts = cdev->devdata;
1511         u32 r;
1512
1513         r = readl(ts->regs + THROT_STATUS);
1514         if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
1515                 *cur_state = 1;
1516         else
1517                 *cur_state = 0;
1518
1519         return 0;
1520 }
1521
1522 static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
1523                                 unsigned long cur_state)
1524 {
1525         return 0;
1526 }
1527
1528 static const struct thermal_cooling_device_ops throt_cooling_ops = {
1529         .get_max_state = throt_get_cdev_max_state,
1530         .get_cur_state = throt_get_cdev_cur_state,
1531         .set_cur_state = throt_set_cdev_state,
1532 };
1533
1534 static int soctherm_thermtrips_parse(struct platform_device *pdev)
1535 {
1536         struct device *dev = &pdev->dev;
1537         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1538         struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
1539         const int max_num_prop = ts->soc->num_ttgs * 2;
1540         u32 *tlb;
1541         int i, j, n, ret;
1542
1543         if (!tt)
1544                 return -ENOMEM;
1545
1546         n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
1547         if (n <= 0) {
1548                 dev_info(dev,
1549                          "missing thermtrips, will use critical trips as shut down temp\n");
1550                 return n;
1551         }
1552
1553         n = min(max_num_prop, n);
1554
1555         tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
1556         if (!tlb)
1557                 return -ENOMEM;
1558         ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
1559                                          tlb, n);
1560         if (ret) {
1561                 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
1562                 return ret;
1563         }
1564
1565         i = 0;
1566         for (j = 0; j < n; j = j + 2) {
1567                 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
1568                         continue;
1569
1570                 tt[i].id = tlb[j];
1571                 tt[i].temp = tlb[j + 1];
1572                 i++;
1573         }
1574
1575         return 0;
1576 }
1577
1578 static void soctherm_oc_cfg_parse(struct device *dev,
1579                                 struct device_node *np_oc,
1580                                 struct soctherm_throt_cfg *stc)
1581 {
1582         u32 val;
1583
1584         if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
1585                 stc->oc_cfg.active_low = 1;
1586         else
1587                 stc->oc_cfg.active_low = 0;
1588
1589         if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
1590                 stc->oc_cfg.intr_en = 1;
1591                 stc->oc_cfg.alarm_cnt_thresh = val;
1592         }
1593
1594         if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
1595                 stc->oc_cfg.throt_period = val;
1596
1597         if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
1598                 stc->oc_cfg.alarm_filter = val;
1599
1600         /* BRIEF throttling by default, do not support STICKY */
1601         stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
1602 }
1603
1604 static int soctherm_throt_cfg_parse(struct device *dev,
1605                                     struct device_node *np,
1606                                     struct soctherm_throt_cfg *stc)
1607 {
1608         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1609         int ret;
1610         u32 val;
1611
1612         ret = of_property_read_u32(np, "nvidia,priority", &val);
1613         if (ret) {
1614                 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
1615                 return -EINVAL;
1616         }
1617         stc->priority = val;
1618
1619         ret = of_property_read_u32(np, ts->soc->use_ccroc ?
1620                                    "nvidia,cpu-throt-level" :
1621                                    "nvidia,cpu-throt-percent", &val);
1622         if (!ret) {
1623                 if (ts->soc->use_ccroc &&
1624                     val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1625                         stc->cpu_throt_level = val;
1626                 else if (!ts->soc->use_ccroc && val <= 100)
1627                         stc->cpu_throt_depth = val;
1628                 else
1629                         goto err;
1630         } else {
1631                 goto err;
1632         }
1633
1634         ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
1635         if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1636                 stc->gpu_throt_level = val;
1637         else
1638                 goto err;
1639
1640         return 0;
1641
1642 err:
1643         dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
1644                 stc->name);
1645         return -EINVAL;
1646 }
1647
1648 /**
1649  * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
1650  * and register them as cooling devices.
1651  * @pdev: Pointer to platform_device struct
1652  */
1653 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
1654 {
1655         struct device *dev = &pdev->dev;
1656         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1657         struct device_node *np_stc, *np_stcc;
1658         const char *name;
1659         int i;
1660
1661         for (i = 0; i < THROTTLE_SIZE; i++) {
1662                 ts->throt_cfgs[i].name = throt_names[i];
1663                 ts->throt_cfgs[i].id = i;
1664                 ts->throt_cfgs[i].init = false;
1665         }
1666
1667         np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
1668         if (!np_stc) {
1669                 dev_info(dev,
1670                          "throttle-cfg: no throttle-cfgs - not enabling\n");
1671                 return;
1672         }
1673
1674         for_each_child_of_node(np_stc, np_stcc) {
1675                 struct soctherm_throt_cfg *stc;
1676                 struct thermal_cooling_device *tcd;
1677                 int err;
1678
1679                 name = np_stcc->name;
1680                 stc = find_throttle_cfg_by_name(ts, name);
1681                 if (!stc) {
1682                         dev_err(dev,
1683                                 "throttle-cfg: could not find %s\n", name);
1684                         continue;
1685                 }
1686
1687                 if (stc->init) {
1688                         dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
1689                         of_node_put(np_stcc);
1690                         break;
1691                 }
1692
1693                 err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
1694                 if (err)
1695                         continue;
1696
1697                 if (stc->id >= THROTTLE_OC1) {
1698                         soctherm_oc_cfg_parse(dev, np_stcc, stc);
1699                         stc->init = true;
1700                 } else {
1701
1702                         tcd = thermal_of_cooling_device_register(np_stcc,
1703                                                          (char *)name, ts,
1704                                                          &throt_cooling_ops);
1705                         if (IS_ERR_OR_NULL(tcd)) {
1706                                 dev_err(dev,
1707                                         "throttle-cfg: %s: failed to register cooling device\n",
1708                                         name);
1709                                 continue;
1710                         }
1711                         stc->cdev = tcd;
1712                         stc->init = true;
1713                 }
1714
1715         }
1716
1717         of_node_put(np_stc);
1718 }
1719
1720 /**
1721  * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1722  * @ts: pointer to a struct tegra_soctherm
1723  * @level: describing the level LOW/MED/HIGH of throttling
1724  *
1725  * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1726  * the M/N values desired for each level. This function does this.
1727  *
1728  * This function pre-programs the CCROC NV_THERM levels in terms of
1729  * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1730  * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1731  */
1732 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1733 {
1734         u8 depth, dividend;
1735         u32 r;
1736
1737         switch (level) {
1738         case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1739                 depth = 50;
1740                 break;
1741         case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1742                 depth = 75;
1743                 break;
1744         case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1745                 depth = 80;
1746                 break;
1747         case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1748                 return;
1749         default:
1750                 return;
1751         }
1752
1753         dividend = THROT_DEPTH_DIVIDEND(depth);
1754
1755         /* setup PSKIP in ccroc nv_therm registers */
1756         r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1757         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1758         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1759         ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1760
1761         r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1762         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1763         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1764         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1765         ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1766 }
1767
1768 /**
1769  * throttlectl_cpu_level_select() - program CPU pulse skipper config
1770  * @ts: pointer to a struct tegra_soctherm
1771  * @throt: the LIGHT/HEAVY of throttle event id
1772  *
1773  * Pulse skippers are used to throttle clock frequencies.  This
1774  * function programs the pulse skippers based on @throt and platform
1775  * data.  This function is used on SoCs which have CPU-local pulse
1776  * skipper control, such as T13x. It programs soctherm's interface to
1777  * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1778  * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1779  */
1780 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1781                                          enum soctherm_throttle_id throt)
1782 {
1783         u32 r, throt_vect;
1784
1785         /* Denver:CCROC NV_THERM interface N:3 Mapping */
1786         switch (ts->throt_cfgs[throt].cpu_throt_level) {
1787         case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1788                 throt_vect = THROT_VECT_LOW;
1789                 break;
1790         case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1791                 throt_vect = THROT_VECT_MED;
1792                 break;
1793         case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1794                 throt_vect = THROT_VECT_HIGH;
1795                 break;
1796         default:
1797                 throt_vect = THROT_VECT_NONE;
1798                 break;
1799         }
1800
1801         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1802         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1803         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1804         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1805         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1806
1807         /* bypass sequencer in soc_therm as it is programmed in ccroc */
1808         r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1809         writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1810 }
1811
1812 /**
1813  * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1814  * @ts: pointer to a struct tegra_soctherm
1815  * @throt: the LIGHT/HEAVY of throttle event id
1816  *
1817  * Pulse skippers are used to throttle clock frequencies.  This
1818  * function programs the pulse skippers based on @throt and platform
1819  * data.  This function is used for CPUs that have "remote" pulse
1820  * skipper control, e.g., the CPU pulse skipper is controlled by the
1821  * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
1822  * complex.)
1823  */
1824 static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1825                                enum soctherm_throttle_id throt)
1826 {
1827         u32 r;
1828         int depth;
1829         u8 dividend;
1830
1831         depth = ts->throt_cfgs[throt].cpu_throt_depth;
1832         dividend = THROT_DEPTH_DIVIDEND(depth);
1833
1834         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1835         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1836         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1837         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1838         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1839
1840         r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1841         r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1842         r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1843         writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1844 }
1845
1846 /**
1847  * throttlectl_gpu_level_select() - selects throttling level for GPU
1848  * @ts: pointer to a struct tegra_soctherm
1849  * @throt: the LIGHT/HEAVY of throttle event id
1850  *
1851  * This function programs soctherm's interface to GK20a NV_THERM to select
1852  * pre-configured "Low", "Medium" or "Heavy" throttle levels.
1853  *
1854  * Return: boolean true if HW was programmed
1855  */
1856 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
1857                                          enum soctherm_throttle_id throt)
1858 {
1859         u32 r, level, throt_vect;
1860
1861         level = ts->throt_cfgs[throt].gpu_throt_level;
1862         throt_vect = THROT_LEVEL_TO_DEPTH(level);
1863         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1864         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1865         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
1866         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1867 }
1868
1869 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
1870                                       enum soctherm_throttle_id throt)
1871 {
1872         u32 r;
1873         struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
1874
1875         if (oc->mode == OC_THROTTLE_MODE_DISABLED)
1876                 return -EINVAL;
1877
1878         r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
1879         r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
1880         r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
1881         r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
1882         writel(r, ts->regs + ALARM_CFG(throt));
1883         writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
1884         writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
1885         writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
1886         soctherm_oc_intr_enable(ts, throt, oc->intr_en);
1887
1888         return 0;
1889 }
1890
1891 /**
1892  * soctherm_throttle_program() - programs pulse skippers' configuration
1893  * @ts: pointer to a struct tegra_soctherm
1894  * @throt: the LIGHT/HEAVY of the throttle event id.
1895  *
1896  * Pulse skippers are used to throttle clock frequencies.
1897  * This function programs the pulse skippers.
1898  */
1899 static void soctherm_throttle_program(struct tegra_soctherm *ts,
1900                                       enum soctherm_throttle_id throt)
1901 {
1902         u32 r;
1903         struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1904
1905         if (!stc.init)
1906                 return;
1907
1908         if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
1909                 return;
1910
1911         /* Setup PSKIP parameters */
1912         if (ts->soc->use_ccroc)
1913                 throttlectl_cpu_level_select(ts, throt);
1914         else
1915                 throttlectl_cpu_mn(ts, throt);
1916
1917         throttlectl_gpu_level_select(ts, throt);
1918
1919         r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1920         writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1921
1922         r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1923         writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1924
1925         r = readl(ts->regs + THROT_PRIORITY_LOCK);
1926         r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1927         if (r >= stc.priority)
1928                 return;
1929         r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1930                          stc.priority);
1931         writel(r, ts->regs + THROT_PRIORITY_LOCK);
1932 }
1933
1934 static void tegra_soctherm_throttle(struct device *dev)
1935 {
1936         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1937         u32 v;
1938         int i;
1939
1940         /* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1941         if (ts->soc->use_ccroc) {
1942                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1943                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1944                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1945         }
1946
1947         /* Thermal HW throttle programming */
1948         for (i = 0; i < THROTTLE_SIZE; i++)
1949                 soctherm_throttle_program(ts, i);
1950
1951         v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1952         if (ts->soc->use_ccroc) {
1953                 ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1954
1955                 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1956                 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1957                 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1958         } else {
1959                 writel(v, ts->regs + THROT_GLOBAL_CFG);
1960
1961                 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1962                 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1963                 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1964         }
1965
1966         /* initialize stats collection */
1967         v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
1968             STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
1969         writel(v, ts->regs + THERMCTL_STATS_CTL);
1970 }
1971
1972 static int soctherm_interrupts_init(struct platform_device *pdev,
1973                                     struct tegra_soctherm *tegra)
1974 {
1975         struct device_node *np = pdev->dev.of_node;
1976         int ret;
1977
1978         ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
1979         if (ret < 0) {
1980                 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
1981                 return ret;
1982         }
1983
1984         tegra->thermal_irq = platform_get_irq(pdev, 0);
1985         if (tegra->thermal_irq < 0) {
1986                 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
1987                 return 0;
1988         }
1989
1990         tegra->edp_irq = platform_get_irq(pdev, 1);
1991         if (tegra->edp_irq < 0) {
1992                 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
1993                 return 0;
1994         }
1995
1996         ret = devm_request_threaded_irq(&pdev->dev,
1997                                         tegra->thermal_irq,
1998                                         soctherm_thermal_isr,
1999                                         soctherm_thermal_isr_thread,
2000                                         IRQF_ONESHOT,
2001                                         dev_name(&pdev->dev),
2002                                         tegra);
2003         if (ret < 0) {
2004                 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
2005                 return ret;
2006         }
2007
2008         ret = devm_request_threaded_irq(&pdev->dev,
2009                                         tegra->edp_irq,
2010                                         soctherm_edp_isr,
2011                                         soctherm_edp_isr_thread,
2012                                         IRQF_ONESHOT,
2013                                         "soctherm_edp",
2014                                         tegra);
2015         if (ret < 0) {
2016                 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
2017                 return ret;
2018         }
2019
2020         return 0;
2021 }
2022
2023 static void soctherm_init(struct platform_device *pdev)
2024 {
2025         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2026         const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
2027         int i;
2028         u32 pdiv, hotspot;
2029
2030         /* Initialize raw sensors */
2031         for (i = 0; i < tegra->soc->num_tsensors; ++i)
2032                 enable_tsensor(tegra, i);
2033
2034         /* program pdiv and hotspot offsets per THERM */
2035         pdiv = readl(tegra->regs + SENSOR_PDIV);
2036         hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
2037         for (i = 0; i < tegra->soc->num_ttgs; ++i) {
2038                 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
2039                                     ttgs[i]->pdiv);
2040                 /* hotspot offset from PLLX, doesn't need to configure PLLX */
2041                 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
2042                         continue;
2043                 hotspot =  REG_SET_MASK(hotspot,
2044                                         ttgs[i]->pllx_hotspot_mask,
2045                                         ttgs[i]->pllx_hotspot_diff);
2046         }
2047         writel(pdiv, tegra->regs + SENSOR_PDIV);
2048         writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
2049
2050         /* Configure hw throttle */
2051         tegra_soctherm_throttle(&pdev->dev);
2052 }
2053
2054 static const struct of_device_id tegra_soctherm_of_match[] = {
2055 #ifdef CONFIG_ARCH_TEGRA_124_SOC
2056         {
2057                 .compatible = "nvidia,tegra124-soctherm",
2058                 .data = &tegra124_soctherm,
2059         },
2060 #endif
2061 #ifdef CONFIG_ARCH_TEGRA_132_SOC
2062         {
2063                 .compatible = "nvidia,tegra132-soctherm",
2064                 .data = &tegra132_soctherm,
2065         },
2066 #endif
2067 #ifdef CONFIG_ARCH_TEGRA_210_SOC
2068         {
2069                 .compatible = "nvidia,tegra210-soctherm",
2070                 .data = &tegra210_soctherm,
2071         },
2072 #endif
2073         { },
2074 };
2075 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
2076
2077 static int tegra_soctherm_probe(struct platform_device *pdev)
2078 {
2079         const struct of_device_id *match;
2080         struct tegra_soctherm *tegra;
2081         struct thermal_zone_device *z;
2082         struct tsensor_shared_calib shared_calib;
2083         struct tegra_soctherm_soc *soc;
2084         unsigned int i;
2085         int err;
2086
2087         match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
2088         if (!match)
2089                 return -ENODEV;
2090
2091         soc = (struct tegra_soctherm_soc *)match->data;
2092         if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
2093                 return -EINVAL;
2094
2095         tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
2096         if (!tegra)
2097                 return -ENOMEM;
2098
2099         mutex_init(&tegra->thermctl_lock);
2100         dev_set_drvdata(&pdev->dev, tegra);
2101
2102         tegra->soc = soc;
2103
2104         tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg");
2105         if (IS_ERR(tegra->regs)) {
2106                 dev_err(&pdev->dev, "can't get soctherm registers");
2107                 return PTR_ERR(tegra->regs);
2108         }
2109
2110         if (!tegra->soc->use_ccroc) {
2111                 tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg");
2112                 if (IS_ERR(tegra->clk_regs)) {
2113                         dev_err(&pdev->dev, "can't get car clk registers");
2114                         return PTR_ERR(tegra->clk_regs);
2115                 }
2116         } else {
2117                 tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg");
2118                 if (IS_ERR(tegra->ccroc_regs)) {
2119                         dev_err(&pdev->dev, "can't get ccroc registers");
2120                         return PTR_ERR(tegra->ccroc_regs);
2121                 }
2122         }
2123
2124         tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
2125         if (IS_ERR(tegra->reset)) {
2126                 dev_err(&pdev->dev, "can't get soctherm reset\n");
2127                 return PTR_ERR(tegra->reset);
2128         }
2129
2130         tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
2131         if (IS_ERR(tegra->clock_tsensor)) {
2132                 dev_err(&pdev->dev, "can't get tsensor clock\n");
2133                 return PTR_ERR(tegra->clock_tsensor);
2134         }
2135
2136         tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
2137         if (IS_ERR(tegra->clock_soctherm)) {
2138                 dev_err(&pdev->dev, "can't get soctherm clock\n");
2139                 return PTR_ERR(tegra->clock_soctherm);
2140         }
2141
2142         tegra->calib = devm_kcalloc(&pdev->dev,
2143                                     soc->num_tsensors, sizeof(u32),
2144                                     GFP_KERNEL);
2145         if (!tegra->calib)
2146                 return -ENOMEM;
2147
2148         /* calculate shared calibration data */
2149         err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
2150         if (err)
2151                 return err;
2152
2153         /* calculate tsensor calibration data */
2154         for (i = 0; i < soc->num_tsensors; ++i) {
2155                 err = tegra_calc_tsensor_calib(&soc->tsensors[i],
2156                                                &shared_calib,
2157                                                &tegra->calib[i]);
2158                 if (err)
2159                         return err;
2160         }
2161
2162         tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
2163                                            soc->num_ttgs, sizeof(z),
2164                                            GFP_KERNEL);
2165         if (!tegra->thermctl_tzs)
2166                 return -ENOMEM;
2167
2168         err = soctherm_clk_enable(pdev, true);
2169         if (err)
2170                 return err;
2171
2172         soctherm_thermtrips_parse(pdev);
2173
2174         soctherm_init_hw_throt_cdev(pdev);
2175
2176         soctherm_init(pdev);
2177
2178         for (i = 0; i < soc->num_ttgs; ++i) {
2179                 struct tegra_thermctl_zone *zone =
2180                         devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
2181                 if (!zone) {
2182                         err = -ENOMEM;
2183                         goto disable_clocks;
2184                 }
2185
2186                 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
2187                 zone->dev = &pdev->dev;
2188                 zone->sg = soc->ttgs[i];
2189                 zone->ts = tegra;
2190
2191                 z = devm_thermal_of_zone_register(&pdev->dev,
2192                                                   soc->ttgs[i]->id, zone,
2193                                                   &tegra_of_thermal_ops);
2194                 if (IS_ERR(z)) {
2195                         err = PTR_ERR(z);
2196                         dev_err(&pdev->dev, "failed to register sensor: %d\n",
2197                                 err);
2198                         goto disable_clocks;
2199                 }
2200
2201                 zone->tz = z;
2202                 tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
2203
2204                 /* Configure hw trip points */
2205                 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
2206                 if (err)
2207                         goto disable_clocks;
2208         }
2209
2210         err = soctherm_interrupts_init(pdev, tegra);
2211
2212         soctherm_debug_init(pdev);
2213
2214         return 0;
2215
2216 disable_clocks:
2217         soctherm_clk_enable(pdev, false);
2218
2219         return err;
2220 }
2221
2222 static void tegra_soctherm_remove(struct platform_device *pdev)
2223 {
2224         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2225
2226         debugfs_remove_recursive(tegra->debugfs_dir);
2227
2228         soctherm_clk_enable(pdev, false);
2229 }
2230
2231 static int __maybe_unused soctherm_suspend(struct device *dev)
2232 {
2233         struct platform_device *pdev = to_platform_device(dev);
2234
2235         soctherm_clk_enable(pdev, false);
2236
2237         return 0;
2238 }
2239
2240 static int __maybe_unused soctherm_resume(struct device *dev)
2241 {
2242         struct platform_device *pdev = to_platform_device(dev);
2243         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2244         struct tegra_soctherm_soc *soc = tegra->soc;
2245         int err, i;
2246
2247         err = soctherm_clk_enable(pdev, true);
2248         if (err) {
2249                 dev_err(&pdev->dev,
2250                         "Resume failed: enable clocks failed\n");
2251                 return err;
2252         }
2253
2254         soctherm_init(pdev);
2255
2256         for (i = 0; i < soc->num_ttgs; ++i) {
2257                 struct thermal_zone_device *tz;
2258
2259                 tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
2260                 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
2261                 if (err) {
2262                         dev_err(&pdev->dev,
2263                                 "Resume failed: set hwtrips failed\n");
2264                         return err;
2265                 }
2266         }
2267
2268         return 0;
2269 }
2270
2271 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
2272
2273 static struct platform_driver tegra_soctherm_driver = {
2274         .probe = tegra_soctherm_probe,
2275         .remove_new = tegra_soctherm_remove,
2276         .driver = {
2277                 .name = "tegra_soctherm",
2278                 .pm = &tegra_soctherm_pm,
2279                 .of_match_table = tegra_soctherm_of_match,
2280         },
2281 };
2282 module_platform_driver(tegra_soctherm_driver);
2283
2284 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
2285 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
2286 MODULE_LICENSE("GPL v2");