Merge remote-tracking branch 'torvalds/master' into perf/urgent
[linux-2.6-microblaze.git] / drivers / thermal / qcom / tsens-common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, The Linux Foundation. All rights reserved.
4  */
5
6 #include <linux/debugfs.h>
7 #include <linux/err.h>
8 #include <linux/io.h>
9 #include <linux/nvmem-consumer.h>
10 #include <linux/of_address.h>
11 #include <linux/of_platform.h>
12 #include <linux/platform_device.h>
13 #include <linux/regmap.h>
14 #include "tsens.h"
15
16 /**
17  * struct tsens_irq_data - IRQ status and temperature violations
18  * @up_viol:        upper threshold violated
19  * @up_thresh:      upper threshold temperature value
20  * @up_irq_mask:    mask register for upper threshold irqs
21  * @up_irq_clear:   clear register for uppper threshold irqs
22  * @low_viol:       lower threshold violated
23  * @low_thresh:     lower threshold temperature value
24  * @low_irq_mask:   mask register for lower threshold irqs
25  * @low_irq_clear:  clear register for lower threshold irqs
26  *
27  * Structure containing data about temperature threshold settings and
28  * irq status if they were violated.
29  */
30 struct tsens_irq_data {
31         u32 up_viol;
32         int up_thresh;
33         u32 up_irq_mask;
34         u32 up_irq_clear;
35         u32 low_viol;
36         int low_thresh;
37         u32 low_irq_mask;
38         u32 low_irq_clear;
39 };
40
41 char *qfprom_read(struct device *dev, const char *cname)
42 {
43         struct nvmem_cell *cell;
44         ssize_t data;
45         char *ret;
46
47         cell = nvmem_cell_get(dev, cname);
48         if (IS_ERR(cell))
49                 return ERR_CAST(cell);
50
51         ret = nvmem_cell_read(cell, &data);
52         nvmem_cell_put(cell);
53
54         return ret;
55 }
56
57 /*
58  * Use this function on devices where slope and offset calculations
59  * depend on calibration data read from qfprom. On others the slope
60  * and offset values are derived from tz->tzp->slope and tz->tzp->offset
61  * resp.
62  */
63 void compute_intercept_slope(struct tsens_priv *priv, u32 *p1,
64                              u32 *p2, u32 mode)
65 {
66         int i;
67         int num, den;
68
69         for (i = 0; i < priv->num_sensors; i++) {
70                 dev_dbg(priv->dev,
71                         "%s: sensor%d - data_point1:%#x data_point2:%#x\n",
72                         __func__, i, p1[i], p2[i]);
73
74                 priv->sensor[i].slope = SLOPE_DEFAULT;
75                 if (mode == TWO_PT_CALIB) {
76                         /*
77                          * slope (m) = adc_code2 - adc_code1 (y2 - y1)/
78                          *      temp_120_degc - temp_30_degc (x2 - x1)
79                          */
80                         num = p2[i] - p1[i];
81                         num *= SLOPE_FACTOR;
82                         den = CAL_DEGC_PT2 - CAL_DEGC_PT1;
83                         priv->sensor[i].slope = num / den;
84                 }
85
86                 priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) -
87                                 (CAL_DEGC_PT1 *
88                                 priv->sensor[i].slope);
89                 dev_dbg(priv->dev, "%s: offset:%d\n", __func__, priv->sensor[i].offset);
90         }
91 }
92
93 static inline u32 degc_to_code(int degc, const struct tsens_sensor *s)
94 {
95         u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR);
96
97         pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc);
98         return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE);
99 }
100
101 static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s)
102 {
103         int degc, num, den;
104
105         num = (adc_code * SLOPE_FACTOR) - s->offset;
106         den = s->slope;
107
108         if (num > 0)
109                 degc = num + (den / 2);
110         else if (num < 0)
111                 degc = num - (den / 2);
112         else
113                 degc = num;
114
115         degc /= den;
116
117         return degc;
118 }
119
120 /**
121  * tsens_hw_to_mC - Return sign-extended temperature in mCelsius.
122  * @s:     Pointer to sensor struct
123  * @field: Index into regmap_field array pointing to temperature data
124  *
125  * This function handles temperature returned in ADC code or deciCelsius
126  * depending on IP version.
127  *
128  * Return: Temperature in milliCelsius on success, a negative errno will
129  * be returned in error cases
130  */
131 static int tsens_hw_to_mC(struct tsens_sensor *s, int field)
132 {
133         struct tsens_priv *priv = s->priv;
134         u32 resolution;
135         u32 temp = 0;
136         int ret;
137
138         resolution = priv->fields[LAST_TEMP_0].msb -
139                 priv->fields[LAST_TEMP_0].lsb;
140
141         ret = regmap_field_read(priv->rf[field], &temp);
142         if (ret)
143                 return ret;
144
145         /* Convert temperature from ADC code to milliCelsius */
146         if (priv->feat->adc)
147                 return code_to_degc(temp, s) * 1000;
148
149         /* deciCelsius -> milliCelsius along with sign extension */
150         return sign_extend32(temp, resolution) * 100;
151 }
152
153 /**
154  * tsens_mC_to_hw - Convert temperature to hardware register value
155  * @s: Pointer to sensor struct
156  * @temp: temperature in milliCelsius to be programmed to hardware
157  *
158  * This function outputs the value to be written to hardware in ADC code
159  * or deciCelsius depending on IP version.
160  *
161  * Return: ADC code or temperature in deciCelsius.
162  */
163 static int tsens_mC_to_hw(struct tsens_sensor *s, int temp)
164 {
165         struct tsens_priv *priv = s->priv;
166
167         /* milliC to adc code */
168         if (priv->feat->adc)
169                 return degc_to_code(temp / 1000, s);
170
171         /* milliC to deciC */
172         return temp / 100;
173 }
174
175 static inline enum tsens_ver tsens_version(struct tsens_priv *priv)
176 {
177         return priv->feat->ver_major;
178 }
179
180 static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id,
181                                    enum tsens_irq_type irq_type, bool enable)
182 {
183         u32 index = 0;
184
185         switch (irq_type) {
186         case UPPER:
187                 index = UP_INT_CLEAR_0 + hw_id;
188                 break;
189         case LOWER:
190                 index = LOW_INT_CLEAR_0 + hw_id;
191                 break;
192         }
193         regmap_field_write(priv->rf[index], enable ? 0 : 1);
194 }
195
196 static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id,
197                                    enum tsens_irq_type irq_type, bool enable)
198 {
199         u32 index_mask = 0, index_clear = 0;
200
201         /*
202          * To enable the interrupt flag for a sensor:
203          *    - clear the mask bit
204          * To disable the interrupt flag for a sensor:
205          *    - Mask further interrupts for this sensor
206          *    - Write 1 followed by 0 to clear the interrupt
207          */
208         switch (irq_type) {
209         case UPPER:
210                 index_mask  = UP_INT_MASK_0 + hw_id;
211                 index_clear = UP_INT_CLEAR_0 + hw_id;
212                 break;
213         case LOWER:
214                 index_mask  = LOW_INT_MASK_0 + hw_id;
215                 index_clear = LOW_INT_CLEAR_0 + hw_id;
216                 break;
217         }
218
219         if (enable) {
220                 regmap_field_write(priv->rf[index_mask], 0);
221         } else {
222                 regmap_field_write(priv->rf[index_mask],  1);
223                 regmap_field_write(priv->rf[index_clear], 1);
224                 regmap_field_write(priv->rf[index_clear], 0);
225         }
226 }
227
228 /**
229  * tsens_set_interrupt - Set state of an interrupt
230  * @priv: Pointer to tsens controller private data
231  * @hw_id: Hardware ID aka. sensor number
232  * @irq_type: irq_type from enum tsens_irq_type
233  * @enable: false = disable, true = enable
234  *
235  * Call IP-specific function to set state of an interrupt
236  *
237  * Return: void
238  */
239 static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id,
240                                 enum tsens_irq_type irq_type, bool enable)
241 {
242         dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__,
243                 irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW",
244                 enable ? "en" : "dis");
245         if (tsens_version(priv) > VER_1_X)
246                 tsens_set_interrupt_v2(priv, hw_id, irq_type, enable);
247         else
248                 tsens_set_interrupt_v1(priv, hw_id, irq_type, enable);
249 }
250
251 /**
252  * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold
253  * @priv: Pointer to tsens controller private data
254  * @hw_id: Hardware ID aka. sensor number
255  * @d: Pointer to irq state data
256  *
257  * Return: 0 if threshold was not violated, 1 if it was violated and negative
258  * errno in case of errors
259  */
260 static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id,
261                                     struct tsens_irq_data *d)
262 {
263         int ret;
264
265         ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol);
266         if (ret)
267                 return ret;
268         ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol);
269         if (ret)
270                 return ret;
271         if (d->up_viol || d->low_viol)
272                 return 1;
273
274         return 0;
275 }
276
277 static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id,
278                                 struct tsens_sensor *s, struct tsens_irq_data *d)
279 {
280         int ret;
281
282         ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear);
283         if (ret)
284                 return ret;
285         ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear);
286         if (ret)
287                 return ret;
288         if (tsens_version(priv) > VER_1_X) {
289                 ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask);
290                 if (ret)
291                         return ret;
292                 ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask);
293                 if (ret)
294                         return ret;
295         } else {
296                 /* No mask register on older TSENS */
297                 d->up_irq_mask = 0;
298                 d->low_irq_mask = 0;
299         }
300
301         d->up_thresh  = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id);
302         d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id);
303
304         dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u) | clr(%u|%u) | mask(%u|%u)\n",
305                 hw_id, __func__, (d->up_viol || d->low_viol) ? "(V)" : "",
306                 d->low_viol, d->up_viol, d->low_irq_clear, d->up_irq_clear,
307                 d->low_irq_mask, d->up_irq_mask);
308         dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d)\n", hw_id, __func__,
309                 (d->up_viol || d->low_viol) ? "(violation)" : "",
310                 d->low_thresh, d->up_thresh);
311
312         return 0;
313 }
314
315 static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver)
316 {
317         if (ver > VER_1_X)
318                 return mask & (1 << hw_id);
319
320         /* v1, v0.1 don't have a irq mask register */
321         return 0;
322 }
323
324 /**
325  * tsens_irq_thread - Threaded interrupt handler for uplow interrupts
326  * @irq: irq number
327  * @data: tsens controller private data
328  *
329  * Check all sensors to find ones that violated their threshold limits. If the
330  * temperature is still outside the limits, call thermal_zone_device_update() to
331  * update the thresholds, else re-enable the interrupts.
332  *
333  * The level-triggered interrupt might deassert if the temperature returned to
334  * within the threshold limits by the time the handler got scheduled. We
335  * consider the irq to have been handled in that case.
336  *
337  * Return: IRQ_HANDLED
338  */
339 irqreturn_t tsens_irq_thread(int irq, void *data)
340 {
341         struct tsens_priv *priv = data;
342         struct tsens_irq_data d;
343         bool enable = true, disable = false;
344         unsigned long flags;
345         int temp, ret, i;
346
347         for (i = 0; i < priv->num_sensors; i++) {
348                 bool trigger = false;
349                 struct tsens_sensor *s = &priv->sensor[i];
350                 u32 hw_id = s->hw_id;
351
352                 if (IS_ERR(priv->sensor[i].tzd))
353                         continue;
354                 if (!tsens_threshold_violated(priv, hw_id, &d))
355                         continue;
356                 ret = get_temp_tsens_valid(s, &temp);
357                 if (ret) {
358                         dev_err(priv->dev, "[%u] %s: error reading sensor\n", hw_id, __func__);
359                         continue;
360                 }
361
362                 spin_lock_irqsave(&priv->ul_lock, flags);
363
364                 tsens_read_irq_state(priv, hw_id, s, &d);
365
366                 if (d.up_viol &&
367                     !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) {
368                         tsens_set_interrupt(priv, hw_id, UPPER, disable);
369                         if (d.up_thresh > temp) {
370                                 dev_dbg(priv->dev, "[%u] %s: re-arm upper\n",
371                                         priv->sensor[i].hw_id, __func__);
372                                 tsens_set_interrupt(priv, hw_id, UPPER, enable);
373                         } else {
374                                 trigger = true;
375                                 /* Keep irq masked */
376                         }
377                 } else if (d.low_viol &&
378                            !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) {
379                         tsens_set_interrupt(priv, hw_id, LOWER, disable);
380                         if (d.low_thresh < temp) {
381                                 dev_dbg(priv->dev, "[%u] %s: re-arm low\n",
382                                         priv->sensor[i].hw_id, __func__);
383                                 tsens_set_interrupt(priv, hw_id, LOWER, enable);
384                         } else {
385                                 trigger = true;
386                                 /* Keep irq masked */
387                         }
388                 }
389
390                 spin_unlock_irqrestore(&priv->ul_lock, flags);
391
392                 if (trigger) {
393                         dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n",
394                                 hw_id, __func__, temp);
395                         thermal_zone_device_update(priv->sensor[i].tzd,
396                                                    THERMAL_EVENT_UNSPECIFIED);
397                 } else {
398                         dev_dbg(priv->dev, "[%u] %s: no violation:  %d\n",
399                                 hw_id, __func__, temp);
400                 }
401         }
402
403         return IRQ_HANDLED;
404 }
405
406 int tsens_set_trips(void *_sensor, int low, int high)
407 {
408         struct tsens_sensor *s = _sensor;
409         struct tsens_priv *priv = s->priv;
410         struct device *dev = priv->dev;
411         struct tsens_irq_data d;
412         unsigned long flags;
413         int high_val, low_val, cl_high, cl_low;
414         u32 hw_id = s->hw_id;
415
416         dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n",
417                 hw_id, __func__, low, high);
418
419         cl_high = clamp_val(high, -40000, 120000);
420         cl_low  = clamp_val(low, -40000, 120000);
421
422         high_val = tsens_mC_to_hw(s, cl_high);
423         low_val  = tsens_mC_to_hw(s, cl_low);
424
425         spin_lock_irqsave(&priv->ul_lock, flags);
426
427         tsens_read_irq_state(priv, hw_id, s, &d);
428
429         /* Write the new thresholds and clear the status */
430         regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val);
431         regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val);
432         tsens_set_interrupt(priv, hw_id, LOWER, true);
433         tsens_set_interrupt(priv, hw_id, UPPER, true);
434
435         spin_unlock_irqrestore(&priv->ul_lock, flags);
436
437         dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n",
438                 s->hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high);
439
440         return 0;
441 }
442
443 int tsens_enable_irq(struct tsens_priv *priv)
444 {
445         int ret;
446         int val = tsens_version(priv) > VER_1_X ? 7 : 1;
447
448         ret = regmap_field_write(priv->rf[INT_EN], val);
449         if (ret < 0)
450                 dev_err(priv->dev, "%s: failed to enable interrupts\n", __func__);
451
452         return ret;
453 }
454
455 void tsens_disable_irq(struct tsens_priv *priv)
456 {
457         regmap_field_write(priv->rf[INT_EN], 0);
458 }
459
460 int get_temp_tsens_valid(struct tsens_sensor *s, int *temp)
461 {
462         struct tsens_priv *priv = s->priv;
463         int hw_id = s->hw_id;
464         u32 temp_idx = LAST_TEMP_0 + hw_id;
465         u32 valid_idx = VALID_0 + hw_id;
466         u32 valid;
467         int ret;
468
469         ret = regmap_field_read(priv->rf[valid_idx], &valid);
470         if (ret)
471                 return ret;
472         while (!valid) {
473                 /* Valid bit is 0 for 6 AHB clock cycles.
474                  * At 19.2MHz, 1 AHB clock is ~60ns.
475                  * We should enter this loop very, very rarely.
476                  */
477                 ndelay(400);
478                 ret = regmap_field_read(priv->rf[valid_idx], &valid);
479                 if (ret)
480                         return ret;
481         }
482
483         /* Valid bit is set, OK to read the temperature */
484         *temp = tsens_hw_to_mC(s, temp_idx);
485
486         return 0;
487 }
488
489 int get_temp_common(struct tsens_sensor *s, int *temp)
490 {
491         struct tsens_priv *priv = s->priv;
492         int hw_id = s->hw_id;
493         int last_temp = 0, ret;
494
495         ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp);
496         if (ret)
497                 return ret;
498
499         *temp = code_to_degc(last_temp, s) * 1000;
500
501         return 0;
502 }
503
504 #ifdef CONFIG_DEBUG_FS
505 static int dbg_sensors_show(struct seq_file *s, void *data)
506 {
507         struct platform_device *pdev = s->private;
508         struct tsens_priv *priv = platform_get_drvdata(pdev);
509         int i;
510
511         seq_printf(s, "max: %2d\nnum: %2d\n\n",
512                    priv->feat->max_sensors, priv->num_sensors);
513
514         seq_puts(s, "      id    slope   offset\n--------------------------\n");
515         for (i = 0;  i < priv->num_sensors; i++) {
516                 seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id,
517                            priv->sensor[i].slope, priv->sensor[i].offset);
518         }
519
520         return 0;
521 }
522
523 static int dbg_version_show(struct seq_file *s, void *data)
524 {
525         struct platform_device *pdev = s->private;
526         struct tsens_priv *priv = platform_get_drvdata(pdev);
527         u32 maj_ver, min_ver, step_ver;
528         int ret;
529
530         if (tsens_version(priv) > VER_0_1) {
531                 ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver);
532                 if (ret)
533                         return ret;
534                 ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver);
535                 if (ret)
536                         return ret;
537                 ret = regmap_field_read(priv->rf[VER_STEP], &step_ver);
538                 if (ret)
539                         return ret;
540                 seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver);
541         } else {
542                 seq_puts(s, "0.1.0\n");
543         }
544
545         return 0;
546 }
547
548 DEFINE_SHOW_ATTRIBUTE(dbg_version);
549 DEFINE_SHOW_ATTRIBUTE(dbg_sensors);
550
551 static void tsens_debug_init(struct platform_device *pdev)
552 {
553         struct tsens_priv *priv = platform_get_drvdata(pdev);
554         struct dentry *root, *file;
555
556         root = debugfs_lookup("tsens", NULL);
557         if (!root)
558                 priv->debug_root = debugfs_create_dir("tsens", NULL);
559         else
560                 priv->debug_root = root;
561
562         file = debugfs_lookup("version", priv->debug_root);
563         if (!file)
564                 debugfs_create_file("version", 0444, priv->debug_root,
565                                     pdev, &dbg_version_fops);
566
567         /* A directory for each instance of the TSENS IP */
568         priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root);
569         debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops);
570 }
571 #else
572 static inline void tsens_debug_init(struct platform_device *pdev) {}
573 #endif
574
575 static const struct regmap_config tsens_config = {
576         .name           = "tm",
577         .reg_bits       = 32,
578         .val_bits       = 32,
579         .reg_stride     = 4,
580 };
581
582 static const struct regmap_config tsens_srot_config = {
583         .name           = "srot",
584         .reg_bits       = 32,
585         .val_bits       = 32,
586         .reg_stride     = 4,
587 };
588
589 int __init init_common(struct tsens_priv *priv)
590 {
591         void __iomem *tm_base, *srot_base;
592         struct device *dev = priv->dev;
593         struct resource *res;
594         u32 enabled;
595         int ret, i, j;
596         struct platform_device *op = of_find_device_by_node(priv->dev->of_node);
597
598         if (!op)
599                 return -EINVAL;
600
601         if (op->num_resources > 1) {
602                 /* DT with separate SROT and TM address space */
603                 priv->tm_offset = 0;
604                 res = platform_get_resource(op, IORESOURCE_MEM, 1);
605                 srot_base = devm_ioremap_resource(&op->dev, res);
606                 if (IS_ERR(srot_base)) {
607                         ret = PTR_ERR(srot_base);
608                         goto err_put_device;
609                 }
610
611                 priv->srot_map = devm_regmap_init_mmio(dev, srot_base,
612                                                         &tsens_srot_config);
613                 if (IS_ERR(priv->srot_map)) {
614                         ret = PTR_ERR(priv->srot_map);
615                         goto err_put_device;
616                 }
617         } else {
618                 /* old DTs where SROT and TM were in a contiguous 2K block */
619                 priv->tm_offset = 0x1000;
620         }
621
622         res = platform_get_resource(op, IORESOURCE_MEM, 0);
623         tm_base = devm_ioremap_resource(&op->dev, res);
624         if (IS_ERR(tm_base)) {
625                 ret = PTR_ERR(tm_base);
626                 goto err_put_device;
627         }
628
629         priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config);
630         if (IS_ERR(priv->tm_map)) {
631                 ret = PTR_ERR(priv->tm_map);
632                 goto err_put_device;
633         }
634
635         if (tsens_version(priv) > VER_0_1) {
636                 for (i = VER_MAJOR; i <= VER_STEP; i++) {
637                         priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map,
638                                                               priv->fields[i]);
639                         if (IS_ERR(priv->rf[i]))
640                                 return PTR_ERR(priv->rf[i]);
641                 }
642         }
643
644         priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
645                                                      priv->fields[TSENS_EN]);
646         if (IS_ERR(priv->rf[TSENS_EN])) {
647                 ret = PTR_ERR(priv->rf[TSENS_EN]);
648                 goto err_put_device;
649         }
650         ret = regmap_field_read(priv->rf[TSENS_EN], &enabled);
651         if (ret)
652                 goto err_put_device;
653         if (!enabled) {
654                 dev_err(dev, "%s: device not enabled\n", __func__);
655                 ret = -ENODEV;
656                 goto err_put_device;
657         }
658
659         priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map,
660                                                       priv->fields[SENSOR_EN]);
661         if (IS_ERR(priv->rf[SENSOR_EN])) {
662                 ret = PTR_ERR(priv->rf[SENSOR_EN]);
663                 goto err_put_device;
664         }
665         priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map,
666                                                    priv->fields[INT_EN]);
667         if (IS_ERR(priv->rf[INT_EN])) {
668                 ret = PTR_ERR(priv->rf[INT_EN]);
669                 goto err_put_device;
670         }
671
672         /* This loop might need changes if enum regfield_ids is reordered */
673         for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) {
674                 for (i = 0; i < priv->feat->max_sensors; i++) {
675                         int idx = j + i;
676
677                         priv->rf[idx] = devm_regmap_field_alloc(dev, priv->tm_map,
678                                                                 priv->fields[idx]);
679                         if (IS_ERR(priv->rf[idx])) {
680                                 ret = PTR_ERR(priv->rf[idx]);
681                                 goto err_put_device;
682                         }
683                 }
684         }
685
686         spin_lock_init(&priv->ul_lock);
687         tsens_enable_irq(priv);
688         tsens_debug_init(op);
689
690         return 0;
691
692 err_put_device:
693         put_device(&op->dev);
694         return ret;
695 }