Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / thermal / devfreq_cooling.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * devfreq_cooling: Thermal cooling device implementation for devices using
4  *                  devfreq
5  *
6  * Copyright (C) 2014-2015 ARM Limited
7  *
8  * TODO:
9  *    - If OPPs are added or removed after devfreq cooling has
10  *      registered, the devfreq cooling won't react to it.
11  */
12
13 #include <linux/devfreq.h>
14 #include <linux/devfreq_cooling.h>
15 #include <linux/energy_model.h>
16 #include <linux/export.h>
17 #include <linux/slab.h>
18 #include <linux/pm_opp.h>
19 #include <linux/pm_qos.h>
20 #include <linux/thermal.h>
21 #include <linux/units.h>
22
23 #include "thermal_trace.h"
24
25 #define SCALE_ERROR_MITIGATION  100
26
27 /**
28  * struct devfreq_cooling_device - Devfreq cooling device
29  *              devfreq_cooling_device registered.
30  * @cdev:       Pointer to associated thermal cooling device.
31  * @cooling_ops: devfreq callbacks to thermal cooling device ops
32  * @devfreq:    Pointer to associated devfreq device.
33  * @cooling_state:      Current cooling state.
34  * @freq_table: Pointer to a table with the frequencies sorted in descending
35  *              order.  You can index the table by cooling device state
36  * @max_state:  It is the last index, that is, one less than the number of the
37  *              OPPs
38  * @power_ops:  Pointer to devfreq_cooling_power, a more precised model.
39  * @res_util:   Resource utilization scaling factor for the power.
40  *              It is multiplied by 100 to minimize the error. It is used
41  *              for estimation of the power budget instead of using
42  *              'utilization' (which is 'busy_time' / 'total_time').
43  *              The 'res_util' range is from 100 to power * 100 for the
44  *              corresponding 'state'.
45  * @capped_state:       index to cooling state with in dynamic power budget
46  * @req_max_freq:       PM QoS request for limiting the maximum frequency
47  *                      of the devfreq device.
48  * @em_pd:              Energy Model for the associated Devfreq device
49  */
50 struct devfreq_cooling_device {
51         struct thermal_cooling_device *cdev;
52         struct thermal_cooling_device_ops cooling_ops;
53         struct devfreq *devfreq;
54         unsigned long cooling_state;
55         u32 *freq_table;
56         size_t max_state;
57         struct devfreq_cooling_power *power_ops;
58         u32 res_util;
59         int capped_state;
60         struct dev_pm_qos_request req_max_freq;
61         struct em_perf_domain *em_pd;
62 };
63
64 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
65                                          unsigned long *state)
66 {
67         struct devfreq_cooling_device *dfc = cdev->devdata;
68
69         *state = dfc->max_state;
70
71         return 0;
72 }
73
74 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
75                                          unsigned long *state)
76 {
77         struct devfreq_cooling_device *dfc = cdev->devdata;
78
79         *state = dfc->cooling_state;
80
81         return 0;
82 }
83
84 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
85                                          unsigned long state)
86 {
87         struct devfreq_cooling_device *dfc = cdev->devdata;
88         struct devfreq *df = dfc->devfreq;
89         struct device *dev = df->dev.parent;
90         struct em_perf_state *table;
91         unsigned long freq;
92         int perf_idx;
93
94         if (state == dfc->cooling_state)
95                 return 0;
96
97         dev_dbg(dev, "Setting cooling state %lu\n", state);
98
99         if (state > dfc->max_state)
100                 return -EINVAL;
101
102         if (dfc->em_pd) {
103                 perf_idx = dfc->max_state - state;
104
105                 rcu_read_lock();
106                 table = em_perf_state_from_pd(dfc->em_pd);
107                 freq = table[perf_idx].frequency * 1000;
108                 rcu_read_unlock();
109         } else {
110                 freq = dfc->freq_table[state];
111         }
112
113         dev_pm_qos_update_request(&dfc->req_max_freq,
114                                   DIV_ROUND_UP(freq, HZ_PER_KHZ));
115
116         dfc->cooling_state = state;
117
118         return 0;
119 }
120
121 /**
122  * get_perf_idx() - get the performance index corresponding to a frequency
123  * @em_pd:      Pointer to device's Energy Model
124  * @freq:       frequency in kHz
125  *
126  * Return: the performance index associated with the @freq, or
127  * -EINVAL if it wasn't found.
128  */
129 static int get_perf_idx(struct em_perf_domain *em_pd, unsigned long freq)
130 {
131         struct em_perf_state *table;
132         int i, idx = -EINVAL;
133
134         rcu_read_lock();
135         table = em_perf_state_from_pd(em_pd);
136         for (i = 0; i < em_pd->nr_perf_states; i++) {
137                 if (table[i].frequency != freq)
138                         continue;
139
140                 idx = i;
141                 break;
142         }
143         rcu_read_unlock();
144
145         return idx;
146 }
147
148 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
149 {
150         struct device *dev = df->dev.parent;
151         unsigned long voltage;
152         struct dev_pm_opp *opp;
153
154         opp = dev_pm_opp_find_freq_exact(dev, freq, true);
155         if (PTR_ERR(opp) == -ERANGE)
156                 opp = dev_pm_opp_find_freq_exact(dev, freq, false);
157
158         if (IS_ERR(opp)) {
159                 dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
160                                     freq, PTR_ERR(opp));
161                 return 0;
162         }
163
164         voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
165         dev_pm_opp_put(opp);
166
167         if (voltage == 0) {
168                 dev_err_ratelimited(dev,
169                                     "Failed to get voltage for frequency %lu\n",
170                                     freq);
171         }
172
173         return voltage;
174 }
175
176 static void _normalize_load(struct devfreq_dev_status *status)
177 {
178         if (status->total_time > 0xfffff) {
179                 status->total_time >>= 10;
180                 status->busy_time >>= 10;
181         }
182
183         status->busy_time <<= 10;
184         status->busy_time /= status->total_time ? : 1;
185
186         status->busy_time = status->busy_time ? : 1;
187         status->total_time = 1024;
188 }
189
190 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
191                                                u32 *power)
192 {
193         struct devfreq_cooling_device *dfc = cdev->devdata;
194         struct devfreq *df = dfc->devfreq;
195         struct devfreq_dev_status status;
196         struct em_perf_state *table;
197         unsigned long state;
198         unsigned long freq;
199         unsigned long voltage;
200         int res, perf_idx;
201
202         mutex_lock(&df->lock);
203         status = df->last_status;
204         mutex_unlock(&df->lock);
205
206         freq = status.current_frequency;
207
208         if (dfc->power_ops && dfc->power_ops->get_real_power) {
209                 voltage = get_voltage(df, freq);
210                 if (voltage == 0) {
211                         res = -EINVAL;
212                         goto fail;
213                 }
214
215                 res = dfc->power_ops->get_real_power(df, power, freq, voltage);
216                 if (!res) {
217                         state = dfc->capped_state;
218
219                         /* Convert EM power into milli-Watts first */
220                         rcu_read_lock();
221                         table = em_perf_state_from_pd(dfc->em_pd);
222                         dfc->res_util = table[state].power;
223                         rcu_read_unlock();
224
225                         dfc->res_util /= MICROWATT_PER_MILLIWATT;
226
227                         dfc->res_util *= SCALE_ERROR_MITIGATION;
228
229                         if (*power > 1)
230                                 dfc->res_util /= *power;
231                 } else {
232                         goto fail;
233                 }
234         } else {
235                 /* Energy Model frequencies are in kHz */
236                 perf_idx = get_perf_idx(dfc->em_pd, freq / 1000);
237                 if (perf_idx < 0) {
238                         res = -EAGAIN;
239                         goto fail;
240                 }
241
242                 _normalize_load(&status);
243
244                 /* Convert EM power into milli-Watts first */
245                 rcu_read_lock();
246                 table = em_perf_state_from_pd(dfc->em_pd);
247                 *power = table[perf_idx].power;
248                 rcu_read_unlock();
249
250                 *power /= MICROWATT_PER_MILLIWATT;
251                 /* Scale power for utilization */
252                 *power *= status.busy_time;
253                 *power >>= 10;
254         }
255
256         trace_thermal_power_devfreq_get_power(cdev, &status, freq, *power);
257
258         return 0;
259 fail:
260         /* It is safe to set max in this case */
261         dfc->res_util = SCALE_ERROR_MITIGATION;
262         return res;
263 }
264
265 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
266                                        unsigned long state, u32 *power)
267 {
268         struct devfreq_cooling_device *dfc = cdev->devdata;
269         struct em_perf_state *table;
270         int perf_idx;
271
272         if (state > dfc->max_state)
273                 return -EINVAL;
274
275         perf_idx = dfc->max_state - state;
276
277         rcu_read_lock();
278         table = em_perf_state_from_pd(dfc->em_pd);
279         *power = table[perf_idx].power;
280         rcu_read_unlock();
281
282         *power /= MICROWATT_PER_MILLIWATT;
283
284         return 0;
285 }
286
287 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
288                                        u32 power, unsigned long *state)
289 {
290         struct devfreq_cooling_device *dfc = cdev->devdata;
291         struct devfreq *df = dfc->devfreq;
292         struct devfreq_dev_status status;
293         unsigned long freq, em_power_mw;
294         struct em_perf_state *table;
295         s32 est_power;
296         int i;
297
298         mutex_lock(&df->lock);
299         status = df->last_status;
300         mutex_unlock(&df->lock);
301
302         freq = status.current_frequency;
303
304         if (dfc->power_ops && dfc->power_ops->get_real_power) {
305                 /* Scale for resource utilization */
306                 est_power = power * dfc->res_util;
307                 est_power /= SCALE_ERROR_MITIGATION;
308         } else {
309                 /* Scale dynamic power for utilization */
310                 _normalize_load(&status);
311                 est_power = power << 10;
312                 est_power /= status.busy_time;
313         }
314
315         /*
316          * Find the first cooling state that is within the power
317          * budget. The EM power table is sorted ascending.
318          */
319         rcu_read_lock();
320         table = em_perf_state_from_pd(dfc->em_pd);
321         for (i = dfc->max_state; i > 0; i--) {
322                 /* Convert EM power to milli-Watts to make safe comparison */
323                 em_power_mw = table[i].power;
324                 em_power_mw /= MICROWATT_PER_MILLIWATT;
325                 if (est_power >= em_power_mw)
326                         break;
327         }
328         rcu_read_unlock();
329
330         *state = dfc->max_state - i;
331         dfc->capped_state = *state;
332
333         trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
334         return 0;
335 }
336
337 /**
338  * devfreq_cooling_gen_tables() - Generate frequency table.
339  * @dfc:        Pointer to devfreq cooling device.
340  * @num_opps:   Number of OPPs
341  *
342  * Generate frequency table which holds the frequencies in descending
343  * order. That way its indexed by cooling device state. This is for
344  * compatibility with drivers which do not register Energy Model.
345  *
346  * Return: 0 on success, negative error code on failure.
347  */
348 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc,
349                                       int num_opps)
350 {
351         struct devfreq *df = dfc->devfreq;
352         struct device *dev = df->dev.parent;
353         unsigned long freq;
354         int i;
355
356         dfc->freq_table = kcalloc(num_opps, sizeof(*dfc->freq_table),
357                              GFP_KERNEL);
358         if (!dfc->freq_table)
359                 return -ENOMEM;
360
361         for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
362                 struct dev_pm_opp *opp;
363
364                 opp = dev_pm_opp_find_freq_floor(dev, &freq);
365                 if (IS_ERR(opp)) {
366                         kfree(dfc->freq_table);
367                         return PTR_ERR(opp);
368                 }
369
370                 dev_pm_opp_put(opp);
371                 dfc->freq_table[i] = freq;
372         }
373
374         return 0;
375 }
376
377 /**
378  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
379  *                                      with OF and power information.
380  * @np: Pointer to OF device_node.
381  * @df: Pointer to devfreq device.
382  * @dfc_power:  Pointer to devfreq_cooling_power.
383  *
384  * Register a devfreq cooling device.  The available OPPs must be
385  * registered on the device.
386  *
387  * If @dfc_power is provided, the cooling device is registered with the
388  * power extensions.  For the power extensions to work correctly,
389  * devfreq should use the simple_ondemand governor, other governors
390  * are not currently supported.
391  */
392 struct thermal_cooling_device *
393 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
394                                   struct devfreq_cooling_power *dfc_power)
395 {
396         struct thermal_cooling_device *cdev;
397         struct device *dev = df->dev.parent;
398         struct devfreq_cooling_device *dfc;
399         struct em_perf_domain *em;
400         struct thermal_cooling_device_ops *ops;
401         char *name;
402         int err, num_opps;
403
404
405         dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
406         if (!dfc)
407                 return ERR_PTR(-ENOMEM);
408
409         dfc->devfreq = df;
410
411         ops = &dfc->cooling_ops;
412         ops->get_max_state = devfreq_cooling_get_max_state;
413         ops->get_cur_state = devfreq_cooling_get_cur_state;
414         ops->set_cur_state = devfreq_cooling_set_cur_state;
415
416         em = em_pd_get(dev);
417         if (em && !em_is_artificial(em)) {
418                 dfc->em_pd = em;
419                 ops->get_requested_power =
420                         devfreq_cooling_get_requested_power;
421                 ops->state2power = devfreq_cooling_state2power;
422                 ops->power2state = devfreq_cooling_power2state;
423
424                 dfc->power_ops = dfc_power;
425
426                 num_opps = em_pd_nr_perf_states(dfc->em_pd);
427         } else {
428                 /* Backward compatibility for drivers which do not use IPA */
429                 dev_dbg(dev, "missing proper EM for cooling device\n");
430
431                 num_opps = dev_pm_opp_get_opp_count(dev);
432
433                 err = devfreq_cooling_gen_tables(dfc, num_opps);
434                 if (err)
435                         goto free_dfc;
436         }
437
438         if (num_opps <= 0) {
439                 err = -EINVAL;
440                 goto free_dfc;
441         }
442
443         /* max_state is an index, not a counter */
444         dfc->max_state = num_opps - 1;
445
446         err = dev_pm_qos_add_request(dev, &dfc->req_max_freq,
447                                      DEV_PM_QOS_MAX_FREQUENCY,
448                                      PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
449         if (err < 0)
450                 goto free_table;
451
452         err = -ENOMEM;
453         name = kasprintf(GFP_KERNEL, "devfreq-%s", dev_name(dev));
454         if (!name)
455                 goto remove_qos_req;
456
457         cdev = thermal_of_cooling_device_register(np, name, dfc, ops);
458         kfree(name);
459
460         if (IS_ERR(cdev)) {
461                 err = PTR_ERR(cdev);
462                 dev_err(dev,
463                         "Failed to register devfreq cooling device (%d)\n",
464                         err);
465                 goto remove_qos_req;
466         }
467
468         dfc->cdev = cdev;
469
470         return cdev;
471
472 remove_qos_req:
473         dev_pm_qos_remove_request(&dfc->req_max_freq);
474 free_table:
475         kfree(dfc->freq_table);
476 free_dfc:
477         kfree(dfc);
478
479         return ERR_PTR(err);
480 }
481 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
482
483 /**
484  * of_devfreq_cooling_register() - Register devfreq cooling device,
485  *                                with OF information.
486  * @np: Pointer to OF device_node.
487  * @df: Pointer to devfreq device.
488  */
489 struct thermal_cooling_device *
490 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
491 {
492         return of_devfreq_cooling_register_power(np, df, NULL);
493 }
494 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
495
496 /**
497  * devfreq_cooling_register() - Register devfreq cooling device.
498  * @df: Pointer to devfreq device.
499  */
500 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
501 {
502         return of_devfreq_cooling_register(NULL, df);
503 }
504 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
505
506 /**
507  * devfreq_cooling_em_register() - Register devfreq cooling device with
508  *              power information and automatically register Energy Model (EM)
509  * @df:         Pointer to devfreq device.
510  * @dfc_power:  Pointer to devfreq_cooling_power.
511  *
512  * Register a devfreq cooling device and automatically register EM. The
513  * available OPPs must be registered for the device.
514  *
515  * If @dfc_power is provided, the cooling device is registered with the
516  * power extensions. It is using the simple Energy Model which requires
517  * "dynamic-power-coefficient" a devicetree property. To not break drivers
518  * which miss that DT property, the function won't bail out when the EM
519  * registration failed. The cooling device will be registered if everything
520  * else is OK.
521  */
522 struct thermal_cooling_device *
523 devfreq_cooling_em_register(struct devfreq *df,
524                             struct devfreq_cooling_power *dfc_power)
525 {
526         struct thermal_cooling_device *cdev;
527         struct device *dev;
528         int ret;
529
530         if (IS_ERR_OR_NULL(df))
531                 return ERR_PTR(-EINVAL);
532
533         dev = df->dev.parent;
534
535         ret = dev_pm_opp_of_register_em(dev, NULL);
536         if (ret)
537                 dev_dbg(dev, "Unable to register EM for devfreq cooling device (%d)\n",
538                         ret);
539
540         cdev = of_devfreq_cooling_register_power(dev->of_node, df, dfc_power);
541
542         if (IS_ERR_OR_NULL(cdev))
543                 em_dev_unregister_perf_domain(dev);
544
545         return cdev;
546 }
547 EXPORT_SYMBOL_GPL(devfreq_cooling_em_register);
548
549 /**
550  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
551  * @cdev: Pointer to devfreq cooling device to unregister.
552  *
553  * Unregisters devfreq cooling device and related Energy Model if it was
554  * present.
555  */
556 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
557 {
558         struct devfreq_cooling_device *dfc;
559         struct device *dev;
560
561         if (IS_ERR_OR_NULL(cdev))
562                 return;
563
564         dfc = cdev->devdata;
565         dev = dfc->devfreq->dev.parent;
566
567         thermal_cooling_device_unregister(dfc->cdev);
568         dev_pm_qos_remove_request(&dfc->req_max_freq);
569
570         em_dev_unregister_perf_domain(dev);
571
572         kfree(dfc->freq_table);
573         kfree(dfc);
574 }
575 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);