loop: Fix occasional uevent drop
[linux-2.6-microblaze.git] / drivers / thermal / devfreq_cooling.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * devfreq_cooling: Thermal cooling device implementation for devices using
4  *                  devfreq
5  *
6  * Copyright (C) 2014-2015 ARM Limited
7  *
8  * TODO:
9  *    - If OPPs are added or removed after devfreq cooling has
10  *      registered, the devfreq cooling won't react to it.
11  */
12
13 #include <linux/devfreq.h>
14 #include <linux/devfreq_cooling.h>
15 #include <linux/export.h>
16 #include <linux/idr.h>
17 #include <linux/slab.h>
18 #include <linux/pm_opp.h>
19 #include <linux/pm_qos.h>
20 #include <linux/thermal.h>
21
22 #include <trace/events/thermal.h>
23
24 #define HZ_PER_KHZ              1000
25 #define SCALE_ERROR_MITIGATION  100
26
27 static DEFINE_IDA(devfreq_ida);
28
29 /**
30  * struct devfreq_cooling_device - Devfreq cooling device
31  * @id:         unique integer value corresponding to each
32  *              devfreq_cooling_device registered.
33  * @cdev:       Pointer to associated thermal cooling device.
34  * @devfreq:    Pointer to associated devfreq device.
35  * @cooling_state:      Current cooling state.
36  * @power_table:        Pointer to table with maximum power draw for each
37  *                      cooling state. State is the index into the table, and
38  *                      the power is in mW.
39  * @freq_table: Pointer to a table with the frequencies sorted in descending
40  *              order.  You can index the table by cooling device state
41  * @freq_table_size:    Size of the @freq_table and @power_table
42  * @power_ops:  Pointer to devfreq_cooling_power, used to generate the
43  *              @power_table.
44  * @res_util:   Resource utilization scaling factor for the power.
45  *              It is multiplied by 100 to minimize the error. It is used
46  *              for estimation of the power budget instead of using
47  *              'utilization' (which is 'busy_time / 'total_time').
48  *              The 'res_util' range is from 100 to (power_table[state] * 100)
49  *              for the corresponding 'state'.
50  * @capped_state:       index to cooling state with in dynamic power budget
51  * @req_max_freq:       PM QoS request for limiting the maximum frequency
52  *                      of the devfreq device.
53  */
54 struct devfreq_cooling_device {
55         int id;
56         struct thermal_cooling_device *cdev;
57         struct devfreq *devfreq;
58         unsigned long cooling_state;
59         u32 *power_table;
60         u32 *freq_table;
61         size_t freq_table_size;
62         struct devfreq_cooling_power *power_ops;
63         u32 res_util;
64         int capped_state;
65         struct dev_pm_qos_request req_max_freq;
66 };
67
68 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
69                                          unsigned long *state)
70 {
71         struct devfreq_cooling_device *dfc = cdev->devdata;
72
73         *state = dfc->freq_table_size - 1;
74
75         return 0;
76 }
77
78 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
79                                          unsigned long *state)
80 {
81         struct devfreq_cooling_device *dfc = cdev->devdata;
82
83         *state = dfc->cooling_state;
84
85         return 0;
86 }
87
88 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
89                                          unsigned long state)
90 {
91         struct devfreq_cooling_device *dfc = cdev->devdata;
92         struct devfreq *df = dfc->devfreq;
93         struct device *dev = df->dev.parent;
94         unsigned long freq;
95
96         if (state == dfc->cooling_state)
97                 return 0;
98
99         dev_dbg(dev, "Setting cooling state %lu\n", state);
100
101         if (state >= dfc->freq_table_size)
102                 return -EINVAL;
103
104         freq = dfc->freq_table[state];
105
106         dev_pm_qos_update_request(&dfc->req_max_freq,
107                                   DIV_ROUND_UP(freq, HZ_PER_KHZ));
108
109         dfc->cooling_state = state;
110
111         return 0;
112 }
113
114 /**
115  * freq_get_state() - get the cooling state corresponding to a frequency
116  * @dfc:        Pointer to devfreq cooling device
117  * @freq:       frequency in Hz
118  *
119  * Return: the cooling state associated with the @freq, or
120  * THERMAL_CSTATE_INVALID if it wasn't found.
121  */
122 static unsigned long
123 freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
124 {
125         int i;
126
127         for (i = 0; i < dfc->freq_table_size; i++) {
128                 if (dfc->freq_table[i] == freq)
129                         return i;
130         }
131
132         return THERMAL_CSTATE_INVALID;
133 }
134
135 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
136 {
137         struct device *dev = df->dev.parent;
138         unsigned long voltage;
139         struct dev_pm_opp *opp;
140
141         opp = dev_pm_opp_find_freq_exact(dev, freq, true);
142         if (PTR_ERR(opp) == -ERANGE)
143                 opp = dev_pm_opp_find_freq_exact(dev, freq, false);
144
145         if (IS_ERR(opp)) {
146                 dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
147                                     freq, PTR_ERR(opp));
148                 return 0;
149         }
150
151         voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
152         dev_pm_opp_put(opp);
153
154         if (voltage == 0) {
155                 dev_err_ratelimited(dev,
156                                     "Failed to get voltage for frequency %lu\n",
157                                     freq);
158         }
159
160         return voltage;
161 }
162
163 /**
164  * get_static_power() - calculate the static power
165  * @dfc:        Pointer to devfreq cooling device
166  * @freq:       Frequency in Hz
167  *
168  * Calculate the static power in milliwatts using the supplied
169  * get_static_power().  The current voltage is calculated using the
170  * OPP library.  If no get_static_power() was supplied, assume the
171  * static power is negligible.
172  */
173 static unsigned long
174 get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
175 {
176         struct devfreq *df = dfc->devfreq;
177         unsigned long voltage;
178
179         if (!dfc->power_ops->get_static_power)
180                 return 0;
181
182         voltage = get_voltage(df, freq);
183
184         if (voltage == 0)
185                 return 0;
186
187         return dfc->power_ops->get_static_power(df, voltage);
188 }
189
190 /**
191  * get_dynamic_power - calculate the dynamic power
192  * @dfc:        Pointer to devfreq cooling device
193  * @freq:       Frequency in Hz
194  * @voltage:    Voltage in millivolts
195  *
196  * Calculate the dynamic power in milliwatts consumed by the device at
197  * frequency @freq and voltage @voltage.  If the get_dynamic_power()
198  * was supplied as part of the devfreq_cooling_power struct, then that
199  * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
200  * Voltage^2 * Frequency) is used.
201  */
202 static unsigned long
203 get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
204                   unsigned long voltage)
205 {
206         u64 power;
207         u32 freq_mhz;
208         struct devfreq_cooling_power *dfc_power = dfc->power_ops;
209
210         if (dfc_power->get_dynamic_power)
211                 return dfc_power->get_dynamic_power(dfc->devfreq, freq,
212                                                     voltage);
213
214         freq_mhz = freq / 1000000;
215         power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
216         do_div(power, 1000000000);
217
218         return power;
219 }
220
221
222 static inline unsigned long get_total_power(struct devfreq_cooling_device *dfc,
223                                             unsigned long freq,
224                                             unsigned long voltage)
225 {
226         return get_static_power(dfc, freq) + get_dynamic_power(dfc, freq,
227                                                                voltage);
228 }
229
230
231 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
232                                                u32 *power)
233 {
234         struct devfreq_cooling_device *dfc = cdev->devdata;
235         struct devfreq *df = dfc->devfreq;
236         struct devfreq_dev_status *status = &df->last_status;
237         unsigned long state;
238         unsigned long freq = status->current_frequency;
239         unsigned long voltage;
240         u32 dyn_power = 0;
241         u32 static_power = 0;
242         int res;
243
244         state = freq_get_state(dfc, freq);
245         if (state == THERMAL_CSTATE_INVALID) {
246                 res = -EAGAIN;
247                 goto fail;
248         }
249
250         if (dfc->power_ops->get_real_power) {
251                 voltage = get_voltage(df, freq);
252                 if (voltage == 0) {
253                         res = -EINVAL;
254                         goto fail;
255                 }
256
257                 res = dfc->power_ops->get_real_power(df, power, freq, voltage);
258                 if (!res) {
259                         state = dfc->capped_state;
260                         dfc->res_util = dfc->power_table[state];
261                         dfc->res_util *= SCALE_ERROR_MITIGATION;
262
263                         if (*power > 1)
264                                 dfc->res_util /= *power;
265                 } else {
266                         goto fail;
267                 }
268         } else {
269                 dyn_power = dfc->power_table[state];
270
271                 /* Scale dynamic power for utilization */
272                 dyn_power *= status->busy_time;
273                 dyn_power /= status->total_time;
274                 /* Get static power */
275                 static_power = get_static_power(dfc, freq);
276
277                 *power = dyn_power + static_power;
278         }
279
280         trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
281                                               static_power, *power);
282
283         return 0;
284 fail:
285         /* It is safe to set max in this case */
286         dfc->res_util = SCALE_ERROR_MITIGATION;
287         return res;
288 }
289
290 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
291                                        unsigned long state,
292                                        u32 *power)
293 {
294         struct devfreq_cooling_device *dfc = cdev->devdata;
295         unsigned long freq;
296         u32 static_power;
297
298         if (state >= dfc->freq_table_size)
299                 return -EINVAL;
300
301         freq = dfc->freq_table[state];
302         static_power = get_static_power(dfc, freq);
303
304         *power = dfc->power_table[state] + static_power;
305         return 0;
306 }
307
308 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
309                                        u32 power, unsigned long *state)
310 {
311         struct devfreq_cooling_device *dfc = cdev->devdata;
312         struct devfreq *df = dfc->devfreq;
313         struct devfreq_dev_status *status = &df->last_status;
314         unsigned long freq = status->current_frequency;
315         unsigned long busy_time;
316         s32 dyn_power;
317         u32 static_power;
318         s32 est_power;
319         int i;
320
321         if (dfc->power_ops->get_real_power) {
322                 /* Scale for resource utilization */
323                 est_power = power * dfc->res_util;
324                 est_power /= SCALE_ERROR_MITIGATION;
325         } else {
326                 static_power = get_static_power(dfc, freq);
327
328                 dyn_power = power - static_power;
329                 dyn_power = dyn_power > 0 ? dyn_power : 0;
330
331                 /* Scale dynamic power for utilization */
332                 busy_time = status->busy_time ?: 1;
333                 est_power = (dyn_power * status->total_time) / busy_time;
334         }
335
336         /*
337          * Find the first cooling state that is within the power
338          * budget for dynamic power.
339          */
340         for (i = 0; i < dfc->freq_table_size - 1; i++)
341                 if (est_power >= dfc->power_table[i])
342                         break;
343
344         *state = i;
345         dfc->capped_state = i;
346         trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
347         return 0;
348 }
349
350 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
351         .get_max_state = devfreq_cooling_get_max_state,
352         .get_cur_state = devfreq_cooling_get_cur_state,
353         .set_cur_state = devfreq_cooling_set_cur_state,
354 };
355
356 /**
357  * devfreq_cooling_gen_tables() - Generate power and freq tables.
358  * @dfc: Pointer to devfreq cooling device.
359  *
360  * Generate power and frequency tables: the power table hold the
361  * device's maximum power usage at each cooling state (OPP).  The
362  * static and dynamic power using the appropriate voltage and
363  * frequency for the state, is acquired from the struct
364  * devfreq_cooling_power, and summed to make the maximum power draw.
365  *
366  * The frequency table holds the frequencies in descending order.
367  * That way its indexed by cooling device state.
368  *
369  * The tables are malloced, and pointers put in dfc.  They must be
370  * freed when unregistering the devfreq cooling device.
371  *
372  * Return: 0 on success, negative error code on failure.
373  */
374 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
375 {
376         struct devfreq *df = dfc->devfreq;
377         struct device *dev = df->dev.parent;
378         int ret, num_opps;
379         unsigned long freq;
380         u32 *power_table = NULL;
381         u32 *freq_table;
382         int i;
383
384         num_opps = dev_pm_opp_get_opp_count(dev);
385
386         if (dfc->power_ops) {
387                 power_table = kcalloc(num_opps, sizeof(*power_table),
388                                       GFP_KERNEL);
389                 if (!power_table)
390                         return -ENOMEM;
391         }
392
393         freq_table = kcalloc(num_opps, sizeof(*freq_table),
394                              GFP_KERNEL);
395         if (!freq_table) {
396                 ret = -ENOMEM;
397                 goto free_power_table;
398         }
399
400         for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
401                 unsigned long power, voltage;
402                 struct dev_pm_opp *opp;
403
404                 opp = dev_pm_opp_find_freq_floor(dev, &freq);
405                 if (IS_ERR(opp)) {
406                         ret = PTR_ERR(opp);
407                         goto free_tables;
408                 }
409
410                 voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
411                 dev_pm_opp_put(opp);
412
413                 if (dfc->power_ops) {
414                         if (dfc->power_ops->get_real_power)
415                                 power = get_total_power(dfc, freq, voltage);
416                         else
417                                 power = get_dynamic_power(dfc, freq, voltage);
418
419                         dev_dbg(dev, "Power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
420                                 freq / 1000000, voltage, power, power);
421
422                         power_table[i] = power;
423                 }
424
425                 freq_table[i] = freq;
426         }
427
428         if (dfc->power_ops)
429                 dfc->power_table = power_table;
430
431         dfc->freq_table = freq_table;
432         dfc->freq_table_size = num_opps;
433
434         return 0;
435
436 free_tables:
437         kfree(freq_table);
438 free_power_table:
439         kfree(power_table);
440
441         return ret;
442 }
443
444 /**
445  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
446  *                                      with OF and power information.
447  * @np: Pointer to OF device_node.
448  * @df: Pointer to devfreq device.
449  * @dfc_power:  Pointer to devfreq_cooling_power.
450  *
451  * Register a devfreq cooling device.  The available OPPs must be
452  * registered on the device.
453  *
454  * If @dfc_power is provided, the cooling device is registered with the
455  * power extensions.  For the power extensions to work correctly,
456  * devfreq should use the simple_ondemand governor, other governors
457  * are not currently supported.
458  */
459 struct thermal_cooling_device *
460 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
461                                   struct devfreq_cooling_power *dfc_power)
462 {
463         struct thermal_cooling_device *cdev;
464         struct devfreq_cooling_device *dfc;
465         char dev_name[THERMAL_NAME_LENGTH];
466         int err;
467
468         dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
469         if (!dfc)
470                 return ERR_PTR(-ENOMEM);
471
472         dfc->devfreq = df;
473
474         if (dfc_power) {
475                 dfc->power_ops = dfc_power;
476
477                 devfreq_cooling_ops.get_requested_power =
478                         devfreq_cooling_get_requested_power;
479                 devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
480                 devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
481         }
482
483         err = devfreq_cooling_gen_tables(dfc);
484         if (err)
485                 goto free_dfc;
486
487         err = dev_pm_qos_add_request(df->dev.parent, &dfc->req_max_freq,
488                                      DEV_PM_QOS_MAX_FREQUENCY,
489                                      PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
490         if (err < 0)
491                 goto free_tables;
492
493         err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
494         if (err < 0)
495                 goto remove_qos_req;
496         dfc->id = err;
497
498         snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
499
500         cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
501                                                   &devfreq_cooling_ops);
502         if (IS_ERR(cdev)) {
503                 err = PTR_ERR(cdev);
504                 dev_err(df->dev.parent,
505                         "Failed to register devfreq cooling device (%d)\n",
506                         err);
507                 goto release_ida;
508         }
509
510         dfc->cdev = cdev;
511
512         return cdev;
513
514 release_ida:
515         ida_simple_remove(&devfreq_ida, dfc->id);
516
517 remove_qos_req:
518         dev_pm_qos_remove_request(&dfc->req_max_freq);
519
520 free_tables:
521         kfree(dfc->power_table);
522         kfree(dfc->freq_table);
523 free_dfc:
524         kfree(dfc);
525
526         return ERR_PTR(err);
527 }
528 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
529
530 /**
531  * of_devfreq_cooling_register() - Register devfreq cooling device,
532  *                                with OF information.
533  * @np: Pointer to OF device_node.
534  * @df: Pointer to devfreq device.
535  */
536 struct thermal_cooling_device *
537 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
538 {
539         return of_devfreq_cooling_register_power(np, df, NULL);
540 }
541 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
542
543 /**
544  * devfreq_cooling_register() - Register devfreq cooling device.
545  * @df: Pointer to devfreq device.
546  */
547 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
548 {
549         return of_devfreq_cooling_register(NULL, df);
550 }
551 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
552
553 /**
554  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
555  * @cdev: Pointer to devfreq cooling device to unregister.
556  */
557 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
558 {
559         struct devfreq_cooling_device *dfc;
560
561         if (!cdev)
562                 return;
563
564         dfc = cdev->devdata;
565
566         thermal_cooling_device_unregister(dfc->cdev);
567         ida_simple_remove(&devfreq_ida, dfc->id);
568         dev_pm_qos_remove_request(&dfc->req_max_freq);
569         kfree(dfc->power_table);
570         kfree(dfc->freq_table);
571
572         kfree(dfc);
573 }
574 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);