Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-microblaze.git] / drivers / tee / optee / call.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Linaro Limited
4  */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/tee_drv.h>
13 #include <linux/types.h>
14 #include <linux/uaccess.h>
15 #include "optee_private.h"
16 #include "optee_smc.h"
17
18 struct optee_call_waiter {
19         struct list_head list_node;
20         struct completion c;
21 };
22
23 static void optee_cq_wait_init(struct optee_call_queue *cq,
24                                struct optee_call_waiter *w)
25 {
26         /*
27          * We're preparing to make a call to secure world. In case we can't
28          * allocate a thread in secure world we'll end up waiting in
29          * optee_cq_wait_for_completion().
30          *
31          * Normally if there's no contention in secure world the call will
32          * complete and we can cleanup directly with optee_cq_wait_final().
33          */
34         mutex_lock(&cq->mutex);
35
36         /*
37          * We add ourselves to the queue, but we don't wait. This
38          * guarantees that we don't lose a completion if secure world
39          * returns busy and another thread just exited and try to complete
40          * someone.
41          */
42         init_completion(&w->c);
43         list_add_tail(&w->list_node, &cq->waiters);
44
45         mutex_unlock(&cq->mutex);
46 }
47
48 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
49                                          struct optee_call_waiter *w)
50 {
51         wait_for_completion(&w->c);
52
53         mutex_lock(&cq->mutex);
54
55         /* Move to end of list to get out of the way for other waiters */
56         list_del(&w->list_node);
57         reinit_completion(&w->c);
58         list_add_tail(&w->list_node, &cq->waiters);
59
60         mutex_unlock(&cq->mutex);
61 }
62
63 static void optee_cq_complete_one(struct optee_call_queue *cq)
64 {
65         struct optee_call_waiter *w;
66
67         list_for_each_entry(w, &cq->waiters, list_node) {
68                 if (!completion_done(&w->c)) {
69                         complete(&w->c);
70                         break;
71                 }
72         }
73 }
74
75 static void optee_cq_wait_final(struct optee_call_queue *cq,
76                                 struct optee_call_waiter *w)
77 {
78         /*
79          * We're done with the call to secure world. The thread in secure
80          * world that was used for this call is now available for some
81          * other task to use.
82          */
83         mutex_lock(&cq->mutex);
84
85         /* Get out of the list */
86         list_del(&w->list_node);
87
88         /* Wake up one eventual waiting task */
89         optee_cq_complete_one(cq);
90
91         /*
92          * If we're completed we've got a completion from another task that
93          * was just done with its call to secure world. Since yet another
94          * thread now is available in secure world wake up another eventual
95          * waiting task.
96          */
97         if (completion_done(&w->c))
98                 optee_cq_complete_one(cq);
99
100         mutex_unlock(&cq->mutex);
101 }
102
103 /* Requires the filpstate mutex to be held */
104 static struct optee_session *find_session(struct optee_context_data *ctxdata,
105                                           u32 session_id)
106 {
107         struct optee_session *sess;
108
109         list_for_each_entry(sess, &ctxdata->sess_list, list_node)
110                 if (sess->session_id == session_id)
111                         return sess;
112
113         return NULL;
114 }
115
116 /**
117  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
118  * @ctx:        calling context
119  * @parg:       physical address of message to pass to secure world
120  *
121  * Does and SMC to OP-TEE in secure world and handles eventual resulting
122  * Remote Procedure Calls (RPC) from OP-TEE.
123  *
124  * Returns return code from secure world, 0 is OK
125  */
126 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
127 {
128         struct optee *optee = tee_get_drvdata(ctx->teedev);
129         struct optee_call_waiter w;
130         struct optee_rpc_param param = { };
131         struct optee_call_ctx call_ctx = { };
132         u32 ret;
133
134         param.a0 = OPTEE_SMC_CALL_WITH_ARG;
135         reg_pair_from_64(&param.a1, &param.a2, parg);
136         /* Initialize waiter */
137         optee_cq_wait_init(&optee->call_queue, &w);
138         while (true) {
139                 struct arm_smccc_res res;
140
141                 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
142                                  param.a4, param.a5, param.a6, param.a7,
143                                  &res);
144
145                 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
146                         /*
147                          * Out of threads in secure world, wait for a thread
148                          * become available.
149                          */
150                         optee_cq_wait_for_completion(&optee->call_queue, &w);
151                 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
152                         cond_resched();
153                         param.a0 = res.a0;
154                         param.a1 = res.a1;
155                         param.a2 = res.a2;
156                         param.a3 = res.a3;
157                         optee_handle_rpc(ctx, &param, &call_ctx);
158                 } else {
159                         ret = res.a0;
160                         break;
161                 }
162         }
163
164         optee_rpc_finalize_call(&call_ctx);
165         /*
166          * We're done with our thread in secure world, if there's any
167          * thread waiters wake up one.
168          */
169         optee_cq_wait_final(&optee->call_queue, &w);
170
171         return ret;
172 }
173
174 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
175                                    struct optee_msg_arg **msg_arg,
176                                    phys_addr_t *msg_parg)
177 {
178         int rc;
179         struct tee_shm *shm;
180         struct optee_msg_arg *ma;
181
182         shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
183                             TEE_SHM_MAPPED);
184         if (IS_ERR(shm))
185                 return shm;
186
187         ma = tee_shm_get_va(shm, 0);
188         if (IS_ERR(ma)) {
189                 rc = PTR_ERR(ma);
190                 goto out;
191         }
192
193         rc = tee_shm_get_pa(shm, 0, msg_parg);
194         if (rc)
195                 goto out;
196
197         memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
198         ma->num_params = num_params;
199         *msg_arg = ma;
200 out:
201         if (rc) {
202                 tee_shm_free(shm);
203                 return ERR_PTR(rc);
204         }
205
206         return shm;
207 }
208
209 int optee_open_session(struct tee_context *ctx,
210                        struct tee_ioctl_open_session_arg *arg,
211                        struct tee_param *param)
212 {
213         struct optee_context_data *ctxdata = ctx->data;
214         int rc;
215         struct tee_shm *shm;
216         struct optee_msg_arg *msg_arg;
217         phys_addr_t msg_parg;
218         struct optee_session *sess = NULL;
219
220         /* +2 for the meta parameters added below */
221         shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
222         if (IS_ERR(shm))
223                 return PTR_ERR(shm);
224
225         msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
226         msg_arg->cancel_id = arg->cancel_id;
227
228         /*
229          * Initialize and add the meta parameters needed when opening a
230          * session.
231          */
232         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
233                                   OPTEE_MSG_ATTR_META;
234         msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
235                                   OPTEE_MSG_ATTR_META;
236         memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
237         msg_arg->params[1].u.value.c = arg->clnt_login;
238
239         rc = tee_session_calc_client_uuid((uuid_t *)&msg_arg->params[1].u.value,
240                                           arg->clnt_login, arg->clnt_uuid);
241         if (rc)
242                 goto out;
243
244         rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
245         if (rc)
246                 goto out;
247
248         sess = kzalloc(sizeof(*sess), GFP_KERNEL);
249         if (!sess) {
250                 rc = -ENOMEM;
251                 goto out;
252         }
253
254         if (optee_do_call_with_arg(ctx, msg_parg)) {
255                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
256                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
257         }
258
259         if (msg_arg->ret == TEEC_SUCCESS) {
260                 /* A new session has been created, add it to the list. */
261                 sess->session_id = msg_arg->session;
262                 mutex_lock(&ctxdata->mutex);
263                 list_add(&sess->list_node, &ctxdata->sess_list);
264                 mutex_unlock(&ctxdata->mutex);
265         } else {
266                 kfree(sess);
267         }
268
269         if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
270                 arg->ret = TEEC_ERROR_COMMUNICATION;
271                 arg->ret_origin = TEEC_ORIGIN_COMMS;
272                 /* Close session again to avoid leakage */
273                 optee_close_session(ctx, msg_arg->session);
274         } else {
275                 arg->session = msg_arg->session;
276                 arg->ret = msg_arg->ret;
277                 arg->ret_origin = msg_arg->ret_origin;
278         }
279 out:
280         tee_shm_free(shm);
281
282         return rc;
283 }
284
285 int optee_close_session(struct tee_context *ctx, u32 session)
286 {
287         struct optee_context_data *ctxdata = ctx->data;
288         struct tee_shm *shm;
289         struct optee_msg_arg *msg_arg;
290         phys_addr_t msg_parg;
291         struct optee_session *sess;
292
293         /* Check that the session is valid and remove it from the list */
294         mutex_lock(&ctxdata->mutex);
295         sess = find_session(ctxdata, session);
296         if (sess)
297                 list_del(&sess->list_node);
298         mutex_unlock(&ctxdata->mutex);
299         if (!sess)
300                 return -EINVAL;
301         kfree(sess);
302
303         shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
304         if (IS_ERR(shm))
305                 return PTR_ERR(shm);
306
307         msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
308         msg_arg->session = session;
309         optee_do_call_with_arg(ctx, msg_parg);
310
311         tee_shm_free(shm);
312         return 0;
313 }
314
315 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
316                       struct tee_param *param)
317 {
318         struct optee_context_data *ctxdata = ctx->data;
319         struct tee_shm *shm;
320         struct optee_msg_arg *msg_arg;
321         phys_addr_t msg_parg;
322         struct optee_session *sess;
323         int rc;
324
325         /* Check that the session is valid */
326         mutex_lock(&ctxdata->mutex);
327         sess = find_session(ctxdata, arg->session);
328         mutex_unlock(&ctxdata->mutex);
329         if (!sess)
330                 return -EINVAL;
331
332         shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
333         if (IS_ERR(shm))
334                 return PTR_ERR(shm);
335         msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
336         msg_arg->func = arg->func;
337         msg_arg->session = arg->session;
338         msg_arg->cancel_id = arg->cancel_id;
339
340         rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
341         if (rc)
342                 goto out;
343
344         if (optee_do_call_with_arg(ctx, msg_parg)) {
345                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
346                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
347         }
348
349         if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
350                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
351                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
352         }
353
354         arg->ret = msg_arg->ret;
355         arg->ret_origin = msg_arg->ret_origin;
356 out:
357         tee_shm_free(shm);
358         return rc;
359 }
360
361 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
362 {
363         struct optee_context_data *ctxdata = ctx->data;
364         struct tee_shm *shm;
365         struct optee_msg_arg *msg_arg;
366         phys_addr_t msg_parg;
367         struct optee_session *sess;
368
369         /* Check that the session is valid */
370         mutex_lock(&ctxdata->mutex);
371         sess = find_session(ctxdata, session);
372         mutex_unlock(&ctxdata->mutex);
373         if (!sess)
374                 return -EINVAL;
375
376         shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
377         if (IS_ERR(shm))
378                 return PTR_ERR(shm);
379
380         msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
381         msg_arg->session = session;
382         msg_arg->cancel_id = cancel_id;
383         optee_do_call_with_arg(ctx, msg_parg);
384
385         tee_shm_free(shm);
386         return 0;
387 }
388
389 /**
390  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
391  *                            in OP-TEE
392  * @optee:      main service struct
393  */
394 void optee_enable_shm_cache(struct optee *optee)
395 {
396         struct optee_call_waiter w;
397
398         /* We need to retry until secure world isn't busy. */
399         optee_cq_wait_init(&optee->call_queue, &w);
400         while (true) {
401                 struct arm_smccc_res res;
402
403                 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
404                                  0, &res);
405                 if (res.a0 == OPTEE_SMC_RETURN_OK)
406                         break;
407                 optee_cq_wait_for_completion(&optee->call_queue, &w);
408         }
409         optee_cq_wait_final(&optee->call_queue, &w);
410 }
411
412 /**
413  * optee_disable_shm_cache() - Disables caching of some shared memory allocation
414  *                            in OP-TEE
415  * @optee:      main service struct
416  */
417 void optee_disable_shm_cache(struct optee *optee)
418 {
419         struct optee_call_waiter w;
420
421         /* We need to retry until secure world isn't busy. */
422         optee_cq_wait_init(&optee->call_queue, &w);
423         while (true) {
424                 union {
425                         struct arm_smccc_res smccc;
426                         struct optee_smc_disable_shm_cache_result result;
427                 } res;
428
429                 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
430                                  0, &res.smccc);
431                 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
432                         break; /* All shm's freed */
433                 if (res.result.status == OPTEE_SMC_RETURN_OK) {
434                         struct tee_shm *shm;
435
436                         shm = reg_pair_to_ptr(res.result.shm_upper32,
437                                               res.result.shm_lower32);
438                         tee_shm_free(shm);
439                 } else {
440                         optee_cq_wait_for_completion(&optee->call_queue, &w);
441                 }
442         }
443         optee_cq_wait_final(&optee->call_queue, &w);
444 }
445
446 #define PAGELIST_ENTRIES_PER_PAGE                               \
447         ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
448
449 /**
450  * optee_fill_pages_list() - write list of user pages to given shared
451  * buffer.
452  *
453  * @dst: page-aligned buffer where list of pages will be stored
454  * @pages: array of pages that represents shared buffer
455  * @num_pages: number of entries in @pages
456  * @page_offset: offset of user buffer from page start
457  *
458  * @dst should be big enough to hold list of user page addresses and
459  *      links to the next pages of buffer
460  */
461 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
462                            size_t page_offset)
463 {
464         int n = 0;
465         phys_addr_t optee_page;
466         /*
467          * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
468          * for details.
469          */
470         struct {
471                 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
472                 u64 next_page_data;
473         } *pages_data;
474
475         /*
476          * Currently OP-TEE uses 4k page size and it does not looks
477          * like this will change in the future.  On other hand, there are
478          * no know ARM architectures with page size < 4k.
479          * Thus the next built assert looks redundant. But the following
480          * code heavily relies on this assumption, so it is better be
481          * safe than sorry.
482          */
483         BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
484
485         pages_data = (void *)dst;
486         /*
487          * If linux page is bigger than 4k, and user buffer offset is
488          * larger than 4k/8k/12k/etc this will skip first 4k pages,
489          * because they bear no value data for OP-TEE.
490          */
491         optee_page = page_to_phys(*pages) +
492                 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
493
494         while (true) {
495                 pages_data->pages_list[n++] = optee_page;
496
497                 if (n == PAGELIST_ENTRIES_PER_PAGE) {
498                         pages_data->next_page_data =
499                                 virt_to_phys(pages_data + 1);
500                         pages_data++;
501                         n = 0;
502                 }
503
504                 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
505                 if (!(optee_page & ~PAGE_MASK)) {
506                         if (!--num_pages)
507                                 break;
508                         pages++;
509                         optee_page = page_to_phys(*pages);
510                 }
511         }
512 }
513
514 /*
515  * The final entry in each pagelist page is a pointer to the next
516  * pagelist page.
517  */
518 static size_t get_pages_list_size(size_t num_entries)
519 {
520         int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
521
522         return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
523 }
524
525 u64 *optee_allocate_pages_list(size_t num_entries)
526 {
527         return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
528 }
529
530 void optee_free_pages_list(void *list, size_t num_entries)
531 {
532         free_pages_exact(list, get_pages_list_size(num_entries));
533 }
534
535 static bool is_normal_memory(pgprot_t p)
536 {
537 #if defined(CONFIG_ARM)
538         return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
539                 ((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
540 #elif defined(CONFIG_ARM64)
541         return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
542 #else
543 #error "Unuspported architecture"
544 #endif
545 }
546
547 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
548 {
549         while (vma && is_normal_memory(vma->vm_page_prot)) {
550                 if (vma->vm_end >= end)
551                         return 0;
552                 vma = vma->vm_next;
553         }
554
555         return -EINVAL;
556 }
557
558 static int check_mem_type(unsigned long start, size_t num_pages)
559 {
560         struct mm_struct *mm = current->mm;
561         int rc;
562
563         /*
564          * Allow kernel address to register with OP-TEE as kernel
565          * pages are configured as normal memory only.
566          */
567         if (virt_addr_valid(start))
568                 return 0;
569
570         mmap_read_lock(mm);
571         rc = __check_mem_type(find_vma(mm, start),
572                               start + num_pages * PAGE_SIZE);
573         mmap_read_unlock(mm);
574
575         return rc;
576 }
577
578 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
579                        struct page **pages, size_t num_pages,
580                        unsigned long start)
581 {
582         struct tee_shm *shm_arg = NULL;
583         struct optee_msg_arg *msg_arg;
584         u64 *pages_list;
585         phys_addr_t msg_parg;
586         int rc;
587
588         if (!num_pages)
589                 return -EINVAL;
590
591         rc = check_mem_type(start, num_pages);
592         if (rc)
593                 return rc;
594
595         pages_list = optee_allocate_pages_list(num_pages);
596         if (!pages_list)
597                 return -ENOMEM;
598
599         shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
600         if (IS_ERR(shm_arg)) {
601                 rc = PTR_ERR(shm_arg);
602                 goto out;
603         }
604
605         optee_fill_pages_list(pages_list, pages, num_pages,
606                               tee_shm_get_page_offset(shm));
607
608         msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
609         msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
610                                 OPTEE_MSG_ATTR_NONCONTIG;
611         msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
612         msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
613         /*
614          * In the least bits of msg_arg->params->u.tmem.buf_ptr we
615          * store buffer offset from 4k page, as described in OP-TEE ABI.
616          */
617         msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
618           (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
619
620         if (optee_do_call_with_arg(ctx, msg_parg) ||
621             msg_arg->ret != TEEC_SUCCESS)
622                 rc = -EINVAL;
623
624         tee_shm_free(shm_arg);
625 out:
626         optee_free_pages_list(pages_list, num_pages);
627         return rc;
628 }
629
630 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
631 {
632         struct tee_shm *shm_arg;
633         struct optee_msg_arg *msg_arg;
634         phys_addr_t msg_parg;
635         int rc = 0;
636
637         shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
638         if (IS_ERR(shm_arg))
639                 return PTR_ERR(shm_arg);
640
641         msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
642
643         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
644         msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
645
646         if (optee_do_call_with_arg(ctx, msg_parg) ||
647             msg_arg->ret != TEEC_SUCCESS)
648                 rc = -EINVAL;
649         tee_shm_free(shm_arg);
650         return rc;
651 }
652
653 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
654                             struct page **pages, size_t num_pages,
655                             unsigned long start)
656 {
657         /*
658          * We don't want to register supplicant memory in OP-TEE.
659          * Instead information about it will be passed in RPC code.
660          */
661         return check_mem_type(start, num_pages);
662 }
663
664 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
665 {
666         return 0;
667 }