Merge branch 'mhi-net-immutable' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / tee / optee / call.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015, Linaro Limited
4  */
5 #include <linux/arm-smccc.h>
6 #include <linux/device.h>
7 #include <linux/err.h>
8 #include <linux/errno.h>
9 #include <linux/mm.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/tee_drv.h>
13 #include <linux/types.h>
14 #include <linux/uaccess.h>
15 #include "optee_private.h"
16 #include "optee_smc.h"
17
18 struct optee_call_waiter {
19         struct list_head list_node;
20         struct completion c;
21 };
22
23 static void optee_cq_wait_init(struct optee_call_queue *cq,
24                                struct optee_call_waiter *w)
25 {
26         /*
27          * We're preparing to make a call to secure world. In case we can't
28          * allocate a thread in secure world we'll end up waiting in
29          * optee_cq_wait_for_completion().
30          *
31          * Normally if there's no contention in secure world the call will
32          * complete and we can cleanup directly with optee_cq_wait_final().
33          */
34         mutex_lock(&cq->mutex);
35
36         /*
37          * We add ourselves to the queue, but we don't wait. This
38          * guarantees that we don't lose a completion if secure world
39          * returns busy and another thread just exited and try to complete
40          * someone.
41          */
42         init_completion(&w->c);
43         list_add_tail(&w->list_node, &cq->waiters);
44
45         mutex_unlock(&cq->mutex);
46 }
47
48 static void optee_cq_wait_for_completion(struct optee_call_queue *cq,
49                                          struct optee_call_waiter *w)
50 {
51         wait_for_completion(&w->c);
52
53         mutex_lock(&cq->mutex);
54
55         /* Move to end of list to get out of the way for other waiters */
56         list_del(&w->list_node);
57         reinit_completion(&w->c);
58         list_add_tail(&w->list_node, &cq->waiters);
59
60         mutex_unlock(&cq->mutex);
61 }
62
63 static void optee_cq_complete_one(struct optee_call_queue *cq)
64 {
65         struct optee_call_waiter *w;
66
67         list_for_each_entry(w, &cq->waiters, list_node) {
68                 if (!completion_done(&w->c)) {
69                         complete(&w->c);
70                         break;
71                 }
72         }
73 }
74
75 static void optee_cq_wait_final(struct optee_call_queue *cq,
76                                 struct optee_call_waiter *w)
77 {
78         /*
79          * We're done with the call to secure world. The thread in secure
80          * world that was used for this call is now available for some
81          * other task to use.
82          */
83         mutex_lock(&cq->mutex);
84
85         /* Get out of the list */
86         list_del(&w->list_node);
87
88         /* Wake up one eventual waiting task */
89         optee_cq_complete_one(cq);
90
91         /*
92          * If we're completed we've got a completion from another task that
93          * was just done with its call to secure world. Since yet another
94          * thread now is available in secure world wake up another eventual
95          * waiting task.
96          */
97         if (completion_done(&w->c))
98                 optee_cq_complete_one(cq);
99
100         mutex_unlock(&cq->mutex);
101 }
102
103 /* Requires the filpstate mutex to be held */
104 static struct optee_session *find_session(struct optee_context_data *ctxdata,
105                                           u32 session_id)
106 {
107         struct optee_session *sess;
108
109         list_for_each_entry(sess, &ctxdata->sess_list, list_node)
110                 if (sess->session_id == session_id)
111                         return sess;
112
113         return NULL;
114 }
115
116 /**
117  * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world
118  * @ctx:        calling context
119  * @parg:       physical address of message to pass to secure world
120  *
121  * Does and SMC to OP-TEE in secure world and handles eventual resulting
122  * Remote Procedure Calls (RPC) from OP-TEE.
123  *
124  * Returns return code from secure world, 0 is OK
125  */
126 u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg)
127 {
128         struct optee *optee = tee_get_drvdata(ctx->teedev);
129         struct optee_call_waiter w;
130         struct optee_rpc_param param = { };
131         struct optee_call_ctx call_ctx = { };
132         u32 ret;
133
134         param.a0 = OPTEE_SMC_CALL_WITH_ARG;
135         reg_pair_from_64(&param.a1, &param.a2, parg);
136         /* Initialize waiter */
137         optee_cq_wait_init(&optee->call_queue, &w);
138         while (true) {
139                 struct arm_smccc_res res;
140
141                 optee->invoke_fn(param.a0, param.a1, param.a2, param.a3,
142                                  param.a4, param.a5, param.a6, param.a7,
143                                  &res);
144
145                 if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
146                         /*
147                          * Out of threads in secure world, wait for a thread
148                          * become available.
149                          */
150                         optee_cq_wait_for_completion(&optee->call_queue, &w);
151                 } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
152                         if (need_resched())
153                                 cond_resched();
154                         param.a0 = res.a0;
155                         param.a1 = res.a1;
156                         param.a2 = res.a2;
157                         param.a3 = res.a3;
158                         optee_handle_rpc(ctx, &param, &call_ctx);
159                 } else {
160                         ret = res.a0;
161                         break;
162                 }
163         }
164
165         optee_rpc_finalize_call(&call_ctx);
166         /*
167          * We're done with our thread in secure world, if there's any
168          * thread waiters wake up one.
169          */
170         optee_cq_wait_final(&optee->call_queue, &w);
171
172         return ret;
173 }
174
175 static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params,
176                                    struct optee_msg_arg **msg_arg,
177                                    phys_addr_t *msg_parg)
178 {
179         int rc;
180         struct tee_shm *shm;
181         struct optee_msg_arg *ma;
182
183         shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params),
184                             TEE_SHM_MAPPED);
185         if (IS_ERR(shm))
186                 return shm;
187
188         ma = tee_shm_get_va(shm, 0);
189         if (IS_ERR(ma)) {
190                 rc = PTR_ERR(ma);
191                 goto out;
192         }
193
194         rc = tee_shm_get_pa(shm, 0, msg_parg);
195         if (rc)
196                 goto out;
197
198         memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params));
199         ma->num_params = num_params;
200         *msg_arg = ma;
201 out:
202         if (rc) {
203                 tee_shm_free(shm);
204                 return ERR_PTR(rc);
205         }
206
207         return shm;
208 }
209
210 int optee_open_session(struct tee_context *ctx,
211                        struct tee_ioctl_open_session_arg *arg,
212                        struct tee_param *param)
213 {
214         struct optee_context_data *ctxdata = ctx->data;
215         int rc;
216         struct tee_shm *shm;
217         struct optee_msg_arg *msg_arg;
218         phys_addr_t msg_parg;
219         struct optee_session *sess = NULL;
220
221         /* +2 for the meta parameters added below */
222         shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg);
223         if (IS_ERR(shm))
224                 return PTR_ERR(shm);
225
226         msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION;
227         msg_arg->cancel_id = arg->cancel_id;
228
229         /*
230          * Initialize and add the meta parameters needed when opening a
231          * session.
232          */
233         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
234                                   OPTEE_MSG_ATTR_META;
235         msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT |
236                                   OPTEE_MSG_ATTR_META;
237         memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid));
238         msg_arg->params[1].u.value.c = arg->clnt_login;
239
240         rc = tee_session_calc_client_uuid((uuid_t *)&msg_arg->params[1].u.value,
241                                           arg->clnt_login, arg->clnt_uuid);
242         if (rc)
243                 goto out;
244
245         rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param);
246         if (rc)
247                 goto out;
248
249         sess = kzalloc(sizeof(*sess), GFP_KERNEL);
250         if (!sess) {
251                 rc = -ENOMEM;
252                 goto out;
253         }
254
255         if (optee_do_call_with_arg(ctx, msg_parg)) {
256                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
257                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
258         }
259
260         if (msg_arg->ret == TEEC_SUCCESS) {
261                 /* A new session has been created, add it to the list. */
262                 sess->session_id = msg_arg->session;
263                 mutex_lock(&ctxdata->mutex);
264                 list_add(&sess->list_node, &ctxdata->sess_list);
265                 mutex_unlock(&ctxdata->mutex);
266         } else {
267                 kfree(sess);
268         }
269
270         if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) {
271                 arg->ret = TEEC_ERROR_COMMUNICATION;
272                 arg->ret_origin = TEEC_ORIGIN_COMMS;
273                 /* Close session again to avoid leakage */
274                 optee_close_session(ctx, msg_arg->session);
275         } else {
276                 arg->session = msg_arg->session;
277                 arg->ret = msg_arg->ret;
278                 arg->ret_origin = msg_arg->ret_origin;
279         }
280 out:
281         tee_shm_free(shm);
282
283         return rc;
284 }
285
286 int optee_close_session(struct tee_context *ctx, u32 session)
287 {
288         struct optee_context_data *ctxdata = ctx->data;
289         struct tee_shm *shm;
290         struct optee_msg_arg *msg_arg;
291         phys_addr_t msg_parg;
292         struct optee_session *sess;
293
294         /* Check that the session is valid and remove it from the list */
295         mutex_lock(&ctxdata->mutex);
296         sess = find_session(ctxdata, session);
297         if (sess)
298                 list_del(&sess->list_node);
299         mutex_unlock(&ctxdata->mutex);
300         if (!sess)
301                 return -EINVAL;
302         kfree(sess);
303
304         shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
305         if (IS_ERR(shm))
306                 return PTR_ERR(shm);
307
308         msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION;
309         msg_arg->session = session;
310         optee_do_call_with_arg(ctx, msg_parg);
311
312         tee_shm_free(shm);
313         return 0;
314 }
315
316 int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg,
317                       struct tee_param *param)
318 {
319         struct optee_context_data *ctxdata = ctx->data;
320         struct tee_shm *shm;
321         struct optee_msg_arg *msg_arg;
322         phys_addr_t msg_parg;
323         struct optee_session *sess;
324         int rc;
325
326         /* Check that the session is valid */
327         mutex_lock(&ctxdata->mutex);
328         sess = find_session(ctxdata, arg->session);
329         mutex_unlock(&ctxdata->mutex);
330         if (!sess)
331                 return -EINVAL;
332
333         shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg);
334         if (IS_ERR(shm))
335                 return PTR_ERR(shm);
336         msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND;
337         msg_arg->func = arg->func;
338         msg_arg->session = arg->session;
339         msg_arg->cancel_id = arg->cancel_id;
340
341         rc = optee_to_msg_param(msg_arg->params, arg->num_params, param);
342         if (rc)
343                 goto out;
344
345         if (optee_do_call_with_arg(ctx, msg_parg)) {
346                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
347                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
348         }
349
350         if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) {
351                 msg_arg->ret = TEEC_ERROR_COMMUNICATION;
352                 msg_arg->ret_origin = TEEC_ORIGIN_COMMS;
353         }
354
355         arg->ret = msg_arg->ret;
356         arg->ret_origin = msg_arg->ret_origin;
357 out:
358         tee_shm_free(shm);
359         return rc;
360 }
361
362 int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session)
363 {
364         struct optee_context_data *ctxdata = ctx->data;
365         struct tee_shm *shm;
366         struct optee_msg_arg *msg_arg;
367         phys_addr_t msg_parg;
368         struct optee_session *sess;
369
370         /* Check that the session is valid */
371         mutex_lock(&ctxdata->mutex);
372         sess = find_session(ctxdata, session);
373         mutex_unlock(&ctxdata->mutex);
374         if (!sess)
375                 return -EINVAL;
376
377         shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg);
378         if (IS_ERR(shm))
379                 return PTR_ERR(shm);
380
381         msg_arg->cmd = OPTEE_MSG_CMD_CANCEL;
382         msg_arg->session = session;
383         msg_arg->cancel_id = cancel_id;
384         optee_do_call_with_arg(ctx, msg_parg);
385
386         tee_shm_free(shm);
387         return 0;
388 }
389
390 /**
391  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
392  *                            in OP-TEE
393  * @optee:      main service struct
394  */
395 void optee_enable_shm_cache(struct optee *optee)
396 {
397         struct optee_call_waiter w;
398
399         /* We need to retry until secure world isn't busy. */
400         optee_cq_wait_init(&optee->call_queue, &w);
401         while (true) {
402                 struct arm_smccc_res res;
403
404                 optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
405                                  0, &res);
406                 if (res.a0 == OPTEE_SMC_RETURN_OK)
407                         break;
408                 optee_cq_wait_for_completion(&optee->call_queue, &w);
409         }
410         optee_cq_wait_final(&optee->call_queue, &w);
411 }
412
413 /**
414  * optee_disable_shm_cache() - Disables caching of some shared memory allocation
415  *                            in OP-TEE
416  * @optee:      main service struct
417  */
418 void optee_disable_shm_cache(struct optee *optee)
419 {
420         struct optee_call_waiter w;
421
422         /* We need to retry until secure world isn't busy. */
423         optee_cq_wait_init(&optee->call_queue, &w);
424         while (true) {
425                 union {
426                         struct arm_smccc_res smccc;
427                         struct optee_smc_disable_shm_cache_result result;
428                 } res;
429
430                 optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0,
431                                  0, &res.smccc);
432                 if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
433                         break; /* All shm's freed */
434                 if (res.result.status == OPTEE_SMC_RETURN_OK) {
435                         struct tee_shm *shm;
436
437                         shm = reg_pair_to_ptr(res.result.shm_upper32,
438                                               res.result.shm_lower32);
439                         tee_shm_free(shm);
440                 } else {
441                         optee_cq_wait_for_completion(&optee->call_queue, &w);
442                 }
443         }
444         optee_cq_wait_final(&optee->call_queue, &w);
445 }
446
447 #define PAGELIST_ENTRIES_PER_PAGE                               \
448         ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
449
450 /**
451  * optee_fill_pages_list() - write list of user pages to given shared
452  * buffer.
453  *
454  * @dst: page-aligned buffer where list of pages will be stored
455  * @pages: array of pages that represents shared buffer
456  * @num_pages: number of entries in @pages
457  * @page_offset: offset of user buffer from page start
458  *
459  * @dst should be big enough to hold list of user page addresses and
460  *      links to the next pages of buffer
461  */
462 void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
463                            size_t page_offset)
464 {
465         int n = 0;
466         phys_addr_t optee_page;
467         /*
468          * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
469          * for details.
470          */
471         struct {
472                 u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
473                 u64 next_page_data;
474         } *pages_data;
475
476         /*
477          * Currently OP-TEE uses 4k page size and it does not looks
478          * like this will change in the future.  On other hand, there are
479          * no know ARM architectures with page size < 4k.
480          * Thus the next built assert looks redundant. But the following
481          * code heavily relies on this assumption, so it is better be
482          * safe than sorry.
483          */
484         BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
485
486         pages_data = (void *)dst;
487         /*
488          * If linux page is bigger than 4k, and user buffer offset is
489          * larger than 4k/8k/12k/etc this will skip first 4k pages,
490          * because they bear no value data for OP-TEE.
491          */
492         optee_page = page_to_phys(*pages) +
493                 round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
494
495         while (true) {
496                 pages_data->pages_list[n++] = optee_page;
497
498                 if (n == PAGELIST_ENTRIES_PER_PAGE) {
499                         pages_data->next_page_data =
500                                 virt_to_phys(pages_data + 1);
501                         pages_data++;
502                         n = 0;
503                 }
504
505                 optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
506                 if (!(optee_page & ~PAGE_MASK)) {
507                         if (!--num_pages)
508                                 break;
509                         pages++;
510                         optee_page = page_to_phys(*pages);
511                 }
512         }
513 }
514
515 /*
516  * The final entry in each pagelist page is a pointer to the next
517  * pagelist page.
518  */
519 static size_t get_pages_list_size(size_t num_entries)
520 {
521         int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
522
523         return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
524 }
525
526 u64 *optee_allocate_pages_list(size_t num_entries)
527 {
528         return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
529 }
530
531 void optee_free_pages_list(void *list, size_t num_entries)
532 {
533         free_pages_exact(list, get_pages_list_size(num_entries));
534 }
535
536 static bool is_normal_memory(pgprot_t p)
537 {
538 #if defined(CONFIG_ARM)
539         return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) ||
540                 ((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK));
541 #elif defined(CONFIG_ARM64)
542         return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL);
543 #else
544 #error "Unuspported architecture"
545 #endif
546 }
547
548 static int __check_mem_type(struct vm_area_struct *vma, unsigned long end)
549 {
550         while (vma && is_normal_memory(vma->vm_page_prot)) {
551                 if (vma->vm_end >= end)
552                         return 0;
553                 vma = vma->vm_next;
554         }
555
556         return -EINVAL;
557 }
558
559 static int check_mem_type(unsigned long start, size_t num_pages)
560 {
561         struct mm_struct *mm = current->mm;
562         int rc;
563
564         /*
565          * Allow kernel address to register with OP-TEE as kernel
566          * pages are configured as normal memory only.
567          */
568         if (virt_addr_valid(start))
569                 return 0;
570
571         mmap_read_lock(mm);
572         rc = __check_mem_type(find_vma(mm, start),
573                               start + num_pages * PAGE_SIZE);
574         mmap_read_unlock(mm);
575
576         return rc;
577 }
578
579 int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
580                        struct page **pages, size_t num_pages,
581                        unsigned long start)
582 {
583         struct tee_shm *shm_arg = NULL;
584         struct optee_msg_arg *msg_arg;
585         u64 *pages_list;
586         phys_addr_t msg_parg;
587         int rc;
588
589         if (!num_pages)
590                 return -EINVAL;
591
592         rc = check_mem_type(start, num_pages);
593         if (rc)
594                 return rc;
595
596         pages_list = optee_allocate_pages_list(num_pages);
597         if (!pages_list)
598                 return -ENOMEM;
599
600         shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
601         if (IS_ERR(shm_arg)) {
602                 rc = PTR_ERR(shm_arg);
603                 goto out;
604         }
605
606         optee_fill_pages_list(pages_list, pages, num_pages,
607                               tee_shm_get_page_offset(shm));
608
609         msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
610         msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
611                                 OPTEE_MSG_ATTR_NONCONTIG;
612         msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
613         msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
614         /*
615          * In the least bits of msg_arg->params->u.tmem.buf_ptr we
616          * store buffer offset from 4k page, as described in OP-TEE ABI.
617          */
618         msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
619           (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
620
621         if (optee_do_call_with_arg(ctx, msg_parg) ||
622             msg_arg->ret != TEEC_SUCCESS)
623                 rc = -EINVAL;
624
625         tee_shm_free(shm_arg);
626 out:
627         optee_free_pages_list(pages_list, num_pages);
628         return rc;
629 }
630
631 int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
632 {
633         struct tee_shm *shm_arg;
634         struct optee_msg_arg *msg_arg;
635         phys_addr_t msg_parg;
636         int rc = 0;
637
638         shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg);
639         if (IS_ERR(shm_arg))
640                 return PTR_ERR(shm_arg);
641
642         msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
643
644         msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
645         msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
646
647         if (optee_do_call_with_arg(ctx, msg_parg) ||
648             msg_arg->ret != TEEC_SUCCESS)
649                 rc = -EINVAL;
650         tee_shm_free(shm_arg);
651         return rc;
652 }
653
654 int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
655                             struct page **pages, size_t num_pages,
656                             unsigned long start)
657 {
658         /*
659          * We don't want to register supplicant memory in OP-TEE.
660          * Instead information about it will be passed in RPC code.
661          */
662         return check_mem_type(start, num_pages);
663 }
664
665 int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm)
666 {
667         return 0;
668 }