Merge tag 'amd-drm-fixes-5.9-2020-09-17' of git://people.freedesktop.org/~agd5f/linux...
[linux-2.6-microblaze.git] / drivers / target / target_core_transport.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3  * Filename:  target_core_transport.c
4  *
5  * This file contains the Generic Target Engine Core.
6  *
7  * (c) Copyright 2002-2013 Datera, Inc.
8  *
9  * Nicholas A. Bellinger <nab@kernel.org>
10  *
11  ******************************************************************************/
12
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <asm/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
30
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
34
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
42
43 static struct workqueue_struct *target_completion_wq;
44 static struct kmem_cache *se_sess_cache;
45 struct kmem_cache *se_ua_cache;
46 struct kmem_cache *t10_pr_reg_cache;
47 struct kmem_cache *t10_alua_lu_gp_cache;
48 struct kmem_cache *t10_alua_lu_gp_mem_cache;
49 struct kmem_cache *t10_alua_tg_pt_gp_cache;
50 struct kmem_cache *t10_alua_lba_map_cache;
51 struct kmem_cache *t10_alua_lba_map_mem_cache;
52
53 static void transport_complete_task_attr(struct se_cmd *cmd);
54 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
55 static void transport_handle_queue_full(struct se_cmd *cmd,
56                 struct se_device *dev, int err, bool write_pending);
57 static void target_complete_ok_work(struct work_struct *work);
58
59 int init_se_kmem_caches(void)
60 {
61         se_sess_cache = kmem_cache_create("se_sess_cache",
62                         sizeof(struct se_session), __alignof__(struct se_session),
63                         0, NULL);
64         if (!se_sess_cache) {
65                 pr_err("kmem_cache_create() for struct se_session"
66                                 " failed\n");
67                 goto out;
68         }
69         se_ua_cache = kmem_cache_create("se_ua_cache",
70                         sizeof(struct se_ua), __alignof__(struct se_ua),
71                         0, NULL);
72         if (!se_ua_cache) {
73                 pr_err("kmem_cache_create() for struct se_ua failed\n");
74                 goto out_free_sess_cache;
75         }
76         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
77                         sizeof(struct t10_pr_registration),
78                         __alignof__(struct t10_pr_registration), 0, NULL);
79         if (!t10_pr_reg_cache) {
80                 pr_err("kmem_cache_create() for struct t10_pr_registration"
81                                 " failed\n");
82                 goto out_free_ua_cache;
83         }
84         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
85                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
86                         0, NULL);
87         if (!t10_alua_lu_gp_cache) {
88                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
89                                 " failed\n");
90                 goto out_free_pr_reg_cache;
91         }
92         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
93                         sizeof(struct t10_alua_lu_gp_member),
94                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
95         if (!t10_alua_lu_gp_mem_cache) {
96                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
97                                 "cache failed\n");
98                 goto out_free_lu_gp_cache;
99         }
100         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
101                         sizeof(struct t10_alua_tg_pt_gp),
102                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
103         if (!t10_alua_tg_pt_gp_cache) {
104                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
105                                 "cache failed\n");
106                 goto out_free_lu_gp_mem_cache;
107         }
108         t10_alua_lba_map_cache = kmem_cache_create(
109                         "t10_alua_lba_map_cache",
110                         sizeof(struct t10_alua_lba_map),
111                         __alignof__(struct t10_alua_lba_map), 0, NULL);
112         if (!t10_alua_lba_map_cache) {
113                 pr_err("kmem_cache_create() for t10_alua_lba_map_"
114                                 "cache failed\n");
115                 goto out_free_tg_pt_gp_cache;
116         }
117         t10_alua_lba_map_mem_cache = kmem_cache_create(
118                         "t10_alua_lba_map_mem_cache",
119                         sizeof(struct t10_alua_lba_map_member),
120                         __alignof__(struct t10_alua_lba_map_member), 0, NULL);
121         if (!t10_alua_lba_map_mem_cache) {
122                 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
123                                 "cache failed\n");
124                 goto out_free_lba_map_cache;
125         }
126
127         target_completion_wq = alloc_workqueue("target_completion",
128                                                WQ_MEM_RECLAIM, 0);
129         if (!target_completion_wq)
130                 goto out_free_lba_map_mem_cache;
131
132         return 0;
133
134 out_free_lba_map_mem_cache:
135         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
136 out_free_lba_map_cache:
137         kmem_cache_destroy(t10_alua_lba_map_cache);
138 out_free_tg_pt_gp_cache:
139         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
140 out_free_lu_gp_mem_cache:
141         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
142 out_free_lu_gp_cache:
143         kmem_cache_destroy(t10_alua_lu_gp_cache);
144 out_free_pr_reg_cache:
145         kmem_cache_destroy(t10_pr_reg_cache);
146 out_free_ua_cache:
147         kmem_cache_destroy(se_ua_cache);
148 out_free_sess_cache:
149         kmem_cache_destroy(se_sess_cache);
150 out:
151         return -ENOMEM;
152 }
153
154 void release_se_kmem_caches(void)
155 {
156         destroy_workqueue(target_completion_wq);
157         kmem_cache_destroy(se_sess_cache);
158         kmem_cache_destroy(se_ua_cache);
159         kmem_cache_destroy(t10_pr_reg_cache);
160         kmem_cache_destroy(t10_alua_lu_gp_cache);
161         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
162         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
163         kmem_cache_destroy(t10_alua_lba_map_cache);
164         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
165 }
166
167 /* This code ensures unique mib indexes are handed out. */
168 static DEFINE_SPINLOCK(scsi_mib_index_lock);
169 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
170
171 /*
172  * Allocate a new row index for the entry type specified
173  */
174 u32 scsi_get_new_index(scsi_index_t type)
175 {
176         u32 new_index;
177
178         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
179
180         spin_lock(&scsi_mib_index_lock);
181         new_index = ++scsi_mib_index[type];
182         spin_unlock(&scsi_mib_index_lock);
183
184         return new_index;
185 }
186
187 void transport_subsystem_check_init(void)
188 {
189         int ret;
190         static int sub_api_initialized;
191
192         if (sub_api_initialized)
193                 return;
194
195         ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
196         if (ret != 0)
197                 pr_err("Unable to load target_core_iblock\n");
198
199         ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
200         if (ret != 0)
201                 pr_err("Unable to load target_core_file\n");
202
203         ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
204         if (ret != 0)
205                 pr_err("Unable to load target_core_pscsi\n");
206
207         ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
208         if (ret != 0)
209                 pr_err("Unable to load target_core_user\n");
210
211         sub_api_initialized = 1;
212 }
213
214 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
215 {
216         struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
217
218         wake_up(&sess->cmd_list_wq);
219 }
220
221 /**
222  * transport_init_session - initialize a session object
223  * @se_sess: Session object pointer.
224  *
225  * The caller must have zero-initialized @se_sess before calling this function.
226  */
227 int transport_init_session(struct se_session *se_sess)
228 {
229         INIT_LIST_HEAD(&se_sess->sess_list);
230         INIT_LIST_HEAD(&se_sess->sess_acl_list);
231         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
232         spin_lock_init(&se_sess->sess_cmd_lock);
233         init_waitqueue_head(&se_sess->cmd_list_wq);
234         return percpu_ref_init(&se_sess->cmd_count,
235                                target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
236 }
237 EXPORT_SYMBOL(transport_init_session);
238
239 void transport_uninit_session(struct se_session *se_sess)
240 {
241         percpu_ref_exit(&se_sess->cmd_count);
242 }
243
244 /**
245  * transport_alloc_session - allocate a session object and initialize it
246  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
247  */
248 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
249 {
250         struct se_session *se_sess;
251         int ret;
252
253         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
254         if (!se_sess) {
255                 pr_err("Unable to allocate struct se_session from"
256                                 " se_sess_cache\n");
257                 return ERR_PTR(-ENOMEM);
258         }
259         ret = transport_init_session(se_sess);
260         if (ret < 0) {
261                 kmem_cache_free(se_sess_cache, se_sess);
262                 return ERR_PTR(ret);
263         }
264         se_sess->sup_prot_ops = sup_prot_ops;
265
266         return se_sess;
267 }
268 EXPORT_SYMBOL(transport_alloc_session);
269
270 /**
271  * transport_alloc_session_tags - allocate target driver private data
272  * @se_sess:  Session pointer.
273  * @tag_num:  Maximum number of in-flight commands between initiator and target.
274  * @tag_size: Size in bytes of the private data a target driver associates with
275  *            each command.
276  */
277 int transport_alloc_session_tags(struct se_session *se_sess,
278                                  unsigned int tag_num, unsigned int tag_size)
279 {
280         int rc;
281
282         se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
283                                          GFP_KERNEL | __GFP_RETRY_MAYFAIL);
284         if (!se_sess->sess_cmd_map) {
285                 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
286                 return -ENOMEM;
287         }
288
289         rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
290                         false, GFP_KERNEL, NUMA_NO_NODE);
291         if (rc < 0) {
292                 pr_err("Unable to init se_sess->sess_tag_pool,"
293                         " tag_num: %u\n", tag_num);
294                 kvfree(se_sess->sess_cmd_map);
295                 se_sess->sess_cmd_map = NULL;
296                 return -ENOMEM;
297         }
298
299         return 0;
300 }
301 EXPORT_SYMBOL(transport_alloc_session_tags);
302
303 /**
304  * transport_init_session_tags - allocate a session and target driver private data
305  * @tag_num:  Maximum number of in-flight commands between initiator and target.
306  * @tag_size: Size in bytes of the private data a target driver associates with
307  *            each command.
308  * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
309  */
310 static struct se_session *
311 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
312                             enum target_prot_op sup_prot_ops)
313 {
314         struct se_session *se_sess;
315         int rc;
316
317         if (tag_num != 0 && !tag_size) {
318                 pr_err("init_session_tags called with percpu-ida tag_num:"
319                        " %u, but zero tag_size\n", tag_num);
320                 return ERR_PTR(-EINVAL);
321         }
322         if (!tag_num && tag_size) {
323                 pr_err("init_session_tags called with percpu-ida tag_size:"
324                        " %u, but zero tag_num\n", tag_size);
325                 return ERR_PTR(-EINVAL);
326         }
327
328         se_sess = transport_alloc_session(sup_prot_ops);
329         if (IS_ERR(se_sess))
330                 return se_sess;
331
332         rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
333         if (rc < 0) {
334                 transport_free_session(se_sess);
335                 return ERR_PTR(-ENOMEM);
336         }
337
338         return se_sess;
339 }
340
341 /*
342  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
343  */
344 void __transport_register_session(
345         struct se_portal_group *se_tpg,
346         struct se_node_acl *se_nacl,
347         struct se_session *se_sess,
348         void *fabric_sess_ptr)
349 {
350         const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
351         unsigned char buf[PR_REG_ISID_LEN];
352         unsigned long flags;
353
354         se_sess->se_tpg = se_tpg;
355         se_sess->fabric_sess_ptr = fabric_sess_ptr;
356         /*
357          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
358          *
359          * Only set for struct se_session's that will actually be moving I/O.
360          * eg: *NOT* discovery sessions.
361          */
362         if (se_nacl) {
363                 /*
364                  *
365                  * Determine if fabric allows for T10-PI feature bits exposed to
366                  * initiators for device backends with !dev->dev_attrib.pi_prot_type.
367                  *
368                  * If so, then always save prot_type on a per se_node_acl node
369                  * basis and re-instate the previous sess_prot_type to avoid
370                  * disabling PI from below any previously initiator side
371                  * registered LUNs.
372                  */
373                 if (se_nacl->saved_prot_type)
374                         se_sess->sess_prot_type = se_nacl->saved_prot_type;
375                 else if (tfo->tpg_check_prot_fabric_only)
376                         se_sess->sess_prot_type = se_nacl->saved_prot_type =
377                                         tfo->tpg_check_prot_fabric_only(se_tpg);
378                 /*
379                  * If the fabric module supports an ISID based TransportID,
380                  * save this value in binary from the fabric I_T Nexus now.
381                  */
382                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
383                         memset(&buf[0], 0, PR_REG_ISID_LEN);
384                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
385                                         &buf[0], PR_REG_ISID_LEN);
386                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
387                 }
388
389                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
390                 /*
391                  * The se_nacl->nacl_sess pointer will be set to the
392                  * last active I_T Nexus for each struct se_node_acl.
393                  */
394                 se_nacl->nacl_sess = se_sess;
395
396                 list_add_tail(&se_sess->sess_acl_list,
397                               &se_nacl->acl_sess_list);
398                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
399         }
400         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
401
402         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
403                 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
404 }
405 EXPORT_SYMBOL(__transport_register_session);
406
407 void transport_register_session(
408         struct se_portal_group *se_tpg,
409         struct se_node_acl *se_nacl,
410         struct se_session *se_sess,
411         void *fabric_sess_ptr)
412 {
413         unsigned long flags;
414
415         spin_lock_irqsave(&se_tpg->session_lock, flags);
416         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
417         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
418 }
419 EXPORT_SYMBOL(transport_register_session);
420
421 struct se_session *
422 target_setup_session(struct se_portal_group *tpg,
423                      unsigned int tag_num, unsigned int tag_size,
424                      enum target_prot_op prot_op,
425                      const char *initiatorname, void *private,
426                      int (*callback)(struct se_portal_group *,
427                                      struct se_session *, void *))
428 {
429         struct se_session *sess;
430
431         /*
432          * If the fabric driver is using percpu-ida based pre allocation
433          * of I/O descriptor tags, go ahead and perform that setup now..
434          */
435         if (tag_num != 0)
436                 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
437         else
438                 sess = transport_alloc_session(prot_op);
439
440         if (IS_ERR(sess))
441                 return sess;
442
443         sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
444                                         (unsigned char *)initiatorname);
445         if (!sess->se_node_acl) {
446                 transport_free_session(sess);
447                 return ERR_PTR(-EACCES);
448         }
449         /*
450          * Go ahead and perform any remaining fabric setup that is
451          * required before transport_register_session().
452          */
453         if (callback != NULL) {
454                 int rc = callback(tpg, sess, private);
455                 if (rc) {
456                         transport_free_session(sess);
457                         return ERR_PTR(rc);
458                 }
459         }
460
461         transport_register_session(tpg, sess->se_node_acl, sess, private);
462         return sess;
463 }
464 EXPORT_SYMBOL(target_setup_session);
465
466 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
467 {
468         struct se_session *se_sess;
469         ssize_t len = 0;
470
471         spin_lock_bh(&se_tpg->session_lock);
472         list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
473                 if (!se_sess->se_node_acl)
474                         continue;
475                 if (!se_sess->se_node_acl->dynamic_node_acl)
476                         continue;
477                 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
478                         break;
479
480                 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
481                                 se_sess->se_node_acl->initiatorname);
482                 len += 1; /* Include NULL terminator */
483         }
484         spin_unlock_bh(&se_tpg->session_lock);
485
486         return len;
487 }
488 EXPORT_SYMBOL(target_show_dynamic_sessions);
489
490 static void target_complete_nacl(struct kref *kref)
491 {
492         struct se_node_acl *nacl = container_of(kref,
493                                 struct se_node_acl, acl_kref);
494         struct se_portal_group *se_tpg = nacl->se_tpg;
495
496         if (!nacl->dynamic_stop) {
497                 complete(&nacl->acl_free_comp);
498                 return;
499         }
500
501         mutex_lock(&se_tpg->acl_node_mutex);
502         list_del_init(&nacl->acl_list);
503         mutex_unlock(&se_tpg->acl_node_mutex);
504
505         core_tpg_wait_for_nacl_pr_ref(nacl);
506         core_free_device_list_for_node(nacl, se_tpg);
507         kfree(nacl);
508 }
509
510 void target_put_nacl(struct se_node_acl *nacl)
511 {
512         kref_put(&nacl->acl_kref, target_complete_nacl);
513 }
514 EXPORT_SYMBOL(target_put_nacl);
515
516 void transport_deregister_session_configfs(struct se_session *se_sess)
517 {
518         struct se_node_acl *se_nacl;
519         unsigned long flags;
520         /*
521          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
522          */
523         se_nacl = se_sess->se_node_acl;
524         if (se_nacl) {
525                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
526                 if (!list_empty(&se_sess->sess_acl_list))
527                         list_del_init(&se_sess->sess_acl_list);
528                 /*
529                  * If the session list is empty, then clear the pointer.
530                  * Otherwise, set the struct se_session pointer from the tail
531                  * element of the per struct se_node_acl active session list.
532                  */
533                 if (list_empty(&se_nacl->acl_sess_list))
534                         se_nacl->nacl_sess = NULL;
535                 else {
536                         se_nacl->nacl_sess = container_of(
537                                         se_nacl->acl_sess_list.prev,
538                                         struct se_session, sess_acl_list);
539                 }
540                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
541         }
542 }
543 EXPORT_SYMBOL(transport_deregister_session_configfs);
544
545 void transport_free_session(struct se_session *se_sess)
546 {
547         struct se_node_acl *se_nacl = se_sess->se_node_acl;
548
549         /*
550          * Drop the se_node_acl->nacl_kref obtained from within
551          * core_tpg_get_initiator_node_acl().
552          */
553         if (se_nacl) {
554                 struct se_portal_group *se_tpg = se_nacl->se_tpg;
555                 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
556                 unsigned long flags;
557
558                 se_sess->se_node_acl = NULL;
559
560                 /*
561                  * Also determine if we need to drop the extra ->cmd_kref if
562                  * it had been previously dynamically generated, and
563                  * the endpoint is not caching dynamic ACLs.
564                  */
565                 mutex_lock(&se_tpg->acl_node_mutex);
566                 if (se_nacl->dynamic_node_acl &&
567                     !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
568                         spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
569                         if (list_empty(&se_nacl->acl_sess_list))
570                                 se_nacl->dynamic_stop = true;
571                         spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
572
573                         if (se_nacl->dynamic_stop)
574                                 list_del_init(&se_nacl->acl_list);
575                 }
576                 mutex_unlock(&se_tpg->acl_node_mutex);
577
578                 if (se_nacl->dynamic_stop)
579                         target_put_nacl(se_nacl);
580
581                 target_put_nacl(se_nacl);
582         }
583         if (se_sess->sess_cmd_map) {
584                 sbitmap_queue_free(&se_sess->sess_tag_pool);
585                 kvfree(se_sess->sess_cmd_map);
586         }
587         transport_uninit_session(se_sess);
588         kmem_cache_free(se_sess_cache, se_sess);
589 }
590 EXPORT_SYMBOL(transport_free_session);
591
592 static int target_release_res(struct se_device *dev, void *data)
593 {
594         struct se_session *sess = data;
595
596         if (dev->reservation_holder == sess)
597                 target_release_reservation(dev);
598         return 0;
599 }
600
601 void transport_deregister_session(struct se_session *se_sess)
602 {
603         struct se_portal_group *se_tpg = se_sess->se_tpg;
604         unsigned long flags;
605
606         if (!se_tpg) {
607                 transport_free_session(se_sess);
608                 return;
609         }
610
611         spin_lock_irqsave(&se_tpg->session_lock, flags);
612         list_del(&se_sess->sess_list);
613         se_sess->se_tpg = NULL;
614         se_sess->fabric_sess_ptr = NULL;
615         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
616
617         /*
618          * Since the session is being removed, release SPC-2
619          * reservations held by the session that is disappearing.
620          */
621         target_for_each_device(target_release_res, se_sess);
622
623         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
624                 se_tpg->se_tpg_tfo->fabric_name);
625         /*
626          * If last kref is dropping now for an explicit NodeACL, awake sleeping
627          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
628          * removal context from within transport_free_session() code.
629          *
630          * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
631          * to release all remaining generate_node_acl=1 created ACL resources.
632          */
633
634         transport_free_session(se_sess);
635 }
636 EXPORT_SYMBOL(transport_deregister_session);
637
638 void target_remove_session(struct se_session *se_sess)
639 {
640         transport_deregister_session_configfs(se_sess);
641         transport_deregister_session(se_sess);
642 }
643 EXPORT_SYMBOL(target_remove_session);
644
645 static void target_remove_from_state_list(struct se_cmd *cmd)
646 {
647         struct se_device *dev = cmd->se_dev;
648         unsigned long flags;
649
650         if (!dev)
651                 return;
652
653         spin_lock_irqsave(&dev->execute_task_lock, flags);
654         if (cmd->state_active) {
655                 list_del(&cmd->state_list);
656                 cmd->state_active = false;
657         }
658         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
659 }
660
661 /*
662  * This function is called by the target core after the target core has
663  * finished processing a SCSI command or SCSI TMF. Both the regular command
664  * processing code and the code for aborting commands can call this
665  * function. CMD_T_STOP is set if and only if another thread is waiting
666  * inside transport_wait_for_tasks() for t_transport_stop_comp.
667  */
668 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
669 {
670         unsigned long flags;
671
672         target_remove_from_state_list(cmd);
673
674         /*
675          * Clear struct se_cmd->se_lun before the handoff to FE.
676          */
677         cmd->se_lun = NULL;
678
679         spin_lock_irqsave(&cmd->t_state_lock, flags);
680         /*
681          * Determine if frontend context caller is requesting the stopping of
682          * this command for frontend exceptions.
683          */
684         if (cmd->transport_state & CMD_T_STOP) {
685                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
686                         __func__, __LINE__, cmd->tag);
687
688                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
689
690                 complete_all(&cmd->t_transport_stop_comp);
691                 return 1;
692         }
693         cmd->transport_state &= ~CMD_T_ACTIVE;
694         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
695
696         /*
697          * Some fabric modules like tcm_loop can release their internally
698          * allocated I/O reference and struct se_cmd now.
699          *
700          * Fabric modules are expected to return '1' here if the se_cmd being
701          * passed is released at this point, or zero if not being released.
702          */
703         return cmd->se_tfo->check_stop_free(cmd);
704 }
705
706 static void transport_lun_remove_cmd(struct se_cmd *cmd)
707 {
708         struct se_lun *lun = cmd->se_lun;
709
710         if (!lun)
711                 return;
712
713         if (cmpxchg(&cmd->lun_ref_active, true, false))
714                 percpu_ref_put(&lun->lun_ref);
715 }
716
717 static void target_complete_failure_work(struct work_struct *work)
718 {
719         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
720
721         transport_generic_request_failure(cmd,
722                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
723 }
724
725 /*
726  * Used when asking transport to copy Sense Data from the underlying
727  * Linux/SCSI struct scsi_cmnd
728  */
729 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
730 {
731         struct se_device *dev = cmd->se_dev;
732
733         WARN_ON(!cmd->se_lun);
734
735         if (!dev)
736                 return NULL;
737
738         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
739                 return NULL;
740
741         cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
742
743         pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
744                 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
745         return cmd->sense_buffer;
746 }
747
748 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
749 {
750         unsigned char *cmd_sense_buf;
751         unsigned long flags;
752
753         spin_lock_irqsave(&cmd->t_state_lock, flags);
754         cmd_sense_buf = transport_get_sense_buffer(cmd);
755         if (!cmd_sense_buf) {
756                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
757                 return;
758         }
759
760         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
761         memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
762         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
763 }
764 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
765
766 static void target_handle_abort(struct se_cmd *cmd)
767 {
768         bool tas = cmd->transport_state & CMD_T_TAS;
769         bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
770         int ret;
771
772         pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
773
774         if (tas) {
775                 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
776                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
777                         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
778                                  cmd->t_task_cdb[0], cmd->tag);
779                         trace_target_cmd_complete(cmd);
780                         ret = cmd->se_tfo->queue_status(cmd);
781                         if (ret) {
782                                 transport_handle_queue_full(cmd, cmd->se_dev,
783                                                             ret, false);
784                                 return;
785                         }
786                 } else {
787                         cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
788                         cmd->se_tfo->queue_tm_rsp(cmd);
789                 }
790         } else {
791                 /*
792                  * Allow the fabric driver to unmap any resources before
793                  * releasing the descriptor via TFO->release_cmd().
794                  */
795                 cmd->se_tfo->aborted_task(cmd);
796                 if (ack_kref)
797                         WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
798                 /*
799                  * To do: establish a unit attention condition on the I_T
800                  * nexus associated with cmd. See also the paragraph "Aborting
801                  * commands" in SAM.
802                  */
803         }
804
805         WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
806
807         transport_lun_remove_cmd(cmd);
808
809         transport_cmd_check_stop_to_fabric(cmd);
810 }
811
812 static void target_abort_work(struct work_struct *work)
813 {
814         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
815
816         target_handle_abort(cmd);
817 }
818
819 static bool target_cmd_interrupted(struct se_cmd *cmd)
820 {
821         int post_ret;
822
823         if (cmd->transport_state & CMD_T_ABORTED) {
824                 if (cmd->transport_complete_callback)
825                         cmd->transport_complete_callback(cmd, false, &post_ret);
826                 INIT_WORK(&cmd->work, target_abort_work);
827                 queue_work(target_completion_wq, &cmd->work);
828                 return true;
829         } else if (cmd->transport_state & CMD_T_STOP) {
830                 if (cmd->transport_complete_callback)
831                         cmd->transport_complete_callback(cmd, false, &post_ret);
832                 complete_all(&cmd->t_transport_stop_comp);
833                 return true;
834         }
835
836         return false;
837 }
838
839 /* May be called from interrupt context so must not sleep. */
840 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
841 {
842         int success;
843         unsigned long flags;
844
845         if (target_cmd_interrupted(cmd))
846                 return;
847
848         cmd->scsi_status = scsi_status;
849
850         spin_lock_irqsave(&cmd->t_state_lock, flags);
851         switch (cmd->scsi_status) {
852         case SAM_STAT_CHECK_CONDITION:
853                 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
854                         success = 1;
855                 else
856                         success = 0;
857                 break;
858         default:
859                 success = 1;
860                 break;
861         }
862
863         cmd->t_state = TRANSPORT_COMPLETE;
864         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
865         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
866
867         INIT_WORK(&cmd->work, success ? target_complete_ok_work :
868                   target_complete_failure_work);
869         if (cmd->se_cmd_flags & SCF_USE_CPUID)
870                 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
871         else
872                 queue_work(target_completion_wq, &cmd->work);
873 }
874 EXPORT_SYMBOL(target_complete_cmd);
875
876 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
877 {
878         if ((scsi_status == SAM_STAT_GOOD ||
879              cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
880             length < cmd->data_length) {
881                 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
882                         cmd->residual_count += cmd->data_length - length;
883                 } else {
884                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
885                         cmd->residual_count = cmd->data_length - length;
886                 }
887
888                 cmd->data_length = length;
889         }
890
891         target_complete_cmd(cmd, scsi_status);
892 }
893 EXPORT_SYMBOL(target_complete_cmd_with_length);
894
895 static void target_add_to_state_list(struct se_cmd *cmd)
896 {
897         struct se_device *dev = cmd->se_dev;
898         unsigned long flags;
899
900         spin_lock_irqsave(&dev->execute_task_lock, flags);
901         if (!cmd->state_active) {
902                 list_add_tail(&cmd->state_list, &dev->state_list);
903                 cmd->state_active = true;
904         }
905         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
906 }
907
908 /*
909  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
910  */
911 static void transport_write_pending_qf(struct se_cmd *cmd);
912 static void transport_complete_qf(struct se_cmd *cmd);
913
914 void target_qf_do_work(struct work_struct *work)
915 {
916         struct se_device *dev = container_of(work, struct se_device,
917                                         qf_work_queue);
918         LIST_HEAD(qf_cmd_list);
919         struct se_cmd *cmd, *cmd_tmp;
920
921         spin_lock_irq(&dev->qf_cmd_lock);
922         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
923         spin_unlock_irq(&dev->qf_cmd_lock);
924
925         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
926                 list_del(&cmd->se_qf_node);
927                 atomic_dec_mb(&dev->dev_qf_count);
928
929                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
930                         " context: %s\n", cmd->se_tfo->fabric_name, cmd,
931                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
932                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
933                         : "UNKNOWN");
934
935                 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
936                         transport_write_pending_qf(cmd);
937                 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
938                          cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
939                         transport_complete_qf(cmd);
940         }
941 }
942
943 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
944 {
945         switch (cmd->data_direction) {
946         case DMA_NONE:
947                 return "NONE";
948         case DMA_FROM_DEVICE:
949                 return "READ";
950         case DMA_TO_DEVICE:
951                 return "WRITE";
952         case DMA_BIDIRECTIONAL:
953                 return "BIDI";
954         default:
955                 break;
956         }
957
958         return "UNKNOWN";
959 }
960
961 void transport_dump_dev_state(
962         struct se_device *dev,
963         char *b,
964         int *bl)
965 {
966         *bl += sprintf(b + *bl, "Status: ");
967         if (dev->export_count)
968                 *bl += sprintf(b + *bl, "ACTIVATED");
969         else
970                 *bl += sprintf(b + *bl, "DEACTIVATED");
971
972         *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
973         *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
974                 dev->dev_attrib.block_size,
975                 dev->dev_attrib.hw_max_sectors);
976         *bl += sprintf(b + *bl, "        ");
977 }
978
979 void transport_dump_vpd_proto_id(
980         struct t10_vpd *vpd,
981         unsigned char *p_buf,
982         int p_buf_len)
983 {
984         unsigned char buf[VPD_TMP_BUF_SIZE];
985         int len;
986
987         memset(buf, 0, VPD_TMP_BUF_SIZE);
988         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
989
990         switch (vpd->protocol_identifier) {
991         case 0x00:
992                 sprintf(buf+len, "Fibre Channel\n");
993                 break;
994         case 0x10:
995                 sprintf(buf+len, "Parallel SCSI\n");
996                 break;
997         case 0x20:
998                 sprintf(buf+len, "SSA\n");
999                 break;
1000         case 0x30:
1001                 sprintf(buf+len, "IEEE 1394\n");
1002                 break;
1003         case 0x40:
1004                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1005                                 " Protocol\n");
1006                 break;
1007         case 0x50:
1008                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1009                 break;
1010         case 0x60:
1011                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1012                 break;
1013         case 0x70:
1014                 sprintf(buf+len, "Automation/Drive Interface Transport"
1015                                 " Protocol\n");
1016                 break;
1017         case 0x80:
1018                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1019                 break;
1020         default:
1021                 sprintf(buf+len, "Unknown 0x%02x\n",
1022                                 vpd->protocol_identifier);
1023                 break;
1024         }
1025
1026         if (p_buf)
1027                 strncpy(p_buf, buf, p_buf_len);
1028         else
1029                 pr_debug("%s", buf);
1030 }
1031
1032 void
1033 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1034 {
1035         /*
1036          * Check if the Protocol Identifier Valid (PIV) bit is set..
1037          *
1038          * from spc3r23.pdf section 7.5.1
1039          */
1040          if (page_83[1] & 0x80) {
1041                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1042                 vpd->protocol_identifier_set = 1;
1043                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1044         }
1045 }
1046 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1047
1048 int transport_dump_vpd_assoc(
1049         struct t10_vpd *vpd,
1050         unsigned char *p_buf,
1051         int p_buf_len)
1052 {
1053         unsigned char buf[VPD_TMP_BUF_SIZE];
1054         int ret = 0;
1055         int len;
1056
1057         memset(buf, 0, VPD_TMP_BUF_SIZE);
1058         len = sprintf(buf, "T10 VPD Identifier Association: ");
1059
1060         switch (vpd->association) {
1061         case 0x00:
1062                 sprintf(buf+len, "addressed logical unit\n");
1063                 break;
1064         case 0x10:
1065                 sprintf(buf+len, "target port\n");
1066                 break;
1067         case 0x20:
1068                 sprintf(buf+len, "SCSI target device\n");
1069                 break;
1070         default:
1071                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1072                 ret = -EINVAL;
1073                 break;
1074         }
1075
1076         if (p_buf)
1077                 strncpy(p_buf, buf, p_buf_len);
1078         else
1079                 pr_debug("%s", buf);
1080
1081         return ret;
1082 }
1083
1084 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1085 {
1086         /*
1087          * The VPD identification association..
1088          *
1089          * from spc3r23.pdf Section 7.6.3.1 Table 297
1090          */
1091         vpd->association = (page_83[1] & 0x30);
1092         return transport_dump_vpd_assoc(vpd, NULL, 0);
1093 }
1094 EXPORT_SYMBOL(transport_set_vpd_assoc);
1095
1096 int transport_dump_vpd_ident_type(
1097         struct t10_vpd *vpd,
1098         unsigned char *p_buf,
1099         int p_buf_len)
1100 {
1101         unsigned char buf[VPD_TMP_BUF_SIZE];
1102         int ret = 0;
1103         int len;
1104
1105         memset(buf, 0, VPD_TMP_BUF_SIZE);
1106         len = sprintf(buf, "T10 VPD Identifier Type: ");
1107
1108         switch (vpd->device_identifier_type) {
1109         case 0x00:
1110                 sprintf(buf+len, "Vendor specific\n");
1111                 break;
1112         case 0x01:
1113                 sprintf(buf+len, "T10 Vendor ID based\n");
1114                 break;
1115         case 0x02:
1116                 sprintf(buf+len, "EUI-64 based\n");
1117                 break;
1118         case 0x03:
1119                 sprintf(buf+len, "NAA\n");
1120                 break;
1121         case 0x04:
1122                 sprintf(buf+len, "Relative target port identifier\n");
1123                 break;
1124         case 0x08:
1125                 sprintf(buf+len, "SCSI name string\n");
1126                 break;
1127         default:
1128                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1129                                 vpd->device_identifier_type);
1130                 ret = -EINVAL;
1131                 break;
1132         }
1133
1134         if (p_buf) {
1135                 if (p_buf_len < strlen(buf)+1)
1136                         return -EINVAL;
1137                 strncpy(p_buf, buf, p_buf_len);
1138         } else {
1139                 pr_debug("%s", buf);
1140         }
1141
1142         return ret;
1143 }
1144
1145 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1146 {
1147         /*
1148          * The VPD identifier type..
1149          *
1150          * from spc3r23.pdf Section 7.6.3.1 Table 298
1151          */
1152         vpd->device_identifier_type = (page_83[1] & 0x0f);
1153         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1154 }
1155 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1156
1157 int transport_dump_vpd_ident(
1158         struct t10_vpd *vpd,
1159         unsigned char *p_buf,
1160         int p_buf_len)
1161 {
1162         unsigned char buf[VPD_TMP_BUF_SIZE];
1163         int ret = 0;
1164
1165         memset(buf, 0, VPD_TMP_BUF_SIZE);
1166
1167         switch (vpd->device_identifier_code_set) {
1168         case 0x01: /* Binary */
1169                 snprintf(buf, sizeof(buf),
1170                         "T10 VPD Binary Device Identifier: %s\n",
1171                         &vpd->device_identifier[0]);
1172                 break;
1173         case 0x02: /* ASCII */
1174                 snprintf(buf, sizeof(buf),
1175                         "T10 VPD ASCII Device Identifier: %s\n",
1176                         &vpd->device_identifier[0]);
1177                 break;
1178         case 0x03: /* UTF-8 */
1179                 snprintf(buf, sizeof(buf),
1180                         "T10 VPD UTF-8 Device Identifier: %s\n",
1181                         &vpd->device_identifier[0]);
1182                 break;
1183         default:
1184                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1185                         " 0x%02x", vpd->device_identifier_code_set);
1186                 ret = -EINVAL;
1187                 break;
1188         }
1189
1190         if (p_buf)
1191                 strncpy(p_buf, buf, p_buf_len);
1192         else
1193                 pr_debug("%s", buf);
1194
1195         return ret;
1196 }
1197
1198 int
1199 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1200 {
1201         static const char hex_str[] = "0123456789abcdef";
1202         int j = 0, i = 4; /* offset to start of the identifier */
1203
1204         /*
1205          * The VPD Code Set (encoding)
1206          *
1207          * from spc3r23.pdf Section 7.6.3.1 Table 296
1208          */
1209         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1210         switch (vpd->device_identifier_code_set) {
1211         case 0x01: /* Binary */
1212                 vpd->device_identifier[j++] =
1213                                 hex_str[vpd->device_identifier_type];
1214                 while (i < (4 + page_83[3])) {
1215                         vpd->device_identifier[j++] =
1216                                 hex_str[(page_83[i] & 0xf0) >> 4];
1217                         vpd->device_identifier[j++] =
1218                                 hex_str[page_83[i] & 0x0f];
1219                         i++;
1220                 }
1221                 break;
1222         case 0x02: /* ASCII */
1223         case 0x03: /* UTF-8 */
1224                 while (i < (4 + page_83[3]))
1225                         vpd->device_identifier[j++] = page_83[i++];
1226                 break;
1227         default:
1228                 break;
1229         }
1230
1231         return transport_dump_vpd_ident(vpd, NULL, 0);
1232 }
1233 EXPORT_SYMBOL(transport_set_vpd_ident);
1234
1235 static sense_reason_t
1236 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1237                                unsigned int size)
1238 {
1239         u32 mtl;
1240
1241         if (!cmd->se_tfo->max_data_sg_nents)
1242                 return TCM_NO_SENSE;
1243         /*
1244          * Check if fabric enforced maximum SGL entries per I/O descriptor
1245          * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1246          * residual_count and reduce original cmd->data_length to maximum
1247          * length based on single PAGE_SIZE entry scatter-lists.
1248          */
1249         mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1250         if (cmd->data_length > mtl) {
1251                 /*
1252                  * If an existing CDB overflow is present, calculate new residual
1253                  * based on CDB size minus fabric maximum transfer length.
1254                  *
1255                  * If an existing CDB underflow is present, calculate new residual
1256                  * based on original cmd->data_length minus fabric maximum transfer
1257                  * length.
1258                  *
1259                  * Otherwise, set the underflow residual based on cmd->data_length
1260                  * minus fabric maximum transfer length.
1261                  */
1262                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1263                         cmd->residual_count = (size - mtl);
1264                 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1265                         u32 orig_dl = size + cmd->residual_count;
1266                         cmd->residual_count = (orig_dl - mtl);
1267                 } else {
1268                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1269                         cmd->residual_count = (cmd->data_length - mtl);
1270                 }
1271                 cmd->data_length = mtl;
1272                 /*
1273                  * Reset sbc_check_prot() calculated protection payload
1274                  * length based upon the new smaller MTL.
1275                  */
1276                 if (cmd->prot_length) {
1277                         u32 sectors = (mtl / dev->dev_attrib.block_size);
1278                         cmd->prot_length = dev->prot_length * sectors;
1279                 }
1280         }
1281         return TCM_NO_SENSE;
1282 }
1283
1284 /**
1285  * target_cmd_size_check - Check whether there will be a residual.
1286  * @cmd: SCSI command.
1287  * @size: Data buffer size derived from CDB. The data buffer size provided by
1288  *   the SCSI transport driver is available in @cmd->data_length.
1289  *
1290  * Compare the data buffer size from the CDB with the data buffer limit from the transport
1291  * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1292  *
1293  * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd().
1294  *
1295  * Return: TCM_NO_SENSE
1296  */
1297 sense_reason_t
1298 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1299 {
1300         struct se_device *dev = cmd->se_dev;
1301
1302         if (cmd->unknown_data_length) {
1303                 cmd->data_length = size;
1304         } else if (size != cmd->data_length) {
1305                 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1306                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1307                         " 0x%02x\n", cmd->se_tfo->fabric_name,
1308                                 cmd->data_length, size, cmd->t_task_cdb[0]);
1309
1310                 if (cmd->data_direction == DMA_TO_DEVICE) {
1311                         if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1312                                 pr_err_ratelimited("Rejecting underflow/overflow"
1313                                                    " for WRITE data CDB\n");
1314                                 return TCM_INVALID_CDB_FIELD;
1315                         }
1316                         /*
1317                          * Some fabric drivers like iscsi-target still expect to
1318                          * always reject overflow writes.  Reject this case until
1319                          * full fabric driver level support for overflow writes
1320                          * is introduced tree-wide.
1321                          */
1322                         if (size > cmd->data_length) {
1323                                 pr_err_ratelimited("Rejecting overflow for"
1324                                                    " WRITE control CDB\n");
1325                                 return TCM_INVALID_CDB_FIELD;
1326                         }
1327                 }
1328                 /*
1329                  * Reject READ_* or WRITE_* with overflow/underflow for
1330                  * type SCF_SCSI_DATA_CDB.
1331                  */
1332                 if (dev->dev_attrib.block_size != 512)  {
1333                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1334                                 " CDB on non 512-byte sector setup subsystem"
1335                                 " plugin: %s\n", dev->transport->name);
1336                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1337                         return TCM_INVALID_CDB_FIELD;
1338                 }
1339                 /*
1340                  * For the overflow case keep the existing fabric provided
1341                  * ->data_length.  Otherwise for the underflow case, reset
1342                  * ->data_length to the smaller SCSI expected data transfer
1343                  * length.
1344                  */
1345                 if (size > cmd->data_length) {
1346                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1347                         cmd->residual_count = (size - cmd->data_length);
1348                 } else {
1349                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1350                         cmd->residual_count = (cmd->data_length - size);
1351                         cmd->data_length = size;
1352                 }
1353         }
1354
1355         return target_check_max_data_sg_nents(cmd, dev, size);
1356
1357 }
1358
1359 /*
1360  * Used by fabric modules containing a local struct se_cmd within their
1361  * fabric dependent per I/O descriptor.
1362  *
1363  * Preserves the value of @cmd->tag.
1364  */
1365 void transport_init_se_cmd(
1366         struct se_cmd *cmd,
1367         const struct target_core_fabric_ops *tfo,
1368         struct se_session *se_sess,
1369         u32 data_length,
1370         int data_direction,
1371         int task_attr,
1372         unsigned char *sense_buffer, u64 unpacked_lun)
1373 {
1374         INIT_LIST_HEAD(&cmd->se_delayed_node);
1375         INIT_LIST_HEAD(&cmd->se_qf_node);
1376         INIT_LIST_HEAD(&cmd->se_cmd_list);
1377         INIT_LIST_HEAD(&cmd->state_list);
1378         init_completion(&cmd->t_transport_stop_comp);
1379         cmd->free_compl = NULL;
1380         cmd->abrt_compl = NULL;
1381         spin_lock_init(&cmd->t_state_lock);
1382         INIT_WORK(&cmd->work, NULL);
1383         kref_init(&cmd->cmd_kref);
1384
1385         cmd->se_tfo = tfo;
1386         cmd->se_sess = se_sess;
1387         cmd->data_length = data_length;
1388         cmd->data_direction = data_direction;
1389         cmd->sam_task_attr = task_attr;
1390         cmd->sense_buffer = sense_buffer;
1391         cmd->orig_fe_lun = unpacked_lun;
1392
1393         cmd->state_active = false;
1394 }
1395 EXPORT_SYMBOL(transport_init_se_cmd);
1396
1397 static sense_reason_t
1398 transport_check_alloc_task_attr(struct se_cmd *cmd)
1399 {
1400         struct se_device *dev = cmd->se_dev;
1401
1402         /*
1403          * Check if SAM Task Attribute emulation is enabled for this
1404          * struct se_device storage object
1405          */
1406         if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1407                 return 0;
1408
1409         if (cmd->sam_task_attr == TCM_ACA_TAG) {
1410                 pr_debug("SAM Task Attribute ACA"
1411                         " emulation is not supported\n");
1412                 return TCM_INVALID_CDB_FIELD;
1413         }
1414
1415         return 0;
1416 }
1417
1418 sense_reason_t
1419 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb)
1420 {
1421         sense_reason_t ret;
1422
1423         cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1424         /*
1425          * Ensure that the received CDB is less than the max (252 + 8) bytes
1426          * for VARIABLE_LENGTH_CMD
1427          */
1428         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1429                 pr_err("Received SCSI CDB with command_size: %d that"
1430                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1431                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1432                 ret = TCM_INVALID_CDB_FIELD;
1433                 goto err;
1434         }
1435         /*
1436          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1437          * allocate the additional extended CDB buffer now..  Otherwise
1438          * setup the pointer from __t_task_cdb to t_task_cdb.
1439          */
1440         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1441                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1442                                                 GFP_KERNEL);
1443                 if (!cmd->t_task_cdb) {
1444                         pr_err("Unable to allocate cmd->t_task_cdb"
1445                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1446                                 scsi_command_size(cdb),
1447                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1448                         ret = TCM_OUT_OF_RESOURCES;
1449                         goto err;
1450                 }
1451         }
1452         /*
1453          * Copy the original CDB into cmd->
1454          */
1455         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1456
1457         trace_target_sequencer_start(cmd);
1458         return 0;
1459
1460 err:
1461         /*
1462          * Copy the CDB here to allow trace_target_cmd_complete() to
1463          * print the cdb to the trace buffers.
1464          */
1465         memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1466                                          (unsigned int)TCM_MAX_COMMAND_SIZE));
1467         return ret;
1468 }
1469 EXPORT_SYMBOL(target_cmd_init_cdb);
1470
1471 sense_reason_t
1472 target_cmd_parse_cdb(struct se_cmd *cmd)
1473 {
1474         struct se_device *dev = cmd->se_dev;
1475         sense_reason_t ret;
1476
1477         ret = dev->transport->parse_cdb(cmd);
1478         if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1479                 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1480                                     cmd->se_tfo->fabric_name,
1481                                     cmd->se_sess->se_node_acl->initiatorname,
1482                                     cmd->t_task_cdb[0]);
1483         if (ret)
1484                 return ret;
1485
1486         ret = transport_check_alloc_task_attr(cmd);
1487         if (ret)
1488                 return ret;
1489
1490         cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1491         atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1492         return 0;
1493 }
1494 EXPORT_SYMBOL(target_cmd_parse_cdb);
1495
1496 /*
1497  * Used by fabric module frontends to queue tasks directly.
1498  * May only be used from process context.
1499  */
1500 int transport_handle_cdb_direct(
1501         struct se_cmd *cmd)
1502 {
1503         sense_reason_t ret;
1504
1505         if (!cmd->se_lun) {
1506                 dump_stack();
1507                 pr_err("cmd->se_lun is NULL\n");
1508                 return -EINVAL;
1509         }
1510         if (in_interrupt()) {
1511                 dump_stack();
1512                 pr_err("transport_generic_handle_cdb cannot be called"
1513                                 " from interrupt context\n");
1514                 return -EINVAL;
1515         }
1516         /*
1517          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1518          * outstanding descriptors are handled correctly during shutdown via
1519          * transport_wait_for_tasks()
1520          *
1521          * Also, we don't take cmd->t_state_lock here as we only expect
1522          * this to be called for initial descriptor submission.
1523          */
1524         cmd->t_state = TRANSPORT_NEW_CMD;
1525         cmd->transport_state |= CMD_T_ACTIVE;
1526
1527         /*
1528          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1529          * so follow TRANSPORT_NEW_CMD processing thread context usage
1530          * and call transport_generic_request_failure() if necessary..
1531          */
1532         ret = transport_generic_new_cmd(cmd);
1533         if (ret)
1534                 transport_generic_request_failure(cmd, ret);
1535         return 0;
1536 }
1537 EXPORT_SYMBOL(transport_handle_cdb_direct);
1538
1539 sense_reason_t
1540 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1541                 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1542 {
1543         if (!sgl || !sgl_count)
1544                 return 0;
1545
1546         /*
1547          * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1548          * scatterlists already have been set to follow what the fabric
1549          * passes for the original expected data transfer length.
1550          */
1551         if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1552                 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1553                         " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1554                 return TCM_INVALID_CDB_FIELD;
1555         }
1556
1557         cmd->t_data_sg = sgl;
1558         cmd->t_data_nents = sgl_count;
1559         cmd->t_bidi_data_sg = sgl_bidi;
1560         cmd->t_bidi_data_nents = sgl_bidi_count;
1561
1562         cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1563         return 0;
1564 }
1565
1566 /**
1567  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1568  *                       se_cmd + use pre-allocated SGL memory.
1569  *
1570  * @se_cmd: command descriptor to submit
1571  * @se_sess: associated se_sess for endpoint
1572  * @cdb: pointer to SCSI CDB
1573  * @sense: pointer to SCSI sense buffer
1574  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1575  * @data_length: fabric expected data transfer length
1576  * @task_attr: SAM task attribute
1577  * @data_dir: DMA data direction
1578  * @flags: flags for command submission from target_sc_flags_tables
1579  * @sgl: struct scatterlist memory for unidirectional mapping
1580  * @sgl_count: scatterlist count for unidirectional mapping
1581  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1582  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1583  * @sgl_prot: struct scatterlist memory protection information
1584  * @sgl_prot_count: scatterlist count for protection information
1585  *
1586  * Task tags are supported if the caller has set @se_cmd->tag.
1587  *
1588  * Returns non zero to signal active I/O shutdown failure.  All other
1589  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1590  * but still return zero here.
1591  *
1592  * This may only be called from process context, and also currently
1593  * assumes internal allocation of fabric payload buffer by target-core.
1594  */
1595 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1596                 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1597                 u32 data_length, int task_attr, int data_dir, int flags,
1598                 struct scatterlist *sgl, u32 sgl_count,
1599                 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1600                 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1601 {
1602         struct se_portal_group *se_tpg;
1603         sense_reason_t rc;
1604         int ret;
1605
1606         se_tpg = se_sess->se_tpg;
1607         BUG_ON(!se_tpg);
1608         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1609         BUG_ON(in_interrupt());
1610         /*
1611          * Initialize se_cmd for target operation.  From this point
1612          * exceptions are handled by sending exception status via
1613          * target_core_fabric_ops->queue_status() callback
1614          */
1615         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1616                                 data_length, data_dir, task_attr, sense,
1617                                 unpacked_lun);
1618
1619         if (flags & TARGET_SCF_USE_CPUID)
1620                 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1621         else
1622                 se_cmd->cpuid = WORK_CPU_UNBOUND;
1623
1624         if (flags & TARGET_SCF_UNKNOWN_SIZE)
1625                 se_cmd->unknown_data_length = 1;
1626         /*
1627          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1628          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1629          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1630          * kref_put() to happen during fabric packet acknowledgement.
1631          */
1632         ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1633         if (ret)
1634                 return ret;
1635         /*
1636          * Signal bidirectional data payloads to target-core
1637          */
1638         if (flags & TARGET_SCF_BIDI_OP)
1639                 se_cmd->se_cmd_flags |= SCF_BIDI;
1640
1641         rc = target_cmd_init_cdb(se_cmd, cdb);
1642         if (rc) {
1643                 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1644                 target_put_sess_cmd(se_cmd);
1645                 return 0;
1646         }
1647
1648         /*
1649          * Locate se_lun pointer and attach it to struct se_cmd
1650          */
1651         rc = transport_lookup_cmd_lun(se_cmd);
1652         if (rc) {
1653                 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1654                 target_put_sess_cmd(se_cmd);
1655                 return 0;
1656         }
1657
1658         rc = target_cmd_parse_cdb(se_cmd);
1659         if (rc != 0) {
1660                 transport_generic_request_failure(se_cmd, rc);
1661                 return 0;
1662         }
1663
1664         /*
1665          * Save pointers for SGLs containing protection information,
1666          * if present.
1667          */
1668         if (sgl_prot_count) {
1669                 se_cmd->t_prot_sg = sgl_prot;
1670                 se_cmd->t_prot_nents = sgl_prot_count;
1671                 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1672         }
1673
1674         /*
1675          * When a non zero sgl_count has been passed perform SGL passthrough
1676          * mapping for pre-allocated fabric memory instead of having target
1677          * core perform an internal SGL allocation..
1678          */
1679         if (sgl_count != 0) {
1680                 BUG_ON(!sgl);
1681
1682                 /*
1683                  * A work-around for tcm_loop as some userspace code via
1684                  * scsi-generic do not memset their associated read buffers,
1685                  * so go ahead and do that here for type non-data CDBs.  Also
1686                  * note that this is currently guaranteed to be a single SGL
1687                  * for this case by target core in target_setup_cmd_from_cdb()
1688                  * -> transport_generic_cmd_sequencer().
1689                  */
1690                 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1691                      se_cmd->data_direction == DMA_FROM_DEVICE) {
1692                         unsigned char *buf = NULL;
1693
1694                         if (sgl)
1695                                 buf = kmap(sg_page(sgl)) + sgl->offset;
1696
1697                         if (buf) {
1698                                 memset(buf, 0, sgl->length);
1699                                 kunmap(sg_page(sgl));
1700                         }
1701                 }
1702
1703                 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1704                                 sgl_bidi, sgl_bidi_count);
1705                 if (rc != 0) {
1706                         transport_generic_request_failure(se_cmd, rc);
1707                         return 0;
1708                 }
1709         }
1710
1711         /*
1712          * Check if we need to delay processing because of ALUA
1713          * Active/NonOptimized primary access state..
1714          */
1715         core_alua_check_nonop_delay(se_cmd);
1716
1717         transport_handle_cdb_direct(se_cmd);
1718         return 0;
1719 }
1720 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1721
1722 /**
1723  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1724  *
1725  * @se_cmd: command descriptor to submit
1726  * @se_sess: associated se_sess for endpoint
1727  * @cdb: pointer to SCSI CDB
1728  * @sense: pointer to SCSI sense buffer
1729  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1730  * @data_length: fabric expected data transfer length
1731  * @task_attr: SAM task attribute
1732  * @data_dir: DMA data direction
1733  * @flags: flags for command submission from target_sc_flags_tables
1734  *
1735  * Task tags are supported if the caller has set @se_cmd->tag.
1736  *
1737  * Returns non zero to signal active I/O shutdown failure.  All other
1738  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1739  * but still return zero here.
1740  *
1741  * This may only be called from process context, and also currently
1742  * assumes internal allocation of fabric payload buffer by target-core.
1743  *
1744  * It also assumes interal target core SGL memory allocation.
1745  */
1746 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1747                 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1748                 u32 data_length, int task_attr, int data_dir, int flags)
1749 {
1750         return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1751                         unpacked_lun, data_length, task_attr, data_dir,
1752                         flags, NULL, 0, NULL, 0, NULL, 0);
1753 }
1754 EXPORT_SYMBOL(target_submit_cmd);
1755
1756 static void target_complete_tmr_failure(struct work_struct *work)
1757 {
1758         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1759
1760         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1761         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1762
1763         transport_lun_remove_cmd(se_cmd);
1764         transport_cmd_check_stop_to_fabric(se_cmd);
1765 }
1766
1767 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1768                                        u64 *unpacked_lun)
1769 {
1770         struct se_cmd *se_cmd;
1771         unsigned long flags;
1772         bool ret = false;
1773
1774         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1775         list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1776                 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1777                         continue;
1778
1779                 if (se_cmd->tag == tag) {
1780                         *unpacked_lun = se_cmd->orig_fe_lun;
1781                         ret = true;
1782                         break;
1783                 }
1784         }
1785         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1786
1787         return ret;
1788 }
1789
1790 /**
1791  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1792  *                     for TMR CDBs
1793  *
1794  * @se_cmd: command descriptor to submit
1795  * @se_sess: associated se_sess for endpoint
1796  * @sense: pointer to SCSI sense buffer
1797  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1798  * @fabric_tmr_ptr: fabric context for TMR req
1799  * @tm_type: Type of TM request
1800  * @gfp: gfp type for caller
1801  * @tag: referenced task tag for TMR_ABORT_TASK
1802  * @flags: submit cmd flags
1803  *
1804  * Callable from all contexts.
1805  **/
1806
1807 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1808                 unsigned char *sense, u64 unpacked_lun,
1809                 void *fabric_tmr_ptr, unsigned char tm_type,
1810                 gfp_t gfp, u64 tag, int flags)
1811 {
1812         struct se_portal_group *se_tpg;
1813         int ret;
1814
1815         se_tpg = se_sess->se_tpg;
1816         BUG_ON(!se_tpg);
1817
1818         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1819                               0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
1820         /*
1821          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1822          * allocation failure.
1823          */
1824         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1825         if (ret < 0)
1826                 return -ENOMEM;
1827
1828         if (tm_type == TMR_ABORT_TASK)
1829                 se_cmd->se_tmr_req->ref_task_tag = tag;
1830
1831         /* See target_submit_cmd for commentary */
1832         ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1833         if (ret) {
1834                 core_tmr_release_req(se_cmd->se_tmr_req);
1835                 return ret;
1836         }
1837         /*
1838          * If this is ABORT_TASK with no explicit fabric provided LUN,
1839          * go ahead and search active session tags for a match to figure
1840          * out unpacked_lun for the original se_cmd.
1841          */
1842         if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1843                 if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
1844                         goto failure;
1845         }
1846
1847         ret = transport_lookup_tmr_lun(se_cmd);
1848         if (ret)
1849                 goto failure;
1850
1851         transport_generic_handle_tmr(se_cmd);
1852         return 0;
1853
1854         /*
1855          * For callback during failure handling, push this work off
1856          * to process context with TMR_LUN_DOES_NOT_EXIST status.
1857          */
1858 failure:
1859         INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1860         schedule_work(&se_cmd->work);
1861         return 0;
1862 }
1863 EXPORT_SYMBOL(target_submit_tmr);
1864
1865 /*
1866  * Handle SAM-esque emulation for generic transport request failures.
1867  */
1868 void transport_generic_request_failure(struct se_cmd *cmd,
1869                 sense_reason_t sense_reason)
1870 {
1871         int ret = 0, post_ret;
1872
1873         pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1874                  sense_reason);
1875         target_show_cmd("-----[ ", cmd);
1876
1877         /*
1878          * For SAM Task Attribute emulation for failed struct se_cmd
1879          */
1880         transport_complete_task_attr(cmd);
1881
1882         if (cmd->transport_complete_callback)
1883                 cmd->transport_complete_callback(cmd, false, &post_ret);
1884
1885         if (cmd->transport_state & CMD_T_ABORTED) {
1886                 INIT_WORK(&cmd->work, target_abort_work);
1887                 queue_work(target_completion_wq, &cmd->work);
1888                 return;
1889         }
1890
1891         switch (sense_reason) {
1892         case TCM_NON_EXISTENT_LUN:
1893         case TCM_UNSUPPORTED_SCSI_OPCODE:
1894         case TCM_INVALID_CDB_FIELD:
1895         case TCM_INVALID_PARAMETER_LIST:
1896         case TCM_PARAMETER_LIST_LENGTH_ERROR:
1897         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1898         case TCM_UNKNOWN_MODE_PAGE:
1899         case TCM_WRITE_PROTECTED:
1900         case TCM_ADDRESS_OUT_OF_RANGE:
1901         case TCM_CHECK_CONDITION_ABORT_CMD:
1902         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1903         case TCM_CHECK_CONDITION_NOT_READY:
1904         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1905         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1906         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1907         case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1908         case TCM_TOO_MANY_TARGET_DESCS:
1909         case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1910         case TCM_TOO_MANY_SEGMENT_DESCS:
1911         case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1912                 break;
1913         case TCM_OUT_OF_RESOURCES:
1914                 cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
1915                 goto queue_status;
1916         case TCM_LUN_BUSY:
1917                 cmd->scsi_status = SAM_STAT_BUSY;
1918                 goto queue_status;
1919         case TCM_RESERVATION_CONFLICT:
1920                 /*
1921                  * No SENSE Data payload for this case, set SCSI Status
1922                  * and queue the response to $FABRIC_MOD.
1923                  *
1924                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1925                  */
1926                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1927                 /*
1928                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1929                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1930                  * CONFLICT STATUS.
1931                  *
1932                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1933                  */
1934                 if (cmd->se_sess &&
1935                     cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
1936                                         == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
1937                         target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1938                                                cmd->orig_fe_lun, 0x2C,
1939                                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1940                 }
1941
1942                 goto queue_status;
1943         default:
1944                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1945                         cmd->t_task_cdb[0], sense_reason);
1946                 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1947                 break;
1948         }
1949
1950         ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1951         if (ret)
1952                 goto queue_full;
1953
1954 check_stop:
1955         transport_lun_remove_cmd(cmd);
1956         transport_cmd_check_stop_to_fabric(cmd);
1957         return;
1958
1959 queue_status:
1960         trace_target_cmd_complete(cmd);
1961         ret = cmd->se_tfo->queue_status(cmd);
1962         if (!ret)
1963                 goto check_stop;
1964 queue_full:
1965         transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1966 }
1967 EXPORT_SYMBOL(transport_generic_request_failure);
1968
1969 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1970 {
1971         sense_reason_t ret;
1972
1973         if (!cmd->execute_cmd) {
1974                 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1975                 goto err;
1976         }
1977         if (do_checks) {
1978                 /*
1979                  * Check for an existing UNIT ATTENTION condition after
1980                  * target_handle_task_attr() has done SAM task attr
1981                  * checking, and possibly have already defered execution
1982                  * out to target_restart_delayed_cmds() context.
1983                  */
1984                 ret = target_scsi3_ua_check(cmd);
1985                 if (ret)
1986                         goto err;
1987
1988                 ret = target_alua_state_check(cmd);
1989                 if (ret)
1990                         goto err;
1991
1992                 ret = target_check_reservation(cmd);
1993                 if (ret) {
1994                         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1995                         goto err;
1996                 }
1997         }
1998
1999         ret = cmd->execute_cmd(cmd);
2000         if (!ret)
2001                 return;
2002 err:
2003         spin_lock_irq(&cmd->t_state_lock);
2004         cmd->transport_state &= ~CMD_T_SENT;
2005         spin_unlock_irq(&cmd->t_state_lock);
2006
2007         transport_generic_request_failure(cmd, ret);
2008 }
2009
2010 static int target_write_prot_action(struct se_cmd *cmd)
2011 {
2012         u32 sectors;
2013         /*
2014          * Perform WRITE_INSERT of PI using software emulation when backend
2015          * device has PI enabled, if the transport has not already generated
2016          * PI using hardware WRITE_INSERT offload.
2017          */
2018         switch (cmd->prot_op) {
2019         case TARGET_PROT_DOUT_INSERT:
2020                 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2021                         sbc_dif_generate(cmd);
2022                 break;
2023         case TARGET_PROT_DOUT_STRIP:
2024                 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2025                         break;
2026
2027                 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2028                 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2029                                              sectors, 0, cmd->t_prot_sg, 0);
2030                 if (unlikely(cmd->pi_err)) {
2031                         spin_lock_irq(&cmd->t_state_lock);
2032                         cmd->transport_state &= ~CMD_T_SENT;
2033                         spin_unlock_irq(&cmd->t_state_lock);
2034                         transport_generic_request_failure(cmd, cmd->pi_err);
2035                         return -1;
2036                 }
2037                 break;
2038         default:
2039                 break;
2040         }
2041
2042         return 0;
2043 }
2044
2045 static bool target_handle_task_attr(struct se_cmd *cmd)
2046 {
2047         struct se_device *dev = cmd->se_dev;
2048
2049         if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2050                 return false;
2051
2052         cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2053
2054         /*
2055          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2056          * to allow the passed struct se_cmd list of tasks to the front of the list.
2057          */
2058         switch (cmd->sam_task_attr) {
2059         case TCM_HEAD_TAG:
2060                 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2061                          cmd->t_task_cdb[0]);
2062                 return false;
2063         case TCM_ORDERED_TAG:
2064                 atomic_inc_mb(&dev->dev_ordered_sync);
2065
2066                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2067                          cmd->t_task_cdb[0]);
2068
2069                 /*
2070                  * Execute an ORDERED command if no other older commands
2071                  * exist that need to be completed first.
2072                  */
2073                 if (!atomic_read(&dev->simple_cmds))
2074                         return false;
2075                 break;
2076         default:
2077                 /*
2078                  * For SIMPLE and UNTAGGED Task Attribute commands
2079                  */
2080                 atomic_inc_mb(&dev->simple_cmds);
2081                 break;
2082         }
2083
2084         if (atomic_read(&dev->dev_ordered_sync) == 0)
2085                 return false;
2086
2087         spin_lock(&dev->delayed_cmd_lock);
2088         list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2089         spin_unlock(&dev->delayed_cmd_lock);
2090
2091         pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2092                 cmd->t_task_cdb[0], cmd->sam_task_attr);
2093         return true;
2094 }
2095
2096 void target_execute_cmd(struct se_cmd *cmd)
2097 {
2098         /*
2099          * Determine if frontend context caller is requesting the stopping of
2100          * this command for frontend exceptions.
2101          *
2102          * If the received CDB has already been aborted stop processing it here.
2103          */
2104         if (target_cmd_interrupted(cmd))
2105                 return;
2106
2107         spin_lock_irq(&cmd->t_state_lock);
2108         cmd->t_state = TRANSPORT_PROCESSING;
2109         cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2110         spin_unlock_irq(&cmd->t_state_lock);
2111
2112         if (target_write_prot_action(cmd))
2113                 return;
2114
2115         if (target_handle_task_attr(cmd)) {
2116                 spin_lock_irq(&cmd->t_state_lock);
2117                 cmd->transport_state &= ~CMD_T_SENT;
2118                 spin_unlock_irq(&cmd->t_state_lock);
2119                 return;
2120         }
2121
2122         __target_execute_cmd(cmd, true);
2123 }
2124 EXPORT_SYMBOL(target_execute_cmd);
2125
2126 /*
2127  * Process all commands up to the last received ORDERED task attribute which
2128  * requires another blocking boundary
2129  */
2130 static void target_restart_delayed_cmds(struct se_device *dev)
2131 {
2132         for (;;) {
2133                 struct se_cmd *cmd;
2134
2135                 spin_lock(&dev->delayed_cmd_lock);
2136                 if (list_empty(&dev->delayed_cmd_list)) {
2137                         spin_unlock(&dev->delayed_cmd_lock);
2138                         break;
2139                 }
2140
2141                 cmd = list_entry(dev->delayed_cmd_list.next,
2142                                  struct se_cmd, se_delayed_node);
2143                 list_del(&cmd->se_delayed_node);
2144                 spin_unlock(&dev->delayed_cmd_lock);
2145
2146                 cmd->transport_state |= CMD_T_SENT;
2147
2148                 __target_execute_cmd(cmd, true);
2149
2150                 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2151                         break;
2152         }
2153 }
2154
2155 /*
2156  * Called from I/O completion to determine which dormant/delayed
2157  * and ordered cmds need to have their tasks added to the execution queue.
2158  */
2159 static void transport_complete_task_attr(struct se_cmd *cmd)
2160 {
2161         struct se_device *dev = cmd->se_dev;
2162
2163         if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2164                 return;
2165
2166         if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2167                 goto restart;
2168
2169         if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2170                 atomic_dec_mb(&dev->simple_cmds);
2171                 dev->dev_cur_ordered_id++;
2172         } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2173                 dev->dev_cur_ordered_id++;
2174                 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2175                          dev->dev_cur_ordered_id);
2176         } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2177                 atomic_dec_mb(&dev->dev_ordered_sync);
2178
2179                 dev->dev_cur_ordered_id++;
2180                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2181                          dev->dev_cur_ordered_id);
2182         }
2183         cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2184
2185 restart:
2186         target_restart_delayed_cmds(dev);
2187 }
2188
2189 static void transport_complete_qf(struct se_cmd *cmd)
2190 {
2191         int ret = 0;
2192
2193         transport_complete_task_attr(cmd);
2194         /*
2195          * If a fabric driver ->write_pending() or ->queue_data_in() callback
2196          * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2197          * the same callbacks should not be retried.  Return CHECK_CONDITION
2198          * if a scsi_status is not already set.
2199          *
2200          * If a fabric driver ->queue_status() has returned non zero, always
2201          * keep retrying no matter what..
2202          */
2203         if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2204                 if (cmd->scsi_status)
2205                         goto queue_status;
2206
2207                 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2208                 goto queue_status;
2209         }
2210
2211         /*
2212          * Check if we need to send a sense buffer from
2213          * the struct se_cmd in question. We do NOT want
2214          * to take this path of the IO has been marked as
2215          * needing to be treated like a "normal read". This
2216          * is the case if it's a tape read, and either the
2217          * FM, EOM, or ILI bits are set, but there is no
2218          * sense data.
2219          */
2220         if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2221             cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2222                 goto queue_status;
2223
2224         switch (cmd->data_direction) {
2225         case DMA_FROM_DEVICE:
2226                 /* queue status if not treating this as a normal read */
2227                 if (cmd->scsi_status &&
2228                     !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2229                         goto queue_status;
2230
2231                 trace_target_cmd_complete(cmd);
2232                 ret = cmd->se_tfo->queue_data_in(cmd);
2233                 break;
2234         case DMA_TO_DEVICE:
2235                 if (cmd->se_cmd_flags & SCF_BIDI) {
2236                         ret = cmd->se_tfo->queue_data_in(cmd);
2237                         break;
2238                 }
2239                 fallthrough;
2240         case DMA_NONE:
2241 queue_status:
2242                 trace_target_cmd_complete(cmd);
2243                 ret = cmd->se_tfo->queue_status(cmd);
2244                 break;
2245         default:
2246                 break;
2247         }
2248
2249         if (ret < 0) {
2250                 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2251                 return;
2252         }
2253         transport_lun_remove_cmd(cmd);
2254         transport_cmd_check_stop_to_fabric(cmd);
2255 }
2256
2257 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2258                                         int err, bool write_pending)
2259 {
2260         /*
2261          * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2262          * ->queue_data_in() callbacks from new process context.
2263          *
2264          * Otherwise for other errors, transport_complete_qf() will send
2265          * CHECK_CONDITION via ->queue_status() instead of attempting to
2266          * retry associated fabric driver data-transfer callbacks.
2267          */
2268         if (err == -EAGAIN || err == -ENOMEM) {
2269                 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2270                                                  TRANSPORT_COMPLETE_QF_OK;
2271         } else {
2272                 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2273                 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2274         }
2275
2276         spin_lock_irq(&dev->qf_cmd_lock);
2277         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2278         atomic_inc_mb(&dev->dev_qf_count);
2279         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2280
2281         schedule_work(&cmd->se_dev->qf_work_queue);
2282 }
2283
2284 static bool target_read_prot_action(struct se_cmd *cmd)
2285 {
2286         switch (cmd->prot_op) {
2287         case TARGET_PROT_DIN_STRIP:
2288                 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2289                         u32 sectors = cmd->data_length >>
2290                                   ilog2(cmd->se_dev->dev_attrib.block_size);
2291
2292                         cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2293                                                      sectors, 0, cmd->t_prot_sg,
2294                                                      0);
2295                         if (cmd->pi_err)
2296                                 return true;
2297                 }
2298                 break;
2299         case TARGET_PROT_DIN_INSERT:
2300                 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2301                         break;
2302
2303                 sbc_dif_generate(cmd);
2304                 break;
2305         default:
2306                 break;
2307         }
2308
2309         return false;
2310 }
2311
2312 static void target_complete_ok_work(struct work_struct *work)
2313 {
2314         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2315         int ret;
2316
2317         /*
2318          * Check if we need to move delayed/dormant tasks from cmds on the
2319          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2320          * Attribute.
2321          */
2322         transport_complete_task_attr(cmd);
2323
2324         /*
2325          * Check to schedule QUEUE_FULL work, or execute an existing
2326          * cmd->transport_qf_callback()
2327          */
2328         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2329                 schedule_work(&cmd->se_dev->qf_work_queue);
2330
2331         /*
2332          * Check if we need to send a sense buffer from
2333          * the struct se_cmd in question. We do NOT want
2334          * to take this path of the IO has been marked as
2335          * needing to be treated like a "normal read". This
2336          * is the case if it's a tape read, and either the
2337          * FM, EOM, or ILI bits are set, but there is no
2338          * sense data.
2339          */
2340         if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2341             cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2342                 WARN_ON(!cmd->scsi_status);
2343                 ret = transport_send_check_condition_and_sense(
2344                                         cmd, 0, 1);
2345                 if (ret)
2346                         goto queue_full;
2347
2348                 transport_lun_remove_cmd(cmd);
2349                 transport_cmd_check_stop_to_fabric(cmd);
2350                 return;
2351         }
2352         /*
2353          * Check for a callback, used by amongst other things
2354          * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2355          */
2356         if (cmd->transport_complete_callback) {
2357                 sense_reason_t rc;
2358                 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2359                 bool zero_dl = !(cmd->data_length);
2360                 int post_ret = 0;
2361
2362                 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2363                 if (!rc && !post_ret) {
2364                         if (caw && zero_dl)
2365                                 goto queue_rsp;
2366
2367                         return;
2368                 } else if (rc) {
2369                         ret = transport_send_check_condition_and_sense(cmd,
2370                                                 rc, 0);
2371                         if (ret)
2372                                 goto queue_full;
2373
2374                         transport_lun_remove_cmd(cmd);
2375                         transport_cmd_check_stop_to_fabric(cmd);
2376                         return;
2377                 }
2378         }
2379
2380 queue_rsp:
2381         switch (cmd->data_direction) {
2382         case DMA_FROM_DEVICE:
2383                 /*
2384                  * if this is a READ-type IO, but SCSI status
2385                  * is set, then skip returning data and just
2386                  * return the status -- unless this IO is marked
2387                  * as needing to be treated as a normal read,
2388                  * in which case we want to go ahead and return
2389                  * the data. This happens, for example, for tape
2390                  * reads with the FM, EOM, or ILI bits set, with
2391                  * no sense data.
2392                  */
2393                 if (cmd->scsi_status &&
2394                     !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2395                         goto queue_status;
2396
2397                 atomic_long_add(cmd->data_length,
2398                                 &cmd->se_lun->lun_stats.tx_data_octets);
2399                 /*
2400                  * Perform READ_STRIP of PI using software emulation when
2401                  * backend had PI enabled, if the transport will not be
2402                  * performing hardware READ_STRIP offload.
2403                  */
2404                 if (target_read_prot_action(cmd)) {
2405                         ret = transport_send_check_condition_and_sense(cmd,
2406                                                 cmd->pi_err, 0);
2407                         if (ret)
2408                                 goto queue_full;
2409
2410                         transport_lun_remove_cmd(cmd);
2411                         transport_cmd_check_stop_to_fabric(cmd);
2412                         return;
2413                 }
2414
2415                 trace_target_cmd_complete(cmd);
2416                 ret = cmd->se_tfo->queue_data_in(cmd);
2417                 if (ret)
2418                         goto queue_full;
2419                 break;
2420         case DMA_TO_DEVICE:
2421                 atomic_long_add(cmd->data_length,
2422                                 &cmd->se_lun->lun_stats.rx_data_octets);
2423                 /*
2424                  * Check if we need to send READ payload for BIDI-COMMAND
2425                  */
2426                 if (cmd->se_cmd_flags & SCF_BIDI) {
2427                         atomic_long_add(cmd->data_length,
2428                                         &cmd->se_lun->lun_stats.tx_data_octets);
2429                         ret = cmd->se_tfo->queue_data_in(cmd);
2430                         if (ret)
2431                                 goto queue_full;
2432                         break;
2433                 }
2434                 fallthrough;
2435         case DMA_NONE:
2436 queue_status:
2437                 trace_target_cmd_complete(cmd);
2438                 ret = cmd->se_tfo->queue_status(cmd);
2439                 if (ret)
2440                         goto queue_full;
2441                 break;
2442         default:
2443                 break;
2444         }
2445
2446         transport_lun_remove_cmd(cmd);
2447         transport_cmd_check_stop_to_fabric(cmd);
2448         return;
2449
2450 queue_full:
2451         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2452                 " data_direction: %d\n", cmd, cmd->data_direction);
2453
2454         transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2455 }
2456
2457 void target_free_sgl(struct scatterlist *sgl, int nents)
2458 {
2459         sgl_free_n_order(sgl, nents, 0);
2460 }
2461 EXPORT_SYMBOL(target_free_sgl);
2462
2463 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2464 {
2465         /*
2466          * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2467          * emulation, and free + reset pointers if necessary..
2468          */
2469         if (!cmd->t_data_sg_orig)
2470                 return;
2471
2472         kfree(cmd->t_data_sg);
2473         cmd->t_data_sg = cmd->t_data_sg_orig;
2474         cmd->t_data_sg_orig = NULL;
2475         cmd->t_data_nents = cmd->t_data_nents_orig;
2476         cmd->t_data_nents_orig = 0;
2477 }
2478
2479 static inline void transport_free_pages(struct se_cmd *cmd)
2480 {
2481         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2482                 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2483                 cmd->t_prot_sg = NULL;
2484                 cmd->t_prot_nents = 0;
2485         }
2486
2487         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2488                 /*
2489                  * Release special case READ buffer payload required for
2490                  * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2491                  */
2492                 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2493                         target_free_sgl(cmd->t_bidi_data_sg,
2494                                            cmd->t_bidi_data_nents);
2495                         cmd->t_bidi_data_sg = NULL;
2496                         cmd->t_bidi_data_nents = 0;
2497                 }
2498                 transport_reset_sgl_orig(cmd);
2499                 return;
2500         }
2501         transport_reset_sgl_orig(cmd);
2502
2503         target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2504         cmd->t_data_sg = NULL;
2505         cmd->t_data_nents = 0;
2506
2507         target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2508         cmd->t_bidi_data_sg = NULL;
2509         cmd->t_bidi_data_nents = 0;
2510 }
2511
2512 void *transport_kmap_data_sg(struct se_cmd *cmd)
2513 {
2514         struct scatterlist *sg = cmd->t_data_sg;
2515         struct page **pages;
2516         int i;
2517
2518         /*
2519          * We need to take into account a possible offset here for fabrics like
2520          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2521          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2522          */
2523         if (!cmd->t_data_nents)
2524                 return NULL;
2525
2526         BUG_ON(!sg);
2527         if (cmd->t_data_nents == 1)
2528                 return kmap(sg_page(sg)) + sg->offset;
2529
2530         /* >1 page. use vmap */
2531         pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2532         if (!pages)
2533                 return NULL;
2534
2535         /* convert sg[] to pages[] */
2536         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2537                 pages[i] = sg_page(sg);
2538         }
2539
2540         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2541         kfree(pages);
2542         if (!cmd->t_data_vmap)
2543                 return NULL;
2544
2545         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2546 }
2547 EXPORT_SYMBOL(transport_kmap_data_sg);
2548
2549 void transport_kunmap_data_sg(struct se_cmd *cmd)
2550 {
2551         if (!cmd->t_data_nents) {
2552                 return;
2553         } else if (cmd->t_data_nents == 1) {
2554                 kunmap(sg_page(cmd->t_data_sg));
2555                 return;
2556         }
2557
2558         vunmap(cmd->t_data_vmap);
2559         cmd->t_data_vmap = NULL;
2560 }
2561 EXPORT_SYMBOL(transport_kunmap_data_sg);
2562
2563 int
2564 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2565                  bool zero_page, bool chainable)
2566 {
2567         gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2568
2569         *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2570         return *sgl ? 0 : -ENOMEM;
2571 }
2572 EXPORT_SYMBOL(target_alloc_sgl);
2573
2574 /*
2575  * Allocate any required resources to execute the command.  For writes we
2576  * might not have the payload yet, so notify the fabric via a call to
2577  * ->write_pending instead. Otherwise place it on the execution queue.
2578  */
2579 sense_reason_t
2580 transport_generic_new_cmd(struct se_cmd *cmd)
2581 {
2582         unsigned long flags;
2583         int ret = 0;
2584         bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2585
2586         if (cmd->prot_op != TARGET_PROT_NORMAL &&
2587             !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2588                 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2589                                        cmd->prot_length, true, false);
2590                 if (ret < 0)
2591                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2592         }
2593
2594         /*
2595          * Determine if the TCM fabric module has already allocated physical
2596          * memory, and is directly calling transport_generic_map_mem_to_cmd()
2597          * beforehand.
2598          */
2599         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2600             cmd->data_length) {
2601
2602                 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2603                     (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2604                         u32 bidi_length;
2605
2606                         if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2607                                 bidi_length = cmd->t_task_nolb *
2608                                               cmd->se_dev->dev_attrib.block_size;
2609                         else
2610                                 bidi_length = cmd->data_length;
2611
2612                         ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2613                                                &cmd->t_bidi_data_nents,
2614                                                bidi_length, zero_flag, false);
2615                         if (ret < 0)
2616                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2617                 }
2618
2619                 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2620                                        cmd->data_length, zero_flag, false);
2621                 if (ret < 0)
2622                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2623         } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2624                     cmd->data_length) {
2625                 /*
2626                  * Special case for COMPARE_AND_WRITE with fabrics
2627                  * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2628                  */
2629                 u32 caw_length = cmd->t_task_nolb *
2630                                  cmd->se_dev->dev_attrib.block_size;
2631
2632                 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2633                                        &cmd->t_bidi_data_nents,
2634                                        caw_length, zero_flag, false);
2635                 if (ret < 0)
2636                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2637         }
2638         /*
2639          * If this command is not a write we can execute it right here,
2640          * for write buffers we need to notify the fabric driver first
2641          * and let it call back once the write buffers are ready.
2642          */
2643         target_add_to_state_list(cmd);
2644         if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2645                 target_execute_cmd(cmd);
2646                 return 0;
2647         }
2648
2649         spin_lock_irqsave(&cmd->t_state_lock, flags);
2650         cmd->t_state = TRANSPORT_WRITE_PENDING;
2651         /*
2652          * Determine if frontend context caller is requesting the stopping of
2653          * this command for frontend exceptions.
2654          */
2655         if (cmd->transport_state & CMD_T_STOP &&
2656             !cmd->se_tfo->write_pending_must_be_called) {
2657                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2658                          __func__, __LINE__, cmd->tag);
2659
2660                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2661
2662                 complete_all(&cmd->t_transport_stop_comp);
2663                 return 0;
2664         }
2665         cmd->transport_state &= ~CMD_T_ACTIVE;
2666         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2667
2668         ret = cmd->se_tfo->write_pending(cmd);
2669         if (ret)
2670                 goto queue_full;
2671
2672         return 0;
2673
2674 queue_full:
2675         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2676         transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2677         return 0;
2678 }
2679 EXPORT_SYMBOL(transport_generic_new_cmd);
2680
2681 static void transport_write_pending_qf(struct se_cmd *cmd)
2682 {
2683         unsigned long flags;
2684         int ret;
2685         bool stop;
2686
2687         spin_lock_irqsave(&cmd->t_state_lock, flags);
2688         stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2689         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2690
2691         if (stop) {
2692                 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2693                         __func__, __LINE__, cmd->tag);
2694                 complete_all(&cmd->t_transport_stop_comp);
2695                 return;
2696         }
2697
2698         ret = cmd->se_tfo->write_pending(cmd);
2699         if (ret) {
2700                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2701                          cmd);
2702                 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2703         }
2704 }
2705
2706 static bool
2707 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2708                            unsigned long *flags);
2709
2710 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2711 {
2712         unsigned long flags;
2713
2714         spin_lock_irqsave(&cmd->t_state_lock, flags);
2715         __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2716         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2717 }
2718
2719 /*
2720  * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2721  * finished.
2722  */
2723 void target_put_cmd_and_wait(struct se_cmd *cmd)
2724 {
2725         DECLARE_COMPLETION_ONSTACK(compl);
2726
2727         WARN_ON_ONCE(cmd->abrt_compl);
2728         cmd->abrt_compl = &compl;
2729         target_put_sess_cmd(cmd);
2730         wait_for_completion(&compl);
2731 }
2732
2733 /*
2734  * This function is called by frontend drivers after processing of a command
2735  * has finished.
2736  *
2737  * The protocol for ensuring that either the regular frontend command
2738  * processing flow or target_handle_abort() code drops one reference is as
2739  * follows:
2740  * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2741  *   the frontend driver to call this function synchronously or asynchronously.
2742  *   That will cause one reference to be dropped.
2743  * - During regular command processing the target core sets CMD_T_COMPLETE
2744  *   before invoking one of the .queue_*() functions.
2745  * - The code that aborts commands skips commands and TMFs for which
2746  *   CMD_T_COMPLETE has been set.
2747  * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2748  *   commands that will be aborted.
2749  * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2750  *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2751  * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2752  *   be called and will drop a reference.
2753  * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2754  *   will be called. target_handle_abort() will drop the final reference.
2755  */
2756 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2757 {
2758         DECLARE_COMPLETION_ONSTACK(compl);
2759         int ret = 0;
2760         bool aborted = false, tas = false;
2761
2762         if (wait_for_tasks)
2763                 target_wait_free_cmd(cmd, &aborted, &tas);
2764
2765         if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2766                 /*
2767                  * Handle WRITE failure case where transport_generic_new_cmd()
2768                  * has already added se_cmd to state_list, but fabric has
2769                  * failed command before I/O submission.
2770                  */
2771                 if (cmd->state_active)
2772                         target_remove_from_state_list(cmd);
2773
2774                 if (cmd->se_lun)
2775                         transport_lun_remove_cmd(cmd);
2776         }
2777         if (aborted)
2778                 cmd->free_compl = &compl;
2779         ret = target_put_sess_cmd(cmd);
2780         if (aborted) {
2781                 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2782                 wait_for_completion(&compl);
2783                 ret = 1;
2784         }
2785         return ret;
2786 }
2787 EXPORT_SYMBOL(transport_generic_free_cmd);
2788
2789 /**
2790  * target_get_sess_cmd - Add command to active ->sess_cmd_list
2791  * @se_cmd:     command descriptor to add
2792  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2793  */
2794 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2795 {
2796         struct se_session *se_sess = se_cmd->se_sess;
2797         unsigned long flags;
2798         int ret = 0;
2799
2800         /*
2801          * Add a second kref if the fabric caller is expecting to handle
2802          * fabric acknowledgement that requires two target_put_sess_cmd()
2803          * invocations before se_cmd descriptor release.
2804          */
2805         if (ack_kref) {
2806                 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2807                         return -EINVAL;
2808
2809                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2810         }
2811
2812         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2813         if (se_sess->sess_tearing_down) {
2814                 ret = -ESHUTDOWN;
2815                 goto out;
2816         }
2817         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2818         percpu_ref_get(&se_sess->cmd_count);
2819 out:
2820         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2821
2822         if (ret && ack_kref)
2823                 target_put_sess_cmd(se_cmd);
2824
2825         return ret;
2826 }
2827 EXPORT_SYMBOL(target_get_sess_cmd);
2828
2829 static void target_free_cmd_mem(struct se_cmd *cmd)
2830 {
2831         transport_free_pages(cmd);
2832
2833         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2834                 core_tmr_release_req(cmd->se_tmr_req);
2835         if (cmd->t_task_cdb != cmd->__t_task_cdb)
2836                 kfree(cmd->t_task_cdb);
2837 }
2838
2839 static void target_release_cmd_kref(struct kref *kref)
2840 {
2841         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2842         struct se_session *se_sess = se_cmd->se_sess;
2843         struct completion *free_compl = se_cmd->free_compl;
2844         struct completion *abrt_compl = se_cmd->abrt_compl;
2845         unsigned long flags;
2846
2847         if (se_sess) {
2848                 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2849                 list_del_init(&se_cmd->se_cmd_list);
2850                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2851         }
2852
2853         target_free_cmd_mem(se_cmd);
2854         se_cmd->se_tfo->release_cmd(se_cmd);
2855         if (free_compl)
2856                 complete(free_compl);
2857         if (abrt_compl)
2858                 complete(abrt_compl);
2859
2860         percpu_ref_put(&se_sess->cmd_count);
2861 }
2862
2863 /**
2864  * target_put_sess_cmd - decrease the command reference count
2865  * @se_cmd:     command to drop a reference from
2866  *
2867  * Returns 1 if and only if this target_put_sess_cmd() call caused the
2868  * refcount to drop to zero. Returns zero otherwise.
2869  */
2870 int target_put_sess_cmd(struct se_cmd *se_cmd)
2871 {
2872         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2873 }
2874 EXPORT_SYMBOL(target_put_sess_cmd);
2875
2876 static const char *data_dir_name(enum dma_data_direction d)
2877 {
2878         switch (d) {
2879         case DMA_BIDIRECTIONAL: return "BIDI";
2880         case DMA_TO_DEVICE:     return "WRITE";
2881         case DMA_FROM_DEVICE:   return "READ";
2882         case DMA_NONE:          return "NONE";
2883         }
2884
2885         return "(?)";
2886 }
2887
2888 static const char *cmd_state_name(enum transport_state_table t)
2889 {
2890         switch (t) {
2891         case TRANSPORT_NO_STATE:        return "NO_STATE";
2892         case TRANSPORT_NEW_CMD:         return "NEW_CMD";
2893         case TRANSPORT_WRITE_PENDING:   return "WRITE_PENDING";
2894         case TRANSPORT_PROCESSING:      return "PROCESSING";
2895         case TRANSPORT_COMPLETE:        return "COMPLETE";
2896         case TRANSPORT_ISTATE_PROCESSING:
2897                                         return "ISTATE_PROCESSING";
2898         case TRANSPORT_COMPLETE_QF_WP:  return "COMPLETE_QF_WP";
2899         case TRANSPORT_COMPLETE_QF_OK:  return "COMPLETE_QF_OK";
2900         case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
2901         }
2902
2903         return "(?)";
2904 }
2905
2906 static void target_append_str(char **str, const char *txt)
2907 {
2908         char *prev = *str;
2909
2910         *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2911                 kstrdup(txt, GFP_ATOMIC);
2912         kfree(prev);
2913 }
2914
2915 /*
2916  * Convert a transport state bitmask into a string. The caller is
2917  * responsible for freeing the returned pointer.
2918  */
2919 static char *target_ts_to_str(u32 ts)
2920 {
2921         char *str = NULL;
2922
2923         if (ts & CMD_T_ABORTED)
2924                 target_append_str(&str, "aborted");
2925         if (ts & CMD_T_ACTIVE)
2926                 target_append_str(&str, "active");
2927         if (ts & CMD_T_COMPLETE)
2928                 target_append_str(&str, "complete");
2929         if (ts & CMD_T_SENT)
2930                 target_append_str(&str, "sent");
2931         if (ts & CMD_T_STOP)
2932                 target_append_str(&str, "stop");
2933         if (ts & CMD_T_FABRIC_STOP)
2934                 target_append_str(&str, "fabric_stop");
2935
2936         return str;
2937 }
2938
2939 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2940 {
2941         switch (tmf) {
2942         case TMR_ABORT_TASK:            return "ABORT_TASK";
2943         case TMR_ABORT_TASK_SET:        return "ABORT_TASK_SET";
2944         case TMR_CLEAR_ACA:             return "CLEAR_ACA";
2945         case TMR_CLEAR_TASK_SET:        return "CLEAR_TASK_SET";
2946         case TMR_LUN_RESET:             return "LUN_RESET";
2947         case TMR_TARGET_WARM_RESET:     return "TARGET_WARM_RESET";
2948         case TMR_TARGET_COLD_RESET:     return "TARGET_COLD_RESET";
2949         case TMR_LUN_RESET_PRO:         return "LUN_RESET_PRO";
2950         case TMR_UNKNOWN:               break;
2951         }
2952         return "(?)";
2953 }
2954
2955 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2956 {
2957         char *ts_str = target_ts_to_str(cmd->transport_state);
2958         const u8 *cdb = cmd->t_task_cdb;
2959         struct se_tmr_req *tmf = cmd->se_tmr_req;
2960
2961         if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2962                 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2963                          pfx, cdb[0], cdb[1], cmd->tag,
2964                          data_dir_name(cmd->data_direction),
2965                          cmd->se_tfo->get_cmd_state(cmd),
2966                          cmd_state_name(cmd->t_state), cmd->data_length,
2967                          kref_read(&cmd->cmd_kref), ts_str);
2968         } else {
2969                 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2970                          pfx, target_tmf_name(tmf->function), cmd->tag,
2971                          tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2972                          cmd_state_name(cmd->t_state),
2973                          kref_read(&cmd->cmd_kref), ts_str);
2974         }
2975         kfree(ts_str);
2976 }
2977 EXPORT_SYMBOL(target_show_cmd);
2978
2979 /**
2980  * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2981  * @se_sess:    session to flag
2982  */
2983 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2984 {
2985         unsigned long flags;
2986
2987         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2988         se_sess->sess_tearing_down = 1;
2989         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2990
2991         percpu_ref_kill(&se_sess->cmd_count);
2992 }
2993 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2994
2995 /**
2996  * target_wait_for_sess_cmds - Wait for outstanding commands
2997  * @se_sess:    session to wait for active I/O
2998  */
2999 void target_wait_for_sess_cmds(struct se_session *se_sess)
3000 {
3001         struct se_cmd *cmd;
3002         int ret;
3003
3004         WARN_ON_ONCE(!se_sess->sess_tearing_down);
3005
3006         do {
3007                 ret = wait_event_timeout(se_sess->cmd_list_wq,
3008                                 percpu_ref_is_zero(&se_sess->cmd_count),
3009                                 180 * HZ);
3010                 list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list)
3011                         target_show_cmd("session shutdown: still waiting for ",
3012                                         cmd);
3013         } while (ret <= 0);
3014 }
3015 EXPORT_SYMBOL(target_wait_for_sess_cmds);
3016
3017 /*
3018  * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3019  * all references to the LUN have been released. Called during LUN shutdown.
3020  */
3021 void transport_clear_lun_ref(struct se_lun *lun)
3022 {
3023         percpu_ref_kill(&lun->lun_ref);
3024         wait_for_completion(&lun->lun_shutdown_comp);
3025 }
3026
3027 static bool
3028 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3029                            bool *aborted, bool *tas, unsigned long *flags)
3030         __releases(&cmd->t_state_lock)
3031         __acquires(&cmd->t_state_lock)
3032 {
3033
3034         assert_spin_locked(&cmd->t_state_lock);
3035         WARN_ON_ONCE(!irqs_disabled());
3036
3037         if (fabric_stop)
3038                 cmd->transport_state |= CMD_T_FABRIC_STOP;
3039
3040         if (cmd->transport_state & CMD_T_ABORTED)
3041                 *aborted = true;
3042
3043         if (cmd->transport_state & CMD_T_TAS)
3044                 *tas = true;
3045
3046         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3047             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3048                 return false;
3049
3050         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3051             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3052                 return false;
3053
3054         if (!(cmd->transport_state & CMD_T_ACTIVE))
3055                 return false;
3056
3057         if (fabric_stop && *aborted)
3058                 return false;
3059
3060         cmd->transport_state |= CMD_T_STOP;
3061
3062         target_show_cmd("wait_for_tasks: Stopping ", cmd);
3063
3064         spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3065
3066         while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3067                                             180 * HZ))
3068                 target_show_cmd("wait for tasks: ", cmd);
3069
3070         spin_lock_irqsave(&cmd->t_state_lock, *flags);
3071         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3072
3073         pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3074                  "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3075
3076         return true;
3077 }
3078
3079 /**
3080  * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3081  * @cmd: command to wait on
3082  */
3083 bool transport_wait_for_tasks(struct se_cmd *cmd)
3084 {
3085         unsigned long flags;
3086         bool ret, aborted = false, tas = false;
3087
3088         spin_lock_irqsave(&cmd->t_state_lock, flags);
3089         ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3090         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3091
3092         return ret;
3093 }
3094 EXPORT_SYMBOL(transport_wait_for_tasks);
3095
3096 struct sense_info {
3097         u8 key;
3098         u8 asc;
3099         u8 ascq;
3100         bool add_sector_info;
3101 };
3102
3103 static const struct sense_info sense_info_table[] = {
3104         [TCM_NO_SENSE] = {
3105                 .key = NOT_READY
3106         },
3107         [TCM_NON_EXISTENT_LUN] = {
3108                 .key = ILLEGAL_REQUEST,
3109                 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3110         },
3111         [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3112                 .key = ILLEGAL_REQUEST,
3113                 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3114         },
3115         [TCM_SECTOR_COUNT_TOO_MANY] = {
3116                 .key = ILLEGAL_REQUEST,
3117                 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3118         },
3119         [TCM_UNKNOWN_MODE_PAGE] = {
3120                 .key = ILLEGAL_REQUEST,
3121                 .asc = 0x24, /* INVALID FIELD IN CDB */
3122         },
3123         [TCM_CHECK_CONDITION_ABORT_CMD] = {
3124                 .key = ABORTED_COMMAND,
3125                 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3126                 .ascq = 0x03,
3127         },
3128         [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3129                 .key = ABORTED_COMMAND,
3130                 .asc = 0x0c, /* WRITE ERROR */
3131                 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3132         },
3133         [TCM_INVALID_CDB_FIELD] = {
3134                 .key = ILLEGAL_REQUEST,
3135                 .asc = 0x24, /* INVALID FIELD IN CDB */
3136         },
3137         [TCM_INVALID_PARAMETER_LIST] = {
3138                 .key = ILLEGAL_REQUEST,
3139                 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3140         },
3141         [TCM_TOO_MANY_TARGET_DESCS] = {
3142                 .key = ILLEGAL_REQUEST,
3143                 .asc = 0x26,
3144                 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3145         },
3146         [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3147                 .key = ILLEGAL_REQUEST,
3148                 .asc = 0x26,
3149                 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3150         },
3151         [TCM_TOO_MANY_SEGMENT_DESCS] = {
3152                 .key = ILLEGAL_REQUEST,
3153                 .asc = 0x26,
3154                 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3155         },
3156         [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3157                 .key = ILLEGAL_REQUEST,
3158                 .asc = 0x26,
3159                 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3160         },
3161         [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3162                 .key = ILLEGAL_REQUEST,
3163                 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3164         },
3165         [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3166                 .key = ILLEGAL_REQUEST,
3167                 .asc = 0x0c, /* WRITE ERROR */
3168                 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3169         },
3170         [TCM_SERVICE_CRC_ERROR] = {
3171                 .key = ABORTED_COMMAND,
3172                 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3173                 .ascq = 0x05, /* N/A */
3174         },
3175         [TCM_SNACK_REJECTED] = {
3176                 .key = ABORTED_COMMAND,
3177                 .asc = 0x11, /* READ ERROR */
3178                 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3179         },
3180         [TCM_WRITE_PROTECTED] = {
3181                 .key = DATA_PROTECT,
3182                 .asc = 0x27, /* WRITE PROTECTED */
3183         },
3184         [TCM_ADDRESS_OUT_OF_RANGE] = {
3185                 .key = ILLEGAL_REQUEST,
3186                 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3187         },
3188         [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3189                 .key = UNIT_ATTENTION,
3190         },
3191         [TCM_CHECK_CONDITION_NOT_READY] = {
3192                 .key = NOT_READY,
3193         },
3194         [TCM_MISCOMPARE_VERIFY] = {
3195                 .key = MISCOMPARE,
3196                 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3197                 .ascq = 0x00,
3198         },
3199         [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3200                 .key = ABORTED_COMMAND,
3201                 .asc = 0x10,
3202                 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3203                 .add_sector_info = true,
3204         },
3205         [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3206                 .key = ABORTED_COMMAND,
3207                 .asc = 0x10,
3208                 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3209                 .add_sector_info = true,
3210         },
3211         [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3212                 .key = ABORTED_COMMAND,
3213                 .asc = 0x10,
3214                 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3215                 .add_sector_info = true,
3216         },
3217         [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3218                 .key = COPY_ABORTED,
3219                 .asc = 0x0d,
3220                 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3221
3222         },
3223         [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3224                 /*
3225                  * Returning ILLEGAL REQUEST would cause immediate IO errors on
3226                  * Solaris initiators.  Returning NOT READY instead means the
3227                  * operations will be retried a finite number of times and we
3228                  * can survive intermittent errors.
3229                  */
3230                 .key = NOT_READY,
3231                 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3232         },
3233         [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3234                 /*
3235                  * From spc4r22 section5.7.7,5.7.8
3236                  * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3237                  * or a REGISTER AND IGNORE EXISTING KEY service action or
3238                  * REGISTER AND MOVE service actionis attempted,
3239                  * but there are insufficient device server resources to complete the
3240                  * operation, then the command shall be terminated with CHECK CONDITION
3241                  * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3242                  * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3243                  */
3244                 .key = ILLEGAL_REQUEST,
3245                 .asc = 0x55,
3246                 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3247         },
3248 };
3249
3250 /**
3251  * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3252  * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3253  *   be stored.
3254  * @reason: LIO sense reason code. If this argument has the value
3255  *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3256  *   dequeuing a unit attention fails due to multiple commands being processed
3257  *   concurrently, set the command status to BUSY.
3258  *
3259  * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3260  */
3261 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3262 {
3263         const struct sense_info *si;
3264         u8 *buffer = cmd->sense_buffer;
3265         int r = (__force int)reason;
3266         u8 key, asc, ascq;
3267         bool desc_format = target_sense_desc_format(cmd->se_dev);
3268
3269         if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3270                 si = &sense_info_table[r];
3271         else
3272                 si = &sense_info_table[(__force int)
3273                                        TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3274
3275         key = si->key;
3276         if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3277                 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3278                                                        &ascq)) {
3279                         cmd->scsi_status = SAM_STAT_BUSY;
3280                         return;
3281                 }
3282         } else if (si->asc == 0) {
3283                 WARN_ON_ONCE(cmd->scsi_asc == 0);
3284                 asc = cmd->scsi_asc;
3285                 ascq = cmd->scsi_ascq;
3286         } else {
3287                 asc = si->asc;
3288                 ascq = si->ascq;
3289         }
3290
3291         cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3292         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3293         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3294         scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3295         if (si->add_sector_info)
3296                 WARN_ON_ONCE(scsi_set_sense_information(buffer,
3297                                                         cmd->scsi_sense_length,
3298                                                         cmd->bad_sector) < 0);
3299 }
3300
3301 int
3302 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3303                 sense_reason_t reason, int from_transport)
3304 {
3305         unsigned long flags;
3306
3307         WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3308
3309         spin_lock_irqsave(&cmd->t_state_lock, flags);
3310         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3311                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3312                 return 0;
3313         }
3314         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3315         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3316
3317         if (!from_transport)
3318                 translate_sense_reason(cmd, reason);
3319
3320         trace_target_cmd_complete(cmd);
3321         return cmd->se_tfo->queue_status(cmd);
3322 }
3323 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3324
3325 /**
3326  * target_send_busy - Send SCSI BUSY status back to the initiator
3327  * @cmd: SCSI command for which to send a BUSY reply.
3328  *
3329  * Note: Only call this function if target_submit_cmd*() failed.
3330  */
3331 int target_send_busy(struct se_cmd *cmd)
3332 {
3333         WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3334
3335         cmd->scsi_status = SAM_STAT_BUSY;
3336         trace_target_cmd_complete(cmd);
3337         return cmd->se_tfo->queue_status(cmd);
3338 }
3339 EXPORT_SYMBOL(target_send_busy);
3340
3341 static void target_tmr_work(struct work_struct *work)
3342 {
3343         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3344         struct se_device *dev = cmd->se_dev;
3345         struct se_tmr_req *tmr = cmd->se_tmr_req;
3346         int ret;
3347
3348         if (cmd->transport_state & CMD_T_ABORTED)
3349                 goto aborted;
3350
3351         switch (tmr->function) {
3352         case TMR_ABORT_TASK:
3353                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3354                 break;
3355         case TMR_ABORT_TASK_SET:
3356         case TMR_CLEAR_ACA:
3357         case TMR_CLEAR_TASK_SET:
3358                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3359                 break;
3360         case TMR_LUN_RESET:
3361                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3362                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3363                                          TMR_FUNCTION_REJECTED;
3364                 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3365                         target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3366                                                cmd->orig_fe_lun, 0x29,
3367                                                ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3368                 }
3369                 break;
3370         case TMR_TARGET_WARM_RESET:
3371                 tmr->response = TMR_FUNCTION_REJECTED;
3372                 break;
3373         case TMR_TARGET_COLD_RESET:
3374                 tmr->response = TMR_FUNCTION_REJECTED;
3375                 break;
3376         default:
3377                 pr_err("Unknown TMR function: 0x%02x.\n",
3378                                 tmr->function);
3379                 tmr->response = TMR_FUNCTION_REJECTED;
3380                 break;
3381         }
3382
3383         if (cmd->transport_state & CMD_T_ABORTED)
3384                 goto aborted;
3385
3386         cmd->se_tfo->queue_tm_rsp(cmd);
3387
3388         transport_lun_remove_cmd(cmd);
3389         transport_cmd_check_stop_to_fabric(cmd);
3390         return;
3391
3392 aborted:
3393         target_handle_abort(cmd);
3394 }
3395
3396 int transport_generic_handle_tmr(
3397         struct se_cmd *cmd)
3398 {
3399         unsigned long flags;
3400         bool aborted = false;
3401
3402         spin_lock_irqsave(&cmd->t_state_lock, flags);
3403         if (cmd->transport_state & CMD_T_ABORTED) {
3404                 aborted = true;
3405         } else {
3406                 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3407                 cmd->transport_state |= CMD_T_ACTIVE;
3408         }
3409         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3410
3411         if (aborted) {
3412                 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3413                                     cmd->se_tmr_req->function,
3414                                     cmd->se_tmr_req->ref_task_tag, cmd->tag);
3415                 target_handle_abort(cmd);
3416                 return 0;
3417         }
3418
3419         INIT_WORK(&cmd->work, target_tmr_work);
3420         schedule_work(&cmd->work);
3421         return 0;
3422 }
3423 EXPORT_SYMBOL(transport_generic_handle_tmr);
3424
3425 bool
3426 target_check_wce(struct se_device *dev)
3427 {
3428         bool wce = false;
3429
3430         if (dev->transport->get_write_cache)
3431                 wce = dev->transport->get_write_cache(dev);
3432         else if (dev->dev_attrib.emulate_write_cache > 0)
3433                 wce = true;
3434
3435         return wce;
3436 }
3437
3438 bool
3439 target_check_fua(struct se_device *dev)
3440 {
3441         return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3442 }