target: remove the transport_qf_callback se_cmd callback
[linux-2.6-microblaze.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7  * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8  * Copyright (c) 2007-2010 Rising Tide Systems
9  * Copyright (c) 2008-2010 Linux-iSCSI.org
10  *
11  * Nicholas A. Bellinger <nab@kernel.org>
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  *
27  ******************************************************************************/
28
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
45
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
53
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
58
59 static int sub_api_initialized;
60
61 static struct kmem_cache *se_cmd_cache;
62 static struct kmem_cache *se_sess_cache;
63 struct kmem_cache *se_tmr_req_cache;
64 struct kmem_cache *se_ua_cache;
65 struct kmem_cache *t10_pr_reg_cache;
66 struct kmem_cache *t10_alua_lu_gp_cache;
67 struct kmem_cache *t10_alua_lu_gp_mem_cache;
68 struct kmem_cache *t10_alua_tg_pt_gp_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
70
71 static int transport_generic_write_pending(struct se_cmd *);
72 static int transport_processing_thread(void *param);
73 static int __transport_execute_tasks(struct se_device *dev);
74 static void transport_complete_task_attr(struct se_cmd *cmd);
75 static void transport_handle_queue_full(struct se_cmd *cmd,
76                 struct se_device *dev);
77 static void transport_direct_request_timeout(struct se_cmd *cmd);
78 static void transport_free_dev_tasks(struct se_cmd *cmd);
79 static u32 transport_allocate_tasks(struct se_cmd *cmd,
80                 unsigned long long starting_lba,
81                 enum dma_data_direction data_direction,
82                 struct scatterlist *sgl, unsigned int nents);
83 static int transport_generic_get_mem(struct se_cmd *cmd);
84 static void transport_put_cmd(struct se_cmd *cmd);
85 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
86                 struct se_queue_obj *qobj);
87 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
88 static void transport_stop_all_task_timers(struct se_cmd *cmd);
89
90 int init_se_kmem_caches(void)
91 {
92         se_cmd_cache = kmem_cache_create("se_cmd_cache",
93                         sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
94         if (!se_cmd_cache) {
95                 pr_err("kmem_cache_create for struct se_cmd failed\n");
96                 goto out;
97         }
98         se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
99                         sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
100                         0, NULL);
101         if (!se_tmr_req_cache) {
102                 pr_err("kmem_cache_create() for struct se_tmr_req"
103                                 " failed\n");
104                 goto out;
105         }
106         se_sess_cache = kmem_cache_create("se_sess_cache",
107                         sizeof(struct se_session), __alignof__(struct se_session),
108                         0, NULL);
109         if (!se_sess_cache) {
110                 pr_err("kmem_cache_create() for struct se_session"
111                                 " failed\n");
112                 goto out;
113         }
114         se_ua_cache = kmem_cache_create("se_ua_cache",
115                         sizeof(struct se_ua), __alignof__(struct se_ua),
116                         0, NULL);
117         if (!se_ua_cache) {
118                 pr_err("kmem_cache_create() for struct se_ua failed\n");
119                 goto out;
120         }
121         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
122                         sizeof(struct t10_pr_registration),
123                         __alignof__(struct t10_pr_registration), 0, NULL);
124         if (!t10_pr_reg_cache) {
125                 pr_err("kmem_cache_create() for struct t10_pr_registration"
126                                 " failed\n");
127                 goto out;
128         }
129         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
130                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
131                         0, NULL);
132         if (!t10_alua_lu_gp_cache) {
133                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
134                                 " failed\n");
135                 goto out;
136         }
137         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
138                         sizeof(struct t10_alua_lu_gp_member),
139                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
140         if (!t10_alua_lu_gp_mem_cache) {
141                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
142                                 "cache failed\n");
143                 goto out;
144         }
145         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
146                         sizeof(struct t10_alua_tg_pt_gp),
147                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
148         if (!t10_alua_tg_pt_gp_cache) {
149                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
150                                 "cache failed\n");
151                 goto out;
152         }
153         t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
154                         "t10_alua_tg_pt_gp_mem_cache",
155                         sizeof(struct t10_alua_tg_pt_gp_member),
156                         __alignof__(struct t10_alua_tg_pt_gp_member),
157                         0, NULL);
158         if (!t10_alua_tg_pt_gp_mem_cache) {
159                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
160                                 "mem_t failed\n");
161                 goto out;
162         }
163
164         return 0;
165 out:
166         if (se_cmd_cache)
167                 kmem_cache_destroy(se_cmd_cache);
168         if (se_tmr_req_cache)
169                 kmem_cache_destroy(se_tmr_req_cache);
170         if (se_sess_cache)
171                 kmem_cache_destroy(se_sess_cache);
172         if (se_ua_cache)
173                 kmem_cache_destroy(se_ua_cache);
174         if (t10_pr_reg_cache)
175                 kmem_cache_destroy(t10_pr_reg_cache);
176         if (t10_alua_lu_gp_cache)
177                 kmem_cache_destroy(t10_alua_lu_gp_cache);
178         if (t10_alua_lu_gp_mem_cache)
179                 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
180         if (t10_alua_tg_pt_gp_cache)
181                 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
182         if (t10_alua_tg_pt_gp_mem_cache)
183                 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
184         return -ENOMEM;
185 }
186
187 void release_se_kmem_caches(void)
188 {
189         kmem_cache_destroy(se_cmd_cache);
190         kmem_cache_destroy(se_tmr_req_cache);
191         kmem_cache_destroy(se_sess_cache);
192         kmem_cache_destroy(se_ua_cache);
193         kmem_cache_destroy(t10_pr_reg_cache);
194         kmem_cache_destroy(t10_alua_lu_gp_cache);
195         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
196         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
197         kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
198 }
199
200 /* This code ensures unique mib indexes are handed out. */
201 static DEFINE_SPINLOCK(scsi_mib_index_lock);
202 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
203
204 /*
205  * Allocate a new row index for the entry type specified
206  */
207 u32 scsi_get_new_index(scsi_index_t type)
208 {
209         u32 new_index;
210
211         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
212
213         spin_lock(&scsi_mib_index_lock);
214         new_index = ++scsi_mib_index[type];
215         spin_unlock(&scsi_mib_index_lock);
216
217         return new_index;
218 }
219
220 void transport_init_queue_obj(struct se_queue_obj *qobj)
221 {
222         atomic_set(&qobj->queue_cnt, 0);
223         INIT_LIST_HEAD(&qobj->qobj_list);
224         init_waitqueue_head(&qobj->thread_wq);
225         spin_lock_init(&qobj->cmd_queue_lock);
226 }
227 EXPORT_SYMBOL(transport_init_queue_obj);
228
229 static int transport_subsystem_reqmods(void)
230 {
231         int ret;
232
233         ret = request_module("target_core_iblock");
234         if (ret != 0)
235                 pr_err("Unable to load target_core_iblock\n");
236
237         ret = request_module("target_core_file");
238         if (ret != 0)
239                 pr_err("Unable to load target_core_file\n");
240
241         ret = request_module("target_core_pscsi");
242         if (ret != 0)
243                 pr_err("Unable to load target_core_pscsi\n");
244
245         ret = request_module("target_core_stgt");
246         if (ret != 0)
247                 pr_err("Unable to load target_core_stgt\n");
248
249         return 0;
250 }
251
252 int transport_subsystem_check_init(void)
253 {
254         int ret;
255
256         if (sub_api_initialized)
257                 return 0;
258         /*
259          * Request the loading of known TCM subsystem plugins..
260          */
261         ret = transport_subsystem_reqmods();
262         if (ret < 0)
263                 return ret;
264
265         sub_api_initialized = 1;
266         return 0;
267 }
268
269 struct se_session *transport_init_session(void)
270 {
271         struct se_session *se_sess;
272
273         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
274         if (!se_sess) {
275                 pr_err("Unable to allocate struct se_session from"
276                                 " se_sess_cache\n");
277                 return ERR_PTR(-ENOMEM);
278         }
279         INIT_LIST_HEAD(&se_sess->sess_list);
280         INIT_LIST_HEAD(&se_sess->sess_acl_list);
281
282         return se_sess;
283 }
284 EXPORT_SYMBOL(transport_init_session);
285
286 /*
287  * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
288  */
289 void __transport_register_session(
290         struct se_portal_group *se_tpg,
291         struct se_node_acl *se_nacl,
292         struct se_session *se_sess,
293         void *fabric_sess_ptr)
294 {
295         unsigned char buf[PR_REG_ISID_LEN];
296
297         se_sess->se_tpg = se_tpg;
298         se_sess->fabric_sess_ptr = fabric_sess_ptr;
299         /*
300          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
301          *
302          * Only set for struct se_session's that will actually be moving I/O.
303          * eg: *NOT* discovery sessions.
304          */
305         if (se_nacl) {
306                 /*
307                  * If the fabric module supports an ISID based TransportID,
308                  * save this value in binary from the fabric I_T Nexus now.
309                  */
310                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
311                         memset(&buf[0], 0, PR_REG_ISID_LEN);
312                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
313                                         &buf[0], PR_REG_ISID_LEN);
314                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
315                 }
316                 spin_lock_irq(&se_nacl->nacl_sess_lock);
317                 /*
318                  * The se_nacl->nacl_sess pointer will be set to the
319                  * last active I_T Nexus for each struct se_node_acl.
320                  */
321                 se_nacl->nacl_sess = se_sess;
322
323                 list_add_tail(&se_sess->sess_acl_list,
324                               &se_nacl->acl_sess_list);
325                 spin_unlock_irq(&se_nacl->nacl_sess_lock);
326         }
327         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
328
329         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
330                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
331 }
332 EXPORT_SYMBOL(__transport_register_session);
333
334 void transport_register_session(
335         struct se_portal_group *se_tpg,
336         struct se_node_acl *se_nacl,
337         struct se_session *se_sess,
338         void *fabric_sess_ptr)
339 {
340         spin_lock_bh(&se_tpg->session_lock);
341         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
342         spin_unlock_bh(&se_tpg->session_lock);
343 }
344 EXPORT_SYMBOL(transport_register_session);
345
346 void transport_deregister_session_configfs(struct se_session *se_sess)
347 {
348         struct se_node_acl *se_nacl;
349         unsigned long flags;
350         /*
351          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
352          */
353         se_nacl = se_sess->se_node_acl;
354         if (se_nacl) {
355                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
356                 list_del(&se_sess->sess_acl_list);
357                 /*
358                  * If the session list is empty, then clear the pointer.
359                  * Otherwise, set the struct se_session pointer from the tail
360                  * element of the per struct se_node_acl active session list.
361                  */
362                 if (list_empty(&se_nacl->acl_sess_list))
363                         se_nacl->nacl_sess = NULL;
364                 else {
365                         se_nacl->nacl_sess = container_of(
366                                         se_nacl->acl_sess_list.prev,
367                                         struct se_session, sess_acl_list);
368                 }
369                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
370         }
371 }
372 EXPORT_SYMBOL(transport_deregister_session_configfs);
373
374 void transport_free_session(struct se_session *se_sess)
375 {
376         kmem_cache_free(se_sess_cache, se_sess);
377 }
378 EXPORT_SYMBOL(transport_free_session);
379
380 void transport_deregister_session(struct se_session *se_sess)
381 {
382         struct se_portal_group *se_tpg = se_sess->se_tpg;
383         struct se_node_acl *se_nacl;
384         unsigned long flags;
385
386         if (!se_tpg) {
387                 transport_free_session(se_sess);
388                 return;
389         }
390
391         spin_lock_irqsave(&se_tpg->session_lock, flags);
392         list_del(&se_sess->sess_list);
393         se_sess->se_tpg = NULL;
394         se_sess->fabric_sess_ptr = NULL;
395         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
396
397         /*
398          * Determine if we need to do extra work for this initiator node's
399          * struct se_node_acl if it had been previously dynamically generated.
400          */
401         se_nacl = se_sess->se_node_acl;
402         if (se_nacl) {
403                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
404                 if (se_nacl->dynamic_node_acl) {
405                         if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
406                                         se_tpg)) {
407                                 list_del(&se_nacl->acl_list);
408                                 se_tpg->num_node_acls--;
409                                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
410
411                                 core_tpg_wait_for_nacl_pr_ref(se_nacl);
412                                 core_free_device_list_for_node(se_nacl, se_tpg);
413                                 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
414                                                 se_nacl);
415                                 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
416                         }
417                 }
418                 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
419         }
420
421         transport_free_session(se_sess);
422
423         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
424                 se_tpg->se_tpg_tfo->get_fabric_name());
425 }
426 EXPORT_SYMBOL(transport_deregister_session);
427
428 /*
429  * Called with cmd->t_state_lock held.
430  */
431 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
432 {
433         struct se_device *dev = cmd->se_dev;
434         struct se_task *task;
435         unsigned long flags;
436
437         if (!dev)
438                 return;
439
440         list_for_each_entry(task, &cmd->t_task_list, t_list) {
441                 if (task->task_flags & TF_ACTIVE)
442                         continue;
443
444                 if (!atomic_read(&task->task_state_active))
445                         continue;
446
447                 spin_lock_irqsave(&dev->execute_task_lock, flags);
448                 list_del(&task->t_state_list);
449                 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
450                         cmd->se_tfo->get_task_tag(cmd), dev, task);
451                 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
452
453                 atomic_set(&task->task_state_active, 0);
454                 atomic_dec(&cmd->t_task_cdbs_ex_left);
455         }
456 }
457
458 /*      transport_cmd_check_stop():
459  *
460  *      'transport_off = 1' determines if t_transport_active should be cleared.
461  *      'transport_off = 2' determines if task_dev_state should be removed.
462  *
463  *      A non-zero u8 t_state sets cmd->t_state.
464  *      Returns 1 when command is stopped, else 0.
465  */
466 static int transport_cmd_check_stop(
467         struct se_cmd *cmd,
468         int transport_off,
469         u8 t_state)
470 {
471         unsigned long flags;
472
473         spin_lock_irqsave(&cmd->t_state_lock, flags);
474         /*
475          * Determine if IOCTL context caller in requesting the stopping of this
476          * command for LUN shutdown purposes.
477          */
478         if (atomic_read(&cmd->transport_lun_stop)) {
479                 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
480                         " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
481                         cmd->se_tfo->get_task_tag(cmd));
482
483                 cmd->deferred_t_state = cmd->t_state;
484                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
485                 atomic_set(&cmd->t_transport_active, 0);
486                 if (transport_off == 2)
487                         transport_all_task_dev_remove_state(cmd);
488                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
489
490                 complete(&cmd->transport_lun_stop_comp);
491                 return 1;
492         }
493         /*
494          * Determine if frontend context caller is requesting the stopping of
495          * this command for frontend exceptions.
496          */
497         if (atomic_read(&cmd->t_transport_stop)) {
498                 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
499                         " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
500                         cmd->se_tfo->get_task_tag(cmd));
501
502                 cmd->deferred_t_state = cmd->t_state;
503                 cmd->t_state = TRANSPORT_DEFERRED_CMD;
504                 if (transport_off == 2)
505                         transport_all_task_dev_remove_state(cmd);
506
507                 /*
508                  * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
509                  * to FE.
510                  */
511                 if (transport_off == 2)
512                         cmd->se_lun = NULL;
513                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
514
515                 complete(&cmd->t_transport_stop_comp);
516                 return 1;
517         }
518         if (transport_off) {
519                 atomic_set(&cmd->t_transport_active, 0);
520                 if (transport_off == 2) {
521                         transport_all_task_dev_remove_state(cmd);
522                         /*
523                          * Clear struct se_cmd->se_lun before the transport_off == 2
524                          * handoff to fabric module.
525                          */
526                         cmd->se_lun = NULL;
527                         /*
528                          * Some fabric modules like tcm_loop can release
529                          * their internally allocated I/O reference now and
530                          * struct se_cmd now.
531                          */
532                         if (cmd->se_tfo->check_stop_free != NULL) {
533                                 spin_unlock_irqrestore(
534                                         &cmd->t_state_lock, flags);
535
536                                 cmd->se_tfo->check_stop_free(cmd);
537                                 return 1;
538                         }
539                 }
540                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
541
542                 return 0;
543         } else if (t_state)
544                 cmd->t_state = t_state;
545         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
546
547         return 0;
548 }
549
550 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
551 {
552         return transport_cmd_check_stop(cmd, 2, 0);
553 }
554
555 static void transport_lun_remove_cmd(struct se_cmd *cmd)
556 {
557         struct se_lun *lun = cmd->se_lun;
558         unsigned long flags;
559
560         if (!lun)
561                 return;
562
563         spin_lock_irqsave(&cmd->t_state_lock, flags);
564         if (!atomic_read(&cmd->transport_dev_active)) {
565                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
566                 goto check_lun;
567         }
568         atomic_set(&cmd->transport_dev_active, 0);
569         transport_all_task_dev_remove_state(cmd);
570         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
571
572
573 check_lun:
574         spin_lock_irqsave(&lun->lun_cmd_lock, flags);
575         if (atomic_read(&cmd->transport_lun_active)) {
576                 list_del(&cmd->se_lun_node);
577                 atomic_set(&cmd->transport_lun_active, 0);
578 #if 0
579                 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
580                         cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
581 #endif
582         }
583         spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
584 }
585
586 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
587 {
588         if (!cmd->se_tmr_req)
589                 transport_lun_remove_cmd(cmd);
590
591         if (transport_cmd_check_stop_to_fabric(cmd))
592                 return;
593         if (remove) {
594                 transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
595                 transport_put_cmd(cmd);
596         }
597 }
598
599 static void transport_add_cmd_to_queue(
600         struct se_cmd *cmd,
601         int t_state)
602 {
603         struct se_device *dev = cmd->se_dev;
604         struct se_queue_obj *qobj = &dev->dev_queue_obj;
605         unsigned long flags;
606
607         if (t_state) {
608                 spin_lock_irqsave(&cmd->t_state_lock, flags);
609                 cmd->t_state = t_state;
610                 atomic_set(&cmd->t_transport_active, 1);
611                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
612         }
613
614         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
615
616         /* If the cmd is already on the list, remove it before we add it */
617         if (!list_empty(&cmd->se_queue_node))
618                 list_del(&cmd->se_queue_node);
619         else
620                 atomic_inc(&qobj->queue_cnt);
621
622         if (cmd->se_cmd_flags & SCF_EMULATE_QUEUE_FULL) {
623                 cmd->se_cmd_flags &= ~SCF_EMULATE_QUEUE_FULL;
624                 list_add(&cmd->se_queue_node, &qobj->qobj_list);
625         } else
626                 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
627         atomic_set(&cmd->t_transport_queue_active, 1);
628         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
629
630         wake_up_interruptible(&qobj->thread_wq);
631 }
632
633 static struct se_cmd *
634 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
635 {
636         struct se_cmd *cmd;
637         unsigned long flags;
638
639         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
640         if (list_empty(&qobj->qobj_list)) {
641                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
642                 return NULL;
643         }
644         cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
645
646         atomic_set(&cmd->t_transport_queue_active, 0);
647
648         list_del_init(&cmd->se_queue_node);
649         atomic_dec(&qobj->queue_cnt);
650         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
651
652         return cmd;
653 }
654
655 static void transport_remove_cmd_from_queue(struct se_cmd *cmd,
656                 struct se_queue_obj *qobj)
657 {
658         unsigned long flags;
659
660         spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
661         if (!atomic_read(&cmd->t_transport_queue_active)) {
662                 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
663                 return;
664         }
665         atomic_set(&cmd->t_transport_queue_active, 0);
666         atomic_dec(&qobj->queue_cnt);
667         list_del_init(&cmd->se_queue_node);
668         spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
669
670         if (atomic_read(&cmd->t_transport_queue_active)) {
671                 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
672                         cmd->se_tfo->get_task_tag(cmd),
673                         atomic_read(&cmd->t_transport_queue_active));
674         }
675 }
676
677 /*
678  * Completion function used by TCM subsystem plugins (such as FILEIO)
679  * for queueing up response from struct se_subsystem_api->do_task()
680  */
681 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
682 {
683         struct se_task *task = list_entry(cmd->t_task_list.next,
684                                 struct se_task, t_list);
685
686         if (good) {
687                 cmd->scsi_status = SAM_STAT_GOOD;
688                 task->task_scsi_status = GOOD;
689         } else {
690                 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
691                 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
692                 task->task_se_cmd->transport_error_status =
693                                         PYX_TRANSPORT_ILLEGAL_REQUEST;
694         }
695
696         transport_complete_task(task, good);
697 }
698 EXPORT_SYMBOL(transport_complete_sync_cache);
699
700 /*      transport_complete_task():
701  *
702  *      Called from interrupt and non interrupt context depending
703  *      on the transport plugin.
704  */
705 void transport_complete_task(struct se_task *task, int success)
706 {
707         struct se_cmd *cmd = task->task_se_cmd;
708         struct se_device *dev = cmd->se_dev;
709         int t_state;
710         unsigned long flags;
711 #if 0
712         pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
713                         cmd->t_task_cdb[0], dev);
714 #endif
715         if (dev)
716                 atomic_inc(&dev->depth_left);
717
718         spin_lock_irqsave(&cmd->t_state_lock, flags);
719         task->task_flags &= ~TF_ACTIVE;
720
721         /*
722          * See if any sense data exists, if so set the TASK_SENSE flag.
723          * Also check for any other post completion work that needs to be
724          * done by the plugins.
725          */
726         if (dev && dev->transport->transport_complete) {
727                 if (dev->transport->transport_complete(task) != 0) {
728                         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
729                         task->task_sense = 1;
730                         success = 1;
731                 }
732         }
733
734         /*
735          * See if we are waiting for outstanding struct se_task
736          * to complete for an exception condition
737          */
738         if (task->task_flags & TF_REQUEST_STOP) {
739                 /*
740                  * Decrement cmd->t_se_count if this task had
741                  * previously thrown its timeout exception handler.
742                  */
743                 if (task->task_flags & TF_TIMEOUT) {
744                         atomic_dec(&cmd->t_se_count);
745                         task->task_flags &= ~TF_TIMEOUT;
746                 }
747                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
748
749                 complete(&task->task_stop_comp);
750                 return;
751         }
752         /*
753          * If the task's timeout handler has fired, use the t_task_cdbs_timeout
754          * left counter to determine when the struct se_cmd is ready to be queued to
755          * the processing thread.
756          */
757         if (task->task_flags & TF_TIMEOUT) {
758                 if (!atomic_dec_and_test(
759                                 &cmd->t_task_cdbs_timeout_left)) {
760                         spin_unlock_irqrestore(&cmd->t_state_lock,
761                                 flags);
762                         return;
763                 }
764                 t_state = TRANSPORT_COMPLETE_TIMEOUT;
765                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
766
767                 transport_add_cmd_to_queue(cmd, t_state);
768                 return;
769         }
770         atomic_dec(&cmd->t_task_cdbs_timeout_left);
771
772         /*
773          * Decrement the outstanding t_task_cdbs_left count.  The last
774          * struct se_task from struct se_cmd will complete itself into the
775          * device queue depending upon int success.
776          */
777         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
778                 if (!success)
779                         cmd->t_tasks_failed = 1;
780
781                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
782                 return;
783         }
784
785         if (!success || cmd->t_tasks_failed) {
786                 t_state = TRANSPORT_COMPLETE_FAILURE;
787                 if (!task->task_error_status) {
788                         task->task_error_status =
789                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
790                         cmd->transport_error_status =
791                                 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
792                 }
793         } else {
794                 atomic_set(&cmd->t_transport_complete, 1);
795                 t_state = TRANSPORT_COMPLETE_OK;
796         }
797         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
798
799         transport_add_cmd_to_queue(cmd, t_state);
800 }
801 EXPORT_SYMBOL(transport_complete_task);
802
803 /*
804  * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
805  * struct se_task list are ready to be added to the active execution list
806  * struct se_device
807
808  * Called with se_dev_t->execute_task_lock called.
809  */
810 static inline int transport_add_task_check_sam_attr(
811         struct se_task *task,
812         struct se_task *task_prev,
813         struct se_device *dev)
814 {
815         /*
816          * No SAM Task attribute emulation enabled, add to tail of
817          * execution queue
818          */
819         if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
820                 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
821                 return 0;
822         }
823         /*
824          * HEAD_OF_QUEUE attribute for received CDB, which means
825          * the first task that is associated with a struct se_cmd goes to
826          * head of the struct se_device->execute_task_list, and task_prev
827          * after that for each subsequent task
828          */
829         if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
830                 list_add(&task->t_execute_list,
831                                 (task_prev != NULL) ?
832                                 &task_prev->t_execute_list :
833                                 &dev->execute_task_list);
834
835                 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
836                                 " in execution queue\n",
837                                 task->task_se_cmd->t_task_cdb[0]);
838                 return 1;
839         }
840         /*
841          * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
842          * transitioned from Dermant -> Active state, and are added to the end
843          * of the struct se_device->execute_task_list
844          */
845         list_add_tail(&task->t_execute_list, &dev->execute_task_list);
846         return 0;
847 }
848
849 /*      __transport_add_task_to_execute_queue():
850  *
851  *      Called with se_dev_t->execute_task_lock called.
852  */
853 static void __transport_add_task_to_execute_queue(
854         struct se_task *task,
855         struct se_task *task_prev,
856         struct se_device *dev)
857 {
858         int head_of_queue;
859
860         head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
861         atomic_inc(&dev->execute_tasks);
862
863         if (atomic_read(&task->task_state_active))
864                 return;
865         /*
866          * Determine if this task needs to go to HEAD_OF_QUEUE for the
867          * state list as well.  Running with SAM Task Attribute emulation
868          * will always return head_of_queue == 0 here
869          */
870         if (head_of_queue)
871                 list_add(&task->t_state_list, (task_prev) ?
872                                 &task_prev->t_state_list :
873                                 &dev->state_task_list);
874         else
875                 list_add_tail(&task->t_state_list, &dev->state_task_list);
876
877         atomic_set(&task->task_state_active, 1);
878
879         pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
880                 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
881                 task, dev);
882 }
883
884 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
885 {
886         struct se_device *dev = cmd->se_dev;
887         struct se_task *task;
888         unsigned long flags;
889
890         spin_lock_irqsave(&cmd->t_state_lock, flags);
891         list_for_each_entry(task, &cmd->t_task_list, t_list) {
892                 if (atomic_read(&task->task_state_active))
893                         continue;
894
895                 spin_lock(&dev->execute_task_lock);
896                 list_add_tail(&task->t_state_list, &dev->state_task_list);
897                 atomic_set(&task->task_state_active, 1);
898
899                 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
900                         task->task_se_cmd->se_tfo->get_task_tag(
901                         task->task_se_cmd), task, dev);
902
903                 spin_unlock(&dev->execute_task_lock);
904         }
905         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
906 }
907
908 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
909 {
910         struct se_device *dev = cmd->se_dev;
911         struct se_task *task, *task_prev = NULL;
912         unsigned long flags;
913
914         spin_lock_irqsave(&dev->execute_task_lock, flags);
915         list_for_each_entry(task, &cmd->t_task_list, t_list) {
916                 if (!list_empty(&task->t_execute_list))
917                         continue;
918                 /*
919                  * __transport_add_task_to_execute_queue() handles the
920                  * SAM Task Attribute emulation if enabled
921                  */
922                 __transport_add_task_to_execute_queue(task, task_prev, dev);
923                 task_prev = task;
924         }
925         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
926 }
927
928 void __transport_remove_task_from_execute_queue(struct se_task *task,
929                 struct se_device *dev)
930 {
931         list_del_init(&task->t_execute_list);
932         atomic_dec(&dev->execute_tasks);
933 }
934
935 void transport_remove_task_from_execute_queue(
936         struct se_task *task,
937         struct se_device *dev)
938 {
939         unsigned long flags;
940
941         if (WARN_ON(list_empty(&task->t_execute_list)))
942                 return;
943
944         spin_lock_irqsave(&dev->execute_task_lock, flags);
945         __transport_remove_task_from_execute_queue(task, dev);
946         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
947 }
948
949 /*
950  * Handle QUEUE_FULL / -EAGAIN status
951  */
952
953 static void target_qf_do_work(struct work_struct *work)
954 {
955         struct se_device *dev = container_of(work, struct se_device,
956                                         qf_work_queue);
957         LIST_HEAD(qf_cmd_list);
958         struct se_cmd *cmd, *cmd_tmp;
959
960         spin_lock_irq(&dev->qf_cmd_lock);
961         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
962         spin_unlock_irq(&dev->qf_cmd_lock);
963
964         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
965                 list_del(&cmd->se_qf_node);
966                 atomic_dec(&dev->dev_qf_count);
967                 smp_mb__after_atomic_dec();
968
969                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
970                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
971                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
972                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
973                         : "UNKNOWN");
974                 /*
975                  * The SCF_EMULATE_QUEUE_FULL flag will be cleared once se_cmd
976                  * has been added to head of queue
977                  */
978                 transport_add_cmd_to_queue(cmd, cmd->t_state);
979         }
980 }
981
982 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
983 {
984         switch (cmd->data_direction) {
985         case DMA_NONE:
986                 return "NONE";
987         case DMA_FROM_DEVICE:
988                 return "READ";
989         case DMA_TO_DEVICE:
990                 return "WRITE";
991         case DMA_BIDIRECTIONAL:
992                 return "BIDI";
993         default:
994                 break;
995         }
996
997         return "UNKNOWN";
998 }
999
1000 void transport_dump_dev_state(
1001         struct se_device *dev,
1002         char *b,
1003         int *bl)
1004 {
1005         *bl += sprintf(b + *bl, "Status: ");
1006         switch (dev->dev_status) {
1007         case TRANSPORT_DEVICE_ACTIVATED:
1008                 *bl += sprintf(b + *bl, "ACTIVATED");
1009                 break;
1010         case TRANSPORT_DEVICE_DEACTIVATED:
1011                 *bl += sprintf(b + *bl, "DEACTIVATED");
1012                 break;
1013         case TRANSPORT_DEVICE_SHUTDOWN:
1014                 *bl += sprintf(b + *bl, "SHUTDOWN");
1015                 break;
1016         case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
1017         case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
1018                 *bl += sprintf(b + *bl, "OFFLINE");
1019                 break;
1020         default:
1021                 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
1022                 break;
1023         }
1024
1025         *bl += sprintf(b + *bl, "  Execute/Left/Max Queue Depth: %d/%d/%d",
1026                 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
1027                 dev->queue_depth);
1028         *bl += sprintf(b + *bl, "  SectorSize: %u  MaxSectors: %u\n",
1029                 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
1030         *bl += sprintf(b + *bl, "        ");
1031 }
1032
1033 void transport_dump_vpd_proto_id(
1034         struct t10_vpd *vpd,
1035         unsigned char *p_buf,
1036         int p_buf_len)
1037 {
1038         unsigned char buf[VPD_TMP_BUF_SIZE];
1039         int len;
1040
1041         memset(buf, 0, VPD_TMP_BUF_SIZE);
1042         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1043
1044         switch (vpd->protocol_identifier) {
1045         case 0x00:
1046                 sprintf(buf+len, "Fibre Channel\n");
1047                 break;
1048         case 0x10:
1049                 sprintf(buf+len, "Parallel SCSI\n");
1050                 break;
1051         case 0x20:
1052                 sprintf(buf+len, "SSA\n");
1053                 break;
1054         case 0x30:
1055                 sprintf(buf+len, "IEEE 1394\n");
1056                 break;
1057         case 0x40:
1058                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1059                                 " Protocol\n");
1060                 break;
1061         case 0x50:
1062                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1063                 break;
1064         case 0x60:
1065                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1066                 break;
1067         case 0x70:
1068                 sprintf(buf+len, "Automation/Drive Interface Transport"
1069                                 " Protocol\n");
1070                 break;
1071         case 0x80:
1072                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1073                 break;
1074         default:
1075                 sprintf(buf+len, "Unknown 0x%02x\n",
1076                                 vpd->protocol_identifier);
1077                 break;
1078         }
1079
1080         if (p_buf)
1081                 strncpy(p_buf, buf, p_buf_len);
1082         else
1083                 pr_debug("%s", buf);
1084 }
1085
1086 void
1087 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1088 {
1089         /*
1090          * Check if the Protocol Identifier Valid (PIV) bit is set..
1091          *
1092          * from spc3r23.pdf section 7.5.1
1093          */
1094          if (page_83[1] & 0x80) {
1095                 vpd->protocol_identifier = (page_83[0] & 0xf0);
1096                 vpd->protocol_identifier_set = 1;
1097                 transport_dump_vpd_proto_id(vpd, NULL, 0);
1098         }
1099 }
1100 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1101
1102 int transport_dump_vpd_assoc(
1103         struct t10_vpd *vpd,
1104         unsigned char *p_buf,
1105         int p_buf_len)
1106 {
1107         unsigned char buf[VPD_TMP_BUF_SIZE];
1108         int ret = 0;
1109         int len;
1110
1111         memset(buf, 0, VPD_TMP_BUF_SIZE);
1112         len = sprintf(buf, "T10 VPD Identifier Association: ");
1113
1114         switch (vpd->association) {
1115         case 0x00:
1116                 sprintf(buf+len, "addressed logical unit\n");
1117                 break;
1118         case 0x10:
1119                 sprintf(buf+len, "target port\n");
1120                 break;
1121         case 0x20:
1122                 sprintf(buf+len, "SCSI target device\n");
1123                 break;
1124         default:
1125                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1126                 ret = -EINVAL;
1127                 break;
1128         }
1129
1130         if (p_buf)
1131                 strncpy(p_buf, buf, p_buf_len);
1132         else
1133                 pr_debug("%s", buf);
1134
1135         return ret;
1136 }
1137
1138 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1139 {
1140         /*
1141          * The VPD identification association..
1142          *
1143          * from spc3r23.pdf Section 7.6.3.1 Table 297
1144          */
1145         vpd->association = (page_83[1] & 0x30);
1146         return transport_dump_vpd_assoc(vpd, NULL, 0);
1147 }
1148 EXPORT_SYMBOL(transport_set_vpd_assoc);
1149
1150 int transport_dump_vpd_ident_type(
1151         struct t10_vpd *vpd,
1152         unsigned char *p_buf,
1153         int p_buf_len)
1154 {
1155         unsigned char buf[VPD_TMP_BUF_SIZE];
1156         int ret = 0;
1157         int len;
1158
1159         memset(buf, 0, VPD_TMP_BUF_SIZE);
1160         len = sprintf(buf, "T10 VPD Identifier Type: ");
1161
1162         switch (vpd->device_identifier_type) {
1163         case 0x00:
1164                 sprintf(buf+len, "Vendor specific\n");
1165                 break;
1166         case 0x01:
1167                 sprintf(buf+len, "T10 Vendor ID based\n");
1168                 break;
1169         case 0x02:
1170                 sprintf(buf+len, "EUI-64 based\n");
1171                 break;
1172         case 0x03:
1173                 sprintf(buf+len, "NAA\n");
1174                 break;
1175         case 0x04:
1176                 sprintf(buf+len, "Relative target port identifier\n");
1177                 break;
1178         case 0x08:
1179                 sprintf(buf+len, "SCSI name string\n");
1180                 break;
1181         default:
1182                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1183                                 vpd->device_identifier_type);
1184                 ret = -EINVAL;
1185                 break;
1186         }
1187
1188         if (p_buf) {
1189                 if (p_buf_len < strlen(buf)+1)
1190                         return -EINVAL;
1191                 strncpy(p_buf, buf, p_buf_len);
1192         } else {
1193                 pr_debug("%s", buf);
1194         }
1195
1196         return ret;
1197 }
1198
1199 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1200 {
1201         /*
1202          * The VPD identifier type..
1203          *
1204          * from spc3r23.pdf Section 7.6.3.1 Table 298
1205          */
1206         vpd->device_identifier_type = (page_83[1] & 0x0f);
1207         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1208 }
1209 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1210
1211 int transport_dump_vpd_ident(
1212         struct t10_vpd *vpd,
1213         unsigned char *p_buf,
1214         int p_buf_len)
1215 {
1216         unsigned char buf[VPD_TMP_BUF_SIZE];
1217         int ret = 0;
1218
1219         memset(buf, 0, VPD_TMP_BUF_SIZE);
1220
1221         switch (vpd->device_identifier_code_set) {
1222         case 0x01: /* Binary */
1223                 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1224                         &vpd->device_identifier[0]);
1225                 break;
1226         case 0x02: /* ASCII */
1227                 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1228                         &vpd->device_identifier[0]);
1229                 break;
1230         case 0x03: /* UTF-8 */
1231                 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1232                         &vpd->device_identifier[0]);
1233                 break;
1234         default:
1235                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1236                         " 0x%02x", vpd->device_identifier_code_set);
1237                 ret = -EINVAL;
1238                 break;
1239         }
1240
1241         if (p_buf)
1242                 strncpy(p_buf, buf, p_buf_len);
1243         else
1244                 pr_debug("%s", buf);
1245
1246         return ret;
1247 }
1248
1249 int
1250 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1251 {
1252         static const char hex_str[] = "0123456789abcdef";
1253         int j = 0, i = 4; /* offset to start of the identifer */
1254
1255         /*
1256          * The VPD Code Set (encoding)
1257          *
1258          * from spc3r23.pdf Section 7.6.3.1 Table 296
1259          */
1260         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1261         switch (vpd->device_identifier_code_set) {
1262         case 0x01: /* Binary */
1263                 vpd->device_identifier[j++] =
1264                                 hex_str[vpd->device_identifier_type];
1265                 while (i < (4 + page_83[3])) {
1266                         vpd->device_identifier[j++] =
1267                                 hex_str[(page_83[i] & 0xf0) >> 4];
1268                         vpd->device_identifier[j++] =
1269                                 hex_str[page_83[i] & 0x0f];
1270                         i++;
1271                 }
1272                 break;
1273         case 0x02: /* ASCII */
1274         case 0x03: /* UTF-8 */
1275                 while (i < (4 + page_83[3]))
1276                         vpd->device_identifier[j++] = page_83[i++];
1277                 break;
1278         default:
1279                 break;
1280         }
1281
1282         return transport_dump_vpd_ident(vpd, NULL, 0);
1283 }
1284 EXPORT_SYMBOL(transport_set_vpd_ident);
1285
1286 static void core_setup_task_attr_emulation(struct se_device *dev)
1287 {
1288         /*
1289          * If this device is from Target_Core_Mod/pSCSI, disable the
1290          * SAM Task Attribute emulation.
1291          *
1292          * This is currently not available in upsream Linux/SCSI Target
1293          * mode code, and is assumed to be disabled while using TCM/pSCSI.
1294          */
1295         if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1296                 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1297                 return;
1298         }
1299
1300         dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1301         pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1302                 " device\n", dev->transport->name,
1303                 dev->transport->get_device_rev(dev));
1304 }
1305
1306 static void scsi_dump_inquiry(struct se_device *dev)
1307 {
1308         struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1309         int i, device_type;
1310         /*
1311          * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1312          */
1313         pr_debug("  Vendor: ");
1314         for (i = 0; i < 8; i++)
1315                 if (wwn->vendor[i] >= 0x20)
1316                         pr_debug("%c", wwn->vendor[i]);
1317                 else
1318                         pr_debug(" ");
1319
1320         pr_debug("  Model: ");
1321         for (i = 0; i < 16; i++)
1322                 if (wwn->model[i] >= 0x20)
1323                         pr_debug("%c", wwn->model[i]);
1324                 else
1325                         pr_debug(" ");
1326
1327         pr_debug("  Revision: ");
1328         for (i = 0; i < 4; i++)
1329                 if (wwn->revision[i] >= 0x20)
1330                         pr_debug("%c", wwn->revision[i]);
1331                 else
1332                         pr_debug(" ");
1333
1334         pr_debug("\n");
1335
1336         device_type = dev->transport->get_device_type(dev);
1337         pr_debug("  Type:   %s ", scsi_device_type(device_type));
1338         pr_debug("                 ANSI SCSI revision: %02x\n",
1339                                 dev->transport->get_device_rev(dev));
1340 }
1341
1342 struct se_device *transport_add_device_to_core_hba(
1343         struct se_hba *hba,
1344         struct se_subsystem_api *transport,
1345         struct se_subsystem_dev *se_dev,
1346         u32 device_flags,
1347         void *transport_dev,
1348         struct se_dev_limits *dev_limits,
1349         const char *inquiry_prod,
1350         const char *inquiry_rev)
1351 {
1352         int force_pt;
1353         struct se_device  *dev;
1354
1355         dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1356         if (!dev) {
1357                 pr_err("Unable to allocate memory for se_dev_t\n");
1358                 return NULL;
1359         }
1360
1361         transport_init_queue_obj(&dev->dev_queue_obj);
1362         dev->dev_flags          = device_flags;
1363         dev->dev_status         |= TRANSPORT_DEVICE_DEACTIVATED;
1364         dev->dev_ptr            = transport_dev;
1365         dev->se_hba             = hba;
1366         dev->se_sub_dev         = se_dev;
1367         dev->transport          = transport;
1368         atomic_set(&dev->active_cmds, 0);
1369         INIT_LIST_HEAD(&dev->dev_list);
1370         INIT_LIST_HEAD(&dev->dev_sep_list);
1371         INIT_LIST_HEAD(&dev->dev_tmr_list);
1372         INIT_LIST_HEAD(&dev->execute_task_list);
1373         INIT_LIST_HEAD(&dev->delayed_cmd_list);
1374         INIT_LIST_HEAD(&dev->ordered_cmd_list);
1375         INIT_LIST_HEAD(&dev->state_task_list);
1376         INIT_LIST_HEAD(&dev->qf_cmd_list);
1377         spin_lock_init(&dev->execute_task_lock);
1378         spin_lock_init(&dev->delayed_cmd_lock);
1379         spin_lock_init(&dev->ordered_cmd_lock);
1380         spin_lock_init(&dev->state_task_lock);
1381         spin_lock_init(&dev->dev_alua_lock);
1382         spin_lock_init(&dev->dev_reservation_lock);
1383         spin_lock_init(&dev->dev_status_lock);
1384         spin_lock_init(&dev->dev_status_thr_lock);
1385         spin_lock_init(&dev->se_port_lock);
1386         spin_lock_init(&dev->se_tmr_lock);
1387         spin_lock_init(&dev->qf_cmd_lock);
1388
1389         dev->queue_depth        = dev_limits->queue_depth;
1390         atomic_set(&dev->depth_left, dev->queue_depth);
1391         atomic_set(&dev->dev_ordered_id, 0);
1392
1393         se_dev_set_default_attribs(dev, dev_limits);
1394
1395         dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1396         dev->creation_time = get_jiffies_64();
1397         spin_lock_init(&dev->stats_lock);
1398
1399         spin_lock(&hba->device_lock);
1400         list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1401         hba->dev_count++;
1402         spin_unlock(&hba->device_lock);
1403         /*
1404          * Setup the SAM Task Attribute emulation for struct se_device
1405          */
1406         core_setup_task_attr_emulation(dev);
1407         /*
1408          * Force PR and ALUA passthrough emulation with internal object use.
1409          */
1410         force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1411         /*
1412          * Setup the Reservations infrastructure for struct se_device
1413          */
1414         core_setup_reservations(dev, force_pt);
1415         /*
1416          * Setup the Asymmetric Logical Unit Assignment for struct se_device
1417          */
1418         if (core_setup_alua(dev, force_pt) < 0)
1419                 goto out;
1420
1421         /*
1422          * Startup the struct se_device processing thread
1423          */
1424         dev->process_thread = kthread_run(transport_processing_thread, dev,
1425                                           "LIO_%s", dev->transport->name);
1426         if (IS_ERR(dev->process_thread)) {
1427                 pr_err("Unable to create kthread: LIO_%s\n",
1428                         dev->transport->name);
1429                 goto out;
1430         }
1431         /*
1432          * Setup work_queue for QUEUE_FULL
1433          */
1434         INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1435         /*
1436          * Preload the initial INQUIRY const values if we are doing
1437          * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1438          * passthrough because this is being provided by the backend LLD.
1439          * This is required so that transport_get_inquiry() copies these
1440          * originals once back into DEV_T10_WWN(dev) for the virtual device
1441          * setup.
1442          */
1443         if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1444                 if (!inquiry_prod || !inquiry_rev) {
1445                         pr_err("All non TCM/pSCSI plugins require"
1446                                 " INQUIRY consts\n");
1447                         goto out;
1448                 }
1449
1450                 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1451                 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1452                 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1453         }
1454         scsi_dump_inquiry(dev);
1455
1456         return dev;
1457 out:
1458         kthread_stop(dev->process_thread);
1459
1460         spin_lock(&hba->device_lock);
1461         list_del(&dev->dev_list);
1462         hba->dev_count--;
1463         spin_unlock(&hba->device_lock);
1464
1465         se_release_vpd_for_dev(dev);
1466
1467         kfree(dev);
1468
1469         return NULL;
1470 }
1471 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1472
1473 /*      transport_generic_prepare_cdb():
1474  *
1475  *      Since the Initiator sees iSCSI devices as LUNs,  the SCSI CDB will
1476  *      contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1477  *      The point of this is since we are mapping iSCSI LUNs to
1478  *      SCSI Target IDs having a non-zero LUN in the CDB will throw the
1479  *      devices and HBAs for a loop.
1480  */
1481 static inline void transport_generic_prepare_cdb(
1482         unsigned char *cdb)
1483 {
1484         switch (cdb[0]) {
1485         case READ_10: /* SBC - RDProtect */
1486         case READ_12: /* SBC - RDProtect */
1487         case READ_16: /* SBC - RDProtect */
1488         case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1489         case VERIFY: /* SBC - VRProtect */
1490         case VERIFY_16: /* SBC - VRProtect */
1491         case WRITE_VERIFY: /* SBC - VRProtect */
1492         case WRITE_VERIFY_12: /* SBC - VRProtect */
1493                 break;
1494         default:
1495                 cdb[1] &= 0x1f; /* clear logical unit number */
1496                 break;
1497         }
1498 }
1499
1500 static struct se_task *
1501 transport_generic_get_task(struct se_cmd *cmd,
1502                 enum dma_data_direction data_direction)
1503 {
1504         struct se_task *task;
1505         struct se_device *dev = cmd->se_dev;
1506
1507         task = dev->transport->alloc_task(cmd->t_task_cdb);
1508         if (!task) {
1509                 pr_err("Unable to allocate struct se_task\n");
1510                 return NULL;
1511         }
1512
1513         INIT_LIST_HEAD(&task->t_list);
1514         INIT_LIST_HEAD(&task->t_execute_list);
1515         INIT_LIST_HEAD(&task->t_state_list);
1516         init_completion(&task->task_stop_comp);
1517         task->task_se_cmd = cmd;
1518         task->task_data_direction = data_direction;
1519
1520         return task;
1521 }
1522
1523 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1524
1525 /*
1526  * Used by fabric modules containing a local struct se_cmd within their
1527  * fabric dependent per I/O descriptor.
1528  */
1529 void transport_init_se_cmd(
1530         struct se_cmd *cmd,
1531         struct target_core_fabric_ops *tfo,
1532         struct se_session *se_sess,
1533         u32 data_length,
1534         int data_direction,
1535         int task_attr,
1536         unsigned char *sense_buffer)
1537 {
1538         INIT_LIST_HEAD(&cmd->se_lun_node);
1539         INIT_LIST_HEAD(&cmd->se_delayed_node);
1540         INIT_LIST_HEAD(&cmd->se_ordered_node);
1541         INIT_LIST_HEAD(&cmd->se_qf_node);
1542         INIT_LIST_HEAD(&cmd->se_queue_node);
1543
1544         INIT_LIST_HEAD(&cmd->t_task_list);
1545         init_completion(&cmd->transport_lun_fe_stop_comp);
1546         init_completion(&cmd->transport_lun_stop_comp);
1547         init_completion(&cmd->t_transport_stop_comp);
1548         spin_lock_init(&cmd->t_state_lock);
1549         atomic_set(&cmd->transport_dev_active, 1);
1550
1551         cmd->se_tfo = tfo;
1552         cmd->se_sess = se_sess;
1553         cmd->data_length = data_length;
1554         cmd->data_direction = data_direction;
1555         cmd->sam_task_attr = task_attr;
1556         cmd->sense_buffer = sense_buffer;
1557 }
1558 EXPORT_SYMBOL(transport_init_se_cmd);
1559
1560 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1561 {
1562         /*
1563          * Check if SAM Task Attribute emulation is enabled for this
1564          * struct se_device storage object
1565          */
1566         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1567                 return 0;
1568
1569         if (cmd->sam_task_attr == MSG_ACA_TAG) {
1570                 pr_debug("SAM Task Attribute ACA"
1571                         " emulation is not supported\n");
1572                 return -EINVAL;
1573         }
1574         /*
1575          * Used to determine when ORDERED commands should go from
1576          * Dormant to Active status.
1577          */
1578         cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1579         smp_mb__after_atomic_inc();
1580         pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1581                         cmd->se_ordered_id, cmd->sam_task_attr,
1582                         cmd->se_dev->transport->name);
1583         return 0;
1584 }
1585
1586 /*      transport_generic_allocate_tasks():
1587  *
1588  *      Called from fabric RX Thread.
1589  */
1590 int transport_generic_allocate_tasks(
1591         struct se_cmd *cmd,
1592         unsigned char *cdb)
1593 {
1594         int ret;
1595
1596         transport_generic_prepare_cdb(cdb);
1597         /*
1598          * Ensure that the received CDB is less than the max (252 + 8) bytes
1599          * for VARIABLE_LENGTH_CMD
1600          */
1601         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1602                 pr_err("Received SCSI CDB with command_size: %d that"
1603                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1604                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1605                 return -EINVAL;
1606         }
1607         /*
1608          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1609          * allocate the additional extended CDB buffer now..  Otherwise
1610          * setup the pointer from __t_task_cdb to t_task_cdb.
1611          */
1612         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1613                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1614                                                 GFP_KERNEL);
1615                 if (!cmd->t_task_cdb) {
1616                         pr_err("Unable to allocate cmd->t_task_cdb"
1617                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1618                                 scsi_command_size(cdb),
1619                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1620                         return -ENOMEM;
1621                 }
1622         } else
1623                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1624         /*
1625          * Copy the original CDB into cmd->
1626          */
1627         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1628         /*
1629          * Setup the received CDB based on SCSI defined opcodes and
1630          * perform unit attention, persistent reservations and ALUA
1631          * checks for virtual device backends.  The cmd->t_task_cdb
1632          * pointer is expected to be setup before we reach this point.
1633          */
1634         ret = transport_generic_cmd_sequencer(cmd, cdb);
1635         if (ret < 0)
1636                 return ret;
1637         /*
1638          * Check for SAM Task Attribute Emulation
1639          */
1640         if (transport_check_alloc_task_attr(cmd) < 0) {
1641                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1642                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1643                 return -EINVAL;
1644         }
1645         spin_lock(&cmd->se_lun->lun_sep_lock);
1646         if (cmd->se_lun->lun_sep)
1647                 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1648         spin_unlock(&cmd->se_lun->lun_sep_lock);
1649         return 0;
1650 }
1651 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1652
1653 static void transport_generic_request_failure(struct se_cmd *,
1654                         struct se_device *, int, int);
1655 /*
1656  * Used by fabric module frontends to queue tasks directly.
1657  * Many only be used from process context only
1658  */
1659 int transport_handle_cdb_direct(
1660         struct se_cmd *cmd)
1661 {
1662         int ret;
1663
1664         if (!cmd->se_lun) {
1665                 dump_stack();
1666                 pr_err("cmd->se_lun is NULL\n");
1667                 return -EINVAL;
1668         }
1669         if (in_interrupt()) {
1670                 dump_stack();
1671                 pr_err("transport_generic_handle_cdb cannot be called"
1672                                 " from interrupt context\n");
1673                 return -EINVAL;
1674         }
1675         /*
1676          * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1677          * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1678          * in existing usage to ensure that outstanding descriptors are handled
1679          * correctly during shutdown via transport_wait_for_tasks()
1680          *
1681          * Also, we don't take cmd->t_state_lock here as we only expect
1682          * this to be called for initial descriptor submission.
1683          */
1684         cmd->t_state = TRANSPORT_NEW_CMD;
1685         atomic_set(&cmd->t_transport_active, 1);
1686         /*
1687          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1688          * so follow TRANSPORT_NEW_CMD processing thread context usage
1689          * and call transport_generic_request_failure() if necessary..
1690          */
1691         ret = transport_generic_new_cmd(cmd);
1692         if (ret == -EAGAIN)
1693                 return 0;
1694         else if (ret < 0) {
1695                 cmd->transport_error_status = ret;
1696                 transport_generic_request_failure(cmd, NULL, 0,
1697                                 (cmd->data_direction != DMA_TO_DEVICE));
1698         }
1699         return 0;
1700 }
1701 EXPORT_SYMBOL(transport_handle_cdb_direct);
1702
1703 /*
1704  * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1705  * to  queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1706  * complete setup in TCM process context w/ TFO->new_cmd_map().
1707  */
1708 int transport_generic_handle_cdb_map(
1709         struct se_cmd *cmd)
1710 {
1711         if (!cmd->se_lun) {
1712                 dump_stack();
1713                 pr_err("cmd->se_lun is NULL\n");
1714                 return -EINVAL;
1715         }
1716
1717         transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP);
1718         return 0;
1719 }
1720 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1721
1722 /*      transport_generic_handle_data():
1723  *
1724  *
1725  */
1726 int transport_generic_handle_data(
1727         struct se_cmd *cmd)
1728 {
1729         /*
1730          * For the software fabric case, then we assume the nexus is being
1731          * failed/shutdown when signals are pending from the kthread context
1732          * caller, so we return a failure.  For the HW target mode case running
1733          * in interrupt code, the signal_pending() check is skipped.
1734          */
1735         if (!in_interrupt() && signal_pending(current))
1736                 return -EPERM;
1737         /*
1738          * If the received CDB has aleady been ABORTED by the generic
1739          * target engine, we now call transport_check_aborted_status()
1740          * to queue any delated TASK_ABORTED status for the received CDB to the
1741          * fabric module as we are expecting no further incoming DATA OUT
1742          * sequences at this point.
1743          */
1744         if (transport_check_aborted_status(cmd, 1) != 0)
1745                 return 0;
1746
1747         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE);
1748         return 0;
1749 }
1750 EXPORT_SYMBOL(transport_generic_handle_data);
1751
1752 /*      transport_generic_handle_tmr():
1753  *
1754  *
1755  */
1756 int transport_generic_handle_tmr(
1757         struct se_cmd *cmd)
1758 {
1759         transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR);
1760         return 0;
1761 }
1762 EXPORT_SYMBOL(transport_generic_handle_tmr);
1763
1764 void transport_generic_free_cmd_intr(
1765         struct se_cmd *cmd)
1766 {
1767         transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR);
1768 }
1769 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1770
1771 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1772 {
1773         struct se_task *task, *task_tmp;
1774         unsigned long flags;
1775         int ret = 0;
1776
1777         pr_debug("ITT[0x%08x] - Stopping tasks\n",
1778                 cmd->se_tfo->get_task_tag(cmd));
1779
1780         /*
1781          * No tasks remain in the execution queue
1782          */
1783         spin_lock_irqsave(&cmd->t_state_lock, flags);
1784         list_for_each_entry_safe(task, task_tmp,
1785                                 &cmd->t_task_list, t_list) {
1786                 pr_debug("Processing task %p\n", task);
1787                 /*
1788                  * If the struct se_task has not been sent and is not active,
1789                  * remove the struct se_task from the execution queue.
1790                  */
1791                 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1792                         spin_unlock_irqrestore(&cmd->t_state_lock,
1793                                         flags);
1794                         transport_remove_task_from_execute_queue(task,
1795                                         cmd->se_dev);
1796
1797                         pr_debug("Task %p removed from execute queue\n", task);
1798                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1799                         continue;
1800                 }
1801
1802                 /*
1803                  * If the struct se_task is active, sleep until it is returned
1804                  * from the plugin.
1805                  */
1806                 if (task->task_flags & TF_ACTIVE) {
1807                         task->task_flags |= TF_REQUEST_STOP;
1808                         spin_unlock_irqrestore(&cmd->t_state_lock,
1809                                         flags);
1810
1811                         pr_debug("Task %p waiting to complete\n", task);
1812                         wait_for_completion(&task->task_stop_comp);
1813                         pr_debug("Task %p stopped successfully\n", task);
1814
1815                         spin_lock_irqsave(&cmd->t_state_lock, flags);
1816                         atomic_dec(&cmd->t_task_cdbs_left);
1817                         task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1818                 } else {
1819                         pr_debug("Task %p - did nothing\n", task);
1820                         ret++;
1821                 }
1822
1823                 __transport_stop_task_timer(task, &flags);
1824         }
1825         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1826
1827         return ret;
1828 }
1829
1830 /*
1831  * Handle SAM-esque emulation for generic transport request failures.
1832  */
1833 static void transport_generic_request_failure(
1834         struct se_cmd *cmd,
1835         struct se_device *dev,
1836         int complete,
1837         int sc)
1838 {
1839         int ret = 0;
1840
1841         pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1842                 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1843                 cmd->t_task_cdb[0]);
1844         pr_debug("-----[ i_state: %d t_state/def_t_state:"
1845                 " %d/%d transport_error_status: %d\n",
1846                 cmd->se_tfo->get_cmd_state(cmd),
1847                 cmd->t_state, cmd->deferred_t_state,
1848                 cmd->transport_error_status);
1849         pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1850                 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1851                 " t_transport_active: %d t_transport_stop: %d"
1852                 " t_transport_sent: %d\n", cmd->t_task_list_num,
1853                 atomic_read(&cmd->t_task_cdbs_left),
1854                 atomic_read(&cmd->t_task_cdbs_sent),
1855                 atomic_read(&cmd->t_task_cdbs_ex_left),
1856                 atomic_read(&cmd->t_transport_active),
1857                 atomic_read(&cmd->t_transport_stop),
1858                 atomic_read(&cmd->t_transport_sent));
1859
1860         transport_stop_all_task_timers(cmd);
1861
1862         if (dev)
1863                 atomic_inc(&dev->depth_left);
1864         /*
1865          * For SAM Task Attribute emulation for failed struct se_cmd
1866          */
1867         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1868                 transport_complete_task_attr(cmd);
1869
1870         if (complete) {
1871                 transport_direct_request_timeout(cmd);
1872                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1873         }
1874
1875         switch (cmd->transport_error_status) {
1876         case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1877                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1878                 break;
1879         case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1880                 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1881                 break;
1882         case PYX_TRANSPORT_INVALID_CDB_FIELD:
1883                 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1884                 break;
1885         case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1886                 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1887                 break;
1888         case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1889                 if (!sc)
1890                         transport_new_cmd_failure(cmd);
1891                 /*
1892                  * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1893                  * we force this session to fall back to session
1894                  * recovery.
1895                  */
1896                 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1897                 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1898
1899                 goto check_stop;
1900         case PYX_TRANSPORT_LU_COMM_FAILURE:
1901         case PYX_TRANSPORT_ILLEGAL_REQUEST:
1902                 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1903                 break;
1904         case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1905                 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1906                 break;
1907         case PYX_TRANSPORT_WRITE_PROTECTED:
1908                 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1909                 break;
1910         case PYX_TRANSPORT_RESERVATION_CONFLICT:
1911                 /*
1912                  * No SENSE Data payload for this case, set SCSI Status
1913                  * and queue the response to $FABRIC_MOD.
1914                  *
1915                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1916                  */
1917                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1918                 /*
1919                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1920                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1921                  * CONFLICT STATUS.
1922                  *
1923                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1924                  */
1925                 if (cmd->se_sess &&
1926                     cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1927                         core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1928                                 cmd->orig_fe_lun, 0x2C,
1929                                 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1930
1931                 ret = cmd->se_tfo->queue_status(cmd);
1932                 if (ret == -EAGAIN)
1933                         goto queue_full;
1934                 goto check_stop;
1935         case PYX_TRANSPORT_USE_SENSE_REASON:
1936                 /*
1937                  * struct se_cmd->scsi_sense_reason already set
1938                  */
1939                 break;
1940         default:
1941                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1942                         cmd->t_task_cdb[0],
1943                         cmd->transport_error_status);
1944                 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1945                 break;
1946         }
1947         /*
1948          * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1949          * make the call to transport_send_check_condition_and_sense()
1950          * directly.  Otherwise expect the fabric to make the call to
1951          * transport_send_check_condition_and_sense() after handling
1952          * possible unsoliticied write data payloads.
1953          */
1954         if (!sc && !cmd->se_tfo->new_cmd_map)
1955                 transport_new_cmd_failure(cmd);
1956         else {
1957                 ret = transport_send_check_condition_and_sense(cmd,
1958                                 cmd->scsi_sense_reason, 0);
1959                 if (ret == -EAGAIN)
1960                         goto queue_full;
1961         }
1962
1963 check_stop:
1964         transport_lun_remove_cmd(cmd);
1965         if (!transport_cmd_check_stop_to_fabric(cmd))
1966                 ;
1967         return;
1968
1969 queue_full:
1970         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1971         transport_handle_queue_full(cmd, cmd->se_dev);
1972 }
1973
1974 static void transport_direct_request_timeout(struct se_cmd *cmd)
1975 {
1976         unsigned long flags;
1977
1978         spin_lock_irqsave(&cmd->t_state_lock, flags);
1979         if (!atomic_read(&cmd->t_transport_timeout)) {
1980                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1981                 return;
1982         }
1983         if (atomic_read(&cmd->t_task_cdbs_timeout_left)) {
1984                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1985                 return;
1986         }
1987
1988         atomic_sub(atomic_read(&cmd->t_transport_timeout),
1989                    &cmd->t_se_count);
1990         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1991 }
1992
1993 static void transport_generic_request_timeout(struct se_cmd *cmd)
1994 {
1995         unsigned long flags;
1996
1997         /*
1998          * Reset cmd->t_se_count to allow transport_put_cmd()
1999          * to allow last call to free memory resources.
2000          */
2001         spin_lock_irqsave(&cmd->t_state_lock, flags);
2002         if (atomic_read(&cmd->t_transport_timeout) > 1) {
2003                 int tmp = (atomic_read(&cmd->t_transport_timeout) - 1);
2004
2005                 atomic_sub(tmp, &cmd->t_se_count);
2006         }
2007         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2008
2009         transport_put_cmd(cmd);
2010 }
2011
2012 static inline u32 transport_lba_21(unsigned char *cdb)
2013 {
2014         return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
2015 }
2016
2017 static inline u32 transport_lba_32(unsigned char *cdb)
2018 {
2019         return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2020 }
2021
2022 static inline unsigned long long transport_lba_64(unsigned char *cdb)
2023 {
2024         unsigned int __v1, __v2;
2025
2026         __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
2027         __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2028
2029         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2030 }
2031
2032 /*
2033  * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2034  */
2035 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
2036 {
2037         unsigned int __v1, __v2;
2038
2039         __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
2040         __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
2041
2042         return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
2043 }
2044
2045 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
2046 {
2047         unsigned long flags;
2048
2049         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2050         se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
2051         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2052 }
2053
2054 /*
2055  * Called from interrupt context.
2056  */
2057 static void transport_task_timeout_handler(unsigned long data)
2058 {
2059         struct se_task *task = (struct se_task *)data;
2060         struct se_cmd *cmd = task->task_se_cmd;
2061         unsigned long flags;
2062
2063         pr_debug("transport task timeout fired! task: %p cmd: %p\n", task, cmd);
2064
2065         spin_lock_irqsave(&cmd->t_state_lock, flags);
2066         if (task->task_flags & TF_TIMER_STOP) {
2067                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2068                 return;
2069         }
2070         task->task_flags &= ~TF_TIMER_RUNNING;
2071
2072         /*
2073          * Determine if transport_complete_task() has already been called.
2074          */
2075         if (!(task->task_flags & TF_ACTIVE)) {
2076                 pr_debug("transport task: %p cmd: %p timeout !TF_ACTIVE\n",
2077                          task, cmd);
2078                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2079                 return;
2080         }
2081
2082         atomic_inc(&cmd->t_se_count);
2083         atomic_inc(&cmd->t_transport_timeout);
2084         cmd->t_tasks_failed = 1;
2085
2086         task->task_flags |= TF_TIMEOUT;
2087         task->task_error_status = PYX_TRANSPORT_TASK_TIMEOUT;
2088         task->task_scsi_status = 1;
2089
2090         if (task->task_flags & TF_REQUEST_STOP) {
2091                 pr_debug("transport task: %p cmd: %p timeout TF_REQUEST_STOP"
2092                                 " == 1\n", task, cmd);
2093                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2094                 complete(&task->task_stop_comp);
2095                 return;
2096         }
2097
2098         if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
2099                 pr_debug("transport task: %p cmd: %p timeout non zero"
2100                                 " t_task_cdbs_left\n", task, cmd);
2101                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2102                 return;
2103         }
2104         pr_debug("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2105                         task, cmd);
2106
2107         cmd->t_state = TRANSPORT_COMPLETE_FAILURE;
2108         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2109
2110         transport_add_cmd_to_queue(cmd, TRANSPORT_COMPLETE_FAILURE);
2111 }
2112
2113 /*
2114  * Called with cmd->t_state_lock held.
2115  */
2116 static void transport_start_task_timer(struct se_task *task)
2117 {
2118         struct se_device *dev = task->task_se_cmd->se_dev;
2119         int timeout;
2120
2121         if (task->task_flags & TF_TIMER_RUNNING)
2122                 return;
2123         /*
2124          * If the task_timeout is disabled, exit now.
2125          */
2126         timeout = dev->se_sub_dev->se_dev_attrib.task_timeout;
2127         if (!timeout)
2128                 return;
2129
2130         init_timer(&task->task_timer);
2131         task->task_timer.expires = (get_jiffies_64() + timeout * HZ);
2132         task->task_timer.data = (unsigned long) task;
2133         task->task_timer.function = transport_task_timeout_handler;
2134
2135         task->task_flags |= TF_TIMER_RUNNING;
2136         add_timer(&task->task_timer);
2137 #if 0
2138         pr_debug("Starting task timer for cmd: %p task: %p seconds:"
2139                 " %d\n", task->task_se_cmd, task, timeout);
2140 #endif
2141 }
2142
2143 /*
2144  * Called with spin_lock_irq(&cmd->t_state_lock) held.
2145  */
2146 void __transport_stop_task_timer(struct se_task *task, unsigned long *flags)
2147 {
2148         struct se_cmd *cmd = task->task_se_cmd;
2149
2150         if (!(task->task_flags & TF_TIMER_RUNNING))
2151                 return;
2152
2153         task->task_flags |= TF_TIMER_STOP;
2154         spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2155
2156         del_timer_sync(&task->task_timer);
2157
2158         spin_lock_irqsave(&cmd->t_state_lock, *flags);
2159         task->task_flags &= ~TF_TIMER_RUNNING;
2160         task->task_flags &= ~TF_TIMER_STOP;
2161 }
2162
2163 static void transport_stop_all_task_timers(struct se_cmd *cmd)
2164 {
2165         struct se_task *task = NULL, *task_tmp;
2166         unsigned long flags;
2167
2168         spin_lock_irqsave(&cmd->t_state_lock, flags);
2169         list_for_each_entry_safe(task, task_tmp,
2170                                 &cmd->t_task_list, t_list)
2171                 __transport_stop_task_timer(task, &flags);
2172         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2173 }
2174
2175 static inline int transport_tcq_window_closed(struct se_device *dev)
2176 {
2177         if (dev->dev_tcq_window_closed++ <
2178                         PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
2179                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
2180         } else
2181                 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
2182
2183         wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
2184         return 0;
2185 }
2186
2187 /*
2188  * Called from Fabric Module context from transport_execute_tasks()
2189  *
2190  * The return of this function determins if the tasks from struct se_cmd
2191  * get added to the execution queue in transport_execute_tasks(),
2192  * or are added to the delayed or ordered lists here.
2193  */
2194 static inline int transport_execute_task_attr(struct se_cmd *cmd)
2195 {
2196         if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
2197                 return 1;
2198         /*
2199          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2200          * to allow the passed struct se_cmd list of tasks to the front of the list.
2201          */
2202          if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2203                 atomic_inc(&cmd->se_dev->dev_hoq_count);
2204                 smp_mb__after_atomic_inc();
2205                 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2206                         " 0x%02x, se_ordered_id: %u\n",
2207                         cmd->t_task_cdb[0],
2208                         cmd->se_ordered_id);
2209                 return 1;
2210         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2211                 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2212                 list_add_tail(&cmd->se_ordered_node,
2213                                 &cmd->se_dev->ordered_cmd_list);
2214                 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2215
2216                 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2217                 smp_mb__after_atomic_inc();
2218
2219                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2220                                 " list, se_ordered_id: %u\n",
2221                                 cmd->t_task_cdb[0],
2222                                 cmd->se_ordered_id);
2223                 /*
2224                  * Add ORDERED command to tail of execution queue if
2225                  * no other older commands exist that need to be
2226                  * completed first.
2227                  */
2228                 if (!atomic_read(&cmd->se_dev->simple_cmds))
2229                         return 1;
2230         } else {
2231                 /*
2232                  * For SIMPLE and UNTAGGED Task Attribute commands
2233                  */
2234                 atomic_inc(&cmd->se_dev->simple_cmds);
2235                 smp_mb__after_atomic_inc();
2236         }
2237         /*
2238          * Otherwise if one or more outstanding ORDERED task attribute exist,
2239          * add the dormant task(s) built for the passed struct se_cmd to the
2240          * execution queue and become in Active state for this struct se_device.
2241          */
2242         if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2243                 /*
2244                  * Otherwise, add cmd w/ tasks to delayed cmd queue that
2245                  * will be drained upon completion of HEAD_OF_QUEUE task.
2246                  */
2247                 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2248                 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2249                 list_add_tail(&cmd->se_delayed_node,
2250                                 &cmd->se_dev->delayed_cmd_list);
2251                 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2252
2253                 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2254                         " delayed CMD list, se_ordered_id: %u\n",
2255                         cmd->t_task_cdb[0], cmd->sam_task_attr,
2256                         cmd->se_ordered_id);
2257                 /*
2258                  * Return zero to let transport_execute_tasks() know
2259                  * not to add the delayed tasks to the execution list.
2260                  */
2261                 return 0;
2262         }
2263         /*
2264          * Otherwise, no ORDERED task attributes exist..
2265          */
2266         return 1;
2267 }
2268
2269 /*
2270  * Called from fabric module context in transport_generic_new_cmd() and
2271  * transport_generic_process_write()
2272  */
2273 static int transport_execute_tasks(struct se_cmd *cmd)
2274 {
2275         int add_tasks;
2276
2277         if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2278                 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2279                 transport_generic_request_failure(cmd, NULL, 0, 1);
2280                 return 0;
2281         }
2282
2283         /*
2284          * Call transport_cmd_check_stop() to see if a fabric exception
2285          * has occurred that prevents execution.
2286          */
2287         if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2288                 /*
2289                  * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2290                  * attribute for the tasks of the received struct se_cmd CDB
2291                  */
2292                 add_tasks = transport_execute_task_attr(cmd);
2293                 if (!add_tasks)
2294                         goto execute_tasks;
2295                 /*
2296                  * This calls transport_add_tasks_from_cmd() to handle
2297                  * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2298                  * (if enabled) in __transport_add_task_to_execute_queue() and
2299                  * transport_add_task_check_sam_attr().
2300                  */
2301                 transport_add_tasks_from_cmd(cmd);
2302         }
2303         /*
2304          * Kick the execution queue for the cmd associated struct se_device
2305          * storage object.
2306          */
2307 execute_tasks:
2308         __transport_execute_tasks(cmd->se_dev);
2309         return 0;
2310 }
2311
2312 /*
2313  * Called to check struct se_device tcq depth window, and once open pull struct se_task
2314  * from struct se_device->execute_task_list and
2315  *
2316  * Called from transport_processing_thread()
2317  */
2318 static int __transport_execute_tasks(struct se_device *dev)
2319 {
2320         int error;
2321         struct se_cmd *cmd = NULL;
2322         struct se_task *task = NULL;
2323         unsigned long flags;
2324
2325         /*
2326          * Check if there is enough room in the device and HBA queue to send
2327          * struct se_tasks to the selected transport.
2328          */
2329 check_depth:
2330         if (!atomic_read(&dev->depth_left))
2331                 return transport_tcq_window_closed(dev);
2332
2333         dev->dev_tcq_window_closed = 0;
2334
2335         spin_lock_irq(&dev->execute_task_lock);
2336         if (list_empty(&dev->execute_task_list)) {
2337                 spin_unlock_irq(&dev->execute_task_lock);
2338                 return 0;
2339         }
2340         task = list_first_entry(&dev->execute_task_list,
2341                                 struct se_task, t_execute_list);
2342         __transport_remove_task_from_execute_queue(task, dev);
2343         spin_unlock_irq(&dev->execute_task_lock);
2344
2345         atomic_dec(&dev->depth_left);
2346
2347         cmd = task->task_se_cmd;
2348
2349         spin_lock_irqsave(&cmd->t_state_lock, flags);
2350         task->task_flags |= (TF_ACTIVE | TF_SENT);
2351         atomic_inc(&cmd->t_task_cdbs_sent);
2352
2353         if (atomic_read(&cmd->t_task_cdbs_sent) ==
2354             cmd->t_task_list_num)
2355                 atomic_set(&cmd->transport_sent, 1);
2356
2357         transport_start_task_timer(task);
2358         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2359         /*
2360          * The struct se_cmd->transport_emulate_cdb() function pointer is used
2361          * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2362          * struct se_subsystem_api->do_task() caller below.
2363          */
2364         if (cmd->transport_emulate_cdb) {
2365                 error = cmd->transport_emulate_cdb(cmd);
2366                 if (error != 0) {
2367                         cmd->transport_error_status = error;
2368                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2369                         task->task_flags &= ~TF_ACTIVE;
2370                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2371                         atomic_set(&cmd->transport_sent, 0);
2372                         transport_stop_tasks_for_cmd(cmd);
2373                         transport_generic_request_failure(cmd, dev, 0, 1);
2374                         goto check_depth;
2375                 }
2376                 /*
2377                  * Handle the successful completion for transport_emulate_cdb()
2378                  * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2379                  * Otherwise the caller is expected to complete the task with
2380                  * proper status.
2381                  */
2382                 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2383                         cmd->scsi_status = SAM_STAT_GOOD;
2384                         task->task_scsi_status = GOOD;
2385                         transport_complete_task(task, 1);
2386                 }
2387         } else {
2388                 /*
2389                  * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2390                  * RAMDISK we use the internal transport_emulate_control_cdb() logic
2391                  * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2392                  * LUN emulation code.
2393                  *
2394                  * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2395                  * call ->do_task() directly and let the underlying TCM subsystem plugin
2396                  * code handle the CDB emulation.
2397                  */
2398                 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2399                     (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2400                         error = transport_emulate_control_cdb(task);
2401                 else
2402                         error = dev->transport->do_task(task);
2403
2404                 if (error != 0) {
2405                         cmd->transport_error_status = error;
2406                         spin_lock_irqsave(&cmd->t_state_lock, flags);
2407                         task->task_flags &= ~TF_ACTIVE;
2408                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2409                         atomic_set(&cmd->transport_sent, 0);
2410                         transport_stop_tasks_for_cmd(cmd);
2411                         transport_generic_request_failure(cmd, dev, 0, 1);
2412                 }
2413         }
2414
2415         goto check_depth;
2416
2417         return 0;
2418 }
2419
2420 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2421 {
2422         unsigned long flags;
2423         /*
2424          * Any unsolicited data will get dumped for failed command inside of
2425          * the fabric plugin
2426          */
2427         spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2428         se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2429         se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2430         spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2431 }
2432
2433 static inline u32 transport_get_sectors_6(
2434         unsigned char *cdb,
2435         struct se_cmd *cmd,
2436         int *ret)
2437 {
2438         struct se_device *dev = cmd->se_dev;
2439
2440         /*
2441          * Assume TYPE_DISK for non struct se_device objects.
2442          * Use 8-bit sector value.
2443          */
2444         if (!dev)
2445                 goto type_disk;
2446
2447         /*
2448          * Use 24-bit allocation length for TYPE_TAPE.
2449          */
2450         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2451                 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2452
2453         /*
2454          * Everything else assume TYPE_DISK Sector CDB location.
2455          * Use 8-bit sector value.
2456          */
2457 type_disk:
2458         return (u32)cdb[4];
2459 }
2460
2461 static inline u32 transport_get_sectors_10(
2462         unsigned char *cdb,
2463         struct se_cmd *cmd,
2464         int *ret)
2465 {
2466         struct se_device *dev = cmd->se_dev;
2467
2468         /*
2469          * Assume TYPE_DISK for non struct se_device objects.
2470          * Use 16-bit sector value.
2471          */
2472         if (!dev)
2473                 goto type_disk;
2474
2475         /*
2476          * XXX_10 is not defined in SSC, throw an exception
2477          */
2478         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2479                 *ret = -EINVAL;
2480                 return 0;
2481         }
2482
2483         /*
2484          * Everything else assume TYPE_DISK Sector CDB location.
2485          * Use 16-bit sector value.
2486          */
2487 type_disk:
2488         return (u32)(cdb[7] << 8) + cdb[8];
2489 }
2490
2491 static inline u32 transport_get_sectors_12(
2492         unsigned char *cdb,
2493         struct se_cmd *cmd,
2494         int *ret)
2495 {
2496         struct se_device *dev = cmd->se_dev;
2497
2498         /*
2499          * Assume TYPE_DISK for non struct se_device objects.
2500          * Use 32-bit sector value.
2501          */
2502         if (!dev)
2503                 goto type_disk;
2504
2505         /*
2506          * XXX_12 is not defined in SSC, throw an exception
2507          */
2508         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2509                 *ret = -EINVAL;
2510                 return 0;
2511         }
2512
2513         /*
2514          * Everything else assume TYPE_DISK Sector CDB location.
2515          * Use 32-bit sector value.
2516          */
2517 type_disk:
2518         return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2519 }
2520
2521 static inline u32 transport_get_sectors_16(
2522         unsigned char *cdb,
2523         struct se_cmd *cmd,
2524         int *ret)
2525 {
2526         struct se_device *dev = cmd->se_dev;
2527
2528         /*
2529          * Assume TYPE_DISK for non struct se_device objects.
2530          * Use 32-bit sector value.
2531          */
2532         if (!dev)
2533                 goto type_disk;
2534
2535         /*
2536          * Use 24-bit allocation length for TYPE_TAPE.
2537          */
2538         if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2539                 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2540
2541 type_disk:
2542         return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2543                     (cdb[12] << 8) + cdb[13];
2544 }
2545
2546 /*
2547  * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2548  */
2549 static inline u32 transport_get_sectors_32(
2550         unsigned char *cdb,
2551         struct se_cmd *cmd,
2552         int *ret)
2553 {
2554         /*
2555          * Assume TYPE_DISK for non struct se_device objects.
2556          * Use 32-bit sector value.
2557          */
2558         return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2559                     (cdb[30] << 8) + cdb[31];
2560
2561 }
2562
2563 static inline u32 transport_get_size(
2564         u32 sectors,
2565         unsigned char *cdb,
2566         struct se_cmd *cmd)
2567 {
2568         struct se_device *dev = cmd->se_dev;
2569
2570         if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2571                 if (cdb[1] & 1) { /* sectors */
2572                         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2573                 } else /* bytes */
2574                         return sectors;
2575         }
2576 #if 0
2577         pr_debug("Returning block_size: %u, sectors: %u == %u for"
2578                         " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2579                         dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2580                         dev->transport->name);
2581 #endif
2582         return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2583 }
2584
2585 static void transport_xor_callback(struct se_cmd *cmd)
2586 {
2587         unsigned char *buf, *addr;
2588         struct scatterlist *sg;
2589         unsigned int offset;
2590         int i;
2591         int count;
2592         /*
2593          * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2594          *
2595          * 1) read the specified logical block(s);
2596          * 2) transfer logical blocks from the data-out buffer;
2597          * 3) XOR the logical blocks transferred from the data-out buffer with
2598          *    the logical blocks read, storing the resulting XOR data in a buffer;
2599          * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2600          *    blocks transferred from the data-out buffer; and
2601          * 5) transfer the resulting XOR data to the data-in buffer.
2602          */
2603         buf = kmalloc(cmd->data_length, GFP_KERNEL);
2604         if (!buf) {
2605                 pr_err("Unable to allocate xor_callback buf\n");
2606                 return;
2607         }
2608         /*
2609          * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2610          * into the locally allocated *buf
2611          */
2612         sg_copy_to_buffer(cmd->t_data_sg,
2613                           cmd->t_data_nents,
2614                           buf,
2615                           cmd->data_length);
2616
2617         /*
2618          * Now perform the XOR against the BIDI read memory located at
2619          * cmd->t_mem_bidi_list
2620          */
2621
2622         offset = 0;
2623         for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2624                 addr = kmap_atomic(sg_page(sg), KM_USER0);
2625                 if (!addr)
2626                         goto out;
2627
2628                 for (i = 0; i < sg->length; i++)
2629                         *(addr + sg->offset + i) ^= *(buf + offset + i);
2630
2631                 offset += sg->length;
2632                 kunmap_atomic(addr, KM_USER0);
2633         }
2634
2635 out:
2636         kfree(buf);
2637 }
2638
2639 /*
2640  * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2641  */
2642 static int transport_get_sense_data(struct se_cmd *cmd)
2643 {
2644         unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2645         struct se_device *dev = cmd->se_dev;
2646         struct se_task *task = NULL, *task_tmp;
2647         unsigned long flags;
2648         u32 offset = 0;
2649
2650         WARN_ON(!cmd->se_lun);
2651
2652         if (!dev)
2653                 return 0;
2654
2655         spin_lock_irqsave(&cmd->t_state_lock, flags);
2656         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2657                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2658                 return 0;
2659         }
2660
2661         list_for_each_entry_safe(task, task_tmp,
2662                                 &cmd->t_task_list, t_list) {
2663                 if (!task->task_sense)
2664                         continue;
2665
2666                 if (!dev->transport->get_sense_buffer) {
2667                         pr_err("dev->transport->get_sense_buffer"
2668                                         " is NULL\n");
2669                         continue;
2670                 }
2671
2672                 sense_buffer = dev->transport->get_sense_buffer(task);
2673                 if (!sense_buffer) {
2674                         pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2675                                 " sense buffer for task with sense\n",
2676                                 cmd->se_tfo->get_task_tag(cmd), task);
2677                         continue;
2678                 }
2679                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2680
2681                 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2682                                 TRANSPORT_SENSE_BUFFER);
2683
2684                 memcpy(&buffer[offset], sense_buffer,
2685                                 TRANSPORT_SENSE_BUFFER);
2686                 cmd->scsi_status = task->task_scsi_status;
2687                 /* Automatically padded */
2688                 cmd->scsi_sense_length =
2689                                 (TRANSPORT_SENSE_BUFFER + offset);
2690
2691                 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2692                                 " and sense\n",
2693                         dev->se_hba->hba_id, dev->transport->name,
2694                                 cmd->scsi_status);
2695                 return 0;
2696         }
2697         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2698
2699         return -1;
2700 }
2701
2702 static int
2703 transport_handle_reservation_conflict(struct se_cmd *cmd)
2704 {
2705         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2706         cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2707         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2708         /*
2709          * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2710          * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2711          * CONFLICT STATUS.
2712          *
2713          * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2714          */
2715         if (cmd->se_sess &&
2716             cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2717                 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2718                         cmd->orig_fe_lun, 0x2C,
2719                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2720         return -EINVAL;
2721 }
2722
2723 static inline long long transport_dev_end_lba(struct se_device *dev)
2724 {
2725         return dev->transport->get_blocks(dev) + 1;
2726 }
2727
2728 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2729 {
2730         struct se_device *dev = cmd->se_dev;
2731         u32 sectors;
2732
2733         if (dev->transport->get_device_type(dev) != TYPE_DISK)
2734                 return 0;
2735
2736         sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2737
2738         if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2739                 pr_err("LBA: %llu Sectors: %u exceeds"
2740                         " transport_dev_end_lba(): %llu\n",
2741                         cmd->t_task_lba, sectors,
2742                         transport_dev_end_lba(dev));
2743                 return -EINVAL;
2744         }
2745
2746         return 0;
2747 }
2748
2749 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2750 {
2751         /*
2752          * Determine if the received WRITE_SAME is used to for direct
2753          * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2754          * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2755          * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2756          */
2757         int passthrough = (dev->transport->transport_type ==
2758                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2759
2760         if (!passthrough) {
2761                 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2762                         pr_err("WRITE_SAME PBDATA and LBDATA"
2763                                 " bits not supported for Block Discard"
2764                                 " Emulation\n");
2765                         return -ENOSYS;
2766                 }
2767                 /*
2768                  * Currently for the emulated case we only accept
2769                  * tpws with the UNMAP=1 bit set.
2770                  */
2771                 if (!(flags[0] & 0x08)) {
2772                         pr_err("WRITE_SAME w/o UNMAP bit not"
2773                                 " supported for Block Discard Emulation\n");
2774                         return -ENOSYS;
2775                 }
2776         }
2777
2778         return 0;
2779 }
2780
2781 /*      transport_generic_cmd_sequencer():
2782  *
2783  *      Generic Command Sequencer that should work for most DAS transport
2784  *      drivers.
2785  *
2786  *      Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2787  *      RX Thread.
2788  *
2789  *      FIXME: Need to support other SCSI OPCODES where as well.
2790  */
2791 static int transport_generic_cmd_sequencer(
2792         struct se_cmd *cmd,
2793         unsigned char *cdb)
2794 {
2795         struct se_device *dev = cmd->se_dev;
2796         struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2797         int ret = 0, sector_ret = 0, passthrough;
2798         u32 sectors = 0, size = 0, pr_reg_type = 0;
2799         u16 service_action;
2800         u8 alua_ascq = 0;
2801         /*
2802          * Check for an existing UNIT ATTENTION condition
2803          */
2804         if (core_scsi3_ua_check(cmd, cdb) < 0) {
2805                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2806                 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2807                 return -EINVAL;
2808         }
2809         /*
2810          * Check status of Asymmetric Logical Unit Assignment port
2811          */
2812         ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2813         if (ret != 0) {
2814                 /*
2815                  * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2816                  * The ALUA additional sense code qualifier (ASCQ) is determined
2817                  * by the ALUA primary or secondary access state..
2818                  */
2819                 if (ret > 0) {
2820 #if 0
2821                         pr_debug("[%s]: ALUA TG Port not available,"
2822                                 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2823                                 cmd->se_tfo->get_fabric_name(), alua_ascq);
2824 #endif
2825                         transport_set_sense_codes(cmd, 0x04, alua_ascq);
2826                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2827                         cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2828                         return -EINVAL;
2829                 }
2830                 goto out_invalid_cdb_field;
2831         }
2832         /*
2833          * Check status for SPC-3 Persistent Reservations
2834          */
2835         if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2836                 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2837                                         cmd, cdb, pr_reg_type) != 0)
2838                         return transport_handle_reservation_conflict(cmd);
2839                 /*
2840                  * This means the CDB is allowed for the SCSI Initiator port
2841                  * when said port is *NOT* holding the legacy SPC-2 or
2842                  * SPC-3 Persistent Reservation.
2843                  */
2844         }
2845
2846         switch (cdb[0]) {
2847         case READ_6:
2848                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2849                 if (sector_ret)
2850                         goto out_unsupported_cdb;
2851                 size = transport_get_size(sectors, cdb, cmd);
2852                 cmd->t_task_lba = transport_lba_21(cdb);
2853                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2854                 break;
2855         case READ_10:
2856                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2857                 if (sector_ret)
2858                         goto out_unsupported_cdb;
2859                 size = transport_get_size(sectors, cdb, cmd);
2860                 cmd->t_task_lba = transport_lba_32(cdb);
2861                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2862                 break;
2863         case READ_12:
2864                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2865                 if (sector_ret)
2866                         goto out_unsupported_cdb;
2867                 size = transport_get_size(sectors, cdb, cmd);
2868                 cmd->t_task_lba = transport_lba_32(cdb);
2869                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2870                 break;
2871         case READ_16:
2872                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2873                 if (sector_ret)
2874                         goto out_unsupported_cdb;
2875                 size = transport_get_size(sectors, cdb, cmd);
2876                 cmd->t_task_lba = transport_lba_64(cdb);
2877                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2878                 break;
2879         case WRITE_6:
2880                 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2881                 if (sector_ret)
2882                         goto out_unsupported_cdb;
2883                 size = transport_get_size(sectors, cdb, cmd);
2884                 cmd->t_task_lba = transport_lba_21(cdb);
2885                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2886                 break;
2887         case WRITE_10:
2888                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2889                 if (sector_ret)
2890                         goto out_unsupported_cdb;
2891                 size = transport_get_size(sectors, cdb, cmd);
2892                 cmd->t_task_lba = transport_lba_32(cdb);
2893                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2894                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2895                 break;
2896         case WRITE_12:
2897                 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2898                 if (sector_ret)
2899                         goto out_unsupported_cdb;
2900                 size = transport_get_size(sectors, cdb, cmd);
2901                 cmd->t_task_lba = transport_lba_32(cdb);
2902                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2903                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2904                 break;
2905         case WRITE_16:
2906                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2907                 if (sector_ret)
2908                         goto out_unsupported_cdb;
2909                 size = transport_get_size(sectors, cdb, cmd);
2910                 cmd->t_task_lba = transport_lba_64(cdb);
2911                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2912                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2913                 break;
2914         case XDWRITEREAD_10:
2915                 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2916                     !(cmd->t_tasks_bidi))
2917                         goto out_invalid_cdb_field;
2918                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2919                 if (sector_ret)
2920                         goto out_unsupported_cdb;
2921                 size = transport_get_size(sectors, cdb, cmd);
2922                 cmd->t_task_lba = transport_lba_32(cdb);
2923                 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2924                 passthrough = (dev->transport->transport_type ==
2925                                 TRANSPORT_PLUGIN_PHBA_PDEV);
2926                 /*
2927                  * Skip the remaining assignments for TCM/PSCSI passthrough
2928                  */
2929                 if (passthrough)
2930                         break;
2931                 /*
2932                  * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
2933                  */
2934                 cmd->transport_complete_callback = &transport_xor_callback;
2935                 cmd->t_tasks_fua = (cdb[1] & 0x8);
2936                 break;
2937         case VARIABLE_LENGTH_CMD:
2938                 service_action = get_unaligned_be16(&cdb[8]);
2939                 /*
2940                  * Determine if this is TCM/PSCSI device and we should disable
2941                  * internal emulation for this CDB.
2942                  */
2943                 passthrough = (dev->transport->transport_type ==
2944                                         TRANSPORT_PLUGIN_PHBA_PDEV);
2945
2946                 switch (service_action) {
2947                 case XDWRITEREAD_32:
2948                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2949                         if (sector_ret)
2950                                 goto out_unsupported_cdb;
2951                         size = transport_get_size(sectors, cdb, cmd);
2952                         /*
2953                          * Use WRITE_32 and READ_32 opcodes for the emulated
2954                          * XDWRITE_READ_32 logic.
2955                          */
2956                         cmd->t_task_lba = transport_lba_64_ext(cdb);
2957                         cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2958
2959                         /*
2960                          * Skip the remaining assignments for TCM/PSCSI passthrough
2961                          */
2962                         if (passthrough)
2963                                 break;
2964
2965                         /*
2966                          * Setup BIDI XOR callback to be run during
2967                          * transport_generic_complete_ok()
2968                          */
2969                         cmd->transport_complete_callback = &transport_xor_callback;
2970                         cmd->t_tasks_fua = (cdb[10] & 0x8);
2971                         break;
2972                 case WRITE_SAME_32:
2973                         sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2974                         if (sector_ret)
2975                                 goto out_unsupported_cdb;
2976
2977                         if (sectors)
2978                                 size = transport_get_size(1, cdb, cmd);
2979                         else {
2980                                 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2981                                        " supported\n");
2982                                 goto out_invalid_cdb_field;
2983                         }
2984
2985                         cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2986                         cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2987
2988                         if (target_check_write_same_discard(&cdb[10], dev) < 0)
2989                                 goto out_invalid_cdb_field;
2990
2991                         break;
2992                 default:
2993                         pr_err("VARIABLE_LENGTH_CMD service action"
2994                                 " 0x%04x not supported\n", service_action);
2995                         goto out_unsupported_cdb;
2996                 }
2997                 break;
2998         case MAINTENANCE_IN:
2999                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3000                         /* MAINTENANCE_IN from SCC-2 */
3001                         /*
3002                          * Check for emulated MI_REPORT_TARGET_PGS.
3003                          */
3004                         if (cdb[1] == MI_REPORT_TARGET_PGS) {
3005                                 cmd->transport_emulate_cdb =
3006                                 (su_dev->t10_alua.alua_type ==
3007                                  SPC3_ALUA_EMULATED) ?
3008                                 core_emulate_report_target_port_groups :
3009                                 NULL;
3010                         }
3011                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3012                                (cdb[8] << 8) | cdb[9];
3013                 } else {
3014                         /* GPCMD_SEND_KEY from multi media commands */
3015                         size = (cdb[8] << 8) + cdb[9];
3016                 }
3017                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3018                 break;
3019         case MODE_SELECT:
3020                 size = cdb[4];
3021                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3022                 break;
3023         case MODE_SELECT_10:
3024                 size = (cdb[7] << 8) + cdb[8];
3025                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3026                 break;
3027         case MODE_SENSE:
3028                 size = cdb[4];
3029                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3030                 break;
3031         case MODE_SENSE_10:
3032         case GPCMD_READ_BUFFER_CAPACITY:
3033         case GPCMD_SEND_OPC:
3034         case LOG_SELECT:
3035         case LOG_SENSE:
3036                 size = (cdb[7] << 8) + cdb[8];
3037                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3038                 break;
3039         case READ_BLOCK_LIMITS:
3040                 size = READ_BLOCK_LEN;
3041                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3042                 break;
3043         case GPCMD_GET_CONFIGURATION:
3044         case GPCMD_READ_FORMAT_CAPACITIES:
3045         case GPCMD_READ_DISC_INFO:
3046         case GPCMD_READ_TRACK_RZONE_INFO:
3047                 size = (cdb[7] << 8) + cdb[8];
3048                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3049                 break;
3050         case PERSISTENT_RESERVE_IN:
3051         case PERSISTENT_RESERVE_OUT:
3052                 cmd->transport_emulate_cdb =
3053                         (su_dev->t10_pr.res_type ==
3054                          SPC3_PERSISTENT_RESERVATIONS) ?
3055                         core_scsi3_emulate_pr : NULL;
3056                 size = (cdb[7] << 8) + cdb[8];
3057                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3058                 break;
3059         case GPCMD_MECHANISM_STATUS:
3060         case GPCMD_READ_DVD_STRUCTURE:
3061                 size = (cdb[8] << 8) + cdb[9];
3062                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3063                 break;
3064         case READ_POSITION:
3065                 size = READ_POSITION_LEN;
3066                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3067                 break;
3068         case MAINTENANCE_OUT:
3069                 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
3070                         /* MAINTENANCE_OUT from SCC-2
3071                          *
3072                          * Check for emulated MO_SET_TARGET_PGS.
3073                          */
3074                         if (cdb[1] == MO_SET_TARGET_PGS) {
3075                                 cmd->transport_emulate_cdb =
3076                                 (su_dev->t10_alua.alua_type ==
3077                                         SPC3_ALUA_EMULATED) ?
3078                                 core_emulate_set_target_port_groups :
3079                                 NULL;
3080                         }
3081
3082                         size = (cdb[6] << 24) | (cdb[7] << 16) |
3083                                (cdb[8] << 8) | cdb[9];
3084                 } else  {
3085                         /* GPCMD_REPORT_KEY from multi media commands */
3086                         size = (cdb[8] << 8) + cdb[9];
3087                 }
3088                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3089                 break;
3090         case INQUIRY:
3091                 size = (cdb[3] << 8) + cdb[4];
3092                 /*
3093                  * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3094                  * See spc4r17 section 5.3
3095                  */
3096                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3097                         cmd->sam_task_attr = MSG_HEAD_TAG;
3098                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3099                 break;
3100         case READ_BUFFER:
3101                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3102                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3103                 break;
3104         case READ_CAPACITY:
3105                 size = READ_CAP_LEN;
3106                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3107                 break;
3108         case READ_MEDIA_SERIAL_NUMBER:
3109         case SECURITY_PROTOCOL_IN:
3110         case SECURITY_PROTOCOL_OUT:
3111                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3112                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3113                 break;
3114         case SERVICE_ACTION_IN:
3115         case ACCESS_CONTROL_IN:
3116         case ACCESS_CONTROL_OUT:
3117         case EXTENDED_COPY:
3118         case READ_ATTRIBUTE:
3119         case RECEIVE_COPY_RESULTS:
3120         case WRITE_ATTRIBUTE:
3121                 size = (cdb[10] << 24) | (cdb[11] << 16) |
3122                        (cdb[12] << 8) | cdb[13];
3123                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3124                 break;
3125         case RECEIVE_DIAGNOSTIC:
3126         case SEND_DIAGNOSTIC:
3127                 size = (cdb[3] << 8) | cdb[4];
3128                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3129                 break;
3130 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3131 #if 0
3132         case GPCMD_READ_CD:
3133                 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3134                 size = (2336 * sectors);
3135                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3136                 break;
3137 #endif
3138         case READ_TOC:
3139                 size = cdb[8];
3140                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3141                 break;
3142         case REQUEST_SENSE:
3143                 size = cdb[4];
3144                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3145                 break;
3146         case READ_ELEMENT_STATUS:
3147                 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
3148                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3149                 break;
3150         case WRITE_BUFFER:
3151                 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
3152                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3153                 break;
3154         case RESERVE:
3155         case RESERVE_10:
3156                 /*
3157                  * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3158                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3159                  */
3160                 if (cdb[0] == RESERVE_10)
3161                         size = (cdb[7] << 8) | cdb[8];
3162                 else
3163                         size = cmd->data_length;
3164
3165                 /*
3166                  * Setup the legacy emulated handler for SPC-2 and
3167                  * >= SPC-3 compatible reservation handling (CRH=1)
3168                  * Otherwise, we assume the underlying SCSI logic is
3169                  * is running in SPC_PASSTHROUGH, and wants reservations
3170                  * emulation disabled.
3171                  */
3172                 cmd->transport_emulate_cdb =
3173                                 (su_dev->t10_pr.res_type !=
3174                                  SPC_PASSTHROUGH) ?
3175                                 core_scsi2_emulate_crh : NULL;
3176                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3177                 break;
3178         case RELEASE:
3179         case RELEASE_10:
3180                 /*
3181                  * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3182                  * Assume the passthrough or $FABRIC_MOD will tell us about it.
3183                 */
3184                 if (cdb[0] == RELEASE_10)
3185                         size = (cdb[7] << 8) | cdb[8];
3186                 else
3187                         size = cmd->data_length;
3188
3189                 cmd->transport_emulate_cdb =
3190                                 (su_dev->t10_pr.res_type !=
3191                                  SPC_PASSTHROUGH) ?
3192                                 core_scsi2_emulate_crh : NULL;
3193                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3194                 break;
3195         case SYNCHRONIZE_CACHE:
3196         case 0x91: /* SYNCHRONIZE_CACHE_16: */
3197                 /*
3198                  * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3199                  */
3200                 if (cdb[0] == SYNCHRONIZE_CACHE) {
3201                         sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3202                         cmd->t_task_lba = transport_lba_32(cdb);
3203                 } else {
3204                         sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3205                         cmd->t_task_lba = transport_lba_64(cdb);
3206                 }
3207                 if (sector_ret)
3208                         goto out_unsupported_cdb;
3209
3210                 size = transport_get_size(sectors, cdb, cmd);
3211                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3212
3213                 /*
3214                  * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3215                  */
3216                 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3217                         break;
3218                 /*
3219                  * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3220                  * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3221                  */
3222                 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3223                 /*
3224                  * Check to ensure that LBA + Range does not exceed past end of
3225                  * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3226                  */
3227                 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3228                         if (transport_cmd_get_valid_sectors(cmd) < 0)
3229                                 goto out_invalid_cdb_field;
3230                 }
3231                 break;
3232         case UNMAP:
3233                 size = get_unaligned_be16(&cdb[7]);
3234                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3235                 break;
3236         case WRITE_SAME_16:
3237                 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3238                 if (sector_ret)
3239                         goto out_unsupported_cdb;
3240
3241                 if (sectors)
3242                         size = transport_get_size(1, cdb, cmd);
3243                 else {
3244                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3245                         goto out_invalid_cdb_field;
3246                 }
3247
3248                 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3249                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3250
3251                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3252                         goto out_invalid_cdb_field;
3253                 break;
3254         case WRITE_SAME:
3255                 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3256                 if (sector_ret)
3257                         goto out_unsupported_cdb;
3258
3259                 if (sectors)
3260                         size = transport_get_size(1, cdb, cmd);
3261                 else {
3262                         pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3263                         goto out_invalid_cdb_field;
3264                 }
3265
3266                 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3267                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3268                 /*
3269                  * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3270                  * of byte 1 bit 3 UNMAP instead of original reserved field
3271                  */
3272                 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3273                         goto out_invalid_cdb_field;
3274                 break;
3275         case ALLOW_MEDIUM_REMOVAL:
3276         case GPCMD_CLOSE_TRACK:
3277         case ERASE:
3278         case INITIALIZE_ELEMENT_STATUS:
3279         case GPCMD_LOAD_UNLOAD:
3280         case REZERO_UNIT:
3281         case SEEK_10:
3282         case GPCMD_SET_SPEED:
3283         case SPACE:
3284         case START_STOP:
3285         case TEST_UNIT_READY:
3286         case VERIFY:
3287         case WRITE_FILEMARKS:
3288         case MOVE_MEDIUM:
3289                 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3290                 break;
3291         case REPORT_LUNS:
3292                 cmd->transport_emulate_cdb =
3293                                 transport_core_report_lun_response;
3294                 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3295                 /*
3296                  * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3297                  * See spc4r17 section 5.3
3298                  */
3299                 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3300                         cmd->sam_task_attr = MSG_HEAD_TAG;
3301                 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3302                 break;
3303         default:
3304                 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3305                         " 0x%02x, sending CHECK_CONDITION.\n",
3306                         cmd->se_tfo->get_fabric_name(), cdb[0]);
3307                 goto out_unsupported_cdb;
3308         }
3309
3310         if (size != cmd->data_length) {
3311                 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3312                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3313                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3314                                 cmd->data_length, size, cdb[0]);
3315
3316                 cmd->cmd_spdtl = size;
3317
3318                 if (cmd->data_direction == DMA_TO_DEVICE) {
3319                         pr_err("Rejecting underflow/overflow"
3320                                         " WRITE data\n");
3321                         goto out_invalid_cdb_field;
3322                 }
3323                 /*
3324                  * Reject READ_* or WRITE_* with overflow/underflow for
3325                  * type SCF_SCSI_DATA_SG_IO_CDB.
3326                  */
3327                 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512))  {
3328                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3329                                 " CDB on non 512-byte sector setup subsystem"
3330                                 " plugin: %s\n", dev->transport->name);
3331                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3332                         goto out_invalid_cdb_field;
3333                 }
3334
3335                 if (size > cmd->data_length) {
3336                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3337                         cmd->residual_count = (size - cmd->data_length);
3338                 } else {
3339                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3340                         cmd->residual_count = (cmd->data_length - size);
3341                 }
3342                 cmd->data_length = size;
3343         }
3344
3345         /* Let's limit control cdbs to a page, for simplicity's sake. */
3346         if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3347             size > PAGE_SIZE)
3348                 goto out_invalid_cdb_field;
3349
3350         transport_set_supported_SAM_opcode(cmd);
3351         return ret;
3352
3353 out_unsupported_cdb:
3354         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3355         cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3356         return -EINVAL;
3357 out_invalid_cdb_field:
3358         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3359         cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3360         return -EINVAL;
3361 }
3362
3363 /*
3364  * Called from transport_generic_complete_ok() and
3365  * transport_generic_request_failure() to determine which dormant/delayed
3366  * and ordered cmds need to have their tasks added to the execution queue.
3367  */
3368 static void transport_complete_task_attr(struct se_cmd *cmd)
3369 {
3370         struct se_device *dev = cmd->se_dev;
3371         struct se_cmd *cmd_p, *cmd_tmp;
3372         int new_active_tasks = 0;
3373
3374         if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3375                 atomic_dec(&dev->simple_cmds);
3376                 smp_mb__after_atomic_dec();
3377                 dev->dev_cur_ordered_id++;
3378                 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3379                         " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3380                         cmd->se_ordered_id);
3381         } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3382                 atomic_dec(&dev->dev_hoq_count);
3383                 smp_mb__after_atomic_dec();
3384                 dev->dev_cur_ordered_id++;
3385                 pr_debug("Incremented dev_cur_ordered_id: %u for"
3386                         " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3387                         cmd->se_ordered_id);
3388         } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3389                 spin_lock(&dev->ordered_cmd_lock);
3390                 list_del(&cmd->se_ordered_node);
3391                 atomic_dec(&dev->dev_ordered_sync);
3392                 smp_mb__after_atomic_dec();
3393                 spin_unlock(&dev->ordered_cmd_lock);
3394
3395                 dev->dev_cur_ordered_id++;
3396                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3397                         " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3398         }
3399         /*
3400          * Process all commands up to the last received
3401          * ORDERED task attribute which requires another blocking
3402          * boundary
3403          */
3404         spin_lock(&dev->delayed_cmd_lock);
3405         list_for_each_entry_safe(cmd_p, cmd_tmp,
3406                         &dev->delayed_cmd_list, se_delayed_node) {
3407
3408                 list_del(&cmd_p->se_delayed_node);
3409                 spin_unlock(&dev->delayed_cmd_lock);
3410
3411                 pr_debug("Calling add_tasks() for"
3412                         " cmd_p: 0x%02x Task Attr: 0x%02x"
3413                         " Dormant -> Active, se_ordered_id: %u\n",
3414                         cmd_p->t_task_cdb[0],
3415                         cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3416
3417                 transport_add_tasks_from_cmd(cmd_p);
3418                 new_active_tasks++;
3419
3420                 spin_lock(&dev->delayed_cmd_lock);
3421                 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3422                         break;
3423         }
3424         spin_unlock(&dev->delayed_cmd_lock);
3425         /*
3426          * If new tasks have become active, wake up the transport thread
3427          * to do the processing of the Active tasks.
3428          */
3429         if (new_active_tasks != 0)
3430                 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3431 }
3432
3433 static void transport_complete_qf(struct se_cmd *cmd)
3434 {
3435         int ret = 0;
3436
3437         transport_stop_all_task_timers(cmd);
3438         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3439                 transport_complete_task_attr(cmd);
3440
3441         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3442                 ret = cmd->se_tfo->queue_status(cmd);
3443                 if (ret)
3444                         goto out;
3445         }
3446
3447         switch (cmd->data_direction) {
3448         case DMA_FROM_DEVICE:
3449                 ret = cmd->se_tfo->queue_data_in(cmd);
3450                 break;
3451         case DMA_TO_DEVICE:
3452                 if (cmd->t_bidi_data_sg) {
3453                         ret = cmd->se_tfo->queue_data_in(cmd);
3454                         if (ret < 0)
3455                                 break;
3456                 }
3457                 /* Fall through for DMA_TO_DEVICE */
3458         case DMA_NONE:
3459                 ret = cmd->se_tfo->queue_status(cmd);
3460                 break;
3461         default:
3462                 break;
3463         }
3464
3465 out:
3466         if (ret < 0) {
3467                 transport_handle_queue_full(cmd, cmd->se_dev);
3468                 return;
3469         }
3470         transport_lun_remove_cmd(cmd);
3471         transport_cmd_check_stop_to_fabric(cmd);
3472 }
3473
3474 static void transport_handle_queue_full(
3475         struct se_cmd *cmd,
3476         struct se_device *dev)
3477 {
3478         spin_lock_irq(&dev->qf_cmd_lock);
3479         cmd->se_cmd_flags |= SCF_EMULATE_QUEUE_FULL;
3480         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3481         atomic_inc(&dev->dev_qf_count);
3482         smp_mb__after_atomic_inc();
3483         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3484
3485         schedule_work(&cmd->se_dev->qf_work_queue);
3486 }
3487
3488 static void transport_generic_complete_ok(struct se_cmd *cmd)
3489 {
3490         int reason = 0, ret;
3491         /*
3492          * Check if we need to move delayed/dormant tasks from cmds on the
3493          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3494          * Attribute.
3495          */
3496         if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3497                 transport_complete_task_attr(cmd);
3498         /*
3499          * Check to schedule QUEUE_FULL work, or execute an existing
3500          * cmd->transport_qf_callback()
3501          */
3502         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3503                 schedule_work(&cmd->se_dev->qf_work_queue);
3504
3505         /*
3506          * Check if we need to retrieve a sense buffer from
3507          * the struct se_cmd in question.
3508          */
3509         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3510                 if (transport_get_sense_data(cmd) < 0)
3511                         reason = TCM_NON_EXISTENT_LUN;
3512
3513                 /*
3514                  * Only set when an struct se_task->task_scsi_status returned
3515                  * a non GOOD status.
3516                  */
3517                 if (cmd->scsi_status) {
3518                         ret = transport_send_check_condition_and_sense(
3519                                         cmd, reason, 1);
3520                         if (ret == -EAGAIN)
3521                                 goto queue_full;
3522
3523                         transport_lun_remove_cmd(cmd);
3524                         transport_cmd_check_stop_to_fabric(cmd);
3525                         return;
3526                 }
3527         }
3528         /*
3529          * Check for a callback, used by amongst other things
3530          * XDWRITE_READ_10 emulation.
3531          */
3532         if (cmd->transport_complete_callback)
3533                 cmd->transport_complete_callback(cmd);
3534
3535         switch (cmd->data_direction) {
3536         case DMA_FROM_DEVICE:
3537                 spin_lock(&cmd->se_lun->lun_sep_lock);
3538                 if (cmd->se_lun->lun_sep) {
3539                         cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3540                                         cmd->data_length;
3541                 }
3542                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3543
3544                 ret = cmd->se_tfo->queue_data_in(cmd);
3545                 if (ret == -EAGAIN)
3546                         goto queue_full;
3547                 break;
3548         case DMA_TO_DEVICE:
3549                 spin_lock(&cmd->se_lun->lun_sep_lock);
3550                 if (cmd->se_lun->lun_sep) {
3551                         cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3552                                 cmd->data_length;
3553                 }
3554                 spin_unlock(&cmd->se_lun->lun_sep_lock);
3555                 /*
3556                  * Check if we need to send READ payload for BIDI-COMMAND
3557                  */
3558                 if (cmd->t_bidi_data_sg) {
3559                         spin_lock(&cmd->se_lun->lun_sep_lock);
3560                         if (cmd->se_lun->lun_sep) {
3561                                 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3562                                         cmd->data_length;
3563                         }
3564                         spin_unlock(&cmd->se_lun->lun_sep_lock);
3565                         ret = cmd->se_tfo->queue_data_in(cmd);
3566                         if (ret == -EAGAIN)
3567                                 goto queue_full;
3568                         break;
3569                 }
3570                 /* Fall through for DMA_TO_DEVICE */
3571         case DMA_NONE:
3572                 ret = cmd->se_tfo->queue_status(cmd);
3573                 if (ret == -EAGAIN)
3574                         goto queue_full;
3575                 break;
3576         default:
3577                 break;
3578         }
3579
3580         transport_lun_remove_cmd(cmd);
3581         transport_cmd_check_stop_to_fabric(cmd);
3582         return;
3583
3584 queue_full:
3585         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3586                 " data_direction: %d\n", cmd, cmd->data_direction);
3587         cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3588         transport_handle_queue_full(cmd, cmd->se_dev);
3589 }
3590
3591 static void transport_free_dev_tasks(struct se_cmd *cmd)
3592 {
3593         struct se_task *task, *task_tmp;
3594         unsigned long flags;
3595
3596         spin_lock_irqsave(&cmd->t_state_lock, flags);
3597         list_for_each_entry_safe(task, task_tmp,
3598                                 &cmd->t_task_list, t_list) {
3599                 if (task->task_flags & TF_ACTIVE)
3600                         continue;
3601
3602                 kfree(task->task_sg_bidi);
3603                 kfree(task->task_sg);
3604
3605                 list_del(&task->t_list);
3606
3607                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3608                 cmd->se_dev->transport->free_task(task);
3609                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3610         }
3611         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3612 }
3613
3614 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3615 {
3616         struct scatterlist *sg;
3617         int count;
3618
3619         for_each_sg(sgl, sg, nents, count)
3620                 __free_page(sg_page(sg));
3621
3622         kfree(sgl);
3623 }
3624
3625 static inline void transport_free_pages(struct se_cmd *cmd)
3626 {
3627         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3628                 return;
3629
3630         transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3631         cmd->t_data_sg = NULL;
3632         cmd->t_data_nents = 0;
3633
3634         transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3635         cmd->t_bidi_data_sg = NULL;
3636         cmd->t_bidi_data_nents = 0;
3637 }
3638
3639 /**
3640  * transport_put_cmd - release a reference to a command
3641  * @cmd:       command to release
3642  *
3643  * This routine releases our reference to the command and frees it if possible.
3644  */
3645 static void transport_put_cmd(struct se_cmd *cmd)
3646 {
3647         unsigned long flags;
3648         int free_tasks = 0;
3649
3650         spin_lock_irqsave(&cmd->t_state_lock, flags);
3651         if (atomic_read(&cmd->t_fe_count)) {
3652                 if (!atomic_dec_and_test(&cmd->t_fe_count))
3653                         goto out_busy;
3654         }
3655
3656         if (atomic_read(&cmd->t_se_count)) {
3657                 if (!atomic_dec_and_test(&cmd->t_se_count))
3658                         goto out_busy;
3659         }
3660
3661         if (atomic_read(&cmd->transport_dev_active)) {
3662                 atomic_set(&cmd->transport_dev_active, 0);
3663                 transport_all_task_dev_remove_state(cmd);
3664                 free_tasks = 1;
3665         }
3666         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3667
3668         if (free_tasks != 0)
3669                 transport_free_dev_tasks(cmd);
3670
3671         transport_free_pages(cmd);
3672         transport_release_cmd(cmd);
3673         return;
3674 out_busy:
3675         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3676 }
3677
3678 /*
3679  * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3680  * allocating in the core.
3681  * @cmd:  Associated se_cmd descriptor
3682  * @mem:  SGL style memory for TCM WRITE / READ
3683  * @sg_mem_num: Number of SGL elements
3684  * @mem_bidi_in: SGL style memory for TCM BIDI READ
3685  * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3686  *
3687  * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3688  * of parameters.
3689  */
3690 int transport_generic_map_mem_to_cmd(
3691         struct se_cmd *cmd,
3692         struct scatterlist *sgl,
3693         u32 sgl_count,
3694         struct scatterlist *sgl_bidi,
3695         u32 sgl_bidi_count)
3696 {
3697         if (!sgl || !sgl_count)
3698                 return 0;
3699
3700         if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3701             (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3702
3703                 cmd->t_data_sg = sgl;
3704                 cmd->t_data_nents = sgl_count;
3705
3706                 if (sgl_bidi && sgl_bidi_count) {
3707                         cmd->t_bidi_data_sg = sgl_bidi;
3708                         cmd->t_bidi_data_nents = sgl_bidi_count;
3709                 }
3710                 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3711         }
3712
3713         return 0;
3714 }
3715 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3716
3717 static int transport_new_cmd_obj(struct se_cmd *cmd)
3718 {
3719         struct se_device *dev = cmd->se_dev;
3720         int set_counts = 1, rc, task_cdbs;
3721
3722         /*
3723          * Setup any BIDI READ tasks and memory from
3724          * cmd->t_mem_bidi_list so the READ struct se_tasks
3725          * are queued first for the non pSCSI passthrough case.
3726          */
3727         if (cmd->t_bidi_data_sg &&
3728             (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV)) {
3729                 rc = transport_allocate_tasks(cmd,
3730                                               cmd->t_task_lba,
3731                                               DMA_FROM_DEVICE,
3732                                               cmd->t_bidi_data_sg,
3733                                               cmd->t_bidi_data_nents);
3734                 if (rc <= 0) {
3735                         cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3736                         cmd->scsi_sense_reason =
3737                                 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3738                         return -EINVAL;
3739                 }
3740                 atomic_inc(&cmd->t_fe_count);
3741                 atomic_inc(&cmd->t_se_count);
3742                 set_counts = 0;
3743         }
3744         /*
3745          * Setup the tasks and memory from cmd->t_mem_list
3746          * Note for BIDI transfers this will contain the WRITE payload
3747          */
3748         task_cdbs = transport_allocate_tasks(cmd,
3749                                              cmd->t_task_lba,
3750                                              cmd->data_direction,
3751                                              cmd->t_data_sg,
3752                                              cmd->t_data_nents);
3753         if (task_cdbs <= 0) {
3754                 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3755                 cmd->scsi_sense_reason =
3756                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3757                 return -EINVAL;
3758         }
3759
3760         if (set_counts) {
3761                 atomic_inc(&cmd->t_fe_count);
3762                 atomic_inc(&cmd->t_se_count);
3763         }
3764
3765         cmd->t_task_list_num = task_cdbs;
3766
3767         atomic_set(&cmd->t_task_cdbs_left, task_cdbs);
3768         atomic_set(&cmd->t_task_cdbs_ex_left, task_cdbs);
3769         atomic_set(&cmd->t_task_cdbs_timeout_left, task_cdbs);
3770         return 0;
3771 }
3772
3773 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3774 {
3775         struct scatterlist *sg = cmd->t_data_sg;
3776
3777         BUG_ON(!sg);
3778         /*
3779          * We need to take into account a possible offset here for fabrics like
3780          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3781          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3782          */
3783         return kmap(sg_page(sg)) + sg->offset;
3784 }
3785 EXPORT_SYMBOL(transport_kmap_first_data_page);
3786
3787 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3788 {
3789         kunmap(sg_page(cmd->t_data_sg));
3790 }
3791 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3792
3793 static int
3794 transport_generic_get_mem(struct se_cmd *cmd)
3795 {
3796         u32 length = cmd->data_length;
3797         unsigned int nents;
3798         struct page *page;
3799         int i = 0;
3800
3801         nents = DIV_ROUND_UP(length, PAGE_SIZE);
3802         cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3803         if (!cmd->t_data_sg)
3804                 return -ENOMEM;
3805
3806         cmd->t_data_nents = nents;
3807         sg_init_table(cmd->t_data_sg, nents);
3808
3809         while (length) {
3810                 u32 page_len = min_t(u32, length, PAGE_SIZE);
3811                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3812                 if (!page)
3813                         goto out;
3814
3815                 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3816                 length -= page_len;
3817                 i++;
3818         }
3819         return 0;
3820
3821 out:
3822         while (i >= 0) {
3823                 __free_page(sg_page(&cmd->t_data_sg[i]));
3824                 i--;
3825         }
3826         kfree(cmd->t_data_sg);
3827         cmd->t_data_sg = NULL;
3828         return -ENOMEM;
3829 }
3830
3831 /* Reduce sectors if they are too long for the device */
3832 static inline sector_t transport_limit_task_sectors(
3833         struct se_device *dev,
3834         unsigned long long lba,
3835         sector_t sectors)
3836 {
3837         sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3838
3839         if (dev->transport->get_device_type(dev) == TYPE_DISK)
3840                 if ((lba + sectors) > transport_dev_end_lba(dev))
3841                         sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3842
3843         return sectors;
3844 }
3845
3846
3847 /*
3848  * This function can be used by HW target mode drivers to create a linked
3849  * scatterlist from all contiguously allocated struct se_task->task_sg[].
3850  * This is intended to be called during the completion path by TCM Core
3851  * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3852  */
3853 void transport_do_task_sg_chain(struct se_cmd *cmd)
3854 {
3855         struct scatterlist *sg_first = NULL;
3856         struct scatterlist *sg_prev = NULL;
3857         int sg_prev_nents = 0;
3858         struct scatterlist *sg;
3859         struct se_task *task;
3860         u32 chained_nents = 0;
3861         int i;
3862
3863         BUG_ON(!cmd->se_tfo->task_sg_chaining);
3864
3865         /*
3866          * Walk the struct se_task list and setup scatterlist chains
3867          * for each contiguously allocated struct se_task->task_sg[].
3868          */
3869         list_for_each_entry(task, &cmd->t_task_list, t_list) {
3870                 if (!task->task_sg)
3871                         continue;
3872
3873                 if (!sg_first) {
3874                         sg_first = task->task_sg;
3875                         chained_nents = task->task_sg_nents;
3876                 } else {
3877                         sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3878                         chained_nents += task->task_sg_nents;
3879                 }
3880                 /*
3881                  * For the padded tasks, use the extra SGL vector allocated
3882                  * in transport_allocate_data_tasks() for the sg_prev_nents
3883                  * offset into sg_chain() above.
3884                  *
3885                  * We do not need the padding for the last task (or a single
3886                  * task), but in that case we will never use the sg_prev_nents
3887                  * value below which would be incorrect.
3888                  */
3889                 sg_prev_nents = (task->task_sg_nents + 1);
3890                 sg_prev = task->task_sg;
3891         }
3892         /*
3893          * Setup the starting pointer and total t_tasks_sg_linked_no including
3894          * padding SGs for linking and to mark the end.
3895          */
3896         cmd->t_tasks_sg_chained = sg_first;
3897         cmd->t_tasks_sg_chained_no = chained_nents;
3898
3899         pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3900                 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3901                 cmd->t_tasks_sg_chained_no);
3902
3903         for_each_sg(cmd->t_tasks_sg_chained, sg,
3904                         cmd->t_tasks_sg_chained_no, i) {
3905
3906                 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3907                         i, sg, sg_page(sg), sg->length, sg->offset);
3908                 if (sg_is_chain(sg))
3909                         pr_debug("SG: %p sg_is_chain=1\n", sg);
3910                 if (sg_is_last(sg))
3911                         pr_debug("SG: %p sg_is_last=1\n", sg);
3912         }
3913 }
3914 EXPORT_SYMBOL(transport_do_task_sg_chain);
3915
3916 /*
3917  * Break up cmd into chunks transport can handle
3918  */
3919 static int transport_allocate_data_tasks(
3920         struct se_cmd *cmd,
3921         unsigned long long lba,
3922         enum dma_data_direction data_direction,
3923         struct scatterlist *sgl,
3924         unsigned int sgl_nents)
3925 {
3926         struct se_task *task;
3927         struct se_device *dev = cmd->se_dev;
3928         unsigned long flags;
3929         int task_count, i;
3930         sector_t sectors, dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3931         u32 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3932         struct scatterlist *sg;
3933         struct scatterlist *cmd_sg;
3934
3935         WARN_ON(cmd->data_length % sector_size);
3936         sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3937         task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3938         
3939         cmd_sg = sgl;
3940         for (i = 0; i < task_count; i++) {
3941                 unsigned int task_size, task_sg_nents_padded;
3942                 int count;
3943
3944                 task = transport_generic_get_task(cmd, data_direction);
3945                 if (!task)
3946                         return -ENOMEM;
3947
3948                 task->task_lba = lba;
3949                 task->task_sectors = min(sectors, dev_max_sectors);
3950                 task->task_size = task->task_sectors * sector_size;
3951
3952                 /*
3953                  * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3954                  * in order to calculate the number per task SGL entries
3955                  */
3956                 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3957                 /*
3958                  * Check if the fabric module driver is requesting that all
3959                  * struct se_task->task_sg[] be chained together..  If so,
3960                  * then allocate an extra padding SG entry for linking and
3961                  * marking the end of the chained SGL for every task except
3962                  * the last one for (task_count > 1) operation, or skipping
3963                  * the extra padding for the (task_count == 1) case.
3964                  */
3965                 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3966                         task_sg_nents_padded = (task->task_sg_nents + 1);
3967                 } else
3968                         task_sg_nents_padded = task->task_sg_nents;
3969
3970                 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3971                                         task_sg_nents_padded, GFP_KERNEL);
3972                 if (!task->task_sg) {
3973                         cmd->se_dev->transport->free_task(task);
3974                         return -ENOMEM;
3975                 }
3976
3977                 sg_init_table(task->task_sg, task_sg_nents_padded);
3978
3979                 task_size = task->task_size;
3980
3981                 /* Build new sgl, only up to task_size */
3982                 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3983                         if (cmd_sg->length > task_size)
3984                                 break;
3985
3986                         *sg = *cmd_sg;
3987                         task_size -= cmd_sg->length;
3988                         cmd_sg = sg_next(cmd_sg);
3989                 }
3990
3991                 lba += task->task_sectors;
3992                 sectors -= task->task_sectors;
3993
3994                 spin_lock_irqsave(&cmd->t_state_lock, flags);
3995                 list_add_tail(&task->t_list, &cmd->t_task_list);
3996                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3997         }
3998
3999         return task_count;
4000 }
4001
4002 static int
4003 transport_allocate_control_task(struct se_cmd *cmd)
4004 {
4005         struct se_task *task;
4006         unsigned long flags;
4007
4008         task = transport_generic_get_task(cmd, cmd->data_direction);
4009         if (!task)
4010                 return -ENOMEM;
4011
4012         task->task_sg = kmalloc(sizeof(struct scatterlist) * cmd->t_data_nents,
4013                                 GFP_KERNEL);
4014         if (!task->task_sg) {
4015                 cmd->se_dev->transport->free_task(task);
4016                 return -ENOMEM;
4017         }
4018
4019         memcpy(task->task_sg, cmd->t_data_sg,
4020                sizeof(struct scatterlist) * cmd->t_data_nents);
4021         task->task_size = cmd->data_length;
4022         task->task_sg_nents = cmd->t_data_nents;
4023
4024         spin_lock_irqsave(&cmd->t_state_lock, flags);
4025         list_add_tail(&task->t_list, &cmd->t_task_list);
4026         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4027
4028         /* Success! Return number of tasks allocated */
4029         return 1;
4030 }
4031
4032 static u32 transport_allocate_tasks(
4033         struct se_cmd *cmd,
4034         unsigned long long lba,
4035         enum dma_data_direction data_direction,
4036         struct scatterlist *sgl,
4037         unsigned int sgl_nents)
4038 {
4039         if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
4040                 if (transport_cmd_get_valid_sectors(cmd) < 0)
4041                         return -EINVAL;
4042
4043                 return transport_allocate_data_tasks(cmd, lba, data_direction,
4044                                                      sgl, sgl_nents);
4045         } else
4046                 return transport_allocate_control_task(cmd);
4047
4048 }
4049
4050
4051 /*       transport_generic_new_cmd(): Called from transport_processing_thread()
4052  *
4053  *       Allocate storage transport resources from a set of values predefined
4054  *       by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
4055  *       Any non zero return here is treated as an "out of resource' op here.
4056  */
4057         /*
4058          * Generate struct se_task(s) and/or their payloads for this CDB.
4059          */
4060 int transport_generic_new_cmd(struct se_cmd *cmd)
4061 {
4062         int ret = 0;
4063
4064         /*
4065          * Determine is the TCM fabric module has already allocated physical
4066          * memory, and is directly calling transport_generic_map_mem_to_cmd()
4067          * beforehand.
4068          */
4069         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
4070             cmd->data_length) {
4071                 ret = transport_generic_get_mem(cmd);
4072                 if (ret < 0)
4073                         return ret;
4074         }
4075         /*
4076          * Call transport_new_cmd_obj() to invoke transport_allocate_tasks() for
4077          * control or data CDB types, and perform the map to backend subsystem
4078          * code from SGL memory allocated here by transport_generic_get_mem(), or
4079          * via pre-existing SGL memory setup explictly by fabric module code with
4080          * transport_generic_map_mem_to_cmd().
4081          */
4082         ret = transport_new_cmd_obj(cmd);
4083         if (ret < 0)
4084                 return ret;
4085         /*
4086          * For WRITEs, let the fabric know its buffer is ready..
4087          * This WRITE struct se_cmd (and all of its associated struct se_task's)
4088          * will be added to the struct se_device execution queue after its WRITE
4089          * data has arrived. (ie: It gets handled by the transport processing
4090          * thread a second time)
4091          */
4092         if (cmd->data_direction == DMA_TO_DEVICE) {
4093                 transport_add_tasks_to_state_queue(cmd);
4094                 return transport_generic_write_pending(cmd);
4095         }
4096         /*
4097          * Everything else but a WRITE, add the struct se_cmd's struct se_task's
4098          * to the execution queue.
4099          */
4100         transport_execute_tasks(cmd);
4101         return 0;
4102 }
4103 EXPORT_SYMBOL(transport_generic_new_cmd);
4104
4105 /*      transport_generic_process_write():
4106  *
4107  *
4108  */
4109 void transport_generic_process_write(struct se_cmd *cmd)
4110 {
4111         transport_execute_tasks(cmd);
4112 }
4113 EXPORT_SYMBOL(transport_generic_process_write);
4114
4115 static void transport_write_pending_qf(struct se_cmd *cmd)
4116 {
4117         if (cmd->se_tfo->write_pending(cmd) == -EAGAIN) {
4118                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
4119                          cmd);
4120                 transport_handle_queue_full(cmd, cmd->se_dev);
4121         }
4122 }
4123
4124 static int transport_generic_write_pending(struct se_cmd *cmd)
4125 {
4126         unsigned long flags;
4127         int ret;
4128
4129         spin_lock_irqsave(&cmd->t_state_lock, flags);
4130         cmd->t_state = TRANSPORT_WRITE_PENDING;
4131         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4132
4133         /*
4134          * Clear the se_cmd for WRITE_PENDING status in order to set
4135          * cmd->t_transport_active=0 so that transport_generic_handle_data
4136          * can be called from HW target mode interrupt code.  This is safe
4137          * to be called with transport_off=1 before the cmd->se_tfo->write_pending
4138          * because the se_cmd->se_lun pointer is not being cleared.
4139          */
4140         transport_cmd_check_stop(cmd, 1, 0);
4141
4142         /*
4143          * Call the fabric write_pending function here to let the
4144          * frontend know that WRITE buffers are ready.
4145          */
4146         ret = cmd->se_tfo->write_pending(cmd);
4147         if (ret == -EAGAIN)
4148                 goto queue_full;
4149         else if (ret < 0)
4150                 return ret;
4151
4152         return PYX_TRANSPORT_WRITE_PENDING;
4153
4154 queue_full:
4155         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
4156         cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
4157         transport_handle_queue_full(cmd, cmd->se_dev);
4158         return ret;
4159 }
4160
4161 /**
4162  * transport_release_cmd - free a command
4163  * @cmd:       command to free
4164  *
4165  * This routine unconditionally frees a command, and reference counting
4166  * or list removal must be done in the caller.
4167  */
4168 void transport_release_cmd(struct se_cmd *cmd)
4169 {
4170         BUG_ON(!cmd->se_tfo);
4171
4172         if (cmd->se_tmr_req)
4173                 core_tmr_release_req(cmd->se_tmr_req);
4174         if (cmd->t_task_cdb != cmd->__t_task_cdb)
4175                 kfree(cmd->t_task_cdb);
4176         cmd->se_tfo->release_cmd(cmd);
4177 }
4178 EXPORT_SYMBOL(transport_release_cmd);
4179
4180 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
4181 {
4182         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
4183                 if (wait_for_tasks && cmd->se_tmr_req)
4184                          transport_wait_for_tasks(cmd);
4185
4186                 transport_release_cmd(cmd);
4187         } else {
4188                 if (wait_for_tasks)
4189                         transport_wait_for_tasks(cmd);
4190
4191                 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
4192
4193                 if (cmd->se_lun)
4194                         transport_lun_remove_cmd(cmd);
4195
4196                 transport_free_dev_tasks(cmd);
4197
4198                 transport_put_cmd(cmd);
4199         }
4200 }
4201 EXPORT_SYMBOL(transport_generic_free_cmd);
4202
4203 /*      transport_lun_wait_for_tasks():
4204  *
4205  *      Called from ConfigFS context to stop the passed struct se_cmd to allow
4206  *      an struct se_lun to be successfully shutdown.
4207  */
4208 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4209 {
4210         unsigned long flags;
4211         int ret;
4212         /*
4213          * If the frontend has already requested this struct se_cmd to
4214          * be stopped, we can safely ignore this struct se_cmd.
4215          */
4216         spin_lock_irqsave(&cmd->t_state_lock, flags);
4217         if (atomic_read(&cmd->t_transport_stop)) {
4218                 atomic_set(&cmd->transport_lun_stop, 0);
4219                 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4220                         " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4221                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4222                 transport_cmd_check_stop(cmd, 1, 0);
4223                 return -EPERM;
4224         }
4225         atomic_set(&cmd->transport_lun_fe_stop, 1);
4226         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4227
4228         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4229
4230         ret = transport_stop_tasks_for_cmd(cmd);
4231
4232         pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4233                         " %d\n", cmd, cmd->t_task_list_num, ret);
4234         if (!ret) {
4235                 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4236                                 cmd->se_tfo->get_task_tag(cmd));
4237                 wait_for_completion(&cmd->transport_lun_stop_comp);
4238                 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4239                                 cmd->se_tfo->get_task_tag(cmd));
4240         }
4241         transport_remove_cmd_from_queue(cmd, &cmd->se_dev->dev_queue_obj);
4242
4243         return 0;
4244 }
4245
4246 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4247 {
4248         struct se_cmd *cmd = NULL;
4249         unsigned long lun_flags, cmd_flags;
4250         /*
4251          * Do exception processing and return CHECK_CONDITION status to the
4252          * Initiator Port.
4253          */
4254         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4255         while (!list_empty(&lun->lun_cmd_list)) {
4256                 cmd = list_first_entry(&lun->lun_cmd_list,
4257                        struct se_cmd, se_lun_node);
4258                 list_del(&cmd->se_lun_node);
4259
4260                 atomic_set(&cmd->transport_lun_active, 0);
4261                 /*
4262                  * This will notify iscsi_target_transport.c:
4263                  * transport_cmd_check_stop() that a LUN shutdown is in
4264                  * progress for the iscsi_cmd_t.
4265                  */
4266                 spin_lock(&cmd->t_state_lock);
4267                 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4268                         "_lun_stop for  ITT: 0x%08x\n",
4269                         cmd->se_lun->unpacked_lun,
4270                         cmd->se_tfo->get_task_tag(cmd));
4271                 atomic_set(&cmd->transport_lun_stop, 1);
4272                 spin_unlock(&cmd->t_state_lock);
4273
4274                 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4275
4276                 if (!cmd->se_lun) {
4277                         pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4278                                 cmd->se_tfo->get_task_tag(cmd),
4279                                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4280                         BUG();
4281                 }
4282                 /*
4283                  * If the Storage engine still owns the iscsi_cmd_t, determine
4284                  * and/or stop its context.
4285                  */
4286                 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4287                         "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4288                         cmd->se_tfo->get_task_tag(cmd));
4289
4290                 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4291                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4292                         continue;
4293                 }
4294
4295                 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4296                         "_wait_for_tasks(): SUCCESS\n",
4297                         cmd->se_lun->unpacked_lun,
4298                         cmd->se_tfo->get_task_tag(cmd));
4299
4300                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4301                 if (!atomic_read(&cmd->transport_dev_active)) {
4302                         spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4303                         goto check_cond;
4304                 }
4305                 atomic_set(&cmd->transport_dev_active, 0);
4306                 transport_all_task_dev_remove_state(cmd);
4307                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4308
4309                 transport_free_dev_tasks(cmd);
4310                 /*
4311                  * The Storage engine stopped this struct se_cmd before it was
4312                  * send to the fabric frontend for delivery back to the
4313                  * Initiator Node.  Return this SCSI CDB back with an
4314                  * CHECK_CONDITION status.
4315                  */
4316 check_cond:
4317                 transport_send_check_condition_and_sense(cmd,
4318                                 TCM_NON_EXISTENT_LUN, 0);
4319                 /*
4320                  *  If the fabric frontend is waiting for this iscsi_cmd_t to
4321                  * be released, notify the waiting thread now that LU has
4322                  * finished accessing it.
4323                  */
4324                 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4325                 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4326                         pr_debug("SE_LUN[%d] - Detected FE stop for"
4327                                 " struct se_cmd: %p ITT: 0x%08x\n",
4328                                 lun->unpacked_lun,
4329                                 cmd, cmd->se_tfo->get_task_tag(cmd));
4330
4331                         spin_unlock_irqrestore(&cmd->t_state_lock,
4332                                         cmd_flags);
4333                         transport_cmd_check_stop(cmd, 1, 0);
4334                         complete(&cmd->transport_lun_fe_stop_comp);
4335                         spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4336                         continue;
4337                 }
4338                 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4339                         lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4340
4341                 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4342                 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4343         }
4344         spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4345 }
4346
4347 static int transport_clear_lun_thread(void *p)
4348 {
4349         struct se_lun *lun = (struct se_lun *)p;
4350
4351         __transport_clear_lun_from_sessions(lun);
4352         complete(&lun->lun_shutdown_comp);
4353
4354         return 0;
4355 }
4356
4357 int transport_clear_lun_from_sessions(struct se_lun *lun)
4358 {
4359         struct task_struct *kt;
4360
4361         kt = kthread_run(transport_clear_lun_thread, lun,
4362                         "tcm_cl_%u", lun->unpacked_lun);
4363         if (IS_ERR(kt)) {
4364                 pr_err("Unable to start clear_lun thread\n");
4365                 return PTR_ERR(kt);
4366         }
4367         wait_for_completion(&lun->lun_shutdown_comp);
4368
4369         return 0;
4370 }
4371
4372 /**
4373  * transport_wait_for_tasks - wait for completion to occur
4374  * @cmd:        command to wait
4375  *
4376  * Called from frontend fabric context to wait for storage engine
4377  * to pause and/or release frontend generated struct se_cmd.
4378  */
4379 void transport_wait_for_tasks(struct se_cmd *cmd)
4380 {
4381         unsigned long flags;
4382
4383         spin_lock_irqsave(&cmd->t_state_lock, flags);
4384         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4385                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4386                 return;
4387         }
4388         /*
4389          * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4390          * has been set in transport_set_supported_SAM_opcode().
4391          */
4392         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4393                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4394                 return;
4395         }
4396         /*
4397          * If we are already stopped due to an external event (ie: LUN shutdown)
4398          * sleep until the connection can have the passed struct se_cmd back.
4399          * The cmd->transport_lun_stopped_sem will be upped by
4400          * transport_clear_lun_from_sessions() once the ConfigFS context caller
4401          * has completed its operation on the struct se_cmd.
4402          */
4403         if (atomic_read(&cmd->transport_lun_stop)) {
4404
4405                 pr_debug("wait_for_tasks: Stopping"
4406                         " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4407                         "_stop_comp); for ITT: 0x%08x\n",
4408                         cmd->se_tfo->get_task_tag(cmd));
4409                 /*
4410                  * There is a special case for WRITES where a FE exception +
4411                  * LUN shutdown means ConfigFS context is still sleeping on
4412                  * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4413                  * We go ahead and up transport_lun_stop_comp just to be sure
4414                  * here.
4415                  */
4416                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4417                 complete(&cmd->transport_lun_stop_comp);
4418                 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4419                 spin_lock_irqsave(&cmd->t_state_lock, flags);
4420
4421                 transport_all_task_dev_remove_state(cmd);
4422                 /*
4423                  * At this point, the frontend who was the originator of this
4424                  * struct se_cmd, now owns the structure and can be released through
4425                  * normal means below.
4426                  */
4427                 pr_debug("wait_for_tasks: Stopped"
4428                         " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4429                         "stop_comp); for ITT: 0x%08x\n",
4430                         cmd->se_tfo->get_task_tag(cmd));
4431
4432                 atomic_set(&cmd->transport_lun_stop, 0);
4433         }
4434         if (!atomic_read(&cmd->t_transport_active) ||
4435              atomic_read(&cmd->t_transport_aborted)) {
4436                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4437                 return;
4438         }
4439
4440         atomic_set(&cmd->t_transport_stop, 1);
4441
4442         pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4443                 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
4444                 " = TRUE\n", cmd, cmd->se_tfo->get_task_tag(cmd),
4445                 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state,
4446                 cmd->deferred_t_state);
4447
4448         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4449
4450         wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4451
4452         wait_for_completion(&cmd->t_transport_stop_comp);
4453
4454         spin_lock_irqsave(&cmd->t_state_lock, flags);
4455         atomic_set(&cmd->t_transport_active, 0);
4456         atomic_set(&cmd->t_transport_stop, 0);
4457
4458         pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4459                 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4460                 cmd->se_tfo->get_task_tag(cmd));
4461
4462         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4463 }
4464 EXPORT_SYMBOL(transport_wait_for_tasks);
4465
4466 static int transport_get_sense_codes(
4467         struct se_cmd *cmd,
4468         u8 *asc,
4469         u8 *ascq)
4470 {
4471         *asc = cmd->scsi_asc;
4472         *ascq = cmd->scsi_ascq;
4473
4474         return 0;
4475 }
4476
4477 static int transport_set_sense_codes(
4478         struct se_cmd *cmd,
4479         u8 asc,
4480         u8 ascq)
4481 {
4482         cmd->scsi_asc = asc;
4483         cmd->scsi_ascq = ascq;
4484
4485         return 0;
4486 }
4487
4488 int transport_send_check_condition_and_sense(
4489         struct se_cmd *cmd,
4490         u8 reason,
4491         int from_transport)
4492 {
4493         unsigned char *buffer = cmd->sense_buffer;
4494         unsigned long flags;
4495         int offset;
4496         u8 asc = 0, ascq = 0;
4497
4498         spin_lock_irqsave(&cmd->t_state_lock, flags);
4499         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4500                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4501                 return 0;
4502         }
4503         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4504         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4505
4506         if (!reason && from_transport)
4507                 goto after_reason;
4508
4509         if (!from_transport)
4510                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4511         /*
4512          * Data Segment and SenseLength of the fabric response PDU.
4513          *
4514          * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4515          * from include/scsi/scsi_cmnd.h
4516          */
4517         offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4518                                 TRANSPORT_SENSE_BUFFER);
4519         /*
4520          * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
4521          * SENSE KEY values from include/scsi/scsi.h
4522          */
4523         switch (reason) {
4524         case TCM_NON_EXISTENT_LUN:
4525                 /* CURRENT ERROR */
4526                 buffer[offset] = 0x70;
4527                 /* ILLEGAL REQUEST */
4528                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4529                 /* LOGICAL UNIT NOT SUPPORTED */
4530                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4531                 break;
4532         case TCM_UNSUPPORTED_SCSI_OPCODE:
4533         case TCM_SECTOR_COUNT_TOO_MANY:
4534                 /* CURRENT ERROR */
4535                 buffer[offset] = 0x70;
4536                 /* ILLEGAL REQUEST */
4537                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4538                 /* INVALID COMMAND OPERATION CODE */
4539                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4540                 break;
4541         case TCM_UNKNOWN_MODE_PAGE:
4542                 /* CURRENT ERROR */
4543                 buffer[offset] = 0x70;
4544                 /* ILLEGAL REQUEST */
4545                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4546                 /* INVALID FIELD IN CDB */
4547                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4548                 break;
4549         case TCM_CHECK_CONDITION_ABORT_CMD:
4550                 /* CURRENT ERROR */
4551                 buffer[offset] = 0x70;
4552                 /* ABORTED COMMAND */
4553                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4554                 /* BUS DEVICE RESET FUNCTION OCCURRED */
4555                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4556                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4557                 break;
4558         case TCM_INCORRECT_AMOUNT_OF_DATA:
4559                 /* CURRENT ERROR */
4560                 buffer[offset] = 0x70;
4561                 /* ABORTED COMMAND */
4562                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4563                 /* WRITE ERROR */
4564                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4565                 /* NOT ENOUGH UNSOLICITED DATA */
4566                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4567                 break;
4568         case TCM_INVALID_CDB_FIELD:
4569                 /* CURRENT ERROR */
4570                 buffer[offset] = 0x70;
4571                 /* ABORTED COMMAND */
4572                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4573                 /* INVALID FIELD IN CDB */
4574                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4575                 break;
4576         case TCM_INVALID_PARAMETER_LIST:
4577                 /* CURRENT ERROR */
4578                 buffer[offset] = 0x70;
4579                 /* ABORTED COMMAND */
4580                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4581                 /* INVALID FIELD IN PARAMETER LIST */
4582                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4583                 break;
4584         case TCM_UNEXPECTED_UNSOLICITED_DATA:
4585                 /* CURRENT ERROR */
4586                 buffer[offset] = 0x70;
4587                 /* ABORTED COMMAND */
4588                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4589                 /* WRITE ERROR */
4590                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4591                 /* UNEXPECTED_UNSOLICITED_DATA */
4592                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4593                 break;
4594         case TCM_SERVICE_CRC_ERROR:
4595                 /* CURRENT ERROR */
4596                 buffer[offset] = 0x70;
4597                 /* ABORTED COMMAND */
4598                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4599                 /* PROTOCOL SERVICE CRC ERROR */
4600                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4601                 /* N/A */
4602                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4603                 break;
4604         case TCM_SNACK_REJECTED:
4605                 /* CURRENT ERROR */
4606                 buffer[offset] = 0x70;
4607                 /* ABORTED COMMAND */
4608                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4609                 /* READ ERROR */
4610                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4611                 /* FAILED RETRANSMISSION REQUEST */
4612                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4613                 break;
4614         case TCM_WRITE_PROTECTED:
4615                 /* CURRENT ERROR */
4616                 buffer[offset] = 0x70;
4617                 /* DATA PROTECT */
4618                 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4619                 /* WRITE PROTECTED */
4620                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4621                 break;
4622         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4623                 /* CURRENT ERROR */
4624                 buffer[offset] = 0x70;
4625                 /* UNIT ATTENTION */
4626                 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4627                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4628                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4629                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4630                 break;
4631         case TCM_CHECK_CONDITION_NOT_READY:
4632                 /* CURRENT ERROR */
4633                 buffer[offset] = 0x70;
4634                 /* Not Ready */
4635                 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4636                 transport_get_sense_codes(cmd, &asc, &ascq);
4637                 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4638                 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4639                 break;
4640         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4641         default:
4642                 /* CURRENT ERROR */
4643                 buffer[offset] = 0x70;
4644                 /* ILLEGAL REQUEST */
4645                 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4646                 /* LOGICAL UNIT COMMUNICATION FAILURE */
4647                 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4648                 break;
4649         }
4650         /*
4651          * This code uses linux/include/scsi/scsi.h SAM status codes!
4652          */
4653         cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4654         /*
4655          * Automatically padded, this value is encoded in the fabric's
4656          * data_length response PDU containing the SCSI defined sense data.
4657          */
4658         cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER + offset;
4659
4660 after_reason:
4661         return cmd->se_tfo->queue_status(cmd);
4662 }
4663 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4664
4665 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4666 {
4667         int ret = 0;
4668
4669         if (atomic_read(&cmd->t_transport_aborted) != 0) {
4670                 if (!send_status ||
4671                      (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4672                         return 1;
4673 #if 0
4674                 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4675                         " status for CDB: 0x%02x ITT: 0x%08x\n",
4676                         cmd->t_task_cdb[0],
4677                         cmd->se_tfo->get_task_tag(cmd));
4678 #endif
4679                 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4680                 cmd->se_tfo->queue_status(cmd);
4681                 ret = 1;
4682         }
4683         return ret;
4684 }
4685 EXPORT_SYMBOL(transport_check_aborted_status);
4686
4687 void transport_send_task_abort(struct se_cmd *cmd)
4688 {
4689         unsigned long flags;
4690
4691         spin_lock_irqsave(&cmd->t_state_lock, flags);
4692         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4693                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4694                 return;
4695         }
4696         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4697
4698         /*
4699          * If there are still expected incoming fabric WRITEs, we wait
4700          * until until they have completed before sending a TASK_ABORTED
4701          * response.  This response with TASK_ABORTED status will be
4702          * queued back to fabric module by transport_check_aborted_status().
4703          */
4704         if (cmd->data_direction == DMA_TO_DEVICE) {
4705                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4706                         atomic_inc(&cmd->t_transport_aborted);
4707                         smp_mb__after_atomic_inc();
4708                         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4709                         transport_new_cmd_failure(cmd);
4710                         return;
4711                 }
4712         }
4713         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4714 #if 0
4715         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4716                 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4717                 cmd->se_tfo->get_task_tag(cmd));
4718 #endif
4719         cmd->se_tfo->queue_status(cmd);
4720 }
4721
4722 /*      transport_generic_do_tmr():
4723  *
4724  *
4725  */
4726 int transport_generic_do_tmr(struct se_cmd *cmd)
4727 {
4728         struct se_device *dev = cmd->se_dev;
4729         struct se_tmr_req *tmr = cmd->se_tmr_req;
4730         int ret;
4731
4732         switch (tmr->function) {
4733         case TMR_ABORT_TASK:
4734                 tmr->response = TMR_FUNCTION_REJECTED;
4735                 break;
4736         case TMR_ABORT_TASK_SET:
4737         case TMR_CLEAR_ACA:
4738         case TMR_CLEAR_TASK_SET:
4739                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4740                 break;
4741         case TMR_LUN_RESET:
4742                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4743                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4744                                          TMR_FUNCTION_REJECTED;
4745                 break;
4746         case TMR_TARGET_WARM_RESET:
4747                 tmr->response = TMR_FUNCTION_REJECTED;
4748                 break;
4749         case TMR_TARGET_COLD_RESET:
4750                 tmr->response = TMR_FUNCTION_REJECTED;
4751                 break;
4752         default:
4753                 pr_err("Uknown TMR function: 0x%02x.\n",
4754                                 tmr->function);
4755                 tmr->response = TMR_FUNCTION_REJECTED;
4756                 break;
4757         }
4758
4759         cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4760         cmd->se_tfo->queue_tm_rsp(cmd);
4761
4762         transport_cmd_check_stop(cmd, 2, 0);
4763         return 0;
4764 }
4765
4766 /*      transport_processing_thread():
4767  *
4768  *
4769  */
4770 static int transport_processing_thread(void *param)
4771 {
4772         int ret;
4773         struct se_cmd *cmd;
4774         struct se_device *dev = (struct se_device *) param;
4775
4776         set_user_nice(current, -20);
4777
4778         while (!kthread_should_stop()) {
4779                 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4780                                 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4781                                 kthread_should_stop());
4782                 if (ret < 0)
4783                         goto out;
4784
4785 get_cmd:
4786                 __transport_execute_tasks(dev);
4787
4788                 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4789                 if (!cmd)
4790                         continue;
4791
4792                 switch (cmd->t_state) {
4793                 case TRANSPORT_NEW_CMD:
4794                         BUG();
4795                         break;
4796                 case TRANSPORT_NEW_CMD_MAP:
4797                         if (!cmd->se_tfo->new_cmd_map) {
4798                                 pr_err("cmd->se_tfo->new_cmd_map is"
4799                                         " NULL for TRANSPORT_NEW_CMD_MAP\n");
4800                                 BUG();
4801                         }
4802                         ret = cmd->se_tfo->new_cmd_map(cmd);
4803                         if (ret < 0) {
4804                                 cmd->transport_error_status = ret;
4805                                 transport_generic_request_failure(cmd, NULL,
4806                                                 0, (cmd->data_direction !=
4807                                                     DMA_TO_DEVICE));
4808                                 break;
4809                         }
4810                         ret = transport_generic_new_cmd(cmd);
4811                         if (ret == -EAGAIN)
4812                                 break;
4813                         else if (ret < 0) {
4814                                 cmd->transport_error_status = ret;
4815                                 transport_generic_request_failure(cmd, NULL,
4816                                         0, (cmd->data_direction !=
4817                                          DMA_TO_DEVICE));
4818                         }
4819                         break;
4820                 case TRANSPORT_PROCESS_WRITE:
4821                         transport_generic_process_write(cmd);
4822                         break;
4823                 case TRANSPORT_COMPLETE_OK:
4824                         transport_stop_all_task_timers(cmd);
4825                         transport_generic_complete_ok(cmd);
4826                         break;
4827                 case TRANSPORT_REMOVE:
4828                         transport_put_cmd(cmd);
4829                         break;
4830                 case TRANSPORT_FREE_CMD_INTR:
4831                         transport_generic_free_cmd(cmd, 0);
4832                         break;
4833                 case TRANSPORT_PROCESS_TMR:
4834                         transport_generic_do_tmr(cmd);
4835                         break;
4836                 case TRANSPORT_COMPLETE_FAILURE:
4837                         transport_generic_request_failure(cmd, NULL, 1, 1);
4838                         break;
4839                 case TRANSPORT_COMPLETE_TIMEOUT:
4840                         transport_stop_all_task_timers(cmd);
4841                         transport_generic_request_timeout(cmd);
4842                         break;
4843                 case TRANSPORT_COMPLETE_QF_WP:
4844                         transport_write_pending_qf(cmd);
4845                         break;
4846                 case TRANSPORT_COMPLETE_QF_OK:
4847                         transport_complete_qf(cmd);
4848                         break;
4849                 default:
4850                         pr_err("Unknown t_state: %d deferred_t_state:"
4851                                 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
4852                                 " %u\n", cmd->t_state, cmd->deferred_t_state,
4853                                 cmd->se_tfo->get_task_tag(cmd),
4854                                 cmd->se_tfo->get_cmd_state(cmd),
4855                                 cmd->se_lun->unpacked_lun);
4856                         BUG();
4857                 }
4858
4859                 goto get_cmd;
4860         }
4861
4862 out:
4863         WARN_ON(!list_empty(&dev->state_task_list));
4864         WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4865         dev->process_thread = NULL;
4866         return 0;
4867 }