Merge tag 'arm-dt-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / staging / wlan-ng / hfa384x_usb.c
1 // SPDX-License-Identifier: (GPL-2.0 OR MPL-1.1)
2 /*
3  *
4  * Functions that talk to the USB variant of the Intersil hfa384x MAC
5  *
6  * Copyright (C) 1999 AbsoluteValue Systems, Inc.  All Rights Reserved.
7  * --------------------------------------------------------------------
8  *
9  * linux-wlan
10  *
11  *   The contents of this file are subject to the Mozilla Public
12  *   License Version 1.1 (the "License"); you may not use this file
13  *   except in compliance with the License. You may obtain a copy of
14  *   the License at http://www.mozilla.org/MPL/
15  *
16  *   Software distributed under the License is distributed on an "AS
17  *   IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
18  *   implied. See the License for the specific language governing
19  *   rights and limitations under the License.
20  *
21  *   Alternatively, the contents of this file may be used under the
22  *   terms of the GNU Public License version 2 (the "GPL"), in which
23  *   case the provisions of the GPL are applicable instead of the
24  *   above.  If you wish to allow the use of your version of this file
25  *   only under the terms of the GPL and not to allow others to use
26  *   your version of this file under the MPL, indicate your decision
27  *   by deleting the provisions above and replace them with the notice
28  *   and other provisions required by the GPL.  If you do not delete
29  *   the provisions above, a recipient may use your version of this
30  *   file under either the MPL or the GPL.
31  *
32  * --------------------------------------------------------------------
33  *
34  * Inquiries regarding the linux-wlan Open Source project can be
35  * made directly to:
36  *
37  * AbsoluteValue Systems Inc.
38  * info@linux-wlan.com
39  * http://www.linux-wlan.com
40  *
41  * --------------------------------------------------------------------
42  *
43  * Portions of the development of this software were funded by
44  * Intersil Corporation as part of PRISM(R) chipset product development.
45  *
46  * --------------------------------------------------------------------
47  *
48  * This file implements functions that correspond to the prism2/hfa384x
49  * 802.11 MAC hardware and firmware host interface.
50  *
51  * The functions can be considered to represent several levels of
52  * abstraction.  The lowest level functions are simply C-callable wrappers
53  * around the register accesses.  The next higher level represents C-callable
54  * prism2 API functions that match the Intersil documentation as closely
55  * as is reasonable.  The next higher layer implements common sequences
56  * of invocations of the API layer (e.g. write to bap, followed by cmd).
57  *
58  * Common sequences:
59  * hfa384x_drvr_xxx     Highest level abstractions provided by the
60  *                      hfa384x code.  They are driver defined wrappers
61  *                      for common sequences.  These functions generally
62  *                      use the services of the lower levels.
63  *
64  * hfa384x_drvr_xxxconfig  An example of the drvr level abstraction. These
65  *                      functions are wrappers for the RID get/set
66  *                      sequence. They call copy_[to|from]_bap() and
67  *                      cmd_access(). These functions operate on the
68  *                      RIDs and buffers without validation. The caller
69  *                      is responsible for that.
70  *
71  * API wrapper functions:
72  * hfa384x_cmd_xxx      functions that provide access to the f/w commands.
73  *                      The function arguments correspond to each command
74  *                      argument, even command arguments that get packed
75  *                      into single registers.  These functions _just_
76  *                      issue the command by setting the cmd/parm regs
77  *                      & reading the status/resp regs.  Additional
78  *                      activities required to fully use a command
79  *                      (read/write from/to bap, get/set int status etc.)
80  *                      are implemented separately.  Think of these as
81  *                      C-callable prism2 commands.
82  *
83  * Lowest Layer Functions:
84  * hfa384x_docmd_xxx    These functions implement the sequence required
85  *                      to issue any prism2 command.  Primarily used by the
86  *                      hfa384x_cmd_xxx functions.
87  *
88  * hfa384x_bap_xxx      BAP read/write access functions.
89  *                      Note: we usually use BAP0 for non-interrupt context
90  *                       and BAP1 for interrupt context.
91  *
92  * hfa384x_dl_xxx       download related functions.
93  *
94  * Driver State Issues:
95  * Note that there are two pairs of functions that manage the
96  * 'initialized' and 'running' states of the hw/MAC combo.  The four
97  * functions are create(), destroy(), start(), and stop().  create()
98  * sets up the data structures required to support the hfa384x_*
99  * functions and destroy() cleans them up.  The start() function gets
100  * the actual hardware running and enables the interrupts.  The stop()
101  * function shuts the hardware down.  The sequence should be:
102  * create()
103  * start()
104  *  .
105  *  .  Do interesting things w/ the hardware
106  *  .
107  * stop()
108  * destroy()
109  *
110  * Note that destroy() can be called without calling stop() first.
111  * --------------------------------------------------------------------
112  */
113
114 #include <linux/module.h>
115 #include <linux/kernel.h>
116 #include <linux/sched.h>
117 #include <linux/types.h>
118 #include <linux/slab.h>
119 #include <linux/wireless.h>
120 #include <linux/netdevice.h>
121 #include <linux/timer.h>
122 #include <linux/io.h>
123 #include <linux/delay.h>
124 #include <asm/byteorder.h>
125 #include <linux/bitops.h>
126 #include <linux/list.h>
127 #include <linux/usb.h>
128 #include <linux/byteorder/generic.h>
129
130 #include "p80211types.h"
131 #include "p80211hdr.h"
132 #include "p80211mgmt.h"
133 #include "p80211conv.h"
134 #include "p80211msg.h"
135 #include "p80211netdev.h"
136 #include "p80211req.h"
137 #include "p80211metadef.h"
138 #include "p80211metastruct.h"
139 #include "hfa384x.h"
140 #include "prism2mgmt.h"
141
142 enum cmd_mode {
143         DOWAIT = 0,
144         DOASYNC
145 };
146
147 #define THROTTLE_JIFFIES        (HZ / 8)
148 #define URB_ASYNC_UNLINK 0
149 #define USB_QUEUE_BULK 0
150
151 #define ROUNDUP64(a) (((a) + 63) & ~63)
152
153 #ifdef DEBUG_USB
154 static void dbprint_urb(struct urb *urb);
155 #endif
156
157 static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
158                                   struct hfa384x_usb_rxfrm *rxfrm);
159
160 static void hfa384x_usb_defer(struct work_struct *data);
161
162 static int submit_rx_urb(struct hfa384x *hw, gfp_t flags);
163
164 static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t flags);
165
166 /*---------------------------------------------------*/
167 /* Callbacks */
168 static void hfa384x_usbout_callback(struct urb *urb);
169 static void hfa384x_ctlxout_callback(struct urb *urb);
170 static void hfa384x_usbin_callback(struct urb *urb);
171
172 static void
173 hfa384x_usbin_txcompl(struct wlandevice *wlandev, union hfa384x_usbin *usbin);
174
175 static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb);
176
177 static void hfa384x_usbin_info(struct wlandevice *wlandev,
178                                union hfa384x_usbin *usbin);
179
180 static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
181                                int urb_status);
182
183 /*---------------------------------------------------*/
184 /* Functions to support the prism2 usb command queue */
185
186 static void hfa384x_usbctlxq_run(struct hfa384x *hw);
187
188 static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t);
189
190 static void hfa384x_usbctlx_resptimerfn(struct timer_list *t);
191
192 static void hfa384x_usb_throttlefn(struct timer_list *t);
193
194 static void hfa384x_usbctlx_completion_task(struct work_struct *work);
195
196 static void hfa384x_usbctlx_reaper_task(struct work_struct *work);
197
198 static int hfa384x_usbctlx_submit(struct hfa384x *hw,
199                                   struct hfa384x_usbctlx *ctlx);
200
201 static void unlocked_usbctlx_complete(struct hfa384x *hw,
202                                       struct hfa384x_usbctlx *ctlx);
203
204 struct usbctlx_completor {
205         int (*complete)(struct usbctlx_completor *completor);
206 };
207
208 static int
209 hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
210                               struct hfa384x_usbctlx *ctlx,
211                               struct usbctlx_completor *completor);
212
213 static int
214 unlocked_usbctlx_cancel_async(struct hfa384x *hw, struct hfa384x_usbctlx *ctlx);
215
216 static void hfa384x_cb_status(struct hfa384x *hw,
217                               const struct hfa384x_usbctlx *ctlx);
218
219 static int
220 usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
221                    struct hfa384x_cmdresult *result);
222
223 static void
224 usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
225                        struct hfa384x_rridresult *result);
226
227 /*---------------------------------------------------*/
228 /* Low level req/resp CTLX formatters and submitters */
229 static inline int
230 hfa384x_docmd(struct hfa384x *hw,
231               struct hfa384x_metacmd *cmd);
232
233 static int
234 hfa384x_dorrid(struct hfa384x *hw,
235                enum cmd_mode mode,
236                u16 rid,
237                void *riddata,
238                unsigned int riddatalen,
239                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
240
241 static int
242 hfa384x_dowrid(struct hfa384x *hw,
243                enum cmd_mode mode,
244                u16 rid,
245                void *riddata,
246                unsigned int riddatalen,
247                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
248
249 static int
250 hfa384x_dormem(struct hfa384x *hw,
251                u16 page,
252                u16 offset,
253                void *data,
254                unsigned int len);
255
256 static int
257 hfa384x_dowmem(struct hfa384x *hw,
258                u16 page,
259                u16 offset,
260                void *data,
261                unsigned int len);
262
263 static int hfa384x_isgood_pdrcode(u16 pdrcode);
264
265 static inline const char *ctlxstr(enum ctlx_state s)
266 {
267         static const char * const ctlx_str[] = {
268                 "Initial state",
269                 "Complete",
270                 "Request failed",
271                 "Request pending",
272                 "Request packet submitted",
273                 "Request packet completed",
274                 "Response packet completed"
275         };
276
277         return ctlx_str[s];
278 };
279
280 static inline struct hfa384x_usbctlx *get_active_ctlx(struct hfa384x *hw)
281 {
282         return list_entry(hw->ctlxq.active.next, struct hfa384x_usbctlx, list);
283 }
284
285 #ifdef DEBUG_USB
286 void dbprint_urb(struct urb *urb)
287 {
288         pr_debug("urb->pipe=0x%08x\n", urb->pipe);
289         pr_debug("urb->status=0x%08x\n", urb->status);
290         pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
291         pr_debug("urb->transfer_buffer=0x%08x\n",
292                  (unsigned int)urb->transfer_buffer);
293         pr_debug("urb->transfer_buffer_length=0x%08x\n",
294                  urb->transfer_buffer_length);
295         pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
296         pr_debug("urb->setup_packet(ctl)=0x%08x\n",
297                  (unsigned int)urb->setup_packet);
298         pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
299         pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
300         pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
301         pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
302         pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
303 }
304 #endif
305
306 /*----------------------------------------------------------------
307  * submit_rx_urb
308  *
309  * Listen for input data on the BULK-IN pipe. If the pipe has
310  * stalled then schedule it to be reset.
311  *
312  * Arguments:
313  *      hw              device struct
314  *      memflags        memory allocation flags
315  *
316  * Returns:
317  *      error code from submission
318  *
319  * Call context:
320  *      Any
321  *----------------------------------------------------------------
322  */
323 static int submit_rx_urb(struct hfa384x *hw, gfp_t memflags)
324 {
325         struct sk_buff *skb;
326         int result;
327
328         skb = dev_alloc_skb(sizeof(union hfa384x_usbin));
329         if (!skb) {
330                 result = -ENOMEM;
331                 goto done;
332         }
333
334         /* Post the IN urb */
335         usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
336                           hw->endp_in,
337                           skb->data, sizeof(union hfa384x_usbin),
338                           hfa384x_usbin_callback, hw->wlandev);
339
340         hw->rx_urb_skb = skb;
341
342         result = -ENOLINK;
343         if (!hw->wlandev->hwremoved &&
344             !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
345                 result = usb_submit_urb(&hw->rx_urb, memflags);
346
347                 /* Check whether we need to reset the RX pipe */
348                 if (result == -EPIPE) {
349                         netdev_warn(hw->wlandev->netdev,
350                                     "%s rx pipe stalled: requesting reset\n",
351                                     hw->wlandev->netdev->name);
352                         if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
353                                 schedule_work(&hw->usb_work);
354                 }
355         }
356
357         /* Don't leak memory if anything should go wrong */
358         if (result != 0) {
359                 dev_kfree_skb(skb);
360                 hw->rx_urb_skb = NULL;
361         }
362
363 done:
364         return result;
365 }
366
367 /*----------------------------------------------------------------
368  * submit_tx_urb
369  *
370  * Prepares and submits the URB of transmitted data. If the
371  * submission fails then it will schedule the output pipe to
372  * be reset.
373  *
374  * Arguments:
375  *      hw              device struct
376  *      tx_urb          URB of data for transmission
377  *      memflags        memory allocation flags
378  *
379  * Returns:
380  *      error code from submission
381  *
382  * Call context:
383  *      Any
384  *----------------------------------------------------------------
385  */
386 static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t memflags)
387 {
388         struct net_device *netdev = hw->wlandev->netdev;
389         int result;
390
391         result = -ENOLINK;
392         if (netif_running(netdev)) {
393                 if (!hw->wlandev->hwremoved &&
394                     !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
395                         result = usb_submit_urb(tx_urb, memflags);
396
397                         /* Test whether we need to reset the TX pipe */
398                         if (result == -EPIPE) {
399                                 netdev_warn(hw->wlandev->netdev,
400                                             "%s tx pipe stalled: requesting reset\n",
401                                             netdev->name);
402                                 set_bit(WORK_TX_HALT, &hw->usb_flags);
403                                 schedule_work(&hw->usb_work);
404                         } else if (result == 0) {
405                                 netif_stop_queue(netdev);
406                         }
407                 }
408         }
409
410         return result;
411 }
412
413 /*----------------------------------------------------------------
414  * hfa394x_usb_defer
415  *
416  * There are some things that the USB stack cannot do while
417  * in interrupt context, so we arrange this function to run
418  * in process context.
419  *
420  * Arguments:
421  *      hw      device structure
422  *
423  * Returns:
424  *      nothing
425  *
426  * Call context:
427  *      process (by design)
428  *----------------------------------------------------------------
429  */
430 static void hfa384x_usb_defer(struct work_struct *data)
431 {
432         struct hfa384x *hw = container_of(data, struct hfa384x, usb_work);
433         struct net_device *netdev = hw->wlandev->netdev;
434
435         /* Don't bother trying to reset anything if the plug
436          * has been pulled ...
437          */
438         if (hw->wlandev->hwremoved)
439                 return;
440
441         /* Reception has stopped: try to reset the input pipe */
442         if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
443                 int ret;
444
445                 usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
446
447                 ret = usb_clear_halt(hw->usb, hw->endp_in);
448                 if (ret != 0) {
449                         netdev_err(hw->wlandev->netdev,
450                                    "Failed to clear rx pipe for %s: err=%d\n",
451                                    netdev->name, ret);
452                 } else {
453                         netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
454                                     netdev->name);
455                         clear_bit(WORK_RX_HALT, &hw->usb_flags);
456                         set_bit(WORK_RX_RESUME, &hw->usb_flags);
457                 }
458         }
459
460         /* Resume receiving data back from the device. */
461         if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
462                 int ret;
463
464                 ret = submit_rx_urb(hw, GFP_KERNEL);
465                 if (ret != 0) {
466                         netdev_err(hw->wlandev->netdev,
467                                    "Failed to resume %s rx pipe.\n",
468                                    netdev->name);
469                 } else {
470                         clear_bit(WORK_RX_RESUME, &hw->usb_flags);
471                 }
472         }
473
474         /* Transmission has stopped: try to reset the output pipe */
475         if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
476                 int ret;
477
478                 usb_kill_urb(&hw->tx_urb);
479                 ret = usb_clear_halt(hw->usb, hw->endp_out);
480                 if (ret != 0) {
481                         netdev_err(hw->wlandev->netdev,
482                                    "Failed to clear tx pipe for %s: err=%d\n",
483                                    netdev->name, ret);
484                 } else {
485                         netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
486                                     netdev->name);
487                         clear_bit(WORK_TX_HALT, &hw->usb_flags);
488                         set_bit(WORK_TX_RESUME, &hw->usb_flags);
489
490                         /* Stopping the BULK-OUT pipe also blocked
491                          * us from sending any more CTLX URBs, so
492                          * we need to re-run our queue ...
493                          */
494                         hfa384x_usbctlxq_run(hw);
495                 }
496         }
497
498         /* Resume transmitting. */
499         if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
500                 netif_wake_queue(hw->wlandev->netdev);
501 }
502
503 /*----------------------------------------------------------------
504  * hfa384x_create
505  *
506  * Sets up the struct hfa384x data structure for use.  Note this
507  * does _not_ initialize the actual hardware, just the data structures
508  * we use to keep track of its state.
509  *
510  * Arguments:
511  *      hw              device structure
512  *      irq             device irq number
513  *      iobase          i/o base address for register access
514  *      membase         memory base address for register access
515  *
516  * Returns:
517  *      nothing
518  *
519  * Side effects:
520  *
521  * Call context:
522  *      process
523  *----------------------------------------------------------------
524  */
525 void hfa384x_create(struct hfa384x *hw, struct usb_device *usb)
526 {
527         hw->usb = usb;
528
529         /* Set up the waitq */
530         init_waitqueue_head(&hw->cmdq);
531
532         /* Initialize the command queue */
533         spin_lock_init(&hw->ctlxq.lock);
534         INIT_LIST_HEAD(&hw->ctlxq.pending);
535         INIT_LIST_HEAD(&hw->ctlxq.active);
536         INIT_LIST_HEAD(&hw->ctlxq.completing);
537         INIT_LIST_HEAD(&hw->ctlxq.reapable);
538
539         /* Initialize the authentication queue */
540         skb_queue_head_init(&hw->authq);
541
542         INIT_WORK(&hw->reaper_bh, hfa384x_usbctlx_reaper_task);
543         INIT_WORK(&hw->completion_bh, hfa384x_usbctlx_completion_task);
544         INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
545         INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
546
547         timer_setup(&hw->throttle, hfa384x_usb_throttlefn, 0);
548
549         timer_setup(&hw->resptimer, hfa384x_usbctlx_resptimerfn, 0);
550
551         timer_setup(&hw->reqtimer, hfa384x_usbctlx_reqtimerfn, 0);
552
553         usb_init_urb(&hw->rx_urb);
554         usb_init_urb(&hw->tx_urb);
555         usb_init_urb(&hw->ctlx_urb);
556
557         hw->link_status = HFA384x_LINK_NOTCONNECTED;
558         hw->state = HFA384x_STATE_INIT;
559
560         INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
561         timer_setup(&hw->commsqual_timer, prism2sta_commsqual_timer, 0);
562 }
563
564 /*----------------------------------------------------------------
565  * hfa384x_destroy
566  *
567  * Partner to hfa384x_create().  This function cleans up the hw
568  * structure so that it can be freed by the caller using a simple
569  * kfree.  Currently, this function is just a placeholder.  If, at some
570  * point in the future, an hw in the 'shutdown' state requires a 'deep'
571  * kfree, this is where it should be done.  Note that if this function
572  * is called on a _running_ hw structure, the drvr_stop() function is
573  * called.
574  *
575  * Arguments:
576  *      hw              device structure
577  *
578  * Returns:
579  *      nothing, this function is not allowed to fail.
580  *
581  * Side effects:
582  *
583  * Call context:
584  *      process
585  *----------------------------------------------------------------
586  */
587 void hfa384x_destroy(struct hfa384x *hw)
588 {
589         struct sk_buff *skb;
590
591         if (hw->state == HFA384x_STATE_RUNNING)
592                 hfa384x_drvr_stop(hw);
593         hw->state = HFA384x_STATE_PREINIT;
594
595         kfree(hw->scanresults);
596         hw->scanresults = NULL;
597
598         /* Now to clean out the auth queue */
599         while ((skb = skb_dequeue(&hw->authq)))
600                 dev_kfree_skb(skb);
601 }
602
603 static struct hfa384x_usbctlx *usbctlx_alloc(void)
604 {
605         struct hfa384x_usbctlx *ctlx;
606
607         ctlx = kzalloc(sizeof(*ctlx),
608                        in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
609         if (ctlx)
610                 init_completion(&ctlx->done);
611
612         return ctlx;
613 }
614
615 static int
616 usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
617                    struct hfa384x_cmdresult *result)
618 {
619         result->status = le16_to_cpu(cmdresp->status);
620         result->resp0 = le16_to_cpu(cmdresp->resp0);
621         result->resp1 = le16_to_cpu(cmdresp->resp1);
622         result->resp2 = le16_to_cpu(cmdresp->resp2);
623
624         pr_debug("cmdresult:status=0x%04x resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
625                  result->status, result->resp0, result->resp1, result->resp2);
626
627         return result->status & HFA384x_STATUS_RESULT;
628 }
629
630 static void
631 usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
632                        struct hfa384x_rridresult *result)
633 {
634         result->rid = le16_to_cpu(rridresp->rid);
635         result->riddata = rridresp->data;
636         result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
637 }
638
639 /*----------------------------------------------------------------
640  * Completor object:
641  * This completor must be passed to hfa384x_usbctlx_complete_sync()
642  * when processing a CTLX that returns a struct hfa384x_cmdresult structure.
643  *----------------------------------------------------------------
644  */
645 struct usbctlx_cmd_completor {
646         struct usbctlx_completor head;
647
648         const struct hfa384x_usb_statusresp *cmdresp;
649         struct hfa384x_cmdresult *result;
650 };
651
652 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
653 {
654         struct usbctlx_cmd_completor *complete;
655
656         complete = (struct usbctlx_cmd_completor *)head;
657         return usbctlx_get_status(complete->cmdresp, complete->result);
658 }
659
660 static inline struct usbctlx_completor *
661 init_cmd_completor(struct usbctlx_cmd_completor *completor,
662                    const struct hfa384x_usb_statusresp *cmdresp,
663                    struct hfa384x_cmdresult *result)
664 {
665         completor->head.complete = usbctlx_cmd_completor_fn;
666         completor->cmdresp = cmdresp;
667         completor->result = result;
668         return &completor->head;
669 }
670
671 /*----------------------------------------------------------------
672  * Completor object:
673  * This completor must be passed to hfa384x_usbctlx_complete_sync()
674  * when processing a CTLX that reads a RID.
675  *----------------------------------------------------------------
676  */
677 struct usbctlx_rrid_completor {
678         struct usbctlx_completor head;
679
680         const struct hfa384x_usb_rridresp *rridresp;
681         void *riddata;
682         unsigned int riddatalen;
683 };
684
685 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
686 {
687         struct usbctlx_rrid_completor *complete;
688         struct hfa384x_rridresult rridresult;
689
690         complete = (struct usbctlx_rrid_completor *)head;
691         usbctlx_get_rridresult(complete->rridresp, &rridresult);
692
693         /* Validate the length, note body len calculation in bytes */
694         if (rridresult.riddata_len != complete->riddatalen) {
695                 pr_warn("RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
696                         rridresult.rid,
697                         complete->riddatalen, rridresult.riddata_len);
698                 return -ENODATA;
699         }
700
701         memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
702         return 0;
703 }
704
705 static inline struct usbctlx_completor *
706 init_rrid_completor(struct usbctlx_rrid_completor *completor,
707                     const struct hfa384x_usb_rridresp *rridresp,
708                     void *riddata,
709                     unsigned int riddatalen)
710 {
711         completor->head.complete = usbctlx_rrid_completor_fn;
712         completor->rridresp = rridresp;
713         completor->riddata = riddata;
714         completor->riddatalen = riddatalen;
715         return &completor->head;
716 }
717
718 /*----------------------------------------------------------------
719  * Completor object:
720  * Interprets the results of a synchronous RID-write
721  *----------------------------------------------------------------
722  */
723 #define init_wrid_completor  init_cmd_completor
724
725 /*----------------------------------------------------------------
726  * Completor object:
727  * Interprets the results of a synchronous memory-write
728  *----------------------------------------------------------------
729  */
730 #define init_wmem_completor  init_cmd_completor
731
732 /*----------------------------------------------------------------
733  * Completor object:
734  * Interprets the results of a synchronous memory-read
735  *----------------------------------------------------------------
736  */
737 struct usbctlx_rmem_completor {
738         struct usbctlx_completor head;
739
740         const struct hfa384x_usb_rmemresp *rmemresp;
741         void *data;
742         unsigned int len;
743 };
744
745 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
746 {
747         struct usbctlx_rmem_completor *complete =
748                 (struct usbctlx_rmem_completor *)head;
749
750         pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
751         memcpy(complete->data, complete->rmemresp->data, complete->len);
752         return 0;
753 }
754
755 static inline struct usbctlx_completor *
756 init_rmem_completor(struct usbctlx_rmem_completor *completor,
757                     struct hfa384x_usb_rmemresp *rmemresp,
758                     void *data,
759                     unsigned int len)
760 {
761         completor->head.complete = usbctlx_rmem_completor_fn;
762         completor->rmemresp = rmemresp;
763         completor->data = data;
764         completor->len = len;
765         return &completor->head;
766 }
767
768 /*----------------------------------------------------------------
769  * hfa384x_cb_status
770  *
771  * Ctlx_complete handler for async CMD type control exchanges.
772  * mark the hw struct as such.
773  *
774  * Note: If the handling is changed here, it should probably be
775  *       changed in docmd as well.
776  *
777  * Arguments:
778  *      hw              hw struct
779  *      ctlx            completed CTLX
780  *
781  * Returns:
782  *      nothing
783  *
784  * Side effects:
785  *
786  * Call context:
787  *      interrupt
788  *----------------------------------------------------------------
789  */
790 static void hfa384x_cb_status(struct hfa384x *hw,
791                               const struct hfa384x_usbctlx *ctlx)
792 {
793         if (ctlx->usercb) {
794                 struct hfa384x_cmdresult cmdresult;
795
796                 if (ctlx->state != CTLX_COMPLETE) {
797                         memset(&cmdresult, 0, sizeof(cmdresult));
798                         cmdresult.status =
799                             HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
800                 } else {
801                         usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
802                 }
803
804                 ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
805         }
806 }
807
808 /*----------------------------------------------------------------
809  * hfa384x_cmd_initialize
810  *
811  * Issues the initialize command and sets the hw->state based
812  * on the result.
813  *
814  * Arguments:
815  *      hw              device structure
816  *
817  * Returns:
818  *      0               success
819  *      >0              f/w reported error - f/w status code
820  *      <0              driver reported error
821  *
822  * Side effects:
823  *
824  * Call context:
825  *      process
826  *----------------------------------------------------------------
827  */
828 int hfa384x_cmd_initialize(struct hfa384x *hw)
829 {
830         int result = 0;
831         int i;
832         struct hfa384x_metacmd cmd;
833
834         cmd.cmd = HFA384x_CMDCODE_INIT;
835         cmd.parm0 = 0;
836         cmd.parm1 = 0;
837         cmd.parm2 = 0;
838
839         result = hfa384x_docmd(hw, &cmd);
840
841         pr_debug("cmdresp.init: status=0x%04x, resp0=0x%04x, resp1=0x%04x, resp2=0x%04x\n",
842                  cmd.result.status,
843                  cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
844         if (result == 0) {
845                 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
846                         hw->port_enabled[i] = 0;
847         }
848
849         hw->link_status = HFA384x_LINK_NOTCONNECTED;
850
851         return result;
852 }
853
854 /*----------------------------------------------------------------
855  * hfa384x_cmd_disable
856  *
857  * Issues the disable command to stop communications on one of
858  * the MACs 'ports'.
859  *
860  * Arguments:
861  *      hw              device structure
862  *      macport         MAC port number (host order)
863  *
864  * Returns:
865  *      0               success
866  *      >0              f/w reported failure - f/w status code
867  *      <0              driver reported error (timeout|bad arg)
868  *
869  * Side effects:
870  *
871  * Call context:
872  *      process
873  *----------------------------------------------------------------
874  */
875 int hfa384x_cmd_disable(struct hfa384x *hw, u16 macport)
876 {
877         struct hfa384x_metacmd cmd;
878
879         cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
880             HFA384x_CMD_MACPORT_SET(macport);
881         cmd.parm0 = 0;
882         cmd.parm1 = 0;
883         cmd.parm2 = 0;
884
885         return hfa384x_docmd(hw, &cmd);
886 }
887
888 /*----------------------------------------------------------------
889  * hfa384x_cmd_enable
890  *
891  * Issues the enable command to enable communications on one of
892  * the MACs 'ports'.
893  *
894  * Arguments:
895  *      hw              device structure
896  *      macport         MAC port number
897  *
898  * Returns:
899  *      0               success
900  *      >0              f/w reported failure - f/w status code
901  *      <0              driver reported error (timeout|bad arg)
902  *
903  * Side effects:
904  *
905  * Call context:
906  *      process
907  *----------------------------------------------------------------
908  */
909 int hfa384x_cmd_enable(struct hfa384x *hw, u16 macport)
910 {
911         struct hfa384x_metacmd cmd;
912
913         cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
914             HFA384x_CMD_MACPORT_SET(macport);
915         cmd.parm0 = 0;
916         cmd.parm1 = 0;
917         cmd.parm2 = 0;
918
919         return hfa384x_docmd(hw, &cmd);
920 }
921
922 /*----------------------------------------------------------------
923  * hfa384x_cmd_monitor
924  *
925  * Enables the 'monitor mode' of the MAC.  Here's the description of
926  * monitor mode that I've received thus far:
927  *
928  *  "The "monitor mode" of operation is that the MAC passes all
929  *  frames for which the PLCP checks are correct. All received
930  *  MPDUs are passed to the host with MAC Port = 7, with a
931  *  receive status of good, FCS error, or undecryptable. Passing
932  *  certain MPDUs is a violation of the 802.11 standard, but useful
933  *  for a debugging tool."  Normal communication is not possible
934  *  while monitor mode is enabled.
935  *
936  * Arguments:
937  *      hw              device structure
938  *      enable          a code (0x0b|0x0f) that enables/disables
939  *                      monitor mode. (host order)
940  *
941  * Returns:
942  *      0               success
943  *      >0              f/w reported failure - f/w status code
944  *      <0              driver reported error (timeout|bad arg)
945  *
946  * Side effects:
947  *
948  * Call context:
949  *      process
950  *----------------------------------------------------------------
951  */
952 int hfa384x_cmd_monitor(struct hfa384x *hw, u16 enable)
953 {
954         struct hfa384x_metacmd cmd;
955
956         cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
957             HFA384x_CMD_AINFO_SET(enable);
958         cmd.parm0 = 0;
959         cmd.parm1 = 0;
960         cmd.parm2 = 0;
961
962         return hfa384x_docmd(hw, &cmd);
963 }
964
965 /*----------------------------------------------------------------
966  * hfa384x_cmd_download
967  *
968  * Sets the controls for the MAC controller code/data download
969  * process.  The arguments set the mode and address associated
970  * with a download.  Note that the aux registers should be enabled
971  * prior to setting one of the download enable modes.
972  *
973  * Arguments:
974  *      hw              device structure
975  *      mode            0 - Disable programming and begin code exec
976  *                      1 - Enable volatile mem programming
977  *                      2 - Enable non-volatile mem programming
978  *                      3 - Program non-volatile section from NV download
979  *                          buffer.
980  *                      (host order)
981  *      lowaddr
982  *      highaddr        For mode 1, sets the high & low order bits of
983  *                      the "destination address".  This address will be
984  *                      the execution start address when download is
985  *                      subsequently disabled.
986  *                      For mode 2, sets the high & low order bits of
987  *                      the destination in NV ram.
988  *                      For modes 0 & 3, should be zero. (host order)
989  *                      NOTE: these are CMD format.
990  *      codelen         Length of the data to write in mode 2,
991  *                      zero otherwise. (host order)
992  *
993  * Returns:
994  *      0               success
995  *      >0              f/w reported failure - f/w status code
996  *      <0              driver reported error (timeout|bad arg)
997  *
998  * Side effects:
999  *
1000  * Call context:
1001  *      process
1002  *----------------------------------------------------------------
1003  */
1004 int hfa384x_cmd_download(struct hfa384x *hw, u16 mode, u16 lowaddr,
1005                          u16 highaddr, u16 codelen)
1006 {
1007         struct hfa384x_metacmd cmd;
1008
1009         pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1010                  mode, lowaddr, highaddr, codelen);
1011
1012         cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1013                    HFA384x_CMD_PROGMODE_SET(mode));
1014
1015         cmd.parm0 = lowaddr;
1016         cmd.parm1 = highaddr;
1017         cmd.parm2 = codelen;
1018
1019         return hfa384x_docmd(hw, &cmd);
1020 }
1021
1022 /*----------------------------------------------------------------
1023  * hfa384x_corereset
1024  *
1025  * Perform a reset of the hfa38xx MAC core.  We assume that the hw
1026  * structure is in its "created" state.  That is, it is initialized
1027  * with proper values.  Note that if a reset is done after the
1028  * device has been active for awhile, the caller might have to clean
1029  * up some leftover cruft in the hw structure.
1030  *
1031  * Arguments:
1032  *      hw              device structure
1033  *      holdtime        how long (in ms) to hold the reset
1034  *      settletime      how long (in ms) to wait after releasing
1035  *                      the reset
1036  *
1037  * Returns:
1038  *      nothing
1039  *
1040  * Side effects:
1041  *
1042  * Call context:
1043  *      process
1044  *----------------------------------------------------------------
1045  */
1046 int hfa384x_corereset(struct hfa384x *hw, int holdtime,
1047                       int settletime, int genesis)
1048 {
1049         int result;
1050
1051         result = usb_reset_device(hw->usb);
1052         if (result < 0) {
1053                 netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
1054                            result);
1055         }
1056
1057         return result;
1058 }
1059
1060 /*----------------------------------------------------------------
1061  * hfa384x_usbctlx_complete_sync
1062  *
1063  * Waits for a synchronous CTLX object to complete,
1064  * and then handles the response.
1065  *
1066  * Arguments:
1067  *      hw              device structure
1068  *      ctlx            CTLX ptr
1069  *      completor       functor object to decide what to
1070  *                      do with the CTLX's result.
1071  *
1072  * Returns:
1073  *      0               Success
1074  *      -ERESTARTSYS    Interrupted by a signal
1075  *      -EIO            CTLX failed
1076  *      -ENODEV         Adapter was unplugged
1077  *      ???             Result from completor
1078  *
1079  * Side effects:
1080  *
1081  * Call context:
1082  *      process
1083  *----------------------------------------------------------------
1084  */
1085 static int hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
1086                                          struct hfa384x_usbctlx *ctlx,
1087                                          struct usbctlx_completor *completor)
1088 {
1089         unsigned long flags;
1090         int result;
1091
1092         result = wait_for_completion_interruptible(&ctlx->done);
1093
1094         spin_lock_irqsave(&hw->ctlxq.lock, flags);
1095
1096         /*
1097          * We can only handle the CTLX if the USB disconnect
1098          * function has not run yet ...
1099          */
1100 cleanup:
1101         if (hw->wlandev->hwremoved) {
1102                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1103                 result = -ENODEV;
1104         } else if (result != 0) {
1105                 int runqueue = 0;
1106
1107                 /*
1108                  * We were probably interrupted, so delete
1109                  * this CTLX asynchronously, kill the timers
1110                  * and the URB, and then start the next
1111                  * pending CTLX.
1112                  *
1113                  * NOTE: We can only delete the timers and
1114                  *       the URB if this CTLX is active.
1115                  */
1116                 if (ctlx == get_active_ctlx(hw)) {
1117                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1118
1119                         del_singleshot_timer_sync(&hw->reqtimer);
1120                         del_singleshot_timer_sync(&hw->resptimer);
1121                         hw->req_timer_done = 1;
1122                         hw->resp_timer_done = 1;
1123                         usb_kill_urb(&hw->ctlx_urb);
1124
1125                         spin_lock_irqsave(&hw->ctlxq.lock, flags);
1126
1127                         runqueue = 1;
1128
1129                         /*
1130                          * This scenario is so unlikely that I'm
1131                          * happy with a grubby "goto" solution ...
1132                          */
1133                         if (hw->wlandev->hwremoved)
1134                                 goto cleanup;
1135                 }
1136
1137                 /*
1138                  * The completion task will send this CTLX
1139                  * to the reaper the next time it runs. We
1140                  * are no longer in a hurry.
1141                  */
1142                 ctlx->reapable = 1;
1143                 ctlx->state = CTLX_REQ_FAILED;
1144                 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1145
1146                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1147
1148                 if (runqueue)
1149                         hfa384x_usbctlxq_run(hw);
1150         } else {
1151                 if (ctlx->state == CTLX_COMPLETE) {
1152                         result = completor->complete(completor);
1153                 } else {
1154                         netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
1155                                     le16_to_cpu(ctlx->outbuf.type),
1156                                     ctlxstr(ctlx->state));
1157                         result = -EIO;
1158                 }
1159
1160                 list_del(&ctlx->list);
1161                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1162                 kfree(ctlx);
1163         }
1164
1165         return result;
1166 }
1167
1168 /*----------------------------------------------------------------
1169  * hfa384x_docmd
1170  *
1171  * Constructs a command CTLX and submits it.
1172  *
1173  * NOTE: Any changes to the 'post-submit' code in this function
1174  *       need to be carried over to hfa384x_cbcmd() since the handling
1175  *       is virtually identical.
1176  *
1177  * Arguments:
1178  *      hw              device structure
1179  *       cmd             cmd structure.  Includes all arguments and result
1180  *                       data points.  All in host order. in host order
1181  *
1182  * Returns:
1183  *      0               success
1184  *      -EIO            CTLX failure
1185  *      -ERESTARTSYS    Awakened on signal
1186  *      >0              command indicated error, Status and Resp0-2 are
1187  *                      in hw structure.
1188  *
1189  * Side effects:
1190  *
1191  *
1192  * Call context:
1193  *      process
1194  *----------------------------------------------------------------
1195  */
1196 static inline int
1197 hfa384x_docmd(struct hfa384x *hw,
1198               struct hfa384x_metacmd *cmd)
1199 {
1200         int result;
1201         struct hfa384x_usbctlx *ctlx;
1202
1203         ctlx = usbctlx_alloc();
1204         if (!ctlx) {
1205                 result = -ENOMEM;
1206                 goto done;
1207         }
1208
1209         /* Initialize the command */
1210         ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1211         ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1212         ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1213         ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1214         ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1215
1216         ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1217
1218         pr_debug("cmdreq: cmd=0x%04x parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1219                  cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1220
1221         ctlx->reapable = DOWAIT;
1222         ctlx->cmdcb = NULL;
1223         ctlx->usercb = NULL;
1224         ctlx->usercb_data = NULL;
1225
1226         result = hfa384x_usbctlx_submit(hw, ctlx);
1227         if (result != 0) {
1228                 kfree(ctlx);
1229         } else {
1230                 struct usbctlx_cmd_completor cmd_completor;
1231                 struct usbctlx_completor *completor;
1232
1233                 completor = init_cmd_completor(&cmd_completor,
1234                                                &ctlx->inbuf.cmdresp,
1235                                                &cmd->result);
1236
1237                 result = hfa384x_usbctlx_complete_sync(hw, ctlx, completor);
1238         }
1239
1240 done:
1241         return result;
1242 }
1243
1244 /*----------------------------------------------------------------
1245  * hfa384x_dorrid
1246  *
1247  * Constructs a read rid CTLX and issues it.
1248  *
1249  * NOTE: Any changes to the 'post-submit' code in this function
1250  *       need to be carried over to hfa384x_cbrrid() since the handling
1251  *       is virtually identical.
1252  *
1253  * Arguments:
1254  *      hw              device structure
1255  *      mode            DOWAIT or DOASYNC
1256  *      rid             Read RID number (host order)
1257  *      riddata         Caller supplied buffer that MAC formatted RID.data
1258  *                      record will be written to for DOWAIT calls. Should
1259  *                      be NULL for DOASYNC calls.
1260  *      riddatalen      Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1261  *      cmdcb           command callback for async calls, NULL for DOWAIT calls
1262  *      usercb          user callback for async calls, NULL for DOWAIT calls
1263  *      usercb_data     user supplied data pointer for async calls, NULL
1264  *                      for DOWAIT calls
1265  *
1266  * Returns:
1267  *      0               success
1268  *      -EIO            CTLX failure
1269  *      -ERESTARTSYS    Awakened on signal
1270  *      -ENODATA        riddatalen != macdatalen
1271  *      >0              command indicated error, Status and Resp0-2 are
1272  *                      in hw structure.
1273  *
1274  * Side effects:
1275  *
1276  * Call context:
1277  *      interrupt (DOASYNC)
1278  *      process (DOWAIT or DOASYNC)
1279  *----------------------------------------------------------------
1280  */
1281 static int
1282 hfa384x_dorrid(struct hfa384x *hw,
1283                enum cmd_mode mode,
1284                u16 rid,
1285                void *riddata,
1286                unsigned int riddatalen,
1287                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1288 {
1289         int result;
1290         struct hfa384x_usbctlx *ctlx;
1291
1292         ctlx = usbctlx_alloc();
1293         if (!ctlx) {
1294                 result = -ENOMEM;
1295                 goto done;
1296         }
1297
1298         /* Initialize the command */
1299         ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1300         ctlx->outbuf.rridreq.frmlen =
1301             cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1302         ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1303
1304         ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1305
1306         ctlx->reapable = mode;
1307         ctlx->cmdcb = cmdcb;
1308         ctlx->usercb = usercb;
1309         ctlx->usercb_data = usercb_data;
1310
1311         /* Submit the CTLX */
1312         result = hfa384x_usbctlx_submit(hw, ctlx);
1313         if (result != 0) {
1314                 kfree(ctlx);
1315         } else if (mode == DOWAIT) {
1316                 struct usbctlx_rrid_completor completor;
1317
1318                 result =
1319                     hfa384x_usbctlx_complete_sync(hw, ctlx,
1320                                                   init_rrid_completor
1321                                                   (&completor,
1322                                                    &ctlx->inbuf.rridresp,
1323                                                    riddata, riddatalen));
1324         }
1325
1326 done:
1327         return result;
1328 }
1329
1330 /*----------------------------------------------------------------
1331  * hfa384x_dowrid
1332  *
1333  * Constructs a write rid CTLX and issues it.
1334  *
1335  * NOTE: Any changes to the 'post-submit' code in this function
1336  *       need to be carried over to hfa384x_cbwrid() since the handling
1337  *       is virtually identical.
1338  *
1339  * Arguments:
1340  *      hw              device structure
1341  *      enum cmd_mode   DOWAIT or DOASYNC
1342  *      rid             RID code
1343  *      riddata         Data portion of RID formatted for MAC
1344  *      riddatalen      Length of the data portion in bytes
1345  *       cmdcb           command callback for async calls, NULL for DOWAIT calls
1346  *      usercb          user callback for async calls, NULL for DOWAIT calls
1347  *      usercb_data     user supplied data pointer for async calls
1348  *
1349  * Returns:
1350  *      0               success
1351  *      -ETIMEDOUT      timed out waiting for register ready or
1352  *                      command completion
1353  *      >0              command indicated error, Status and Resp0-2 are
1354  *                      in hw structure.
1355  *
1356  * Side effects:
1357  *
1358  * Call context:
1359  *      interrupt (DOASYNC)
1360  *      process (DOWAIT or DOASYNC)
1361  *----------------------------------------------------------------
1362  */
1363 static int
1364 hfa384x_dowrid(struct hfa384x *hw,
1365                enum cmd_mode mode,
1366                u16 rid,
1367                void *riddata,
1368                unsigned int riddatalen,
1369                ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1370 {
1371         int result;
1372         struct hfa384x_usbctlx *ctlx;
1373
1374         ctlx = usbctlx_alloc();
1375         if (!ctlx) {
1376                 result = -ENOMEM;
1377                 goto done;
1378         }
1379
1380         /* Initialize the command */
1381         ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1382         ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1383                                                    (ctlx->outbuf.wridreq.rid) +
1384                                                    riddatalen + 1) / 2);
1385         ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1386         memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1387
1388         ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1389             sizeof(ctlx->outbuf.wridreq.frmlen) +
1390             sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1391
1392         ctlx->reapable = mode;
1393         ctlx->cmdcb = cmdcb;
1394         ctlx->usercb = usercb;
1395         ctlx->usercb_data = usercb_data;
1396
1397         /* Submit the CTLX */
1398         result = hfa384x_usbctlx_submit(hw, ctlx);
1399         if (result != 0) {
1400                 kfree(ctlx);
1401         } else if (mode == DOWAIT) {
1402                 struct usbctlx_cmd_completor completor;
1403                 struct hfa384x_cmdresult wridresult;
1404
1405                 result = hfa384x_usbctlx_complete_sync(hw,
1406                                                        ctlx,
1407                                                        init_wrid_completor
1408                                                        (&completor,
1409                                                         &ctlx->inbuf.wridresp,
1410                                                         &wridresult));
1411         }
1412
1413 done:
1414         return result;
1415 }
1416
1417 /*----------------------------------------------------------------
1418  * hfa384x_dormem
1419  *
1420  * Constructs a readmem CTLX and issues it.
1421  *
1422  * NOTE: Any changes to the 'post-submit' code in this function
1423  *       need to be carried over to hfa384x_cbrmem() since the handling
1424  *       is virtually identical.
1425  *
1426  * Arguments:
1427  *      hw              device structure
1428  *      page            MAC address space page (CMD format)
1429  *      offset          MAC address space offset
1430  *      data            Ptr to data buffer to receive read
1431  *      len             Length of the data to read (max == 2048)
1432  *
1433  * Returns:
1434  *      0               success
1435  *      -ETIMEDOUT      timed out waiting for register ready or
1436  *                      command completion
1437  *      >0              command indicated error, Status and Resp0-2 are
1438  *                      in hw structure.
1439  *
1440  * Side effects:
1441  *
1442  * Call context:
1443  *      process (DOWAIT)
1444  *----------------------------------------------------------------
1445  */
1446 static int
1447 hfa384x_dormem(struct hfa384x *hw,
1448                u16 page,
1449                u16 offset,
1450                void *data,
1451                unsigned int len)
1452 {
1453         int result;
1454         struct hfa384x_usbctlx *ctlx;
1455
1456         ctlx = usbctlx_alloc();
1457         if (!ctlx) {
1458                 result = -ENOMEM;
1459                 goto done;
1460         }
1461
1462         /* Initialize the command */
1463         ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1464         ctlx->outbuf.rmemreq.frmlen =
1465             cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1466                         sizeof(ctlx->outbuf.rmemreq.page) + len);
1467         ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1468         ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1469
1470         ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1471
1472         pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1473                  ctlx->outbuf.rmemreq.type,
1474                  ctlx->outbuf.rmemreq.frmlen,
1475                  ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1476
1477         pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1478
1479         ctlx->reapable = DOWAIT;
1480         ctlx->cmdcb = NULL;
1481         ctlx->usercb = NULL;
1482         ctlx->usercb_data = NULL;
1483
1484         result = hfa384x_usbctlx_submit(hw, ctlx);
1485         if (result != 0) {
1486                 kfree(ctlx);
1487         } else {
1488                 struct usbctlx_rmem_completor completor;
1489
1490                 result =
1491                     hfa384x_usbctlx_complete_sync(hw, ctlx,
1492                                                   init_rmem_completor
1493                                                   (&completor,
1494                                                    &ctlx->inbuf.rmemresp, data,
1495                                                    len));
1496         }
1497
1498 done:
1499         return result;
1500 }
1501
1502 /*----------------------------------------------------------------
1503  * hfa384x_dowmem
1504  *
1505  * Constructs a writemem CTLX and issues it.
1506  *
1507  * NOTE: Any changes to the 'post-submit' code in this function
1508  *       need to be carried over to hfa384x_cbwmem() since the handling
1509  *       is virtually identical.
1510  *
1511  * Arguments:
1512  *      hw              device structure
1513  *      page            MAC address space page (CMD format)
1514  *      offset          MAC address space offset
1515  *      data            Ptr to data buffer containing write data
1516  *      len             Length of the data to read (max == 2048)
1517  *
1518  * Returns:
1519  *      0               success
1520  *      -ETIMEDOUT      timed out waiting for register ready or
1521  *                      command completion
1522  *      >0              command indicated error, Status and Resp0-2 are
1523  *                      in hw structure.
1524  *
1525  * Side effects:
1526  *
1527  * Call context:
1528  *      interrupt (DOWAIT)
1529  *      process (DOWAIT)
1530  *----------------------------------------------------------------
1531  */
1532 static int
1533 hfa384x_dowmem(struct hfa384x *hw,
1534                u16 page,
1535                u16 offset,
1536                void *data,
1537                unsigned int len)
1538 {
1539         int result;
1540         struct hfa384x_usbctlx *ctlx;
1541
1542         pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1543
1544         ctlx = usbctlx_alloc();
1545         if (!ctlx) {
1546                 result = -ENOMEM;
1547                 goto done;
1548         }
1549
1550         /* Initialize the command */
1551         ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1552         ctlx->outbuf.wmemreq.frmlen =
1553             cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1554                         sizeof(ctlx->outbuf.wmemreq.page) + len);
1555         ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1556         ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1557         memcpy(ctlx->outbuf.wmemreq.data, data, len);
1558
1559         ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1560             sizeof(ctlx->outbuf.wmemreq.frmlen) +
1561             sizeof(ctlx->outbuf.wmemreq.offset) +
1562             sizeof(ctlx->outbuf.wmemreq.page) + len;
1563
1564         ctlx->reapable = DOWAIT;
1565         ctlx->cmdcb = NULL;
1566         ctlx->usercb = NULL;
1567         ctlx->usercb_data = NULL;
1568
1569         result = hfa384x_usbctlx_submit(hw, ctlx);
1570         if (result != 0) {
1571                 kfree(ctlx);
1572         } else {
1573                 struct usbctlx_cmd_completor completor;
1574                 struct hfa384x_cmdresult wmemresult;
1575
1576                 result = hfa384x_usbctlx_complete_sync(hw,
1577                                                        ctlx,
1578                                                        init_wmem_completor
1579                                                        (&completor,
1580                                                         &ctlx->inbuf.wmemresp,
1581                                                         &wmemresult));
1582         }
1583
1584 done:
1585         return result;
1586 }
1587
1588 /*----------------------------------------------------------------
1589  * hfa384x_drvr_disable
1590  *
1591  * Issues the disable command to stop communications on one of
1592  * the MACs 'ports'.  Only macport 0 is valid  for stations.
1593  * APs may also disable macports 1-6.  Only ports that have been
1594  * previously enabled may be disabled.
1595  *
1596  * Arguments:
1597  *      hw              device structure
1598  *      macport         MAC port number (host order)
1599  *
1600  * Returns:
1601  *      0               success
1602  *      >0              f/w reported failure - f/w status code
1603  *      <0              driver reported error (timeout|bad arg)
1604  *
1605  * Side effects:
1606  *
1607  * Call context:
1608  *      process
1609  *----------------------------------------------------------------
1610  */
1611 int hfa384x_drvr_disable(struct hfa384x *hw, u16 macport)
1612 {
1613         int result = 0;
1614
1615         if ((!hw->isap && macport != 0) ||
1616             (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1617             !(hw->port_enabled[macport])) {
1618                 result = -EINVAL;
1619         } else {
1620                 result = hfa384x_cmd_disable(hw, macport);
1621                 if (result == 0)
1622                         hw->port_enabled[macport] = 0;
1623         }
1624         return result;
1625 }
1626
1627 /*----------------------------------------------------------------
1628  * hfa384x_drvr_enable
1629  *
1630  * Issues the enable command to enable communications on one of
1631  * the MACs 'ports'.  Only macport 0 is valid  for stations.
1632  * APs may also enable macports 1-6.  Only ports that are currently
1633  * disabled may be enabled.
1634  *
1635  * Arguments:
1636  *      hw              device structure
1637  *      macport         MAC port number
1638  *
1639  * Returns:
1640  *      0               success
1641  *      >0              f/w reported failure - f/w status code
1642  *      <0              driver reported error (timeout|bad arg)
1643  *
1644  * Side effects:
1645  *
1646  * Call context:
1647  *      process
1648  *----------------------------------------------------------------
1649  */
1650 int hfa384x_drvr_enable(struct hfa384x *hw, u16 macport)
1651 {
1652         int result = 0;
1653
1654         if ((!hw->isap && macport != 0) ||
1655             (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1656             (hw->port_enabled[macport])) {
1657                 result = -EINVAL;
1658         } else {
1659                 result = hfa384x_cmd_enable(hw, macport);
1660                 if (result == 0)
1661                         hw->port_enabled[macport] = 1;
1662         }
1663         return result;
1664 }
1665
1666 /*----------------------------------------------------------------
1667  * hfa384x_drvr_flashdl_enable
1668  *
1669  * Begins the flash download state.  Checks to see that we're not
1670  * already in a download state and that a port isn't enabled.
1671  * Sets the download state and retrieves the flash download
1672  * buffer location, buffer size, and timeout length.
1673  *
1674  * Arguments:
1675  *      hw              device structure
1676  *
1677  * Returns:
1678  *      0               success
1679  *      >0              f/w reported error - f/w status code
1680  *      <0              driver reported error
1681  *
1682  * Side effects:
1683  *
1684  * Call context:
1685  *      process
1686  *----------------------------------------------------------------
1687  */
1688 int hfa384x_drvr_flashdl_enable(struct hfa384x *hw)
1689 {
1690         int result = 0;
1691         int i;
1692
1693         /* Check that a port isn't active */
1694         for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1695                 if (hw->port_enabled[i]) {
1696                         pr_debug("called when port enabled.\n");
1697                         return -EINVAL;
1698                 }
1699         }
1700
1701         /* Check that we're not already in a download state */
1702         if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1703                 return -EINVAL;
1704
1705         /* Retrieve the buffer loc&size and timeout */
1706         result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1707                                         &hw->bufinfo, sizeof(hw->bufinfo));
1708         if (result)
1709                 return result;
1710
1711         le16_to_cpus(&hw->bufinfo.page);
1712         le16_to_cpus(&hw->bufinfo.offset);
1713         le16_to_cpus(&hw->bufinfo.len);
1714         result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1715                                           &hw->dltimeout);
1716         if (result)
1717                 return result;
1718
1719         le16_to_cpus(&hw->dltimeout);
1720
1721         pr_debug("flashdl_enable\n");
1722
1723         hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1724
1725         return result;
1726 }
1727
1728 /*----------------------------------------------------------------
1729  * hfa384x_drvr_flashdl_disable
1730  *
1731  * Ends the flash download state.  Note that this will cause the MAC
1732  * firmware to restart.
1733  *
1734  * Arguments:
1735  *      hw              device structure
1736  *
1737  * Returns:
1738  *      0               success
1739  *      >0              f/w reported error - f/w status code
1740  *      <0              driver reported error
1741  *
1742  * Side effects:
1743  *
1744  * Call context:
1745  *      process
1746  *----------------------------------------------------------------
1747  */
1748 int hfa384x_drvr_flashdl_disable(struct hfa384x *hw)
1749 {
1750         /* Check that we're already in the download state */
1751         if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1752                 return -EINVAL;
1753
1754         pr_debug("flashdl_enable\n");
1755
1756         /* There isn't much we can do at this point, so I don't */
1757         /*  bother  w/ the return value */
1758         hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1759         hw->dlstate = HFA384x_DLSTATE_DISABLED;
1760
1761         return 0;
1762 }
1763
1764 /*----------------------------------------------------------------
1765  * hfa384x_drvr_flashdl_write
1766  *
1767  * Performs a FLASH download of a chunk of data. First checks to see
1768  * that we're in the FLASH download state, then sets the download
1769  * mode, uses the aux functions to 1) copy the data to the flash
1770  * buffer, 2) sets the download 'write flash' mode, 3) readback and
1771  * compare.  Lather rinse, repeat as many times an necessary to get
1772  * all the given data into flash.
1773  * When all data has been written using this function (possibly
1774  * repeatedly), call drvr_flashdl_disable() to end the download state
1775  * and restart the MAC.
1776  *
1777  * Arguments:
1778  *      hw              device structure
1779  *      daddr           Card address to write to. (host order)
1780  *      buf             Ptr to data to write.
1781  *      len             Length of data (host order).
1782  *
1783  * Returns:
1784  *      0               success
1785  *      >0              f/w reported error - f/w status code
1786  *      <0              driver reported error
1787  *
1788  * Side effects:
1789  *
1790  * Call context:
1791  *      process
1792  *----------------------------------------------------------------
1793  */
1794 int hfa384x_drvr_flashdl_write(struct hfa384x *hw, u32 daddr,
1795                                void *buf, u32 len)
1796 {
1797         int result = 0;
1798         u32 dlbufaddr;
1799         int nburns;
1800         u32 burnlen;
1801         u32 burndaddr;
1802         u16 burnlo;
1803         u16 burnhi;
1804         int nwrites;
1805         u8 *writebuf;
1806         u16 writepage;
1807         u16 writeoffset;
1808         u32 writelen;
1809         int i;
1810         int j;
1811
1812         pr_debug("daddr=0x%08x len=%d\n", daddr, len);
1813
1814         /* Check that we're in the flash download state */
1815         if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1816                 return -EINVAL;
1817
1818         netdev_info(hw->wlandev->netdev,
1819                     "Download %d bytes to flash @0x%06x\n", len, daddr);
1820
1821         /* Convert to flat address for arithmetic */
1822         /* NOTE: dlbuffer RID stores the address in AUX format */
1823         dlbufaddr =
1824             HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
1825         pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
1826                  hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
1827         /* Calculations to determine how many fills of the dlbuffer to do
1828          * and how many USB wmemreq's to do for each fill.  At this point
1829          * in time, the dlbuffer size and the wmemreq size are the same.
1830          * Therefore, nwrites should always be 1.  The extra complexity
1831          * here is a hedge against future changes.
1832          */
1833
1834         /* Figure out how many times to do the flash programming */
1835         nburns = len / hw->bufinfo.len;
1836         nburns += (len % hw->bufinfo.len) ? 1 : 0;
1837
1838         /* For each flash program cycle, how many USB wmemreq's are needed? */
1839         nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
1840         nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
1841
1842         /* For each burn */
1843         for (i = 0; i < nburns; i++) {
1844                 /* Get the dest address and len */
1845                 burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
1846                     hw->bufinfo.len : (len - (hw->bufinfo.len * i));
1847                 burndaddr = daddr + (hw->bufinfo.len * i);
1848                 burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
1849                 burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
1850
1851                 netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
1852                             burnlen, burndaddr);
1853
1854                 /* Set the download mode */
1855                 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
1856                                               burnlo, burnhi, burnlen);
1857                 if (result) {
1858                         netdev_err(hw->wlandev->netdev,
1859                                    "download(NV,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
1860                                    burnlo, burnhi, burnlen, result);
1861                         goto exit_proc;
1862                 }
1863
1864                 /* copy the data to the flash download buffer */
1865                 for (j = 0; j < nwrites; j++) {
1866                         writebuf = buf +
1867                             (i * hw->bufinfo.len) +
1868                             (j * HFA384x_USB_RWMEM_MAXLEN);
1869
1870                         writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
1871                                                 (j * HFA384x_USB_RWMEM_MAXLEN));
1872                         writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
1873                                                 (j * HFA384x_USB_RWMEM_MAXLEN));
1874
1875                         writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
1876                         writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
1877                             HFA384x_USB_RWMEM_MAXLEN : writelen;
1878
1879                         result = hfa384x_dowmem(hw,
1880                                                 writepage,
1881                                                 writeoffset,
1882                                                 writebuf, writelen);
1883                 }
1884
1885                 /* set the download 'write flash' mode */
1886                 result = hfa384x_cmd_download(hw,
1887                                               HFA384x_PROGMODE_NVWRITE,
1888                                               0, 0, 0);
1889                 if (result) {
1890                         netdev_err(hw->wlandev->netdev,
1891                                    "download(NVWRITE,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
1892                                    burnlo, burnhi, burnlen, result);
1893                         goto exit_proc;
1894                 }
1895
1896                 /* TODO: We really should do a readback and compare. */
1897         }
1898
1899 exit_proc:
1900
1901         /* Leave the firmware in the 'post-prog' mode.  flashdl_disable will */
1902         /*  actually disable programming mode.  Remember, that will cause the */
1903         /*  the firmware to effectively reset itself. */
1904
1905         return result;
1906 }
1907
1908 /*----------------------------------------------------------------
1909  * hfa384x_drvr_getconfig
1910  *
1911  * Performs the sequence necessary to read a config/info item.
1912  *
1913  * Arguments:
1914  *      hw              device structure
1915  *      rid             config/info record id (host order)
1916  *      buf             host side record buffer.  Upon return it will
1917  *                      contain the body portion of the record (minus the
1918  *                      RID and len).
1919  *      len             buffer length (in bytes, should match record length)
1920  *
1921  * Returns:
1922  *      0               success
1923  *      >0              f/w reported error - f/w status code
1924  *      <0              driver reported error
1925  *      -ENODATA        length mismatch between argument and retrieved
1926  *                      record.
1927  *
1928  * Side effects:
1929  *
1930  * Call context:
1931  *      process
1932  *----------------------------------------------------------------
1933  */
1934 int hfa384x_drvr_getconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
1935 {
1936         return hfa384x_dorrid(hw, DOWAIT, rid, buf, len, NULL, NULL, NULL);
1937 }
1938
1939 /*----------------------------------------------------------------
1940  * hfa384x_drvr_setconfig_async
1941  *
1942  * Performs the sequence necessary to write a config/info item.
1943  *
1944  * Arguments:
1945  *       hw              device structure
1946  *       rid             config/info record id (in host order)
1947  *       buf             host side record buffer
1948  *       len             buffer length (in bytes)
1949  *       usercb          completion callback
1950  *       usercb_data     completion callback argument
1951  *
1952  * Returns:
1953  *       0               success
1954  *       >0              f/w reported error - f/w status code
1955  *       <0              driver reported error
1956  *
1957  * Side effects:
1958  *
1959  * Call context:
1960  *       process
1961  *----------------------------------------------------------------
1962  */
1963 int
1964 hfa384x_drvr_setconfig_async(struct hfa384x *hw,
1965                              u16 rid,
1966                              void *buf,
1967                              u16 len, ctlx_usercb_t usercb, void *usercb_data)
1968 {
1969         return hfa384x_dowrid(hw, DOASYNC, rid, buf, len, hfa384x_cb_status,
1970                               usercb, usercb_data);
1971 }
1972
1973 /*----------------------------------------------------------------
1974  * hfa384x_drvr_ramdl_disable
1975  *
1976  * Ends the ram download state.
1977  *
1978  * Arguments:
1979  *      hw              device structure
1980  *
1981  * Returns:
1982  *      0               success
1983  *      >0              f/w reported error - f/w status code
1984  *      <0              driver reported error
1985  *
1986  * Side effects:
1987  *
1988  * Call context:
1989  *      process
1990  *----------------------------------------------------------------
1991  */
1992 int hfa384x_drvr_ramdl_disable(struct hfa384x *hw)
1993 {
1994         /* Check that we're already in the download state */
1995         if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
1996                 return -EINVAL;
1997
1998         pr_debug("ramdl_disable()\n");
1999
2000         /* There isn't much we can do at this point, so I don't */
2001         /*  bother  w/ the return value */
2002         hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2003         hw->dlstate = HFA384x_DLSTATE_DISABLED;
2004
2005         return 0;
2006 }
2007
2008 /*----------------------------------------------------------------
2009  * hfa384x_drvr_ramdl_enable
2010  *
2011  * Begins the ram download state.  Checks to see that we're not
2012  * already in a download state and that a port isn't enabled.
2013  * Sets the download state and calls cmd_download with the
2014  * ENABLE_VOLATILE subcommand and the exeaddr argument.
2015  *
2016  * Arguments:
2017  *      hw              device structure
2018  *      exeaddr         the card execution address that will be
2019  *                       jumped to when ramdl_disable() is called
2020  *                      (host order).
2021  *
2022  * Returns:
2023  *      0               success
2024  *      >0              f/w reported error - f/w status code
2025  *      <0              driver reported error
2026  *
2027  * Side effects:
2028  *
2029  * Call context:
2030  *      process
2031  *----------------------------------------------------------------
2032  */
2033 int hfa384x_drvr_ramdl_enable(struct hfa384x *hw, u32 exeaddr)
2034 {
2035         int result = 0;
2036         u16 lowaddr;
2037         u16 hiaddr;
2038         int i;
2039
2040         /* Check that a port isn't active */
2041         for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2042                 if (hw->port_enabled[i]) {
2043                         netdev_err(hw->wlandev->netdev,
2044                                    "Can't download with a macport enabled.\n");
2045                         return -EINVAL;
2046                 }
2047         }
2048
2049         /* Check that we're not already in a download state */
2050         if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2051                 netdev_err(hw->wlandev->netdev,
2052                            "Download state not disabled.\n");
2053                 return -EINVAL;
2054         }
2055
2056         pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2057
2058         /* Call the download(1,addr) function */
2059         lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2060         hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2061
2062         result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2063                                       lowaddr, hiaddr, 0);
2064
2065         if (result == 0) {
2066                 /* Set the download state */
2067                 hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2068         } else {
2069                 pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2070                          lowaddr, hiaddr, result);
2071         }
2072
2073         return result;
2074 }
2075
2076 /*----------------------------------------------------------------
2077  * hfa384x_drvr_ramdl_write
2078  *
2079  * Performs a RAM download of a chunk of data. First checks to see
2080  * that we're in the RAM download state, then uses the [read|write]mem USB
2081  * commands to 1) copy the data, 2) readback and compare.  The download
2082  * state is unaffected.  When all data has been written using
2083  * this function, call drvr_ramdl_disable() to end the download state
2084  * and restart the MAC.
2085  *
2086  * Arguments:
2087  *      hw              device structure
2088  *      daddr           Card address to write to. (host order)
2089  *      buf             Ptr to data to write.
2090  *      len             Length of data (host order).
2091  *
2092  * Returns:
2093  *      0               success
2094  *      >0              f/w reported error - f/w status code
2095  *      <0              driver reported error
2096  *
2097  * Side effects:
2098  *
2099  * Call context:
2100  *      process
2101  *----------------------------------------------------------------
2102  */
2103 int hfa384x_drvr_ramdl_write(struct hfa384x *hw, u32 daddr, void *buf, u32 len)
2104 {
2105         int result = 0;
2106         int nwrites;
2107         u8 *data = buf;
2108         int i;
2109         u32 curraddr;
2110         u16 currpage;
2111         u16 curroffset;
2112         u16 currlen;
2113
2114         /* Check that we're in the ram download state */
2115         if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2116                 return -EINVAL;
2117
2118         netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n",
2119                     len, daddr);
2120
2121         /* How many dowmem calls?  */
2122         nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2123         nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2124
2125         /* Do blocking wmem's */
2126         for (i = 0; i < nwrites; i++) {
2127                 /* make address args */
2128                 curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2129                 currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2130                 curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2131                 currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2132                 if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2133                         currlen = HFA384x_USB_RWMEM_MAXLEN;
2134
2135                 /* Do blocking ctlx */
2136                 result = hfa384x_dowmem(hw,
2137                                         currpage,
2138                                         curroffset,
2139                                         data + (i * HFA384x_USB_RWMEM_MAXLEN),
2140                                         currlen);
2141
2142                 if (result)
2143                         break;
2144
2145                 /* TODO: We really should have a readback. */
2146         }
2147
2148         return result;
2149 }
2150
2151 /*----------------------------------------------------------------
2152  * hfa384x_drvr_readpda
2153  *
2154  * Performs the sequence to read the PDA space.  Note there is no
2155  * drvr_writepda() function.  Writing a PDA is
2156  * generally implemented by a calling component via calls to
2157  * cmd_download and writing to the flash download buffer via the
2158  * aux regs.
2159  *
2160  * Arguments:
2161  *      hw              device structure
2162  *      buf             buffer to store PDA in
2163  *      len             buffer length
2164  *
2165  * Returns:
2166  *      0               success
2167  *      >0              f/w reported error - f/w status code
2168  *      <0              driver reported error
2169  *      -ETIMEDOUT      timeout waiting for the cmd regs to become
2170  *                      available, or waiting for the control reg
2171  *                      to indicate the Aux port is enabled.
2172  *      -ENODATA        the buffer does NOT contain a valid PDA.
2173  *                      Either the card PDA is bad, or the auxdata
2174  *                      reads are giving us garbage.
2175  *
2176  *
2177  * Side effects:
2178  *
2179  * Call context:
2180  *      process or non-card interrupt.
2181  *----------------------------------------------------------------
2182  */
2183 int hfa384x_drvr_readpda(struct hfa384x *hw, void *buf, unsigned int len)
2184 {
2185         int result = 0;
2186         __le16 *pda = buf;
2187         int pdaok = 0;
2188         int morepdrs = 1;
2189         int currpdr = 0;        /* word offset of the current pdr */
2190         size_t i;
2191         u16 pdrlen;             /* pdr length in bytes, host order */
2192         u16 pdrcode;            /* pdr code, host order */
2193         u16 currpage;
2194         u16 curroffset;
2195         struct pdaloc {
2196                 u32 cardaddr;
2197                 u16 auxctl;
2198         } pdaloc[] = {
2199                 {
2200                 HFA3842_PDA_BASE, 0}, {
2201                 HFA3841_PDA_BASE, 0}, {
2202                 HFA3841_PDA_BOGUS_BASE, 0}
2203         };
2204
2205         /* Read the pda from each known address.  */
2206         for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2207                 /* Make address */
2208                 currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2209                 curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2210
2211                 /* units of bytes */
2212                 result = hfa384x_dormem(hw, currpage, curroffset, buf,
2213                                         len);
2214
2215                 if (result) {
2216                         netdev_warn(hw->wlandev->netdev,
2217                                     "Read from index %zd failed, continuing\n",
2218                                     i);
2219                         continue;
2220                 }
2221
2222                 /* Test for garbage */
2223                 pdaok = 1;      /* initially assume good */
2224                 morepdrs = 1;
2225                 while (pdaok && morepdrs) {
2226                         pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2227                         pdrcode = le16_to_cpu(pda[currpdr + 1]);
2228                         /* Test the record length */
2229                         if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2230                                 netdev_err(hw->wlandev->netdev,
2231                                            "pdrlen invalid=%d\n", pdrlen);
2232                                 pdaok = 0;
2233                                 break;
2234                         }
2235                         /* Test the code */
2236                         if (!hfa384x_isgood_pdrcode(pdrcode)) {
2237                                 netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
2238                                            pdrcode);
2239                                 pdaok = 0;
2240                                 break;
2241                         }
2242                         /* Test for completion */
2243                         if (pdrcode == HFA384x_PDR_END_OF_PDA)
2244                                 morepdrs = 0;
2245
2246                         /* Move to the next pdr (if necessary) */
2247                         if (morepdrs) {
2248                                 /* note the access to pda[], need words here */
2249                                 currpdr += le16_to_cpu(pda[currpdr]) + 1;
2250                         }
2251                 }
2252                 if (pdaok) {
2253                         netdev_info(hw->wlandev->netdev,
2254                                     "PDA Read from 0x%08x in %s space.\n",
2255                                     pdaloc[i].cardaddr,
2256                                     pdaloc[i].auxctl == 0 ? "EXTDS" :
2257                                     pdaloc[i].auxctl == 1 ? "NV" :
2258                                     pdaloc[i].auxctl == 2 ? "PHY" :
2259                                     pdaloc[i].auxctl == 3 ? "ICSRAM" :
2260                                     "<bogus auxctl>");
2261                         break;
2262                 }
2263         }
2264         result = pdaok ? 0 : -ENODATA;
2265
2266         if (result)
2267                 pr_debug("Failure: pda is not okay\n");
2268
2269         return result;
2270 }
2271
2272 /*----------------------------------------------------------------
2273  * hfa384x_drvr_setconfig
2274  *
2275  * Performs the sequence necessary to write a config/info item.
2276  *
2277  * Arguments:
2278  *      hw              device structure
2279  *      rid             config/info record id (in host order)
2280  *      buf             host side record buffer
2281  *      len             buffer length (in bytes)
2282  *
2283  * Returns:
2284  *      0               success
2285  *      >0              f/w reported error - f/w status code
2286  *      <0              driver reported error
2287  *
2288  * Side effects:
2289  *
2290  * Call context:
2291  *      process
2292  *----------------------------------------------------------------
2293  */
2294 int hfa384x_drvr_setconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
2295 {
2296         return hfa384x_dowrid(hw, DOWAIT, rid, buf, len, NULL, NULL, NULL);
2297 }
2298
2299 /*----------------------------------------------------------------
2300  * hfa384x_drvr_start
2301  *
2302  * Issues the MAC initialize command, sets up some data structures,
2303  * and enables the interrupts.  After this function completes, the
2304  * low-level stuff should be ready for any/all commands.
2305  *
2306  * Arguments:
2307  *      hw              device structure
2308  * Returns:
2309  *      0               success
2310  *      >0              f/w reported error - f/w status code
2311  *      <0              driver reported error
2312  *
2313  * Side effects:
2314  *
2315  * Call context:
2316  *      process
2317  *----------------------------------------------------------------
2318  */
2319 int hfa384x_drvr_start(struct hfa384x *hw)
2320 {
2321         int result, result1, result2;
2322         u16 status;
2323
2324         might_sleep();
2325
2326         /* Clear endpoint stalls - but only do this if the endpoint
2327          * is showing a stall status. Some prism2 cards seem to behave
2328          * badly if a clear_halt is called when the endpoint is already
2329          * ok
2330          */
2331         result =
2332             usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in,
2333                                &status);
2334         if (result < 0) {
2335                 netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
2336                 goto done;
2337         }
2338         if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2339                 netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
2340
2341         result =
2342             usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out,
2343                                &status);
2344         if (result < 0) {
2345                 netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
2346                 goto done;
2347         }
2348         if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2349                 netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
2350
2351         /* Synchronous unlink, in case we're trying to restart the driver */
2352         usb_kill_urb(&hw->rx_urb);
2353
2354         /* Post the IN urb */
2355         result = submit_rx_urb(hw, GFP_KERNEL);
2356         if (result != 0) {
2357                 netdev_err(hw->wlandev->netdev,
2358                            "Fatal, failed to submit RX URB, result=%d\n",
2359                            result);
2360                 goto done;
2361         }
2362
2363         /* Call initialize twice, with a 1 second sleep in between.
2364          * This is a nasty work-around since many prism2 cards seem to
2365          * need time to settle after an init from cold. The second
2366          * call to initialize in theory is not necessary - but we call
2367          * it anyway as a double insurance policy:
2368          * 1) If the first init should fail, the second may well succeed
2369          *    and the card can still be used
2370          * 2) It helps ensures all is well with the card after the first
2371          *    init and settle time.
2372          */
2373         result1 = hfa384x_cmd_initialize(hw);
2374         msleep(1000);
2375         result = hfa384x_cmd_initialize(hw);
2376         result2 = result;
2377         if (result1 != 0) {
2378                 if (result2 != 0) {
2379                         netdev_err(hw->wlandev->netdev,
2380                                    "cmd_initialize() failed on two attempts, results %d and %d\n",
2381                                    result1, result2);
2382                         usb_kill_urb(&hw->rx_urb);
2383                         goto done;
2384                 } else {
2385                         pr_debug("First cmd_initialize() failed (result %d),\n",
2386                                  result1);
2387                         pr_debug("but second attempt succeeded. All should be ok\n");
2388                 }
2389         } else if (result2 != 0) {
2390                 netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2391                             result2);
2392                 netdev_warn(hw->wlandev->netdev,
2393                             "Most likely the card will be functional\n");
2394                 goto done;
2395         }
2396
2397         hw->state = HFA384x_STATE_RUNNING;
2398
2399 done:
2400         return result;
2401 }
2402
2403 /*----------------------------------------------------------------
2404  * hfa384x_drvr_stop
2405  *
2406  * Shuts down the MAC to the point where it is safe to unload the
2407  * driver.  Any subsystem that may be holding a data or function
2408  * ptr into the driver must be cleared/deinitialized.
2409  *
2410  * Arguments:
2411  *      hw              device structure
2412  * Returns:
2413  *      0               success
2414  *      >0              f/w reported error - f/w status code
2415  *      <0              driver reported error
2416  *
2417  * Side effects:
2418  *
2419  * Call context:
2420  *      process
2421  *----------------------------------------------------------------
2422  */
2423 int hfa384x_drvr_stop(struct hfa384x *hw)
2424 {
2425         int i;
2426
2427         might_sleep();
2428
2429         /* There's no need for spinlocks here. The USB "disconnect"
2430          * function sets this "removed" flag and then calls us.
2431          */
2432         if (!hw->wlandev->hwremoved) {
2433                 /* Call initialize to leave the MAC in its 'reset' state */
2434                 hfa384x_cmd_initialize(hw);
2435
2436                 /* Cancel the rxurb */
2437                 usb_kill_urb(&hw->rx_urb);
2438         }
2439
2440         hw->link_status = HFA384x_LINK_NOTCONNECTED;
2441         hw->state = HFA384x_STATE_INIT;
2442
2443         del_timer_sync(&hw->commsqual_timer);
2444
2445         /* Clear all the port status */
2446         for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2447                 hw->port_enabled[i] = 0;
2448
2449         return 0;
2450 }
2451
2452 /*----------------------------------------------------------------
2453  * hfa384x_drvr_txframe
2454  *
2455  * Takes a frame from prism2sta and queues it for transmission.
2456  *
2457  * Arguments:
2458  *      hw              device structure
2459  *      skb             packet buffer struct.  Contains an 802.11
2460  *                      data frame.
2461  *       p80211_hdr      points to the 802.11 header for the packet.
2462  * Returns:
2463  *      0               Success and more buffs available
2464  *      1               Success but no more buffs
2465  *      2               Allocation failure
2466  *      4               Buffer full or queue busy
2467  *
2468  * Side effects:
2469  *
2470  * Call context:
2471  *      interrupt
2472  *----------------------------------------------------------------
2473  */
2474 int hfa384x_drvr_txframe(struct hfa384x *hw, struct sk_buff *skb,
2475                          struct p80211_hdr *p80211_hdr,
2476                          struct p80211_metawep *p80211_wep)
2477 {
2478         int usbpktlen = sizeof(struct hfa384x_tx_frame);
2479         int result;
2480         int ret;
2481         char *ptr;
2482
2483         if (hw->tx_urb.status == -EINPROGRESS) {
2484                 netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
2485                 result = 3;
2486                 goto exit;
2487         }
2488
2489         /* Build Tx frame structure */
2490         /* Set up the control field */
2491         memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2492
2493         /* Setup the usb type field */
2494         hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2495
2496         /* Set up the sw_support field to identify this frame */
2497         hw->txbuff.txfrm.desc.sw_support = 0x0123;
2498
2499 /* Tx complete and Tx exception disable per dleach.  Might be causing
2500  * buf depletion
2501  */
2502 /* #define DOEXC  SLP -- doboth breaks horribly under load, doexc less so. */
2503 #if defined(DOBOTH)
2504         hw->txbuff.txfrm.desc.tx_control =
2505             HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2506             HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2507 #elif defined(DOEXC)
2508         hw->txbuff.txfrm.desc.tx_control =
2509             HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2510             HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2511 #else
2512         hw->txbuff.txfrm.desc.tx_control =
2513             HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2514             HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2515 #endif
2516         cpu_to_le16s(&hw->txbuff.txfrm.desc.tx_control);
2517
2518         /* copy the header over to the txdesc */
2519         hw->txbuff.txfrm.desc.hdr = *p80211_hdr;
2520
2521         /* if we're using host WEP, increase size by IV+ICV */
2522         if (p80211_wep->data) {
2523                 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2524                 usbpktlen += 8;
2525         } else {
2526                 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2527         }
2528
2529         usbpktlen += skb->len;
2530
2531         /* copy over the WEP IV if we are using host WEP */
2532         ptr = hw->txbuff.txfrm.data;
2533         if (p80211_wep->data) {
2534                 memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2535                 ptr += sizeof(p80211_wep->iv);
2536                 memcpy(ptr, p80211_wep->data, skb->len);
2537         } else {
2538                 memcpy(ptr, skb->data, skb->len);
2539         }
2540         /* copy over the packet data */
2541         ptr += skb->len;
2542
2543         /* copy over the WEP ICV if we are using host WEP */
2544         if (p80211_wep->data)
2545                 memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2546
2547         /* Send the USB packet */
2548         usb_fill_bulk_urb(&hw->tx_urb, hw->usb,
2549                           hw->endp_out,
2550                           &hw->txbuff, ROUNDUP64(usbpktlen),
2551                           hfa384x_usbout_callback, hw->wlandev);
2552         hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2553
2554         result = 1;
2555         ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2556         if (ret != 0) {
2557                 netdev_err(hw->wlandev->netdev,
2558                            "submit_tx_urb() failed, error=%d\n", ret);
2559                 result = 3;
2560         }
2561
2562 exit:
2563         return result;
2564 }
2565
2566 void hfa384x_tx_timeout(struct wlandevice *wlandev)
2567 {
2568         struct hfa384x *hw = wlandev->priv;
2569         unsigned long flags;
2570
2571         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2572
2573         if (!hw->wlandev->hwremoved) {
2574                 int sched;
2575
2576                 sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2577                 sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2578                 if (sched)
2579                         schedule_work(&hw->usb_work);
2580         }
2581
2582         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2583 }
2584
2585 /*----------------------------------------------------------------
2586  * hfa384x_usbctlx_reaper_task
2587  *
2588  * Deferred work callback to delete dead CTLX objects
2589  *
2590  * Arguments:
2591  *      work    contains ptr to a struct hfa384x
2592  *
2593  * Returns:
2594  *
2595  * Call context:
2596  *      Task
2597  *----------------------------------------------------------------
2598  */
2599 static void hfa384x_usbctlx_reaper_task(struct work_struct *work)
2600 {
2601         struct hfa384x *hw = container_of(work, struct hfa384x, reaper_bh);
2602         struct hfa384x_usbctlx *ctlx, *temp;
2603         unsigned long flags;
2604
2605         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2606
2607         /* This list is guaranteed to be empty if someone
2608          * has unplugged the adapter.
2609          */
2610         list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.reapable, list) {
2611                 list_del(&ctlx->list);
2612                 kfree(ctlx);
2613         }
2614
2615         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2616 }
2617
2618 /*----------------------------------------------------------------
2619  * hfa384x_usbctlx_completion_task
2620  *
2621  * Deferred work callback to call completion handlers for returned CTLXs
2622  *
2623  * Arguments:
2624  *      work    contains ptr to a struct hfa384x
2625  *
2626  * Returns:
2627  *      Nothing
2628  *
2629  * Call context:
2630  *      Task
2631  *----------------------------------------------------------------
2632  */
2633 static void hfa384x_usbctlx_completion_task(struct work_struct *work)
2634 {
2635         struct hfa384x *hw = container_of(work, struct hfa384x, completion_bh);
2636         struct hfa384x_usbctlx *ctlx, *temp;
2637         unsigned long flags;
2638
2639         int reap = 0;
2640
2641         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2642
2643         /* This list is guaranteed to be empty if someone
2644          * has unplugged the adapter ...
2645          */
2646         list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.completing, list) {
2647                 /* Call the completion function that this
2648                  * command was assigned, assuming it has one.
2649                  */
2650                 if (ctlx->cmdcb) {
2651                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2652                         ctlx->cmdcb(hw, ctlx);
2653                         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2654
2655                         /* Make sure we don't try and complete
2656                          * this CTLX more than once!
2657                          */
2658                         ctlx->cmdcb = NULL;
2659
2660                         /* Did someone yank the adapter out
2661                          * while our list was (briefly) unlocked?
2662                          */
2663                         if (hw->wlandev->hwremoved) {
2664                                 reap = 0;
2665                                 break;
2666                         }
2667                 }
2668
2669                 /*
2670                  * "Reapable" CTLXs are ones which don't have any
2671                  * threads waiting for them to die. Hence they must
2672                  * be delivered to The Reaper!
2673                  */
2674                 if (ctlx->reapable) {
2675                         /* Move the CTLX off the "completing" list (hopefully)
2676                          * on to the "reapable" list where the reaper task
2677                          * can find it. And "reapable" means that this CTLX
2678                          * isn't sitting on a wait-queue somewhere.
2679                          */
2680                         list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2681                         reap = 1;
2682                 }
2683
2684                 complete(&ctlx->done);
2685         }
2686         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2687
2688         if (reap)
2689                 schedule_work(&hw->reaper_bh);
2690 }
2691
2692 /*----------------------------------------------------------------
2693  * unlocked_usbctlx_cancel_async
2694  *
2695  * Mark the CTLX dead asynchronously, and ensure that the
2696  * next command on the queue is run afterwards.
2697  *
2698  * Arguments:
2699  *      hw      ptr to the struct hfa384x structure
2700  *      ctlx    ptr to a CTLX structure
2701  *
2702  * Returns:
2703  *      0       the CTLX's URB is inactive
2704  * -EINPROGRESS the URB is currently being unlinked
2705  *
2706  * Call context:
2707  *      Either process or interrupt, but presumably interrupt
2708  *----------------------------------------------------------------
2709  */
2710 static int unlocked_usbctlx_cancel_async(struct hfa384x *hw,
2711                                          struct hfa384x_usbctlx *ctlx)
2712 {
2713         int ret;
2714
2715         /*
2716          * Try to delete the URB containing our request packet.
2717          * If we succeed, then its completion handler will be
2718          * called with a status of -ECONNRESET.
2719          */
2720         hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2721         ret = usb_unlink_urb(&hw->ctlx_urb);
2722
2723         if (ret != -EINPROGRESS) {
2724                 /*
2725                  * The OUT URB had either already completed
2726                  * or was still in the pending queue, so the
2727                  * URB's completion function will not be called.
2728                  * We will have to complete the CTLX ourselves.
2729                  */
2730                 ctlx->state = CTLX_REQ_FAILED;
2731                 unlocked_usbctlx_complete(hw, ctlx);
2732                 ret = 0;
2733         }
2734
2735         return ret;
2736 }
2737
2738 /*----------------------------------------------------------------
2739  * unlocked_usbctlx_complete
2740  *
2741  * A CTLX has completed.  It may have been successful, it may not
2742  * have been. At this point, the CTLX should be quiescent.  The URBs
2743  * aren't active and the timers should have been stopped.
2744  *
2745  * The CTLX is migrated to the "completing" queue, and the completing
2746  * work is scheduled.
2747  *
2748  * Arguments:
2749  *      hw              ptr to a struct hfa384x structure
2750  *      ctlx            ptr to a ctlx structure
2751  *
2752  * Returns:
2753  *      nothing
2754  *
2755  * Side effects:
2756  *
2757  * Call context:
2758  *      Either, assume interrupt
2759  *----------------------------------------------------------------
2760  */
2761 static void unlocked_usbctlx_complete(struct hfa384x *hw,
2762                                       struct hfa384x_usbctlx *ctlx)
2763 {
2764         /* Timers have been stopped, and ctlx should be in
2765          * a terminal state. Retire it from the "active"
2766          * queue.
2767          */
2768         list_move_tail(&ctlx->list, &hw->ctlxq.completing);
2769         schedule_work(&hw->completion_bh);
2770
2771         switch (ctlx->state) {
2772         case CTLX_COMPLETE:
2773         case CTLX_REQ_FAILED:
2774                 /* This are the correct terminating states. */
2775                 break;
2776
2777         default:
2778                 netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
2779                            le16_to_cpu(ctlx->outbuf.type),
2780                            ctlxstr(ctlx->state));
2781                 break;
2782         }                       /* switch */
2783 }
2784
2785 /*----------------------------------------------------------------
2786  * hfa384x_usbctlxq_run
2787  *
2788  * Checks to see if the head item is running.  If not, starts it.
2789  *
2790  * Arguments:
2791  *      hw      ptr to struct hfa384x
2792  *
2793  * Returns:
2794  *      nothing
2795  *
2796  * Side effects:
2797  *
2798  * Call context:
2799  *      any
2800  *----------------------------------------------------------------
2801  */
2802 static void hfa384x_usbctlxq_run(struct hfa384x *hw)
2803 {
2804         unsigned long flags;
2805
2806         /* acquire lock */
2807         spin_lock_irqsave(&hw->ctlxq.lock, flags);
2808
2809         /* Only one active CTLX at any one time, because there's no
2810          * other (reliable) way to match the response URB to the
2811          * correct CTLX.
2812          *
2813          * Don't touch any of these CTLXs if the hardware
2814          * has been removed or the USB subsystem is stalled.
2815          */
2816         if (!list_empty(&hw->ctlxq.active) ||
2817             test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
2818                 goto unlock;
2819
2820         while (!list_empty(&hw->ctlxq.pending)) {
2821                 struct hfa384x_usbctlx *head;
2822                 int result;
2823
2824                 /* This is the first pending command */
2825                 head = list_entry(hw->ctlxq.pending.next,
2826                                   struct hfa384x_usbctlx, list);
2827
2828                 /* We need to split this off to avoid a race condition */
2829                 list_move_tail(&head->list, &hw->ctlxq.active);
2830
2831                 /* Fill the out packet */
2832                 usb_fill_bulk_urb(&hw->ctlx_urb, hw->usb,
2833                                   hw->endp_out,
2834                                   &head->outbuf, ROUNDUP64(head->outbufsize),
2835                                   hfa384x_ctlxout_callback, hw);
2836                 hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
2837
2838                 /* Now submit the URB and update the CTLX's state */
2839                 result = usb_submit_urb(&hw->ctlx_urb, GFP_ATOMIC);
2840                 if (result == 0) {
2841                         /* This CTLX is now running on the active queue */
2842                         head->state = CTLX_REQ_SUBMITTED;
2843
2844                         /* Start the OUT wait timer */
2845                         hw->req_timer_done = 0;
2846                         hw->reqtimer.expires = jiffies + HZ;
2847                         add_timer(&hw->reqtimer);
2848
2849                         /* Start the IN wait timer */
2850                         hw->resp_timer_done = 0;
2851                         hw->resptimer.expires = jiffies + 2 * HZ;
2852                         add_timer(&hw->resptimer);
2853
2854                         break;
2855                 }
2856
2857                 if (result == -EPIPE) {
2858                         /* The OUT pipe needs resetting, so put
2859                          * this CTLX back in the "pending" queue
2860                          * and schedule a reset ...
2861                          */
2862                         netdev_warn(hw->wlandev->netdev,
2863                                     "%s tx pipe stalled: requesting reset\n",
2864                                     hw->wlandev->netdev->name);
2865                         list_move(&head->list, &hw->ctlxq.pending);
2866                         set_bit(WORK_TX_HALT, &hw->usb_flags);
2867                         schedule_work(&hw->usb_work);
2868                         break;
2869                 }
2870
2871                 if (result == -ESHUTDOWN) {
2872                         netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
2873                                     hw->wlandev->netdev->name);
2874                         break;
2875                 }
2876
2877                 netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
2878                            le16_to_cpu(head->outbuf.type), result);
2879                 unlocked_usbctlx_complete(hw, head);
2880         }                       /* while */
2881
2882 unlock:
2883         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2884 }
2885
2886 /*----------------------------------------------------------------
2887  * hfa384x_usbin_callback
2888  *
2889  * Callback for URBs on the BULKIN endpoint.
2890  *
2891  * Arguments:
2892  *      urb             ptr to the completed urb
2893  *
2894  * Returns:
2895  *      nothing
2896  *
2897  * Side effects:
2898  *
2899  * Call context:
2900  *      interrupt
2901  *----------------------------------------------------------------
2902  */
2903 static void hfa384x_usbin_callback(struct urb *urb)
2904 {
2905         struct wlandevice *wlandev = urb->context;
2906         struct hfa384x *hw;
2907         union hfa384x_usbin *usbin;
2908         struct sk_buff *skb = NULL;
2909         int result;
2910         int urb_status;
2911         u16 type;
2912
2913         enum USBIN_ACTION {
2914                 HANDLE,
2915                 RESUBMIT,
2916                 ABORT
2917         } action;
2918
2919         if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
2920                 goto exit;
2921
2922         hw = wlandev->priv;
2923         if (!hw)
2924                 goto exit;
2925
2926         skb = hw->rx_urb_skb;
2927         if (!skb || (skb->data != urb->transfer_buffer)) {
2928                 WARN_ON(1);
2929                 return;
2930         }
2931
2932         hw->rx_urb_skb = NULL;
2933
2934         /* Check for error conditions within the URB */
2935         switch (urb->status) {
2936         case 0:
2937                 action = HANDLE;
2938
2939                 /* Check for short packet */
2940                 if (urb->actual_length == 0) {
2941                         wlandev->netdev->stats.rx_errors++;
2942                         wlandev->netdev->stats.rx_length_errors++;
2943                         action = RESUBMIT;
2944                 }
2945                 break;
2946
2947         case -EPIPE:
2948                 netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
2949                             wlandev->netdev->name);
2950                 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
2951                         schedule_work(&hw->usb_work);
2952                 wlandev->netdev->stats.rx_errors++;
2953                 action = ABORT;
2954                 break;
2955
2956         case -EILSEQ:
2957         case -ETIMEDOUT:
2958         case -EPROTO:
2959                 if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
2960                     !timer_pending(&hw->throttle)) {
2961                         mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
2962                 }
2963                 wlandev->netdev->stats.rx_errors++;
2964                 action = ABORT;
2965                 break;
2966
2967         case -EOVERFLOW:
2968                 wlandev->netdev->stats.rx_over_errors++;
2969                 action = RESUBMIT;
2970                 break;
2971
2972         case -ENODEV:
2973         case -ESHUTDOWN:
2974                 pr_debug("status=%d, device removed.\n", urb->status);
2975                 action = ABORT;
2976                 break;
2977
2978         case -ENOENT:
2979         case -ECONNRESET:
2980                 pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
2981                 action = ABORT;
2982                 break;
2983
2984         default:
2985                 pr_debug("urb status=%d, transfer flags=0x%x\n",
2986                          urb->status, urb->transfer_flags);
2987                 wlandev->netdev->stats.rx_errors++;
2988                 action = RESUBMIT;
2989                 break;
2990         }
2991
2992         /* Save values from the RX URB before reposting overwrites it. */
2993         urb_status = urb->status;
2994         usbin = (union hfa384x_usbin *)urb->transfer_buffer;
2995
2996         if (action != ABORT) {
2997                 /* Repost the RX URB */
2998                 result = submit_rx_urb(hw, GFP_ATOMIC);
2999
3000                 if (result != 0) {
3001                         netdev_err(hw->wlandev->netdev,
3002                                    "Fatal, failed to resubmit rx_urb. error=%d\n",
3003                                    result);
3004                 }
3005         }
3006
3007         /* Handle any USB-IN packet */
3008         /* Note: the check of the sw_support field, the type field doesn't
3009          *       have bit 12 set like the docs suggest.
3010          */
3011         type = le16_to_cpu(usbin->type);
3012         if (HFA384x_USB_ISRXFRM(type)) {
3013                 if (action == HANDLE) {
3014                         if (usbin->txfrm.desc.sw_support == 0x0123) {
3015                                 hfa384x_usbin_txcompl(wlandev, usbin);
3016                         } else {
3017                                 skb_put(skb, sizeof(*usbin));
3018                                 hfa384x_usbin_rx(wlandev, skb);
3019                                 skb = NULL;
3020                         }
3021                 }
3022                 goto exit;
3023         }
3024         if (HFA384x_USB_ISTXFRM(type)) {
3025                 if (action == HANDLE)
3026                         hfa384x_usbin_txcompl(wlandev, usbin);
3027                 goto exit;
3028         }
3029         switch (type) {
3030         case HFA384x_USB_INFOFRM:
3031                 if (action == ABORT)
3032                         goto exit;
3033                 if (action == HANDLE)
3034                         hfa384x_usbin_info(wlandev, usbin);
3035                 break;
3036
3037         case HFA384x_USB_CMDRESP:
3038         case HFA384x_USB_WRIDRESP:
3039         case HFA384x_USB_RRIDRESP:
3040         case HFA384x_USB_WMEMRESP:
3041         case HFA384x_USB_RMEMRESP:
3042                 /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3043                 hfa384x_usbin_ctlx(hw, usbin, urb_status);
3044                 break;
3045
3046         case HFA384x_USB_BUFAVAIL:
3047                 pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3048                          usbin->bufavail.frmlen);
3049                 break;
3050
3051         case HFA384x_USB_ERROR:
3052                 pr_debug("Received USB_ERROR packet, errortype=%d\n",
3053                          usbin->usberror.errortype);
3054                 break;
3055
3056         default:
3057                 pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3058                          usbin->type, urb_status);
3059                 break;
3060         }                       /* switch */
3061
3062 exit:
3063
3064         if (skb)
3065                 dev_kfree_skb(skb);
3066 }
3067
3068 /*----------------------------------------------------------------
3069  * hfa384x_usbin_ctlx
3070  *
3071  * We've received a URB containing a Prism2 "response" message.
3072  * This message needs to be matched up with a CTLX on the active
3073  * queue and our state updated accordingly.
3074  *
3075  * Arguments:
3076  *      hw              ptr to struct hfa384x
3077  *      usbin           ptr to USB IN packet
3078  *      urb_status      status of this Bulk-In URB
3079  *
3080  * Returns:
3081  *      nothing
3082  *
3083  * Side effects:
3084  *
3085  * Call context:
3086  *      interrupt
3087  *----------------------------------------------------------------
3088  */
3089 static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
3090                                int urb_status)
3091 {
3092         struct hfa384x_usbctlx *ctlx;
3093         int run_queue = 0;
3094         unsigned long flags;
3095
3096 retry:
3097         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3098
3099         /* There can be only one CTLX on the active queue
3100          * at any one time, and this is the CTLX that the
3101          * timers are waiting for.
3102          */
3103         if (list_empty(&hw->ctlxq.active))
3104                 goto unlock;
3105
3106         /* Remove the "response timeout". It's possible that
3107          * we are already too late, and that the timeout is
3108          * already running. And that's just too bad for us,
3109          * because we could lose our CTLX from the active
3110          * queue here ...
3111          */
3112         if (del_timer(&hw->resptimer) == 0) {
3113                 if (hw->resp_timer_done == 0) {
3114                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3115                         goto retry;
3116                 }
3117         } else {
3118                 hw->resp_timer_done = 1;
3119         }
3120
3121         ctlx = get_active_ctlx(hw);
3122
3123         if (urb_status != 0) {
3124                 /*
3125                  * Bad CTLX, so get rid of it. But we only
3126                  * remove it from the active queue if we're no
3127                  * longer expecting the OUT URB to complete.
3128                  */
3129                 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3130                         run_queue = 1;
3131         } else {
3132                 const __le16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3133
3134                 /*
3135                  * Check that our message is what we're expecting ...
3136                  */
3137                 if (ctlx->outbuf.type != intype) {
3138                         netdev_warn(hw->wlandev->netdev,
3139                                     "Expected IN[%d], received IN[%d] - ignored.\n",
3140                                     le16_to_cpu(ctlx->outbuf.type),
3141                                     le16_to_cpu(intype));
3142                         goto unlock;
3143                 }
3144
3145                 /* This URB has succeeded, so grab the data ... */
3146                 memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3147
3148                 switch (ctlx->state) {
3149                 case CTLX_REQ_SUBMITTED:
3150                         /*
3151                          * We have received our response URB before
3152                          * our request has been acknowledged. Odd,
3153                          * but our OUT URB is still alive...
3154                          */
3155                         pr_debug("Causality violation: please reboot Universe\n");
3156                         ctlx->state = CTLX_RESP_COMPLETE;
3157                         break;
3158
3159                 case CTLX_REQ_COMPLETE:
3160                         /*
3161                          * This is the usual path: our request
3162                          * has already been acknowledged, and
3163                          * now we have received the reply too.
3164                          */
3165                         ctlx->state = CTLX_COMPLETE;
3166                         unlocked_usbctlx_complete(hw, ctlx);
3167                         run_queue = 1;
3168                         break;
3169
3170                 default:
3171                         /*
3172                          * Throw this CTLX away ...
3173                          */
3174                         netdev_err(hw->wlandev->netdev,
3175                                    "Matched IN URB, CTLX[%d] in invalid state(%s). Discarded.\n",
3176                                    le16_to_cpu(ctlx->outbuf.type),
3177                                    ctlxstr(ctlx->state));
3178                         if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3179                                 run_queue = 1;
3180                         break;
3181                 }               /* switch */
3182         }
3183
3184 unlock:
3185         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3186
3187         if (run_queue)
3188                 hfa384x_usbctlxq_run(hw);
3189 }
3190
3191 /*----------------------------------------------------------------
3192  * hfa384x_usbin_txcompl
3193  *
3194  * At this point we have the results of a previous transmit.
3195  *
3196  * Arguments:
3197  *      wlandev         wlan device
3198  *      usbin           ptr to the usb transfer buffer
3199  *
3200  * Returns:
3201  *      nothing
3202  *
3203  * Side effects:
3204  *
3205  * Call context:
3206  *      interrupt
3207  *----------------------------------------------------------------
3208  */
3209 static void hfa384x_usbin_txcompl(struct wlandevice *wlandev,
3210                                   union hfa384x_usbin *usbin)
3211 {
3212         u16 status;
3213
3214         status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3215
3216         /* Was there an error? */
3217         if (HFA384x_TXSTATUS_ISERROR(status))
3218                 prism2sta_ev_txexc(wlandev, status);
3219         else
3220                 prism2sta_ev_tx(wlandev, status);
3221 }
3222
3223 /*----------------------------------------------------------------
3224  * hfa384x_usbin_rx
3225  *
3226  * At this point we have a successful received a rx frame packet.
3227  *
3228  * Arguments:
3229  *      wlandev         wlan device
3230  *      usbin           ptr to the usb transfer buffer
3231  *
3232  * Returns:
3233  *      nothing
3234  *
3235  * Side effects:
3236  *
3237  * Call context:
3238  *      interrupt
3239  *----------------------------------------------------------------
3240  */
3241 static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb)
3242 {
3243         union hfa384x_usbin *usbin = (union hfa384x_usbin *)skb->data;
3244         struct hfa384x *hw = wlandev->priv;
3245         int hdrlen;
3246         struct p80211_rxmeta *rxmeta;
3247         u16 data_len;
3248         u16 fc;
3249         u16 status;
3250
3251         /* Byte order convert once up front. */
3252         le16_to_cpus(&usbin->rxfrm.desc.status);
3253         le32_to_cpus(&usbin->rxfrm.desc.time);
3254
3255         /* Now handle frame based on port# */
3256         status = HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status);
3257
3258         switch (status) {
3259         case 0:
3260                 fc = le16_to_cpu(usbin->rxfrm.desc.hdr.frame_control);
3261
3262                 /* If exclude and we receive an unencrypted, drop it */
3263                 if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3264                     !WLAN_GET_FC_ISWEP(fc)) {
3265                         break;
3266                 }
3267
3268                 data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3269
3270                 /* How much header data do we have? */
3271                 hdrlen = p80211_headerlen(fc);
3272
3273                 /* Pull off the descriptor */
3274                 skb_pull(skb, sizeof(struct hfa384x_rx_frame));
3275
3276                 /* Now shunt the header block up against the data block
3277                  * with an "overlapping" copy
3278                  */
3279                 memmove(skb_push(skb, hdrlen),
3280                         &usbin->rxfrm.desc.hdr, hdrlen);
3281
3282                 skb->dev = wlandev->netdev;
3283
3284                 /* And set the frame length properly */
3285                 skb_trim(skb, data_len + hdrlen);
3286
3287                 /* The prism2 series does not return the CRC */
3288                 memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3289
3290                 skb_reset_mac_header(skb);
3291
3292                 /* Attach the rxmeta, set some stuff */
3293                 p80211skb_rxmeta_attach(wlandev, skb);
3294                 rxmeta = p80211skb_rxmeta(skb);
3295                 rxmeta->mactime = usbin->rxfrm.desc.time;
3296                 rxmeta->rxrate = usbin->rxfrm.desc.rate;
3297                 rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3298                 rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3299
3300                 p80211netdev_rx(wlandev, skb);
3301
3302                 break;
3303
3304         case 7:
3305                 if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3306                         /* Copy to wlansnif skb */
3307                         hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3308                         dev_kfree_skb(skb);
3309                 } else {
3310                         pr_debug("Received monitor frame: FCSerr set\n");
3311                 }
3312                 break;
3313
3314         default:
3315                 netdev_warn(hw->wlandev->netdev,
3316                             "Received frame on unsupported port=%d\n",
3317                             status);
3318                 break;
3319         }
3320 }
3321
3322 /*----------------------------------------------------------------
3323  * hfa384x_int_rxmonitor
3324  *
3325  * Helper function for int_rx.  Handles monitor frames.
3326  * Note that this function allocates space for the FCS and sets it
3327  * to 0xffffffff.  The hfa384x doesn't give us the FCS value but the
3328  * higher layers expect it.  0xffffffff is used as a flag to indicate
3329  * the FCS is bogus.
3330  *
3331  * Arguments:
3332  *      wlandev         wlan device structure
3333  *      rxfrm           rx descriptor read from card in int_rx
3334  *
3335  * Returns:
3336  *      nothing
3337  *
3338  * Side effects:
3339  *      Allocates an skb and passes it up via the PF_PACKET interface.
3340  * Call context:
3341  *      interrupt
3342  *----------------------------------------------------------------
3343  */
3344 static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
3345                                   struct hfa384x_usb_rxfrm *rxfrm)
3346 {
3347         struct hfa384x_rx_frame *rxdesc = &rxfrm->desc;
3348         unsigned int hdrlen = 0;
3349         unsigned int datalen = 0;
3350         unsigned int skblen = 0;
3351         u8 *datap;
3352         u16 fc;
3353         struct sk_buff *skb;
3354         struct hfa384x *hw = wlandev->priv;
3355
3356         /* Remember the status, time, and data_len fields are in host order */
3357         /* Figure out how big the frame is */
3358         fc = le16_to_cpu(rxdesc->hdr.frame_control);
3359         hdrlen = p80211_headerlen(fc);
3360         datalen = le16_to_cpu(rxdesc->data_len);
3361
3362         /* Allocate an ind message+framesize skb */
3363         skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3364
3365         /* sanity check the length */
3366         if (skblen >
3367             (sizeof(struct p80211_caphdr) +
3368              WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3369                 pr_debug("overlen frm: len=%zd\n",
3370                          skblen - sizeof(struct p80211_caphdr));
3371
3372                 return;
3373         }
3374
3375         skb = dev_alloc_skb(skblen);
3376         if (!skb)
3377                 return;
3378
3379         /* only prepend the prism header if in the right mode */
3380         if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3381             (hw->sniffhdr != 0)) {
3382                 struct p80211_caphdr *caphdr;
3383                 /* The NEW header format! */
3384                 datap = skb_put(skb, sizeof(struct p80211_caphdr));
3385                 caphdr = (struct p80211_caphdr *)datap;
3386
3387                 caphdr->version = htonl(P80211CAPTURE_VERSION);
3388                 caphdr->length = htonl(sizeof(struct p80211_caphdr));
3389                 caphdr->mactime = __cpu_to_be64(rxdesc->time * 1000);
3390                 caphdr->hosttime = __cpu_to_be64(jiffies);
3391                 caphdr->phytype = htonl(4);     /* dss_dot11_b */
3392                 caphdr->channel = htonl(hw->sniff_channel);
3393                 caphdr->datarate = htonl(rxdesc->rate);
3394                 caphdr->antenna = htonl(0);     /* unknown */
3395                 caphdr->priority = htonl(0);    /* unknown */
3396                 caphdr->ssi_type = htonl(3);    /* rssi_raw */
3397                 caphdr->ssi_signal = htonl(rxdesc->signal);
3398                 caphdr->ssi_noise = htonl(rxdesc->silence);
3399                 caphdr->preamble = htonl(0);    /* unknown */
3400                 caphdr->encoding = htonl(1);    /* cck */
3401         }
3402
3403         /* Copy the 802.11 header to the skb
3404          * (ctl frames may be less than a full header)
3405          */
3406         skb_put_data(skb, &rxdesc->hdr.frame_control, hdrlen);
3407
3408         /* If any, copy the data from the card to the skb */
3409         if (datalen > 0) {
3410                 datap = skb_put_data(skb, rxfrm->data, datalen);
3411
3412                 /* check for unencrypted stuff if WEP bit set. */
3413                 if (*(datap - hdrlen + 1) & 0x40)       /* wep set */
3414                         if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3415                                 /* clear wep; it's the 802.2 header! */
3416                                 *(datap - hdrlen + 1) &= 0xbf;
3417         }
3418
3419         if (hw->sniff_fcs) {
3420                 /* Set the FCS */
3421                 datap = skb_put(skb, WLAN_CRC_LEN);
3422                 memset(datap, 0xff, WLAN_CRC_LEN);
3423         }
3424
3425         /* pass it back up */
3426         p80211netdev_rx(wlandev, skb);
3427 }
3428
3429 /*----------------------------------------------------------------
3430  * hfa384x_usbin_info
3431  *
3432  * At this point we have a successful received a Prism2 info frame.
3433  *
3434  * Arguments:
3435  *      wlandev         wlan device
3436  *      usbin           ptr to the usb transfer buffer
3437  *
3438  * Returns:
3439  *      nothing
3440  *
3441  * Side effects:
3442  *
3443  * Call context:
3444  *      interrupt
3445  *----------------------------------------------------------------
3446  */
3447 static void hfa384x_usbin_info(struct wlandevice *wlandev,
3448                                union hfa384x_usbin *usbin)
3449 {
3450         le16_to_cpus(&usbin->infofrm.info.framelen);
3451         prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3452 }
3453
3454 /*----------------------------------------------------------------
3455  * hfa384x_usbout_callback
3456  *
3457  * Callback for URBs on the BULKOUT endpoint.
3458  *
3459  * Arguments:
3460  *      urb             ptr to the completed urb
3461  *
3462  * Returns:
3463  *      nothing
3464  *
3465  * Side effects:
3466  *
3467  * Call context:
3468  *      interrupt
3469  *----------------------------------------------------------------
3470  */
3471 static void hfa384x_usbout_callback(struct urb *urb)
3472 {
3473         struct wlandevice *wlandev = urb->context;
3474
3475 #ifdef DEBUG_USB
3476         dbprint_urb(urb);
3477 #endif
3478
3479         if (wlandev && wlandev->netdev) {
3480                 switch (urb->status) {
3481                 case 0:
3482                         prism2sta_ev_alloc(wlandev);
3483                         break;
3484
3485                 case -EPIPE: {
3486                         struct hfa384x *hw = wlandev->priv;
3487
3488                         netdev_warn(hw->wlandev->netdev,
3489                                     "%s tx pipe stalled: requesting reset\n",
3490                                     wlandev->netdev->name);
3491                         if (!test_and_set_bit(WORK_TX_HALT, &hw->usb_flags))
3492                                 schedule_work(&hw->usb_work);
3493                         wlandev->netdev->stats.tx_errors++;
3494                         break;
3495                 }
3496
3497                 case -EPROTO:
3498                 case -ETIMEDOUT:
3499                 case -EILSEQ: {
3500                         struct hfa384x *hw = wlandev->priv;
3501
3502                         if (!test_and_set_bit(THROTTLE_TX, &hw->usb_flags) &&
3503                             !timer_pending(&hw->throttle)) {
3504                                 mod_timer(&hw->throttle,
3505                                           jiffies + THROTTLE_JIFFIES);
3506                         }
3507                         wlandev->netdev->stats.tx_errors++;
3508                         netif_stop_queue(wlandev->netdev);
3509                         break;
3510                 }
3511
3512                 case -ENOENT:
3513                 case -ESHUTDOWN:
3514                         /* Ignorable errors */
3515                         break;
3516
3517                 default:
3518                         netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
3519                                     urb->status);
3520                         wlandev->netdev->stats.tx_errors++;
3521                         break;
3522                 }               /* switch */
3523         }
3524 }
3525
3526 /*----------------------------------------------------------------
3527  * hfa384x_ctlxout_callback
3528  *
3529  * Callback for control data on the BULKOUT endpoint.
3530  *
3531  * Arguments:
3532  *      urb             ptr to the completed urb
3533  *
3534  * Returns:
3535  * nothing
3536  *
3537  * Side effects:
3538  *
3539  * Call context:
3540  * interrupt
3541  *----------------------------------------------------------------
3542  */
3543 static void hfa384x_ctlxout_callback(struct urb *urb)
3544 {
3545         struct hfa384x *hw = urb->context;
3546         int delete_resptimer = 0;
3547         int timer_ok = 1;
3548         int run_queue = 0;
3549         struct hfa384x_usbctlx *ctlx;
3550         unsigned long flags;
3551
3552         pr_debug("urb->status=%d\n", urb->status);
3553 #ifdef DEBUG_USB
3554         dbprint_urb(urb);
3555 #endif
3556         if ((urb->status == -ESHUTDOWN) ||
3557             (urb->status == -ENODEV) || !hw)
3558                 return;
3559
3560 retry:
3561         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3562
3563         /*
3564          * Only one CTLX at a time on the "active" list, and
3565          * none at all if we are unplugged. However, we can
3566          * rely on the disconnect function to clean everything
3567          * up if someone unplugged the adapter.
3568          */
3569         if (list_empty(&hw->ctlxq.active)) {
3570                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3571                 return;
3572         }
3573
3574         /*
3575          * Having something on the "active" queue means
3576          * that we have timers to worry about ...
3577          */
3578         if (del_timer(&hw->reqtimer) == 0) {
3579                 if (hw->req_timer_done == 0) {
3580                         /*
3581                          * This timer was actually running while we
3582                          * were trying to delete it. Let it terminate
3583                          * gracefully instead.
3584                          */
3585                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3586                         goto retry;
3587                 }
3588         } else {
3589                 hw->req_timer_done = 1;
3590         }
3591
3592         ctlx = get_active_ctlx(hw);
3593
3594         if (urb->status == 0) {
3595                 /* Request portion of a CTLX is successful */
3596                 switch (ctlx->state) {
3597                 case CTLX_REQ_SUBMITTED:
3598                         /* This OUT-ACK received before IN */
3599                         ctlx->state = CTLX_REQ_COMPLETE;
3600                         break;
3601
3602                 case CTLX_RESP_COMPLETE:
3603                         /* IN already received before this OUT-ACK,
3604                          * so this command must now be complete.
3605                          */
3606                         ctlx->state = CTLX_COMPLETE;
3607                         unlocked_usbctlx_complete(hw, ctlx);
3608                         run_queue = 1;
3609                         break;
3610
3611                 default:
3612                         /* This is NOT a valid CTLX "success" state! */
3613                         netdev_err(hw->wlandev->netdev,
3614                                    "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3615                                    le16_to_cpu(ctlx->outbuf.type),
3616                                    ctlxstr(ctlx->state), urb->status);
3617                         break;
3618                 }               /* switch */
3619         } else {
3620                 /* If the pipe has stalled then we need to reset it */
3621                 if ((urb->status == -EPIPE) &&
3622                     !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3623                         netdev_warn(hw->wlandev->netdev,
3624                                     "%s tx pipe stalled: requesting reset\n",
3625                                     hw->wlandev->netdev->name);
3626                         schedule_work(&hw->usb_work);
3627                 }
3628
3629                 /* If someone cancels the OUT URB then its status
3630                  * should be either -ECONNRESET or -ENOENT.
3631                  */
3632                 ctlx->state = CTLX_REQ_FAILED;
3633                 unlocked_usbctlx_complete(hw, ctlx);
3634                 delete_resptimer = 1;
3635                 run_queue = 1;
3636         }
3637
3638 delresp:
3639         if (delete_resptimer) {
3640                 timer_ok = del_timer(&hw->resptimer);
3641                 if (timer_ok != 0)
3642                         hw->resp_timer_done = 1;
3643         }
3644
3645         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3646
3647         if (!timer_ok && (hw->resp_timer_done == 0)) {
3648                 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3649                 goto delresp;
3650         }
3651
3652         if (run_queue)
3653                 hfa384x_usbctlxq_run(hw);
3654 }
3655
3656 /*----------------------------------------------------------------
3657  * hfa384x_usbctlx_reqtimerfn
3658  *
3659  * Timer response function for CTLX request timeouts.  If this
3660  * function is called, it means that the callback for the OUT
3661  * URB containing a Prism2.x XXX_Request was never called.
3662  *
3663  * Arguments:
3664  *      data            a ptr to the struct hfa384x
3665  *
3666  * Returns:
3667  *      nothing
3668  *
3669  * Side effects:
3670  *
3671  * Call context:
3672  *      interrupt
3673  *----------------------------------------------------------------
3674  */
3675 static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t)
3676 {
3677         struct hfa384x *hw = from_timer(hw, t, reqtimer);
3678         unsigned long flags;
3679
3680         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3681
3682         hw->req_timer_done = 1;
3683
3684         /* Removing the hardware automatically empties
3685          * the active list ...
3686          */
3687         if (!list_empty(&hw->ctlxq.active)) {
3688                 /*
3689                  * We must ensure that our URB is removed from
3690                  * the system, if it hasn't already expired.
3691                  */
3692                 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3693                 if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3694                         struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
3695
3696                         ctlx->state = CTLX_REQ_FAILED;
3697
3698                         /* This URB was active, but has now been
3699                          * cancelled. It will now have a status of
3700                          * -ECONNRESET in the callback function.
3701                          *
3702                          * We are cancelling this CTLX, so we're
3703                          * not going to need to wait for a response.
3704                          * The URB's callback function will check
3705                          * that this timer is truly dead.
3706                          */
3707                         if (del_timer(&hw->resptimer) != 0)
3708                                 hw->resp_timer_done = 1;
3709                 }
3710         }
3711
3712         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3713 }
3714
3715 /*----------------------------------------------------------------
3716  * hfa384x_usbctlx_resptimerfn
3717  *
3718  * Timer response function for CTLX response timeouts.  If this
3719  * function is called, it means that the callback for the IN
3720  * URB containing a Prism2.x XXX_Response was never called.
3721  *
3722  * Arguments:
3723  *      data            a ptr to the struct hfa384x
3724  *
3725  * Returns:
3726  *      nothing
3727  *
3728  * Side effects:
3729  *
3730  * Call context:
3731  *      interrupt
3732  *----------------------------------------------------------------
3733  */
3734 static void hfa384x_usbctlx_resptimerfn(struct timer_list *t)
3735 {
3736         struct hfa384x *hw = from_timer(hw, t, resptimer);
3737         unsigned long flags;
3738
3739         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3740
3741         hw->resp_timer_done = 1;
3742
3743         /* The active list will be empty if the
3744          * adapter has been unplugged ...
3745          */
3746         if (!list_empty(&hw->ctlxq.active)) {
3747                 struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
3748
3749                 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3750                         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3751                         hfa384x_usbctlxq_run(hw);
3752                         return;
3753                 }
3754         }
3755         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3756 }
3757
3758 /*----------------------------------------------------------------
3759  * hfa384x_usb_throttlefn
3760  *
3761  *
3762  * Arguments:
3763  *      data    ptr to hw
3764  *
3765  * Returns:
3766  *      Nothing
3767  *
3768  * Side effects:
3769  *
3770  * Call context:
3771  *      Interrupt
3772  *----------------------------------------------------------------
3773  */
3774 static void hfa384x_usb_throttlefn(struct timer_list *t)
3775 {
3776         struct hfa384x *hw = from_timer(hw, t, throttle);
3777         unsigned long flags;
3778
3779         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3780
3781         pr_debug("flags=0x%lx\n", hw->usb_flags);
3782         if (!hw->wlandev->hwremoved) {
3783                 bool rx_throttle = test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
3784                                    !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags);
3785                 bool tx_throttle = test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
3786                                    !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags);
3787                 /*
3788                  * We need to check BOTH the RX and the TX throttle controls,
3789                  * so we use the bitwise OR instead of the logical OR.
3790                  */
3791                 if (rx_throttle | tx_throttle)
3792                         schedule_work(&hw->usb_work);
3793         }
3794
3795         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3796 }
3797
3798 /*----------------------------------------------------------------
3799  * hfa384x_usbctlx_submit
3800  *
3801  * Called from the doxxx functions to submit a CTLX to the queue
3802  *
3803  * Arguments:
3804  *      hw              ptr to the hw struct
3805  *      ctlx            ctlx structure to enqueue
3806  *
3807  * Returns:
3808  *      -ENODEV if the adapter is unplugged
3809  *      0
3810  *
3811  * Side effects:
3812  *
3813  * Call context:
3814  *      process or interrupt
3815  *----------------------------------------------------------------
3816  */
3817 static int hfa384x_usbctlx_submit(struct hfa384x *hw,
3818                                   struct hfa384x_usbctlx *ctlx)
3819 {
3820         unsigned long flags;
3821
3822         spin_lock_irqsave(&hw->ctlxq.lock, flags);
3823
3824         if (hw->wlandev->hwremoved) {
3825                 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3826                 return -ENODEV;
3827         }
3828
3829         ctlx->state = CTLX_PENDING;
3830         list_add_tail(&ctlx->list, &hw->ctlxq.pending);
3831         spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3832         hfa384x_usbctlxq_run(hw);
3833
3834         return 0;
3835 }
3836
3837 /*----------------------------------------------------------------
3838  * hfa384x_isgood_pdrcore
3839  *
3840  * Quick check of PDR codes.
3841  *
3842  * Arguments:
3843  *      pdrcode         PDR code number (host order)
3844  *
3845  * Returns:
3846  *      zero            not good.
3847  *      one             is good.
3848  *
3849  * Side effects:
3850  *
3851  * Call context:
3852  *----------------------------------------------------------------
3853  */
3854 static int hfa384x_isgood_pdrcode(u16 pdrcode)
3855 {
3856         switch (pdrcode) {
3857         case HFA384x_PDR_END_OF_PDA:
3858         case HFA384x_PDR_PCB_PARTNUM:
3859         case HFA384x_PDR_PDAVER:
3860         case HFA384x_PDR_NIC_SERIAL:
3861         case HFA384x_PDR_MKK_MEASUREMENTS:
3862         case HFA384x_PDR_NIC_RAMSIZE:
3863         case HFA384x_PDR_MFISUPRANGE:
3864         case HFA384x_PDR_CFISUPRANGE:
3865         case HFA384x_PDR_NICID:
3866         case HFA384x_PDR_MAC_ADDRESS:
3867         case HFA384x_PDR_REGDOMAIN:
3868         case HFA384x_PDR_ALLOWED_CHANNEL:
3869         case HFA384x_PDR_DEFAULT_CHANNEL:
3870         case HFA384x_PDR_TEMPTYPE:
3871         case HFA384x_PDR_IFR_SETTING:
3872         case HFA384x_PDR_RFR_SETTING:
3873         case HFA384x_PDR_HFA3861_BASELINE:
3874         case HFA384x_PDR_HFA3861_SHADOW:
3875         case HFA384x_PDR_HFA3861_IFRF:
3876         case HFA384x_PDR_HFA3861_CHCALSP:
3877         case HFA384x_PDR_HFA3861_CHCALI:
3878         case HFA384x_PDR_3842_NIC_CONFIG:
3879         case HFA384x_PDR_USB_ID:
3880         case HFA384x_PDR_PCI_ID:
3881         case HFA384x_PDR_PCI_IFCONF:
3882         case HFA384x_PDR_PCI_PMCONF:
3883         case HFA384x_PDR_RFENRGY:
3884         case HFA384x_PDR_HFA3861_MANF_TESTSP:
3885         case HFA384x_PDR_HFA3861_MANF_TESTI:
3886                 /* code is OK */
3887                 return 1;
3888         default:
3889                 if (pdrcode < 0x1000) {
3890                         /* code is OK, but we don't know exactly what it is */
3891                         pr_debug("Encountered unknown PDR#=0x%04x, assuming it's ok.\n",
3892                                  pdrcode);
3893                         return 1;
3894                 }
3895                 break;
3896         }
3897         /* bad code */
3898         pr_debug("Encountered unknown PDR#=0x%04x, (>=0x1000), assuming it's bad.\n",
3899                  pdrcode);
3900         return 0;
3901 }