Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / staging / rtlwifi / efuse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2009-2012  Realtek Corporation.
5  *
6  * Contact Information:
7  * wlanfae <wlanfae@realtek.com>
8  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
9  * Hsinchu 300, Taiwan.
10  *
11  * Larry Finger <Larry.Finger@lwfinger.net>
12  *
13  *****************************************************************************/
14 #include "wifi.h"
15 #include "efuse.h"
16 #include "pci.h"
17 #include <linux/export.h>
18
19 static const u8 MAX_PGPKT_SIZE = 9;
20 static const u8 PGPKT_DATA_SIZE = 8;
21 static const int EFUSE_MAX_SIZE = 512;
22
23 #define START_ADDRESS           0x1000
24 #define REG_MCUFWDL             0x0080
25
26 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
27         {0, 0, 0, 2},
28         {0, 1, 0, 2},
29         {0, 2, 0, 2},
30         {1, 0, 0, 1},
31         {1, 0, 1, 1},
32         {1, 1, 0, 1},
33         {1, 1, 1, 3},
34         {1, 3, 0, 17},
35         {3, 3, 1, 48},
36         {10, 0, 0, 6},
37         {10, 3, 0, 1},
38         {10, 3, 1, 1},
39         {11, 0, 0, 28}
40 };
41
42 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
43                                     u8 *value);
44 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
45                                     u16 *value);
46 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
47                                     u32 *value);
48 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
49                                      u8 value);
50 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
51                                      u16 value);
52 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
53                                      u32 value);
54 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
55                                 u8 data);
56 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
57 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
58                                 u8 *data);
59 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
60                                  u8 word_en, u8 *data);
61 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
62                                         u8 *targetdata);
63 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
64                                   u16 efuse_addr, u8 word_en, u8 *data);
65 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
66 static u8 efuse_calculate_word_cnts(u8 word_en);
67
68 void efuse_initialize(struct ieee80211_hw *hw)
69 {
70         struct rtl_priv *rtlpriv = rtl_priv(hw);
71         u8 bytetemp;
72         u8 temp;
73
74         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
75         temp = bytetemp | 0x20;
76         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
77
78         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
79         temp = bytetemp & 0xFE;
80         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
81
82         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
83         temp = bytetemp | 0x80;
84         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
85
86         rtl_write_byte(rtlpriv, 0x2F8, 0x3);
87
88         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
89 }
90
91 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
92 {
93         struct rtl_priv *rtlpriv = rtl_priv(hw);
94         u8 data;
95         u8 bytetemp;
96         u8 temp;
97         u32 k = 0;
98         const u32 efuse_len =
99                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
100
101         if (address < efuse_len) {
102                 temp = address & 0xFF;
103                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
104                                temp);
105                 bytetemp = rtl_read_byte(rtlpriv,
106                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
107                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
108                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
109                                temp);
110
111                 bytetemp = rtl_read_byte(rtlpriv,
112                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
113                 temp = bytetemp & 0x7F;
114                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
115                                temp);
116
117                 bytetemp = rtl_read_byte(rtlpriv,
118                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
119                 while (!(bytetemp & 0x80)) {
120                         bytetemp =
121                            rtl_read_byte(rtlpriv,
122                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
123                         k++;
124                         if (k == 1000) {
125                                 k = 0;
126                                 break;
127                         }
128                 }
129                 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
130                 return data;
131         }
132         return 0xFF;
133 }
134
135 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
136 {
137         struct rtl_priv *rtlpriv = rtl_priv(hw);
138         u8 bytetemp;
139         u8 temp;
140         u32 k = 0;
141         const u32 efuse_len =
142                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
143
144         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
145                  address, value);
146
147         if (address < efuse_len) {
148                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
149
150                 temp = address & 0xFF;
151                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
152                                temp);
153                 bytetemp = rtl_read_byte(rtlpriv,
154                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
155
156                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
157                 rtl_write_byte(rtlpriv,
158                                rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
159
160                 bytetemp = rtl_read_byte(rtlpriv,
161                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
162                 temp = bytetemp | 0x80;
163                 rtl_write_byte(rtlpriv,
164                                rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
165
166                 bytetemp = rtl_read_byte(rtlpriv,
167                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
168
169                 while (bytetemp & 0x80) {
170                         bytetemp =
171                             rtl_read_byte(rtlpriv,
172                                           rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
173                         k++;
174                         if (k == 100) {
175                                 k = 0;
176                                 break;
177                         }
178                 }
179         }
180 }
181
182 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
183 {
184         struct rtl_priv *rtlpriv = rtl_priv(hw);
185         u32 value32;
186         u8 readbyte;
187         u16 retry;
188
189         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
190                        (_offset & 0xff));
191         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
192         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
193                        ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
194
195         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
196         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
197                        (readbyte & 0x7f));
198
199         retry = 0;
200         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
201         while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
202                 value32 = rtl_read_dword(rtlpriv,
203                                          rtlpriv->cfg->maps[EFUSE_CTRL]);
204                 retry++;
205         }
206
207         udelay(50);
208         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
209
210         *pbuf = (u8)(value32 & 0xff);
211 }
212
213 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
214 {
215         struct rtl_priv *rtlpriv = rtl_priv(hw);
216         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
217         u8 *efuse_tbl;
218         u8 rtemp8[1];
219         u16 efuse_addr = 0;
220         u8 offset, wren;
221         u8 u1temp = 0;
222         u16 i;
223         u16 j;
224         const u16 efuse_max_section =
225                 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
226         const u32 efuse_len =
227                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
228         u16 **efuse_word;
229         u16 efuse_utilized = 0;
230         u8 efuse_usage;
231
232         if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
233                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
234                          "%s(): Invalid offset(%#x) with read bytes(%#x)!!\n",
235                          __func__, _offset, _size_byte);
236                 return;
237         }
238
239         /* allocate memory for efuse_tbl and efuse_word */
240         efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE],
241                             GFP_ATOMIC);
242         if (!efuse_tbl)
243                 return;
244         efuse_word = kcalloc(EFUSE_MAX_WORD_UNIT, sizeof(u16 *), GFP_ATOMIC);
245         if (!efuse_word)
246                 goto out;
247         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
248                 efuse_word[i] = kcalloc(efuse_max_section, sizeof(u16),
249                                         GFP_ATOMIC);
250                 if (!efuse_word[i])
251                         goto done;
252         }
253
254         for (i = 0; i < efuse_max_section; i++)
255                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
256                         efuse_word[j][i] = 0xFFFF;
257
258         read_efuse_byte(hw, efuse_addr, rtemp8);
259         if (*rtemp8 != 0xFF) {
260                 efuse_utilized++;
261                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
262                         "Addr=%d\n", efuse_addr);
263                 efuse_addr++;
264         }
265
266         while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
267                 /*  Check PG header for section num.  */
268                 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
269                         u1temp = ((*rtemp8 & 0xE0) >> 5);
270                         read_efuse_byte(hw, efuse_addr, rtemp8);
271
272                         if ((*rtemp8 & 0x0F) == 0x0F) {
273                                 efuse_addr++;
274                                 read_efuse_byte(hw, efuse_addr, rtemp8);
275
276                                 if (*rtemp8 != 0xFF &&
277                                     (efuse_addr < efuse_len)) {
278                                         efuse_addr++;
279                                 }
280                                 continue;
281                         } else {
282                                 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
283                                 wren = (*rtemp8 & 0x0F);
284                                 efuse_addr++;
285                         }
286                 } else {
287                         offset = ((*rtemp8 >> 4) & 0x0f);
288                         wren = (*rtemp8 & 0x0f);
289                 }
290
291                 if (offset < efuse_max_section) {
292                         RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
293                                 "offset-%d Worden=%x\n", offset, wren);
294
295                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
296                                 if (!(wren & 0x01)) {
297                                         RTPRINT(rtlpriv, FEEPROM,
298                                                 EFUSE_READ_ALL,
299                                                 "Addr=%d\n", efuse_addr);
300
301                                         read_efuse_byte(hw, efuse_addr, rtemp8);
302                                         efuse_addr++;
303                                         efuse_utilized++;
304                                         efuse_word[i][offset] =
305                                                          (*rtemp8 & 0xff);
306
307                                         if (efuse_addr >= efuse_len)
308                                                 break;
309
310                                         RTPRINT(rtlpriv, FEEPROM,
311                                                 EFUSE_READ_ALL,
312                                                 "Addr=%d\n", efuse_addr);
313
314                                         read_efuse_byte(hw, efuse_addr, rtemp8);
315                                         efuse_addr++;
316                                         efuse_utilized++;
317                                         efuse_word[i][offset] |=
318                                             (((u16)*rtemp8 << 8) & 0xff00);
319
320                                         if (efuse_addr >= efuse_len)
321                                                 break;
322                                 }
323
324                                 wren >>= 1;
325                         }
326                 }
327
328                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
329                         "Addr=%d\n", efuse_addr);
330                 read_efuse_byte(hw, efuse_addr, rtemp8);
331                 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
332                         efuse_utilized++;
333                         efuse_addr++;
334                 }
335         }
336
337         for (i = 0; i < efuse_max_section; i++) {
338                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
339                         efuse_tbl[(i * 8) + (j * 2)] =
340                             (efuse_word[j][i] & 0xff);
341                         efuse_tbl[(i * 8) + ((j * 2) + 1)] =
342                             ((efuse_word[j][i] >> 8) & 0xff);
343                 }
344         }
345
346         for (i = 0; i < _size_byte; i++)
347                 pbuf[i] = efuse_tbl[_offset + i];
348
349         rtlefuse->efuse_usedbytes = efuse_utilized;
350         efuse_usage = (u8)((efuse_utilized * 100) / efuse_len);
351         rtlefuse->efuse_usedpercentage = efuse_usage;
352         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
353                                       (u8 *)&efuse_utilized);
354         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
355                                       &efuse_usage);
356 done:
357         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
358                 kfree(efuse_word[i]);
359         kfree(efuse_word);
360 out:
361         kfree(efuse_tbl);
362 }
363
364 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
365 {
366         struct rtl_priv *rtlpriv = rtl_priv(hw);
367         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
368         u8 section_idx, i, base;
369         u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
370         bool wordchanged, result = true;
371
372         for (section_idx = 0; section_idx < 16; section_idx++) {
373                 base = section_idx * 8;
374                 wordchanged = false;
375
376                 for (i = 0; i < 8; i = i + 2) {
377                         if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
378                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) ||
379                             (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i + 1] !=
380                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i +
381                                                                    1])) {
382                                 words_need++;
383                                 wordchanged = true;
384                         }
385                 }
386
387                 if (wordchanged)
388                         hdr_num++;
389         }
390
391         totalbytes = hdr_num + words_need * 2;
392         efuse_used = rtlefuse->efuse_usedbytes;
393
394         if ((totalbytes + efuse_used) >=
395             (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
396                 result = false;
397
398         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
399                  "%s(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
400                  __func__, totalbytes, hdr_num, words_need, efuse_used);
401
402         return result;
403 }
404
405 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
406                        u16 offset, u32 *value)
407 {
408         if (type == 1)
409                 efuse_shadow_read_1byte(hw, offset, (u8 *)value);
410         else if (type == 2)
411                 efuse_shadow_read_2byte(hw, offset, (u16 *)value);
412         else if (type == 4)
413                 efuse_shadow_read_4byte(hw, offset, value);
414 }
415
416 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
417                         u32 value)
418 {
419         if (type == 1)
420                 efuse_shadow_write_1byte(hw, offset, (u8)value);
421         else if (type == 2)
422                 efuse_shadow_write_2byte(hw, offset, (u16)value);
423         else if (type == 4)
424                 efuse_shadow_write_4byte(hw, offset, value);
425 }
426
427 bool efuse_shadow_update(struct ieee80211_hw *hw)
428 {
429         struct rtl_priv *rtlpriv = rtl_priv(hw);
430         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
431         u16 i, offset, base;
432         u8 word_en = 0x0F;
433         u8 first_pg = false;
434
435         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
436
437         if (!efuse_shadow_update_chk(hw)) {
438                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
439                 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
440                        &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
441                        rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
442
443                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
444                          "efuse out of capacity!!\n");
445                 return false;
446         }
447         efuse_power_switch(hw, true, true);
448
449         for (offset = 0; offset < 16; offset++) {
450                 word_en = 0x0F;
451                 base = offset * 8;
452
453                 for (i = 0; i < 8; i++) {
454                         if (first_pg) {
455                                 word_en &= ~(BIT(i / 2));
456
457                                 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
458                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
459                         } else {
460                                 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
461                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
462                                         word_en &= ~(BIT(i / 2));
463
464                                         rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
465                                             rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
466                                 }
467                         }
468                 }
469                 if (word_en != 0x0F) {
470                         u8 tmpdata[8];
471
472                         memcpy(tmpdata,
473                                &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
474                                8);
475                         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
476                                       "U-efuse\n", tmpdata, 8);
477
478                         if (!efuse_pg_packet_write(hw, (u8)offset, word_en,
479                                                    tmpdata)) {
480                                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
481                                          "PG section(%#x) fail!!\n", offset);
482                                 break;
483                         }
484                 }
485         }
486
487         efuse_power_switch(hw, true, false);
488         efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
489
490         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
491                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
492                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
493
494         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
495         return true;
496 }
497
498 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
499 {
500         struct rtl_priv *rtlpriv = rtl_priv(hw);
501         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
502
503         if (rtlefuse->autoload_failflag)
504                 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
505                        0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
506         else
507                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
508
509         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
510                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
511                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
512 }
513
514 void efuse_force_write_vendor_id(struct ieee80211_hw *hw)
515 {
516         u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
517
518         efuse_power_switch(hw, true, true);
519
520         efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
521
522         efuse_power_switch(hw, true, false);
523 }
524
525 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
526 {
527 }
528
529 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
530                                     u16 offset, u8 *value)
531 {
532         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
533         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
534 }
535
536 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
537                                     u16 offset, u16 *value)
538 {
539         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
540
541         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
542         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
543 }
544
545 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
546                                     u16 offset, u32 *value)
547 {
548         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
549
550         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
551         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
552         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
553         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
554 }
555
556 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
557                                      u16 offset, u8 value)
558 {
559         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
560
561         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
562 }
563
564 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
565                                      u16 offset, u16 value)
566 {
567         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
568
569         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
570         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
571 }
572
573 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
574                                      u16 offset, u32 value)
575 {
576         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
577
578         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
579             (u8)(value & 0x000000FF);
580         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
581             (u8)((value >> 8) & 0x0000FF);
582         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
583             (u8)((value >> 16) & 0x00FF);
584         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
585             (u8)((value >> 24) & 0xFF);
586 }
587
588 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
589 {
590         struct rtl_priv *rtlpriv = rtl_priv(hw);
591         u8 tmpidx = 0;
592         int result;
593
594         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
595                        (u8)(addr & 0xff));
596         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
597                        ((u8)((addr >> 8) & 0x03)) |
598                        (rtl_read_byte(rtlpriv,
599                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
600                         0xFC));
601
602         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
603
604         while (!(0x80 & rtl_read_byte(rtlpriv,
605                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
606                (tmpidx < 100)) {
607                 tmpidx++;
608         }
609
610         if (tmpidx < 100) {
611                 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
612                 result = true;
613         } else {
614                 *data = 0xff;
615                 result = false;
616         }
617         return result;
618 }
619
620 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
621 {
622         struct rtl_priv *rtlpriv = rtl_priv(hw);
623         u8 tmpidx = 0;
624
625         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
626                  "Addr = %x Data=%x\n", addr, data);
627
628         rtl_write_byte(rtlpriv,
629                        rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8)(addr & 0xff));
630         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
631                        (rtl_read_byte(rtlpriv,
632                          rtlpriv->cfg->maps[EFUSE_CTRL] +
633                          2) & 0xFC) | (u8)((addr >> 8) & 0x03));
634
635         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
636         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
637
638         while ((0x80 &
639                 rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
640                (tmpidx < 100)) {
641                 tmpidx++;
642         }
643
644         if (tmpidx < 100)
645                 return true;
646         return false;
647 }
648
649 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
650 {
651         struct rtl_priv *rtlpriv = rtl_priv(hw);
652
653         efuse_power_switch(hw, false, true);
654         read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
655         efuse_power_switch(hw, false, false);
656 }
657
658 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
659                                   u8 efuse_data, u8 offset, u8 *tmpdata,
660                                   u8 *readstate)
661 {
662         bool dataempty = true;
663         u8 hoffset;
664         u8 tmpidx;
665         u8 hworden;
666         u8 word_cnts;
667
668         hoffset = (efuse_data >> 4) & 0x0F;
669         hworden = efuse_data & 0x0F;
670         word_cnts = efuse_calculate_word_cnts(hworden);
671
672         if (hoffset == offset) {
673                 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
674                         if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
675                                                 &efuse_data)) {
676                                 tmpdata[tmpidx] = efuse_data;
677                                 if (efuse_data != 0xff)
678                                         dataempty = false;
679                         }
680                 }
681
682                 if (!dataempty) {
683                         *readstate = PG_STATE_DATA;
684                 } else {
685                         *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
686                         *readstate = PG_STATE_HEADER;
687                 }
688
689         } else {
690                 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
691                 *readstate = PG_STATE_HEADER;
692         }
693 }
694
695 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
696 {
697         u8 readstate = PG_STATE_HEADER;
698
699         bool continual = true;
700
701         u8 efuse_data, word_cnts = 0;
702         u16 efuse_addr = 0;
703         u8 tmpdata[8];
704
705         if (!data)
706                 return false;
707         if (offset > 15)
708                 return false;
709
710         memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
711         memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
712
713         while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
714                 if (readstate & PG_STATE_HEADER) {
715                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
716                             (efuse_data != 0xFF))
717                                 efuse_read_data_case1(hw, &efuse_addr,
718                                                       efuse_data, offset,
719                                                       tmpdata, &readstate);
720                         else
721                                 continual = false;
722                 } else if (readstate & PG_STATE_DATA) {
723                         efuse_word_enable_data_read(0, tmpdata, data);
724                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
725                         readstate = PG_STATE_HEADER;
726                 }
727         }
728
729         if ((data[0] == 0xff) && (data[1] == 0xff) &&
730             (data[2] == 0xff) && (data[3] == 0xff) &&
731             (data[4] == 0xff) && (data[5] == 0xff) &&
732             (data[6] == 0xff) && (data[7] == 0xff))
733                 return false;
734         return true;
735 }
736
737 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
738                                    u8 efuse_data, u8 offset,
739                                    int *continual, u8 *write_state,
740                                    struct pgpkt_struct *target_pkt,
741                                    int *repeat_times, int *result, u8 word_en)
742 {
743         struct rtl_priv *rtlpriv = rtl_priv(hw);
744         struct pgpkt_struct tmp_pkt;
745         int dataempty = true;
746         u8 originaldata[8 * sizeof(u8)];
747         u8 badworden = 0x0F;
748         u8 match_word_en, tmp_word_en;
749         u8 tmpindex;
750         u8 tmp_header = efuse_data;
751         u8 tmp_word_cnts;
752
753         tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
754         tmp_pkt.word_en = tmp_header & 0x0F;
755         tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
756
757         if (tmp_pkt.offset != target_pkt->offset) {
758                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
759                 *write_state = PG_STATE_HEADER;
760         } else {
761                 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
762                         if (efuse_one_byte_read(hw,
763                                                 (*efuse_addr + 1 + tmpindex),
764                                                 &efuse_data) &&
765                             (efuse_data != 0xFF))
766                                 dataempty = false;
767                 }
768
769                 if (!dataempty) {
770                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
771                         *write_state = PG_STATE_HEADER;
772                 } else {
773                         match_word_en = 0x0F;
774                         if (!((target_pkt->word_en & BIT(0)) |
775                             (tmp_pkt.word_en & BIT(0))))
776                                 match_word_en &= (~BIT(0));
777
778                         if (!((target_pkt->word_en & BIT(1)) |
779                             (tmp_pkt.word_en & BIT(1))))
780                                 match_word_en &= (~BIT(1));
781
782                         if (!((target_pkt->word_en & BIT(2)) |
783                             (tmp_pkt.word_en & BIT(2))))
784                                 match_word_en &= (~BIT(2));
785
786                         if (!((target_pkt->word_en & BIT(3)) |
787                             (tmp_pkt.word_en & BIT(3))))
788                                 match_word_en &= (~BIT(3));
789
790                         if ((match_word_en & 0x0F) != 0x0F) {
791                                 badworden =
792                                   enable_efuse_data_write(hw,
793                                                           *efuse_addr + 1,
794                                                           tmp_pkt.word_en,
795                                                           target_pkt->data);
796
797                                 if (0x0F != (badworden & 0x0F)) {
798                                         u8 reorg_offset = offset;
799                                         u8 reorg_worden = badworden;
800
801                                         efuse_pg_packet_write(hw, reorg_offset,
802                                                               reorg_worden,
803                                                               originaldata);
804                                 }
805
806                                 tmp_word_en = 0x0F;
807                                 if ((target_pkt->word_en & BIT(0)) ^
808                                     (match_word_en & BIT(0)))
809                                         tmp_word_en &= (~BIT(0));
810
811                                 if ((target_pkt->word_en & BIT(1)) ^
812                                     (match_word_en & BIT(1)))
813                                         tmp_word_en &= (~BIT(1));
814
815                                 if ((target_pkt->word_en & BIT(2)) ^
816                                     (match_word_en & BIT(2)))
817                                         tmp_word_en &= (~BIT(2));
818
819                                 if ((target_pkt->word_en & BIT(3)) ^
820                                     (match_word_en & BIT(3)))
821                                         tmp_word_en &= (~BIT(3));
822
823                                 if ((tmp_word_en & 0x0F) != 0x0F) {
824                                         *efuse_addr =
825                                             efuse_get_current_size(hw);
826                                         target_pkt->offset = offset;
827                                         target_pkt->word_en = tmp_word_en;
828                                 } else {
829                                         *continual = false;
830                                 }
831                                 *write_state = PG_STATE_HEADER;
832                                 *repeat_times += 1;
833                                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
834                                         *continual = false;
835                                         *result = false;
836                                 }
837                         } else {
838                                 *efuse_addr += (2 * tmp_word_cnts) + 1;
839                                 target_pkt->offset = offset;
840                                 target_pkt->word_en = word_en;
841                                 *write_state = PG_STATE_HEADER;
842                         }
843                 }
844         }
845         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
846 }
847
848 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
849                                    int *continual, u8 *write_state,
850                                    struct pgpkt_struct target_pkt,
851                                    int *repeat_times, int *result)
852 {
853         struct rtl_priv *rtlpriv = rtl_priv(hw);
854         struct pgpkt_struct tmp_pkt;
855         u8 pg_header;
856         u8 tmp_header;
857         u8 originaldata[8 * sizeof(u8)];
858         u8 tmp_word_cnts;
859         u8 badworden = 0x0F;
860
861         pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
862         efuse_one_byte_write(hw, *efuse_addr, pg_header);
863         efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
864
865         if (tmp_header == pg_header) {
866                 *write_state = PG_STATE_DATA;
867         } else if (tmp_header == 0xFF) {
868                 *write_state = PG_STATE_HEADER;
869                 *repeat_times += 1;
870                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
871                         *continual = false;
872                         *result = false;
873                 }
874         } else {
875                 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
876                 tmp_pkt.word_en = tmp_header & 0x0F;
877
878                 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
879
880                 memset(originaldata, 0xff,  8 * sizeof(u8));
881
882                 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
883                         badworden = enable_efuse_data_write(hw,
884                                                             *efuse_addr + 1,
885                                                             tmp_pkt.word_en,
886                                                             originaldata);
887
888                         if (0x0F != (badworden & 0x0F)) {
889                                 u8 reorg_offset = tmp_pkt.offset;
890                                 u8 reorg_worden = badworden;
891
892                                 efuse_pg_packet_write(hw, reorg_offset,
893                                                       reorg_worden,
894                                                       originaldata);
895                                 *efuse_addr = efuse_get_current_size(hw);
896                         } else {
897                                 *efuse_addr = *efuse_addr +
898                                               (tmp_word_cnts * 2) + 1;
899                         }
900                 } else {
901                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
902                 }
903
904                 *write_state = PG_STATE_HEADER;
905                 *repeat_times += 1;
906                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
907                         *continual = false;
908                         *result = false;
909                 }
910
911                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
912                         "efuse PG_STATE_HEADER-2\n");
913         }
914 }
915
916 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
917                                  u8 offset, u8 word_en, u8 *data)
918 {
919         struct rtl_priv *rtlpriv = rtl_priv(hw);
920         struct pgpkt_struct target_pkt;
921         u8 write_state = PG_STATE_HEADER;
922         int continual = true, dataempty = true, result = true;
923         u16 efuse_addr = 0;
924         u8 efuse_data;
925         u8 target_word_cnts = 0;
926         u8 badworden = 0x0F;
927         static int repeat_times;
928
929         if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
930                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
931                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
932                         "%s error\n", __func__);
933                 return false;
934         }
935
936         target_pkt.offset = offset;
937         target_pkt.word_en = word_en;
938
939         memset(target_pkt.data, 0xFF,  8 * sizeof(u8));
940
941         efuse_word_enable_data_read(word_en, data, target_pkt.data);
942         target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
943
944         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
945
946         while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
947                rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
948                 if (write_state == PG_STATE_HEADER) {
949                         dataempty = true;
950                         badworden = 0x0F;
951                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
952                                 "efuse PG_STATE_HEADER\n");
953
954                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
955                             (efuse_data != 0xFF))
956                                 efuse_write_data_case1(hw, &efuse_addr,
957                                                        efuse_data, offset,
958                                                        &continual,
959                                                        &write_state,
960                                                        &target_pkt,
961                                                        &repeat_times, &result,
962                                                        word_en);
963                         else
964                                 efuse_write_data_case2(hw, &efuse_addr,
965                                                        &continual,
966                                                        &write_state,
967                                                        target_pkt,
968                                                        &repeat_times,
969                                                        &result);
970
971                 } else if (write_state == PG_STATE_DATA) {
972                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
973                                 "efuse PG_STATE_DATA\n");
974                         badworden = 0x0f;
975                         badworden =
976                             enable_efuse_data_write(hw, efuse_addr + 1,
977                                                     target_pkt.word_en,
978                                                     target_pkt.data);
979
980                         if ((badworden & 0x0F) == 0x0F) {
981                                 continual = false;
982                         } else {
983                                 efuse_addr =
984                                     efuse_addr + (2 * target_word_cnts) + 1;
985
986                                 target_pkt.offset = offset;
987                                 target_pkt.word_en = badworden;
988                                 target_word_cnts =
989                                     efuse_calculate_word_cnts(target_pkt.word_en);
990                                 write_state = PG_STATE_HEADER;
991                                 repeat_times++;
992                                 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
993                                         continual = false;
994                                         result = false;
995                                 }
996                                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
997                                         "efuse PG_STATE_HEADER-3\n");
998                         }
999                 }
1000         }
1001
1002         if (efuse_addr >= (EFUSE_MAX_SIZE -
1003                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1004                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1005                          "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1006         }
1007
1008         return true;
1009 }
1010
1011 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1012                                         u8 *targetdata)
1013 {
1014         if (!(word_en & BIT(0))) {
1015                 targetdata[0] = sourdata[0];
1016                 targetdata[1] = sourdata[1];
1017         }
1018
1019         if (!(word_en & BIT(1))) {
1020                 targetdata[2] = sourdata[2];
1021                 targetdata[3] = sourdata[3];
1022         }
1023
1024         if (!(word_en & BIT(2))) {
1025                 targetdata[4] = sourdata[4];
1026                 targetdata[5] = sourdata[5];
1027         }
1028
1029         if (!(word_en & BIT(3))) {
1030                 targetdata[6] = sourdata[6];
1031                 targetdata[7] = sourdata[7];
1032         }
1033 }
1034
1035 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1036                                   u16 efuse_addr, u8 word_en, u8 *data)
1037 {
1038         struct rtl_priv *rtlpriv = rtl_priv(hw);
1039         u16 tmpaddr;
1040         u16 start_addr = efuse_addr;
1041         u8 badworden = 0x0F;
1042         u8 tmpdata[8];
1043
1044         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1045         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1046                  "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1047
1048         if (!(word_en & BIT(0))) {
1049                 tmpaddr = start_addr;
1050                 efuse_one_byte_write(hw, start_addr++, data[0]);
1051                 efuse_one_byte_write(hw, start_addr++, data[1]);
1052
1053                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1054                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1055                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1056                         badworden &= (~BIT(0));
1057         }
1058
1059         if (!(word_en & BIT(1))) {
1060                 tmpaddr = start_addr;
1061                 efuse_one_byte_write(hw, start_addr++, data[2]);
1062                 efuse_one_byte_write(hw, start_addr++, data[3]);
1063
1064                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1065                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1066                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1067                         badworden &= (~BIT(1));
1068         }
1069
1070         if (!(word_en & BIT(2))) {
1071                 tmpaddr = start_addr;
1072                 efuse_one_byte_write(hw, start_addr++, data[4]);
1073                 efuse_one_byte_write(hw, start_addr++, data[5]);
1074
1075                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1076                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1077                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1078                         badworden &= (~BIT(2));
1079         }
1080
1081         if (!(word_en & BIT(3))) {
1082                 tmpaddr = start_addr;
1083                 efuse_one_byte_write(hw, start_addr++, data[6]);
1084                 efuse_one_byte_write(hw, start_addr++, data[7]);
1085
1086                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1087                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1088                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1089                         badworden &= (~BIT(3));
1090         }
1091
1092         return badworden;
1093 }
1094
1095 void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1096 {
1097         struct rtl_priv *rtlpriv = rtl_priv(hw);
1098         struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1099         u8 tempval;
1100         u16 tmpv16;
1101
1102         if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1103                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1104                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1105                         rtl_write_byte(rtlpriv,
1106                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1107                 } else {
1108                         tmpv16 =
1109                           rtl_read_word(rtlpriv,
1110                                         rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1111                         if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1112                                 tmpv16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1113                                 rtl_write_word(rtlpriv,
1114                                                rtlpriv->cfg->maps[SYS_ISO_CTRL],
1115                                                tmpv16);
1116                         }
1117                 }
1118                 tmpv16 = rtl_read_word(rtlpriv,
1119                                        rtlpriv->cfg->maps[SYS_FUNC_EN]);
1120                 if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1121                         tmpv16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1122                         rtl_write_word(rtlpriv,
1123                                        rtlpriv->cfg->maps[SYS_FUNC_EN], tmpv16);
1124                 }
1125
1126                 tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1127                 if ((!(tmpv16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1128                     (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1129                         tmpv16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1130                                    rtlpriv->cfg->maps[EFUSE_ANA8M]);
1131                         rtl_write_word(rtlpriv,
1132                                        rtlpriv->cfg->maps[SYS_CLK], tmpv16);
1133                 }
1134         }
1135
1136         if (pwrstate) {
1137                 if (write) {
1138                         tempval = rtl_read_byte(rtlpriv,
1139                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1140                                                 3);
1141
1142                         if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1143                                 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1144                                 tempval |= (VOLTAGE_V25 << 3);
1145                         } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1146                                 tempval &= 0x0F;
1147                                 tempval |= (VOLTAGE_V25 << 4);
1148                         }
1149
1150                         rtl_write_byte(rtlpriv,
1151                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1152                                        (tempval | 0x80));
1153                 }
1154
1155                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1156                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1157                                        0x03);
1158                 }
1159         } else {
1160                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1161                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1162                         rtl_write_byte(rtlpriv,
1163                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1164
1165                 if (write) {
1166                         tempval = rtl_read_byte(rtlpriv,
1167                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1168                                                 3);
1169                         rtl_write_byte(rtlpriv,
1170                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1171                                        (tempval & 0x7F));
1172                 }
1173
1174                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1175                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1176                                        0x02);
1177                 }
1178         }
1179 }
1180
1181 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1182 {
1183         int continual = true;
1184         u16 efuse_addr = 0;
1185         u8 hoffset, hworden;
1186         u8 efuse_data, word_cnts;
1187
1188         while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1189                (efuse_addr < EFUSE_MAX_SIZE)) {
1190                 if (efuse_data != 0xFF) {
1191                         hoffset = (efuse_data >> 4) & 0x0F;
1192                         hworden = efuse_data & 0x0F;
1193                         word_cnts = efuse_calculate_word_cnts(hworden);
1194                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1195                 } else {
1196                         continual = false;
1197                 }
1198         }
1199
1200         return efuse_addr;
1201 }
1202
1203 static u8 efuse_calculate_word_cnts(u8 word_en)
1204 {
1205         u8 word_cnts = 0;
1206
1207         if (!(word_en & BIT(0)))
1208                 word_cnts++;
1209         if (!(word_en & BIT(1)))
1210                 word_cnts++;
1211         if (!(word_en & BIT(2)))
1212                 word_cnts++;
1213         if (!(word_en & BIT(3)))
1214                 word_cnts++;
1215         return word_cnts;
1216 }
1217
1218 int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1219                    int max_size, u8 *hwinfo, int *params)
1220 {
1221         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1222         struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1223         struct device *dev = &rtlpcipriv->dev.pdev->dev;
1224         u16 eeprom_id;
1225         u16 i, usvalue;
1226
1227         switch (rtlefuse->epromtype) {
1228         case EEPROM_BOOT_EFUSE:
1229                 rtl_efuse_shadow_map_update(hw);
1230                 break;
1231
1232         case EEPROM_93C46:
1233                 pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
1234                 return 1;
1235
1236         default:
1237                 dev_warn(dev, "no efuse data\n");
1238                 return 1;
1239         }
1240
1241         memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1242
1243         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1244                       hwinfo, max_size);
1245
1246         eeprom_id = *((u16 *)&hwinfo[0]);
1247         if (eeprom_id != params[0]) {
1248                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1249                          "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1250                 rtlefuse->autoload_failflag = true;
1251         } else {
1252                 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1253                 rtlefuse->autoload_failflag = false;
1254         }
1255
1256         if (rtlefuse->autoload_failflag)
1257                 return 1;
1258
1259         rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1260         rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1261         rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1262         rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1263         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1264                  "EEPROMId = 0x%4x\n", eeprom_id);
1265         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1266                  "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1267         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1268                  "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1269         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1270                  "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1271         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1272                  "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1273
1274         for (i = 0; i < 6; i += 2) {
1275                 usvalue = *(u16 *)&hwinfo[params[5] + i];
1276                 *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1277         }
1278         RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1279
1280         rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1281         rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1282         rtlefuse->txpwr_fromeprom = true;
1283         rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1284
1285         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1286                  "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1287
1288         /* set channel plan to world wide 13 */
1289         rtlefuse->channel_plan = params[9];
1290
1291         return 0;
1292 }
1293
1294 void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size)
1295 {
1296         struct rtl_priv *rtlpriv = rtl_priv(hw);
1297         u8 *pu4byteptr = (u8 *)buffer;
1298         u32 i;
1299
1300         for (i = 0; i < size; i++)
1301                 rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i));
1302 }
1303
1304 void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer,
1305                        u32 size)
1306 {
1307         struct rtl_priv *rtlpriv = rtl_priv(hw);
1308         u8 value8;
1309         u8 u8page = (u8)(page & 0x07);
1310
1311         value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;
1312
1313         rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
1314         rtl_fw_block_write(hw, buffer, size);
1315 }
1316
1317 void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
1318 {
1319         u32 fwlen = *pfwlen;
1320         u8 remain = (u8)(fwlen % 4);
1321
1322         remain = (remain == 0) ? 0 : (4 - remain);
1323
1324         while (remain > 0) {
1325                 pfwbuf[fwlen] = 0;
1326                 fwlen++;
1327                 remain--;
1328         }
1329
1330         *pfwlen = fwlen;
1331 }