staging: rtl8188eu: remove else after break or return
[linux-2.6-microblaze.git] / drivers / staging / rtl8188eu / core / rtw_efuse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
5  *
6  ******************************************************************************/
7 #define _RTW_EFUSE_C_
8
9 #include <osdep_service.h>
10 #include <drv_types.h>
11 #include <rtw_efuse.h>
12 #include <usb_ops_linux.h>
13 #include <rtl8188e_hal.h>
14 #include <rtw_iol.h>
15
16 #define REG_EFUSE_CTRL          0x0030
17 #define EFUSE_CTRL                      REG_EFUSE_CTRL          /*  E-Fuse Control. */
18
19 enum{
20                 VOLTAGE_V25                                             = 0x03,
21                 LDOE25_SHIFT                                            = 28,
22         };
23
24 /*
25  * When we want to enable write operation, we should change to pwr on state.
26  * When we stop write, we should switch to 500k mode and disable LDO 2.5V.
27  */
28 static void efuse_power_switch(struct adapter *pAdapter, u8 write, u8 pwrstate)
29 {
30         u8 tempval;
31         u16 tmpv16;
32
33         if (pwrstate) {
34                 usb_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON);
35
36                 /*  1.2V Power: From VDDON with Power Cut(0x0000h[15]), default valid */
37                 tmpv16 = usb_read16(pAdapter, REG_SYS_ISO_CTRL);
38                 if (!(tmpv16 & PWC_EV12V)) {
39                         tmpv16 |= PWC_EV12V;
40                         usb_write16(pAdapter, REG_SYS_ISO_CTRL, tmpv16);
41                 }
42                 /*  Reset: 0x0000h[28], default valid */
43                 tmpv16 =  usb_read16(pAdapter, REG_SYS_FUNC_EN);
44                 if (!(tmpv16 & FEN_ELDR)) {
45                         tmpv16 |= FEN_ELDR;
46                         usb_write16(pAdapter, REG_SYS_FUNC_EN, tmpv16);
47                 }
48
49                 /*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
50                 tmpv16 = usb_read16(pAdapter, REG_SYS_CLKR);
51                 if ((!(tmpv16 & LOADER_CLK_EN))  || (!(tmpv16 & ANA8M))) {
52                         tmpv16 |= (LOADER_CLK_EN | ANA8M);
53                         usb_write16(pAdapter, REG_SYS_CLKR, tmpv16);
54                 }
55
56                 if (write) {
57                         /*  Enable LDO 2.5V before read/write action */
58                         tempval = usb_read8(pAdapter, EFUSE_TEST + 3);
59                         tempval &= 0x0F;
60                         tempval |= (VOLTAGE_V25 << 4);
61                         usb_write8(pAdapter, EFUSE_TEST + 3, (tempval | 0x80));
62                 }
63         } else {
64                 usb_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
65
66                 if (write) {
67                         /*  Disable LDO 2.5V after read/write action */
68                         tempval = usb_read8(pAdapter, EFUSE_TEST + 3);
69                         usb_write8(pAdapter, EFUSE_TEST + 3, (tempval & 0x7F));
70                 }
71         }
72 }
73
74 static void
75 efuse_phymap_to_logical(u8 *phymap, u16 _offset, u16 _size_byte, u8  *pbuf)
76 {
77         u8 *efuseTbl = NULL;
78         u8 rtemp8;
79         u16     eFuse_Addr = 0;
80         u8 offset, wren;
81         u16     i, j;
82         u16     **eFuseWord = NULL;
83         u16     efuse_utilized = 0;
84         u8 u1temp = 0;
85         void **tmp = NULL;
86
87         efuseTbl = kzalloc(EFUSE_MAP_LEN_88E, GFP_KERNEL);
88         if (!efuseTbl)
89                 return;
90
91         tmp = kcalloc(EFUSE_MAX_SECTION_88E,
92                       sizeof(void *) + EFUSE_MAX_WORD_UNIT * sizeof(u16),
93                       GFP_KERNEL);
94         if (!tmp) {
95                 DBG_88E("%s: alloc eFuseWord fail!\n", __func__);
96                 goto eFuseWord_failed;
97         }
98         for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
99                 tmp[i] = ((char *)(tmp + EFUSE_MAX_SECTION_88E)) + i * EFUSE_MAX_WORD_UNIT * sizeof(u16);
100         eFuseWord = (u16 **)tmp;
101
102         /*  0. Refresh efuse init map as all oxFF. */
103         for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
104                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
105                         eFuseWord[i][j] = 0xFFFF;
106
107         /*  */
108         /*  1. Read the first byte to check if efuse is empty!!! */
109         /*  */
110         /*  */
111         rtemp8 = *(phymap + eFuse_Addr);
112         if (rtemp8 != 0xFF) {
113                 efuse_utilized++;
114                 eFuse_Addr++;
115         } else {
116                 DBG_88E("EFUSE is empty efuse_Addr-%d efuse_data =%x\n", eFuse_Addr, rtemp8);
117                 goto exit;
118         }
119
120         /*  */
121         /*  2. Read real efuse content. Filter PG header and every section data. */
122         /*  */
123         while ((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
124                 /*  Check PG header for section num. */
125                 if ((rtemp8 & 0x1F) == 0x0F) {          /* extended header */
126                         u1temp = (rtemp8 & 0xE0) >> 5;
127                         rtemp8 = *(phymap + eFuse_Addr);
128                         if ((rtemp8 & 0x0F) == 0x0F) {
129                                 eFuse_Addr++;
130                                 rtemp8 = *(phymap + eFuse_Addr);
131
132                                 if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
133                                         eFuse_Addr++;
134                                 continue;
135                         } else {
136                                 offset = ((rtemp8 & 0xF0) >> 1) | u1temp;
137                                 wren = rtemp8 & 0x0F;
138                                 eFuse_Addr++;
139                         }
140                 } else {
141                         offset = (rtemp8 >> 4) & 0x0f;
142                         wren = rtemp8 & 0x0f;
143                 }
144
145                 if (offset < EFUSE_MAX_SECTION_88E) {
146                         /*  Get word enable value from PG header */
147                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
148                                 /*  Check word enable condition in the section */
149                                 if (!(wren & 0x01)) {
150                                         rtemp8 = *(phymap + eFuse_Addr);
151                                         eFuse_Addr++;
152                                         efuse_utilized++;
153                                         eFuseWord[offset][i] = (rtemp8 & 0xff);
154                                         if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
155                                                 break;
156                                         rtemp8 = *(phymap + eFuse_Addr);
157                                         eFuse_Addr++;
158                                         efuse_utilized++;
159                                         eFuseWord[offset][i] |= (((u16)rtemp8 << 8) & 0xff00);
160
161                                         if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
162                                                 break;
163                                 }
164                                 wren >>= 1;
165                         }
166                 }
167                 /*  Read next PG header */
168                 rtemp8 = *(phymap + eFuse_Addr);
169
170                 if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
171                         efuse_utilized++;
172                         eFuse_Addr++;
173                 }
174         }
175
176         /*  */
177         /*  3. Collect 16 sections and 4 word unit into Efuse map. */
178         /*  */
179         for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) {
180                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
181                         efuseTbl[(i * 8) + (j * 2)] = (eFuseWord[i][j] & 0xff);
182                         efuseTbl[(i * 8) + ((j * 2) + 1)] = ((eFuseWord[i][j] >> 8) & 0xff);
183                 }
184         }
185
186         /*  */
187         /*  4. Copy from Efuse map to output pointer memory!!! */
188         /*  */
189         for (i = 0; i < _size_byte; i++)
190                 pbuf[i] = efuseTbl[_offset + i];
191
192         /*  */
193         /*  5. Calculate Efuse utilization. */
194         /*  */
195
196 exit:
197         kfree(eFuseWord);
198
199 eFuseWord_failed:
200         kfree(efuseTbl);
201 }
202
203 static void efuse_read_phymap_from_txpktbuf(
204         struct adapter  *adapter,
205         int bcnhead,    /* beacon head, where FW store len(2-byte) and efuse physical map. */
206         u8 *content,    /* buffer to store efuse physical map */
207         u16 *size       /* for efuse content: the max byte to read. will update to byte read */
208         )
209 {
210         u16 dbg_addr = 0;
211         unsigned long start = 0;
212         u8 reg_0x143 = 0;
213         u32 lo32 = 0, hi32 = 0;
214         u16 len = 0, count = 0;
215         int i = 0;
216         u16 limit = *size;
217
218         u8 *pos = content;
219
220         if (bcnhead < 0) /* if not valid */
221                 bcnhead = usb_read8(adapter, REG_TDECTRL + 1);
222
223         DBG_88E("%s bcnhead:%d\n", __func__, bcnhead);
224
225         usb_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
226
227         dbg_addr = bcnhead * 128 / 8; /* 8-bytes addressing */
228
229         while (1) {
230                 usb_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr + i);
231
232                 usb_write8(adapter, REG_TXPKTBUF_DBG, 0);
233                 start = jiffies;
234                 while (!(reg_0x143 = usb_read8(adapter, REG_TXPKTBUF_DBG)) &&
235                        jiffies_to_msecs(jiffies - start) < 1000) {
236                         DBG_88E("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __func__, reg_0x143, usb_read8(adapter, 0x106));
237                         usleep_range(1000, 2000);
238                 }
239
240                 lo32 = usb_read32(adapter, REG_PKTBUF_DBG_DATA_L);
241                 hi32 = usb_read32(adapter, REG_PKTBUF_DBG_DATA_H);
242
243                 if (i == 0) {
244                         u8 lenc[2];
245                         u16 lenbak, aaabak;
246                         u16 aaa;
247
248                         lenc[0] = usb_read8(adapter, REG_PKTBUF_DBG_DATA_L);
249                         lenc[1] = usb_read8(adapter, REG_PKTBUF_DBG_DATA_L + 1);
250
251                         aaabak = le16_to_cpup((__le16 *)lenc);
252                         lenbak = le16_to_cpu(*((__le16 *)lenc));
253                         aaa = le16_to_cpup((__le16 *)&lo32);
254                         len = le16_to_cpu(*((__le16 *)&lo32));
255
256                         limit = min_t(u16, len - 2, limit);
257
258                         DBG_88E("%s len:%u, lenbak:%u, aaa:%u, aaabak:%u\n", __func__, len, lenbak, aaa, aaabak);
259
260                         memcpy(pos, ((u8 *)&lo32) + 2, (limit >= count + 2) ? 2 : limit - count);
261                         count += (limit >= count + 2) ? 2 : limit - count;
262                         pos = content + count;
263
264                 } else {
265                         memcpy(pos, ((u8 *)&lo32), (limit >= count + 4) ? 4 : limit - count);
266                         count += (limit >= count + 4) ? 4 : limit - count;
267                         pos = content + count;
268                 }
269
270                 if (limit > count && len - 2 > count) {
271                         memcpy(pos, (u8 *)&hi32, (limit >= count + 4) ? 4 : limit - count);
272                         count += (limit >= count + 4) ? 4 : limit - count;
273                         pos = content + count;
274                 }
275
276                 if (limit <= count || len - 2 <= count)
277                         break;
278                 i++;
279         }
280         usb_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS);
281         DBG_88E("%s read count:%u\n", __func__, count);
282         *size = count;
283 }
284
285 static s32 iol_read_efuse(struct adapter *padapter, u8 txpktbuf_bndy, u16 offset, u16 size_byte, u8 *logical_map)
286 {
287         s32 status = _FAIL;
288         u8 physical_map[512];
289         u16 size = 512;
290
291         usb_write8(padapter, REG_TDECTRL + 1, txpktbuf_bndy);
292         memset(physical_map, 0xFF, 512);
293         usb_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
294         status = iol_execute(padapter, CMD_READ_EFUSE_MAP);
295         if (status == _SUCCESS)
296                 efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size);
297         efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map);
298         return status;
299 }
300
301 void efuse_ReadEFuse(struct adapter *Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf)
302 {
303         if (rtw_iol_applied(Adapter)) {
304                 rtw_hal_power_on(Adapter);
305                 iol_mode_enable(Adapter, 1);
306                 iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf);
307                 iol_mode_enable(Adapter, 0);
308         }
309 }
310
311 u8 Efuse_WordEnableDataWrite(struct adapter *pAdapter, u16 efuse_addr, u8 word_en, u8 *data)
312 {
313         u16     tmpaddr = 0;
314         u16     start_addr = efuse_addr;
315         u8 badworden = 0x0F;
316         u8 tmpdata[8];
317
318         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
319
320         if (!(word_en & BIT(0))) {
321                 tmpaddr = start_addr;
322                 efuse_OneByteWrite(pAdapter, start_addr++, data[0]);
323                 efuse_OneByteWrite(pAdapter, start_addr++, data[1]);
324
325                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[0]);
326                 efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[1]);
327                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
328                         badworden &= (~BIT(0));
329         }
330         if (!(word_en & BIT(1))) {
331                 tmpaddr = start_addr;
332                 efuse_OneByteWrite(pAdapter, start_addr++, data[2]);
333                 efuse_OneByteWrite(pAdapter, start_addr++, data[3]);
334
335                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[2]);
336                 efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[3]);
337                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
338                         badworden &= (~BIT(1));
339         }
340         if (!(word_en & BIT(2))) {
341                 tmpaddr = start_addr;
342                 efuse_OneByteWrite(pAdapter, start_addr++, data[4]);
343                 efuse_OneByteWrite(pAdapter, start_addr++, data[5]);
344
345                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[4]);
346                 efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[5]);
347                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
348                         badworden &= (~BIT(2));
349         }
350         if (!(word_en & BIT(3))) {
351                 tmpaddr = start_addr;
352                 efuse_OneByteWrite(pAdapter, start_addr++, data[6]);
353                 efuse_OneByteWrite(pAdapter, start_addr++, data[7]);
354
355                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[6]);
356                 efuse_OneByteRead(pAdapter, tmpaddr + 1, &tmpdata[7]);
357                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
358                         badworden &= (~BIT(3));
359         }
360         return badworden;
361 }
362
363 static u16 Efuse_GetCurrentSize(struct adapter *pAdapter)
364 {
365         u16     efuse_addr = 0;
366         u8 hoffset = 0, hworden = 0;
367         u8 efuse_data, word_cnts = 0;
368
369         rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
370
371         while (efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data) &&
372                AVAILABLE_EFUSE_ADDR(efuse_addr)) {
373                 if (efuse_data != 0xFF) {
374                         if ((efuse_data & 0x1F) == 0x0F) {              /* extended header */
375                                 hoffset = efuse_data;
376                                 efuse_addr++;
377                                 efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data);
378                                 if ((efuse_data & 0x0F) == 0x0F) {
379                                         efuse_addr++;
380                                         continue;
381                                 } else {
382                                         hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
383                                         hworden = efuse_data & 0x0F;
384                                 }
385                         } else {
386                                 hoffset = (efuse_data >> 4) & 0x0F;
387                                 hworden =  efuse_data & 0x0F;
388                         }
389                         word_cnts = Efuse_CalculateWordCnts(hworden);
390                         /* read next header */
391                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
392                 } else {
393                         break;
394                 }
395         }
396
397         rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
398
399         return efuse_addr;
400 }
401
402 int Efuse_PgPacketRead(struct adapter *pAdapter, u8 offset, u8 *data)
403 {
404         u8 ReadState = PG_STATE_HEADER;
405         int     bDataEmpty = true;
406         u8 efuse_data, word_cnts = 0;
407         u16     efuse_addr = 0;
408         u8 hoffset = 0, hworden = 0;
409         u8 tmpidx = 0;
410         u8 tmpdata[8];
411         u8 tmp_header = 0;
412
413         if (!data)
414                 return false;
415         if (offset > EFUSE_MAX_SECTION_88E)
416                 return false;
417
418         memset(data, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
419         memset(tmpdata, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
420
421         /*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
422         /*  Skip dummy parts to prevent unexpected data read from Efuse. */
423         /*  By pass right now. 2009.02.19. */
424         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
425                 /*   Header Read ------------- */
426                 if (ReadState & PG_STATE_HEADER) {
427                         if (efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data) && (efuse_data != 0xFF)) {
428                                 if (EXT_HEADER(efuse_data)) {
429                                         tmp_header = efuse_data;
430                                         efuse_addr++;
431                                         efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data);
432                                         if (!ALL_WORDS_DISABLED(efuse_data)) {
433                                                 hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
434                                                 hworden = efuse_data & 0x0F;
435                                         } else {
436                                                 DBG_88E("Error, All words disabled\n");
437                                                 efuse_addr++;
438                                                 continue;
439                                         }
440                                 } else {
441                                         hoffset = (efuse_data >> 4) & 0x0F;
442                                         hworden =  efuse_data & 0x0F;
443                                 }
444                                 word_cnts = Efuse_CalculateWordCnts(hworden);
445                                 bDataEmpty = true;
446
447                                 if (hoffset == offset) {
448                                         for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
449                                                 if (efuse_OneByteRead(pAdapter, efuse_addr + 1 + tmpidx, &efuse_data)) {
450                                                         tmpdata[tmpidx] = efuse_data;
451                                                         if (efuse_data != 0xff)
452                                                                 bDataEmpty = false;
453                                                 }
454                                         }
455                                         if (!bDataEmpty) {
456                                                 ReadState = PG_STATE_DATA;
457                                         } else {/* read next header */
458                                                 efuse_addr = efuse_addr + (word_cnts * 2) + 1;
459                                                 ReadState = PG_STATE_HEADER;
460                                         }
461                                 } else {/* read next header */
462                                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
463                                         ReadState = PG_STATE_HEADER;
464                                 }
465                         } else {
466                                 break;
467                         }
468                 } else if (ReadState & PG_STATE_DATA) {
469                         /*   Data section Read ------------- */
470                         efuse_WordEnableDataRead(hworden, tmpdata, data);
471                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
472                         ReadState = PG_STATE_HEADER;
473                 }
474         }
475
476         if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff)  && (data[3] == 0xff) &&
477             (data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff)  && (data[7] == 0xff))
478                 return false;
479         else
480                 return true;
481 }
482
483 static bool hal_EfuseFixHeaderProcess(struct adapter *pAdapter, u8 efuseType, struct pgpkt *pFixPkt, u16 *pAddr)
484 {
485         u8 originaldata[8], badworden = 0;
486         u16     efuse_addr = *pAddr;
487         u32     PgWriteSuccess = 0;
488
489         memset(originaldata, 0xff, 8);
490
491         if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata)) {
492                 /* check if data exist */
493                 badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pFixPkt->word_en, originaldata);
494
495                 if (badworden != 0xf) { /*  write fail */
496                         PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata);
497
498                         if (!PgWriteSuccess)
499                                 return false;
500
501                         efuse_addr = Efuse_GetCurrentSize(pAdapter);
502                 } else {
503                         efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1;
504                 }
505         } else {
506                 efuse_addr = efuse_addr + (pFixPkt->word_cnts * 2) + 1;
507         }
508         *pAddr = efuse_addr;
509         return true;
510 }
511
512 static bool hal_EfusePgPacketWrite2ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
513 {
514         bool ret = false;
515         u16 efuse_addr = *pAddr;
516         u16 efuse_max_available_len =
517                 EFUSE_REAL_CONTENT_LEN_88E - EFUSE_OOB_PROTECT_BYTES_88E;
518         u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0;
519         u8 repeatcnt = 0;
520
521         while (efuse_addr < efuse_max_available_len) {
522                 pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
523                 efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
524                 efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
525
526                 while (tmp_header == 0xFF) {
527                         if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
528                                 return false;
529
530                         efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
531                         efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
532                 }
533
534                 /* to write ext_header */
535                 if (tmp_header == pg_header) {
536                         efuse_addr++;
537                         pg_header_temp = pg_header;
538                         pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
539
540                         efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
541                         efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
542
543                         while (tmp_header == 0xFF) {
544                                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
545                                         return false;
546
547                                 efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
548                                 efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
549                         }
550
551                         if ((tmp_header & 0x0F) == 0x0F) {      /* word_en PG fail */
552                                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
553                                         return false;
554
555                                 efuse_addr++;
556                                 continue;
557                         } else if (pg_header != tmp_header) {   /* offset PG fail */
558                                 struct pgpkt    fixPkt;
559
560                                 fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
561                                 fixPkt.word_en = tmp_header & 0x0F;
562                                 fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
563                                 if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr))
564                                         return false;
565                         } else {
566                                 ret = true;
567                                 break;
568                         }
569                 } else if ((tmp_header & 0x1F) == 0x0F) {               /* wrong extended header */
570                         efuse_addr += 2;
571                         continue;
572                 }
573         }
574
575         *pAddr = efuse_addr;
576         return ret;
577 }
578
579 static bool hal_EfusePgPacketWrite1ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
580 {
581         bool ret = false;
582         u8 pg_header = 0, tmp_header = 0;
583         u16     efuse_addr = *pAddr;
584         u8 repeatcnt = 0;
585
586         pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
587
588         efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
589         efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
590
591         while (tmp_header == 0xFF) {
592                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
593                         return false;
594                 efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
595                 efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
596         }
597
598         if (pg_header == tmp_header) {
599                 ret = true;
600         } else {
601                 struct pgpkt    fixPkt;
602
603                 fixPkt.offset = (tmp_header >> 4) & 0x0F;
604                 fixPkt.word_en = tmp_header & 0x0F;
605                 fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
606                 if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr))
607                         return false;
608         }
609
610         *pAddr = efuse_addr;
611         return ret;
612 }
613
614 static bool hal_EfusePgPacketWriteData(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
615 {
616         u16     efuse_addr = *pAddr;
617         u8 badworden;
618         u32     PgWriteSuccess = 0;
619
620         badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr + 1, pTargetPkt->word_en, pTargetPkt->data);
621         if (badworden == 0x0F) {
622                 /*  write ok */
623                 return true;
624         }
625         /* reorganize other pg packet */
626         PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data);
627         if (!PgWriteSuccess)
628                 return false;
629         else
630                 return true;
631 }
632
633 static bool
634 hal_EfusePgPacketWriteHeader(
635                                 struct adapter *pAdapter,
636                                 u8 efuseType,
637                                 u16                             *pAddr,
638                                 struct pgpkt *pTargetPkt)
639 {
640         bool ret = false;
641
642         if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
643                 ret = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt);
644         else
645                 ret = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt);
646
647         return ret;
648 }
649
650 static bool wordEnMatched(struct pgpkt *pTargetPkt, struct pgpkt *pCurPkt,
651                           u8 *pWden)
652 {
653         u8 match_word_en = 0x0F;        /*  default all words are disabled */
654
655         /*  check if the same words are enabled both target and current PG packet */
656         if (((pTargetPkt->word_en & BIT(0)) == 0) &&
657             ((pCurPkt->word_en & BIT(0)) == 0))
658                 match_word_en &= ~BIT(0);                               /*  enable word 0 */
659         if (((pTargetPkt->word_en & BIT(1)) == 0) &&
660             ((pCurPkt->word_en & BIT(1)) == 0))
661                 match_word_en &= ~BIT(1);                               /*  enable word 1 */
662         if (((pTargetPkt->word_en & BIT(2)) == 0) &&
663             ((pCurPkt->word_en & BIT(2)) == 0))
664                 match_word_en &= ~BIT(2);                               /*  enable word 2 */
665         if (((pTargetPkt->word_en & BIT(3)) == 0) &&
666             ((pCurPkt->word_en & BIT(3)) == 0))
667                 match_word_en &= ~BIT(3);                               /*  enable word 3 */
668
669         *pWden = match_word_en;
670
671         if (match_word_en != 0xf)
672                 return true;
673         else
674                 return false;
675 }
676
677 static bool hal_EfuseCheckIfDatafollowed(struct adapter *pAdapter, u8 word_cnts, u16 startAddr)
678 {
679         bool ret = false;
680         u8 i, efuse_data;
681
682         for (i = 0; i < (word_cnts * 2); i++) {
683                 if (efuse_OneByteRead(pAdapter, (startAddr + i), &efuse_data) && (efuse_data != 0xFF))
684                         ret = true;
685         }
686         return ret;
687 }
688
689 static bool hal_EfusePartialWriteCheck(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
690 {
691         bool ret = false;
692         u8 i, efuse_data = 0, cur_header = 0;
693         u8 matched_wden = 0, badworden = 0;
694         u16 startAddr = 0;
695         u16 efuse_max_available_len =
696                 EFUSE_REAL_CONTENT_LEN_88E - EFUSE_OOB_PROTECT_BYTES_88E;
697         struct pgpkt curPkt;
698
699         rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
700         startAddr %= EFUSE_REAL_CONTENT_LEN;
701
702         while (1) {
703                 if (startAddr >= efuse_max_available_len) {
704                         ret = false;
705                         break;
706                 }
707
708                 if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data) && (efuse_data != 0xFF)) {
709                         if (EXT_HEADER(efuse_data)) {
710                                 cur_header = efuse_data;
711                                 startAddr++;
712                                 efuse_OneByteRead(pAdapter, startAddr, &efuse_data);
713                                 if (ALL_WORDS_DISABLED(efuse_data)) {
714                                         ret = false;
715                                         break;
716                                 }
717                                 curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
718                                 curPkt.word_en = efuse_data & 0x0F;
719                         } else {
720                                 cur_header  =  efuse_data;
721                                 curPkt.offset = (cur_header >> 4) & 0x0F;
722                                 curPkt.word_en = cur_header & 0x0F;
723                         }
724
725                         curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
726                         /*  if same header is found but no data followed */
727                         /*  write some part of data followed by the header. */
728                         if ((curPkt.offset == pTargetPkt->offset) &&
729                             (!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr + 1)) &&
730                             wordEnMatched(pTargetPkt, &curPkt, &matched_wden)) {
731                                 /*  Here to write partial data */
732                                 badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr + 1, matched_wden, pTargetPkt->data);
733                                 if (badworden != 0x0F) {
734                                         u32     PgWriteSuccess = 0;
735                                         /*  if write fail on some words, write these bad words again */
736
737                                         PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data);
738
739                                         if (!PgWriteSuccess) {
740                                                 ret = false;    /*  write fail, return */
741                                                 break;
742                                         }
743                                 }
744                                 /*  partial write ok, update the target packet for later use */
745                                 for (i = 0; i < 4; i++) {
746                                         if ((matched_wden & (0x1 << i)) == 0)   /*  this word has been written */
747                                                 pTargetPkt->word_en |= (0x1 << i);      /*  disable the word */
748                                 }
749                                 pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
750                         }
751                         /*  read from next header */
752                         startAddr = startAddr + (curPkt.word_cnts * 2) + 1;
753                 } else {
754                         /*  not used header, 0xff */
755                         *pAddr = startAddr;
756                         ret = true;
757                         break;
758                 }
759         }
760         return ret;
761 }
762
763 static void hal_EfuseConstructPGPkt(u8 offset, u8 word_en, u8 *pData, struct pgpkt *pTargetPkt)
764 {
765         memset((void *)pTargetPkt->data, 0xFF, sizeof(u8) * 8);
766         pTargetPkt->offset = offset;
767         pTargetPkt->word_en = word_en;
768         efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
769         pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
770 }
771
772 bool Efuse_PgPacketWrite(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *pData)
773 {
774         struct pgpkt    targetPkt;
775         u16                     startAddr = 0;
776         u8 efuseType = EFUSE_WIFI;
777
778         if (Efuse_GetCurrentSize(pAdapter) >= EFUSE_MAP_LEN_88E)
779                 return false;
780
781         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
782
783         if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt))
784                 return false;
785
786         if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt))
787                 return false;
788
789         if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt))
790                 return false;
791
792         return true;
793 }
794
795 u8 Efuse_CalculateWordCnts(u8 word_en)
796 {
797         u8 word_cnts = 0;
798
799         if (!(word_en & BIT(0)))
800                 word_cnts++; /*  0 : write enable */
801         if (!(word_en & BIT(1)))
802                 word_cnts++;
803         if (!(word_en & BIT(2)))
804                 word_cnts++;
805         if (!(word_en & BIT(3)))
806                 word_cnts++;
807         return word_cnts;
808 }
809
810 u8 efuse_OneByteRead(struct adapter *pAdapter, u16 addr, u8 *data)
811 {
812         u8 tmpidx = 0;
813         u8 result;
814
815         usb_write8(pAdapter, EFUSE_CTRL + 1, (u8)(addr & 0xff));
816         usb_write8(pAdapter, EFUSE_CTRL + 2, ((u8)((addr >> 8) & 0x03)) |
817                    (usb_read8(pAdapter, EFUSE_CTRL + 2) & 0xFC));
818
819         usb_write8(pAdapter, EFUSE_CTRL + 3,  0x72);/* read cmd */
820
821         while (!(0x80 & usb_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 100))
822                 tmpidx++;
823         if (tmpidx < 100) {
824                 *data = usb_read8(pAdapter, EFUSE_CTRL);
825                 result = true;
826         } else {
827                 *data = 0xff;
828                 result = false;
829         }
830         return result;
831 }
832
833 u8 efuse_OneByteWrite(struct adapter *pAdapter, u16 addr, u8 data)
834 {
835         u8 tmpidx = 0;
836         u8 result;
837
838         usb_write8(pAdapter, EFUSE_CTRL + 1, (u8)(addr & 0xff));
839         usb_write8(pAdapter, EFUSE_CTRL + 2,
840                    (usb_read8(pAdapter, EFUSE_CTRL + 2) & 0xFC) |
841                    (u8)((addr >> 8) & 0x03));
842         usb_write8(pAdapter, EFUSE_CTRL, data);/* data */
843
844         usb_write8(pAdapter, EFUSE_CTRL + 3, 0xF2);/* write cmd */
845
846         while ((0x80 &  usb_read8(pAdapter, EFUSE_CTRL + 3)) && (tmpidx < 100))
847                 tmpidx++;
848
849         if (tmpidx < 100)
850                 result = true;
851         else
852                 result = false;
853
854         return result;
855 }
856
857 /* Read allowed word in current efuse section data. */
858 void efuse_WordEnableDataRead(u8 word_en, u8 *sourdata, u8 *targetdata)
859 {
860         if (!(word_en & BIT(0))) {
861                 targetdata[0] = sourdata[0];
862                 targetdata[1] = sourdata[1];
863         }
864         if (!(word_en & BIT(1))) {
865                 targetdata[2] = sourdata[2];
866                 targetdata[3] = sourdata[3];
867         }
868         if (!(word_en & BIT(2))) {
869                 targetdata[4] = sourdata[4];
870                 targetdata[5] = sourdata[5];
871         }
872         if (!(word_en & BIT(3))) {
873                 targetdata[6] = sourdata[6];
874                 targetdata[7] = sourdata[7];
875         }
876 }
877
878 /* Read All Efuse content */
879 static void Efuse_ReadAllMap(struct adapter *pAdapter, u8 efuseType, u8 *Efuse)
880 {
881         efuse_power_switch(pAdapter, false, true);
882
883         efuse_ReadEFuse(pAdapter, efuseType, 0, EFUSE_MAP_LEN_88E, Efuse);
884
885         efuse_power_switch(pAdapter, false, false);
886 }
887
888 /* Transfer current EFUSE content to shadow init and modify map. */
889 void EFUSE_ShadowMapUpdate(struct adapter *pAdapter, u8 efuseType)
890 {
891         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(pAdapter);
892
893         if (pEEPROM->bautoload_fail_flag)
894                 memset(pEEPROM->efuse_eeprom_data, 0xFF, EFUSE_MAP_LEN_88E);
895         else
896                 Efuse_ReadAllMap(pAdapter, efuseType, pEEPROM->efuse_eeprom_data);
897 }