staging: most: usb: use function sysfs_streq
[linux-2.6-microblaze.git] / drivers / staging / most / usb / usb.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * usb.c - Hardware dependent module for USB
4  *
5  * Copyright (C) 2013-2015 Microchip Technology Germany II GmbH & Co. KG
6  */
7
8 #include <linux/module.h>
9 #include <linux/fs.h>
10 #include <linux/usb.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/list.h>
16 #include <linux/completion.h>
17 #include <linux/mutex.h>
18 #include <linux/spinlock.h>
19 #include <linux/interrupt.h>
20 #include <linux/workqueue.h>
21 #include <linux/sysfs.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/etherdevice.h>
24 #include <linux/uaccess.h>
25 #include <linux/most.h>
26
27 #define USB_MTU                 512
28 #define NO_ISOCHRONOUS_URB      0
29 #define AV_PACKETS_PER_XACT     2
30 #define BUF_CHAIN_SIZE          0xFFFF
31 #define MAX_NUM_ENDPOINTS       30
32 #define MAX_SUFFIX_LEN          10
33 #define MAX_STRING_LEN          80
34 #define MAX_BUF_SIZE            0xFFFF
35
36 #define USB_VENDOR_ID_SMSC      0x0424  /* VID: SMSC */
37 #define USB_DEV_ID_BRDG         0xC001  /* PID: USB Bridge */
38 #define USB_DEV_ID_OS81118      0xCF18  /* PID: USB OS81118 */
39 #define USB_DEV_ID_OS81119      0xCF19  /* PID: USB OS81119 */
40 #define USB_DEV_ID_OS81210      0xCF30  /* PID: USB OS81210 */
41 /* DRCI Addresses */
42 #define DRCI_REG_NI_STATE       0x0100
43 #define DRCI_REG_PACKET_BW      0x0101
44 #define DRCI_REG_NODE_ADDR      0x0102
45 #define DRCI_REG_NODE_POS       0x0103
46 #define DRCI_REG_MEP_FILTER     0x0140
47 #define DRCI_REG_HASH_TBL0      0x0141
48 #define DRCI_REG_HASH_TBL1      0x0142
49 #define DRCI_REG_HASH_TBL2      0x0143
50 #define DRCI_REG_HASH_TBL3      0x0144
51 #define DRCI_REG_HW_ADDR_HI     0x0145
52 #define DRCI_REG_HW_ADDR_MI     0x0146
53 #define DRCI_REG_HW_ADDR_LO     0x0147
54 #define DRCI_REG_BASE           0x1100
55 #define DRCI_COMMAND            0x02
56 #define DRCI_READ_REQ           0xA0
57 #define DRCI_WRITE_REQ          0xA1
58
59 /**
60  * struct most_dci_obj - Direct Communication Interface
61  * @kobj:position in sysfs
62  * @usb_device: pointer to the usb device
63  * @reg_addr: register address for arbitrary DCI access
64  */
65 struct most_dci_obj {
66         struct device dev;
67         struct usb_device *usb_device;
68         u16 reg_addr;
69 };
70
71 #define to_dci_obj(p) container_of(p, struct most_dci_obj, dev)
72
73 struct most_dev;
74
75 struct clear_hold_work {
76         struct work_struct ws;
77         struct most_dev *mdev;
78         unsigned int channel;
79         int pipe;
80 };
81
82 #define to_clear_hold_work(w) container_of(w, struct clear_hold_work, ws)
83
84 /**
85  * struct most_dev - holds all usb interface specific stuff
86  * @usb_device: pointer to usb device
87  * @iface: hardware interface
88  * @cap: channel capabilities
89  * @conf: channel configuration
90  * @dci: direct communication interface of hardware
91  * @ep_address: endpoint address table
92  * @description: device description
93  * @suffix: suffix for channel name
94  * @channel_lock: synchronize channel access
95  * @padding_active: indicates channel uses padding
96  * @is_channel_healthy: health status table of each channel
97  * @busy_urbs: list of anchored items
98  * @io_mutex: synchronize I/O with disconnect
99  * @link_stat_timer: timer for link status reports
100  * @poll_work_obj: work for polling link status
101  */
102 struct most_dev {
103         struct device dev;
104         struct usb_device *usb_device;
105         struct most_interface iface;
106         struct most_channel_capability *cap;
107         struct most_channel_config *conf;
108         struct most_dci_obj *dci;
109         u8 *ep_address;
110         char description[MAX_STRING_LEN];
111         char suffix[MAX_NUM_ENDPOINTS][MAX_SUFFIX_LEN];
112         spinlock_t channel_lock[MAX_NUM_ENDPOINTS]; /* sync channel access */
113         bool padding_active[MAX_NUM_ENDPOINTS];
114         bool is_channel_healthy[MAX_NUM_ENDPOINTS];
115         struct clear_hold_work clear_work[MAX_NUM_ENDPOINTS];
116         struct usb_anchor *busy_urbs;
117         struct mutex io_mutex;
118         struct timer_list link_stat_timer;
119         struct work_struct poll_work_obj;
120         void (*on_netinfo)(struct most_interface *most_iface,
121                            unsigned char link_state, unsigned char *addrs);
122 };
123
124 #define to_mdev(d) container_of(d, struct most_dev, iface)
125 #define to_mdev_from_dev(d) container_of(d, struct most_dev, dev)
126 #define to_mdev_from_work(w) container_of(w, struct most_dev, poll_work_obj)
127
128 static void wq_clear_halt(struct work_struct *wq_obj);
129 static void wq_netinfo(struct work_struct *wq_obj);
130
131 /**
132  * drci_rd_reg - read a DCI register
133  * @dev: usb device
134  * @reg: register address
135  * @buf: buffer to store data
136  *
137  * This is reads data from INIC's direct register communication interface
138  */
139 static inline int drci_rd_reg(struct usb_device *dev, u16 reg, u16 *buf)
140 {
141         int retval;
142         __le16 *dma_buf;
143         u8 req_type = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
144
145         dma_buf = kzalloc(sizeof(*dma_buf), GFP_KERNEL);
146         if (!dma_buf)
147                 return -ENOMEM;
148
149         retval = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
150                                  DRCI_READ_REQ, req_type,
151                                  0x0000,
152                                  reg, dma_buf, sizeof(*dma_buf), 5 * HZ);
153         *buf = le16_to_cpu(*dma_buf);
154         kfree(dma_buf);
155
156         if (retval < 0)
157                 return retval;
158         return 0;
159 }
160
161 /**
162  * drci_wr_reg - write a DCI register
163  * @dev: usb device
164  * @reg: register address
165  * @data: data to write
166  *
167  * This is writes data to INIC's direct register communication interface
168  */
169 static inline int drci_wr_reg(struct usb_device *dev, u16 reg, u16 data)
170 {
171         return usb_control_msg(dev,
172                                usb_sndctrlpipe(dev, 0),
173                                DRCI_WRITE_REQ,
174                                USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
175                                data,
176                                reg,
177                                NULL,
178                                0,
179                                5 * HZ);
180 }
181
182 static inline int start_sync_ep(struct usb_device *usb_dev, u16 ep)
183 {
184         return drci_wr_reg(usb_dev, DRCI_REG_BASE + DRCI_COMMAND + ep * 16, 1);
185 }
186
187 /**
188  * get_stream_frame_size - calculate frame size of current configuration
189  * @dev: device structure
190  * @cfg: channel configuration
191  */
192 static unsigned int get_stream_frame_size(struct device *dev,
193                                           struct most_channel_config *cfg)
194 {
195         unsigned int frame_size;
196         unsigned int sub_size = cfg->subbuffer_size;
197
198         if (!sub_size) {
199                 dev_warn(dev, "Misconfig: Subbuffer size zero.\n");
200                 return 0;
201         }
202         switch (cfg->data_type) {
203         case MOST_CH_ISOC:
204                 frame_size = AV_PACKETS_PER_XACT * sub_size;
205                 break;
206         case MOST_CH_SYNC:
207                 if (cfg->packets_per_xact == 0) {
208                         dev_warn(dev, "Misconfig: Packets per XACT zero\n");
209                         frame_size = 0;
210                 } else if (cfg->packets_per_xact == 0xFF) {
211                         frame_size = (USB_MTU / sub_size) * sub_size;
212                 } else {
213                         frame_size = cfg->packets_per_xact * sub_size;
214                 }
215                 break;
216         default:
217                 dev_warn(dev, "Query frame size of non-streaming channel\n");
218                 break;
219         }
220         return frame_size;
221 }
222
223 /**
224  * hdm_poison_channel - mark buffers of this channel as invalid
225  * @iface: pointer to the interface
226  * @channel: channel ID
227  *
228  * This unlinks all URBs submitted to the HCD,
229  * calls the associated completion function of the core and removes
230  * them from the list.
231  *
232  * Returns 0 on success or error code otherwise.
233  */
234 static int hdm_poison_channel(struct most_interface *iface, int channel)
235 {
236         struct most_dev *mdev = to_mdev(iface);
237         unsigned long flags;
238         spinlock_t *lock; /* temp. lock */
239
240         if (channel < 0 || channel >= iface->num_channels) {
241                 dev_warn(&mdev->usb_device->dev, "Channel ID out of range.\n");
242                 return -ECHRNG;
243         }
244
245         lock = mdev->channel_lock + channel;
246         spin_lock_irqsave(lock, flags);
247         mdev->is_channel_healthy[channel] = false;
248         spin_unlock_irqrestore(lock, flags);
249
250         cancel_work_sync(&mdev->clear_work[channel].ws);
251
252         mutex_lock(&mdev->io_mutex);
253         usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
254         if (mdev->padding_active[channel])
255                 mdev->padding_active[channel] = false;
256
257         if (mdev->conf[channel].data_type == MOST_CH_ASYNC) {
258                 del_timer_sync(&mdev->link_stat_timer);
259                 cancel_work_sync(&mdev->poll_work_obj);
260         }
261         mutex_unlock(&mdev->io_mutex);
262         return 0;
263 }
264
265 /**
266  * hdm_add_padding - add padding bytes
267  * @mdev: most device
268  * @channel: channel ID
269  * @mbo: buffer object
270  *
271  * This inserts the INIC hardware specific padding bytes into a streaming
272  * channel's buffer
273  */
274 static int hdm_add_padding(struct most_dev *mdev, int channel, struct mbo *mbo)
275 {
276         struct most_channel_config *conf = &mdev->conf[channel];
277         unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
278         unsigned int j, num_frames;
279
280         if (!frame_size)
281                 return -EINVAL;
282         num_frames = mbo->buffer_length / frame_size;
283
284         if (num_frames < 1) {
285                 dev_err(&mdev->usb_device->dev,
286                         "Missed minimal transfer unit.\n");
287                 return -EINVAL;
288         }
289
290         for (j = num_frames - 1; j > 0; j--)
291                 memmove(mbo->virt_address + j * USB_MTU,
292                         mbo->virt_address + j * frame_size,
293                         frame_size);
294         mbo->buffer_length = num_frames * USB_MTU;
295         return 0;
296 }
297
298 /**
299  * hdm_remove_padding - remove padding bytes
300  * @mdev: most device
301  * @channel: channel ID
302  * @mbo: buffer object
303  *
304  * This takes the INIC hardware specific padding bytes off a streaming
305  * channel's buffer.
306  */
307 static int hdm_remove_padding(struct most_dev *mdev, int channel,
308                               struct mbo *mbo)
309 {
310         struct most_channel_config *const conf = &mdev->conf[channel];
311         unsigned int frame_size = get_stream_frame_size(&mdev->dev, conf);
312         unsigned int j, num_frames;
313
314         if (!frame_size)
315                 return -EINVAL;
316         num_frames = mbo->processed_length / USB_MTU;
317
318         for (j = 1; j < num_frames; j++)
319                 memmove(mbo->virt_address + frame_size * j,
320                         mbo->virt_address + USB_MTU * j,
321                         frame_size);
322
323         mbo->processed_length = frame_size * num_frames;
324         return 0;
325 }
326
327 /**
328  * hdm_write_completion - completion function for submitted Tx URBs
329  * @urb: the URB that has been completed
330  *
331  * This checks the status of the completed URB. In case the URB has been
332  * unlinked before, it is immediately freed. On any other error the MBO
333  * transfer flag is set. On success it frees allocated resources and calls
334  * the completion function.
335  *
336  * Context: interrupt!
337  */
338 static void hdm_write_completion(struct urb *urb)
339 {
340         struct mbo *mbo = urb->context;
341         struct most_dev *mdev = to_mdev(mbo->ifp);
342         unsigned int channel = mbo->hdm_channel_id;
343         spinlock_t *lock = mdev->channel_lock + channel;
344         unsigned long flags;
345
346         spin_lock_irqsave(lock, flags);
347
348         mbo->processed_length = 0;
349         mbo->status = MBO_E_INVAL;
350         if (likely(mdev->is_channel_healthy[channel])) {
351                 switch (urb->status) {
352                 case 0:
353                 case -ESHUTDOWN:
354                         mbo->processed_length = urb->actual_length;
355                         mbo->status = MBO_SUCCESS;
356                         break;
357                 case -EPIPE:
358                         dev_warn(&mdev->usb_device->dev,
359                                  "Broken pipe on ep%02x\n",
360                                  mdev->ep_address[channel]);
361                         mdev->is_channel_healthy[channel] = false;
362                         mdev->clear_work[channel].pipe = urb->pipe;
363                         schedule_work(&mdev->clear_work[channel].ws);
364                         break;
365                 case -ENODEV:
366                 case -EPROTO:
367                         mbo->status = MBO_E_CLOSE;
368                         break;
369                 }
370         }
371
372         spin_unlock_irqrestore(lock, flags);
373
374         if (likely(mbo->complete))
375                 mbo->complete(mbo);
376         usb_free_urb(urb);
377 }
378
379 /**
380  * hdm_read_completion - completion function for submitted Rx URBs
381  * @urb: the URB that has been completed
382  *
383  * This checks the status of the completed URB. In case the URB has been
384  * unlinked before it is immediately freed. On any other error the MBO transfer
385  * flag is set. On success it frees allocated resources, removes
386  * padding bytes -if necessary- and calls the completion function.
387  *
388  * Context: interrupt!
389  */
390 static void hdm_read_completion(struct urb *urb)
391 {
392         struct mbo *mbo = urb->context;
393         struct most_dev *mdev = to_mdev(mbo->ifp);
394         unsigned int channel = mbo->hdm_channel_id;
395         struct device *dev = &mdev->usb_device->dev;
396         spinlock_t *lock = mdev->channel_lock + channel;
397         unsigned long flags;
398
399         spin_lock_irqsave(lock, flags);
400
401         mbo->processed_length = 0;
402         mbo->status = MBO_E_INVAL;
403         if (likely(mdev->is_channel_healthy[channel])) {
404                 switch (urb->status) {
405                 case 0:
406                 case -ESHUTDOWN:
407                         mbo->processed_length = urb->actual_length;
408                         mbo->status = MBO_SUCCESS;
409                         if (mdev->padding_active[channel] &&
410                             hdm_remove_padding(mdev, channel, mbo)) {
411                                 mbo->processed_length = 0;
412                                 mbo->status = MBO_E_INVAL;
413                         }
414                         break;
415                 case -EPIPE:
416                         dev_warn(dev, "Broken pipe on ep%02x\n",
417                                  mdev->ep_address[channel]);
418                         mdev->is_channel_healthy[channel] = false;
419                         mdev->clear_work[channel].pipe = urb->pipe;
420                         schedule_work(&mdev->clear_work[channel].ws);
421                         break;
422                 case -ENODEV:
423                 case -EPROTO:
424                         mbo->status = MBO_E_CLOSE;
425                         break;
426                 case -EOVERFLOW:
427                         dev_warn(dev, "Babble on ep%02x\n",
428                                  mdev->ep_address[channel]);
429                         break;
430                 }
431         }
432
433         spin_unlock_irqrestore(lock, flags);
434
435         if (likely(mbo->complete))
436                 mbo->complete(mbo);
437         usb_free_urb(urb);
438 }
439
440 /**
441  * hdm_enqueue - receive a buffer to be used for data transfer
442  * @iface: interface to enqueue to
443  * @channel: ID of the channel
444  * @mbo: pointer to the buffer object
445  *
446  * This allocates a new URB and fills it according to the channel
447  * that is being used for transmission of data. Before the URB is
448  * submitted it is stored in the private anchor list.
449  *
450  * Returns 0 on success. On any error the URB is freed and a error code
451  * is returned.
452  *
453  * Context: Could in _some_ cases be interrupt!
454  */
455 static int hdm_enqueue(struct most_interface *iface, int channel,
456                        struct mbo *mbo)
457 {
458         struct most_dev *mdev = to_mdev(iface);
459         struct most_channel_config *conf;
460         int retval = 0;
461         struct urb *urb;
462         unsigned long length;
463         void *virt_address;
464
465         if (!mbo)
466                 return -EINVAL;
467         if (iface->num_channels <= channel || channel < 0)
468                 return -ECHRNG;
469
470         urb = usb_alloc_urb(NO_ISOCHRONOUS_URB, GFP_KERNEL);
471         if (!urb)
472                 return -ENOMEM;
473
474         conf = &mdev->conf[channel];
475
476         mutex_lock(&mdev->io_mutex);
477         if (!mdev->usb_device) {
478                 retval = -ENODEV;
479                 goto err_free_urb;
480         }
481
482         if ((conf->direction & MOST_CH_TX) && mdev->padding_active[channel] &&
483             hdm_add_padding(mdev, channel, mbo)) {
484                 retval = -EINVAL;
485                 goto err_free_urb;
486         }
487
488         urb->transfer_dma = mbo->bus_address;
489         virt_address = mbo->virt_address;
490         length = mbo->buffer_length;
491
492         if (conf->direction & MOST_CH_TX) {
493                 usb_fill_bulk_urb(urb, mdev->usb_device,
494                                   usb_sndbulkpipe(mdev->usb_device,
495                                                   mdev->ep_address[channel]),
496                                   virt_address,
497                                   length,
498                                   hdm_write_completion,
499                                   mbo);
500                 if (conf->data_type != MOST_CH_ISOC &&
501                     conf->data_type != MOST_CH_SYNC)
502                         urb->transfer_flags |= URB_ZERO_PACKET;
503         } else {
504                 usb_fill_bulk_urb(urb, mdev->usb_device,
505                                   usb_rcvbulkpipe(mdev->usb_device,
506                                                   mdev->ep_address[channel]),
507                                   virt_address,
508                                   length + conf->extra_len,
509                                   hdm_read_completion,
510                                   mbo);
511         }
512         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
513
514         usb_anchor_urb(urb, &mdev->busy_urbs[channel]);
515
516         retval = usb_submit_urb(urb, GFP_KERNEL);
517         if (retval) {
518                 dev_err(&mdev->usb_device->dev,
519                         "URB submit failed with error %d.\n", retval);
520                 goto err_unanchor_urb;
521         }
522         mutex_unlock(&mdev->io_mutex);
523         return 0;
524
525 err_unanchor_urb:
526         usb_unanchor_urb(urb);
527 err_free_urb:
528         usb_free_urb(urb);
529         mutex_unlock(&mdev->io_mutex);
530         return retval;
531 }
532
533 static void *hdm_dma_alloc(struct mbo *mbo, u32 size)
534 {
535         struct most_dev *mdev = to_mdev(mbo->ifp);
536
537         return usb_alloc_coherent(mdev->usb_device, size, GFP_KERNEL,
538                                   &mbo->bus_address);
539 }
540
541 static void hdm_dma_free(struct mbo *mbo, u32 size)
542 {
543         struct most_dev *mdev = to_mdev(mbo->ifp);
544
545         usb_free_coherent(mdev->usb_device, size, mbo->virt_address,
546                           mbo->bus_address);
547 }
548
549 /**
550  * hdm_configure_channel - receive channel configuration from core
551  * @iface: interface
552  * @channel: channel ID
553  * @conf: structure that holds the configuration information
554  *
555  * The attached network interface controller (NIC) supports a padding mode
556  * to avoid short packets on USB, hence increasing the performance due to a
557  * lower interrupt load. This mode is default for synchronous data and can
558  * be switched on for isochronous data. In case padding is active the
559  * driver needs to know the frame size of the payload in order to calculate
560  * the number of bytes it needs to pad when transmitting or to cut off when
561  * receiving data.
562  *
563  */
564 static int hdm_configure_channel(struct most_interface *iface, int channel,
565                                  struct most_channel_config *conf)
566 {
567         unsigned int num_frames;
568         unsigned int frame_size;
569         struct most_dev *mdev = to_mdev(iface);
570         struct device *dev = &mdev->usb_device->dev;
571
572         if (!conf) {
573                 dev_err(dev, "Bad config pointer.\n");
574                 return -EINVAL;
575         }
576         if (channel < 0 || channel >= iface->num_channels) {
577                 dev_err(dev, "Channel ID out of range.\n");
578                 return -EINVAL;
579         }
580
581         mdev->is_channel_healthy[channel] = true;
582         mdev->clear_work[channel].channel = channel;
583         mdev->clear_work[channel].mdev = mdev;
584         INIT_WORK(&mdev->clear_work[channel].ws, wq_clear_halt);
585
586         if (!conf->num_buffers || !conf->buffer_size) {
587                 dev_err(dev, "Misconfig: buffer size or #buffers zero.\n");
588                 return -EINVAL;
589         }
590
591         if (conf->data_type != MOST_CH_SYNC &&
592             !(conf->data_type == MOST_CH_ISOC &&
593               conf->packets_per_xact != 0xFF)) {
594                 mdev->padding_active[channel] = false;
595                 /*
596                  * Since the NIC's padding mode is not going to be
597                  * used, we can skip the frame size calculations and
598                  * move directly on to exit.
599                  */
600                 goto exit;
601         }
602
603         mdev->padding_active[channel] = true;
604
605         frame_size = get_stream_frame_size(&mdev->dev, conf);
606         if (frame_size == 0 || frame_size > USB_MTU) {
607                 dev_warn(dev, "Misconfig: frame size wrong\n");
608                 return -EINVAL;
609         }
610
611         num_frames = conf->buffer_size / frame_size;
612
613         if (conf->buffer_size % frame_size) {
614                 u16 old_size = conf->buffer_size;
615
616                 conf->buffer_size = num_frames * frame_size;
617                 dev_warn(dev, "%s: fixed buffer size (%d -> %d)\n",
618                          mdev->suffix[channel], old_size, conf->buffer_size);
619         }
620
621         /* calculate extra length to comply w/ HW padding */
622         conf->extra_len = num_frames * (USB_MTU - frame_size);
623
624 exit:
625         mdev->conf[channel] = *conf;
626         if (conf->data_type == MOST_CH_ASYNC) {
627                 u16 ep = mdev->ep_address[channel];
628
629                 if (start_sync_ep(mdev->usb_device, ep) < 0)
630                         dev_warn(dev, "sync for ep%02x failed", ep);
631         }
632         return 0;
633 }
634
635 /**
636  * hdm_request_netinfo - request network information
637  * @iface: pointer to interface
638  * @channel: channel ID
639  *
640  * This is used as trigger to set up the link status timer that
641  * polls for the NI state of the INIC every 2 seconds.
642  *
643  */
644 static void hdm_request_netinfo(struct most_interface *iface, int channel,
645                                 void (*on_netinfo)(struct most_interface *,
646                                                    unsigned char,
647                                                    unsigned char *))
648 {
649         struct most_dev *mdev = to_mdev(iface);
650
651         mdev->on_netinfo = on_netinfo;
652         if (!on_netinfo)
653                 return;
654
655         mdev->link_stat_timer.expires = jiffies + HZ;
656         mod_timer(&mdev->link_stat_timer, mdev->link_stat_timer.expires);
657 }
658
659 /**
660  * link_stat_timer_handler - schedule work obtaining mac address and link status
661  * @data: pointer to USB device instance
662  *
663  * The handler runs in interrupt context. That's why we need to defer the
664  * tasks to a work queue.
665  */
666 static void link_stat_timer_handler(struct timer_list *t)
667 {
668         struct most_dev *mdev = from_timer(mdev, t, link_stat_timer);
669
670         schedule_work(&mdev->poll_work_obj);
671         mdev->link_stat_timer.expires = jiffies + (2 * HZ);
672         add_timer(&mdev->link_stat_timer);
673 }
674
675 /**
676  * wq_netinfo - work queue function to deliver latest networking information
677  * @wq_obj: object that holds data for our deferred work to do
678  *
679  * This retrieves the network interface status of the USB INIC
680  */
681 static void wq_netinfo(struct work_struct *wq_obj)
682 {
683         struct most_dev *mdev = to_mdev_from_work(wq_obj);
684         struct usb_device *usb_device = mdev->usb_device;
685         struct device *dev = &usb_device->dev;
686         u16 hi, mi, lo, link;
687         u8 hw_addr[6];
688
689         if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_HI, &hi)) {
690                 dev_err(dev, "Vendor request 'hw_addr_hi' failed\n");
691                 return;
692         }
693
694         if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_MI, &mi)) {
695                 dev_err(dev, "Vendor request 'hw_addr_mid' failed\n");
696                 return;
697         }
698
699         if (drci_rd_reg(usb_device, DRCI_REG_HW_ADDR_LO, &lo)) {
700                 dev_err(dev, "Vendor request 'hw_addr_low' failed\n");
701                 return;
702         }
703
704         if (drci_rd_reg(usb_device, DRCI_REG_NI_STATE, &link)) {
705                 dev_err(dev, "Vendor request 'link status' failed\n");
706                 return;
707         }
708
709         hw_addr[0] = hi >> 8;
710         hw_addr[1] = hi;
711         hw_addr[2] = mi >> 8;
712         hw_addr[3] = mi;
713         hw_addr[4] = lo >> 8;
714         hw_addr[5] = lo;
715
716         if (mdev->on_netinfo)
717                 mdev->on_netinfo(&mdev->iface, link, hw_addr);
718 }
719
720 /**
721  * wq_clear_halt - work queue function
722  * @wq_obj: work_struct object to execute
723  *
724  * This sends a clear_halt to the given USB pipe.
725  */
726 static void wq_clear_halt(struct work_struct *wq_obj)
727 {
728         struct clear_hold_work *clear_work = to_clear_hold_work(wq_obj);
729         struct most_dev *mdev = clear_work->mdev;
730         unsigned int channel = clear_work->channel;
731         int pipe = clear_work->pipe;
732         int snd_pipe;
733         int peer;
734
735         mutex_lock(&mdev->io_mutex);
736         most_stop_enqueue(&mdev->iface, channel);
737         usb_kill_anchored_urbs(&mdev->busy_urbs[channel]);
738         if (usb_clear_halt(mdev->usb_device, pipe))
739                 dev_warn(&mdev->usb_device->dev, "Failed to reset endpoint.\n");
740
741         /* If the functional Stall condition has been set on an
742          * asynchronous rx channel, we need to clear the tx channel
743          * too, since the hardware runs its clean-up sequence on both
744          * channels, as they are physically one on the network.
745          *
746          * The USB interface that exposes the asynchronous channels
747          * contains always two endpoints, and two only.
748          */
749         if (mdev->conf[channel].data_type == MOST_CH_ASYNC &&
750             mdev->conf[channel].direction == MOST_CH_RX) {
751                 if (channel == 0)
752                         peer = 1;
753                 else
754                         peer = 0;
755                 snd_pipe = usb_sndbulkpipe(mdev->usb_device,
756                                            mdev->ep_address[peer]);
757                 usb_clear_halt(mdev->usb_device, snd_pipe);
758         }
759         mdev->is_channel_healthy[channel] = true;
760         most_resume_enqueue(&mdev->iface, channel);
761         mutex_unlock(&mdev->io_mutex);
762 }
763
764 /**
765  * hdm_usb_fops - file operation table for USB driver
766  */
767 static const struct file_operations hdm_usb_fops = {
768         .owner = THIS_MODULE,
769 };
770
771 /**
772  * usb_device_id - ID table for HCD device probing
773  */
774 static const struct usb_device_id usbid[] = {
775         { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_BRDG), },
776         { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81118), },
777         { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81119), },
778         { USB_DEVICE(USB_VENDOR_ID_SMSC, USB_DEV_ID_OS81210), },
779         { } /* Terminating entry */
780 };
781
782 struct regs {
783         const char *name;
784         u16 reg;
785 };
786
787 static const struct regs ro_regs[] = {
788         { "ni_state", DRCI_REG_NI_STATE },
789         { "packet_bandwidth", DRCI_REG_PACKET_BW },
790         { "node_address", DRCI_REG_NODE_ADDR },
791         { "node_position", DRCI_REG_NODE_POS },
792 };
793
794 static const struct regs rw_regs[] = {
795         { "mep_filter", DRCI_REG_MEP_FILTER },
796         { "mep_hash0", DRCI_REG_HASH_TBL0 },
797         { "mep_hash1", DRCI_REG_HASH_TBL1 },
798         { "mep_hash2", DRCI_REG_HASH_TBL2 },
799         { "mep_hash3", DRCI_REG_HASH_TBL3 },
800         { "mep_eui48_hi", DRCI_REG_HW_ADDR_HI },
801         { "mep_eui48_mi", DRCI_REG_HW_ADDR_MI },
802         { "mep_eui48_lo", DRCI_REG_HW_ADDR_LO },
803 };
804
805 static int get_stat_reg_addr(const struct regs *regs, int size,
806                              const char *name, u16 *reg_addr)
807 {
808         int i;
809
810         for (i = 0; i < size; i++) {
811                 if (sysfs_streq(name, regs[i].name)) {
812                         *reg_addr = regs[i].reg;
813                         return 0;
814                 }
815         }
816         return -EINVAL;
817 }
818
819 #define get_static_reg_addr(regs, name, reg_addr) \
820         get_stat_reg_addr(regs, ARRAY_SIZE(regs), name, reg_addr)
821
822 static ssize_t value_show(struct device *dev, struct device_attribute *attr,
823                           char *buf)
824 {
825         const char *name = attr->attr.name;
826         struct most_dci_obj *dci_obj = to_dci_obj(dev);
827         u16 val;
828         u16 reg_addr;
829         int err;
830
831         if (sysfs_streq(name, "arb_address"))
832                 return snprintf(buf, PAGE_SIZE, "%04x\n", dci_obj->reg_addr);
833
834         if (sysfs_streq(name, "arb_value"))
835                 reg_addr = dci_obj->reg_addr;
836         else if (get_static_reg_addr(ro_regs, name, &reg_addr) &&
837                  get_static_reg_addr(rw_regs, name, &reg_addr))
838                 return -EINVAL;
839
840         err = drci_rd_reg(dci_obj->usb_device, reg_addr, &val);
841         if (err < 0)
842                 return err;
843
844         return snprintf(buf, PAGE_SIZE, "%04x\n", val);
845 }
846
847 static ssize_t value_store(struct device *dev, struct device_attribute *attr,
848                            const char *buf, size_t count)
849 {
850         u16 val;
851         u16 reg_addr;
852         const char *name = attr->attr.name;
853         struct most_dci_obj *dci_obj = to_dci_obj(dev);
854         struct usb_device *usb_dev = dci_obj->usb_device;
855         int err;
856
857         err = kstrtou16(buf, 16, &val);
858         if (err)
859                 return err;
860
861         if (sysfs_streq(name, "arb_address")) {
862                 dci_obj->reg_addr = val;
863                 return count;
864         }
865
866         if (sysfs_streq(name, "arb_value"))
867                 err = drci_wr_reg(usb_dev, dci_obj->reg_addr, val);
868         else if (sysfs_streq(name, "sync_ep"))
869                 err = start_sync_ep(usb_dev, val);
870         else if (!get_static_reg_addr(rw_regs, name, &reg_addr))
871                 err = drci_wr_reg(usb_dev, reg_addr, val);
872         else
873                 return -EINVAL;
874
875         if (err < 0)
876                 return err;
877
878         return count;
879 }
880
881 static DEVICE_ATTR(ni_state, 0444, value_show, NULL);
882 static DEVICE_ATTR(packet_bandwidth, 0444, value_show, NULL);
883 static DEVICE_ATTR(node_address, 0444, value_show, NULL);
884 static DEVICE_ATTR(node_position, 0444, value_show, NULL);
885 static DEVICE_ATTR(sync_ep, 0200, NULL, value_store);
886 static DEVICE_ATTR(mep_filter, 0644, value_show, value_store);
887 static DEVICE_ATTR(mep_hash0, 0644, value_show, value_store);
888 static DEVICE_ATTR(mep_hash1, 0644, value_show, value_store);
889 static DEVICE_ATTR(mep_hash2, 0644, value_show, value_store);
890 static DEVICE_ATTR(mep_hash3, 0644, value_show, value_store);
891 static DEVICE_ATTR(mep_eui48_hi, 0644, value_show, value_store);
892 static DEVICE_ATTR(mep_eui48_mi, 0644, value_show, value_store);
893 static DEVICE_ATTR(mep_eui48_lo, 0644, value_show, value_store);
894 static DEVICE_ATTR(arb_address, 0644, value_show, value_store);
895 static DEVICE_ATTR(arb_value, 0644, value_show, value_store);
896
897 static struct attribute *dci_attrs[] = {
898         &dev_attr_ni_state.attr,
899         &dev_attr_packet_bandwidth.attr,
900         &dev_attr_node_address.attr,
901         &dev_attr_node_position.attr,
902         &dev_attr_sync_ep.attr,
903         &dev_attr_mep_filter.attr,
904         &dev_attr_mep_hash0.attr,
905         &dev_attr_mep_hash1.attr,
906         &dev_attr_mep_hash2.attr,
907         &dev_attr_mep_hash3.attr,
908         &dev_attr_mep_eui48_hi.attr,
909         &dev_attr_mep_eui48_mi.attr,
910         &dev_attr_mep_eui48_lo.attr,
911         &dev_attr_arb_address.attr,
912         &dev_attr_arb_value.attr,
913         NULL,
914 };
915
916 ATTRIBUTE_GROUPS(dci);
917
918 static void release_dci(struct device *dev)
919 {
920         struct most_dci_obj *dci = to_dci_obj(dev);
921
922         put_device(dev->parent);
923         kfree(dci);
924 }
925
926 static void release_mdev(struct device *dev)
927 {
928         struct most_dev *mdev = to_mdev_from_dev(dev);
929
930         kfree(mdev);
931 }
932 /**
933  * hdm_probe - probe function of USB device driver
934  * @interface: Interface of the attached USB device
935  * @id: Pointer to the USB ID table.
936  *
937  * This allocates and initializes the device instance, adds the new
938  * entry to the internal list, scans the USB descriptors and registers
939  * the interface with the core.
940  * Additionally, the DCI objects are created and the hardware is sync'd.
941  *
942  * Return 0 on success. In case of an error a negative number is returned.
943  */
944 static int
945 hdm_probe(struct usb_interface *interface, const struct usb_device_id *id)
946 {
947         struct usb_host_interface *usb_iface_desc = interface->cur_altsetting;
948         struct usb_device *usb_dev = interface_to_usbdev(interface);
949         struct device *dev = &usb_dev->dev;
950         struct most_dev *mdev;
951         unsigned int i;
952         unsigned int num_endpoints;
953         struct most_channel_capability *tmp_cap;
954         struct usb_endpoint_descriptor *ep_desc;
955         int ret = -ENOMEM;
956
957         mdev = kzalloc(sizeof(*mdev), GFP_KERNEL);
958         if (!mdev)
959                 return -ENOMEM;
960
961         usb_set_intfdata(interface, mdev);
962         num_endpoints = usb_iface_desc->desc.bNumEndpoints;
963         if (num_endpoints > MAX_NUM_ENDPOINTS) {
964                 kfree(mdev);
965                 return -EINVAL;
966         }
967         mutex_init(&mdev->io_mutex);
968         INIT_WORK(&mdev->poll_work_obj, wq_netinfo);
969         timer_setup(&mdev->link_stat_timer, link_stat_timer_handler, 0);
970
971         mdev->usb_device = usb_dev;
972         mdev->link_stat_timer.expires = jiffies + (2 * HZ);
973
974         mdev->iface.mod = hdm_usb_fops.owner;
975         mdev->iface.dev = &mdev->dev;
976         mdev->iface.driver_dev = &interface->dev;
977         mdev->iface.interface = ITYPE_USB;
978         mdev->iface.configure = hdm_configure_channel;
979         mdev->iface.request_netinfo = hdm_request_netinfo;
980         mdev->iface.enqueue = hdm_enqueue;
981         mdev->iface.poison_channel = hdm_poison_channel;
982         mdev->iface.dma_alloc = hdm_dma_alloc;
983         mdev->iface.dma_free = hdm_dma_free;
984         mdev->iface.description = mdev->description;
985         mdev->iface.num_channels = num_endpoints;
986
987         snprintf(mdev->description, sizeof(mdev->description),
988                  "%d-%s:%d.%d",
989                  usb_dev->bus->busnum,
990                  usb_dev->devpath,
991                  usb_dev->config->desc.bConfigurationValue,
992                  usb_iface_desc->desc.bInterfaceNumber);
993
994         mdev->dev.init_name = mdev->description;
995         mdev->dev.parent = &interface->dev;
996         mdev->dev.release = release_mdev;
997         mdev->conf = kcalloc(num_endpoints, sizeof(*mdev->conf), GFP_KERNEL);
998         if (!mdev->conf)
999                 goto err_free_mdev;
1000
1001         mdev->cap = kcalloc(num_endpoints, sizeof(*mdev->cap), GFP_KERNEL);
1002         if (!mdev->cap)
1003                 goto err_free_conf;
1004
1005         mdev->iface.channel_vector = mdev->cap;
1006         mdev->ep_address =
1007                 kcalloc(num_endpoints, sizeof(*mdev->ep_address), GFP_KERNEL);
1008         if (!mdev->ep_address)
1009                 goto err_free_cap;
1010
1011         mdev->busy_urbs =
1012                 kcalloc(num_endpoints, sizeof(*mdev->busy_urbs), GFP_KERNEL);
1013         if (!mdev->busy_urbs)
1014                 goto err_free_ep_address;
1015
1016         tmp_cap = mdev->cap;
1017         for (i = 0; i < num_endpoints; i++) {
1018                 ep_desc = &usb_iface_desc->endpoint[i].desc;
1019                 mdev->ep_address[i] = ep_desc->bEndpointAddress;
1020                 mdev->padding_active[i] = false;
1021                 mdev->is_channel_healthy[i] = true;
1022
1023                 snprintf(&mdev->suffix[i][0], MAX_SUFFIX_LEN, "ep%02x",
1024                          mdev->ep_address[i]);
1025
1026                 tmp_cap->name_suffix = &mdev->suffix[i][0];
1027                 tmp_cap->buffer_size_packet = MAX_BUF_SIZE;
1028                 tmp_cap->buffer_size_streaming = MAX_BUF_SIZE;
1029                 tmp_cap->num_buffers_packet = BUF_CHAIN_SIZE;
1030                 tmp_cap->num_buffers_streaming = BUF_CHAIN_SIZE;
1031                 tmp_cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC |
1032                                      MOST_CH_ISOC | MOST_CH_SYNC;
1033                 if (usb_endpoint_dir_in(ep_desc))
1034                         tmp_cap->direction = MOST_CH_RX;
1035                 else
1036                         tmp_cap->direction = MOST_CH_TX;
1037                 tmp_cap++;
1038                 init_usb_anchor(&mdev->busy_urbs[i]);
1039                 spin_lock_init(&mdev->channel_lock[i]);
1040         }
1041         dev_dbg(dev, "claimed gadget: Vendor=%4.4x ProdID=%4.4x Bus=%02x Device=%02x\n",
1042                 le16_to_cpu(usb_dev->descriptor.idVendor),
1043                 le16_to_cpu(usb_dev->descriptor.idProduct),
1044                 usb_dev->bus->busnum,
1045                 usb_dev->devnum);
1046
1047         dev_dbg(dev, "device path: /sys/bus/usb/devices/%d-%s:%d.%d\n",
1048                 usb_dev->bus->busnum,
1049                 usb_dev->devpath,
1050                 usb_dev->config->desc.bConfigurationValue,
1051                 usb_iface_desc->desc.bInterfaceNumber);
1052
1053         ret = most_register_interface(&mdev->iface);
1054         if (ret)
1055                 goto err_free_busy_urbs;
1056
1057         mutex_lock(&mdev->io_mutex);
1058         if (le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81118 ||
1059             le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81119 ||
1060             le16_to_cpu(usb_dev->descriptor.idProduct) == USB_DEV_ID_OS81210) {
1061                 mdev->dci = kzalloc(sizeof(*mdev->dci), GFP_KERNEL);
1062                 if (!mdev->dci) {
1063                         mutex_unlock(&mdev->io_mutex);
1064                         most_deregister_interface(&mdev->iface);
1065                         ret = -ENOMEM;
1066                         goto err_free_busy_urbs;
1067                 }
1068
1069                 mdev->dci->dev.init_name = "dci";
1070                 mdev->dci->dev.parent = get_device(mdev->iface.dev);
1071                 mdev->dci->dev.groups = dci_groups;
1072                 mdev->dci->dev.release = release_dci;
1073                 if (device_register(&mdev->dci->dev)) {
1074                         mutex_unlock(&mdev->io_mutex);
1075                         most_deregister_interface(&mdev->iface);
1076                         ret = -ENOMEM;
1077                         goto err_free_dci;
1078                 }
1079                 mdev->dci->usb_device = mdev->usb_device;
1080         }
1081         mutex_unlock(&mdev->io_mutex);
1082         return 0;
1083 err_free_dci:
1084         put_device(&mdev->dci->dev);
1085 err_free_busy_urbs:
1086         kfree(mdev->busy_urbs);
1087 err_free_ep_address:
1088         kfree(mdev->ep_address);
1089 err_free_cap:
1090         kfree(mdev->cap);
1091 err_free_conf:
1092         kfree(mdev->conf);
1093 err_free_mdev:
1094         put_device(&mdev->dev);
1095         return ret;
1096 }
1097
1098 /**
1099  * hdm_disconnect - disconnect function of USB device driver
1100  * @interface: Interface of the attached USB device
1101  *
1102  * This deregisters the interface with the core, removes the kernel timer
1103  * and frees resources.
1104  *
1105  * Context: hub kernel thread
1106  */
1107 static void hdm_disconnect(struct usb_interface *interface)
1108 {
1109         struct most_dev *mdev = usb_get_intfdata(interface);
1110
1111         mutex_lock(&mdev->io_mutex);
1112         usb_set_intfdata(interface, NULL);
1113         mdev->usb_device = NULL;
1114         mutex_unlock(&mdev->io_mutex);
1115
1116         del_timer_sync(&mdev->link_stat_timer);
1117         cancel_work_sync(&mdev->poll_work_obj);
1118
1119         if (mdev->dci)
1120                 device_unregister(&mdev->dci->dev);
1121         most_deregister_interface(&mdev->iface);
1122
1123         kfree(mdev->busy_urbs);
1124         kfree(mdev->cap);
1125         kfree(mdev->conf);
1126         kfree(mdev->ep_address);
1127         put_device(&mdev->dci->dev);
1128         put_device(&mdev->dev);
1129 }
1130
1131 static int hdm_suspend(struct usb_interface *interface, pm_message_t message)
1132 {
1133         struct most_dev *mdev = usb_get_intfdata(interface);
1134         int i;
1135
1136         mutex_lock(&mdev->io_mutex);
1137         for (i = 0; i < mdev->iface.num_channels; i++) {
1138                 most_stop_enqueue(&mdev->iface, i);
1139                 usb_kill_anchored_urbs(&mdev->busy_urbs[i]);
1140         }
1141         mutex_unlock(&mdev->io_mutex);
1142         return 0;
1143 }
1144
1145 static int hdm_resume(struct usb_interface *interface)
1146 {
1147         struct most_dev *mdev = usb_get_intfdata(interface);
1148         int i;
1149
1150         mutex_lock(&mdev->io_mutex);
1151         for (i = 0; i < mdev->iface.num_channels; i++)
1152                 most_resume_enqueue(&mdev->iface, i);
1153         mutex_unlock(&mdev->io_mutex);
1154         return 0;
1155 }
1156
1157 static struct usb_driver hdm_usb = {
1158         .name = "hdm_usb",
1159         .id_table = usbid,
1160         .probe = hdm_probe,
1161         .disconnect = hdm_disconnect,
1162         .resume = hdm_resume,
1163         .suspend = hdm_suspend,
1164 };
1165
1166 module_usb_driver(hdm_usb);
1167 MODULE_LICENSE("GPL");
1168 MODULE_AUTHOR("Christian Gromm <christian.gromm@microchip.com>");
1169 MODULE_DESCRIPTION("HDM_4_USB");