2 * Simple synchronous userspace interface to SPI devices
4 * Copyright (C) 2006 SWAPP
5 * Andrea Paterniani <a.paterniani@swapp-eng.it>
6 * Copyright (C) 2007 David Brownell (simplification, cleanup)
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/ioctl.h>
23 #include <linux/device.h>
24 #include <linux/err.h>
25 #include <linux/list.h>
26 #include <linux/errno.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/compat.h>
31 #include <linux/of_device.h>
32 #include <linux/acpi.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spidev.h>
37 #include <linux/uaccess.h>
41 * This supports access to SPI devices using normal userspace I/O calls.
42 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
43 * and often mask message boundaries, full SPI support requires full duplex
44 * transfers. There are several kinds of internal message boundaries to
45 * handle chipselect management and other protocol options.
47 * SPI has a character major number assigned. We allocate minor numbers
48 * dynamically using a bitmask. You must use hotplug tools, such as udev
49 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
50 * nodes, since there is no fixed association of minor numbers with any
51 * particular SPI bus or device.
53 #define SPIDEV_MAJOR 153 /* assigned */
54 #define N_SPI_MINORS 32 /* ... up to 256 */
56 static DECLARE_BITMAP(minors, N_SPI_MINORS);
59 /* Bit masks for spi_device.mode management. Note that incorrect
60 * settings for some settings can cause *lots* of trouble for other
61 * devices on a shared bus:
63 * - CS_HIGH ... this device will be active when it shouldn't be
64 * - 3WIRE ... when active, it won't behave as it should
65 * - NO_CS ... there will be no explicit message boundaries; this
66 * is completely incompatible with the shared bus model
67 * - READY ... transfers may proceed when they shouldn't.
69 * REVISIT should changing those flags be privileged?
71 #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
72 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
73 | SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
74 | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)
79 struct spi_device *spi;
80 struct list_head device_entry;
82 /* TX/RX buffers are NULL unless this device is open (users > 0) */
83 struct mutex buf_lock;
90 static LIST_HEAD(device_list);
91 static DEFINE_MUTEX(device_list_lock);
93 static unsigned bufsiz = 4096;
94 module_param(bufsiz, uint, S_IRUGO);
95 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
97 /*-------------------------------------------------------------------------*/
100 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
103 struct spi_device *spi;
105 spin_lock_irq(&spidev->spi_lock);
107 spin_unlock_irq(&spidev->spi_lock);
112 status = spi_sync(spi, message);
115 status = message->actual_length;
120 static inline ssize_t
121 spidev_sync_write(struct spidev_data *spidev, size_t len)
123 struct spi_transfer t = {
124 .tx_buf = spidev->tx_buffer,
126 .speed_hz = spidev->speed_hz,
128 struct spi_message m;
130 spi_message_init(&m);
131 spi_message_add_tail(&t, &m);
132 return spidev_sync(spidev, &m);
135 static inline ssize_t
136 spidev_sync_read(struct spidev_data *spidev, size_t len)
138 struct spi_transfer t = {
139 .rx_buf = spidev->rx_buffer,
141 .speed_hz = spidev->speed_hz,
143 struct spi_message m;
145 spi_message_init(&m);
146 spi_message_add_tail(&t, &m);
147 return spidev_sync(spidev, &m);
150 /*-------------------------------------------------------------------------*/
152 /* Read-only message with current device setup */
154 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
156 struct spidev_data *spidev;
159 /* chipselect only toggles at start or end of operation */
163 spidev = filp->private_data;
165 mutex_lock(&spidev->buf_lock);
166 status = spidev_sync_read(spidev, count);
168 unsigned long missing;
170 missing = copy_to_user(buf, spidev->rx_buffer, status);
171 if (missing == status)
174 status = status - missing;
176 mutex_unlock(&spidev->buf_lock);
181 /* Write-only message with current device setup */
183 spidev_write(struct file *filp, const char __user *buf,
184 size_t count, loff_t *f_pos)
186 struct spidev_data *spidev;
188 unsigned long missing;
190 /* chipselect only toggles at start or end of operation */
194 spidev = filp->private_data;
196 mutex_lock(&spidev->buf_lock);
197 missing = copy_from_user(spidev->tx_buffer, buf, count);
199 status = spidev_sync_write(spidev, count);
202 mutex_unlock(&spidev->buf_lock);
207 static int spidev_message(struct spidev_data *spidev,
208 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
210 struct spi_message msg;
211 struct spi_transfer *k_xfers;
212 struct spi_transfer *k_tmp;
213 struct spi_ioc_transfer *u_tmp;
214 unsigned n, total, tx_total, rx_total;
216 int status = -EFAULT;
218 spi_message_init(&msg);
219 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
223 /* Construct spi_message, copying any tx data to bounce buffer.
224 * We walk the array of user-provided transfers, using each one
225 * to initialize a kernel version of the same transfer.
227 tx_buf = spidev->tx_buffer;
228 rx_buf = spidev->rx_buffer;
232 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
234 n--, k_tmp++, u_tmp++) {
235 k_tmp->len = u_tmp->len;
238 /* Since the function returns the total length of transfers
239 * on success, restrict the total to positive int values to
240 * avoid the return value looking like an error. Also check
241 * each transfer length to avoid arithmetic overflow.
243 if (total > INT_MAX || k_tmp->len > INT_MAX) {
249 /* this transfer needs space in RX bounce buffer */
250 rx_total += k_tmp->len;
251 if (rx_total > bufsiz) {
255 k_tmp->rx_buf = rx_buf;
256 rx_buf += k_tmp->len;
259 /* this transfer needs space in TX bounce buffer */
260 tx_total += k_tmp->len;
261 if (tx_total > bufsiz) {
265 k_tmp->tx_buf = tx_buf;
266 if (copy_from_user(tx_buf, (const u8 __user *)
267 (uintptr_t) u_tmp->tx_buf,
270 tx_buf += k_tmp->len;
273 k_tmp->cs_change = !!u_tmp->cs_change;
274 k_tmp->tx_nbits = u_tmp->tx_nbits;
275 k_tmp->rx_nbits = u_tmp->rx_nbits;
276 k_tmp->bits_per_word = u_tmp->bits_per_word;
277 k_tmp->delay_usecs = u_tmp->delay_usecs;
278 k_tmp->speed_hz = u_tmp->speed_hz;
279 if (!k_tmp->speed_hz)
280 k_tmp->speed_hz = spidev->speed_hz;
282 dev_dbg(&spidev->spi->dev,
283 " xfer len %u %s%s%s%dbits %u usec %uHz\n",
285 u_tmp->rx_buf ? "rx " : "",
286 u_tmp->tx_buf ? "tx " : "",
287 u_tmp->cs_change ? "cs " : "",
288 u_tmp->bits_per_word ? : spidev->spi->bits_per_word,
290 u_tmp->speed_hz ? : spidev->spi->max_speed_hz);
292 spi_message_add_tail(k_tmp, &msg);
295 status = spidev_sync(spidev, &msg);
299 /* copy any rx data out of bounce buffer */
300 rx_buf = spidev->rx_buffer;
301 for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
303 if (copy_to_user((u8 __user *)
304 (uintptr_t) u_tmp->rx_buf, rx_buf,
309 rx_buf += u_tmp->len;
319 static struct spi_ioc_transfer *
320 spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
325 /* Check type, command number and direction */
326 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
327 || _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
328 || _IOC_DIR(cmd) != _IOC_WRITE)
329 return ERR_PTR(-ENOTTY);
331 tmp = _IOC_SIZE(cmd);
332 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
333 return ERR_PTR(-EINVAL);
334 *n_ioc = tmp / sizeof(struct spi_ioc_transfer);
338 /* copy into scratch area */
339 return memdup_user(u_ioc, tmp);
343 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
346 struct spidev_data *spidev;
347 struct spi_device *spi;
350 struct spi_ioc_transfer *ioc;
352 /* Check type and command number */
353 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
356 /* guard against device removal before, or while,
357 * we issue this ioctl.
359 spidev = filp->private_data;
360 spin_lock_irq(&spidev->spi_lock);
361 spi = spi_dev_get(spidev->spi);
362 spin_unlock_irq(&spidev->spi_lock);
367 /* use the buffer lock here for triple duty:
368 * - prevent I/O (from us) so calling spi_setup() is safe;
369 * - prevent concurrent SPI_IOC_WR_* from morphing
370 * data fields while SPI_IOC_RD_* reads them;
371 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
373 mutex_lock(&spidev->buf_lock);
377 case SPI_IOC_RD_MODE:
378 retval = put_user(spi->mode & SPI_MODE_MASK,
381 case SPI_IOC_RD_MODE32:
382 retval = put_user(spi->mode & SPI_MODE_MASK,
383 (__u32 __user *)arg);
385 case SPI_IOC_RD_LSB_FIRST:
386 retval = put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
389 case SPI_IOC_RD_BITS_PER_WORD:
390 retval = put_user(spi->bits_per_word, (__u8 __user *)arg);
392 case SPI_IOC_RD_MAX_SPEED_HZ:
393 retval = put_user(spidev->speed_hz, (__u32 __user *)arg);
397 case SPI_IOC_WR_MODE:
398 case SPI_IOC_WR_MODE32:
399 if (cmd == SPI_IOC_WR_MODE)
400 retval = get_user(tmp, (u8 __user *)arg);
402 retval = get_user(tmp, (u32 __user *)arg);
404 u32 save = spi->mode;
406 if (tmp & ~SPI_MODE_MASK) {
411 tmp |= spi->mode & ~SPI_MODE_MASK;
412 spi->mode = (u16)tmp;
413 retval = spi_setup(spi);
417 dev_dbg(&spi->dev, "spi mode %x\n", tmp);
420 case SPI_IOC_WR_LSB_FIRST:
421 retval = get_user(tmp, (__u8 __user *)arg);
423 u32 save = spi->mode;
426 spi->mode |= SPI_LSB_FIRST;
428 spi->mode &= ~SPI_LSB_FIRST;
429 retval = spi_setup(spi);
433 dev_dbg(&spi->dev, "%csb first\n",
437 case SPI_IOC_WR_BITS_PER_WORD:
438 retval = get_user(tmp, (__u8 __user *)arg);
440 u8 save = spi->bits_per_word;
442 spi->bits_per_word = tmp;
443 retval = spi_setup(spi);
445 spi->bits_per_word = save;
447 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
450 case SPI_IOC_WR_MAX_SPEED_HZ:
451 retval = get_user(tmp, (__u32 __user *)arg);
453 u32 save = spi->max_speed_hz;
455 spi->max_speed_hz = tmp;
456 retval = spi_setup(spi);
458 spidev->speed_hz = tmp;
460 dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
461 spi->max_speed_hz = save;
466 /* segmented and/or full-duplex I/O request */
467 /* Check message and copy into scratch area */
468 ioc = spidev_get_ioc_message(cmd,
469 (struct spi_ioc_transfer __user *)arg, &n_ioc);
471 retval = PTR_ERR(ioc);
475 break; /* n_ioc is also 0 */
477 /* translate to spi_message, execute */
478 retval = spidev_message(spidev, ioc, n_ioc);
483 mutex_unlock(&spidev->buf_lock);
490 spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
493 struct spi_ioc_transfer __user *u_ioc;
495 struct spidev_data *spidev;
496 struct spi_device *spi;
498 struct spi_ioc_transfer *ioc;
500 u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
502 /* guard against device removal before, or while,
503 * we issue this ioctl.
505 spidev = filp->private_data;
506 spin_lock_irq(&spidev->spi_lock);
507 spi = spi_dev_get(spidev->spi);
508 spin_unlock_irq(&spidev->spi_lock);
513 /* SPI_IOC_MESSAGE needs the buffer locked "normally" */
514 mutex_lock(&spidev->buf_lock);
516 /* Check message and copy into scratch area */
517 ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
519 retval = PTR_ERR(ioc);
523 goto done; /* n_ioc is also 0 */
525 /* Convert buffer pointers */
526 for (n = 0; n < n_ioc; n++) {
527 ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
528 ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
531 /* translate to spi_message, execute */
532 retval = spidev_message(spidev, ioc, n_ioc);
536 mutex_unlock(&spidev->buf_lock);
542 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
544 if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
545 && _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
546 && _IOC_DIR(cmd) == _IOC_WRITE)
547 return spidev_compat_ioc_message(filp, cmd, arg);
549 return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
552 #define spidev_compat_ioctl NULL
553 #endif /* CONFIG_COMPAT */
555 static int spidev_open(struct inode *inode, struct file *filp)
557 struct spidev_data *spidev;
560 mutex_lock(&device_list_lock);
562 list_for_each_entry(spidev, &device_list, device_entry) {
563 if (spidev->devt == inode->i_rdev) {
570 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
574 if (!spidev->tx_buffer) {
575 spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
576 if (!spidev->tx_buffer) {
577 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
583 if (!spidev->rx_buffer) {
584 spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
585 if (!spidev->rx_buffer) {
586 dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
588 goto err_alloc_rx_buf;
593 filp->private_data = spidev;
594 nonseekable_open(inode, filp);
596 mutex_unlock(&device_list_lock);
600 kfree(spidev->tx_buffer);
601 spidev->tx_buffer = NULL;
603 mutex_unlock(&device_list_lock);
607 static int spidev_release(struct inode *inode, struct file *filp)
609 struct spidev_data *spidev;
611 mutex_lock(&device_list_lock);
612 spidev = filp->private_data;
613 filp->private_data = NULL;
617 if (!spidev->users) {
620 kfree(spidev->tx_buffer);
621 spidev->tx_buffer = NULL;
623 kfree(spidev->rx_buffer);
624 spidev->rx_buffer = NULL;
626 spin_lock_irq(&spidev->spi_lock);
628 spidev->speed_hz = spidev->spi->max_speed_hz;
630 /* ... after we unbound from the underlying device? */
631 dofree = (spidev->spi == NULL);
632 spin_unlock_irq(&spidev->spi_lock);
637 mutex_unlock(&device_list_lock);
642 static const struct file_operations spidev_fops = {
643 .owner = THIS_MODULE,
644 /* REVISIT switch to aio primitives, so that userspace
645 * gets more complete API coverage. It'll simplify things
646 * too, except for the locking.
648 .write = spidev_write,
650 .unlocked_ioctl = spidev_ioctl,
651 .compat_ioctl = spidev_compat_ioctl,
653 .release = spidev_release,
657 /*-------------------------------------------------------------------------*/
659 /* The main reason to have this class is to make mdev/udev create the
660 * /dev/spidevB.C character device nodes exposing our userspace API.
661 * It also simplifies memory management.
664 static struct class *spidev_class;
667 static const struct of_device_id spidev_dt_ids[] = {
668 { .compatible = "rohm,dh2228fv" },
669 { .compatible = "lineartechnology,ltc2488" },
670 { .compatible = "ge,achc" },
671 { .compatible = "semtech,sx1301" },
674 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
679 /* Dummy SPI devices not to be used in production systems */
680 #define SPIDEV_ACPI_DUMMY 1
682 static const struct acpi_device_id spidev_acpi_ids[] = {
684 * The ACPI SPT000* devices are only meant for development and
685 * testing. Systems used in production should have a proper ACPI
686 * description of the connected peripheral and they should also use
687 * a proper driver instead of poking directly to the SPI bus.
689 { "SPT0001", SPIDEV_ACPI_DUMMY },
690 { "SPT0002", SPIDEV_ACPI_DUMMY },
691 { "SPT0003", SPIDEV_ACPI_DUMMY },
694 MODULE_DEVICE_TABLE(acpi, spidev_acpi_ids);
696 static void spidev_probe_acpi(struct spi_device *spi)
698 const struct acpi_device_id *id;
700 if (!has_acpi_companion(&spi->dev))
703 id = acpi_match_device(spidev_acpi_ids, &spi->dev);
707 if (id->driver_data == SPIDEV_ACPI_DUMMY)
708 dev_warn(&spi->dev, "do not use this driver in production systems!\n");
711 static inline void spidev_probe_acpi(struct spi_device *spi) {}
714 /*-------------------------------------------------------------------------*/
716 static int spidev_probe(struct spi_device *spi)
718 struct spidev_data *spidev;
723 * spidev should never be referenced in DT without a specific
724 * compatible string, it is a Linux implementation thing
725 * rather than a description of the hardware.
727 if (spi->dev.of_node && !of_match_device(spidev_dt_ids, &spi->dev)) {
728 dev_err(&spi->dev, "buggy DT: spidev listed directly in DT\n");
729 WARN_ON(spi->dev.of_node &&
730 !of_match_device(spidev_dt_ids, &spi->dev));
733 spidev_probe_acpi(spi);
735 /* Allocate driver data */
736 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
740 /* Initialize the driver data */
742 spin_lock_init(&spidev->spi_lock);
743 mutex_init(&spidev->buf_lock);
745 INIT_LIST_HEAD(&spidev->device_entry);
747 /* If we can allocate a minor number, hook up this device.
748 * Reusing minors is fine so long as udev or mdev is working.
750 mutex_lock(&device_list_lock);
751 minor = find_first_zero_bit(minors, N_SPI_MINORS);
752 if (minor < N_SPI_MINORS) {
755 spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
756 dev = device_create(spidev_class, &spi->dev, spidev->devt,
757 spidev, "spidev%d.%d",
758 spi->master->bus_num, spi->chip_select);
759 status = PTR_ERR_OR_ZERO(dev);
761 dev_dbg(&spi->dev, "no minor number available!\n");
765 set_bit(minor, minors);
766 list_add(&spidev->device_entry, &device_list);
768 mutex_unlock(&device_list_lock);
770 spidev->speed_hz = spi->max_speed_hz;
773 spi_set_drvdata(spi, spidev);
780 static int spidev_remove(struct spi_device *spi)
782 struct spidev_data *spidev = spi_get_drvdata(spi);
784 /* make sure ops on existing fds can abort cleanly */
785 spin_lock_irq(&spidev->spi_lock);
787 spin_unlock_irq(&spidev->spi_lock);
789 /* prevent new opens */
790 mutex_lock(&device_list_lock);
791 list_del(&spidev->device_entry);
792 device_destroy(spidev_class, spidev->devt);
793 clear_bit(MINOR(spidev->devt), minors);
794 if (spidev->users == 0)
796 mutex_unlock(&device_list_lock);
801 static struct spi_driver spidev_spi_driver = {
804 .of_match_table = of_match_ptr(spidev_dt_ids),
805 .acpi_match_table = ACPI_PTR(spidev_acpi_ids),
807 .probe = spidev_probe,
808 .remove = spidev_remove,
810 /* NOTE: suspend/resume methods are not necessary here.
811 * We don't do anything except pass the requests to/from
812 * the underlying controller. The refrigerator handles
813 * most issues; the controller driver handles the rest.
817 /*-------------------------------------------------------------------------*/
819 static int __init spidev_init(void)
823 /* Claim our 256 reserved device numbers. Then register a class
824 * that will key udev/mdev to add/remove /dev nodes. Last, register
825 * the driver which manages those device numbers.
827 BUILD_BUG_ON(N_SPI_MINORS > 256);
828 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
832 spidev_class = class_create(THIS_MODULE, "spidev");
833 if (IS_ERR(spidev_class)) {
834 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
835 return PTR_ERR(spidev_class);
838 status = spi_register_driver(&spidev_spi_driver);
840 class_destroy(spidev_class);
841 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
845 module_init(spidev_init);
847 static void __exit spidev_exit(void)
849 spi_unregister_driver(&spidev_spi_driver);
850 class_destroy(spidev_class);
851 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
853 module_exit(spidev_exit);
855 MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
856 MODULE_DESCRIPTION("User mode SPI device interface");
857 MODULE_LICENSE("GPL");
858 MODULE_ALIAS("spi:spidev");