1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
40 #include "internals.h"
42 static DEFINE_IDR(spi_master_idr);
44 static void spidev_release(struct device *dev)
46 struct spi_device *spi = to_spi_device(dev);
48 /* spi controllers may cleanup for released devices */
49 if (spi->controller->cleanup)
50 spi->controller->cleanup(spi);
52 spi_controller_put(spi->controller);
53 kfree(spi->driver_override);
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 const struct spi_device *spi = to_spi_device(dev);
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 static DEVICE_ATTR_RO(modalias);
71 static ssize_t driver_override_store(struct device *dev,
72 struct device_attribute *a,
73 const char *buf, size_t count)
75 struct spi_device *spi = to_spi_device(dev);
76 const char *end = memchr(buf, '\n', count);
77 const size_t len = end ? end - buf : count;
78 const char *driver_override, *old;
80 /* We need to keep extra room for a newline when displaying value */
81 if (len >= (PAGE_SIZE - 1))
84 driver_override = kstrndup(buf, len, GFP_KERNEL);
89 old = spi->driver_override;
91 spi->driver_override = driver_override;
93 /* Emptry string, disable driver override */
94 spi->driver_override = NULL;
95 kfree(driver_override);
103 static ssize_t driver_override_show(struct device *dev,
104 struct device_attribute *a, char *buf)
106 const struct spi_device *spi = to_spi_device(dev);
110 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
114 static DEVICE_ATTR_RW(driver_override);
116 #define SPI_STATISTICS_ATTRS(field, file) \
117 static ssize_t spi_controller_##field##_show(struct device *dev, \
118 struct device_attribute *attr, \
121 struct spi_controller *ctlr = container_of(dev, \
122 struct spi_controller, dev); \
123 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
125 static struct device_attribute dev_attr_spi_controller_##field = { \
126 .attr = { .name = file, .mode = 0444 }, \
127 .show = spi_controller_##field##_show, \
129 static ssize_t spi_device_##field##_show(struct device *dev, \
130 struct device_attribute *attr, \
133 struct spi_device *spi = to_spi_device(dev); \
134 return spi_statistics_##field##_show(&spi->statistics, buf); \
136 static struct device_attribute dev_attr_spi_device_##field = { \
137 .attr = { .name = file, .mode = 0444 }, \
138 .show = spi_device_##field##_show, \
141 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
142 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 unsigned long flags; \
147 spin_lock_irqsave(&stat->lock, flags); \
148 len = sprintf(buf, format_string, stat->field); \
149 spin_unlock_irqrestore(&stat->lock, flags); \
152 SPI_STATISTICS_ATTRS(name, file)
154 #define SPI_STATISTICS_SHOW(field, format_string) \
155 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
156 field, format_string)
158 SPI_STATISTICS_SHOW(messages, "%lu");
159 SPI_STATISTICS_SHOW(transfers, "%lu");
160 SPI_STATISTICS_SHOW(errors, "%lu");
161 SPI_STATISTICS_SHOW(timedout, "%lu");
163 SPI_STATISTICS_SHOW(spi_sync, "%lu");
164 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
165 SPI_STATISTICS_SHOW(spi_async, "%lu");
167 SPI_STATISTICS_SHOW(bytes, "%llu");
168 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
169 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
171 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
172 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
173 "transfer_bytes_histo_" number, \
174 transfer_bytes_histo[index], "%lu")
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
193 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
195 static struct attribute *spi_dev_attrs[] = {
196 &dev_attr_modalias.attr,
197 &dev_attr_driver_override.attr,
201 static const struct attribute_group spi_dev_group = {
202 .attrs = spi_dev_attrs,
205 static struct attribute *spi_device_statistics_attrs[] = {
206 &dev_attr_spi_device_messages.attr,
207 &dev_attr_spi_device_transfers.attr,
208 &dev_attr_spi_device_errors.attr,
209 &dev_attr_spi_device_timedout.attr,
210 &dev_attr_spi_device_spi_sync.attr,
211 &dev_attr_spi_device_spi_sync_immediate.attr,
212 &dev_attr_spi_device_spi_async.attr,
213 &dev_attr_spi_device_bytes.attr,
214 &dev_attr_spi_device_bytes_rx.attr,
215 &dev_attr_spi_device_bytes_tx.attr,
216 &dev_attr_spi_device_transfer_bytes_histo0.attr,
217 &dev_attr_spi_device_transfer_bytes_histo1.attr,
218 &dev_attr_spi_device_transfer_bytes_histo2.attr,
219 &dev_attr_spi_device_transfer_bytes_histo3.attr,
220 &dev_attr_spi_device_transfer_bytes_histo4.attr,
221 &dev_attr_spi_device_transfer_bytes_histo5.attr,
222 &dev_attr_spi_device_transfer_bytes_histo6.attr,
223 &dev_attr_spi_device_transfer_bytes_histo7.attr,
224 &dev_attr_spi_device_transfer_bytes_histo8.attr,
225 &dev_attr_spi_device_transfer_bytes_histo9.attr,
226 &dev_attr_spi_device_transfer_bytes_histo10.attr,
227 &dev_attr_spi_device_transfer_bytes_histo11.attr,
228 &dev_attr_spi_device_transfer_bytes_histo12.attr,
229 &dev_attr_spi_device_transfer_bytes_histo13.attr,
230 &dev_attr_spi_device_transfer_bytes_histo14.attr,
231 &dev_attr_spi_device_transfer_bytes_histo15.attr,
232 &dev_attr_spi_device_transfer_bytes_histo16.attr,
233 &dev_attr_spi_device_transfers_split_maxsize.attr,
237 static const struct attribute_group spi_device_statistics_group = {
238 .name = "statistics",
239 .attrs = spi_device_statistics_attrs,
242 static const struct attribute_group *spi_dev_groups[] = {
244 &spi_device_statistics_group,
248 static struct attribute *spi_controller_statistics_attrs[] = {
249 &dev_attr_spi_controller_messages.attr,
250 &dev_attr_spi_controller_transfers.attr,
251 &dev_attr_spi_controller_errors.attr,
252 &dev_attr_spi_controller_timedout.attr,
253 &dev_attr_spi_controller_spi_sync.attr,
254 &dev_attr_spi_controller_spi_sync_immediate.attr,
255 &dev_attr_spi_controller_spi_async.attr,
256 &dev_attr_spi_controller_bytes.attr,
257 &dev_attr_spi_controller_bytes_rx.attr,
258 &dev_attr_spi_controller_bytes_tx.attr,
259 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
260 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
276 &dev_attr_spi_controller_transfers_split_maxsize.attr,
280 static const struct attribute_group spi_controller_statistics_group = {
281 .name = "statistics",
282 .attrs = spi_controller_statistics_attrs,
285 static const struct attribute_group *spi_master_groups[] = {
286 &spi_controller_statistics_group,
290 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
291 struct spi_transfer *xfer,
292 struct spi_controller *ctlr)
295 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
300 spin_lock_irqsave(&stats->lock, flags);
303 stats->transfer_bytes_histo[l2len]++;
305 stats->bytes += xfer->len;
306 if ((xfer->tx_buf) &&
307 (xfer->tx_buf != ctlr->dummy_tx))
308 stats->bytes_tx += xfer->len;
309 if ((xfer->rx_buf) &&
310 (xfer->rx_buf != ctlr->dummy_rx))
311 stats->bytes_rx += xfer->len;
313 spin_unlock_irqrestore(&stats->lock, flags);
315 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
317 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
318 * and the sysfs version makes coldplug work too.
321 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
322 const struct spi_device *sdev)
324 while (id->name[0]) {
325 if (!strcmp(sdev->modalias, id->name))
332 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
334 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
336 return spi_match_id(sdrv->id_table, sdev);
338 EXPORT_SYMBOL_GPL(spi_get_device_id);
340 static int spi_match_device(struct device *dev, struct device_driver *drv)
342 const struct spi_device *spi = to_spi_device(dev);
343 const struct spi_driver *sdrv = to_spi_driver(drv);
345 /* Check override first, and if set, only use the named driver */
346 if (spi->driver_override)
347 return strcmp(spi->driver_override, drv->name) == 0;
349 /* Attempt an OF style match */
350 if (of_driver_match_device(dev, drv))
354 if (acpi_driver_match_device(dev, drv))
358 return !!spi_match_id(sdrv->id_table, spi);
360 return strcmp(spi->modalias, drv->name) == 0;
363 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
365 const struct spi_device *spi = to_spi_device(dev);
368 rc = acpi_device_uevent_modalias(dev, env);
372 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 struct bus_type spi_bus_type = {
377 .dev_groups = spi_dev_groups,
378 .match = spi_match_device,
379 .uevent = spi_uevent,
381 EXPORT_SYMBOL_GPL(spi_bus_type);
384 static int spi_drv_probe(struct device *dev)
386 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
387 struct spi_device *spi = to_spi_device(dev);
390 ret = of_clk_set_defaults(dev->of_node, false);
395 spi->irq = of_irq_get(dev->of_node, 0);
396 if (spi->irq == -EPROBE_DEFER)
397 return -EPROBE_DEFER;
402 ret = dev_pm_domain_attach(dev, true);
406 ret = sdrv->probe(spi);
408 dev_pm_domain_detach(dev, true);
413 static int spi_drv_remove(struct device *dev)
415 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
418 ret = sdrv->remove(to_spi_device(dev));
419 dev_pm_domain_detach(dev, true);
424 static void spi_drv_shutdown(struct device *dev)
426 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
428 sdrv->shutdown(to_spi_device(dev));
432 * __spi_register_driver - register a SPI driver
433 * @owner: owner module of the driver to register
434 * @sdrv: the driver to register
437 * Return: zero on success, else a negative error code.
439 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
441 sdrv->driver.owner = owner;
442 sdrv->driver.bus = &spi_bus_type;
444 sdrv->driver.probe = spi_drv_probe;
446 sdrv->driver.remove = spi_drv_remove;
448 sdrv->driver.shutdown = spi_drv_shutdown;
449 return driver_register(&sdrv->driver);
451 EXPORT_SYMBOL_GPL(__spi_register_driver);
453 /*-------------------------------------------------------------------------*/
455 /* SPI devices should normally not be created by SPI device drivers; that
456 * would make them board-specific. Similarly with SPI controller drivers.
457 * Device registration normally goes into like arch/.../mach.../board-YYY.c
458 * with other readonly (flashable) information about mainboard devices.
462 struct list_head list;
463 struct spi_board_info board_info;
466 static LIST_HEAD(board_list);
467 static LIST_HEAD(spi_controller_list);
470 * Used to protect add/del opertion for board_info list and
471 * spi_controller list, and their matching process
472 * also used to protect object of type struct idr
474 static DEFINE_MUTEX(board_lock);
477 * spi_alloc_device - Allocate a new SPI device
478 * @ctlr: Controller to which device is connected
481 * Allows a driver to allocate and initialize a spi_device without
482 * registering it immediately. This allows a driver to directly
483 * fill the spi_device with device parameters before calling
484 * spi_add_device() on it.
486 * Caller is responsible to call spi_add_device() on the returned
487 * spi_device structure to add it to the SPI controller. If the caller
488 * needs to discard the spi_device without adding it, then it should
489 * call spi_dev_put() on it.
491 * Return: a pointer to the new device, or NULL.
493 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
495 struct spi_device *spi;
497 if (!spi_controller_get(ctlr))
500 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
502 spi_controller_put(ctlr);
506 spi->master = spi->controller = ctlr;
507 spi->dev.parent = &ctlr->dev;
508 spi->dev.bus = &spi_bus_type;
509 spi->dev.release = spidev_release;
510 spi->cs_gpio = -ENOENT;
512 spin_lock_init(&spi->statistics.lock);
514 device_initialize(&spi->dev);
517 EXPORT_SYMBOL_GPL(spi_alloc_device);
519 static void spi_dev_set_name(struct spi_device *spi)
521 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
524 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
528 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
532 static int spi_dev_check(struct device *dev, void *data)
534 struct spi_device *spi = to_spi_device(dev);
535 struct spi_device *new_spi = data;
537 if (spi->controller == new_spi->controller &&
538 spi->chip_select == new_spi->chip_select)
544 * spi_add_device - Add spi_device allocated with spi_alloc_device
545 * @spi: spi_device to register
547 * Companion function to spi_alloc_device. Devices allocated with
548 * spi_alloc_device can be added onto the spi bus with this function.
550 * Return: 0 on success; negative errno on failure
552 int spi_add_device(struct spi_device *spi)
554 static DEFINE_MUTEX(spi_add_lock);
555 struct spi_controller *ctlr = spi->controller;
556 struct device *dev = ctlr->dev.parent;
559 /* Chipselects are numbered 0..max; validate. */
560 if (spi->chip_select >= ctlr->num_chipselect) {
561 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
562 ctlr->num_chipselect);
566 /* Set the bus ID string */
567 spi_dev_set_name(spi);
569 /* We need to make sure there's no other device with this
570 * chipselect **BEFORE** we call setup(), else we'll trash
571 * its configuration. Lock against concurrent add() calls.
573 mutex_lock(&spi_add_lock);
575 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
577 dev_err(dev, "chipselect %d already in use\n",
582 /* Descriptors take precedence */
584 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
585 else if (ctlr->cs_gpios)
586 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
588 /* Drivers may modify this initial i/o setup, but will
589 * normally rely on the device being setup. Devices
590 * using SPI_CS_HIGH can't coexist well otherwise...
592 status = spi_setup(spi);
594 dev_err(dev, "can't setup %s, status %d\n",
595 dev_name(&spi->dev), status);
599 /* Device may be bound to an active driver when this returns */
600 status = device_add(&spi->dev);
602 dev_err(dev, "can't add %s, status %d\n",
603 dev_name(&spi->dev), status);
605 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
608 mutex_unlock(&spi_add_lock);
611 EXPORT_SYMBOL_GPL(spi_add_device);
614 * spi_new_device - instantiate one new SPI device
615 * @ctlr: Controller to which device is connected
616 * @chip: Describes the SPI device
619 * On typical mainboards, this is purely internal; and it's not needed
620 * after board init creates the hard-wired devices. Some development
621 * platforms may not be able to use spi_register_board_info though, and
622 * this is exported so that for example a USB or parport based adapter
623 * driver could add devices (which it would learn about out-of-band).
625 * Return: the new device, or NULL.
627 struct spi_device *spi_new_device(struct spi_controller *ctlr,
628 struct spi_board_info *chip)
630 struct spi_device *proxy;
633 /* NOTE: caller did any chip->bus_num checks necessary.
635 * Also, unless we change the return value convention to use
636 * error-or-pointer (not NULL-or-pointer), troubleshootability
637 * suggests syslogged diagnostics are best here (ugh).
640 proxy = spi_alloc_device(ctlr);
644 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
646 proxy->chip_select = chip->chip_select;
647 proxy->max_speed_hz = chip->max_speed_hz;
648 proxy->mode = chip->mode;
649 proxy->irq = chip->irq;
650 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
651 proxy->dev.platform_data = (void *) chip->platform_data;
652 proxy->controller_data = chip->controller_data;
653 proxy->controller_state = NULL;
655 if (chip->properties) {
656 status = device_add_properties(&proxy->dev, chip->properties);
659 "failed to add properties to '%s': %d\n",
660 chip->modalias, status);
665 status = spi_add_device(proxy);
667 goto err_remove_props;
672 if (chip->properties)
673 device_remove_properties(&proxy->dev);
678 EXPORT_SYMBOL_GPL(spi_new_device);
681 * spi_unregister_device - unregister a single SPI device
682 * @spi: spi_device to unregister
684 * Start making the passed SPI device vanish. Normally this would be handled
685 * by spi_unregister_controller().
687 void spi_unregister_device(struct spi_device *spi)
692 if (spi->dev.of_node) {
693 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
694 of_node_put(spi->dev.of_node);
696 if (ACPI_COMPANION(&spi->dev))
697 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
698 device_unregister(&spi->dev);
700 EXPORT_SYMBOL_GPL(spi_unregister_device);
702 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
703 struct spi_board_info *bi)
705 struct spi_device *dev;
707 if (ctlr->bus_num != bi->bus_num)
710 dev = spi_new_device(ctlr, bi);
712 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
717 * spi_register_board_info - register SPI devices for a given board
718 * @info: array of chip descriptors
719 * @n: how many descriptors are provided
722 * Board-specific early init code calls this (probably during arch_initcall)
723 * with segments of the SPI device table. Any device nodes are created later,
724 * after the relevant parent SPI controller (bus_num) is defined. We keep
725 * this table of devices forever, so that reloading a controller driver will
726 * not make Linux forget about these hard-wired devices.
728 * Other code can also call this, e.g. a particular add-on board might provide
729 * SPI devices through its expansion connector, so code initializing that board
730 * would naturally declare its SPI devices.
732 * The board info passed can safely be __initdata ... but be careful of
733 * any embedded pointers (platform_data, etc), they're copied as-is.
734 * Device properties are deep-copied though.
736 * Return: zero on success, else a negative error code.
738 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
740 struct boardinfo *bi;
746 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
750 for (i = 0; i < n; i++, bi++, info++) {
751 struct spi_controller *ctlr;
753 memcpy(&bi->board_info, info, sizeof(*info));
754 if (info->properties) {
755 bi->board_info.properties =
756 property_entries_dup(info->properties);
757 if (IS_ERR(bi->board_info.properties))
758 return PTR_ERR(bi->board_info.properties);
761 mutex_lock(&board_lock);
762 list_add_tail(&bi->list, &board_list);
763 list_for_each_entry(ctlr, &spi_controller_list, list)
764 spi_match_controller_to_boardinfo(ctlr,
766 mutex_unlock(&board_lock);
772 /*-------------------------------------------------------------------------*/
774 static void spi_set_cs(struct spi_device *spi, bool enable)
776 if (spi->mode & SPI_CS_HIGH)
779 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
781 * Honour the SPI_NO_CS flag and invert the enable line, as
782 * active low is default for SPI. Execution paths that handle
783 * polarity inversion in gpiolib (such as device tree) will
784 * enforce active high using the SPI_CS_HIGH resulting in a
785 * double inversion through the code above.
787 if (!(spi->mode & SPI_NO_CS)) {
789 gpiod_set_value_cansleep(spi->cs_gpiod,
792 gpio_set_value_cansleep(spi->cs_gpio, !enable);
794 /* Some SPI masters need both GPIO CS & slave_select */
795 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
796 spi->controller->set_cs)
797 spi->controller->set_cs(spi, !enable);
798 } else if (spi->controller->set_cs) {
799 spi->controller->set_cs(spi, !enable);
803 #ifdef CONFIG_HAS_DMA
804 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
805 struct sg_table *sgt, void *buf, size_t len,
806 enum dma_data_direction dir)
808 const bool vmalloced_buf = is_vmalloc_addr(buf);
809 unsigned int max_seg_size = dma_get_max_seg_size(dev);
810 #ifdef CONFIG_HIGHMEM
811 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
812 (unsigned long)buf < (PKMAP_BASE +
813 (LAST_PKMAP * PAGE_SIZE)));
815 const bool kmap_buf = false;
819 struct page *vm_page;
820 struct scatterlist *sg;
825 if (vmalloced_buf || kmap_buf) {
826 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
827 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
828 } else if (virt_addr_valid(buf)) {
829 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
830 sgs = DIV_ROUND_UP(len, desc_len);
835 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
840 for (i = 0; i < sgs; i++) {
842 if (vmalloced_buf || kmap_buf) {
844 * Next scatterlist entry size is the minimum between
845 * the desc_len and the remaining buffer length that
848 min = min_t(size_t, desc_len,
850 PAGE_SIZE - offset_in_page(buf)));
852 vm_page = vmalloc_to_page(buf);
854 vm_page = kmap_to_page(buf);
859 sg_set_page(sg, vm_page,
860 min, offset_in_page(buf));
862 min = min_t(size_t, len, desc_len);
864 sg_set_buf(sg, sg_buf, min);
872 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
885 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
886 struct sg_table *sgt, enum dma_data_direction dir)
888 if (sgt->orig_nents) {
889 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
894 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
896 struct device *tx_dev, *rx_dev;
897 struct spi_transfer *xfer;
904 tx_dev = ctlr->dma_tx->device->dev;
906 tx_dev = ctlr->dev.parent;
909 rx_dev = ctlr->dma_rx->device->dev;
911 rx_dev = ctlr->dev.parent;
913 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
914 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
917 if (xfer->tx_buf != NULL) {
918 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
919 (void *)xfer->tx_buf, xfer->len,
925 if (xfer->rx_buf != NULL) {
926 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
927 xfer->rx_buf, xfer->len,
930 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
937 ctlr->cur_msg_mapped = true;
942 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
944 struct spi_transfer *xfer;
945 struct device *tx_dev, *rx_dev;
947 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
951 tx_dev = ctlr->dma_tx->device->dev;
953 tx_dev = ctlr->dev.parent;
956 rx_dev = ctlr->dma_rx->device->dev;
958 rx_dev = ctlr->dev.parent;
960 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
961 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
964 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
965 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
970 #else /* !CONFIG_HAS_DMA */
971 static inline int __spi_map_msg(struct spi_controller *ctlr,
972 struct spi_message *msg)
977 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
978 struct spi_message *msg)
982 #endif /* !CONFIG_HAS_DMA */
984 static inline int spi_unmap_msg(struct spi_controller *ctlr,
985 struct spi_message *msg)
987 struct spi_transfer *xfer;
989 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
991 * Restore the original value of tx_buf or rx_buf if they are
994 if (xfer->tx_buf == ctlr->dummy_tx)
996 if (xfer->rx_buf == ctlr->dummy_rx)
1000 return __spi_unmap_msg(ctlr, msg);
1003 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1005 struct spi_transfer *xfer;
1007 unsigned int max_tx, max_rx;
1009 if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) {
1013 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1014 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1016 max_tx = max(xfer->len, max_tx);
1017 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1019 max_rx = max(xfer->len, max_rx);
1023 tmp = krealloc(ctlr->dummy_tx, max_tx,
1024 GFP_KERNEL | GFP_DMA);
1027 ctlr->dummy_tx = tmp;
1028 memset(tmp, 0, max_tx);
1032 tmp = krealloc(ctlr->dummy_rx, max_rx,
1033 GFP_KERNEL | GFP_DMA);
1036 ctlr->dummy_rx = tmp;
1039 if (max_tx || max_rx) {
1040 list_for_each_entry(xfer, &msg->transfers,
1043 xfer->tx_buf = ctlr->dummy_tx;
1045 xfer->rx_buf = ctlr->dummy_rx;
1050 return __spi_map_msg(ctlr, msg);
1053 static int spi_transfer_wait(struct spi_controller *ctlr,
1054 struct spi_message *msg,
1055 struct spi_transfer *xfer)
1057 struct spi_statistics *statm = &ctlr->statistics;
1058 struct spi_statistics *stats = &msg->spi->statistics;
1059 unsigned long long ms = 1;
1061 if (spi_controller_is_slave(ctlr)) {
1062 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1063 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1067 ms = 8LL * 1000LL * xfer->len;
1068 do_div(ms, xfer->speed_hz);
1069 ms += ms + 200; /* some tolerance */
1074 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1075 msecs_to_jiffies(ms));
1078 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1079 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1080 dev_err(&msg->spi->dev,
1081 "SPI transfer timed out\n");
1090 * spi_transfer_one_message - Default implementation of transfer_one_message()
1092 * This is a standard implementation of transfer_one_message() for
1093 * drivers which implement a transfer_one() operation. It provides
1094 * standard handling of delays and chip select management.
1096 static int spi_transfer_one_message(struct spi_controller *ctlr,
1097 struct spi_message *msg)
1099 struct spi_transfer *xfer;
1100 bool keep_cs = false;
1102 struct spi_statistics *statm = &ctlr->statistics;
1103 struct spi_statistics *stats = &msg->spi->statistics;
1105 spi_set_cs(msg->spi, true);
1107 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1108 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1110 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1111 trace_spi_transfer_start(msg, xfer);
1113 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1114 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1116 if (xfer->tx_buf || xfer->rx_buf) {
1117 reinit_completion(&ctlr->xfer_completion);
1119 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1121 SPI_STATISTICS_INCREMENT_FIELD(statm,
1123 SPI_STATISTICS_INCREMENT_FIELD(stats,
1125 dev_err(&msg->spi->dev,
1126 "SPI transfer failed: %d\n", ret);
1131 ret = spi_transfer_wait(ctlr, msg, xfer);
1137 dev_err(&msg->spi->dev,
1138 "Bufferless transfer has length %u\n",
1142 trace_spi_transfer_stop(msg, xfer);
1144 if (msg->status != -EINPROGRESS)
1147 if (xfer->delay_usecs) {
1148 u16 us = xfer->delay_usecs;
1153 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1156 if (xfer->cs_change) {
1157 if (list_is_last(&xfer->transfer_list,
1161 spi_set_cs(msg->spi, false);
1163 spi_set_cs(msg->spi, true);
1167 msg->actual_length += xfer->len;
1171 if (ret != 0 || !keep_cs)
1172 spi_set_cs(msg->spi, false);
1174 if (msg->status == -EINPROGRESS)
1177 if (msg->status && ctlr->handle_err)
1178 ctlr->handle_err(ctlr, msg);
1180 spi_res_release(ctlr, msg);
1182 spi_finalize_current_message(ctlr);
1188 * spi_finalize_current_transfer - report completion of a transfer
1189 * @ctlr: the controller reporting completion
1191 * Called by SPI drivers using the core transfer_one_message()
1192 * implementation to notify it that the current interrupt driven
1193 * transfer has finished and the next one may be scheduled.
1195 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1197 complete(&ctlr->xfer_completion);
1199 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1202 * __spi_pump_messages - function which processes spi message queue
1203 * @ctlr: controller to process queue for
1204 * @in_kthread: true if we are in the context of the message pump thread
1206 * This function checks if there is any spi message in the queue that
1207 * needs processing and if so call out to the driver to initialize hardware
1208 * and transfer each message.
1210 * Note that it is called both from the kthread itself and also from
1211 * inside spi_sync(); the queue extraction handling at the top of the
1212 * function should deal with this safely.
1214 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1216 unsigned long flags;
1217 bool was_busy = false;
1221 spin_lock_irqsave(&ctlr->queue_lock, flags);
1223 /* Make sure we are not already running a message */
1224 if (ctlr->cur_msg) {
1225 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1229 /* If another context is idling the device then defer */
1231 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1232 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1236 /* Check if the queue is idle */
1237 if (list_empty(&ctlr->queue) || !ctlr->running) {
1239 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1243 /* Only do teardown in the thread */
1245 kthread_queue_work(&ctlr->kworker,
1246 &ctlr->pump_messages);
1247 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1252 ctlr->idling = true;
1253 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1255 kfree(ctlr->dummy_rx);
1256 ctlr->dummy_rx = NULL;
1257 kfree(ctlr->dummy_tx);
1258 ctlr->dummy_tx = NULL;
1259 if (ctlr->unprepare_transfer_hardware &&
1260 ctlr->unprepare_transfer_hardware(ctlr))
1262 "failed to unprepare transfer hardware\n");
1263 if (ctlr->auto_runtime_pm) {
1264 pm_runtime_mark_last_busy(ctlr->dev.parent);
1265 pm_runtime_put_autosuspend(ctlr->dev.parent);
1267 trace_spi_controller_idle(ctlr);
1269 spin_lock_irqsave(&ctlr->queue_lock, flags);
1270 ctlr->idling = false;
1271 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1275 /* Extract head of queue */
1277 list_first_entry(&ctlr->queue, struct spi_message, queue);
1279 list_del_init(&ctlr->cur_msg->queue);
1284 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1286 mutex_lock(&ctlr->io_mutex);
1288 if (!was_busy && ctlr->auto_runtime_pm) {
1289 ret = pm_runtime_get_sync(ctlr->dev.parent);
1291 pm_runtime_put_noidle(ctlr->dev.parent);
1292 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1294 mutex_unlock(&ctlr->io_mutex);
1300 trace_spi_controller_busy(ctlr);
1302 if (!was_busy && ctlr->prepare_transfer_hardware) {
1303 ret = ctlr->prepare_transfer_hardware(ctlr);
1306 "failed to prepare transfer hardware\n");
1308 if (ctlr->auto_runtime_pm)
1309 pm_runtime_put(ctlr->dev.parent);
1310 mutex_unlock(&ctlr->io_mutex);
1315 trace_spi_message_start(ctlr->cur_msg);
1317 if (ctlr->prepare_message) {
1318 ret = ctlr->prepare_message(ctlr, ctlr->cur_msg);
1320 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1322 ctlr->cur_msg->status = ret;
1323 spi_finalize_current_message(ctlr);
1326 ctlr->cur_msg_prepared = true;
1329 ret = spi_map_msg(ctlr, ctlr->cur_msg);
1331 ctlr->cur_msg->status = ret;
1332 spi_finalize_current_message(ctlr);
1336 ret = ctlr->transfer_one_message(ctlr, ctlr->cur_msg);
1339 "failed to transfer one message from queue\n");
1344 mutex_unlock(&ctlr->io_mutex);
1346 /* Prod the scheduler in case transfer_one() was busy waiting */
1352 * spi_pump_messages - kthread work function which processes spi message queue
1353 * @work: pointer to kthread work struct contained in the controller struct
1355 static void spi_pump_messages(struct kthread_work *work)
1357 struct spi_controller *ctlr =
1358 container_of(work, struct spi_controller, pump_messages);
1360 __spi_pump_messages(ctlr, true);
1363 static int spi_init_queue(struct spi_controller *ctlr)
1365 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1367 ctlr->running = false;
1370 kthread_init_worker(&ctlr->kworker);
1371 ctlr->kworker_task = kthread_run(kthread_worker_fn, &ctlr->kworker,
1372 "%s", dev_name(&ctlr->dev));
1373 if (IS_ERR(ctlr->kworker_task)) {
1374 dev_err(&ctlr->dev, "failed to create message pump task\n");
1375 return PTR_ERR(ctlr->kworker_task);
1377 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1380 * Controller config will indicate if this controller should run the
1381 * message pump with high (realtime) priority to reduce the transfer
1382 * latency on the bus by minimising the delay between a transfer
1383 * request and the scheduling of the message pump thread. Without this
1384 * setting the message pump thread will remain at default priority.
1387 dev_info(&ctlr->dev,
1388 "will run message pump with realtime priority\n");
1389 sched_setscheduler(ctlr->kworker_task, SCHED_FIFO, ¶m);
1396 * spi_get_next_queued_message() - called by driver to check for queued
1398 * @ctlr: the controller to check for queued messages
1400 * If there are more messages in the queue, the next message is returned from
1403 * Return: the next message in the queue, else NULL if the queue is empty.
1405 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1407 struct spi_message *next;
1408 unsigned long flags;
1410 /* get a pointer to the next message, if any */
1411 spin_lock_irqsave(&ctlr->queue_lock, flags);
1412 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1414 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1418 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1421 * spi_finalize_current_message() - the current message is complete
1422 * @ctlr: the controller to return the message to
1424 * Called by the driver to notify the core that the message in the front of the
1425 * queue is complete and can be removed from the queue.
1427 void spi_finalize_current_message(struct spi_controller *ctlr)
1429 struct spi_message *mesg;
1430 unsigned long flags;
1433 spin_lock_irqsave(&ctlr->queue_lock, flags);
1434 mesg = ctlr->cur_msg;
1435 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1437 spi_unmap_msg(ctlr, mesg);
1439 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1440 ret = ctlr->unprepare_message(ctlr, mesg);
1442 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1447 spin_lock_irqsave(&ctlr->queue_lock, flags);
1448 ctlr->cur_msg = NULL;
1449 ctlr->cur_msg_prepared = false;
1450 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1451 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1453 trace_spi_message_done(mesg);
1457 mesg->complete(mesg->context);
1459 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1461 static int spi_start_queue(struct spi_controller *ctlr)
1463 unsigned long flags;
1465 spin_lock_irqsave(&ctlr->queue_lock, flags);
1467 if (ctlr->running || ctlr->busy) {
1468 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1472 ctlr->running = true;
1473 ctlr->cur_msg = NULL;
1474 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1476 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1481 static int spi_stop_queue(struct spi_controller *ctlr)
1483 unsigned long flags;
1484 unsigned limit = 500;
1487 spin_lock_irqsave(&ctlr->queue_lock, flags);
1490 * This is a bit lame, but is optimized for the common execution path.
1491 * A wait_queue on the ctlr->busy could be used, but then the common
1492 * execution path (pump_messages) would be required to call wake_up or
1493 * friends on every SPI message. Do this instead.
1495 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1496 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1497 usleep_range(10000, 11000);
1498 spin_lock_irqsave(&ctlr->queue_lock, flags);
1501 if (!list_empty(&ctlr->queue) || ctlr->busy)
1504 ctlr->running = false;
1506 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1509 dev_warn(&ctlr->dev, "could not stop message queue\n");
1515 static int spi_destroy_queue(struct spi_controller *ctlr)
1519 ret = spi_stop_queue(ctlr);
1522 * kthread_flush_worker will block until all work is done.
1523 * If the reason that stop_queue timed out is that the work will never
1524 * finish, then it does no good to call flush/stop thread, so
1528 dev_err(&ctlr->dev, "problem destroying queue\n");
1532 kthread_flush_worker(&ctlr->kworker);
1533 kthread_stop(ctlr->kworker_task);
1538 static int __spi_queued_transfer(struct spi_device *spi,
1539 struct spi_message *msg,
1542 struct spi_controller *ctlr = spi->controller;
1543 unsigned long flags;
1545 spin_lock_irqsave(&ctlr->queue_lock, flags);
1547 if (!ctlr->running) {
1548 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1551 msg->actual_length = 0;
1552 msg->status = -EINPROGRESS;
1554 list_add_tail(&msg->queue, &ctlr->queue);
1555 if (!ctlr->busy && need_pump)
1556 kthread_queue_work(&ctlr->kworker, &ctlr->pump_messages);
1558 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1563 * spi_queued_transfer - transfer function for queued transfers
1564 * @spi: spi device which is requesting transfer
1565 * @msg: spi message which is to handled is queued to driver queue
1567 * Return: zero on success, else a negative error code.
1569 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1571 return __spi_queued_transfer(spi, msg, true);
1574 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1578 ctlr->transfer = spi_queued_transfer;
1579 if (!ctlr->transfer_one_message)
1580 ctlr->transfer_one_message = spi_transfer_one_message;
1582 /* Initialize and start queue */
1583 ret = spi_init_queue(ctlr);
1585 dev_err(&ctlr->dev, "problem initializing queue\n");
1586 goto err_init_queue;
1588 ctlr->queued = true;
1589 ret = spi_start_queue(ctlr);
1591 dev_err(&ctlr->dev, "problem starting queue\n");
1592 goto err_start_queue;
1598 spi_destroy_queue(ctlr);
1604 * spi_flush_queue - Send all pending messages in the queue from the callers'
1606 * @ctlr: controller to process queue for
1608 * This should be used when one wants to ensure all pending messages have been
1609 * sent before doing something. Is used by the spi-mem code to make sure SPI
1610 * memory operations do not preempt regular SPI transfers that have been queued
1611 * before the spi-mem operation.
1613 void spi_flush_queue(struct spi_controller *ctlr)
1615 if (ctlr->transfer == spi_queued_transfer)
1616 __spi_pump_messages(ctlr, false);
1619 /*-------------------------------------------------------------------------*/
1621 #if defined(CONFIG_OF)
1622 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1623 struct device_node *nc)
1628 /* Mode (clock phase/polarity/etc.) */
1629 if (of_property_read_bool(nc, "spi-cpha"))
1630 spi->mode |= SPI_CPHA;
1631 if (of_property_read_bool(nc, "spi-cpol"))
1632 spi->mode |= SPI_CPOL;
1633 if (of_property_read_bool(nc, "spi-3wire"))
1634 spi->mode |= SPI_3WIRE;
1635 if (of_property_read_bool(nc, "spi-lsb-first"))
1636 spi->mode |= SPI_LSB_FIRST;
1639 * For descriptors associated with the device, polarity inversion is
1640 * handled in the gpiolib, so all chip selects are "active high" in
1641 * the logical sense, the gpiolib will invert the line if need be.
1643 if (ctlr->use_gpio_descriptors)
1644 spi->mode |= SPI_CS_HIGH;
1645 else if (of_property_read_bool(nc, "spi-cs-high"))
1646 spi->mode |= SPI_CS_HIGH;
1648 /* Device DUAL/QUAD mode */
1649 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1654 spi->mode |= SPI_TX_DUAL;
1657 spi->mode |= SPI_TX_QUAD;
1660 spi->mode |= SPI_TX_OCTAL;
1663 dev_warn(&ctlr->dev,
1664 "spi-tx-bus-width %d not supported\n",
1670 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1675 spi->mode |= SPI_RX_DUAL;
1678 spi->mode |= SPI_RX_QUAD;
1681 spi->mode |= SPI_RX_OCTAL;
1684 dev_warn(&ctlr->dev,
1685 "spi-rx-bus-width %d not supported\n",
1691 if (spi_controller_is_slave(ctlr)) {
1692 if (!of_node_name_eq(nc, "slave")) {
1693 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1700 /* Device address */
1701 rc = of_property_read_u32(nc, "reg", &value);
1703 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1707 spi->chip_select = value;
1710 rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1713 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc, rc);
1716 spi->max_speed_hz = value;
1721 static struct spi_device *
1722 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
1724 struct spi_device *spi;
1727 /* Alloc an spi_device */
1728 spi = spi_alloc_device(ctlr);
1730 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
1735 /* Select device driver */
1736 rc = of_modalias_node(nc, spi->modalias,
1737 sizeof(spi->modalias));
1739 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
1743 rc = of_spi_parse_dt(ctlr, spi, nc);
1747 /* Store a pointer to the node in the device structure */
1749 spi->dev.of_node = nc;
1751 /* Register the new device */
1752 rc = spi_add_device(spi);
1754 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
1755 goto err_of_node_put;
1768 * of_register_spi_devices() - Register child devices onto the SPI bus
1769 * @ctlr: Pointer to spi_controller device
1771 * Registers an spi_device for each child node of controller node which
1772 * represents a valid SPI slave.
1774 static void of_register_spi_devices(struct spi_controller *ctlr)
1776 struct spi_device *spi;
1777 struct device_node *nc;
1779 if (!ctlr->dev.of_node)
1782 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
1783 if (of_node_test_and_set_flag(nc, OF_POPULATED))
1785 spi = of_register_spi_device(ctlr, nc);
1787 dev_warn(&ctlr->dev,
1788 "Failed to create SPI device for %pOF\n", nc);
1789 of_node_clear_flag(nc, OF_POPULATED);
1794 static void of_register_spi_devices(struct spi_controller *ctlr) { }
1798 static void acpi_spi_parse_apple_properties(struct spi_device *spi)
1800 struct acpi_device *dev = ACPI_COMPANION(&spi->dev);
1801 const union acpi_object *obj;
1803 if (!x86_apple_machine)
1806 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
1807 && obj->buffer.length >= 4)
1808 spi->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
1810 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
1811 && obj->buffer.length == 8)
1812 spi->bits_per_word = *(u64 *)obj->buffer.pointer;
1814 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
1815 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
1816 spi->mode |= SPI_LSB_FIRST;
1818 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
1819 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1820 spi->mode |= SPI_CPOL;
1822 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
1823 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
1824 spi->mode |= SPI_CPHA;
1827 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1829 struct spi_device *spi = data;
1830 struct spi_controller *ctlr = spi->controller;
1832 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1833 struct acpi_resource_spi_serialbus *sb;
1835 sb = &ares->data.spi_serial_bus;
1836 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1838 * ACPI DeviceSelection numbering is handled by the
1839 * host controller driver in Windows and can vary
1840 * from driver to driver. In Linux we always expect
1841 * 0 .. max - 1 so we need to ask the driver to
1842 * translate between the two schemes.
1844 if (ctlr->fw_translate_cs) {
1845 int cs = ctlr->fw_translate_cs(ctlr,
1846 sb->device_selection);
1849 spi->chip_select = cs;
1851 spi->chip_select = sb->device_selection;
1854 spi->max_speed_hz = sb->connection_speed;
1856 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1857 spi->mode |= SPI_CPHA;
1858 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1859 spi->mode |= SPI_CPOL;
1860 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1861 spi->mode |= SPI_CS_HIGH;
1863 } else if (spi->irq < 0) {
1866 if (acpi_dev_resource_interrupt(ares, 0, &r))
1870 /* Always tell the ACPI core to skip this resource */
1874 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
1875 struct acpi_device *adev)
1877 struct list_head resource_list;
1878 struct spi_device *spi;
1881 if (acpi_bus_get_status(adev) || !adev->status.present ||
1882 acpi_device_enumerated(adev))
1885 spi = spi_alloc_device(ctlr);
1887 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
1888 dev_name(&adev->dev));
1889 return AE_NO_MEMORY;
1892 ACPI_COMPANION_SET(&spi->dev, adev);
1895 INIT_LIST_HEAD(&resource_list);
1896 ret = acpi_dev_get_resources(adev, &resource_list,
1897 acpi_spi_add_resource, spi);
1898 acpi_dev_free_resource_list(&resource_list);
1900 acpi_spi_parse_apple_properties(spi);
1902 if (ret < 0 || !spi->max_speed_hz) {
1907 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
1908 sizeof(spi->modalias));
1911 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1913 acpi_device_set_enumerated(adev);
1915 adev->power.flags.ignore_parent = true;
1916 if (spi_add_device(spi)) {
1917 adev->power.flags.ignore_parent = false;
1918 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
1919 dev_name(&adev->dev));
1926 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1927 void *data, void **return_value)
1929 struct spi_controller *ctlr = data;
1930 struct acpi_device *adev;
1932 if (acpi_bus_get_device(handle, &adev))
1935 return acpi_register_spi_device(ctlr, adev);
1938 static void acpi_register_spi_devices(struct spi_controller *ctlr)
1943 handle = ACPI_HANDLE(ctlr->dev.parent);
1947 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1948 acpi_spi_add_device, NULL, ctlr, NULL);
1949 if (ACPI_FAILURE(status))
1950 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
1953 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
1954 #endif /* CONFIG_ACPI */
1956 static void spi_controller_release(struct device *dev)
1958 struct spi_controller *ctlr;
1960 ctlr = container_of(dev, struct spi_controller, dev);
1964 static struct class spi_master_class = {
1965 .name = "spi_master",
1966 .owner = THIS_MODULE,
1967 .dev_release = spi_controller_release,
1968 .dev_groups = spi_master_groups,
1971 #ifdef CONFIG_SPI_SLAVE
1973 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1975 * @spi: device used for the current transfer
1977 int spi_slave_abort(struct spi_device *spi)
1979 struct spi_controller *ctlr = spi->controller;
1981 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
1982 return ctlr->slave_abort(ctlr);
1986 EXPORT_SYMBOL_GPL(spi_slave_abort);
1988 static int match_true(struct device *dev, void *data)
1993 static ssize_t spi_slave_show(struct device *dev,
1994 struct device_attribute *attr, char *buf)
1996 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
1998 struct device *child;
2000 child = device_find_child(&ctlr->dev, NULL, match_true);
2001 return sprintf(buf, "%s\n",
2002 child ? to_spi_device(child)->modalias : NULL);
2005 static ssize_t spi_slave_store(struct device *dev,
2006 struct device_attribute *attr, const char *buf,
2009 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2011 struct spi_device *spi;
2012 struct device *child;
2016 rc = sscanf(buf, "%31s", name);
2017 if (rc != 1 || !name[0])
2020 child = device_find_child(&ctlr->dev, NULL, match_true);
2022 /* Remove registered slave */
2023 device_unregister(child);
2027 if (strcmp(name, "(null)")) {
2028 /* Register new slave */
2029 spi = spi_alloc_device(ctlr);
2033 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2035 rc = spi_add_device(spi);
2045 static DEVICE_ATTR(slave, 0644, spi_slave_show, spi_slave_store);
2047 static struct attribute *spi_slave_attrs[] = {
2048 &dev_attr_slave.attr,
2052 static const struct attribute_group spi_slave_group = {
2053 .attrs = spi_slave_attrs,
2056 static const struct attribute_group *spi_slave_groups[] = {
2057 &spi_controller_statistics_group,
2062 static struct class spi_slave_class = {
2063 .name = "spi_slave",
2064 .owner = THIS_MODULE,
2065 .dev_release = spi_controller_release,
2066 .dev_groups = spi_slave_groups,
2069 extern struct class spi_slave_class; /* dummy */
2073 * __spi_alloc_controller - allocate an SPI master or slave controller
2074 * @dev: the controller, possibly using the platform_bus
2075 * @size: how much zeroed driver-private data to allocate; the pointer to this
2076 * memory is in the driver_data field of the returned device,
2077 * accessible with spi_controller_get_devdata().
2078 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2079 * slave (true) controller
2080 * Context: can sleep
2082 * This call is used only by SPI controller drivers, which are the
2083 * only ones directly touching chip registers. It's how they allocate
2084 * an spi_controller structure, prior to calling spi_register_controller().
2086 * This must be called from context that can sleep.
2088 * The caller is responsible for assigning the bus number and initializing the
2089 * controller's methods before calling spi_register_controller(); and (after
2090 * errors adding the device) calling spi_controller_put() to prevent a memory
2093 * Return: the SPI controller structure on success, else NULL.
2095 struct spi_controller *__spi_alloc_controller(struct device *dev,
2096 unsigned int size, bool slave)
2098 struct spi_controller *ctlr;
2103 ctlr = kzalloc(size + sizeof(*ctlr), GFP_KERNEL);
2107 device_initialize(&ctlr->dev);
2109 ctlr->num_chipselect = 1;
2110 ctlr->slave = slave;
2111 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2112 ctlr->dev.class = &spi_slave_class;
2114 ctlr->dev.class = &spi_master_class;
2115 ctlr->dev.parent = dev;
2116 pm_suspend_ignore_children(&ctlr->dev, true);
2117 spi_controller_set_devdata(ctlr, &ctlr[1]);
2121 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2124 static int of_spi_register_master(struct spi_controller *ctlr)
2127 struct device_node *np = ctlr->dev.of_node;
2132 nb = of_gpio_named_count(np, "cs-gpios");
2133 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2135 /* Return error only for an incorrectly formed cs-gpios property */
2136 if (nb == 0 || nb == -ENOENT)
2141 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2143 ctlr->cs_gpios = cs;
2145 if (!ctlr->cs_gpios)
2148 for (i = 0; i < ctlr->num_chipselect; i++)
2151 for (i = 0; i < nb; i++)
2152 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2157 static int of_spi_register_master(struct spi_controller *ctlr)
2164 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2165 * @ctlr: The SPI master to grab GPIO descriptors for
2167 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2170 struct gpio_desc **cs;
2171 struct device *dev = &ctlr->dev;
2173 nb = gpiod_count(dev, "cs");
2174 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2176 /* No GPIOs at all is fine, else return the error */
2177 if (nb == 0 || nb == -ENOENT)
2182 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2186 ctlr->cs_gpiods = cs;
2188 for (i = 0; i < nb; i++) {
2190 * Most chipselects are active low, the inverted
2191 * semantics are handled by special quirks in gpiolib,
2192 * so initializing them GPIOD_OUT_LOW here means
2193 * "unasserted", in most cases this will drive the physical
2196 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2201 * If we find a CS GPIO, name it after the device and
2206 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2210 gpiod_set_consumer_name(cs[i], gpioname);
2217 static int spi_controller_check_ops(struct spi_controller *ctlr)
2220 * The controller may implement only the high-level SPI-memory like
2221 * operations if it does not support regular SPI transfers, and this is
2223 * If ->mem_ops is NULL, we request that at least one of the
2224 * ->transfer_xxx() method be implemented.
2226 if (ctlr->mem_ops) {
2227 if (!ctlr->mem_ops->exec_op)
2229 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2230 !ctlr->transfer_one_message) {
2238 * spi_register_controller - register SPI master or slave controller
2239 * @ctlr: initialized master, originally from spi_alloc_master() or
2241 * Context: can sleep
2243 * SPI controllers connect to their drivers using some non-SPI bus,
2244 * such as the platform bus. The final stage of probe() in that code
2245 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2247 * SPI controllers use board specific (often SOC specific) bus numbers,
2248 * and board-specific addressing for SPI devices combines those numbers
2249 * with chip select numbers. Since SPI does not directly support dynamic
2250 * device identification, boards need configuration tables telling which
2251 * chip is at which address.
2253 * This must be called from context that can sleep. It returns zero on
2254 * success, else a negative error code (dropping the controller's refcount).
2255 * After a successful return, the caller is responsible for calling
2256 * spi_unregister_controller().
2258 * Return: zero on success, else a negative error code.
2260 int spi_register_controller(struct spi_controller *ctlr)
2262 struct device *dev = ctlr->dev.parent;
2263 struct boardinfo *bi;
2264 int status = -ENODEV;
2265 int id, first_dynamic;
2271 * Make sure all necessary hooks are implemented before registering
2272 * the SPI controller.
2274 status = spi_controller_check_ops(ctlr);
2278 if (!spi_controller_is_slave(ctlr)) {
2279 if (ctlr->use_gpio_descriptors) {
2280 status = spi_get_gpio_descs(ctlr);
2284 * A controller using GPIO descriptors always
2285 * supports SPI_CS_HIGH if need be.
2287 ctlr->mode_bits |= SPI_CS_HIGH;
2289 /* Legacy code path for GPIOs from DT */
2290 status = of_spi_register_master(ctlr);
2296 /* even if it's just one always-selected device, there must
2297 * be at least one chipselect
2299 if (ctlr->num_chipselect == 0)
2301 if (ctlr->bus_num >= 0) {
2302 /* devices with a fixed bus num must check-in with the num */
2303 mutex_lock(&board_lock);
2304 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2305 ctlr->bus_num + 1, GFP_KERNEL);
2306 mutex_unlock(&board_lock);
2307 if (WARN(id < 0, "couldn't get idr"))
2308 return id == -ENOSPC ? -EBUSY : id;
2310 } else if (ctlr->dev.of_node) {
2311 /* allocate dynamic bus number using Linux idr */
2312 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2315 mutex_lock(&board_lock);
2316 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2317 ctlr->bus_num + 1, GFP_KERNEL);
2318 mutex_unlock(&board_lock);
2319 if (WARN(id < 0, "couldn't get idr"))
2320 return id == -ENOSPC ? -EBUSY : id;
2323 if (ctlr->bus_num < 0) {
2324 first_dynamic = of_alias_get_highest_id("spi");
2325 if (first_dynamic < 0)
2330 mutex_lock(&board_lock);
2331 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2333 mutex_unlock(&board_lock);
2334 if (WARN(id < 0, "couldn't get idr"))
2338 INIT_LIST_HEAD(&ctlr->queue);
2339 spin_lock_init(&ctlr->queue_lock);
2340 spin_lock_init(&ctlr->bus_lock_spinlock);
2341 mutex_init(&ctlr->bus_lock_mutex);
2342 mutex_init(&ctlr->io_mutex);
2343 ctlr->bus_lock_flag = 0;
2344 init_completion(&ctlr->xfer_completion);
2345 if (!ctlr->max_dma_len)
2346 ctlr->max_dma_len = INT_MAX;
2348 /* register the device, then userspace will see it.
2349 * registration fails if the bus ID is in use.
2351 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2352 status = device_add(&ctlr->dev);
2355 mutex_lock(&board_lock);
2356 idr_remove(&spi_master_idr, ctlr->bus_num);
2357 mutex_unlock(&board_lock);
2360 dev_dbg(dev, "registered %s %s\n",
2361 spi_controller_is_slave(ctlr) ? "slave" : "master",
2362 dev_name(&ctlr->dev));
2365 * If we're using a queued driver, start the queue. Note that we don't
2366 * need the queueing logic if the driver is only supporting high-level
2367 * memory operations.
2369 if (ctlr->transfer) {
2370 dev_info(dev, "controller is unqueued, this is deprecated\n");
2371 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2372 status = spi_controller_initialize_queue(ctlr);
2374 device_del(&ctlr->dev);
2376 mutex_lock(&board_lock);
2377 idr_remove(&spi_master_idr, ctlr->bus_num);
2378 mutex_unlock(&board_lock);
2382 /* add statistics */
2383 spin_lock_init(&ctlr->statistics.lock);
2385 mutex_lock(&board_lock);
2386 list_add_tail(&ctlr->list, &spi_controller_list);
2387 list_for_each_entry(bi, &board_list, list)
2388 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2389 mutex_unlock(&board_lock);
2391 /* Register devices from the device tree and ACPI */
2392 of_register_spi_devices(ctlr);
2393 acpi_register_spi_devices(ctlr);
2397 EXPORT_SYMBOL_GPL(spi_register_controller);
2399 static void devm_spi_unregister(struct device *dev, void *res)
2401 spi_unregister_controller(*(struct spi_controller **)res);
2405 * devm_spi_register_controller - register managed SPI master or slave
2407 * @dev: device managing SPI controller
2408 * @ctlr: initialized controller, originally from spi_alloc_master() or
2410 * Context: can sleep
2412 * Register a SPI device as with spi_register_controller() which will
2413 * automatically be unregistered and freed.
2415 * Return: zero on success, else a negative error code.
2417 int devm_spi_register_controller(struct device *dev,
2418 struct spi_controller *ctlr)
2420 struct spi_controller **ptr;
2423 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2427 ret = spi_register_controller(ctlr);
2430 devres_add(dev, ptr);
2437 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2439 static int __unregister(struct device *dev, void *null)
2441 spi_unregister_device(to_spi_device(dev));
2446 * spi_unregister_controller - unregister SPI master or slave controller
2447 * @ctlr: the controller being unregistered
2448 * Context: can sleep
2450 * This call is used only by SPI controller drivers, which are the
2451 * only ones directly touching chip registers.
2453 * This must be called from context that can sleep.
2455 * Note that this function also drops a reference to the controller.
2457 void spi_unregister_controller(struct spi_controller *ctlr)
2459 struct spi_controller *found;
2460 int id = ctlr->bus_num;
2463 /* First make sure that this controller was ever added */
2464 mutex_lock(&board_lock);
2465 found = idr_find(&spi_master_idr, id);
2466 mutex_unlock(&board_lock);
2468 if (spi_destroy_queue(ctlr))
2469 dev_err(&ctlr->dev, "queue remove failed\n");
2471 mutex_lock(&board_lock);
2472 list_del(&ctlr->list);
2473 mutex_unlock(&board_lock);
2475 dummy = device_for_each_child(&ctlr->dev, NULL, __unregister);
2476 device_unregister(&ctlr->dev);
2478 mutex_lock(&board_lock);
2480 idr_remove(&spi_master_idr, id);
2481 mutex_unlock(&board_lock);
2483 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2485 int spi_controller_suspend(struct spi_controller *ctlr)
2489 /* Basically no-ops for non-queued controllers */
2493 ret = spi_stop_queue(ctlr);
2495 dev_err(&ctlr->dev, "queue stop failed\n");
2499 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2501 int spi_controller_resume(struct spi_controller *ctlr)
2508 ret = spi_start_queue(ctlr);
2510 dev_err(&ctlr->dev, "queue restart failed\n");
2514 EXPORT_SYMBOL_GPL(spi_controller_resume);
2516 static int __spi_controller_match(struct device *dev, const void *data)
2518 struct spi_controller *ctlr;
2519 const u16 *bus_num = data;
2521 ctlr = container_of(dev, struct spi_controller, dev);
2522 return ctlr->bus_num == *bus_num;
2526 * spi_busnum_to_master - look up master associated with bus_num
2527 * @bus_num: the master's bus number
2528 * Context: can sleep
2530 * This call may be used with devices that are registered after
2531 * arch init time. It returns a refcounted pointer to the relevant
2532 * spi_controller (which the caller must release), or NULL if there is
2533 * no such master registered.
2535 * Return: the SPI master structure on success, else NULL.
2537 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2540 struct spi_controller *ctlr = NULL;
2542 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2543 __spi_controller_match);
2545 ctlr = container_of(dev, struct spi_controller, dev);
2546 /* reference got in class_find_device */
2549 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2551 /*-------------------------------------------------------------------------*/
2553 /* Core methods for SPI resource management */
2556 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2557 * during the processing of a spi_message while using
2559 * @spi: the spi device for which we allocate memory
2560 * @release: the release code to execute for this resource
2561 * @size: size to alloc and return
2562 * @gfp: GFP allocation flags
2564 * Return: the pointer to the allocated data
2566 * This may get enhanced in the future to allocate from a memory pool
2567 * of the @spi_device or @spi_controller to avoid repeated allocations.
2569 void *spi_res_alloc(struct spi_device *spi,
2570 spi_res_release_t release,
2571 size_t size, gfp_t gfp)
2573 struct spi_res *sres;
2575 sres = kzalloc(sizeof(*sres) + size, gfp);
2579 INIT_LIST_HEAD(&sres->entry);
2580 sres->release = release;
2584 EXPORT_SYMBOL_GPL(spi_res_alloc);
2587 * spi_res_free - free an spi resource
2588 * @res: pointer to the custom data of a resource
2591 void spi_res_free(void *res)
2593 struct spi_res *sres = container_of(res, struct spi_res, data);
2598 WARN_ON(!list_empty(&sres->entry));
2601 EXPORT_SYMBOL_GPL(spi_res_free);
2604 * spi_res_add - add a spi_res to the spi_message
2605 * @message: the spi message
2606 * @res: the spi_resource
2608 void spi_res_add(struct spi_message *message, void *res)
2610 struct spi_res *sres = container_of(res, struct spi_res, data);
2612 WARN_ON(!list_empty(&sres->entry));
2613 list_add_tail(&sres->entry, &message->resources);
2615 EXPORT_SYMBOL_GPL(spi_res_add);
2618 * spi_res_release - release all spi resources for this message
2619 * @ctlr: the @spi_controller
2620 * @message: the @spi_message
2622 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2624 struct spi_res *res;
2626 while (!list_empty(&message->resources)) {
2627 res = list_last_entry(&message->resources,
2628 struct spi_res, entry);
2631 res->release(ctlr, message, res->data);
2633 list_del(&res->entry);
2638 EXPORT_SYMBOL_GPL(spi_res_release);
2640 /*-------------------------------------------------------------------------*/
2642 /* Core methods for spi_message alterations */
2644 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
2645 struct spi_message *msg,
2648 struct spi_replaced_transfers *rxfer = res;
2651 /* call extra callback if requested */
2653 rxfer->release(ctlr, msg, res);
2655 /* insert replaced transfers back into the message */
2656 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2658 /* remove the formerly inserted entries */
2659 for (i = 0; i < rxfer->inserted; i++)
2660 list_del(&rxfer->inserted_transfers[i].transfer_list);
2664 * spi_replace_transfers - replace transfers with several transfers
2665 * and register change with spi_message.resources
2666 * @msg: the spi_message we work upon
2667 * @xfer_first: the first spi_transfer we want to replace
2668 * @remove: number of transfers to remove
2669 * @insert: the number of transfers we want to insert instead
2670 * @release: extra release code necessary in some circumstances
2671 * @extradatasize: extra data to allocate (with alignment guarantees
2672 * of struct @spi_transfer)
2675 * Returns: pointer to @spi_replaced_transfers,
2676 * PTR_ERR(...) in case of errors.
2678 struct spi_replaced_transfers *spi_replace_transfers(
2679 struct spi_message *msg,
2680 struct spi_transfer *xfer_first,
2683 spi_replaced_release_t release,
2684 size_t extradatasize,
2687 struct spi_replaced_transfers *rxfer;
2688 struct spi_transfer *xfer;
2691 /* allocate the structure using spi_res */
2692 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2693 insert * sizeof(struct spi_transfer)
2694 + sizeof(struct spi_replaced_transfers)
2698 return ERR_PTR(-ENOMEM);
2700 /* the release code to invoke before running the generic release */
2701 rxfer->release = release;
2703 /* assign extradata */
2706 &rxfer->inserted_transfers[insert];
2708 /* init the replaced_transfers list */
2709 INIT_LIST_HEAD(&rxfer->replaced_transfers);
2711 /* assign the list_entry after which we should reinsert
2712 * the @replaced_transfers - it may be spi_message.messages!
2714 rxfer->replaced_after = xfer_first->transfer_list.prev;
2716 /* remove the requested number of transfers */
2717 for (i = 0; i < remove; i++) {
2718 /* if the entry after replaced_after it is msg->transfers
2719 * then we have been requested to remove more transfers
2720 * than are in the list
2722 if (rxfer->replaced_after->next == &msg->transfers) {
2723 dev_err(&msg->spi->dev,
2724 "requested to remove more spi_transfers than are available\n");
2725 /* insert replaced transfers back into the message */
2726 list_splice(&rxfer->replaced_transfers,
2727 rxfer->replaced_after);
2729 /* free the spi_replace_transfer structure */
2730 spi_res_free(rxfer);
2732 /* and return with an error */
2733 return ERR_PTR(-EINVAL);
2736 /* remove the entry after replaced_after from list of
2737 * transfers and add it to list of replaced_transfers
2739 list_move_tail(rxfer->replaced_after->next,
2740 &rxfer->replaced_transfers);
2743 /* create copy of the given xfer with identical settings
2744 * based on the first transfer to get removed
2746 for (i = 0; i < insert; i++) {
2747 /* we need to run in reverse order */
2748 xfer = &rxfer->inserted_transfers[insert - 1 - i];
2750 /* copy all spi_transfer data */
2751 memcpy(xfer, xfer_first, sizeof(*xfer));
2754 list_add(&xfer->transfer_list, rxfer->replaced_after);
2756 /* clear cs_change and delay_usecs for all but the last */
2758 xfer->cs_change = false;
2759 xfer->delay_usecs = 0;
2763 /* set up inserted */
2764 rxfer->inserted = insert;
2766 /* and register it with spi_res/spi_message */
2767 spi_res_add(msg, rxfer);
2771 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2773 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
2774 struct spi_message *msg,
2775 struct spi_transfer **xferp,
2779 struct spi_transfer *xfer = *xferp, *xfers;
2780 struct spi_replaced_transfers *srt;
2784 /* warn once about this fact that we are splitting a transfer */
2785 dev_warn_once(&msg->spi->dev,
2786 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2787 xfer->len, maxsize);
2789 /* calculate how many we have to replace */
2790 count = DIV_ROUND_UP(xfer->len, maxsize);
2792 /* create replacement */
2793 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2795 return PTR_ERR(srt);
2796 xfers = srt->inserted_transfers;
2798 /* now handle each of those newly inserted spi_transfers
2799 * note that the replacements spi_transfers all are preset
2800 * to the same values as *xferp, so tx_buf, rx_buf and len
2801 * are all identical (as well as most others)
2802 * so we just have to fix up len and the pointers.
2804 * this also includes support for the depreciated
2805 * spi_message.is_dma_mapped interface
2808 /* the first transfer just needs the length modified, so we
2809 * run it outside the loop
2811 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2813 /* all the others need rx_buf/tx_buf also set */
2814 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2815 /* update rx_buf, tx_buf and dma */
2816 if (xfers[i].rx_buf)
2817 xfers[i].rx_buf += offset;
2818 if (xfers[i].rx_dma)
2819 xfers[i].rx_dma += offset;
2820 if (xfers[i].tx_buf)
2821 xfers[i].tx_buf += offset;
2822 if (xfers[i].tx_dma)
2823 xfers[i].tx_dma += offset;
2826 xfers[i].len = min(maxsize, xfers[i].len - offset);
2829 /* we set up xferp to the last entry we have inserted,
2830 * so that we skip those already split transfers
2832 *xferp = &xfers[count - 1];
2834 /* increment statistics counters */
2835 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
2836 transfers_split_maxsize);
2837 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2838 transfers_split_maxsize);
2844 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2845 * when an individual transfer exceeds a
2847 * @ctlr: the @spi_controller for this transfer
2848 * @msg: the @spi_message to transform
2849 * @maxsize: the maximum when to apply this
2850 * @gfp: GFP allocation flags
2852 * Return: status of transformation
2854 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
2855 struct spi_message *msg,
2859 struct spi_transfer *xfer;
2862 /* iterate over the transfer_list,
2863 * but note that xfer is advanced to the last transfer inserted
2864 * to avoid checking sizes again unnecessarily (also xfer does
2865 * potentiall belong to a different list by the time the
2866 * replacement has happened
2868 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2869 if (xfer->len > maxsize) {
2870 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
2879 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2881 /*-------------------------------------------------------------------------*/
2883 /* Core methods for SPI controller protocol drivers. Some of the
2884 * other core methods are currently defined as inline functions.
2887 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
2890 if (ctlr->bits_per_word_mask) {
2891 /* Only 32 bits fit in the mask */
2892 if (bits_per_word > 32)
2894 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
2902 * spi_setup - setup SPI mode and clock rate
2903 * @spi: the device whose settings are being modified
2904 * Context: can sleep, and no requests are queued to the device
2906 * SPI protocol drivers may need to update the transfer mode if the
2907 * device doesn't work with its default. They may likewise need
2908 * to update clock rates or word sizes from initial values. This function
2909 * changes those settings, and must be called from a context that can sleep.
2910 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2911 * effect the next time the device is selected and data is transferred to
2912 * or from it. When this function returns, the spi device is deselected.
2914 * Note that this call will fail if the protocol driver specifies an option
2915 * that the underlying controller or its driver does not support. For
2916 * example, not all hardware supports wire transfers using nine bit words,
2917 * LSB-first wire encoding, or active-high chipselects.
2919 * Return: zero on success, else a negative error code.
2921 int spi_setup(struct spi_device *spi)
2923 unsigned bad_bits, ugly_bits;
2926 /* check mode to prevent that DUAL and QUAD set at the same time
2928 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2929 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2931 "setup: can not select dual and quad at the same time\n");
2934 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2936 if ((spi->mode & SPI_3WIRE) && (spi->mode &
2937 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2938 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
2940 /* help drivers fail *cleanly* when they need options
2941 * that aren't supported with their current controller
2942 * SPI_CS_WORD has a fallback software implementation,
2943 * so it is ignored here.
2945 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
2946 ugly_bits = bad_bits &
2947 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
2948 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
2951 "setup: ignoring unsupported mode bits %x\n",
2953 spi->mode &= ~ugly_bits;
2954 bad_bits &= ~ugly_bits;
2957 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2962 if (!spi->bits_per_word)
2963 spi->bits_per_word = 8;
2965 status = __spi_validate_bits_per_word(spi->controller,
2966 spi->bits_per_word);
2970 if (!spi->max_speed_hz)
2971 spi->max_speed_hz = spi->controller->max_speed_hz;
2973 if (spi->controller->setup)
2974 status = spi->controller->setup(spi);
2976 spi_set_cs(spi, false);
2978 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2979 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2980 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2981 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2982 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
2983 (spi->mode & SPI_LOOP) ? "loopback, " : "",
2984 spi->bits_per_word, spi->max_speed_hz,
2989 EXPORT_SYMBOL_GPL(spi_setup);
2991 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2993 struct spi_controller *ctlr = spi->controller;
2994 struct spi_transfer *xfer;
2997 if (list_empty(&message->transfers))
3000 /* If an SPI controller does not support toggling the CS line on each
3001 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3002 * for the CS line, we can emulate the CS-per-word hardware function by
3003 * splitting transfers into one-word transfers and ensuring that
3004 * cs_change is set for each transfer.
3006 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3008 gpio_is_valid(spi->cs_gpio))) {
3012 maxsize = (spi->bits_per_word + 7) / 8;
3014 /* spi_split_transfers_maxsize() requires message->spi */
3017 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3022 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3023 /* don't change cs_change on the last entry in the list */
3024 if (list_is_last(&xfer->transfer_list, &message->transfers))
3026 xfer->cs_change = 1;
3030 /* Half-duplex links include original MicroWire, and ones with
3031 * only one data pin like SPI_3WIRE (switches direction) or where
3032 * either MOSI or MISO is missing. They can also be caused by
3033 * software limitations.
3035 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3036 (spi->mode & SPI_3WIRE)) {
3037 unsigned flags = ctlr->flags;
3039 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3040 if (xfer->rx_buf && xfer->tx_buf)
3042 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3044 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3050 * Set transfer bits_per_word and max speed as spi device default if
3051 * it is not set for this transfer.
3052 * Set transfer tx_nbits and rx_nbits as single transfer default
3053 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3054 * Ensure transfer word_delay is at least as long as that required by
3057 message->frame_length = 0;
3058 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3059 message->frame_length += xfer->len;
3060 if (!xfer->bits_per_word)
3061 xfer->bits_per_word = spi->bits_per_word;
3063 if (!xfer->speed_hz)
3064 xfer->speed_hz = spi->max_speed_hz;
3065 if (!xfer->speed_hz)
3066 xfer->speed_hz = ctlr->max_speed_hz;
3068 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3069 xfer->speed_hz = ctlr->max_speed_hz;
3071 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3075 * SPI transfer length should be multiple of SPI word size
3076 * where SPI word size should be power-of-two multiple
3078 if (xfer->bits_per_word <= 8)
3080 else if (xfer->bits_per_word <= 16)
3085 /* No partial transfers accepted */
3086 if (xfer->len % w_size)
3089 if (xfer->speed_hz && ctlr->min_speed_hz &&
3090 xfer->speed_hz < ctlr->min_speed_hz)
3093 if (xfer->tx_buf && !xfer->tx_nbits)
3094 xfer->tx_nbits = SPI_NBITS_SINGLE;
3095 if (xfer->rx_buf && !xfer->rx_nbits)
3096 xfer->rx_nbits = SPI_NBITS_SINGLE;
3097 /* check transfer tx/rx_nbits:
3098 * 1. check the value matches one of single, dual and quad
3099 * 2. check tx/rx_nbits match the mode in spi_device
3102 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3103 xfer->tx_nbits != SPI_NBITS_DUAL &&
3104 xfer->tx_nbits != SPI_NBITS_QUAD)
3106 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3107 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3109 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3110 !(spi->mode & SPI_TX_QUAD))
3113 /* check transfer rx_nbits */
3115 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3116 xfer->rx_nbits != SPI_NBITS_DUAL &&
3117 xfer->rx_nbits != SPI_NBITS_QUAD)
3119 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3120 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3122 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3123 !(spi->mode & SPI_RX_QUAD))
3127 if (xfer->word_delay_usecs < spi->word_delay_usecs)
3128 xfer->word_delay_usecs = spi->word_delay_usecs;
3131 message->status = -EINPROGRESS;
3136 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3138 struct spi_controller *ctlr = spi->controller;
3141 * Some controllers do not support doing regular SPI transfers. Return
3142 * ENOTSUPP when this is the case.
3144 if (!ctlr->transfer)
3149 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3150 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3152 trace_spi_message_submit(message);
3154 return ctlr->transfer(spi, message);
3158 * spi_async - asynchronous SPI transfer
3159 * @spi: device with which data will be exchanged
3160 * @message: describes the data transfers, including completion callback
3161 * Context: any (irqs may be blocked, etc)
3163 * This call may be used in_irq and other contexts which can't sleep,
3164 * as well as from task contexts which can sleep.
3166 * The completion callback is invoked in a context which can't sleep.
3167 * Before that invocation, the value of message->status is undefined.
3168 * When the callback is issued, message->status holds either zero (to
3169 * indicate complete success) or a negative error code. After that
3170 * callback returns, the driver which issued the transfer request may
3171 * deallocate the associated memory; it's no longer in use by any SPI
3172 * core or controller driver code.
3174 * Note that although all messages to a spi_device are handled in
3175 * FIFO order, messages may go to different devices in other orders.
3176 * Some device might be higher priority, or have various "hard" access
3177 * time requirements, for example.
3179 * On detection of any fault during the transfer, processing of
3180 * the entire message is aborted, and the device is deselected.
3181 * Until returning from the associated message completion callback,
3182 * no other spi_message queued to that device will be processed.
3183 * (This rule applies equally to all the synchronous transfer calls,
3184 * which are wrappers around this core asynchronous primitive.)
3186 * Return: zero on success, else a negative error code.
3188 int spi_async(struct spi_device *spi, struct spi_message *message)
3190 struct spi_controller *ctlr = spi->controller;
3192 unsigned long flags;
3194 ret = __spi_validate(spi, message);
3198 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3200 if (ctlr->bus_lock_flag)
3203 ret = __spi_async(spi, message);
3205 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3209 EXPORT_SYMBOL_GPL(spi_async);
3212 * spi_async_locked - version of spi_async with exclusive bus usage
3213 * @spi: device with which data will be exchanged
3214 * @message: describes the data transfers, including completion callback
3215 * Context: any (irqs may be blocked, etc)
3217 * This call may be used in_irq and other contexts which can't sleep,
3218 * as well as from task contexts which can sleep.
3220 * The completion callback is invoked in a context which can't sleep.
3221 * Before that invocation, the value of message->status is undefined.
3222 * When the callback is issued, message->status holds either zero (to
3223 * indicate complete success) or a negative error code. After that
3224 * callback returns, the driver which issued the transfer request may
3225 * deallocate the associated memory; it's no longer in use by any SPI
3226 * core or controller driver code.
3228 * Note that although all messages to a spi_device are handled in
3229 * FIFO order, messages may go to different devices in other orders.
3230 * Some device might be higher priority, or have various "hard" access
3231 * time requirements, for example.
3233 * On detection of any fault during the transfer, processing of
3234 * the entire message is aborted, and the device is deselected.
3235 * Until returning from the associated message completion callback,
3236 * no other spi_message queued to that device will be processed.
3237 * (This rule applies equally to all the synchronous transfer calls,
3238 * which are wrappers around this core asynchronous primitive.)
3240 * Return: zero on success, else a negative error code.
3242 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3244 struct spi_controller *ctlr = spi->controller;
3246 unsigned long flags;
3248 ret = __spi_validate(spi, message);
3252 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3254 ret = __spi_async(spi, message);
3256 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3261 EXPORT_SYMBOL_GPL(spi_async_locked);
3263 /*-------------------------------------------------------------------------*/
3265 /* Utility methods for SPI protocol drivers, layered on
3266 * top of the core. Some other utility methods are defined as
3270 static void spi_complete(void *arg)
3275 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3277 DECLARE_COMPLETION_ONSTACK(done);
3279 struct spi_controller *ctlr = spi->controller;
3280 unsigned long flags;
3282 status = __spi_validate(spi, message);
3286 message->complete = spi_complete;
3287 message->context = &done;
3290 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3291 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3293 /* If we're not using the legacy transfer method then we will
3294 * try to transfer in the calling context so special case.
3295 * This code would be less tricky if we could remove the
3296 * support for driver implemented message queues.
3298 if (ctlr->transfer == spi_queued_transfer) {
3299 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3301 trace_spi_message_submit(message);
3303 status = __spi_queued_transfer(spi, message, false);
3305 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3307 status = spi_async_locked(spi, message);
3311 /* Push out the messages in the calling context if we
3314 if (ctlr->transfer == spi_queued_transfer) {
3315 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3316 spi_sync_immediate);
3317 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3318 spi_sync_immediate);
3319 __spi_pump_messages(ctlr, false);
3322 wait_for_completion(&done);
3323 status = message->status;
3325 message->context = NULL;
3330 * spi_sync - blocking/synchronous SPI data transfers
3331 * @spi: device with which data will be exchanged
3332 * @message: describes the data transfers
3333 * Context: can sleep
3335 * This call may only be used from a context that may sleep. The sleep
3336 * is non-interruptible, and has no timeout. Low-overhead controller
3337 * drivers may DMA directly into and out of the message buffers.
3339 * Note that the SPI device's chip select is active during the message,
3340 * and then is normally disabled between messages. Drivers for some
3341 * frequently-used devices may want to minimize costs of selecting a chip,
3342 * by leaving it selected in anticipation that the next message will go
3343 * to the same chip. (That may increase power usage.)
3345 * Also, the caller is guaranteeing that the memory associated with the
3346 * message will not be freed before this call returns.
3348 * Return: zero on success, else a negative error code.
3350 int spi_sync(struct spi_device *spi, struct spi_message *message)
3354 mutex_lock(&spi->controller->bus_lock_mutex);
3355 ret = __spi_sync(spi, message);
3356 mutex_unlock(&spi->controller->bus_lock_mutex);
3360 EXPORT_SYMBOL_GPL(spi_sync);
3363 * spi_sync_locked - version of spi_sync with exclusive bus usage
3364 * @spi: device with which data will be exchanged
3365 * @message: describes the data transfers
3366 * Context: can sleep
3368 * This call may only be used from a context that may sleep. The sleep
3369 * is non-interruptible, and has no timeout. Low-overhead controller
3370 * drivers may DMA directly into and out of the message buffers.
3372 * This call should be used by drivers that require exclusive access to the
3373 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3374 * be released by a spi_bus_unlock call when the exclusive access is over.
3376 * Return: zero on success, else a negative error code.
3378 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3380 return __spi_sync(spi, message);
3382 EXPORT_SYMBOL_GPL(spi_sync_locked);
3385 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3386 * @ctlr: SPI bus master that should be locked for exclusive bus access
3387 * Context: can sleep
3389 * This call may only be used from a context that may sleep. The sleep
3390 * is non-interruptible, and has no timeout.
3392 * This call should be used by drivers that require exclusive access to the
3393 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3394 * exclusive access is over. Data transfer must be done by spi_sync_locked
3395 * and spi_async_locked calls when the SPI bus lock is held.
3397 * Return: always zero.
3399 int spi_bus_lock(struct spi_controller *ctlr)
3401 unsigned long flags;
3403 mutex_lock(&ctlr->bus_lock_mutex);
3405 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3406 ctlr->bus_lock_flag = 1;
3407 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3409 /* mutex remains locked until spi_bus_unlock is called */
3413 EXPORT_SYMBOL_GPL(spi_bus_lock);
3416 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3417 * @ctlr: SPI bus master that was locked for exclusive bus access
3418 * Context: can sleep
3420 * This call may only be used from a context that may sleep. The sleep
3421 * is non-interruptible, and has no timeout.
3423 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3426 * Return: always zero.
3428 int spi_bus_unlock(struct spi_controller *ctlr)
3430 ctlr->bus_lock_flag = 0;
3432 mutex_unlock(&ctlr->bus_lock_mutex);
3436 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3438 /* portable code must never pass more than 32 bytes */
3439 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3444 * spi_write_then_read - SPI synchronous write followed by read
3445 * @spi: device with which data will be exchanged
3446 * @txbuf: data to be written (need not be dma-safe)
3447 * @n_tx: size of txbuf, in bytes
3448 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3449 * @n_rx: size of rxbuf, in bytes
3450 * Context: can sleep
3452 * This performs a half duplex MicroWire style transaction with the
3453 * device, sending txbuf and then reading rxbuf. The return value
3454 * is zero for success, else a negative errno status code.
3455 * This call may only be used from a context that may sleep.
3457 * Parameters to this routine are always copied using a small buffer;
3458 * portable code should never use this for more than 32 bytes.
3459 * Performance-sensitive or bulk transfer code should instead use
3460 * spi_{async,sync}() calls with dma-safe buffers.
3462 * Return: zero on success, else a negative error code.
3464 int spi_write_then_read(struct spi_device *spi,
3465 const void *txbuf, unsigned n_tx,
3466 void *rxbuf, unsigned n_rx)
3468 static DEFINE_MUTEX(lock);
3471 struct spi_message message;
3472 struct spi_transfer x[2];
3475 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3476 * copying here, (as a pure convenience thing), but we can
3477 * keep heap costs out of the hot path unless someone else is
3478 * using the pre-allocated buffer or the transfer is too large.
3480 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3481 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3482 GFP_KERNEL | GFP_DMA);
3489 spi_message_init(&message);
3490 memset(x, 0, sizeof(x));
3493 spi_message_add_tail(&x[0], &message);
3497 spi_message_add_tail(&x[1], &message);
3500 memcpy(local_buf, txbuf, n_tx);
3501 x[0].tx_buf = local_buf;
3502 x[1].rx_buf = local_buf + n_tx;
3505 status = spi_sync(spi, &message);
3507 memcpy(rxbuf, x[1].rx_buf, n_rx);
3509 if (x[0].tx_buf == buf)
3510 mutex_unlock(&lock);
3516 EXPORT_SYMBOL_GPL(spi_write_then_read);
3518 /*-------------------------------------------------------------------------*/
3520 #if IS_ENABLED(CONFIG_OF)
3521 static int __spi_of_device_match(struct device *dev, void *data)
3523 return dev->of_node == data;
3526 /* must call put_device() when done with returned spi_device device */
3527 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3529 struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3530 __spi_of_device_match);
3531 return dev ? to_spi_device(dev) : NULL;
3533 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3534 #endif /* IS_ENABLED(CONFIG_OF) */
3536 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3537 static int __spi_of_controller_match(struct device *dev, const void *data)
3539 return dev->of_node == data;
3542 /* the spi controllers are not using spi_bus, so we find it with another way */
3543 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3547 dev = class_find_device(&spi_master_class, NULL, node,
3548 __spi_of_controller_match);
3549 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3550 dev = class_find_device(&spi_slave_class, NULL, node,
3551 __spi_of_controller_match);
3555 /* reference got in class_find_device */
3556 return container_of(dev, struct spi_controller, dev);
3559 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3562 struct of_reconfig_data *rd = arg;
3563 struct spi_controller *ctlr;
3564 struct spi_device *spi;
3566 switch (of_reconfig_get_state_change(action, arg)) {
3567 case OF_RECONFIG_CHANGE_ADD:
3568 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
3570 return NOTIFY_OK; /* not for us */
3572 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3573 put_device(&ctlr->dev);
3577 spi = of_register_spi_device(ctlr, rd->dn);
3578 put_device(&ctlr->dev);
3581 pr_err("%s: failed to create for '%pOF'\n",
3583 of_node_clear_flag(rd->dn, OF_POPULATED);
3584 return notifier_from_errno(PTR_ERR(spi));
3588 case OF_RECONFIG_CHANGE_REMOVE:
3589 /* already depopulated? */
3590 if (!of_node_check_flag(rd->dn, OF_POPULATED))
3593 /* find our device by node */
3594 spi = of_find_spi_device_by_node(rd->dn);
3596 return NOTIFY_OK; /* no? not meant for us */
3598 /* unregister takes one ref away */
3599 spi_unregister_device(spi);
3601 /* and put the reference of the find */
3602 put_device(&spi->dev);
3609 static struct notifier_block spi_of_notifier = {
3610 .notifier_call = of_spi_notify,
3612 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3613 extern struct notifier_block spi_of_notifier;
3614 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3616 #if IS_ENABLED(CONFIG_ACPI)
3617 static int spi_acpi_controller_match(struct device *dev, const void *data)
3619 return ACPI_COMPANION(dev->parent) == data;
3622 static int spi_acpi_device_match(struct device *dev, void *data)
3624 return ACPI_COMPANION(dev) == data;
3627 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
3631 dev = class_find_device(&spi_master_class, NULL, adev,
3632 spi_acpi_controller_match);
3633 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3634 dev = class_find_device(&spi_slave_class, NULL, adev,
3635 spi_acpi_controller_match);
3639 return container_of(dev, struct spi_controller, dev);
3642 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3646 dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3648 return dev ? to_spi_device(dev) : NULL;
3651 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3654 struct acpi_device *adev = arg;
3655 struct spi_controller *ctlr;
3656 struct spi_device *spi;
3659 case ACPI_RECONFIG_DEVICE_ADD:
3660 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
3664 acpi_register_spi_device(ctlr, adev);
3665 put_device(&ctlr->dev);
3667 case ACPI_RECONFIG_DEVICE_REMOVE:
3668 if (!acpi_device_enumerated(adev))
3671 spi = acpi_spi_find_device_by_adev(adev);
3675 spi_unregister_device(spi);
3676 put_device(&spi->dev);
3683 static struct notifier_block spi_acpi_notifier = {
3684 .notifier_call = acpi_spi_notify,
3687 extern struct notifier_block spi_acpi_notifier;
3690 static int __init spi_init(void)
3694 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3700 status = bus_register(&spi_bus_type);
3704 status = class_register(&spi_master_class);
3708 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
3709 status = class_register(&spi_slave_class);
3714 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3715 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3716 if (IS_ENABLED(CONFIG_ACPI))
3717 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3722 class_unregister(&spi_master_class);
3724 bus_unregister(&spi_bus_type);
3732 /* board_info is normally registered in arch_initcall(),
3733 * but even essential drivers wait till later
3735 * REVISIT only boardinfo really needs static linking. the rest (device and
3736 * driver registration) _could_ be dynamically linked (modular) ... costs
3737 * include needing to have boardinfo data structures be much more public.
3739 postcore_initcall(spi_init);