Merge tag 'acpi-6.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi-mem.h>
36 #include <uapi/linux/sched/types.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42
43 #include "internals.h"
44
45 static DEFINE_IDR(spi_master_idr);
46
47 static void spidev_release(struct device *dev)
48 {
49         struct spi_device       *spi = to_spi_device(dev);
50
51         spi_controller_put(spi->controller);
52         kfree(spi->driver_override);
53         free_percpu(spi->pcpu_statistics);
54         kfree(spi);
55 }
56
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60         const struct spi_device *spi = to_spi_device(dev);
61         int len;
62
63         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64         if (len != -ENODEV)
65                 return len;
66
67         return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70
71 static ssize_t driver_override_store(struct device *dev,
72                                      struct device_attribute *a,
73                                      const char *buf, size_t count)
74 {
75         struct spi_device *spi = to_spi_device(dev);
76         int ret;
77
78         ret = driver_set_override(dev, &spi->driver_override, buf, count);
79         if (ret)
80                 return ret;
81
82         return count;
83 }
84
85 static ssize_t driver_override_show(struct device *dev,
86                                     struct device_attribute *a, char *buf)
87 {
88         const struct spi_device *spi = to_spi_device(dev);
89         ssize_t len;
90
91         device_lock(dev);
92         len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
93         device_unlock(dev);
94         return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
99 {
100         struct spi_statistics __percpu *pcpu_stats;
101
102         if (dev)
103                 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104         else
105                 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106
107         if (pcpu_stats) {
108                 int cpu;
109
110                 for_each_possible_cpu(cpu) {
111                         struct spi_statistics *stat;
112
113                         stat = per_cpu_ptr(pcpu_stats, cpu);
114                         u64_stats_init(&stat->syncp);
115                 }
116         }
117         return pcpu_stats;
118 }
119
120 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
121                                    char *buf, size_t offset)
122 {
123         u64 val = 0;
124         int i;
125
126         for_each_possible_cpu(i) {
127                 const struct spi_statistics *pcpu_stats;
128                 u64_stats_t *field;
129                 unsigned int start;
130                 u64 inc;
131
132                 pcpu_stats = per_cpu_ptr(stat, i);
133                 field = (void *)pcpu_stats + offset;
134                 do {
135                         start = u64_stats_fetch_begin(&pcpu_stats->syncp);
136                         inc = u64_stats_read(field);
137                 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
138                 val += inc;
139         }
140         return sysfs_emit(buf, "%llu\n", val);
141 }
142
143 #define SPI_STATISTICS_ATTRS(field, file)                               \
144 static ssize_t spi_controller_##field##_show(struct device *dev,        \
145                                              struct device_attribute *attr, \
146                                              char *buf)                 \
147 {                                                                       \
148         struct spi_controller *ctlr = container_of(dev,                 \
149                                          struct spi_controller, dev);   \
150         return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
151 }                                                                       \
152 static struct device_attribute dev_attr_spi_controller_##field = {      \
153         .attr = { .name = file, .mode = 0444 },                         \
154         .show = spi_controller_##field##_show,                          \
155 };                                                                      \
156 static ssize_t spi_device_##field##_show(struct device *dev,            \
157                                          struct device_attribute *attr, \
158                                         char *buf)                      \
159 {                                                                       \
160         struct spi_device *spi = to_spi_device(dev);                    \
161         return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
162 }                                                                       \
163 static struct device_attribute dev_attr_spi_device_##field = {          \
164         .attr = { .name = file, .mode = 0444 },                         \
165         .show = spi_device_##field##_show,                              \
166 }
167
168 #define SPI_STATISTICS_SHOW_NAME(name, file, field)                     \
169 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170                                             char *buf)                  \
171 {                                                                       \
172         return spi_emit_pcpu_stats(stat, buf,                           \
173                         offsetof(struct spi_statistics, field));        \
174 }                                                                       \
175 SPI_STATISTICS_ATTRS(name, file)
176
177 #define SPI_STATISTICS_SHOW(field)                                      \
178         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
179                                  field)
180
181 SPI_STATISTICS_SHOW(messages);
182 SPI_STATISTICS_SHOW(transfers);
183 SPI_STATISTICS_SHOW(errors);
184 SPI_STATISTICS_SHOW(timedout);
185
186 SPI_STATISTICS_SHOW(spi_sync);
187 SPI_STATISTICS_SHOW(spi_sync_immediate);
188 SPI_STATISTICS_SHOW(spi_async);
189
190 SPI_STATISTICS_SHOW(bytes);
191 SPI_STATISTICS_SHOW(bytes_rx);
192 SPI_STATISTICS_SHOW(bytes_tx);
193
194 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
195         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
196                                  "transfer_bytes_histo_" number,        \
197                                  transfer_bytes_histo[index])
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215
216 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217
218 static struct attribute *spi_dev_attrs[] = {
219         &dev_attr_modalias.attr,
220         &dev_attr_driver_override.attr,
221         NULL,
222 };
223
224 static const struct attribute_group spi_dev_group = {
225         .attrs  = spi_dev_attrs,
226 };
227
228 static struct attribute *spi_device_statistics_attrs[] = {
229         &dev_attr_spi_device_messages.attr,
230         &dev_attr_spi_device_transfers.attr,
231         &dev_attr_spi_device_errors.attr,
232         &dev_attr_spi_device_timedout.attr,
233         &dev_attr_spi_device_spi_sync.attr,
234         &dev_attr_spi_device_spi_sync_immediate.attr,
235         &dev_attr_spi_device_spi_async.attr,
236         &dev_attr_spi_device_bytes.attr,
237         &dev_attr_spi_device_bytes_rx.attr,
238         &dev_attr_spi_device_bytes_tx.attr,
239         &dev_attr_spi_device_transfer_bytes_histo0.attr,
240         &dev_attr_spi_device_transfer_bytes_histo1.attr,
241         &dev_attr_spi_device_transfer_bytes_histo2.attr,
242         &dev_attr_spi_device_transfer_bytes_histo3.attr,
243         &dev_attr_spi_device_transfer_bytes_histo4.attr,
244         &dev_attr_spi_device_transfer_bytes_histo5.attr,
245         &dev_attr_spi_device_transfer_bytes_histo6.attr,
246         &dev_attr_spi_device_transfer_bytes_histo7.attr,
247         &dev_attr_spi_device_transfer_bytes_histo8.attr,
248         &dev_attr_spi_device_transfer_bytes_histo9.attr,
249         &dev_attr_spi_device_transfer_bytes_histo10.attr,
250         &dev_attr_spi_device_transfer_bytes_histo11.attr,
251         &dev_attr_spi_device_transfer_bytes_histo12.attr,
252         &dev_attr_spi_device_transfer_bytes_histo13.attr,
253         &dev_attr_spi_device_transfer_bytes_histo14.attr,
254         &dev_attr_spi_device_transfer_bytes_histo15.attr,
255         &dev_attr_spi_device_transfer_bytes_histo16.attr,
256         &dev_attr_spi_device_transfers_split_maxsize.attr,
257         NULL,
258 };
259
260 static const struct attribute_group spi_device_statistics_group = {
261         .name  = "statistics",
262         .attrs  = spi_device_statistics_attrs,
263 };
264
265 static const struct attribute_group *spi_dev_groups[] = {
266         &spi_dev_group,
267         &spi_device_statistics_group,
268         NULL,
269 };
270
271 static struct attribute *spi_controller_statistics_attrs[] = {
272         &dev_attr_spi_controller_messages.attr,
273         &dev_attr_spi_controller_transfers.attr,
274         &dev_attr_spi_controller_errors.attr,
275         &dev_attr_spi_controller_timedout.attr,
276         &dev_attr_spi_controller_spi_sync.attr,
277         &dev_attr_spi_controller_spi_sync_immediate.attr,
278         &dev_attr_spi_controller_spi_async.attr,
279         &dev_attr_spi_controller_bytes.attr,
280         &dev_attr_spi_controller_bytes_rx.attr,
281         &dev_attr_spi_controller_bytes_tx.attr,
282         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
283         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
284         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
285         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
286         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
287         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
288         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
289         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
290         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
291         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
292         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
293         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
294         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
295         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
296         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
297         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
298         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
299         &dev_attr_spi_controller_transfers_split_maxsize.attr,
300         NULL,
301 };
302
303 static const struct attribute_group spi_controller_statistics_group = {
304         .name  = "statistics",
305         .attrs  = spi_controller_statistics_attrs,
306 };
307
308 static const struct attribute_group *spi_master_groups[] = {
309         &spi_controller_statistics_group,
310         NULL,
311 };
312
313 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
314                                               struct spi_transfer *xfer,
315                                               struct spi_controller *ctlr)
316 {
317         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
318         struct spi_statistics *stats;
319
320         if (l2len < 0)
321                 l2len = 0;
322
323         get_cpu();
324         stats = this_cpu_ptr(pcpu_stats);
325         u64_stats_update_begin(&stats->syncp);
326
327         u64_stats_inc(&stats->transfers);
328         u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329
330         u64_stats_add(&stats->bytes, xfer->len);
331         if ((xfer->tx_buf) &&
332             (xfer->tx_buf != ctlr->dummy_tx))
333                 u64_stats_add(&stats->bytes_tx, xfer->len);
334         if ((xfer->rx_buf) &&
335             (xfer->rx_buf != ctlr->dummy_rx))
336                 u64_stats_add(&stats->bytes_rx, xfer->len);
337
338         u64_stats_update_end(&stats->syncp);
339         put_cpu();
340 }
341
342 /*
343  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
344  * and the sysfs version makes coldplug work too.
345  */
346 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 {
348         while (id->name[0]) {
349                 if (!strcmp(name, id->name))
350                         return id;
351                 id++;
352         }
353         return NULL;
354 }
355
356 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 {
358         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359
360         return spi_match_id(sdrv->id_table, sdev->modalias);
361 }
362 EXPORT_SYMBOL_GPL(spi_get_device_id);
363
364 const void *spi_get_device_match_data(const struct spi_device *sdev)
365 {
366         const void *match;
367
368         match = device_get_match_data(&sdev->dev);
369         if (match)
370                 return match;
371
372         return (const void *)spi_get_device_id(sdev)->driver_data;
373 }
374 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375
376 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 {
378         const struct spi_device *spi = to_spi_device(dev);
379         const struct spi_driver *sdrv = to_spi_driver(drv);
380
381         /* Check override first, and if set, only use the named driver */
382         if (spi->driver_override)
383                 return strcmp(spi->driver_override, drv->name) == 0;
384
385         /* Attempt an OF style match */
386         if (of_driver_match_device(dev, drv))
387                 return 1;
388
389         /* Then try ACPI */
390         if (acpi_driver_match_device(dev, drv))
391                 return 1;
392
393         if (sdrv->id_table)
394                 return !!spi_match_id(sdrv->id_table, spi->modalias);
395
396         return strcmp(spi->modalias, drv->name) == 0;
397 }
398
399 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 {
401         const struct spi_device         *spi = to_spi_device(dev);
402         int rc;
403
404         rc = acpi_device_uevent_modalias(dev, env);
405         if (rc != -ENODEV)
406                 return rc;
407
408         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
409 }
410
411 static int spi_probe(struct device *dev)
412 {
413         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
414         struct spi_device               *spi = to_spi_device(dev);
415         int ret;
416
417         ret = of_clk_set_defaults(dev->of_node, false);
418         if (ret)
419                 return ret;
420
421         if (dev->of_node) {
422                 spi->irq = of_irq_get(dev->of_node, 0);
423                 if (spi->irq == -EPROBE_DEFER)
424                         return -EPROBE_DEFER;
425                 if (spi->irq < 0)
426                         spi->irq = 0;
427         }
428
429         ret = dev_pm_domain_attach(dev, true);
430         if (ret)
431                 return ret;
432
433         if (sdrv->probe) {
434                 ret = sdrv->probe(spi);
435                 if (ret)
436                         dev_pm_domain_detach(dev, true);
437         }
438
439         return ret;
440 }
441
442 static void spi_remove(struct device *dev)
443 {
444         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
445
446         if (sdrv->remove)
447                 sdrv->remove(to_spi_device(dev));
448
449         dev_pm_domain_detach(dev, true);
450 }
451
452 static void spi_shutdown(struct device *dev)
453 {
454         if (dev->driver) {
455                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
456
457                 if (sdrv->shutdown)
458                         sdrv->shutdown(to_spi_device(dev));
459         }
460 }
461
462 struct bus_type spi_bus_type = {
463         .name           = "spi",
464         .dev_groups     = spi_dev_groups,
465         .match          = spi_match_device,
466         .uevent         = spi_uevent,
467         .probe          = spi_probe,
468         .remove         = spi_remove,
469         .shutdown       = spi_shutdown,
470 };
471 EXPORT_SYMBOL_GPL(spi_bus_type);
472
473 /**
474  * __spi_register_driver - register a SPI driver
475  * @owner: owner module of the driver to register
476  * @sdrv: the driver to register
477  * Context: can sleep
478  *
479  * Return: zero on success, else a negative error code.
480  */
481 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 {
483         sdrv->driver.owner = owner;
484         sdrv->driver.bus = &spi_bus_type;
485
486         /*
487          * For Really Good Reasons we use spi: modaliases not of:
488          * modaliases for DT so module autoloading won't work if we
489          * don't have a spi_device_id as well as a compatible string.
490          */
491         if (sdrv->driver.of_match_table) {
492                 const struct of_device_id *of_id;
493
494                 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
495                      of_id++) {
496                         const char *of_name;
497
498                         /* Strip off any vendor prefix */
499                         of_name = strnchr(of_id->compatible,
500                                           sizeof(of_id->compatible), ',');
501                         if (of_name)
502                                 of_name++;
503                         else
504                                 of_name = of_id->compatible;
505
506                         if (sdrv->id_table) {
507                                 const struct spi_device_id *spi_id;
508
509                                 spi_id = spi_match_id(sdrv->id_table, of_name);
510                                 if (spi_id)
511                                         continue;
512                         } else {
513                                 if (strcmp(sdrv->driver.name, of_name) == 0)
514                                         continue;
515                         }
516
517                         pr_warn("SPI driver %s has no spi_device_id for %s\n",
518                                 sdrv->driver.name, of_id->compatible);
519                 }
520         }
521
522         return driver_register(&sdrv->driver);
523 }
524 EXPORT_SYMBOL_GPL(__spi_register_driver);
525
526 /*-------------------------------------------------------------------------*/
527
528 /*
529  * SPI devices should normally not be created by SPI device drivers; that
530  * would make them board-specific.  Similarly with SPI controller drivers.
531  * Device registration normally goes into like arch/.../mach.../board-YYY.c
532  * with other readonly (flashable) information about mainboard devices.
533  */
534
535 struct boardinfo {
536         struct list_head        list;
537         struct spi_board_info   board_info;
538 };
539
540 static LIST_HEAD(board_list);
541 static LIST_HEAD(spi_controller_list);
542
543 /*
544  * Used to protect add/del operation for board_info list and
545  * spi_controller list, and their matching process also used
546  * to protect object of type struct idr.
547  */
548 static DEFINE_MUTEX(board_lock);
549
550 /**
551  * spi_alloc_device - Allocate a new SPI device
552  * @ctlr: Controller to which device is connected
553  * Context: can sleep
554  *
555  * Allows a driver to allocate and initialize a spi_device without
556  * registering it immediately.  This allows a driver to directly
557  * fill the spi_device with device parameters before calling
558  * spi_add_device() on it.
559  *
560  * Caller is responsible to call spi_add_device() on the returned
561  * spi_device structure to add it to the SPI controller.  If the caller
562  * needs to discard the spi_device without adding it, then it should
563  * call spi_dev_put() on it.
564  *
565  * Return: a pointer to the new device, or NULL.
566  */
567 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 {
569         struct spi_device       *spi;
570
571         if (!spi_controller_get(ctlr))
572                 return NULL;
573
574         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575         if (!spi) {
576                 spi_controller_put(ctlr);
577                 return NULL;
578         }
579
580         spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
581         if (!spi->pcpu_statistics) {
582                 kfree(spi);
583                 spi_controller_put(ctlr);
584                 return NULL;
585         }
586
587         spi->master = spi->controller = ctlr;
588         spi->dev.parent = &ctlr->dev;
589         spi->dev.bus = &spi_bus_type;
590         spi->dev.release = spidev_release;
591         spi->mode = ctlr->buswidth_override_bits;
592
593         device_initialize(&spi->dev);
594         return spi;
595 }
596 EXPORT_SYMBOL_GPL(spi_alloc_device);
597
598 static void spi_dev_set_name(struct spi_device *spi)
599 {
600         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
601
602         if (adev) {
603                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
604                 return;
605         }
606
607         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
608                      spi_get_chipselect(spi, 0));
609 }
610
611 static int spi_dev_check(struct device *dev, void *data)
612 {
613         struct spi_device *spi = to_spi_device(dev);
614         struct spi_device *new_spi = data;
615         int idx, nw_idx;
616         u8 cs, cs_nw;
617
618         if (spi->controller == new_spi->controller) {
619                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
620                         cs = spi_get_chipselect(spi, idx);
621                         for (nw_idx = 0; nw_idx < SPI_CS_CNT_MAX; nw_idx++) {
622                                 cs_nw = spi_get_chipselect(new_spi, nw_idx);
623                                 if (cs != 0xFF && cs_nw != 0xFF && cs == cs_nw) {
624                                         dev_err(dev, "chipselect %d already in use\n", cs_nw);
625                                         return -EBUSY;
626                                 }
627                         }
628                 }
629         }
630         return 0;
631 }
632
633 static void spi_cleanup(struct spi_device *spi)
634 {
635         if (spi->controller->cleanup)
636                 spi->controller->cleanup(spi);
637 }
638
639 static int __spi_add_device(struct spi_device *spi)
640 {
641         struct spi_controller *ctlr = spi->controller;
642         struct device *dev = ctlr->dev.parent;
643         int status, idx, nw_idx;
644         u8 cs, nw_cs;
645
646         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
647                 /* Chipselects are numbered 0..max; validate. */
648                 cs = spi_get_chipselect(spi, idx);
649                 if (cs != 0xFF && cs >= ctlr->num_chipselect) {
650                         dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
651                                 ctlr->num_chipselect);
652                         return -EINVAL;
653                 }
654         }
655
656         /*
657          * Make sure that multiple logical CS doesn't map to the same physical CS.
658          * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
659          */
660         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
661                 cs = spi_get_chipselect(spi, idx);
662                 for (nw_idx = idx + 1; nw_idx < SPI_CS_CNT_MAX; nw_idx++) {
663                         nw_cs = spi_get_chipselect(spi, nw_idx);
664                         if (cs != 0xFF && nw_cs != 0xFF && cs == nw_cs) {
665                                 dev_err(dev, "chipselect %d already in use\n", nw_cs);
666                                 return -EBUSY;
667                         }
668                 }
669         }
670
671         /* Set the bus ID string */
672         spi_dev_set_name(spi);
673
674         /*
675          * We need to make sure there's no other device with this
676          * chipselect **BEFORE** we call setup(), else we'll trash
677          * its configuration.
678          */
679         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
680         if (status)
681                 return status;
682
683         /* Controller may unregister concurrently */
684         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
685             !device_is_registered(&ctlr->dev)) {
686                 return -ENODEV;
687         }
688
689         if (ctlr->cs_gpiods) {
690                 u8 cs;
691
692                 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
693                         cs = spi_get_chipselect(spi, idx);
694                         if (cs != 0xFF)
695                                 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
696                 }
697         }
698
699         /*
700          * Drivers may modify this initial i/o setup, but will
701          * normally rely on the device being setup.  Devices
702          * using SPI_CS_HIGH can't coexist well otherwise...
703          */
704         status = spi_setup(spi);
705         if (status < 0) {
706                 dev_err(dev, "can't setup %s, status %d\n",
707                                 dev_name(&spi->dev), status);
708                 return status;
709         }
710
711         /* Device may be bound to an active driver when this returns */
712         status = device_add(&spi->dev);
713         if (status < 0) {
714                 dev_err(dev, "can't add %s, status %d\n",
715                                 dev_name(&spi->dev), status);
716                 spi_cleanup(spi);
717         } else {
718                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
719         }
720
721         return status;
722 }
723
724 /**
725  * spi_add_device - Add spi_device allocated with spi_alloc_device
726  * @spi: spi_device to register
727  *
728  * Companion function to spi_alloc_device.  Devices allocated with
729  * spi_alloc_device can be added onto the SPI bus with this function.
730  *
731  * Return: 0 on success; negative errno on failure
732  */
733 int spi_add_device(struct spi_device *spi)
734 {
735         struct spi_controller *ctlr = spi->controller;
736         int status;
737
738         /* Set the bus ID string */
739         spi_dev_set_name(spi);
740
741         mutex_lock(&ctlr->add_lock);
742         status = __spi_add_device(spi);
743         mutex_unlock(&ctlr->add_lock);
744         return status;
745 }
746 EXPORT_SYMBOL_GPL(spi_add_device);
747
748 /**
749  * spi_new_device - instantiate one new SPI device
750  * @ctlr: Controller to which device is connected
751  * @chip: Describes the SPI device
752  * Context: can sleep
753  *
754  * On typical mainboards, this is purely internal; and it's not needed
755  * after board init creates the hard-wired devices.  Some development
756  * platforms may not be able to use spi_register_board_info though, and
757  * this is exported so that for example a USB or parport based adapter
758  * driver could add devices (which it would learn about out-of-band).
759  *
760  * Return: the new device, or NULL.
761  */
762 struct spi_device *spi_new_device(struct spi_controller *ctlr,
763                                   struct spi_board_info *chip)
764 {
765         struct spi_device       *proxy;
766         int                     status;
767         u8                      idx;
768
769         /*
770          * NOTE:  caller did any chip->bus_num checks necessary.
771          *
772          * Also, unless we change the return value convention to use
773          * error-or-pointer (not NULL-or-pointer), troubleshootability
774          * suggests syslogged diagnostics are best here (ugh).
775          */
776
777         proxy = spi_alloc_device(ctlr);
778         if (!proxy)
779                 return NULL;
780
781         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
782
783         /*
784          * Zero(0) is a valid physical CS value and can be located at any
785          * logical CS in the spi->chip_select[]. If all the physical CS
786          * are initialized to 0 then It would be difficult to differentiate
787          * between a valid physical CS 0 & an unused logical CS whose physical
788          * CS can be 0. As a solution to this issue initialize all the CS to 0xFF.
789          * Now all the unused logical CS will have 0xFF physical CS value & can be
790          * ignore while performing physical CS validity checks.
791          */
792         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
793                 spi_set_chipselect(proxy, idx, 0xFF);
794
795         spi_set_chipselect(proxy, 0, chip->chip_select);
796         proxy->max_speed_hz = chip->max_speed_hz;
797         proxy->mode = chip->mode;
798         proxy->irq = chip->irq;
799         strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
800         proxy->dev.platform_data = (void *) chip->platform_data;
801         proxy->controller_data = chip->controller_data;
802         proxy->controller_state = NULL;
803         /*
804          * spi->chip_select[i] gives the corresponding physical CS for logical CS i
805          * logical CS number is represented by setting the ith bit in spi->cs_index_mask
806          * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
807          * spi->chip_select[0] will give the physical CS.
808          * By default spi->chip_select[0] will hold the physical CS number so, set
809          * spi->cs_index_mask as 0x01.
810          */
811         proxy->cs_index_mask = 0x01;
812
813         if (chip->swnode) {
814                 status = device_add_software_node(&proxy->dev, chip->swnode);
815                 if (status) {
816                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
817                                 chip->modalias, status);
818                         goto err_dev_put;
819                 }
820         }
821
822         status = spi_add_device(proxy);
823         if (status < 0)
824                 goto err_dev_put;
825
826         return proxy;
827
828 err_dev_put:
829         device_remove_software_node(&proxy->dev);
830         spi_dev_put(proxy);
831         return NULL;
832 }
833 EXPORT_SYMBOL_GPL(spi_new_device);
834
835 /**
836  * spi_unregister_device - unregister a single SPI device
837  * @spi: spi_device to unregister
838  *
839  * Start making the passed SPI device vanish. Normally this would be handled
840  * by spi_unregister_controller().
841  */
842 void spi_unregister_device(struct spi_device *spi)
843 {
844         if (!spi)
845                 return;
846
847         if (spi->dev.of_node) {
848                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
849                 of_node_put(spi->dev.of_node);
850         }
851         if (ACPI_COMPANION(&spi->dev))
852                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
853         device_remove_software_node(&spi->dev);
854         device_del(&spi->dev);
855         spi_cleanup(spi);
856         put_device(&spi->dev);
857 }
858 EXPORT_SYMBOL_GPL(spi_unregister_device);
859
860 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
861                                               struct spi_board_info *bi)
862 {
863         struct spi_device *dev;
864
865         if (ctlr->bus_num != bi->bus_num)
866                 return;
867
868         dev = spi_new_device(ctlr, bi);
869         if (!dev)
870                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
871                         bi->modalias);
872 }
873
874 /**
875  * spi_register_board_info - register SPI devices for a given board
876  * @info: array of chip descriptors
877  * @n: how many descriptors are provided
878  * Context: can sleep
879  *
880  * Board-specific early init code calls this (probably during arch_initcall)
881  * with segments of the SPI device table.  Any device nodes are created later,
882  * after the relevant parent SPI controller (bus_num) is defined.  We keep
883  * this table of devices forever, so that reloading a controller driver will
884  * not make Linux forget about these hard-wired devices.
885  *
886  * Other code can also call this, e.g. a particular add-on board might provide
887  * SPI devices through its expansion connector, so code initializing that board
888  * would naturally declare its SPI devices.
889  *
890  * The board info passed can safely be __initdata ... but be careful of
891  * any embedded pointers (platform_data, etc), they're copied as-is.
892  *
893  * Return: zero on success, else a negative error code.
894  */
895 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
896 {
897         struct boardinfo *bi;
898         int i;
899
900         if (!n)
901                 return 0;
902
903         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
904         if (!bi)
905                 return -ENOMEM;
906
907         for (i = 0; i < n; i++, bi++, info++) {
908                 struct spi_controller *ctlr;
909
910                 memcpy(&bi->board_info, info, sizeof(*info));
911
912                 mutex_lock(&board_lock);
913                 list_add_tail(&bi->list, &board_list);
914                 list_for_each_entry(ctlr, &spi_controller_list, list)
915                         spi_match_controller_to_boardinfo(ctlr,
916                                                           &bi->board_info);
917                 mutex_unlock(&board_lock);
918         }
919
920         return 0;
921 }
922
923 /*-------------------------------------------------------------------------*/
924
925 /* Core methods for SPI resource management */
926
927 /**
928  * spi_res_alloc - allocate a spi resource that is life-cycle managed
929  *                 during the processing of a spi_message while using
930  *                 spi_transfer_one
931  * @spi:     the SPI device for which we allocate memory
932  * @release: the release code to execute for this resource
933  * @size:    size to alloc and return
934  * @gfp:     GFP allocation flags
935  *
936  * Return: the pointer to the allocated data
937  *
938  * This may get enhanced in the future to allocate from a memory pool
939  * of the @spi_device or @spi_controller to avoid repeated allocations.
940  */
941 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
942                            size_t size, gfp_t gfp)
943 {
944         struct spi_res *sres;
945
946         sres = kzalloc(sizeof(*sres) + size, gfp);
947         if (!sres)
948                 return NULL;
949
950         INIT_LIST_HEAD(&sres->entry);
951         sres->release = release;
952
953         return sres->data;
954 }
955
956 /**
957  * spi_res_free - free an SPI resource
958  * @res: pointer to the custom data of a resource
959  */
960 static void spi_res_free(void *res)
961 {
962         struct spi_res *sres = container_of(res, struct spi_res, data);
963
964         if (!res)
965                 return;
966
967         WARN_ON(!list_empty(&sres->entry));
968         kfree(sres);
969 }
970
971 /**
972  * spi_res_add - add a spi_res to the spi_message
973  * @message: the SPI message
974  * @res:     the spi_resource
975  */
976 static void spi_res_add(struct spi_message *message, void *res)
977 {
978         struct spi_res *sres = container_of(res, struct spi_res, data);
979
980         WARN_ON(!list_empty(&sres->entry));
981         list_add_tail(&sres->entry, &message->resources);
982 }
983
984 /**
985  * spi_res_release - release all SPI resources for this message
986  * @ctlr:  the @spi_controller
987  * @message: the @spi_message
988  */
989 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
990 {
991         struct spi_res *res, *tmp;
992
993         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
994                 if (res->release)
995                         res->release(ctlr, message, res->data);
996
997                 list_del(&res->entry);
998
999                 kfree(res);
1000         }
1001 }
1002
1003 /*-------------------------------------------------------------------------*/
1004 static inline bool spi_is_last_cs(struct spi_device *spi)
1005 {
1006         u8 idx;
1007         bool last = false;
1008
1009         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1010                 if ((spi->cs_index_mask >> idx) & 0x01) {
1011                         if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1012                                 last = true;
1013                 }
1014         }
1015         return last;
1016 }
1017
1018
1019 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1020 {
1021         bool activate = enable;
1022         u8 idx;
1023
1024         /*
1025          * Avoid calling into the driver (or doing delays) if the chip select
1026          * isn't actually changing from the last time this was called.
1027          */
1028         if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1029                         spi_is_last_cs(spi)) ||
1030                        (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1031                         !spi_is_last_cs(spi))) &&
1032             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1033                 return;
1034
1035         trace_spi_set_cs(spi, activate);
1036
1037         spi->controller->last_cs_index_mask = spi->cs_index_mask;
1038         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1039                 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : -1;
1040         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1041
1042         if (spi->mode & SPI_CS_HIGH)
1043                 enable = !enable;
1044
1045         if (spi_is_csgpiod(spi)) {
1046                 if (!spi->controller->set_cs_timing && !activate)
1047                         spi_delay_exec(&spi->cs_hold, NULL);
1048
1049                 if (!(spi->mode & SPI_NO_CS)) {
1050                         /*
1051                          * Historically ACPI has no means of the GPIO polarity and
1052                          * thus the SPISerialBus() resource defines it on the per-chip
1053                          * basis. In order to avoid a chain of negations, the GPIO
1054                          * polarity is considered being Active High. Even for the cases
1055                          * when _DSD() is involved (in the updated versions of ACPI)
1056                          * the GPIO CS polarity must be defined Active High to avoid
1057                          * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1058                          * into account.
1059                          */
1060                         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
1061                                 if (((spi->cs_index_mask >> idx) & 0x01) &&
1062                                     spi_get_csgpiod(spi, idx)) {
1063                                         if (has_acpi_companion(&spi->dev))
1064                                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1065                                                                          !enable);
1066                                         else
1067                                                 /* Polarity handled by GPIO library */
1068                                                 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx),
1069                                                                          activate);
1070
1071                                         if (activate)
1072                                                 spi_delay_exec(&spi->cs_setup, NULL);
1073                                         else
1074                                                 spi_delay_exec(&spi->cs_inactive, NULL);
1075                                 }
1076                         }
1077                 }
1078                 /* Some SPI masters need both GPIO CS & slave_select */
1079                 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1080                     spi->controller->set_cs)
1081                         spi->controller->set_cs(spi, !enable);
1082
1083                 if (!spi->controller->set_cs_timing) {
1084                         if (activate)
1085                                 spi_delay_exec(&spi->cs_setup, NULL);
1086                         else
1087                                 spi_delay_exec(&spi->cs_inactive, NULL);
1088                 }
1089         } else if (spi->controller->set_cs) {
1090                 spi->controller->set_cs(spi, !enable);
1091         }
1092 }
1093
1094 #ifdef CONFIG_HAS_DMA
1095 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1096                              struct sg_table *sgt, void *buf, size_t len,
1097                              enum dma_data_direction dir, unsigned long attrs)
1098 {
1099         const bool vmalloced_buf = is_vmalloc_addr(buf);
1100         unsigned int max_seg_size = dma_get_max_seg_size(dev);
1101 #ifdef CONFIG_HIGHMEM
1102         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1103                                 (unsigned long)buf < (PKMAP_BASE +
1104                                         (LAST_PKMAP * PAGE_SIZE)));
1105 #else
1106         const bool kmap_buf = false;
1107 #endif
1108         int desc_len;
1109         int sgs;
1110         struct page *vm_page;
1111         struct scatterlist *sg;
1112         void *sg_buf;
1113         size_t min;
1114         int i, ret;
1115
1116         if (vmalloced_buf || kmap_buf) {
1117                 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1118                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1119         } else if (virt_addr_valid(buf)) {
1120                 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1121                 sgs = DIV_ROUND_UP(len, desc_len);
1122         } else {
1123                 return -EINVAL;
1124         }
1125
1126         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1127         if (ret != 0)
1128                 return ret;
1129
1130         sg = &sgt->sgl[0];
1131         for (i = 0; i < sgs; i++) {
1132
1133                 if (vmalloced_buf || kmap_buf) {
1134                         /*
1135                          * Next scatterlist entry size is the minimum between
1136                          * the desc_len and the remaining buffer length that
1137                          * fits in a page.
1138                          */
1139                         min = min_t(size_t, desc_len,
1140                                     min_t(size_t, len,
1141                                           PAGE_SIZE - offset_in_page(buf)));
1142                         if (vmalloced_buf)
1143                                 vm_page = vmalloc_to_page(buf);
1144                         else
1145                                 vm_page = kmap_to_page(buf);
1146                         if (!vm_page) {
1147                                 sg_free_table(sgt);
1148                                 return -ENOMEM;
1149                         }
1150                         sg_set_page(sg, vm_page,
1151                                     min, offset_in_page(buf));
1152                 } else {
1153                         min = min_t(size_t, len, desc_len);
1154                         sg_buf = buf;
1155                         sg_set_buf(sg, sg_buf, min);
1156                 }
1157
1158                 buf += min;
1159                 len -= min;
1160                 sg = sg_next(sg);
1161         }
1162
1163         ret = dma_map_sgtable(dev, sgt, dir, attrs);
1164         if (ret < 0) {
1165                 sg_free_table(sgt);
1166                 return ret;
1167         }
1168
1169         return 0;
1170 }
1171
1172 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1173                 struct sg_table *sgt, void *buf, size_t len,
1174                 enum dma_data_direction dir)
1175 {
1176         return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1177 }
1178
1179 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1180                                 struct device *dev, struct sg_table *sgt,
1181                                 enum dma_data_direction dir,
1182                                 unsigned long attrs)
1183 {
1184         if (sgt->orig_nents) {
1185                 dma_unmap_sgtable(dev, sgt, dir, attrs);
1186                 sg_free_table(sgt);
1187                 sgt->orig_nents = 0;
1188                 sgt->nents = 0;
1189         }
1190 }
1191
1192 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1193                    struct sg_table *sgt, enum dma_data_direction dir)
1194 {
1195         spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1196 }
1197
1198 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1199 {
1200         struct device *tx_dev, *rx_dev;
1201         struct spi_transfer *xfer;
1202         int ret;
1203
1204         if (!ctlr->can_dma)
1205                 return 0;
1206
1207         if (ctlr->dma_tx)
1208                 tx_dev = ctlr->dma_tx->device->dev;
1209         else if (ctlr->dma_map_dev)
1210                 tx_dev = ctlr->dma_map_dev;
1211         else
1212                 tx_dev = ctlr->dev.parent;
1213
1214         if (ctlr->dma_rx)
1215                 rx_dev = ctlr->dma_rx->device->dev;
1216         else if (ctlr->dma_map_dev)
1217                 rx_dev = ctlr->dma_map_dev;
1218         else
1219                 rx_dev = ctlr->dev.parent;
1220
1221         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1222                 /* The sync is done before each transfer. */
1223                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1224
1225                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1226                         continue;
1227
1228                 if (xfer->tx_buf != NULL) {
1229                         ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1230                                                 (void *)xfer->tx_buf,
1231                                                 xfer->len, DMA_TO_DEVICE,
1232                                                 attrs);
1233                         if (ret != 0)
1234                                 return ret;
1235                 }
1236
1237                 if (xfer->rx_buf != NULL) {
1238                         ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1239                                                 xfer->rx_buf, xfer->len,
1240                                                 DMA_FROM_DEVICE, attrs);
1241                         if (ret != 0) {
1242                                 spi_unmap_buf_attrs(ctlr, tx_dev,
1243                                                 &xfer->tx_sg, DMA_TO_DEVICE,
1244                                                 attrs);
1245
1246                                 return ret;
1247                         }
1248                 }
1249         }
1250
1251         ctlr->cur_rx_dma_dev = rx_dev;
1252         ctlr->cur_tx_dma_dev = tx_dev;
1253         ctlr->cur_msg_mapped = true;
1254
1255         return 0;
1256 }
1257
1258 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1259 {
1260         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1261         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1262         struct spi_transfer *xfer;
1263
1264         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1265                 return 0;
1266
1267         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1268                 /* The sync has already been done after each transfer. */
1269                 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1270
1271                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1272                         continue;
1273
1274                 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1275                                     DMA_FROM_DEVICE, attrs);
1276                 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1277                                     DMA_TO_DEVICE, attrs);
1278         }
1279
1280         ctlr->cur_msg_mapped = false;
1281
1282         return 0;
1283 }
1284
1285 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1286                                     struct spi_transfer *xfer)
1287 {
1288         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1289         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1290
1291         if (!ctlr->cur_msg_mapped)
1292                 return;
1293
1294         if (xfer->tx_sg.orig_nents)
1295                 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1296         if (xfer->rx_sg.orig_nents)
1297                 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1298 }
1299
1300 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1301                                  struct spi_transfer *xfer)
1302 {
1303         struct device *rx_dev = ctlr->cur_rx_dma_dev;
1304         struct device *tx_dev = ctlr->cur_tx_dma_dev;
1305
1306         if (!ctlr->cur_msg_mapped)
1307                 return;
1308
1309         if (xfer->rx_sg.orig_nents)
1310                 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1311         if (xfer->tx_sg.orig_nents)
1312                 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1313 }
1314 #else /* !CONFIG_HAS_DMA */
1315 static inline int __spi_map_msg(struct spi_controller *ctlr,
1316                                 struct spi_message *msg)
1317 {
1318         return 0;
1319 }
1320
1321 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1322                                   struct spi_message *msg)
1323 {
1324         return 0;
1325 }
1326
1327 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1328                                     struct spi_transfer *xfer)
1329 {
1330 }
1331
1332 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1333                                  struct spi_transfer *xfer)
1334 {
1335 }
1336 #endif /* !CONFIG_HAS_DMA */
1337
1338 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1339                                 struct spi_message *msg)
1340 {
1341         struct spi_transfer *xfer;
1342
1343         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1344                 /*
1345                  * Restore the original value of tx_buf or rx_buf if they are
1346                  * NULL.
1347                  */
1348                 if (xfer->tx_buf == ctlr->dummy_tx)
1349                         xfer->tx_buf = NULL;
1350                 if (xfer->rx_buf == ctlr->dummy_rx)
1351                         xfer->rx_buf = NULL;
1352         }
1353
1354         return __spi_unmap_msg(ctlr, msg);
1355 }
1356
1357 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1358 {
1359         struct spi_transfer *xfer;
1360         void *tmp;
1361         unsigned int max_tx, max_rx;
1362
1363         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1364                 && !(msg->spi->mode & SPI_3WIRE)) {
1365                 max_tx = 0;
1366                 max_rx = 0;
1367
1368                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1369                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1370                             !xfer->tx_buf)
1371                                 max_tx = max(xfer->len, max_tx);
1372                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1373                             !xfer->rx_buf)
1374                                 max_rx = max(xfer->len, max_rx);
1375                 }
1376
1377                 if (max_tx) {
1378                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1379                                        GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1380                         if (!tmp)
1381                                 return -ENOMEM;
1382                         ctlr->dummy_tx = tmp;
1383                 }
1384
1385                 if (max_rx) {
1386                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1387                                        GFP_KERNEL | GFP_DMA);
1388                         if (!tmp)
1389                                 return -ENOMEM;
1390                         ctlr->dummy_rx = tmp;
1391                 }
1392
1393                 if (max_tx || max_rx) {
1394                         list_for_each_entry(xfer, &msg->transfers,
1395                                             transfer_list) {
1396                                 if (!xfer->len)
1397                                         continue;
1398                                 if (!xfer->tx_buf)
1399                                         xfer->tx_buf = ctlr->dummy_tx;
1400                                 if (!xfer->rx_buf)
1401                                         xfer->rx_buf = ctlr->dummy_rx;
1402                         }
1403                 }
1404         }
1405
1406         return __spi_map_msg(ctlr, msg);
1407 }
1408
1409 static int spi_transfer_wait(struct spi_controller *ctlr,
1410                              struct spi_message *msg,
1411                              struct spi_transfer *xfer)
1412 {
1413         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1414         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1415         u32 speed_hz = xfer->speed_hz;
1416         unsigned long long ms;
1417
1418         if (spi_controller_is_slave(ctlr)) {
1419                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1420                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1421                         return -EINTR;
1422                 }
1423         } else {
1424                 if (!speed_hz)
1425                         speed_hz = 100000;
1426
1427                 /*
1428                  * For each byte we wait for 8 cycles of the SPI clock.
1429                  * Since speed is defined in Hz and we want milliseconds,
1430                  * use respective multiplier, but before the division,
1431                  * otherwise we may get 0 for short transfers.
1432                  */
1433                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1434                 do_div(ms, speed_hz);
1435
1436                 /*
1437                  * Increase it twice and add 200 ms tolerance, use
1438                  * predefined maximum in case of overflow.
1439                  */
1440                 ms += ms + 200;
1441                 if (ms > UINT_MAX)
1442                         ms = UINT_MAX;
1443
1444                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1445                                                  msecs_to_jiffies(ms));
1446
1447                 if (ms == 0) {
1448                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1449                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1450                         dev_err(&msg->spi->dev,
1451                                 "SPI transfer timed out\n");
1452                         return -ETIMEDOUT;
1453                 }
1454
1455                 if (xfer->error & SPI_TRANS_FAIL_IO)
1456                         return -EIO;
1457         }
1458
1459         return 0;
1460 }
1461
1462 static void _spi_transfer_delay_ns(u32 ns)
1463 {
1464         if (!ns)
1465                 return;
1466         if (ns <= NSEC_PER_USEC) {
1467                 ndelay(ns);
1468         } else {
1469                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1470
1471                 if (us <= 10)
1472                         udelay(us);
1473                 else
1474                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1475         }
1476 }
1477
1478 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1479 {
1480         u32 delay = _delay->value;
1481         u32 unit = _delay->unit;
1482         u32 hz;
1483
1484         if (!delay)
1485                 return 0;
1486
1487         switch (unit) {
1488         case SPI_DELAY_UNIT_USECS:
1489                 delay *= NSEC_PER_USEC;
1490                 break;
1491         case SPI_DELAY_UNIT_NSECS:
1492                 /* Nothing to do here */
1493                 break;
1494         case SPI_DELAY_UNIT_SCK:
1495                 /* Clock cycles need to be obtained from spi_transfer */
1496                 if (!xfer)
1497                         return -EINVAL;
1498                 /*
1499                  * If there is unknown effective speed, approximate it
1500                  * by underestimating with half of the requested Hz.
1501                  */
1502                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1503                 if (!hz)
1504                         return -EINVAL;
1505
1506                 /* Convert delay to nanoseconds */
1507                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1508                 break;
1509         default:
1510                 return -EINVAL;
1511         }
1512
1513         return delay;
1514 }
1515 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1516
1517 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1518 {
1519         int delay;
1520
1521         might_sleep();
1522
1523         if (!_delay)
1524                 return -EINVAL;
1525
1526         delay = spi_delay_to_ns(_delay, xfer);
1527         if (delay < 0)
1528                 return delay;
1529
1530         _spi_transfer_delay_ns(delay);
1531
1532         return 0;
1533 }
1534 EXPORT_SYMBOL_GPL(spi_delay_exec);
1535
1536 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1537                                           struct spi_transfer *xfer)
1538 {
1539         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1540         u32 delay = xfer->cs_change_delay.value;
1541         u32 unit = xfer->cs_change_delay.unit;
1542         int ret;
1543
1544         /* Return early on "fast" mode - for everything but USECS */
1545         if (!delay) {
1546                 if (unit == SPI_DELAY_UNIT_USECS)
1547                         _spi_transfer_delay_ns(default_delay_ns);
1548                 return;
1549         }
1550
1551         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1552         if (ret) {
1553                 dev_err_once(&msg->spi->dev,
1554                              "Use of unsupported delay unit %i, using default of %luus\n",
1555                              unit, default_delay_ns / NSEC_PER_USEC);
1556                 _spi_transfer_delay_ns(default_delay_ns);
1557         }
1558 }
1559
1560 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1561                                                   struct spi_transfer *xfer)
1562 {
1563         _spi_transfer_cs_change_delay(msg, xfer);
1564 }
1565 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1566
1567 /*
1568  * spi_transfer_one_message - Default implementation of transfer_one_message()
1569  *
1570  * This is a standard implementation of transfer_one_message() for
1571  * drivers which implement a transfer_one() operation.  It provides
1572  * standard handling of delays and chip select management.
1573  */
1574 static int spi_transfer_one_message(struct spi_controller *ctlr,
1575                                     struct spi_message *msg)
1576 {
1577         struct spi_transfer *xfer;
1578         bool keep_cs = false;
1579         int ret = 0;
1580         struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1581         struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1582
1583         xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1584         spi_set_cs(msg->spi, !xfer->cs_off, false);
1585
1586         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1587         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1588
1589         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1590                 trace_spi_transfer_start(msg, xfer);
1591
1592                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1593                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1594
1595                 if (!ctlr->ptp_sts_supported) {
1596                         xfer->ptp_sts_word_pre = 0;
1597                         ptp_read_system_prets(xfer->ptp_sts);
1598                 }
1599
1600                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1601                         reinit_completion(&ctlr->xfer_completion);
1602
1603 fallback_pio:
1604                         spi_dma_sync_for_device(ctlr, xfer);
1605                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1606                         if (ret < 0) {
1607                                 spi_dma_sync_for_cpu(ctlr, xfer);
1608
1609                                 if (ctlr->cur_msg_mapped &&
1610                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1611                                         __spi_unmap_msg(ctlr, msg);
1612                                         ctlr->fallback = true;
1613                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1614                                         goto fallback_pio;
1615                                 }
1616
1617                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1618                                                                errors);
1619                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1620                                                                errors);
1621                                 dev_err(&msg->spi->dev,
1622                                         "SPI transfer failed: %d\n", ret);
1623                                 goto out;
1624                         }
1625
1626                         if (ret > 0) {
1627                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1628                                 if (ret < 0)
1629                                         msg->status = ret;
1630                         }
1631
1632                         spi_dma_sync_for_cpu(ctlr, xfer);
1633                 } else {
1634                         if (xfer->len)
1635                                 dev_err(&msg->spi->dev,
1636                                         "Bufferless transfer has length %u\n",
1637                                         xfer->len);
1638                 }
1639
1640                 if (!ctlr->ptp_sts_supported) {
1641                         ptp_read_system_postts(xfer->ptp_sts);
1642                         xfer->ptp_sts_word_post = xfer->len;
1643                 }
1644
1645                 trace_spi_transfer_stop(msg, xfer);
1646
1647                 if (msg->status != -EINPROGRESS)
1648                         goto out;
1649
1650                 spi_transfer_delay_exec(xfer);
1651
1652                 if (xfer->cs_change) {
1653                         if (list_is_last(&xfer->transfer_list,
1654                                          &msg->transfers)) {
1655                                 keep_cs = true;
1656                         } else {
1657                                 if (!xfer->cs_off)
1658                                         spi_set_cs(msg->spi, false, false);
1659                                 _spi_transfer_cs_change_delay(msg, xfer);
1660                                 if (!list_next_entry(xfer, transfer_list)->cs_off)
1661                                         spi_set_cs(msg->spi, true, false);
1662                         }
1663                 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1664                            xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1665                         spi_set_cs(msg->spi, xfer->cs_off, false);
1666                 }
1667
1668                 msg->actual_length += xfer->len;
1669         }
1670
1671 out:
1672         if (ret != 0 || !keep_cs)
1673                 spi_set_cs(msg->spi, false, false);
1674
1675         if (msg->status == -EINPROGRESS)
1676                 msg->status = ret;
1677
1678         if (msg->status && ctlr->handle_err)
1679                 ctlr->handle_err(ctlr, msg);
1680
1681         spi_finalize_current_message(ctlr);
1682
1683         return ret;
1684 }
1685
1686 /**
1687  * spi_finalize_current_transfer - report completion of a transfer
1688  * @ctlr: the controller reporting completion
1689  *
1690  * Called by SPI drivers using the core transfer_one_message()
1691  * implementation to notify it that the current interrupt driven
1692  * transfer has finished and the next one may be scheduled.
1693  */
1694 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1695 {
1696         complete(&ctlr->xfer_completion);
1697 }
1698 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1699
1700 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1701 {
1702         if (ctlr->auto_runtime_pm) {
1703                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1704                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1705         }
1706 }
1707
1708 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1709                 struct spi_message *msg, bool was_busy)
1710 {
1711         struct spi_transfer *xfer;
1712         int ret;
1713
1714         if (!was_busy && ctlr->auto_runtime_pm) {
1715                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1716                 if (ret < 0) {
1717                         pm_runtime_put_noidle(ctlr->dev.parent);
1718                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1719                                 ret);
1720                         return ret;
1721                 }
1722         }
1723
1724         if (!was_busy)
1725                 trace_spi_controller_busy(ctlr);
1726
1727         if (!was_busy && ctlr->prepare_transfer_hardware) {
1728                 ret = ctlr->prepare_transfer_hardware(ctlr);
1729                 if (ret) {
1730                         dev_err(&ctlr->dev,
1731                                 "failed to prepare transfer hardware: %d\n",
1732                                 ret);
1733
1734                         if (ctlr->auto_runtime_pm)
1735                                 pm_runtime_put(ctlr->dev.parent);
1736
1737                         msg->status = ret;
1738                         spi_finalize_current_message(ctlr);
1739
1740                         return ret;
1741                 }
1742         }
1743
1744         trace_spi_message_start(msg);
1745
1746         ret = spi_split_transfers_maxsize(ctlr, msg,
1747                                           spi_max_transfer_size(msg->spi),
1748                                           GFP_KERNEL | GFP_DMA);
1749         if (ret) {
1750                 msg->status = ret;
1751                 spi_finalize_current_message(ctlr);
1752                 return ret;
1753         }
1754
1755         if (ctlr->prepare_message) {
1756                 ret = ctlr->prepare_message(ctlr, msg);
1757                 if (ret) {
1758                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1759                                 ret);
1760                         msg->status = ret;
1761                         spi_finalize_current_message(ctlr);
1762                         return ret;
1763                 }
1764                 msg->prepared = true;
1765         }
1766
1767         ret = spi_map_msg(ctlr, msg);
1768         if (ret) {
1769                 msg->status = ret;
1770                 spi_finalize_current_message(ctlr);
1771                 return ret;
1772         }
1773
1774         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1775                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1776                         xfer->ptp_sts_word_pre = 0;
1777                         ptp_read_system_prets(xfer->ptp_sts);
1778                 }
1779         }
1780
1781         /*
1782          * Drivers implementation of transfer_one_message() must arrange for
1783          * spi_finalize_current_message() to get called. Most drivers will do
1784          * this in the calling context, but some don't. For those cases, a
1785          * completion is used to guarantee that this function does not return
1786          * until spi_finalize_current_message() is done accessing
1787          * ctlr->cur_msg.
1788          * Use of the following two flags enable to opportunistically skip the
1789          * use of the completion since its use involves expensive spin locks.
1790          * In case of a race with the context that calls
1791          * spi_finalize_current_message() the completion will always be used,
1792          * due to strict ordering of these flags using barriers.
1793          */
1794         WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1795         WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1796         reinit_completion(&ctlr->cur_msg_completion);
1797         smp_wmb(); /* Make these available to spi_finalize_current_message() */
1798
1799         ret = ctlr->transfer_one_message(ctlr, msg);
1800         if (ret) {
1801                 dev_err(&ctlr->dev,
1802                         "failed to transfer one message from queue\n");
1803                 return ret;
1804         }
1805
1806         WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1807         smp_mb(); /* See spi_finalize_current_message()... */
1808         if (READ_ONCE(ctlr->cur_msg_incomplete))
1809                 wait_for_completion(&ctlr->cur_msg_completion);
1810
1811         return 0;
1812 }
1813
1814 /**
1815  * __spi_pump_messages - function which processes SPI message queue
1816  * @ctlr: controller to process queue for
1817  * @in_kthread: true if we are in the context of the message pump thread
1818  *
1819  * This function checks if there is any SPI message in the queue that
1820  * needs processing and if so call out to the driver to initialize hardware
1821  * and transfer each message.
1822  *
1823  * Note that it is called both from the kthread itself and also from
1824  * inside spi_sync(); the queue extraction handling at the top of the
1825  * function should deal with this safely.
1826  */
1827 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1828 {
1829         struct spi_message *msg;
1830         bool was_busy = false;
1831         unsigned long flags;
1832         int ret;
1833
1834         /* Take the I/O mutex */
1835         mutex_lock(&ctlr->io_mutex);
1836
1837         /* Lock queue */
1838         spin_lock_irqsave(&ctlr->queue_lock, flags);
1839
1840         /* Make sure we are not already running a message */
1841         if (ctlr->cur_msg)
1842                 goto out_unlock;
1843
1844         /* Check if the queue is idle */
1845         if (list_empty(&ctlr->queue) || !ctlr->running) {
1846                 if (!ctlr->busy)
1847                         goto out_unlock;
1848
1849                 /* Defer any non-atomic teardown to the thread */
1850                 if (!in_kthread) {
1851                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1852                             !ctlr->unprepare_transfer_hardware) {
1853                                 spi_idle_runtime_pm(ctlr);
1854                                 ctlr->busy = false;
1855                                 ctlr->queue_empty = true;
1856                                 trace_spi_controller_idle(ctlr);
1857                         } else {
1858                                 kthread_queue_work(ctlr->kworker,
1859                                                    &ctlr->pump_messages);
1860                         }
1861                         goto out_unlock;
1862                 }
1863
1864                 ctlr->busy = false;
1865                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1866
1867                 kfree(ctlr->dummy_rx);
1868                 ctlr->dummy_rx = NULL;
1869                 kfree(ctlr->dummy_tx);
1870                 ctlr->dummy_tx = NULL;
1871                 if (ctlr->unprepare_transfer_hardware &&
1872                     ctlr->unprepare_transfer_hardware(ctlr))
1873                         dev_err(&ctlr->dev,
1874                                 "failed to unprepare transfer hardware\n");
1875                 spi_idle_runtime_pm(ctlr);
1876                 trace_spi_controller_idle(ctlr);
1877
1878                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1879                 ctlr->queue_empty = true;
1880                 goto out_unlock;
1881         }
1882
1883         /* Extract head of queue */
1884         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1885         ctlr->cur_msg = msg;
1886
1887         list_del_init(&msg->queue);
1888         if (ctlr->busy)
1889                 was_busy = true;
1890         else
1891                 ctlr->busy = true;
1892         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1893
1894         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1895         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1896
1897         ctlr->cur_msg = NULL;
1898         ctlr->fallback = false;
1899
1900         mutex_unlock(&ctlr->io_mutex);
1901
1902         /* Prod the scheduler in case transfer_one() was busy waiting */
1903         if (!ret)
1904                 cond_resched();
1905         return;
1906
1907 out_unlock:
1908         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1909         mutex_unlock(&ctlr->io_mutex);
1910 }
1911
1912 /**
1913  * spi_pump_messages - kthread work function which processes spi message queue
1914  * @work: pointer to kthread work struct contained in the controller struct
1915  */
1916 static void spi_pump_messages(struct kthread_work *work)
1917 {
1918         struct spi_controller *ctlr =
1919                 container_of(work, struct spi_controller, pump_messages);
1920
1921         __spi_pump_messages(ctlr, true);
1922 }
1923
1924 /**
1925  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1926  * @ctlr: Pointer to the spi_controller structure of the driver
1927  * @xfer: Pointer to the transfer being timestamped
1928  * @progress: How many words (not bytes) have been transferred so far
1929  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1930  *            transfer, for less jitter in time measurement. Only compatible
1931  *            with PIO drivers. If true, must follow up with
1932  *            spi_take_timestamp_post or otherwise system will crash.
1933  *            WARNING: for fully predictable results, the CPU frequency must
1934  *            also be under control (governor).
1935  *
1936  * This is a helper for drivers to collect the beginning of the TX timestamp
1937  * for the requested byte from the SPI transfer. The frequency with which this
1938  * function must be called (once per word, once for the whole transfer, once
1939  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1940  * greater than or equal to the requested byte at the time of the call. The
1941  * timestamp is only taken once, at the first such call. It is assumed that
1942  * the driver advances its @tx buffer pointer monotonically.
1943  */
1944 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1945                             struct spi_transfer *xfer,
1946                             size_t progress, bool irqs_off)
1947 {
1948         if (!xfer->ptp_sts)
1949                 return;
1950
1951         if (xfer->timestamped)
1952                 return;
1953
1954         if (progress > xfer->ptp_sts_word_pre)
1955                 return;
1956
1957         /* Capture the resolution of the timestamp */
1958         xfer->ptp_sts_word_pre = progress;
1959
1960         if (irqs_off) {
1961                 local_irq_save(ctlr->irq_flags);
1962                 preempt_disable();
1963         }
1964
1965         ptp_read_system_prets(xfer->ptp_sts);
1966 }
1967 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1968
1969 /**
1970  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1971  * @ctlr: Pointer to the spi_controller structure of the driver
1972  * @xfer: Pointer to the transfer being timestamped
1973  * @progress: How many words (not bytes) have been transferred so far
1974  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1975  *
1976  * This is a helper for drivers to collect the end of the TX timestamp for
1977  * the requested byte from the SPI transfer. Can be called with an arbitrary
1978  * frequency: only the first call where @tx exceeds or is equal to the
1979  * requested word will be timestamped.
1980  */
1981 void spi_take_timestamp_post(struct spi_controller *ctlr,
1982                              struct spi_transfer *xfer,
1983                              size_t progress, bool irqs_off)
1984 {
1985         if (!xfer->ptp_sts)
1986                 return;
1987
1988         if (xfer->timestamped)
1989                 return;
1990
1991         if (progress < xfer->ptp_sts_word_post)
1992                 return;
1993
1994         ptp_read_system_postts(xfer->ptp_sts);
1995
1996         if (irqs_off) {
1997                 local_irq_restore(ctlr->irq_flags);
1998                 preempt_enable();
1999         }
2000
2001         /* Capture the resolution of the timestamp */
2002         xfer->ptp_sts_word_post = progress;
2003
2004         xfer->timestamped = 1;
2005 }
2006 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2007
2008 /**
2009  * spi_set_thread_rt - set the controller to pump at realtime priority
2010  * @ctlr: controller to boost priority of
2011  *
2012  * This can be called because the controller requested realtime priority
2013  * (by setting the ->rt value before calling spi_register_controller()) or
2014  * because a device on the bus said that its transfers needed realtime
2015  * priority.
2016  *
2017  * NOTE: at the moment if any device on a bus says it needs realtime then
2018  * the thread will be at realtime priority for all transfers on that
2019  * controller.  If this eventually becomes a problem we may see if we can
2020  * find a way to boost the priority only temporarily during relevant
2021  * transfers.
2022  */
2023 static void spi_set_thread_rt(struct spi_controller *ctlr)
2024 {
2025         dev_info(&ctlr->dev,
2026                 "will run message pump with realtime priority\n");
2027         sched_set_fifo(ctlr->kworker->task);
2028 }
2029
2030 static int spi_init_queue(struct spi_controller *ctlr)
2031 {
2032         ctlr->running = false;
2033         ctlr->busy = false;
2034         ctlr->queue_empty = true;
2035
2036         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
2037         if (IS_ERR(ctlr->kworker)) {
2038                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2039                 return PTR_ERR(ctlr->kworker);
2040         }
2041
2042         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2043
2044         /*
2045          * Controller config will indicate if this controller should run the
2046          * message pump with high (realtime) priority to reduce the transfer
2047          * latency on the bus by minimising the delay between a transfer
2048          * request and the scheduling of the message pump thread. Without this
2049          * setting the message pump thread will remain at default priority.
2050          */
2051         if (ctlr->rt)
2052                 spi_set_thread_rt(ctlr);
2053
2054         return 0;
2055 }
2056
2057 /**
2058  * spi_get_next_queued_message() - called by driver to check for queued
2059  * messages
2060  * @ctlr: the controller to check for queued messages
2061  *
2062  * If there are more messages in the queue, the next message is returned from
2063  * this call.
2064  *
2065  * Return: the next message in the queue, else NULL if the queue is empty.
2066  */
2067 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2068 {
2069         struct spi_message *next;
2070         unsigned long flags;
2071
2072         /* Get a pointer to the next message, if any */
2073         spin_lock_irqsave(&ctlr->queue_lock, flags);
2074         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2075                                         queue);
2076         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2077
2078         return next;
2079 }
2080 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2081
2082 /**
2083  * spi_finalize_current_message() - the current message is complete
2084  * @ctlr: the controller to return the message to
2085  *
2086  * Called by the driver to notify the core that the message in the front of the
2087  * queue is complete and can be removed from the queue.
2088  */
2089 void spi_finalize_current_message(struct spi_controller *ctlr)
2090 {
2091         struct spi_transfer *xfer;
2092         struct spi_message *mesg;
2093         int ret;
2094
2095         mesg = ctlr->cur_msg;
2096
2097         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2098                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2099                         ptp_read_system_postts(xfer->ptp_sts);
2100                         xfer->ptp_sts_word_post = xfer->len;
2101                 }
2102         }
2103
2104         if (unlikely(ctlr->ptp_sts_supported))
2105                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2106                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2107
2108         spi_unmap_msg(ctlr, mesg);
2109
2110         /*
2111          * In the prepare_messages callback the SPI bus has the opportunity
2112          * to split a transfer to smaller chunks.
2113          *
2114          * Release the split transfers here since spi_map_msg() is done on
2115          * the split transfers.
2116          */
2117         spi_res_release(ctlr, mesg);
2118
2119         if (mesg->prepared && ctlr->unprepare_message) {
2120                 ret = ctlr->unprepare_message(ctlr, mesg);
2121                 if (ret) {
2122                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2123                                 ret);
2124                 }
2125         }
2126
2127         mesg->prepared = false;
2128
2129         WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2130         smp_mb(); /* See __spi_pump_transfer_message()... */
2131         if (READ_ONCE(ctlr->cur_msg_need_completion))
2132                 complete(&ctlr->cur_msg_completion);
2133
2134         trace_spi_message_done(mesg);
2135
2136         mesg->state = NULL;
2137         if (mesg->complete)
2138                 mesg->complete(mesg->context);
2139 }
2140 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2141
2142 static int spi_start_queue(struct spi_controller *ctlr)
2143 {
2144         unsigned long flags;
2145
2146         spin_lock_irqsave(&ctlr->queue_lock, flags);
2147
2148         if (ctlr->running || ctlr->busy) {
2149                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2150                 return -EBUSY;
2151         }
2152
2153         ctlr->running = true;
2154         ctlr->cur_msg = NULL;
2155         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2156
2157         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2158
2159         return 0;
2160 }
2161
2162 static int spi_stop_queue(struct spi_controller *ctlr)
2163 {
2164         unsigned long flags;
2165         unsigned limit = 500;
2166         int ret = 0;
2167
2168         spin_lock_irqsave(&ctlr->queue_lock, flags);
2169
2170         /*
2171          * This is a bit lame, but is optimized for the common execution path.
2172          * A wait_queue on the ctlr->busy could be used, but then the common
2173          * execution path (pump_messages) would be required to call wake_up or
2174          * friends on every SPI message. Do this instead.
2175          */
2176         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2177                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2178                 usleep_range(10000, 11000);
2179                 spin_lock_irqsave(&ctlr->queue_lock, flags);
2180         }
2181
2182         if (!list_empty(&ctlr->queue) || ctlr->busy)
2183                 ret = -EBUSY;
2184         else
2185                 ctlr->running = false;
2186
2187         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2188
2189         return ret;
2190 }
2191
2192 static int spi_destroy_queue(struct spi_controller *ctlr)
2193 {
2194         int ret;
2195
2196         ret = spi_stop_queue(ctlr);
2197
2198         /*
2199          * kthread_flush_worker will block until all work is done.
2200          * If the reason that stop_queue timed out is that the work will never
2201          * finish, then it does no good to call flush/stop thread, so
2202          * return anyway.
2203          */
2204         if (ret) {
2205                 dev_err(&ctlr->dev, "problem destroying queue\n");
2206                 return ret;
2207         }
2208
2209         kthread_destroy_worker(ctlr->kworker);
2210
2211         return 0;
2212 }
2213
2214 static int __spi_queued_transfer(struct spi_device *spi,
2215                                  struct spi_message *msg,
2216                                  bool need_pump)
2217 {
2218         struct spi_controller *ctlr = spi->controller;
2219         unsigned long flags;
2220
2221         spin_lock_irqsave(&ctlr->queue_lock, flags);
2222
2223         if (!ctlr->running) {
2224                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2225                 return -ESHUTDOWN;
2226         }
2227         msg->actual_length = 0;
2228         msg->status = -EINPROGRESS;
2229
2230         list_add_tail(&msg->queue, &ctlr->queue);
2231         ctlr->queue_empty = false;
2232         if (!ctlr->busy && need_pump)
2233                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2234
2235         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2236         return 0;
2237 }
2238
2239 /**
2240  * spi_queued_transfer - transfer function for queued transfers
2241  * @spi: SPI device which is requesting transfer
2242  * @msg: SPI message which is to handled is queued to driver queue
2243  *
2244  * Return: zero on success, else a negative error code.
2245  */
2246 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2247 {
2248         return __spi_queued_transfer(spi, msg, true);
2249 }
2250
2251 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2252 {
2253         int ret;
2254
2255         ctlr->transfer = spi_queued_transfer;
2256         if (!ctlr->transfer_one_message)
2257                 ctlr->transfer_one_message = spi_transfer_one_message;
2258
2259         /* Initialize and start queue */
2260         ret = spi_init_queue(ctlr);
2261         if (ret) {
2262                 dev_err(&ctlr->dev, "problem initializing queue\n");
2263                 goto err_init_queue;
2264         }
2265         ctlr->queued = true;
2266         ret = spi_start_queue(ctlr);
2267         if (ret) {
2268                 dev_err(&ctlr->dev, "problem starting queue\n");
2269                 goto err_start_queue;
2270         }
2271
2272         return 0;
2273
2274 err_start_queue:
2275         spi_destroy_queue(ctlr);
2276 err_init_queue:
2277         return ret;
2278 }
2279
2280 /**
2281  * spi_flush_queue - Send all pending messages in the queue from the callers'
2282  *                   context
2283  * @ctlr: controller to process queue for
2284  *
2285  * This should be used when one wants to ensure all pending messages have been
2286  * sent before doing something. Is used by the spi-mem code to make sure SPI
2287  * memory operations do not preempt regular SPI transfers that have been queued
2288  * before the spi-mem operation.
2289  */
2290 void spi_flush_queue(struct spi_controller *ctlr)
2291 {
2292         if (ctlr->transfer == spi_queued_transfer)
2293                 __spi_pump_messages(ctlr, false);
2294 }
2295
2296 /*-------------------------------------------------------------------------*/
2297
2298 #if defined(CONFIG_OF)
2299 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2300                                      struct spi_delay *delay, const char *prop)
2301 {
2302         u32 value;
2303
2304         if (!of_property_read_u32(nc, prop, &value)) {
2305                 if (value > U16_MAX) {
2306                         delay->value = DIV_ROUND_UP(value, 1000);
2307                         delay->unit = SPI_DELAY_UNIT_USECS;
2308                 } else {
2309                         delay->value = value;
2310                         delay->unit = SPI_DELAY_UNIT_NSECS;
2311                 }
2312         }
2313 }
2314
2315 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2316                            struct device_node *nc)
2317 {
2318         u32 value, cs[SPI_CS_CNT_MAX];
2319         int rc, idx;
2320
2321         /* Mode (clock phase/polarity/etc.) */
2322         if (of_property_read_bool(nc, "spi-cpha"))
2323                 spi->mode |= SPI_CPHA;
2324         if (of_property_read_bool(nc, "spi-cpol"))
2325                 spi->mode |= SPI_CPOL;
2326         if (of_property_read_bool(nc, "spi-3wire"))
2327                 spi->mode |= SPI_3WIRE;
2328         if (of_property_read_bool(nc, "spi-lsb-first"))
2329                 spi->mode |= SPI_LSB_FIRST;
2330         if (of_property_read_bool(nc, "spi-cs-high"))
2331                 spi->mode |= SPI_CS_HIGH;
2332
2333         /* Device DUAL/QUAD mode */
2334         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2335                 switch (value) {
2336                 case 0:
2337                         spi->mode |= SPI_NO_TX;
2338                         break;
2339                 case 1:
2340                         break;
2341                 case 2:
2342                         spi->mode |= SPI_TX_DUAL;
2343                         break;
2344                 case 4:
2345                         spi->mode |= SPI_TX_QUAD;
2346                         break;
2347                 case 8:
2348                         spi->mode |= SPI_TX_OCTAL;
2349                         break;
2350                 default:
2351                         dev_warn(&ctlr->dev,
2352                                 "spi-tx-bus-width %d not supported\n",
2353                                 value);
2354                         break;
2355                 }
2356         }
2357
2358         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2359                 switch (value) {
2360                 case 0:
2361                         spi->mode |= SPI_NO_RX;
2362                         break;
2363                 case 1:
2364                         break;
2365                 case 2:
2366                         spi->mode |= SPI_RX_DUAL;
2367                         break;
2368                 case 4:
2369                         spi->mode |= SPI_RX_QUAD;
2370                         break;
2371                 case 8:
2372                         spi->mode |= SPI_RX_OCTAL;
2373                         break;
2374                 default:
2375                         dev_warn(&ctlr->dev,
2376                                 "spi-rx-bus-width %d not supported\n",
2377                                 value);
2378                         break;
2379                 }
2380         }
2381
2382         if (spi_controller_is_slave(ctlr)) {
2383                 if (!of_node_name_eq(nc, "slave")) {
2384                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2385                                 nc);
2386                         return -EINVAL;
2387                 }
2388                 return 0;
2389         }
2390
2391         if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2392                 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2393                 return -EINVAL;
2394         }
2395
2396         /*
2397          * Zero(0) is a valid physical CS value and can be located at any
2398          * logical CS in the spi->chip_select[]. If all the physical CS
2399          * are initialized to 0 then It would be difficult to differentiate
2400          * between a valid physical CS 0 & an unused logical CS whose physical
2401          * CS can be 0. As a solution to this issue initialize all the CS to 0xFF.
2402          * Now all the unused logical CS will have 0xFF physical CS value & can be
2403          * ignore while performing physical CS validity checks.
2404          */
2405         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
2406                 spi_set_chipselect(spi, idx, 0xFF);
2407
2408         /* Device address */
2409         rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2410                                                  SPI_CS_CNT_MAX);
2411         if (rc < 0) {
2412                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2413                         nc, rc);
2414                 return rc;
2415         }
2416         if (rc > ctlr->num_chipselect) {
2417                 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2418                         nc, rc);
2419                 return rc;
2420         }
2421         if ((of_property_read_bool(nc, "parallel-memories")) &&
2422             (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2423                 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2424                 return -EINVAL;
2425         }
2426         for (idx = 0; idx < rc; idx++)
2427                 spi_set_chipselect(spi, idx, cs[idx]);
2428
2429         /*
2430          * spi->chip_select[i] gives the corresponding physical CS for logical CS i
2431          * logical CS number is represented by setting the ith bit in spi->cs_index_mask
2432          * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
2433          * spi->chip_select[0] will give the physical CS.
2434          * By default spi->chip_select[0] will hold the physical CS number so, set
2435          * spi->cs_index_mask as 0x01.
2436          */
2437         spi->cs_index_mask = 0x01;
2438
2439         /* Device speed */
2440         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2441                 spi->max_speed_hz = value;
2442
2443         /* Device CS delays */
2444         of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2445         of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2446         of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2447
2448         return 0;
2449 }
2450
2451 static struct spi_device *
2452 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2453 {
2454         struct spi_device *spi;
2455         int rc;
2456
2457         /* Alloc an spi_device */
2458         spi = spi_alloc_device(ctlr);
2459         if (!spi) {
2460                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2461                 rc = -ENOMEM;
2462                 goto err_out;
2463         }
2464
2465         /* Select device driver */
2466         rc = of_alias_from_compatible(nc, spi->modalias,
2467                                       sizeof(spi->modalias));
2468         if (rc < 0) {
2469                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2470                 goto err_out;
2471         }
2472
2473         rc = of_spi_parse_dt(ctlr, spi, nc);
2474         if (rc)
2475                 goto err_out;
2476
2477         /* Store a pointer to the node in the device structure */
2478         of_node_get(nc);
2479
2480         device_set_node(&spi->dev, of_fwnode_handle(nc));
2481
2482         /* Register the new device */
2483         rc = spi_add_device(spi);
2484         if (rc) {
2485                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2486                 goto err_of_node_put;
2487         }
2488
2489         return spi;
2490
2491 err_of_node_put:
2492         of_node_put(nc);
2493 err_out:
2494         spi_dev_put(spi);
2495         return ERR_PTR(rc);
2496 }
2497
2498 /**
2499  * of_register_spi_devices() - Register child devices onto the SPI bus
2500  * @ctlr:       Pointer to spi_controller device
2501  *
2502  * Registers an spi_device for each child node of controller node which
2503  * represents a valid SPI slave.
2504  */
2505 static void of_register_spi_devices(struct spi_controller *ctlr)
2506 {
2507         struct spi_device *spi;
2508         struct device_node *nc;
2509
2510         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2511                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2512                         continue;
2513                 spi = of_register_spi_device(ctlr, nc);
2514                 if (IS_ERR(spi)) {
2515                         dev_warn(&ctlr->dev,
2516                                  "Failed to create SPI device for %pOF\n", nc);
2517                         of_node_clear_flag(nc, OF_POPULATED);
2518                 }
2519         }
2520 }
2521 #else
2522 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2523 #endif
2524
2525 /**
2526  * spi_new_ancillary_device() - Register ancillary SPI device
2527  * @spi:         Pointer to the main SPI device registering the ancillary device
2528  * @chip_select: Chip Select of the ancillary device
2529  *
2530  * Register an ancillary SPI device; for example some chips have a chip-select
2531  * for normal device usage and another one for setup/firmware upload.
2532  *
2533  * This may only be called from main SPI device's probe routine.
2534  *
2535  * Return: 0 on success; negative errno on failure
2536  */
2537 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2538                                              u8 chip_select)
2539 {
2540         struct spi_controller *ctlr = spi->controller;
2541         struct spi_device *ancillary;
2542         int rc = 0;
2543         u8 idx;
2544
2545         /* Alloc an spi_device */
2546         ancillary = spi_alloc_device(ctlr);
2547         if (!ancillary) {
2548                 rc = -ENOMEM;
2549                 goto err_out;
2550         }
2551
2552         strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2553
2554         /*
2555          * Zero(0) is a valid physical CS value and can be located at any
2556          * logical CS in the spi->chip_select[]. If all the physical CS
2557          * are initialized to 0 then It would be difficult to differentiate
2558          * between a valid physical CS 0 & an unused logical CS whose physical
2559          * CS can be 0. As a solution to this issue initialize all the CS to 0xFF.
2560          * Now all the unused logical CS will have 0xFF physical CS value & can be
2561          * ignore while performing physical CS validity checks.
2562          */
2563         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
2564                 spi_set_chipselect(ancillary, idx, 0xFF);
2565
2566         /* Use provided chip-select for ancillary device */
2567         spi_set_chipselect(ancillary, 0, chip_select);
2568
2569         /* Take over SPI mode/speed from SPI main device */
2570         ancillary->max_speed_hz = spi->max_speed_hz;
2571         ancillary->mode = spi->mode;
2572         /*
2573          * spi->chip_select[i] gives the corresponding physical CS for logical CS i
2574          * logical CS number is represented by setting the ith bit in spi->cs_index_mask
2575          * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
2576          * spi->chip_select[0] will give the physical CS.
2577          * By default spi->chip_select[0] will hold the physical CS number so, set
2578          * spi->cs_index_mask as 0x01.
2579          */
2580         ancillary->cs_index_mask = 0x01;
2581
2582         WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2583
2584         /* Register the new device */
2585         rc = __spi_add_device(ancillary);
2586         if (rc) {
2587                 dev_err(&spi->dev, "failed to register ancillary device\n");
2588                 goto err_out;
2589         }
2590
2591         return ancillary;
2592
2593 err_out:
2594         spi_dev_put(ancillary);
2595         return ERR_PTR(rc);
2596 }
2597 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2598
2599 #ifdef CONFIG_ACPI
2600 struct acpi_spi_lookup {
2601         struct spi_controller   *ctlr;
2602         u32                     max_speed_hz;
2603         u32                     mode;
2604         int                     irq;
2605         u8                      bits_per_word;
2606         u8                      chip_select;
2607         int                     n;
2608         int                     index;
2609 };
2610
2611 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2612 {
2613         struct acpi_resource_spi_serialbus *sb;
2614         int *count = data;
2615
2616         if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2617                 return 1;
2618
2619         sb = &ares->data.spi_serial_bus;
2620         if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2621                 return 1;
2622
2623         *count = *count + 1;
2624
2625         return 1;
2626 }
2627
2628 /**
2629  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2630  * @adev:       ACPI device
2631  *
2632  * Return: the number of SpiSerialBus resources in the ACPI-device's
2633  * resource-list; or a negative error code.
2634  */
2635 int acpi_spi_count_resources(struct acpi_device *adev)
2636 {
2637         LIST_HEAD(r);
2638         int count = 0;
2639         int ret;
2640
2641         ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2642         if (ret < 0)
2643                 return ret;
2644
2645         acpi_dev_free_resource_list(&r);
2646
2647         return count;
2648 }
2649 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2650
2651 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2652                                             struct acpi_spi_lookup *lookup)
2653 {
2654         const union acpi_object *obj;
2655
2656         if (!x86_apple_machine)
2657                 return;
2658
2659         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2660             && obj->buffer.length >= 4)
2661                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2662
2663         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2664             && obj->buffer.length == 8)
2665                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2666
2667         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2668             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2669                 lookup->mode |= SPI_LSB_FIRST;
2670
2671         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2672             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2673                 lookup->mode |= SPI_CPOL;
2674
2675         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2676             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2677                 lookup->mode |= SPI_CPHA;
2678 }
2679
2680 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2681 {
2682         struct acpi_spi_lookup *lookup = data;
2683         struct spi_controller *ctlr = lookup->ctlr;
2684
2685         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2686                 struct acpi_resource_spi_serialbus *sb;
2687                 acpi_handle parent_handle;
2688                 acpi_status status;
2689
2690                 sb = &ares->data.spi_serial_bus;
2691                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2692
2693                         if (lookup->index != -1 && lookup->n++ != lookup->index)
2694                                 return 1;
2695
2696                         status = acpi_get_handle(NULL,
2697                                                  sb->resource_source.string_ptr,
2698                                                  &parent_handle);
2699
2700                         if (ACPI_FAILURE(status))
2701                                 return -ENODEV;
2702
2703                         if (ctlr) {
2704                                 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2705                                         return -ENODEV;
2706                         } else {
2707                                 struct acpi_device *adev;
2708
2709                                 adev = acpi_fetch_acpi_dev(parent_handle);
2710                                 if (!adev)
2711                                         return -ENODEV;
2712
2713                                 ctlr = acpi_spi_find_controller_by_adev(adev);
2714                                 if (!ctlr)
2715                                         return -EPROBE_DEFER;
2716
2717                                 lookup->ctlr = ctlr;
2718                         }
2719
2720                         /*
2721                          * ACPI DeviceSelection numbering is handled by the
2722                          * host controller driver in Windows and can vary
2723                          * from driver to driver. In Linux we always expect
2724                          * 0 .. max - 1 so we need to ask the driver to
2725                          * translate between the two schemes.
2726                          */
2727                         if (ctlr->fw_translate_cs) {
2728                                 int cs = ctlr->fw_translate_cs(ctlr,
2729                                                 sb->device_selection);
2730                                 if (cs < 0)
2731                                         return cs;
2732                                 lookup->chip_select = cs;
2733                         } else {
2734                                 lookup->chip_select = sb->device_selection;
2735                         }
2736
2737                         lookup->max_speed_hz = sb->connection_speed;
2738                         lookup->bits_per_word = sb->data_bit_length;
2739
2740                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2741                                 lookup->mode |= SPI_CPHA;
2742                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2743                                 lookup->mode |= SPI_CPOL;
2744                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2745                                 lookup->mode |= SPI_CS_HIGH;
2746                 }
2747         } else if (lookup->irq < 0) {
2748                 struct resource r;
2749
2750                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2751                         lookup->irq = r.start;
2752         }
2753
2754         /* Always tell the ACPI core to skip this resource */
2755         return 1;
2756 }
2757
2758 /**
2759  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2760  * @ctlr: controller to which the spi device belongs
2761  * @adev: ACPI Device for the spi device
2762  * @index: Index of the spi resource inside the ACPI Node
2763  *
2764  * This should be used to allocate a new SPI device from and ACPI Device node.
2765  * The caller is responsible for calling spi_add_device to register the SPI device.
2766  *
2767  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2768  * using the resource.
2769  * If index is set to -1, index is not used.
2770  * Note: If index is -1, ctlr must be set.
2771  *
2772  * Return: a pointer to the new device, or ERR_PTR on error.
2773  */
2774 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2775                                          struct acpi_device *adev,
2776                                          int index)
2777 {
2778         acpi_handle parent_handle = NULL;
2779         struct list_head resource_list;
2780         struct acpi_spi_lookup lookup = {};
2781         struct spi_device *spi;
2782         int ret;
2783         u8 idx;
2784
2785         if (!ctlr && index == -1)
2786                 return ERR_PTR(-EINVAL);
2787
2788         lookup.ctlr             = ctlr;
2789         lookup.irq              = -1;
2790         lookup.index            = index;
2791         lookup.n                = 0;
2792
2793         INIT_LIST_HEAD(&resource_list);
2794         ret = acpi_dev_get_resources(adev, &resource_list,
2795                                      acpi_spi_add_resource, &lookup);
2796         acpi_dev_free_resource_list(&resource_list);
2797
2798         if (ret < 0)
2799                 /* Found SPI in _CRS but it points to another controller */
2800                 return ERR_PTR(ret);
2801
2802         if (!lookup.max_speed_hz &&
2803             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2804             ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2805                 /* Apple does not use _CRS but nested devices for SPI slaves */
2806                 acpi_spi_parse_apple_properties(adev, &lookup);
2807         }
2808
2809         if (!lookup.max_speed_hz)
2810                 return ERR_PTR(-ENODEV);
2811
2812         spi = spi_alloc_device(lookup.ctlr);
2813         if (!spi) {
2814                 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2815                         dev_name(&adev->dev));
2816                 return ERR_PTR(-ENOMEM);
2817         }
2818
2819         /*
2820          * Zero(0) is a valid physical CS value and can be located at any
2821          * logical CS in the spi->chip_select[]. If all the physical CS
2822          * are initialized to 0 then It would be difficult to differentiate
2823          * between a valid physical CS 0 & an unused logical CS whose physical
2824          * CS can be 0. As a solution to this issue initialize all the CS to 0xFF.
2825          * Now all the unused logical CS will have 0xFF physical CS value & can be
2826          * ignore while performing physical CS validity checks.
2827          */
2828         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
2829                 spi_set_chipselect(spi, idx, 0xFF);
2830
2831         ACPI_COMPANION_SET(&spi->dev, adev);
2832         spi->max_speed_hz       = lookup.max_speed_hz;
2833         spi->mode               |= lookup.mode;
2834         spi->irq                = lookup.irq;
2835         spi->bits_per_word      = lookup.bits_per_word;
2836         spi_set_chipselect(spi, 0, lookup.chip_select);
2837         /*
2838          * spi->chip_select[i] gives the corresponding physical CS for logical CS i
2839          * logical CS number is represented by setting the ith bit in spi->cs_index_mask
2840          * So, for example, if spi->cs_index_mask = 0x01 then logical CS number is 0 and
2841          * spi->chip_select[0] will give the physical CS.
2842          * By default spi->chip_select[0] will hold the physical CS number so, set
2843          * spi->cs_index_mask as 0x01.
2844          */
2845         spi->cs_index_mask      = 0x01;
2846
2847         return spi;
2848 }
2849 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2850
2851 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2852                                             struct acpi_device *adev)
2853 {
2854         struct spi_device *spi;
2855
2856         if (acpi_bus_get_status(adev) || !adev->status.present ||
2857             acpi_device_enumerated(adev))
2858                 return AE_OK;
2859
2860         spi = acpi_spi_device_alloc(ctlr, adev, -1);
2861         if (IS_ERR(spi)) {
2862                 if (PTR_ERR(spi) == -ENOMEM)
2863                         return AE_NO_MEMORY;
2864                 else
2865                         return AE_OK;
2866         }
2867
2868         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2869                           sizeof(spi->modalias));
2870
2871         if (spi->irq < 0)
2872                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2873
2874         acpi_device_set_enumerated(adev);
2875
2876         adev->power.flags.ignore_parent = true;
2877         if (spi_add_device(spi)) {
2878                 adev->power.flags.ignore_parent = false;
2879                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2880                         dev_name(&adev->dev));
2881                 spi_dev_put(spi);
2882         }
2883
2884         return AE_OK;
2885 }
2886
2887 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2888                                        void *data, void **return_value)
2889 {
2890         struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2891         struct spi_controller *ctlr = data;
2892
2893         if (!adev)
2894                 return AE_OK;
2895
2896         return acpi_register_spi_device(ctlr, adev);
2897 }
2898
2899 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2900
2901 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2902 {
2903         acpi_status status;
2904         acpi_handle handle;
2905
2906         handle = ACPI_HANDLE(ctlr->dev.parent);
2907         if (!handle)
2908                 return;
2909
2910         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2911                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2912                                      acpi_spi_add_device, NULL, ctlr, NULL);
2913         if (ACPI_FAILURE(status))
2914                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2915 }
2916 #else
2917 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2918 #endif /* CONFIG_ACPI */
2919
2920 static void spi_controller_release(struct device *dev)
2921 {
2922         struct spi_controller *ctlr;
2923
2924         ctlr = container_of(dev, struct spi_controller, dev);
2925         kfree(ctlr);
2926 }
2927
2928 static struct class spi_master_class = {
2929         .name           = "spi_master",
2930         .dev_release    = spi_controller_release,
2931         .dev_groups     = spi_master_groups,
2932 };
2933
2934 #ifdef CONFIG_SPI_SLAVE
2935 /**
2936  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2937  *                   controller
2938  * @spi: device used for the current transfer
2939  */
2940 int spi_slave_abort(struct spi_device *spi)
2941 {
2942         struct spi_controller *ctlr = spi->controller;
2943
2944         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2945                 return ctlr->slave_abort(ctlr);
2946
2947         return -ENOTSUPP;
2948 }
2949 EXPORT_SYMBOL_GPL(spi_slave_abort);
2950
2951 int spi_target_abort(struct spi_device *spi)
2952 {
2953         struct spi_controller *ctlr = spi->controller;
2954
2955         if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2956                 return ctlr->target_abort(ctlr);
2957
2958         return -ENOTSUPP;
2959 }
2960 EXPORT_SYMBOL_GPL(spi_target_abort);
2961
2962 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2963                           char *buf)
2964 {
2965         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2966                                                    dev);
2967         struct device *child;
2968
2969         child = device_find_any_child(&ctlr->dev);
2970         return sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2971 }
2972
2973 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2974                            const char *buf, size_t count)
2975 {
2976         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2977                                                    dev);
2978         struct spi_device *spi;
2979         struct device *child;
2980         char name[32];
2981         int rc;
2982
2983         rc = sscanf(buf, "%31s", name);
2984         if (rc != 1 || !name[0])
2985                 return -EINVAL;
2986
2987         child = device_find_any_child(&ctlr->dev);
2988         if (child) {
2989                 /* Remove registered slave */
2990                 device_unregister(child);
2991                 put_device(child);
2992         }
2993
2994         if (strcmp(name, "(null)")) {
2995                 /* Register new slave */
2996                 spi = spi_alloc_device(ctlr);
2997                 if (!spi)
2998                         return -ENOMEM;
2999
3000                 strscpy(spi->modalias, name, sizeof(spi->modalias));
3001
3002                 rc = spi_add_device(spi);
3003                 if (rc) {
3004                         spi_dev_put(spi);
3005                         return rc;
3006                 }
3007         }
3008
3009         return count;
3010 }
3011
3012 static DEVICE_ATTR_RW(slave);
3013
3014 static struct attribute *spi_slave_attrs[] = {
3015         &dev_attr_slave.attr,
3016         NULL,
3017 };
3018
3019 static const struct attribute_group spi_slave_group = {
3020         .attrs = spi_slave_attrs,
3021 };
3022
3023 static const struct attribute_group *spi_slave_groups[] = {
3024         &spi_controller_statistics_group,
3025         &spi_slave_group,
3026         NULL,
3027 };
3028
3029 static struct class spi_slave_class = {
3030         .name           = "spi_slave",
3031         .dev_release    = spi_controller_release,
3032         .dev_groups     = spi_slave_groups,
3033 };
3034 #else
3035 extern struct class spi_slave_class;    /* dummy */
3036 #endif
3037
3038 /**
3039  * __spi_alloc_controller - allocate an SPI master or slave controller
3040  * @dev: the controller, possibly using the platform_bus
3041  * @size: how much zeroed driver-private data to allocate; the pointer to this
3042  *      memory is in the driver_data field of the returned device, accessible
3043  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
3044  *      drivers granting DMA access to portions of their private data need to
3045  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
3046  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
3047  *      slave (true) controller
3048  * Context: can sleep
3049  *
3050  * This call is used only by SPI controller drivers, which are the
3051  * only ones directly touching chip registers.  It's how they allocate
3052  * an spi_controller structure, prior to calling spi_register_controller().
3053  *
3054  * This must be called from context that can sleep.
3055  *
3056  * The caller is responsible for assigning the bus number and initializing the
3057  * controller's methods before calling spi_register_controller(); and (after
3058  * errors adding the device) calling spi_controller_put() to prevent a memory
3059  * leak.
3060  *
3061  * Return: the SPI controller structure on success, else NULL.
3062  */
3063 struct spi_controller *__spi_alloc_controller(struct device *dev,
3064                                               unsigned int size, bool slave)
3065 {
3066         struct spi_controller   *ctlr;
3067         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3068
3069         if (!dev)
3070                 return NULL;
3071
3072         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3073         if (!ctlr)
3074                 return NULL;
3075
3076         device_initialize(&ctlr->dev);
3077         INIT_LIST_HEAD(&ctlr->queue);
3078         spin_lock_init(&ctlr->queue_lock);
3079         spin_lock_init(&ctlr->bus_lock_spinlock);
3080         mutex_init(&ctlr->bus_lock_mutex);
3081         mutex_init(&ctlr->io_mutex);
3082         mutex_init(&ctlr->add_lock);
3083         ctlr->bus_num = -1;
3084         ctlr->num_chipselect = 1;
3085         ctlr->slave = slave;
3086         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
3087                 ctlr->dev.class = &spi_slave_class;
3088         else
3089                 ctlr->dev.class = &spi_master_class;
3090         ctlr->dev.parent = dev;
3091         pm_suspend_ignore_children(&ctlr->dev, true);
3092         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3093
3094         return ctlr;
3095 }
3096 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3097
3098 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3099 {
3100         spi_controller_put(*(struct spi_controller **)ctlr);
3101 }
3102
3103 /**
3104  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3105  * @dev: physical device of SPI controller
3106  * @size: how much zeroed driver-private data to allocate
3107  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
3108  * Context: can sleep
3109  *
3110  * Allocate an SPI controller and automatically release a reference on it
3111  * when @dev is unbound from its driver.  Drivers are thus relieved from
3112  * having to call spi_controller_put().
3113  *
3114  * The arguments to this function are identical to __spi_alloc_controller().
3115  *
3116  * Return: the SPI controller structure on success, else NULL.
3117  */
3118 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3119                                                    unsigned int size,
3120                                                    bool slave)
3121 {
3122         struct spi_controller **ptr, *ctlr;
3123
3124         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3125                            GFP_KERNEL);
3126         if (!ptr)
3127                 return NULL;
3128
3129         ctlr = __spi_alloc_controller(dev, size, slave);
3130         if (ctlr) {
3131                 ctlr->devm_allocated = true;
3132                 *ptr = ctlr;
3133                 devres_add(dev, ptr);
3134         } else {
3135                 devres_free(ptr);
3136         }
3137
3138         return ctlr;
3139 }
3140 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3141
3142 /**
3143  * spi_get_gpio_descs() - grab chip select GPIOs for the master
3144  * @ctlr: The SPI master to grab GPIO descriptors for
3145  */
3146 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3147 {
3148         int nb, i;
3149         struct gpio_desc **cs;
3150         struct device *dev = &ctlr->dev;
3151         unsigned long native_cs_mask = 0;
3152         unsigned int num_cs_gpios = 0;
3153
3154         nb = gpiod_count(dev, "cs");
3155         if (nb < 0) {
3156                 /* No GPIOs at all is fine, else return the error */
3157                 if (nb == -ENOENT)
3158                         return 0;
3159                 return nb;
3160         }
3161
3162         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3163
3164         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3165                           GFP_KERNEL);
3166         if (!cs)
3167                 return -ENOMEM;
3168         ctlr->cs_gpiods = cs;
3169
3170         for (i = 0; i < nb; i++) {
3171                 /*
3172                  * Most chipselects are active low, the inverted
3173                  * semantics are handled by special quirks in gpiolib,
3174                  * so initializing them GPIOD_OUT_LOW here means
3175                  * "unasserted", in most cases this will drive the physical
3176                  * line high.
3177                  */
3178                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3179                                                       GPIOD_OUT_LOW);
3180                 if (IS_ERR(cs[i]))
3181                         return PTR_ERR(cs[i]);
3182
3183                 if (cs[i]) {
3184                         /*
3185                          * If we find a CS GPIO, name it after the device and
3186                          * chip select line.
3187                          */
3188                         char *gpioname;
3189
3190                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3191                                                   dev_name(dev), i);
3192                         if (!gpioname)
3193                                 return -ENOMEM;
3194                         gpiod_set_consumer_name(cs[i], gpioname);
3195                         num_cs_gpios++;
3196                         continue;
3197                 }
3198
3199                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3200                         dev_err(dev, "Invalid native chip select %d\n", i);
3201                         return -EINVAL;
3202                 }
3203                 native_cs_mask |= BIT(i);
3204         }
3205
3206         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3207
3208         if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3209             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3210                 dev_err(dev, "No unused native chip select available\n");
3211                 return -EINVAL;
3212         }
3213
3214         return 0;
3215 }
3216
3217 static int spi_controller_check_ops(struct spi_controller *ctlr)
3218 {
3219         /*
3220          * The controller may implement only the high-level SPI-memory like
3221          * operations if it does not support regular SPI transfers, and this is
3222          * valid use case.
3223          * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3224          * one of the ->transfer_xxx() method be implemented.
3225          */
3226         if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3227                 if (!ctlr->transfer && !ctlr->transfer_one &&
3228                    !ctlr->transfer_one_message) {
3229                         return -EINVAL;
3230                 }
3231         }
3232
3233         return 0;
3234 }
3235
3236 /* Allocate dynamic bus number using Linux idr */
3237 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3238 {
3239         int id;
3240
3241         mutex_lock(&board_lock);
3242         id = idr_alloc(&spi_master_idr, ctlr, start, end, GFP_KERNEL);
3243         mutex_unlock(&board_lock);
3244         if (WARN(id < 0, "couldn't get idr"))
3245                 return id == -ENOSPC ? -EBUSY : id;
3246         ctlr->bus_num = id;
3247         return 0;
3248 }
3249
3250 /**
3251  * spi_register_controller - register SPI master or slave controller
3252  * @ctlr: initialized master, originally from spi_alloc_master() or
3253  *      spi_alloc_slave()
3254  * Context: can sleep
3255  *
3256  * SPI controllers connect to their drivers using some non-SPI bus,
3257  * such as the platform bus.  The final stage of probe() in that code
3258  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3259  *
3260  * SPI controllers use board specific (often SOC specific) bus numbers,
3261  * and board-specific addressing for SPI devices combines those numbers
3262  * with chip select numbers.  Since SPI does not directly support dynamic
3263  * device identification, boards need configuration tables telling which
3264  * chip is at which address.
3265  *
3266  * This must be called from context that can sleep.  It returns zero on
3267  * success, else a negative error code (dropping the controller's refcount).
3268  * After a successful return, the caller is responsible for calling
3269  * spi_unregister_controller().
3270  *
3271  * Return: zero on success, else a negative error code.
3272  */
3273 int spi_register_controller(struct spi_controller *ctlr)
3274 {
3275         struct device           *dev = ctlr->dev.parent;
3276         struct boardinfo        *bi;
3277         int                     first_dynamic;
3278         int                     status;
3279         int                     idx;
3280
3281         if (!dev)
3282                 return -ENODEV;
3283
3284         /*
3285          * Make sure all necessary hooks are implemented before registering
3286          * the SPI controller.
3287          */
3288         status = spi_controller_check_ops(ctlr);
3289         if (status)
3290                 return status;
3291
3292         if (ctlr->bus_num < 0)
3293                 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3294         if (ctlr->bus_num >= 0) {
3295                 /* Devices with a fixed bus num must check-in with the num */
3296                 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3297                 if (status)
3298                         return status;
3299         }
3300         if (ctlr->bus_num < 0) {
3301                 first_dynamic = of_alias_get_highest_id("spi");
3302                 if (first_dynamic < 0)
3303                         first_dynamic = 0;
3304                 else
3305                         first_dynamic++;
3306
3307                 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3308                 if (status)
3309                         return status;
3310         }
3311         ctlr->bus_lock_flag = 0;
3312         init_completion(&ctlr->xfer_completion);
3313         init_completion(&ctlr->cur_msg_completion);
3314         if (!ctlr->max_dma_len)
3315                 ctlr->max_dma_len = INT_MAX;
3316
3317         /*
3318          * Register the device, then userspace will see it.
3319          * Registration fails if the bus ID is in use.
3320          */
3321         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3322
3323         if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3324                 status = spi_get_gpio_descs(ctlr);
3325                 if (status)
3326                         goto free_bus_id;
3327                 /*
3328                  * A controller using GPIO descriptors always
3329                  * supports SPI_CS_HIGH if need be.
3330                  */
3331                 ctlr->mode_bits |= SPI_CS_HIGH;
3332         }
3333
3334         /*
3335          * Even if it's just one always-selected device, there must
3336          * be at least one chipselect.
3337          */
3338         if (!ctlr->num_chipselect) {
3339                 status = -EINVAL;
3340                 goto free_bus_id;
3341         }
3342
3343         /* Setting last_cs to -1 means no chip selected */
3344         for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3345                 ctlr->last_cs[idx] = -1;
3346
3347         status = device_add(&ctlr->dev);
3348         if (status < 0)
3349                 goto free_bus_id;
3350         dev_dbg(dev, "registered %s %s\n",
3351                         spi_controller_is_slave(ctlr) ? "slave" : "master",
3352                         dev_name(&ctlr->dev));
3353
3354         /*
3355          * If we're using a queued driver, start the queue. Note that we don't
3356          * need the queueing logic if the driver is only supporting high-level
3357          * memory operations.
3358          */
3359         if (ctlr->transfer) {
3360                 dev_info(dev, "controller is unqueued, this is deprecated\n");
3361         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3362                 status = spi_controller_initialize_queue(ctlr);
3363                 if (status) {
3364                         device_del(&ctlr->dev);
3365                         goto free_bus_id;
3366                 }
3367         }
3368         /* Add statistics */
3369         ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3370         if (!ctlr->pcpu_statistics) {
3371                 dev_err(dev, "Error allocating per-cpu statistics\n");
3372                 status = -ENOMEM;
3373                 goto destroy_queue;
3374         }
3375
3376         mutex_lock(&board_lock);
3377         list_add_tail(&ctlr->list, &spi_controller_list);
3378         list_for_each_entry(bi, &board_list, list)
3379                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3380         mutex_unlock(&board_lock);
3381
3382         /* Register devices from the device tree and ACPI */
3383         of_register_spi_devices(ctlr);
3384         acpi_register_spi_devices(ctlr);
3385         return status;
3386
3387 destroy_queue:
3388         spi_destroy_queue(ctlr);
3389 free_bus_id:
3390         mutex_lock(&board_lock);
3391         idr_remove(&spi_master_idr, ctlr->bus_num);
3392         mutex_unlock(&board_lock);
3393         return status;
3394 }
3395 EXPORT_SYMBOL_GPL(spi_register_controller);
3396
3397 static void devm_spi_unregister(struct device *dev, void *res)
3398 {
3399         spi_unregister_controller(*(struct spi_controller **)res);
3400 }
3401
3402 /**
3403  * devm_spi_register_controller - register managed SPI master or slave
3404  *      controller
3405  * @dev:    device managing SPI controller
3406  * @ctlr: initialized controller, originally from spi_alloc_master() or
3407  *      spi_alloc_slave()
3408  * Context: can sleep
3409  *
3410  * Register a SPI device as with spi_register_controller() which will
3411  * automatically be unregistered and freed.
3412  *
3413  * Return: zero on success, else a negative error code.
3414  */
3415 int devm_spi_register_controller(struct device *dev,
3416                                  struct spi_controller *ctlr)
3417 {
3418         struct spi_controller **ptr;
3419         int ret;
3420
3421         ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3422         if (!ptr)
3423                 return -ENOMEM;
3424
3425         ret = spi_register_controller(ctlr);
3426         if (!ret) {
3427                 *ptr = ctlr;
3428                 devres_add(dev, ptr);
3429         } else {
3430                 devres_free(ptr);
3431         }
3432
3433         return ret;
3434 }
3435 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3436
3437 static int __unregister(struct device *dev, void *null)
3438 {
3439         spi_unregister_device(to_spi_device(dev));
3440         return 0;
3441 }
3442
3443 /**
3444  * spi_unregister_controller - unregister SPI master or slave controller
3445  * @ctlr: the controller being unregistered
3446  * Context: can sleep
3447  *
3448  * This call is used only by SPI controller drivers, which are the
3449  * only ones directly touching chip registers.
3450  *
3451  * This must be called from context that can sleep.
3452  *
3453  * Note that this function also drops a reference to the controller.
3454  */
3455 void spi_unregister_controller(struct spi_controller *ctlr)
3456 {
3457         struct spi_controller *found;
3458         int id = ctlr->bus_num;
3459
3460         /* Prevent addition of new devices, unregister existing ones */
3461         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3462                 mutex_lock(&ctlr->add_lock);
3463
3464         device_for_each_child(&ctlr->dev, NULL, __unregister);
3465
3466         /* First make sure that this controller was ever added */
3467         mutex_lock(&board_lock);
3468         found = idr_find(&spi_master_idr, id);
3469         mutex_unlock(&board_lock);
3470         if (ctlr->queued) {
3471                 if (spi_destroy_queue(ctlr))
3472                         dev_err(&ctlr->dev, "queue remove failed\n");
3473         }
3474         mutex_lock(&board_lock);
3475         list_del(&ctlr->list);
3476         mutex_unlock(&board_lock);
3477
3478         device_del(&ctlr->dev);
3479
3480         /* Free bus id */
3481         mutex_lock(&board_lock);
3482         if (found == ctlr)
3483                 idr_remove(&spi_master_idr, id);
3484         mutex_unlock(&board_lock);
3485
3486         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3487                 mutex_unlock(&ctlr->add_lock);
3488
3489         /*
3490          * Release the last reference on the controller if its driver
3491          * has not yet been converted to devm_spi_alloc_master/slave().
3492          */
3493         if (!ctlr->devm_allocated)
3494                 put_device(&ctlr->dev);
3495 }
3496 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3497
3498 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3499 {
3500         return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3501 }
3502
3503 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3504 {
3505         mutex_lock(&ctlr->bus_lock_mutex);
3506         ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3507         mutex_unlock(&ctlr->bus_lock_mutex);
3508 }
3509
3510 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3511 {
3512         mutex_lock(&ctlr->bus_lock_mutex);
3513         ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3514         mutex_unlock(&ctlr->bus_lock_mutex);
3515 }
3516
3517 int spi_controller_suspend(struct spi_controller *ctlr)
3518 {
3519         int ret = 0;
3520
3521         /* Basically no-ops for non-queued controllers */
3522         if (ctlr->queued) {
3523                 ret = spi_stop_queue(ctlr);
3524                 if (ret)
3525                         dev_err(&ctlr->dev, "queue stop failed\n");
3526         }
3527
3528         __spi_mark_suspended(ctlr);
3529         return ret;
3530 }
3531 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3532
3533 int spi_controller_resume(struct spi_controller *ctlr)
3534 {
3535         int ret = 0;
3536
3537         __spi_mark_resumed(ctlr);
3538
3539         if (ctlr->queued) {
3540                 ret = spi_start_queue(ctlr);
3541                 if (ret)
3542                         dev_err(&ctlr->dev, "queue restart failed\n");
3543         }
3544         return ret;
3545 }
3546 EXPORT_SYMBOL_GPL(spi_controller_resume);
3547
3548 /*-------------------------------------------------------------------------*/
3549
3550 /* Core methods for spi_message alterations */
3551
3552 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3553                                             struct spi_message *msg,
3554                                             void *res)
3555 {
3556         struct spi_replaced_transfers *rxfer = res;
3557         size_t i;
3558
3559         /* Call extra callback if requested */
3560         if (rxfer->release)
3561                 rxfer->release(ctlr, msg, res);
3562
3563         /* Insert replaced transfers back into the message */
3564         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3565
3566         /* Remove the formerly inserted entries */
3567         for (i = 0; i < rxfer->inserted; i++)
3568                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3569 }
3570
3571 /**
3572  * spi_replace_transfers - replace transfers with several transfers
3573  *                         and register change with spi_message.resources
3574  * @msg:           the spi_message we work upon
3575  * @xfer_first:    the first spi_transfer we want to replace
3576  * @remove:        number of transfers to remove
3577  * @insert:        the number of transfers we want to insert instead
3578  * @release:       extra release code necessary in some circumstances
3579  * @extradatasize: extra data to allocate (with alignment guarantees
3580  *                 of struct @spi_transfer)
3581  * @gfp:           gfp flags
3582  *
3583  * Returns: pointer to @spi_replaced_transfers,
3584  *          PTR_ERR(...) in case of errors.
3585  */
3586 static struct spi_replaced_transfers *spi_replace_transfers(
3587         struct spi_message *msg,
3588         struct spi_transfer *xfer_first,
3589         size_t remove,
3590         size_t insert,
3591         spi_replaced_release_t release,
3592         size_t extradatasize,
3593         gfp_t gfp)
3594 {
3595         struct spi_replaced_transfers *rxfer;
3596         struct spi_transfer *xfer;
3597         size_t i;
3598
3599         /* Allocate the structure using spi_res */
3600         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3601                               struct_size(rxfer, inserted_transfers, insert)
3602                               + extradatasize,
3603                               gfp);
3604         if (!rxfer)
3605                 return ERR_PTR(-ENOMEM);
3606
3607         /* The release code to invoke before running the generic release */
3608         rxfer->release = release;
3609
3610         /* Assign extradata */
3611         if (extradatasize)
3612                 rxfer->extradata =
3613                         &rxfer->inserted_transfers[insert];
3614
3615         /* Init the replaced_transfers list */
3616         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3617
3618         /*
3619          * Assign the list_entry after which we should reinsert
3620          * the @replaced_transfers - it may be spi_message.messages!
3621          */
3622         rxfer->replaced_after = xfer_first->transfer_list.prev;
3623
3624         /* Remove the requested number of transfers */
3625         for (i = 0; i < remove; i++) {
3626                 /*
3627                  * If the entry after replaced_after it is msg->transfers
3628                  * then we have been requested to remove more transfers
3629                  * than are in the list.
3630                  */
3631                 if (rxfer->replaced_after->next == &msg->transfers) {
3632                         dev_err(&msg->spi->dev,
3633                                 "requested to remove more spi_transfers than are available\n");
3634                         /* Insert replaced transfers back into the message */
3635                         list_splice(&rxfer->replaced_transfers,
3636                                     rxfer->replaced_after);
3637
3638                         /* Free the spi_replace_transfer structure... */
3639                         spi_res_free(rxfer);
3640
3641                         /* ...and return with an error */
3642                         return ERR_PTR(-EINVAL);
3643                 }
3644
3645                 /*
3646                  * Remove the entry after replaced_after from list of
3647                  * transfers and add it to list of replaced_transfers.
3648                  */
3649                 list_move_tail(rxfer->replaced_after->next,
3650                                &rxfer->replaced_transfers);
3651         }
3652
3653         /*
3654          * Create copy of the given xfer with identical settings
3655          * based on the first transfer to get removed.
3656          */
3657         for (i = 0; i < insert; i++) {
3658                 /* We need to run in reverse order */
3659                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3660
3661                 /* Copy all spi_transfer data */
3662                 memcpy(xfer, xfer_first, sizeof(*xfer));
3663
3664                 /* Add to list */
3665                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3666
3667                 /* Clear cs_change and delay for all but the last */
3668                 if (i) {
3669                         xfer->cs_change = false;
3670                         xfer->delay.value = 0;
3671                 }
3672         }
3673
3674         /* Set up inserted... */
3675         rxfer->inserted = insert;
3676
3677         /* ...and register it with spi_res/spi_message */
3678         spi_res_add(msg, rxfer);
3679
3680         return rxfer;
3681 }
3682
3683 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3684                                         struct spi_message *msg,
3685                                         struct spi_transfer **xferp,
3686                                         size_t maxsize,
3687                                         gfp_t gfp)
3688 {
3689         struct spi_transfer *xfer = *xferp, *xfers;
3690         struct spi_replaced_transfers *srt;
3691         size_t offset;
3692         size_t count, i;
3693
3694         /* Calculate how many we have to replace */
3695         count = DIV_ROUND_UP(xfer->len, maxsize);
3696
3697         /* Create replacement */
3698         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3699         if (IS_ERR(srt))
3700                 return PTR_ERR(srt);
3701         xfers = srt->inserted_transfers;
3702
3703         /*
3704          * Now handle each of those newly inserted spi_transfers.
3705          * Note that the replacements spi_transfers all are preset
3706          * to the same values as *xferp, so tx_buf, rx_buf and len
3707          * are all identical (as well as most others)
3708          * so we just have to fix up len and the pointers.
3709          *
3710          * This also includes support for the depreciated
3711          * spi_message.is_dma_mapped interface.
3712          */
3713
3714         /*
3715          * The first transfer just needs the length modified, so we
3716          * run it outside the loop.
3717          */
3718         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3719
3720         /* All the others need rx_buf/tx_buf also set */
3721         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3722                 /* Update rx_buf, tx_buf and DMA */
3723                 if (xfers[i].rx_buf)
3724                         xfers[i].rx_buf += offset;
3725                 if (xfers[i].rx_dma)
3726                         xfers[i].rx_dma += offset;
3727                 if (xfers[i].tx_buf)
3728                         xfers[i].tx_buf += offset;
3729                 if (xfers[i].tx_dma)
3730                         xfers[i].tx_dma += offset;
3731
3732                 /* Update length */
3733                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3734         }
3735
3736         /*
3737          * We set up xferp to the last entry we have inserted,
3738          * so that we skip those already split transfers.
3739          */
3740         *xferp = &xfers[count - 1];
3741
3742         /* Increment statistics counters */
3743         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3744                                        transfers_split_maxsize);
3745         SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3746                                        transfers_split_maxsize);
3747
3748         return 0;
3749 }
3750
3751 /**
3752  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3753  *                               when an individual transfer exceeds a
3754  *                               certain size
3755  * @ctlr:    the @spi_controller for this transfer
3756  * @msg:   the @spi_message to transform
3757  * @maxsize:  the maximum when to apply this
3758  * @gfp: GFP allocation flags
3759  *
3760  * Return: status of transformation
3761  */
3762 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3763                                 struct spi_message *msg,
3764                                 size_t maxsize,
3765                                 gfp_t gfp)
3766 {
3767         struct spi_transfer *xfer;
3768         int ret;
3769
3770         /*
3771          * Iterate over the transfer_list,
3772          * but note that xfer is advanced to the last transfer inserted
3773          * to avoid checking sizes again unnecessarily (also xfer does
3774          * potentially belong to a different list by the time the
3775          * replacement has happened).
3776          */
3777         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3778                 if (xfer->len > maxsize) {
3779                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3780                                                            maxsize, gfp);
3781                         if (ret)
3782                                 return ret;
3783                 }
3784         }
3785
3786         return 0;
3787 }
3788 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3789
3790
3791 /**
3792  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3793  *                                when an individual transfer exceeds a
3794  *                                certain number of SPI words
3795  * @ctlr:     the @spi_controller for this transfer
3796  * @msg:      the @spi_message to transform
3797  * @maxwords: the number of words to limit each transfer to
3798  * @gfp:      GFP allocation flags
3799  *
3800  * Return: status of transformation
3801  */
3802 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3803                                  struct spi_message *msg,
3804                                  size_t maxwords,
3805                                  gfp_t gfp)
3806 {
3807         struct spi_transfer *xfer;
3808
3809         /*
3810          * Iterate over the transfer_list,
3811          * but note that xfer is advanced to the last transfer inserted
3812          * to avoid checking sizes again unnecessarily (also xfer does
3813          * potentially belong to a different list by the time the
3814          * replacement has happened).
3815          */
3816         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3817                 size_t maxsize;
3818                 int ret;
3819
3820                 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3821                 if (xfer->len > maxsize) {
3822                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3823                                                            maxsize, gfp);
3824                         if (ret)
3825                                 return ret;
3826                 }
3827         }
3828
3829         return 0;
3830 }
3831 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3832
3833 /*-------------------------------------------------------------------------*/
3834
3835 /*
3836  * Core methods for SPI controller protocol drivers. Some of the
3837  * other core methods are currently defined as inline functions.
3838  */
3839
3840 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3841                                         u8 bits_per_word)
3842 {
3843         if (ctlr->bits_per_word_mask) {
3844                 /* Only 32 bits fit in the mask */
3845                 if (bits_per_word > 32)
3846                         return -EINVAL;
3847                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3848                         return -EINVAL;
3849         }
3850
3851         return 0;
3852 }
3853
3854 /**
3855  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3856  * @spi: the device that requires specific CS timing configuration
3857  *
3858  * Return: zero on success, else a negative error code.
3859  */
3860 static int spi_set_cs_timing(struct spi_device *spi)
3861 {
3862         struct device *parent = spi->controller->dev.parent;
3863         int status = 0;
3864
3865         if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3866                 if (spi->controller->auto_runtime_pm) {
3867                         status = pm_runtime_get_sync(parent);
3868                         if (status < 0) {
3869                                 pm_runtime_put_noidle(parent);
3870                                 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3871                                         status);
3872                                 return status;
3873                         }
3874
3875                         status = spi->controller->set_cs_timing(spi);
3876                         pm_runtime_mark_last_busy(parent);
3877                         pm_runtime_put_autosuspend(parent);
3878                 } else {
3879                         status = spi->controller->set_cs_timing(spi);
3880                 }
3881         }
3882         return status;
3883 }
3884
3885 /**
3886  * spi_setup - setup SPI mode and clock rate
3887  * @spi: the device whose settings are being modified
3888  * Context: can sleep, and no requests are queued to the device
3889  *
3890  * SPI protocol drivers may need to update the transfer mode if the
3891  * device doesn't work with its default.  They may likewise need
3892  * to update clock rates or word sizes from initial values.  This function
3893  * changes those settings, and must be called from a context that can sleep.
3894  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3895  * effect the next time the device is selected and data is transferred to
3896  * or from it.  When this function returns, the SPI device is deselected.
3897  *
3898  * Note that this call will fail if the protocol driver specifies an option
3899  * that the underlying controller or its driver does not support.  For
3900  * example, not all hardware supports wire transfers using nine bit words,
3901  * LSB-first wire encoding, or active-high chipselects.
3902  *
3903  * Return: zero on success, else a negative error code.
3904  */
3905 int spi_setup(struct spi_device *spi)
3906 {
3907         unsigned        bad_bits, ugly_bits;
3908         int             status = 0;
3909
3910         /*
3911          * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3912          * are set at the same time.
3913          */
3914         if ((hweight_long(spi->mode &
3915                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3916             (hweight_long(spi->mode &
3917                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3918                 dev_err(&spi->dev,
3919                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3920                 return -EINVAL;
3921         }
3922         /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3923         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3924                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3925                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3926                 return -EINVAL;
3927         /*
3928          * Help drivers fail *cleanly* when they need options
3929          * that aren't supported with their current controller.
3930          * SPI_CS_WORD has a fallback software implementation,
3931          * so it is ignored here.
3932          */
3933         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3934                                  SPI_NO_TX | SPI_NO_RX);
3935         ugly_bits = bad_bits &
3936                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3937                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3938         if (ugly_bits) {
3939                 dev_warn(&spi->dev,
3940                          "setup: ignoring unsupported mode bits %x\n",
3941                          ugly_bits);
3942                 spi->mode &= ~ugly_bits;
3943                 bad_bits &= ~ugly_bits;
3944         }
3945         if (bad_bits) {
3946                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3947                         bad_bits);
3948                 return -EINVAL;
3949         }
3950
3951         if (!spi->bits_per_word) {
3952                 spi->bits_per_word = 8;
3953         } else {
3954                 /*
3955                  * Some controllers may not support the default 8 bits-per-word
3956                  * so only perform the check when this is explicitly provided.
3957                  */
3958                 status = __spi_validate_bits_per_word(spi->controller,
3959                                                       spi->bits_per_word);
3960                 if (status)
3961                         return status;
3962         }
3963
3964         if (spi->controller->max_speed_hz &&
3965             (!spi->max_speed_hz ||
3966              spi->max_speed_hz > spi->controller->max_speed_hz))
3967                 spi->max_speed_hz = spi->controller->max_speed_hz;
3968
3969         mutex_lock(&spi->controller->io_mutex);
3970
3971         if (spi->controller->setup) {
3972                 status = spi->controller->setup(spi);
3973                 if (status) {
3974                         mutex_unlock(&spi->controller->io_mutex);
3975                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3976                                 status);
3977                         return status;
3978                 }
3979         }
3980
3981         status = spi_set_cs_timing(spi);
3982         if (status) {
3983                 mutex_unlock(&spi->controller->io_mutex);
3984                 return status;
3985         }
3986
3987         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3988                 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3989                 if (status < 0) {
3990                         mutex_unlock(&spi->controller->io_mutex);
3991                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3992                                 status);
3993                         return status;
3994                 }
3995
3996                 /*
3997                  * We do not want to return positive value from pm_runtime_get,
3998                  * there are many instances of devices calling spi_setup() and
3999                  * checking for a non-zero return value instead of a negative
4000                  * return value.
4001                  */
4002                 status = 0;
4003
4004                 spi_set_cs(spi, false, true);
4005                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
4006                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
4007         } else {
4008                 spi_set_cs(spi, false, true);
4009         }
4010
4011         mutex_unlock(&spi->controller->io_mutex);
4012
4013         if (spi->rt && !spi->controller->rt) {
4014                 spi->controller->rt = true;
4015                 spi_set_thread_rt(spi->controller);
4016         }
4017
4018         trace_spi_setup(spi, status);
4019
4020         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4021                         spi->mode & SPI_MODE_X_MASK,
4022                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4023                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4024                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4025                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
4026                         spi->bits_per_word, spi->max_speed_hz,
4027                         status);
4028
4029         return status;
4030 }
4031 EXPORT_SYMBOL_GPL(spi_setup);
4032
4033 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4034                                        struct spi_device *spi)
4035 {
4036         int delay1, delay2;
4037
4038         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4039         if (delay1 < 0)
4040                 return delay1;
4041
4042         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4043         if (delay2 < 0)
4044                 return delay2;
4045
4046         if (delay1 < delay2)
4047                 memcpy(&xfer->word_delay, &spi->word_delay,
4048                        sizeof(xfer->word_delay));
4049
4050         return 0;
4051 }
4052
4053 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4054 {
4055         struct spi_controller *ctlr = spi->controller;
4056         struct spi_transfer *xfer;
4057         int w_size;
4058
4059         if (list_empty(&message->transfers))
4060                 return -EINVAL;
4061
4062         /*
4063          * If an SPI controller does not support toggling the CS line on each
4064          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4065          * for the CS line, we can emulate the CS-per-word hardware function by
4066          * splitting transfers into one-word transfers and ensuring that
4067          * cs_change is set for each transfer.
4068          */
4069         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
4070                                           spi_is_csgpiod(spi))) {
4071                 size_t maxsize = BITS_TO_BYTES(spi->bits_per_word);
4072                 int ret;
4073
4074                 /* spi_split_transfers_maxsize() requires message->spi */
4075                 message->spi = spi;
4076
4077                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
4078                                                   GFP_KERNEL);
4079                 if (ret)
4080                         return ret;
4081
4082                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4083                         /* Don't change cs_change on the last entry in the list */
4084                         if (list_is_last(&xfer->transfer_list, &message->transfers))
4085                                 break;
4086                         xfer->cs_change = 1;
4087                 }
4088         }
4089
4090         /*
4091          * Half-duplex links include original MicroWire, and ones with
4092          * only one data pin like SPI_3WIRE (switches direction) or where
4093          * either MOSI or MISO is missing.  They can also be caused by
4094          * software limitations.
4095          */
4096         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4097             (spi->mode & SPI_3WIRE)) {
4098                 unsigned flags = ctlr->flags;
4099
4100                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4101                         if (xfer->rx_buf && xfer->tx_buf)
4102                                 return -EINVAL;
4103                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4104                                 return -EINVAL;
4105                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4106                                 return -EINVAL;
4107                 }
4108         }
4109
4110         /*
4111          * Set transfer bits_per_word and max speed as spi device default if
4112          * it is not set for this transfer.
4113          * Set transfer tx_nbits and rx_nbits as single transfer default
4114          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4115          * Ensure transfer word_delay is at least as long as that required by
4116          * device itself.
4117          */
4118         message->frame_length = 0;
4119         list_for_each_entry(xfer, &message->transfers, transfer_list) {
4120                 xfer->effective_speed_hz = 0;
4121                 message->frame_length += xfer->len;
4122                 if (!xfer->bits_per_word)
4123                         xfer->bits_per_word = spi->bits_per_word;
4124
4125                 if (!xfer->speed_hz)
4126                         xfer->speed_hz = spi->max_speed_hz;
4127
4128                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4129                         xfer->speed_hz = ctlr->max_speed_hz;
4130
4131                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4132                         return -EINVAL;
4133
4134                 /*
4135                  * SPI transfer length should be multiple of SPI word size
4136                  * where SPI word size should be power-of-two multiple.
4137                  */
4138                 if (xfer->bits_per_word <= 8)
4139                         w_size = 1;
4140                 else if (xfer->bits_per_word <= 16)
4141                         w_size = 2;
4142                 else
4143                         w_size = 4;
4144
4145                 /* No partial transfers accepted */
4146                 if (xfer->len % w_size)
4147                         return -EINVAL;
4148
4149                 if (xfer->speed_hz && ctlr->min_speed_hz &&
4150                     xfer->speed_hz < ctlr->min_speed_hz)
4151                         return -EINVAL;
4152
4153                 if (xfer->tx_buf && !xfer->tx_nbits)
4154                         xfer->tx_nbits = SPI_NBITS_SINGLE;
4155                 if (xfer->rx_buf && !xfer->rx_nbits)
4156                         xfer->rx_nbits = SPI_NBITS_SINGLE;
4157                 /*
4158                  * Check transfer tx/rx_nbits:
4159                  * 1. check the value matches one of single, dual and quad
4160                  * 2. check tx/rx_nbits match the mode in spi_device
4161                  */
4162                 if (xfer->tx_buf) {
4163                         if (spi->mode & SPI_NO_TX)
4164                                 return -EINVAL;
4165                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4166                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
4167                                 xfer->tx_nbits != SPI_NBITS_QUAD)
4168                                 return -EINVAL;
4169                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4170                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4171                                 return -EINVAL;
4172                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4173                                 !(spi->mode & SPI_TX_QUAD))
4174                                 return -EINVAL;
4175                 }
4176                 /* Check transfer rx_nbits */
4177                 if (xfer->rx_buf) {
4178                         if (spi->mode & SPI_NO_RX)
4179                                 return -EINVAL;
4180                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4181                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
4182                                 xfer->rx_nbits != SPI_NBITS_QUAD)
4183                                 return -EINVAL;
4184                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4185                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4186                                 return -EINVAL;
4187                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4188                                 !(spi->mode & SPI_RX_QUAD))
4189                                 return -EINVAL;
4190                 }
4191
4192                 if (_spi_xfer_word_delay_update(xfer, spi))
4193                         return -EINVAL;
4194         }
4195
4196         message->status = -EINPROGRESS;
4197
4198         return 0;
4199 }
4200
4201 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4202 {
4203         struct spi_controller *ctlr = spi->controller;
4204         struct spi_transfer *xfer;
4205
4206         /*
4207          * Some controllers do not support doing regular SPI transfers. Return
4208          * ENOTSUPP when this is the case.
4209          */
4210         if (!ctlr->transfer)
4211                 return -ENOTSUPP;
4212
4213         message->spi = spi;
4214
4215         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4216         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4217
4218         trace_spi_message_submit(message);
4219
4220         if (!ctlr->ptp_sts_supported) {
4221                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4222                         xfer->ptp_sts_word_pre = 0;
4223                         ptp_read_system_prets(xfer->ptp_sts);
4224                 }
4225         }
4226
4227         return ctlr->transfer(spi, message);
4228 }
4229
4230 /**
4231  * spi_async - asynchronous SPI transfer
4232  * @spi: device with which data will be exchanged
4233  * @message: describes the data transfers, including completion callback
4234  * Context: any (IRQs may be blocked, etc)
4235  *
4236  * This call may be used in_irq and other contexts which can't sleep,
4237  * as well as from task contexts which can sleep.
4238  *
4239  * The completion callback is invoked in a context which can't sleep.
4240  * Before that invocation, the value of message->status is undefined.
4241  * When the callback is issued, message->status holds either zero (to
4242  * indicate complete success) or a negative error code.  After that
4243  * callback returns, the driver which issued the transfer request may
4244  * deallocate the associated memory; it's no longer in use by any SPI
4245  * core or controller driver code.
4246  *
4247  * Note that although all messages to a spi_device are handled in
4248  * FIFO order, messages may go to different devices in other orders.
4249  * Some device might be higher priority, or have various "hard" access
4250  * time requirements, for example.
4251  *
4252  * On detection of any fault during the transfer, processing of
4253  * the entire message is aborted, and the device is deselected.
4254  * Until returning from the associated message completion callback,
4255  * no other spi_message queued to that device will be processed.
4256  * (This rule applies equally to all the synchronous transfer calls,
4257  * which are wrappers around this core asynchronous primitive.)
4258  *
4259  * Return: zero on success, else a negative error code.
4260  */
4261 int spi_async(struct spi_device *spi, struct spi_message *message)
4262 {
4263         struct spi_controller *ctlr = spi->controller;
4264         int ret;
4265         unsigned long flags;
4266
4267         ret = __spi_validate(spi, message);
4268         if (ret != 0)
4269                 return ret;
4270
4271         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4272
4273         if (ctlr->bus_lock_flag)
4274                 ret = -EBUSY;
4275         else
4276                 ret = __spi_async(spi, message);
4277
4278         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4279
4280         return ret;
4281 }
4282 EXPORT_SYMBOL_GPL(spi_async);
4283
4284 /**
4285  * spi_async_locked - version of spi_async with exclusive bus usage
4286  * @spi: device with which data will be exchanged
4287  * @message: describes the data transfers, including completion callback
4288  * Context: any (IRQs may be blocked, etc)
4289  *
4290  * This call may be used in_irq and other contexts which can't sleep,
4291  * as well as from task contexts which can sleep.
4292  *
4293  * The completion callback is invoked in a context which can't sleep.
4294  * Before that invocation, the value of message->status is undefined.
4295  * When the callback is issued, message->status holds either zero (to
4296  * indicate complete success) or a negative error code.  After that
4297  * callback returns, the driver which issued the transfer request may
4298  * deallocate the associated memory; it's no longer in use by any SPI
4299  * core or controller driver code.
4300  *
4301  * Note that although all messages to a spi_device are handled in
4302  * FIFO order, messages may go to different devices in other orders.
4303  * Some device might be higher priority, or have various "hard" access
4304  * time requirements, for example.
4305  *
4306  * On detection of any fault during the transfer, processing of
4307  * the entire message is aborted, and the device is deselected.
4308  * Until returning from the associated message completion callback,
4309  * no other spi_message queued to that device will be processed.
4310  * (This rule applies equally to all the synchronous transfer calls,
4311  * which are wrappers around this core asynchronous primitive.)
4312  *
4313  * Return: zero on success, else a negative error code.
4314  */
4315 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4316 {
4317         struct spi_controller *ctlr = spi->controller;
4318         int ret;
4319         unsigned long flags;
4320
4321         ret = __spi_validate(spi, message);
4322         if (ret != 0)
4323                 return ret;
4324
4325         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4326
4327         ret = __spi_async(spi, message);
4328
4329         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4330
4331         return ret;
4332
4333 }
4334
4335 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4336 {
4337         bool was_busy;
4338         int ret;
4339
4340         mutex_lock(&ctlr->io_mutex);
4341
4342         was_busy = ctlr->busy;
4343
4344         ctlr->cur_msg = msg;
4345         ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4346         if (ret)
4347                 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4348         ctlr->cur_msg = NULL;
4349         ctlr->fallback = false;
4350
4351         if (!was_busy) {
4352                 kfree(ctlr->dummy_rx);
4353                 ctlr->dummy_rx = NULL;
4354                 kfree(ctlr->dummy_tx);
4355                 ctlr->dummy_tx = NULL;
4356                 if (ctlr->unprepare_transfer_hardware &&
4357                     ctlr->unprepare_transfer_hardware(ctlr))
4358                         dev_err(&ctlr->dev,
4359                                 "failed to unprepare transfer hardware\n");
4360                 spi_idle_runtime_pm(ctlr);
4361         }
4362
4363         mutex_unlock(&ctlr->io_mutex);
4364 }
4365
4366 /*-------------------------------------------------------------------------*/
4367
4368 /*
4369  * Utility methods for SPI protocol drivers, layered on
4370  * top of the core.  Some other utility methods are defined as
4371  * inline functions.
4372  */
4373
4374 static void spi_complete(void *arg)
4375 {
4376         complete(arg);
4377 }
4378
4379 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4380 {
4381         DECLARE_COMPLETION_ONSTACK(done);
4382         int status;
4383         struct spi_controller *ctlr = spi->controller;
4384
4385         if (__spi_check_suspended(ctlr)) {
4386                 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4387                 return -ESHUTDOWN;
4388         }
4389
4390         status = __spi_validate(spi, message);
4391         if (status != 0)
4392                 return status;
4393
4394         message->spi = spi;
4395
4396         SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4397         SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4398
4399         /*
4400          * Checking queue_empty here only guarantees async/sync message
4401          * ordering when coming from the same context. It does not need to
4402          * guard against reentrancy from a different context. The io_mutex
4403          * will catch those cases.
4404          */
4405         if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4406                 message->actual_length = 0;
4407                 message->status = -EINPROGRESS;
4408
4409                 trace_spi_message_submit(message);
4410
4411                 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4412                 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4413
4414                 __spi_transfer_message_noqueue(ctlr, message);
4415
4416                 return message->status;
4417         }
4418
4419         /*
4420          * There are messages in the async queue that could have originated
4421          * from the same context, so we need to preserve ordering.
4422          * Therefor we send the message to the async queue and wait until they
4423          * are completed.
4424          */
4425         message->complete = spi_complete;
4426         message->context = &done;
4427         status = spi_async_locked(spi, message);
4428         if (status == 0) {
4429                 wait_for_completion(&done);
4430                 status = message->status;
4431         }
4432         message->context = NULL;
4433
4434         return status;
4435 }
4436
4437 /**
4438  * spi_sync - blocking/synchronous SPI data transfers
4439  * @spi: device with which data will be exchanged
4440  * @message: describes the data transfers
4441  * Context: can sleep
4442  *
4443  * This call may only be used from a context that may sleep.  The sleep
4444  * is non-interruptible, and has no timeout.  Low-overhead controller
4445  * drivers may DMA directly into and out of the message buffers.
4446  *
4447  * Note that the SPI device's chip select is active during the message,
4448  * and then is normally disabled between messages.  Drivers for some
4449  * frequently-used devices may want to minimize costs of selecting a chip,
4450  * by leaving it selected in anticipation that the next message will go
4451  * to the same chip.  (That may increase power usage.)
4452  *
4453  * Also, the caller is guaranteeing that the memory associated with the
4454  * message will not be freed before this call returns.
4455  *
4456  * Return: zero on success, else a negative error code.
4457  */
4458 int spi_sync(struct spi_device *spi, struct spi_message *message)
4459 {
4460         int ret;
4461
4462         mutex_lock(&spi->controller->bus_lock_mutex);
4463         ret = __spi_sync(spi, message);
4464         mutex_unlock(&spi->controller->bus_lock_mutex);
4465
4466         return ret;
4467 }
4468 EXPORT_SYMBOL_GPL(spi_sync);
4469
4470 /**
4471  * spi_sync_locked - version of spi_sync with exclusive bus usage
4472  * @spi: device with which data will be exchanged
4473  * @message: describes the data transfers
4474  * Context: can sleep
4475  *
4476  * This call may only be used from a context that may sleep.  The sleep
4477  * is non-interruptible, and has no timeout.  Low-overhead controller
4478  * drivers may DMA directly into and out of the message buffers.
4479  *
4480  * This call should be used by drivers that require exclusive access to the
4481  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4482  * be released by a spi_bus_unlock call when the exclusive access is over.
4483  *
4484  * Return: zero on success, else a negative error code.
4485  */
4486 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4487 {
4488         return __spi_sync(spi, message);
4489 }
4490 EXPORT_SYMBOL_GPL(spi_sync_locked);
4491
4492 /**
4493  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4494  * @ctlr: SPI bus master that should be locked for exclusive bus access
4495  * Context: can sleep
4496  *
4497  * This call may only be used from a context that may sleep.  The sleep
4498  * is non-interruptible, and has no timeout.
4499  *
4500  * This call should be used by drivers that require exclusive access to the
4501  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4502  * exclusive access is over. Data transfer must be done by spi_sync_locked
4503  * and spi_async_locked calls when the SPI bus lock is held.
4504  *
4505  * Return: always zero.
4506  */
4507 int spi_bus_lock(struct spi_controller *ctlr)
4508 {
4509         unsigned long flags;
4510
4511         mutex_lock(&ctlr->bus_lock_mutex);
4512
4513         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4514         ctlr->bus_lock_flag = 1;
4515         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4516
4517         /* Mutex remains locked until spi_bus_unlock() is called */
4518
4519         return 0;
4520 }
4521 EXPORT_SYMBOL_GPL(spi_bus_lock);
4522
4523 /**
4524  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4525  * @ctlr: SPI bus master that was locked for exclusive bus access
4526  * Context: can sleep
4527  *
4528  * This call may only be used from a context that may sleep.  The sleep
4529  * is non-interruptible, and has no timeout.
4530  *
4531  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4532  * call.
4533  *
4534  * Return: always zero.
4535  */
4536 int spi_bus_unlock(struct spi_controller *ctlr)
4537 {
4538         ctlr->bus_lock_flag = 0;
4539
4540         mutex_unlock(&ctlr->bus_lock_mutex);
4541
4542         return 0;
4543 }
4544 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4545
4546 /* Portable code must never pass more than 32 bytes */
4547 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4548
4549 static u8       *buf;
4550
4551 /**
4552  * spi_write_then_read - SPI synchronous write followed by read
4553  * @spi: device with which data will be exchanged
4554  * @txbuf: data to be written (need not be DMA-safe)
4555  * @n_tx: size of txbuf, in bytes
4556  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4557  * @n_rx: size of rxbuf, in bytes
4558  * Context: can sleep
4559  *
4560  * This performs a half duplex MicroWire style transaction with the
4561  * device, sending txbuf and then reading rxbuf.  The return value
4562  * is zero for success, else a negative errno status code.
4563  * This call may only be used from a context that may sleep.
4564  *
4565  * Parameters to this routine are always copied using a small buffer.
4566  * Performance-sensitive or bulk transfer code should instead use
4567  * spi_{async,sync}() calls with DMA-safe buffers.
4568  *
4569  * Return: zero on success, else a negative error code.
4570  */
4571 int spi_write_then_read(struct spi_device *spi,
4572                 const void *txbuf, unsigned n_tx,
4573                 void *rxbuf, unsigned n_rx)
4574 {
4575         static DEFINE_MUTEX(lock);
4576
4577         int                     status;
4578         struct spi_message      message;
4579         struct spi_transfer     x[2];
4580         u8                      *local_buf;
4581
4582         /*
4583          * Use preallocated DMA-safe buffer if we can. We can't avoid
4584          * copying here, (as a pure convenience thing), but we can
4585          * keep heap costs out of the hot path unless someone else is
4586          * using the pre-allocated buffer or the transfer is too large.
4587          */
4588         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4589                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4590                                     GFP_KERNEL | GFP_DMA);
4591                 if (!local_buf)
4592                         return -ENOMEM;
4593         } else {
4594                 local_buf = buf;
4595         }
4596
4597         spi_message_init(&message);
4598         memset(x, 0, sizeof(x));
4599         if (n_tx) {
4600                 x[0].len = n_tx;
4601                 spi_message_add_tail(&x[0], &message);
4602         }
4603         if (n_rx) {
4604                 x[1].len = n_rx;
4605                 spi_message_add_tail(&x[1], &message);
4606         }
4607
4608         memcpy(local_buf, txbuf, n_tx);
4609         x[0].tx_buf = local_buf;
4610         x[1].rx_buf = local_buf + n_tx;
4611
4612         /* Do the I/O */
4613         status = spi_sync(spi, &message);
4614         if (status == 0)
4615                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4616
4617         if (x[0].tx_buf == buf)
4618                 mutex_unlock(&lock);
4619         else
4620                 kfree(local_buf);
4621
4622         return status;
4623 }
4624 EXPORT_SYMBOL_GPL(spi_write_then_read);
4625
4626 /*-------------------------------------------------------------------------*/
4627
4628 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4629 /* Must call put_device() when done with returned spi_device device */
4630 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4631 {
4632         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4633
4634         return dev ? to_spi_device(dev) : NULL;
4635 }
4636
4637 /* The spi controllers are not using spi_bus, so we find it with another way */
4638 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4639 {
4640         struct device *dev;
4641
4642         dev = class_find_device_by_of_node(&spi_master_class, node);
4643         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4644                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4645         if (!dev)
4646                 return NULL;
4647
4648         /* Reference got in class_find_device */
4649         return container_of(dev, struct spi_controller, dev);
4650 }
4651
4652 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4653                          void *arg)
4654 {
4655         struct of_reconfig_data *rd = arg;
4656         struct spi_controller *ctlr;
4657         struct spi_device *spi;
4658
4659         switch (of_reconfig_get_state_change(action, arg)) {
4660         case OF_RECONFIG_CHANGE_ADD:
4661                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4662                 if (ctlr == NULL)
4663                         return NOTIFY_OK;       /* Not for us */
4664
4665                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4666                         put_device(&ctlr->dev);
4667                         return NOTIFY_OK;
4668                 }
4669
4670                 /*
4671                  * Clear the flag before adding the device so that fw_devlink
4672                  * doesn't skip adding consumers to this device.
4673                  */
4674                 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4675                 spi = of_register_spi_device(ctlr, rd->dn);
4676                 put_device(&ctlr->dev);
4677
4678                 if (IS_ERR(spi)) {
4679                         pr_err("%s: failed to create for '%pOF'\n",
4680                                         __func__, rd->dn);
4681                         of_node_clear_flag(rd->dn, OF_POPULATED);
4682                         return notifier_from_errno(PTR_ERR(spi));
4683                 }
4684                 break;
4685
4686         case OF_RECONFIG_CHANGE_REMOVE:
4687                 /* Already depopulated? */
4688                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4689                         return NOTIFY_OK;
4690
4691                 /* Find our device by node */
4692                 spi = of_find_spi_device_by_node(rd->dn);
4693                 if (spi == NULL)
4694                         return NOTIFY_OK;       /* No? not meant for us */
4695
4696                 /* Unregister takes one ref away */
4697                 spi_unregister_device(spi);
4698
4699                 /* And put the reference of the find */
4700                 put_device(&spi->dev);
4701                 break;
4702         }
4703
4704         return NOTIFY_OK;
4705 }
4706
4707 static struct notifier_block spi_of_notifier = {
4708         .notifier_call = of_spi_notify,
4709 };
4710 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4711 extern struct notifier_block spi_of_notifier;
4712 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4713
4714 #if IS_ENABLED(CONFIG_ACPI)
4715 static int spi_acpi_controller_match(struct device *dev, const void *data)
4716 {
4717         return ACPI_COMPANION(dev->parent) == data;
4718 }
4719
4720 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4721 {
4722         struct device *dev;
4723
4724         dev = class_find_device(&spi_master_class, NULL, adev,
4725                                 spi_acpi_controller_match);
4726         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4727                 dev = class_find_device(&spi_slave_class, NULL, adev,
4728                                         spi_acpi_controller_match);
4729         if (!dev)
4730                 return NULL;
4731
4732         return container_of(dev, struct spi_controller, dev);
4733 }
4734 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4735
4736 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4737 {
4738         struct device *dev;
4739
4740         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4741         return to_spi_device(dev);
4742 }
4743
4744 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4745                            void *arg)
4746 {
4747         struct acpi_device *adev = arg;
4748         struct spi_controller *ctlr;
4749         struct spi_device *spi;
4750
4751         switch (value) {
4752         case ACPI_RECONFIG_DEVICE_ADD:
4753                 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4754                 if (!ctlr)
4755                         break;
4756
4757                 acpi_register_spi_device(ctlr, adev);
4758                 put_device(&ctlr->dev);
4759                 break;
4760         case ACPI_RECONFIG_DEVICE_REMOVE:
4761                 if (!acpi_device_enumerated(adev))
4762                         break;
4763
4764                 spi = acpi_spi_find_device_by_adev(adev);
4765                 if (!spi)
4766                         break;
4767
4768                 spi_unregister_device(spi);
4769                 put_device(&spi->dev);
4770                 break;
4771         }
4772
4773         return NOTIFY_OK;
4774 }
4775
4776 static struct notifier_block spi_acpi_notifier = {
4777         .notifier_call = acpi_spi_notify,
4778 };
4779 #else
4780 extern struct notifier_block spi_acpi_notifier;
4781 #endif
4782
4783 static int __init spi_init(void)
4784 {
4785         int     status;
4786
4787         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4788         if (!buf) {
4789                 status = -ENOMEM;
4790                 goto err0;
4791         }
4792
4793         status = bus_register(&spi_bus_type);
4794         if (status < 0)
4795                 goto err1;
4796
4797         status = class_register(&spi_master_class);
4798         if (status < 0)
4799                 goto err2;
4800
4801         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4802                 status = class_register(&spi_slave_class);
4803                 if (status < 0)
4804                         goto err3;
4805         }
4806
4807         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4808                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4809         if (IS_ENABLED(CONFIG_ACPI))
4810                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4811
4812         return 0;
4813
4814 err3:
4815         class_unregister(&spi_master_class);
4816 err2:
4817         bus_unregister(&spi_bus_type);
4818 err1:
4819         kfree(buf);
4820         buf = NULL;
4821 err0:
4822         return status;
4823 }
4824
4825 /*
4826  * A board_info is normally registered in arch_initcall(),
4827  * but even essential drivers wait till later.
4828  *
4829  * REVISIT only boardinfo really needs static linking. The rest (device and
4830  * driver registration) _could_ be dynamically linked (modular) ... Costs
4831  * include needing to have boardinfo data structures be much more public.
4832  */
4833 postcore_initcall(spi_init);